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Proposal for a transmon-based quantum router
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(Dated: May 23, 2016)

We propose an implementation of a quantum router for microwave photons in a superconducting
qubit architecture consisting of a transmon qubit, SQUIDs and a nonlinear capacitor. We model
and analyze the dynamics of operation of the quantum switch using quantum Langevin equations
in a scattering approach and compute the photon reflection and transmission probabilities. For
parameters corresponding to up-to-date experimental devices we predict successful operation of the
router with probabilities above 94%.

PACS numbers: 42.50.Ex, 85.25.Hv, 42.50.Pq, 03.67.Hk

INTRODUCTION

Given recent advances in experimental quantum com-
putation, where few-qubit systems have been realized [1–
6], a considerable amount of research is currently devoted
to investigating larger-scale systems such as networks for
quantum communication [7–9]. In such systems, where
information must be coherently transported over long
distances, photons are suitable candidates as quantum in-
formation carriers because of their long coherence times.
Solid-state devices, on the other hand, seem preferable
for storage of quantum information [10, 11]. Essential
components in any quantum communication toolbox are,
thus, devices capable of directing photons through differ-
ent channels [8, 9, 12–14]. These devices include single-
photon transistors [15–17], switches or routers [18–22],
single-photon beam splitters [23, 24], etc.
So far, several approaches have been proposed [25] for

building a quantum switch, such as an optical implemen-
tation using polarized photons and trapped atoms or a
phase gate implementation [25]. Also, proposals for a
beam splitter based on Superconducting Quantum Inter-
ference Devices (SQUIDs) to route photons [23, 24, 26–
28] or using toroidal resonators [29] have been put for-
ward.
Here we propose a solid-state implementation of a

quantum router using superconducting qubits. Given an
n-photon input, consisting of a train of photon pulses
where each of them can be in two states (or in a coherent
superposition of both), the quantum switch absorbs the
first photon and forwards the next n − 1 photons to a
path determined by the state of the first absorbed pho-
ton. Our proposed device can be integrated in a larger
network, where the output of one router is the input of
the next. As a result, since the routers are controlled by
the input signals there is no need to control the network
externally. Also it requires the same number of photons
to send a signal through two different paths with the
same number of nodes, while other proposals [9, 18] may
require less photons for some preferred paths, leading to
a network where some routes (e.g., a route that at each

bifurcation node takes the rightmost output path) have
higher efficiency than others. We analyze the dynamic
operation of the router using quantum Langevin equa-
tions combined with input/output scattering formalism,
taking into account decoherence due to relaxation and
dephasing. We predict successful operation of the router
with probabilities above 94% under realistic experimen-
tal conditions.
The paper is organized as follows. First we present our

proposal for the superconducting circuit that operates as
a quantum router and derive the effective Hamiltonian of
the system. We then analyze the dynamics of operation
of the quantum switch using a scattering approach and
calculate the probabilities of reflection and transmission
of an incoming photon. In the last section conclusions
and a discussion of the possible applications of this
quantum device are presented.

MODEL

A schematic of the device we propose, based on circuit
quantum electrodynamics (cQED), is depicted in FIG. 1.
The device is composed of three transmission lines capac-
itively coupled to four SQUIDs and a transmon, acting
as artificial atoms that absorb and reflect or transmit the
photons forward. The device operates as follows: the first
photon of a register that arrives at the switch is absorbed
by the transmon which, after being excited, modifies the
energy spectrum of the SQUIDs in such a way that the
next photons can only be absorbed by the two SQUIDs
labeled with 2a or 2b (3a or 3b) if the transmon is in its
first (higher) excited state.
The excited SQUID then decays while emitting a pho-

ton into its corresponding outgoing transmission line.
The transmon also decays emitting a photon into the in-
coming transmission line. The capacitances C2sa, C2sb,
C3sa and C3sb are chosen such that they are smaller than
any other capacitance in the system. In this way, the
transmission of the control photon, which is the element
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FIG. 1. Circuit QED device proposed to operate as a quantum
router. This device is composed of four SQUIDs, each with
a capacitor (C2sa, C2sb, C3sa, C3sb) and a pair of Joseph-
son junctions (with energies EJ2a, etc.). It also contains a
transmon qubit, consisting of a capacitor (Ct) and a pair of
Josephson junctions (EJt). These five elements are capaci-
tively coupled to an incoming transmission line (V1) and to
two outgoing transmission lines (V2 and V3). The fluxes ϕi,
in the nodes of the circuit, are quantized variables (see [30]
for the quantization of these variables) and describe the ab-
sorption and emission of incoming photons by the transmon
and SQUIDs.

of the register that controls the operation of the router,
is prevented [30]. Also the coupling strength between the
SQUIDs and their farthest transmission line is strongly
reduced if this condition on the capacitances is satisfied.

The dynamics of the router in FIG. 1 is described by
an effective Hamiltonian [30]

Heff = Hsys +Hc +HT . (1)

Here Hsys describes the energy levels of the transmon
and SQUIDs and also the interaction between them:

Hsys =
3
∑

i=1

ωTia
†
TiaTi +

∑

k

ωka
†
kak

−
3
∑

i=1

∑

k

Jika
†
TiaTia

†
kak, (2)

with k ∈ {2a, 2b, 3a, 3b}. Here a† and a denote the cre-
ation and annihilation operators for each of the energy
levels of the system. These operators create an excitation
with energy ωTi in the transmon or ωk in the SQUIDs.
The last term describes the density-density interaction
between the i-th level of the transmon and the excita-
tions in the k-th SQUID, with interaction strength Jik.

Hc describes the exchange interaction between the
transmon and SQUIDs with the transmission lines, which
are modeled as a bath of harmonic oscillators [31, 32] with
ladder operators b1, b2 and b3 for the first, second and
third transmission lines, respectively:

Hc =

∫

dp

[

a†T1b1(p)√
πτT1

+
a†T3b1(p)√

πτT3

+

(
√

2

πτT1
−
√

3

πτT3

)

a†T2aT1b1(p)

+

(

a†2a√
πτa

+
a†2b√
πτb

)

(b1(p) + b2(p))

+

(

a†3a√
πτa

+
a†3b√
πτb

)

(b1(p) + b3(p)) + h.c.

]

.

(3)

The interaction strength of this coupling is given by τT1

and τT3, which are the lifetimes of the excited levels of the
transmon, and also τa and τb, which are the lifetimes of
the SQUIDs. Note that the transmon is only coupled to
the incoming transmission line and that the second level
of the transmon is not coupled (directly) to the trans-
mission lines [33]. The coupling between the third level
of the transmon and the transmission line —which is not
present in the Jaynes-Cummings Hamiltonian, the ex-
pression that usually describes cQED systems similar to
FIG. 1 [2, 4, 34]— is achieved by introducing a nonlinear
capacitor in the transmon [35] (see also Sup. Mat.). This
nonlinear capacitor can be realized, e.g., by placing car-
bon nanotubes between the plates of the capacitor [36].
These give rise to an energy spectrum that has the form
E(V ) = C

2 (V
2 + αV 4) for small voltages V [37, 38].

The energy spectrum of the device, described by the
Hamiltonians Hsys and Hc [Eq. (2) and (3)], is shown
in FIG. 2. In this figure the three levels of the trans-
mon are represented with solid lines. The energy levels
of the SQUIDs, in dashed lines (coupled to the second
transmission line) and dotted lines (coupled to the third
transmission line), do not coincide since all the capaci-
tances and Josephson energies are different. After send-
ing a control photon —with energy ωT1 or ωT3— into
the router (see Fig. 3), due to the coupling between the
transmon and SQUID energy levels described in Eq. (2),
the energy needed to create an excitation in SQUID 2a
when the first level in the transmon is occupied can be
made equal to the energy needed to create an excita-
tion in SQUID 3a when the third level in the transmon
is occupied (likewise for 2b and 3b). This can be done
by tuning the energies of the Josephson junctions of the
system. Thus, the transmon —the control element of the
router— forwards a photon with energy ωa (or ωb) to the
second or third transmission line, depending solely on the
state of the control photon.
The transmission lines are described by a continuum



3

E

ω2a

ω3a

ω2b

ω3b

ωT1

ωT2

ωT3

|T1〉

|T2〉

|T3〉

|2a〉

|2b〉

|3a〉

|3b〉

FIG. 2. Schematic representation of the energy spectrum of
the Hamiltonian in Eq. (2). This spectrum only contains the
‘single-photon levels’, i.e., the levels that are accessible only
by absorbing one single photon (plus |T2〉, for completeness).
Energy levels represented with solid lines are coupled only to
the incoming transmission line. Dashed lines describe levels
coupled to the second outgoing transmission line and also the
incoming one. Dotted lines describe levels coupled to the
third outgoing transmission line and also the incoming one.
The separation of the energy levels is not to scale.

|T1〉

|T1〉 |2a〉
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FIG. 3. (Color online) Energy spectrum of the Hamiltonian
in Eq. (2) after the transmon has been excited. (a) After
the first energy level of the transmon has been excited, the
next photon, which has energy either ωa or ωb (or a super-
position of both) can only excite the energy levels coupled to
the second outgoing transmission line. (b) If the third energy
level of the transmon has been excited, the same photon can
only excite the energy levels coupled to the third outgoing
transmission line.

of oscillating modes as [31, 32]:

HT =

∫

dp p
(

b†1(p)b1(p) + b†2(p)b2(p) + b†3(p)b3(p)
)

.

(4)

ANALYSIS

In order to analyze the dynamics of the quantum router
we have studied the scattering of one and two photons by
our proposed device. Here we calculate the probabilities
of reflection and transmission through each of the output
channels.

We start by deriving the Langevin equations from the
effective Hamiltonian Heff [Eq. (1)] including relaxation
and dephasing [30, 39]. We then obtain the equations
of motion within the input/output formalism of quan-
tum optics [16, 32, 40]. From these equations we obtain
the scattering amplitude of transmission and reflection
of photons, assuming a Lorentzian pulse shape for the
incoming photons [16].

Due to the multiple energy levels of the transmon (de-
picted in FIG. 2), the equation of motion for this element

of the system —in terms of the operators a1 and a†1 intro-
duced after quantizing the fluxes [30]— is a complicated
equation to work with. In order to simplify the calcu-
lations we introduce three projection operators aT1, aT2

and aT3 and their hermitian conjugate —whose defini-
tion can be found in the Supp. Mat.— to replace a1 and
a†1. Moreover, we have limited our Hilbert space by con-
sidering only three excited energy levels in the transmon
and only one in each of the SQUIDs. These operators,
with the properties

a†Ti |GS〉 = |T i〉
a†Ti |T j〉 =0 ∀ i, j, (5)

and also

aTi |T i〉 = |GS〉
aTi |GS〉 = 0

aTi |T j〉 =0 ∀ i 6= j, (6)

with |GS〉 being the ground state of the transmon and
|T i〉 its excited states, are projection operators that do
not satisfy the usual commutation relations, so special
care has to be taken when working with them. On the
other hand, one of the advantages of using these three
operators is that, although we will have three equations
for the transmon instead of one, they are easier to solve.
The use of these three operators instead of the original
one does not change the model as long as the number of
excited states of the transmon is limited to three. An-
other advantage of using this notation is that the final
quantized Hamiltonian takes a simpler form [the results
being Eqns. (2) and (3)] and is easier to interpret: the
operator describing the occupation of the i-th level of the
transmon is simply a†TiaTi.
Before deriving the Langevin equations we must find

an expression that describes the incoming and outgoing
photons in the input/output formalism. Following [40]

we introduce the operators b†2in and b†2out, and their her-
mitian conjugates, which create an incoming and an out-
going photon in the second transmission line (the same
procedure must be applied to the other two transmission
lines). These operators are defined as (see e.g. [16, 40]):

b†2in/out(t) =
1√
2π

∫ ∞

−∞

dω e−iω(t−t1)b2(ω, t1), (7)
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where ω is the frequency of the photon and b2(ω, t1) is an
initial (or final) value of the Heisenberg operator defined
at a time t1 → −∞ for the input operator (or t1 → +∞
for the output operator). The Langevin equations of the
‘static’ variables of the system in terms of b1in, b2in and
b3in are shown in the Supp. Mat. Once the Langevin
equations are found, relaxation and dephasing ratios are
then introduced into this set of equations by following
Refs. [39, 40].
Within the input/output formalism, the scattering am-

plitude for a photon with frequency k in transmission line
1 to be reflected or transmitted in a transmission line i
with frequency p is given by

S(p, k) = 〈0| bi,out(p)b†1in(k) |0〉 . (8)

In the case that multiple photons are sent in, the scat-
tering amplitude reads

S(p1, . . . , pn; k1, . . . , kn) =

= 〈0| bi,out(p1) . . . bi′,out(pn)b†1in(k1) . . . b
†
1in(kn) |0〉 .

(9)

These scattering amplitudes are valid for incoming pho-
tons with a definite frequency k1, . . . , ki each or a super-
position of these. Assuming that the incoming photons
have a frequency distribution given by a Lorentzian cen-
tered at ki = ωi and with width 1/τi, the scattering
amplitude of a photon with frequency ω1 is given by

β(p) =

∫

dk1√
πτ1

1

i(ω1 − k) + 1
τ1

S(p1, k1). (10)

The probability of this process to happen is given by:

P =

∫

dp |β(p)|2 . (11)

Let us consider again the single photon processes. For
a good performance of the quantum router, the first pho-
ton to arrive must be absorbed by the transmon and be
reflected back after all the other photons have been trans-
mitted. It is, thus, necessary to find a procedure to find
out whether the photon has been reflected after being
absorbed or without being absorbed. For this purpose
we describe the incoming photons as even modes given
by the superposition of left and right-moving modes as
b1in(k) = (r1in(k) + l1in(k))/

√
2 [32]. With this proce-

dure one can see, after computing the scattering ampli-
tudes and the probabilities, that a photon described as
an even mode is absorbed (and reflected) with a large
probability (see Tables I and II below). Moreover, the
probability of transmission of subsequent photons is en-
hanced if these are even modes.
The probabilities of reflection and transmission of pho-

tons are obtained by numerically integrating the squared
scattering amplitude over all momenta and imposing the

ωT1 ωT3 ω2a ωa

Refl. even modes 0.997 0.947 1.9 · 10−2 1

Refl. right-moving 0.998 0.973 0.238 1.6 · 10−5

Transmission 2 0 0 0.952 9.8 · 10−6

Transmission 3 0 0 1.6 · 10−6 2.3 · 10−6

TABLE I. Probabilities of reflection and transmission of an
incoming photon. The probabilities in this table have been
computed for different frequencies of the incoming photons
and considering both even modes and right-moving modes.
Similar values can be obtained for left-moving modes. The
probability of reflection of a right-moving photon, as com-
puted here, is equivalent to the probability of absorption plus
reflection of the incoming photon.

conditions ω2a − J12a = ω3a − J33a = ωa and, similarly,
ω2b−J12b = ω3b−J33b = ωa. This ensures that the router
is controlled by the state of the first incoming photon.
The results of our calculations are shown in Tables I

and II. The first table contains the probabilities of trans-
mission of an incoming photon with different frequencies
ωT1, ωT3, ω2a and ωa through the second and third trans-
mission lines together with the probabilities of reflection
in case this photon is described as an even mode or as a
right-moving mode (see Sup. Mat. and [32] for a descrip-
tion of these modes). In the case of a photon with energy
ωT1 or ωT3, since both energy levels are coupled only to
the incoming transmission lines [see Eq. (3)], we find a
large probability of reflection, above 94%. It is interest-
ing to notice the different behavior of the router with
respect to the form of the modes. In case the photons
are described by even modes, the probability amplitude
of reflection scales as

Seven ∼ −1− 3
4γτT1

1 + 3
4γτT1

(12)

for a photon with frequency ωT1. In this expression, γ
is the rate of decoherence and τT1 is the lifetime of the
excited energy level in the transmon. In case of right-
moving modes, since a right-moving mode is reflected
as a left-moving mode if it is absorbed and as a right-
moving mode if it is reflected but not absorbed [16], the
corresponding expression in Table I represents the prob-
ability that a photon is absorbed and reflected, with an
amplitude that is given by

Sright ∼ − 1

1 + 3
4γτT1

. (13)

A photon will only be transmitted if it can excite one
of the SQUIDs. Table I also shows that a photon with
energy ω2a, which coincides with the energy of the ex-
cited state of one of the SQUIDs (see FIG. 2), is totally
transmitted if it is described as an even mode and only
partially transmitted if it is a right-moving mode. Since
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ω2a ωa ωb

Transmission 2 (T1) 4.45 · 10−6 0.952 0.964

Transmission 3 (T1) 7.58 · 10−5 1.63 · 10−6 1.47 · 10−6

Transmission 2 (T3) 2.43 · 10−7 7.12 · 10−7 2.94 · 10−6

Transmission 3 (T3) 4.45 · 10−6 0.952 0.964

TABLE II. Probabilities of reflection and transmission of a
photon while one of the levels —T1 or T3— of the transmon
is excited. Only even modes have been considered (see the
text).

we are only interested in a scenario where the photons ab-
sorbed by the SQUIDs are always transmitted, we only
consider even modes from now on. Notice that the prob-
ability of transmission of a photon indeed goes to one in
case it is transmitted to the nearest transmission line of
the excited SQUID (with even modes) and vanishes in
case it is transmitted to the other outgoing transmission
line.
More interesting is the case where two photons (a con-

trol and a target photons) are sent into the router. In
this case, while the transmon is in the (slow) process of
absorption and emission of the control photon, the sec-
ond (target) photon is absorbed and emitted in a faster
process by a SQUID before the transmon returns to its
ground state. The data corresponding to these scatter-
ing processes is shown in Table II. In this case, a photon
described by an even mode with energy either ωa or ωb is
transmitted to the second transmission line with a prob-
ability above 95% if the first level of the transmon is
excited. The probability amplitude of transmission of a
photon with energy ωa to the second outgoing transmis-
sion line is then given by

S2 ∼ 1

1 + 3
8γτa

. (14)

If the third instead of the first level is excited, the
photon is forwarded to the third outgoing transmission
line with the same probabilities as in the case a photon is
forwarded to the second transmission line when the first
level of the transmon is excited. For any other frequency
of the incoming photons these are not transmitted.

CONCLUSIONS AND OUTLOOK

We have proposed and analyzed a transmon-based
quantum router containing a nonlinear capacitor that op-
erates with photons in the microwave regime. The non-
linear capacitor is the element responsible for the photon-
transmon interaction. We predict successful operation of
the quantum router with probabilities above 94% for cur-
rent experimental parameters. That is, the probability

that a photon is transmitted successfully to the target
channel, assuming that the transmon has been excited
with a high probability (as the calculations suggest) and
that the photon is transmitted before the transmon re-
turns to its ground state, is above 94%. This router can
be built with a set of capacitors and Josephson junctions
(see Ref. [30] for a proposal of such parameters) in which
two of the SQUIDs (coupled to the same outgoing trans-
mission line) can be excited by a photon with frequency
ωa or ωb if one (or the other) level of the transmon is
excited.
The quantum router can be used as a single-photon

transistor, with the distinctive characteristics that both
the control and target photons can come from the same
transmission line (i.e., from the same source) and that
the target photon can be transmitted into two different
transmission lines. The control photon thus not only
controls whether the target photon is transmitted or not
but also into which transmission line it is routed. Since
the router is operated quantum-mechanically, this allows
for transmission of photons in a superposition of paths if
the control photon is in a superposition of states. Because
of the latter, the proposed router can also be used to
construct a quantum random access memory [41], where
a tree-like network with quantum switches at the nodes
leads an address register of qubits from the root node to a
superposition of memory cells. Finally, the router could
be used as a basic element in quantum communication
networks. A list of requirements to fulfill this purpose is
discussed in the Supplemental Material [30].
This work is part of the research programme of the

Foundation for Fundamental Research on Matter (FOM),
which is part of the Netherlands Organisation for Scien-
tific Research (NWO).
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Phys. Rev. A 82, 063821 (2010).

[33] Given that the Lagrangian of the system is an even func-

tion (see supp. material), only odd levels of the transmon
and SQUIDs are coupled to the transmission lines.

[34] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I.
Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[35] Strictly speaking, after the addition of the nonlinear ca-
pacitor the behavior of the transmon will be modified.
This does not affect our calculations, however, since they
involve the behavior of the system as a whole and not
that of the transmon by itself. For simplicity, we refer
to “transmons” and “SQUIDs” (and their energy levels)
throughout the paper.

[36] S. Ilani, L. A. K. Donev, M. Kindermann, and P. L.
McEuen, Nat. Phys. 2, 687 (2006).

[37] Various systems give rise to nonlinear behavior of the ca-
pacitance as a function of the potential [42–44], but only
with carbon nanotubes the energy spectrum of the ca-
pacitor has the form E(V ) = C

2
(V 2+αV 4) [38] for small

voltages V , which is required for obtaining the interac-
tions in Eq. (3).

[38] D. Akinwande, Y. Nishi, and H.-S. Wong,
Nanotechnology, IEEE Transactions on 8, 31 (2009).

[39] G. Ithier, E. Collin, P. Joyez, P. J. Meeson,
D. Vion, D. Esteve, F. Chiarello, A. Shnir-
man, Y. Makhlin, J. Schriefl, and G. Schön,
Phys. Rev. B 72, 134519 (2005).

[40] C. W. Gardiner and M. J. Collett,
Phys. Rev. A 31, 3761 (1985).

[41] V. Giovannetti, S. Lloyd, and L. Maccone,
Phys. Rev. Lett. 100, 160501 (2008).

[42] C. A.-P. de Araujo, J. D. Cuchiaro, L. D. McMillan,
M. C. Scott, and J. F. Scott, Nature 374, 627 (1995).

[43] E. Gluskin, International Journal of Electronics 58, 63 (1985).
[44] J. Colinge and C. Colinge, Physics of Semiconductor De-

vices.

http://stacks.iop.org/1367-2630/13/i=12/a=123001
http://dx.doi.org/10.1038/nature11023
http://dx.doi.org/10.1103/PhysRevA.86.032334
http://dx.doi.org/ 10.1103/PhysRevB.82.024413
http://dx.doi.org/ 10.1103/PhysRevLett.105.140503
http://dx.doi.org/10.1103/PhysRevA.87.062333
http://dx.doi.org/ http://dx.doi.org/10.1016/j.optcom.2013.02.052
http://dx.doi.org/10.1007/s10773-015-2539-9
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1103/PhysRevLett.111.063601
http://dx.doi.org/10.1103/PhysRevB.89.180502
http://dx.doi.org/ 10.1103/PhysRevLett.107.073601
http://dx.doi.org/10.1103/PhysRevA.85.021801
http://dx.doi.org/http://dx.doi.org/10.1016/j.photonics.2012.05.001
http://dx.doi.org/ 10.1103/PhysRevA.89.013805
http://dx.doi.org/10.1038/srep04820
http://dx.doi.org/10.1103/PhysRevLett.104.230502
http://dx.doi.org/http://dx.doi.org/10.1063/1.3522650
http://dx.doi.org/10.1103/PhysRevA.78.052310
http://dx.doi.org/10.1103/PhysRevB.78.104508
http://dx.doi.org/10.1103/PhysRevLett.110.173603
http://dx.doi.org/10.1038/srep08621
http://dx.doi.org/ 10.1103/PhysRevA.86.010306
http://dx.doi.org/10.1103/PhysRevA.82.063821
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1038/nphys412
http://dx.doi.org/10.1109/TNANO.2008.2005185
http://dx.doi.org/10.1103/PhysRevB.72.134519
http://dx.doi.org/10.1103/PhysRevA.31.3761
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1038/374627a0
http://dx.doi.org/10.1080/00207218508939003


7

Proposal for a transmon-based quantum router: Supplemental Material

These notes contain some comments and additional information needed to understand the derivation of the results
presented in the main text. We discuss in detail the need for a nonlinear capacitor in the proposed router design
and possible candidates together with their properties. We also show how our model (Hamiltonian) has been derived
and quantized and how scattering amplitudes and probabilities are computed. We present the set of numbers we
have used and discuss obstacles and possible remedies towards scaling up of our proposed router. Finally, we discuss
the requirements that we believe a quantum router needs to satisfy in order to construct a network for quantum
communications.

NONLINEAR CAPACITORS

In circuit QED, a device similar to the one proposed in the main text (see also FIG. S4) is usually described
by the Jaynes-Cummings (or Tavis-Cummings) Hamiltonian [1–3]. This Hamiltonian only allows the excitation of
one level of the transmon by absorbing one photon. If the third level of the transmon is to be reached, then three
photons are needed. Here we propose a mechanism with which the third level of the transmon can be excited in
one step by absorbing one photon. Unfortunately this transmon-cavity interaction cannot be achieved by using
Josephson junctions or any other inductive element (when including an inductive element in the Lagrangian and
performing a Legendre transformation, the resulting Hamiltonian does not contain a term coupling the transmon
with the transmission lines, as is required). The nonlinearity provided by a Josephson junction is insufficient to
couple the third level of the transmon to the transmission lines in a way that allows for a photon to be absorbed
by the system and drive the transmon from its ground state to its third excited state (|T 3〉 in the main text). This
photon-transmon interaction, not usually present in cQED devices, can, however, be achieved by using a nonlinear
capacitative element. These capacitors have been realized and studied in multiple disciplines and with different
implementations, such as using ferroelectric thin films or ceramics [4, 5], quantum wells in heterojunctions [6], MOS
junctions [7, 8] and carbon nanotubes [9, 10].

We are interested in a nonlinear capacitor whose energy is a non-quadratic, symmetric and increasing function of
the voltage for small fluctuations of V . In this way, the system will be confined into a region of small potentials [11].

Among the aforementioned nonlinear capacitors, the one based on carbon nanotubes seems to be the most suitable
candidate. This capacitor [9] consists of two parallel plates with carbon nanotubes in between, placed perpendicular
to the plates. The nonlinearity in the C(V ) curve is due to the finiteness of the density of states (DOS) in the
nanotubes [9, 10]. The capacitance of this device goes as C(V ) ∼ C0(1 + αV 2), thus the energy spectrum of this
capacitor as a function of the potential difference across the plates has the form

E(V ) ∼
∫ V

0

dV ′(V − V ′)C(V ′) =
1

2
C0(V

2 + αV 4), (S15)

where, to simplify the notation, the constant α has been redefined to absorb a numerical constant.

Note that the carbon nanotubes do not constitute a key element in our proposal. Any other capacitative element,
easier to fabricate and implement, with the same or similar energy spectrum will work as well.

THE MODEL: DERIVATION

The Lagrangian describing our circuit QED system is found in the same way as in circuit theory [12, 13]. The
Lagrangian of the device presented in FIG. S4 is given by L = LS + Lt, where LS is the Lagrangian of the SQUIDs,
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given by

LS =
C2a

2
(ϕ̇2a − V2)

2
+

C2sa

2
(ϕ̇1 − ϕ̇2a)

2
+ EJ2a cos

(

ϕ1 − ϕ2a

ϕ0

)

+
C2b

2
(ϕ̇2b − V2)

2
+

C2sb

2
(ϕ̇1 − ϕ̇2b)

2
+ EJ2b cos

(

ϕ1 − ϕ2b

ϕ0

)

+
C3a

2
(ϕ̇3a − V3)

2
+

C3sa

2
(ϕ̇1 − ϕ̇3a)

2
+ EJ3a cos

(

ϕ1 − ϕ3a

ϕ0

)

+
C3b

2
(ϕ̇3b − V3)

2
+

C3sb

2
(ϕ̇1 − ϕ̇3b)

2
+ EJ3b cos

(

ϕ1 − ϕ3b

ϕ0

)

, (S16)

where the dynamic variables ϕ1, ϕ2a, ϕ2b, ϕ3a and ϕ3b are the fluxes defined at each node of the diagram in FIG. S4
and ϕ0 = ~/(2e) is the flux quantum divided by 2π. For the transmon, the Lagrangian that describes its behavior is
given by

Lt =
C1

2
(ϕ̇t − V1)

2
+

Ct

2

(

ϕ̇2
t + αϕ̇4

1

)

+ EJt cos

(

ϕ1

ϕ0

)

. (S17)

Note that the expression in Eq. (S17) contains the energy spectrum of a carbon nanotube nonlinear capacitor [right-
hand side in Eq. (S15)].
The Legendre transformation of the Lagrangian in Eq. (S16) and (S17), needed to study the quantum dynamics of

the router, gives a function that is not easy to work with due to the presence of quadratic and cubic radicals. Instead,
a Taylor expansion of the transformation is more suitable for our purposes. The expanded Hamiltonian is given by:

H =
p22a + 2p2ac2aV2 − C2saC2aV

2
2

2(C2a + C2sa)
+

p22b + 2p2bc2bV2 − C2sbC2bV
2
2

2(C2b + C2sb)

+
p23a + 2p3ac3aV3 − C3saC3aV

2
3

2(C3a + C3sa)
+

p23b + 2p3bc3bV3 − C3sbC3bV
2
3

2(C3b + C3sb)

+
x2

2γ
− βx4

12γ4
+

β2x6

18γ7
− β3x8

18γ10
− C1V

2
1

2
− EJt cos

(

ϕ1

ϕ0

)

− EJ2a cos

(

ϕ1 − ϕ2a

ϕ0

)

− EJ2b cos

(

ϕ1 − ϕ2b

ϕ0

)

− EJ3a cos

(

ϕ1 − ϕ3a

ϕ0

)

− EJ3b cos

(

ϕ1 − ϕ3b

ϕ0

)

. (S18)

For the sake of simplicity, the Hamiltonian in Eq. (S18) is expressed in terms of the fluxes, their conjugate momenta
and the variable x, defined as

x ≡ p1 + C1V1 +
C2sa

C2a + C2sa
(p2a + C2aV2) +

C2sb

C2b + C2sb
(p2b + C2bV2)

+
C3sa

C3a + C3sa
(p3a + C3aV3) +

C3sb

C3b + C3sb
(p3b + C3bV3), (S19)

with

β ≡ 6Ctα (S20)

γ ≡ C1 + Ct +
C2aC2sa

C2a + C2sa
+

C2bC2sb

C2b + C2sb
+

C3aC3sa

C3a + C3sa
+

C3bC3sb

C3b + C3sb
. (S21)

In order to give rise to a density-density interaction between the different energy levels, the Hamiltonian is required
to contain a term with p61p

2
2a (see the next section in which the Hamiltonian is quantized). This expression appears

after expanding the Hamiltonian in a Taylor series. In this same expansion a term containing p31V1 appears which
describes the coupling between the third energy level of the transmon and the transmission lines.
After substituting Eq. (S19) in Eq. (S18), many more interactions appear, but they can be neglected by imposing

constraints on the parameters of the system. To start with, the coupling between the transmon and the outgoing
transmission lines can be neglected by making C2sa, C2sb, C3sa and C3sb smaller than C1, C2a, C2b, C3a and C3b. In
this way, the exchange interaction between the SQUID 2a and the third outgoing transmission line is also negligible.
In order to see how the remaining couplings are enhanced or neglected we first have to quantize the Hamiltonian.
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V1

C1
ϕ1

EJt

Ct

C3sa C3sbEJ3a EJ3b

ϕ3a ϕ3b

C3a C3b

V3

V2

C2sa C2sbEJ2a EJ2b

ϕ2a ϕ2b

C2a C2b

FIG. S4. Circuit QED device proposed to operate as a quantum router. This device is composed of four SQUIDs, each with
a capacitor (C2sa, C2sb, C3sa, C3sb) and a pair of Josephson junctions (with energies EJ2a, etc.). It also contains a transmon
qubit, with a capacitor (Ct) and a pair of Josephson junctions (EJt). These five elements are capacitively coupled to an
incoming transmission line (V1) and to two outgoing transmission lines (V2 and V3). The fluxes ϕi, in the nodes of the circuit,
are quantized variables (see the text around the figure, section The model: derivation, for the quantization of these variables)
and describe the absorption and emission of incoming photons by the transmon and SQUIDs. In this proposal, two SQUIDs
are placed in each branch for scalability purposes and robustness. Since the target photons can be in two states with different
frequencies (for scaling purposes, for these will be the control photons in a subsequent router), two resonators (per branch)
coupled to the same transmission line, with two distinct threshold energies for which they are detuned, are needed to absorb
the target photons.

Quantization of the Hamiltonian

The Hamiltonian is quantized as usual by introducing the ladder operators as follows:

p1 =− i~

2ϕ0

(

3

2

γ2

βET

)1/4

(a1 − a†1) (S22)

φ1 =

(

2

3

βET

γ2

)1/4

(a1 + a†1). (S23)

Here we have made use of the variable φ1 = ϕ1/ϕ0, to simplify the derivations, where ϕ0 = ~

2e and also ET = ~
2

8γϕ2

0

.

The operators a1 and a†1 are the usual ladder operators that annihilate and create an excitation in the transmon. For
the SQUIDs, the quantized forms of the operators are

p2a =− i~

2ϕ0

[

EJ2a
C2a + C2sa

C2sa

(

β

6γ2ET

)1/2
]1/2

(a2a − a†2a) (S24)

φ2a =

[

1

EJ2a

C2sa

C2a + C2sa

(

6γ2ET

β

)1/2
]1/2

(a1 + a†1). (S25)
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Similar expressions can be derived for the other operators. With Eqns. (S22) – (S25) together with EJt + EJ2a +
EJ2b + EJ3a + EJ3b = 3γ2/β ≡ ĒJ and EJ2aE2a = (ĒJ − EJ2a + EJ2b + EJ3a + EJ3b) (for simplicity we have also

introduced E2a = ~
2

8C2saϕ2

0

) the SQUID-transmon exchange interactions are strongly suppressed and the expressions

describing the energy levels of the system together with the density-density interactions between them are found [see
Eq. (2) in the main text]. The SQUID-SQUID exchange interaction can be neglected since its interaction strength
goes as (C2sa/C2a)

2. Other similar interactions can be neglected by making the capacitances C2sa, C2sb, C3sa and
C3sb smaller than all the others and using the rotating wave approximation.
The interaction Hamiltonian [Eq. (3) in the main text], which couples the transmon and the SQUIDs with the

incoming and outgoing transmission lines, is derived by imposing the following quantization of the potentials V1, V2

and V3:

Vi = − i~

2ϕ0
A

1/4
i (bi − b†i ). (S26)

Here bi, b†i are the ladder operators describing the oscillating modes in the i-th transmission line, and Ai are three
constants that may be different.
Let us look again the expressions in Eqns. (S18) and (S19). In the Hamiltonian [Eq. (S18)], there are only even

powers of x. If we consider a single incoming photon, contained in V1 [see Eq. (S26)], given that the terms in the
Hamiltonian containing a single power of V1 only contains odd powers of the momenta, the photon will excite only
odd levels of the system. An even level can only be excited if an odd level is already occupied. This is shown in the
Hamiltonian Hc in the main text [Eq. (3)].

Projection operators

In order to simpliby both the notation and the calculations we have introduced three projection operators defined
as

a†T1 ≡1

6
a21a

†
1

3
=











0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0











, (S27)

a†T2 ≡ 1

3
√
2
a1a

†
1

3
=











0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0











, (S28)

a†T3 ≡ 1√
6
a†1

3
=











0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0











, (S29)

to replace a1 and its hermitian conjugate. The Hamiltonian in the main text is written in terms of these new operators
(see the section Analysis). These operators have the property that a†Ti acting on the ground state of the transmon
creates an excitation in the i-th level, whereas the same operator acting on any other state where the transmon is
already excited gives zero. Similarly, the operator aTi only annihilates an excitation of levels in the transmon, lowering
it to its ground state.
With these projection operators, the quantized Hamiltonian Hc, which describes the coupling between the trans-

mission lines with the transmon and SQUIDs takes the simple form

Hc =

∫

dp

[

a†T1b1(p)√
πτT1

+
a†T3b1(p)√

πτT3
+

(
√

2

πτT1
−
√

3

πτT3

)

a†T2aT1b1(p) +

(
√

3

πτT1
− 3

√

2

πτT3

)

a†T3aT2b1(p)

+

(

a†2a√
πτa

+
a†2b√
πτb

)

(b1(p) + b2(p))) +

(

a†3a√
πτa

+
a†3b√
πτb

)

(b1(p) + b3(p))) + h.c.

]

. (S30)
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The fourth term in the right-hand side, whose hermitian conjugate describes the process where the third excited level
of the transmon decays into the second while emitting a photon, can be canceled by setting α as

α =
γ3ϕ2

0

324~Ct
. (S31)

In this way, the number of states the third level of the transmon can evolve into is reduced and, thus, the lifetime of
the third level of the transmon is enhanced, increasing the transition matrix element from the ground state to |T 3〉.

Langevin equations of motion

The Langevin equations of the ‘static’ variables of the system in terms of b1in, b2in and b3in are

ȧT1 =−
(

iωT1 +
1

τT1

)

aT1 −
1√

τT1τT3
aT3 + i

∑

k

J1kaT1a
†
kak + 2

(
√

2

τT1
−
√

3

τT3

)

(

a†T1aT2√
τT1

+
a†T3aT2√

τT3

)

+

[

1√
τT1

(

a†T1aT1 − aT1a
†
T1

)

+
1√
τT3

a†T3aT1

](

a2a√
τa

+
a2b√
τb

+
a3a√
τa

+
a3b√
τb

)

+

(
√

2

τT1
−
√

3

τT3

)

(

a†2a√
τa

+
a†2b√
τb

+
a†3a√
τa

+
a†3b√
τb

)

aT2

+ i

[
√

2

τT1

(

a†T1aT1 − aT1a
†
T1

)

+

√

2

τT3
a†T3aT1

]

b1in(t)− i
√
2

(
√

2

τT1
−
√

3

τT3

)

b†1in(t)aT2, (S32)

ȧT3 =−
(

iωT3 +
1

τT3

)

aT3 −
1√

τT1τT3
aT1 + i

∑

k

J3kaT3a
†
kak

+

[

1√
τT1

a†T1aT3 +
1√
τT3

(

a†T3aT3 − aT3a
†
T3

)

](

a2a√
τa

+
a2b√
τb

+
a3a√
τa

+
a3b√
τb

)

+ i

[
√

2

τT1
a†T1aT3 +

√

2

τT3

(

a†T3aT3 − aT3a
†
T3

)

]

b1in(t), (S33)

ȧ2a =−
(

iω2a +
2

τa

)

a2a + i

3
∑

j=1

Jj2aa
†
TjaTja2a − i

√

2

τa
(b1in(t) + b2in(t))

− 2a2b√
τaτb

− a3a
τa

− a3b√
τaτb

− 1√
τa

(
√

2

τT1
−
√

3

τT3

)

a†T1aT2 −
1√

τaτT1
aT1 −

1√
τaτT3

aT3, (S34)

where the index k in the sum runs over k ∈ {2a, 2b, 3a, 3b} and three more equations for 2b, 3a and 3b, similar to
Eq. (S34), have to be derived. Relaxation and dephasing ratios are then introduced into this set of Langevin equations
by following Refs. [14, 16].

PHOTON MODES IN THE TRANSMISSION LINES

In this section we briefly describe the meaning of the left/right-moving and even/odd modes, which are common in
many circuit-QED works where the input-output formalism is used. For more details we refer the reader to Ref. [17],
appendix A, where the following description is taken from.
In case the photons in a transmission line are allowed to propagate in both directions, the photon modes are

described by right-moving bosonic operators (r, r†) if they propagate to the right or by left-moving bosonic operators
(l, l†) if they propagate to the left. In this case, the Hamiltonian that describes the transmission lines reads:

HT =

∫ ∞

−∞

dp p
(

r†prp − l†plp
)

, (S35)

for each transmission line. The minus sign appears because the dispersion relation of the left-moving modes is the
mirror image of the one of the right-moving modes. The remainder of the Hamiltonian given in the main text should,



12

Ct C2a C2b C3a C3b C2sa C2sb C3sa C3sb

0.1 C1 1.2 C1 1.1 C1 C1 C1 0.1824 C1 0.1934 C1 0.1560 C1 0.1799 C1

TABLE S3. Proposal for a set of parameters that satisfy the requirements of a quantum router, given in terms of the capacitance

C1 = 10−9 e
2

~
F . With these values, the device can operate as described in the main text, forwarding photons into one of the

outgoing transmission lines according to the state of the control photon. The rest of the parameters (Josephson energies,
inductances, α) are found as functions of the capacitances during the derivation of the quantized Hamiltonian (see the second
section of these supplementary notes) .

in this case, contain the sum of operators r+ l and r†+ l† instead of b and b† for each transmission line, so the different
components of the router interact equally with both the left and right-moving modes.
From this new Hamiltonian, and following the same procedure as before (input/output formalism), similar equations

of motion are found. Nevertheless, we can also do one more step and define two new operators: the even (b, b†) and

odd (̊b, b̊†) operators that describe what are called even and odd modes, defined as:

bp =
rp + l−p√

2
, (S36)

b̊p =
rp − l−p√

2
. (S37)

These we then introduce in the Hamiltonian replacing the right and left-moving modes. One can check that the odd
modes are not coupled to the system (they do not appear in the interacting part of the Hamiltonian), so they can be
omitted in the Hamiltonian. The even modes are the ones used in the main text.

NUMERICAL INTEGRATION OF THE SCATTERING AMPLITUDES

In order to find the set of values for the capacitances —these are the only free parameters left— that best satisfy the
requirements for an optimal quantum router it is convenient to maximize (or minimize) the scattering probabilities
according to the operating requirements. Since an analytical solution has proved difficult to obtain, we have looked,
by trial and error, for a set of numbers with which the router works as expected and found a set of capacitances
that satisfy our requirements of energy spacing between the SQUIDs and transmon levels. Then, by maximizing the
scattering amplitudes we have fine-tuned these values. Although a more systematic way of searching may result in a
better solution, we have found that there exist at least one set of such parameters, shown in Table S3. The reason
for this fine tuning is that, although the separation between the energy levels of the transmon is relatively large, the
separation between the energy levels of the SQUIDs is very small (and the optimal operation of the quantum router
sensitively depends on small variations of the values of the capacitances)
With the values in Table S3, the energies are found to be around 10GHz for the transmon energy levels (ωT1 =

7.189GHz and ωT3 = 21.93GHz ) and around 1GHz for the SQUIDs (ω2a = 1.028GHz, ω2b = 1.162GHz,
ω3a = 1.053GHz and ω3b = 1.186GHz). The coupling strength is of the order of 10−7Hz. All these values are
common in the related literature. Also, we used the ratio ĒJ/ET = 1296 which, although being larger than in other
circuit-QED works, is sufficient to give rise to the nonlinear effects needed for the correct operation of the quantum
router [3].
For the two-photon processes, we have made some assumptions: from the single-photon process, we have seen that

the transmon absorbs the first incoming photon with a large probability, so for the two-photon processes we assumed
that we sent the second photon while the transmon is already excited and that it does not decay emitting the control
photon until the second photon has been fully transmitted. This implies that the lifetime of the transmon is much
larger than that of the SQUIDs. This is a plausible assumption, given that the lifetimes of such cQED devices depend
not only on the elements they are composed of but also on the geometry of the system (Purcell effect, see e.g. [18]).
Finally, we comment on the possibility to use the quantum router in a larger network containing many quantum

routers such that the transmitted photons of one router can be used as control photons in the next node of the
network. This means that a photon transmitted by the router, which has enough energy to excite one of the SQUIDs,
can also excite the transmon in the next router. Therefore, in a scalable network where all the routers are identical,
the energy needed to excite the transmon (ωT1 or ωT3) is the same as the energy needed to excite one of the SQUIDs
(ωa or ωb). In our (optimized) model, however, the energy of the first excited level of the transmon is one order of
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magnitude larger than that of the SQUIDs with the current set of capacitances. A possible solution may be to add a
device between the two consecutive routers that enlarges the energy of the first photon to arrive. Stimulated Raman
Adiabatic Passage (STIRAP) processes may be a candidate for a device capable of transferring the population of one
quantum state (with lower energy) to another (with higher energy). These processes have been studied in circuit
QED systems in [19, 20].

REQUIREMENTS FOR AN EFFICIENT QUANTUM ROUTER FOR QUANTUM COMMUNICATIONS

So far, different proposals for quantum switches or routers that may be implemented in a quantum network have
been studied [21–25]. In order to assess the suitability of a given implementation for efficient use in a quantum
communication network, we list here a set of requirements that we believe a quantum router must satisfy (part of
these have been proposed elsewhere [24, 25]). The list below contains general requirements, which can be applied and
checked for specific implementations.
Imagine we have a network for quantum communication composed of quantum channels (which allow for the

transmission of quantum information) and nodes (which contain quantum routers). Consider also that there is a
signal to be sent and an element that controls the switches.

1. The information in the signal to be transmitted and also the information encoded in the control elements must
be stored in quantum objects (qubits). Otherwise we can not talk about a fully quantum-mechanical router [24].

2. The router has to be able to route the (quantum) signal into a coherent superposition of both output modes [24].

3. The signal information must remain undisturbed during the entire routing process [24]. The control information
must also remain undisturbed, so that we can keep track of the signal and verify that it is not modified (due to
e.g., entanglement with the control element).

4. The router has to work without any need for postselection on the signal output [24].

5. To optimize the resources of the quantum network, only a single control qubit is required to direct each signal
qubit [24]. Alternatively, the control information could also be stored in the signal qubit itself [25], but that
may give the receiver information about the network which, in some applications, may not be a good idea.

6. With one single control qubit, as many as possible signal qubits should be forwarded.

7. A router with n outputs must operate with the same efficiency (or speed, or with the same number of operations,
etc.) for each output channel.

8. Scalability: the output of a router should be the input of the next one in a network.

The quantum router that we propose satisfies all of these requirements except for the last one (although, as we
discussed in the previous section, this problem can for example be amended by using STIRAP processes). We thus
believe that it can become a good candidate for a quantum switch or router in a network for quantum communication.
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