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Chapter 1

INTRODUCTION

The earliest idea that I can trace in my own mind of calculating
arithmetical Tables by machinery arose in this manner:—
One evening I was sitting in the rooms of the Analytical Society, at
Cambridge, my head leaning forward on the Table in a kind of dreamy
mood, with a Table of logarithms lying open before me. Another
member, coming into the room, and seeing me half asleep, called out,
“Well, Babbage, what are you dreaming about?” to which I replied, “I
am thinking that all these Tables (pointing to the logarithms) might be
calculated by machinery.”

Charles Babbage in

‘Passages from the life of a philosopher’

Longman, Green, Longman, Roberts, & Green (publishers)
London, 1864

1.1 Cordic for high performance numerical computation

Volder presented his “Cordic trigonometric computing technique” in [1] in 1959 as
a means to solve trigonometric relationships involving plane rotations and conver-
sions between polar and rectangular coordinate systems. The acronym “CORDIC”
stands for “COordinate Rotation Dlgital Computer”. The precursor to this open
publication was an internal report on Cordic at Convair [2, 3], in as early as 1956,
in which it is shown how it can be used to compute the transcendental functions
(sine, cosine, tangent, etc.), multiplication, division, square roots, logarithms, ex-
ponents, and hyperbolic coordinate transformations. The main focus of this thesis
is algorithms and architectures for Cordic and Cordic-related arithmctic techniques
that perform plane rotations in an efficient manner. We tailor these to suit their ap-
plication to problems that require high performance numerical computations. The
term “high performance” is used here in a dual context: that of very high speed,
high throughput and low latency of the computations, and/or that of very high ac-
curacy and large dynamic range of the data. Traditional Cordic implementations
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suffer from serious limitations in exactly this high performance context. Unless
remedied, this makes Cordic less suited as a high performance numerical processor
building block in computing hardware. The contribution of this thesis is twofold,
focusing on the above limitations. On the one hand, we present a full floating-point
Cordic, that overcomes the limitations in high accuracy and large dynamic range.
On the other hand, we present a Cordic related technique that we have called “Fast
rotation”. This technique overcomes the limitations in high speed, high throughput
and especially in low latency, by implementing rotations at a lower cost, without
trading in numerical accuracy or dynamic range. In this thesis, we pay particu-
lar attention to fast rotations. We show their application to a number of diverse
problems and show the advantage gained over traditional Cordic or other arithmetic
techniques.

1.2 A short history of the Cordic

The earliest application of Cordic was that of solving trigonometric relationships
of navigation equations, as appear in the problem of great circle navigation, at a
high rate. Volder reports in [1, 2] of a special-purpose prototype computer, the
“CORDIC I”, being designed and constructed by Convair, especially for this pur-
pose. The ultimate goal was to replace the Sperry navigation computer —which
was based on analog resolvers— in the Convair B-58 transcontinental bomber air-
planes, by an all-digital navigation computer; the CORDIC L In this sense, the
Cordic can be seen as the digital equivalent of the analog resolver. For naviga-
tion, the aircraft had a “stable platform” configuration. Like a gyroscope, a stable
platform is suspended with gimbals, and keeps the same fixed orientation in space
at all time. The three angles that determine the orientation of the aircraft, relative
to the stable platform, were read out directly in digital form by means of digital
rotary shaft encoders. With this information, and with the speed computed from
inertial sensors, the CORDIC I would compute the current location of the aircraft.
The incentive to develop the Cordic, was that the accuracy of the analog resolvers
was not good enough, and with Cordic, being a digital technique, you could theor-
etically go to any accuracy you wanted. Only a single prototype of the CORDIC I
was implemented [4]. Its successor, the CORDIC II [4] was fully transistorized.
The logic functions were implemented on card-level: one flip-flop or other logical
gate was put on one printed circuit board. The memory was implemented using a
rotating magnetic drum. The total machine would take about 5 cubic feet of space
[3, 5, 4]

Walther, in his seminal paper [6] in 1972, unified the Cordic algorithm for the cir-
cular, linear, and hyperbolic coordinate systems' and presented the computational

The Cordic algorithms for hyperbolic rotation and computation of exponents and logarithms
were originally discovered by Volder, as published in [2].
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schemes to compute the elementary functions, using only Cordic arithmetic. Aside
from this, he laid the foundation for Cordic arithmetic for when the arguments,
both vector and angle, are in floating-point number representation. The applica-
tions mentioned by Walther are those in the ficld of computer arithmetic, as the
computation of the elementary functions in some of the earliest scientific desk cal-
culators, such as the Hewlett-Packard HP-9100, and in a special purpose floating-
point numerical co-processor to the HP-2116 computer?. Also the first hand-held
calculators, such as the HP-35, were equipped with the Cordic algorithm [9], albeit
a decimal arithmetic version of the algorithm.

As (V)LSI area became more readily available, and integration densities grew, im-
plementations of the Cordic transitioned from a discrete-component implementa-
tion [1, 3] via micro-programmed architectures [10, 6] to single-chip implementa-
tions [11] in 1980. The first single-chip implementations, such as the one by Havil-
and and Tuszynski [11], were necessarily sequential (word-serial or even bit-serial)
by nature. Parallel, pipelined, implementations followed, such as by Deprettere et
al. [12], and the commercially available TMC2330 and TMC2340 chips [13, 14]
from TRW.

As mentioned above, the initial fields of application of the Cordic were that of nav-
igation and arithmetic. To date it is widely applied in the fields of computer arith-
metic itself, numerical analysis (matrix algebra), computer graphics, but most not-
ably in the field of digital signal processing. As early as 1974, Despain presen-
ted in [15] an application to compute the Fast Fourier Transform (FFT) employing
Cordic arithmetic. Digital synthesis of waveforms (modulation and demodulation)
[14, 16] is another main application.

1.3 Advantages and disadvantages

Without doubt, we can state that the Cordic algorithm is versatile when we look at
the large and diverse group® of functions that can be implemented with it. From
the same point of view, we also argue that it is very efficient in implementation, rc-
quiring little hardware. From a viewpoint of numerical stability in computations,
Cordic is attractive as it guarantees orthonormality and robust computation (no
catastrophic exceptions) at the level of the individual operations.

However, when looking at a single specific function only, more efficient imple-
mentations exist, as is the case for multiplication, division, square root, exponenti-
ation, and taking logarithms. When only one, or a few of the functions are required
it may well pay off to select other, more specific and less versatile, algorithms than

“The Cordic algorithm has even been applied in the INTEL line of numeric co-processors up to
the 80387 (7, 8].

*in Appendix 1.A, we present a number of schemes that compute commonly used functions in
Cordic arithmetic.
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Cordic. The same reasoning holds true for actual Cordic implementations: almost
none of these incorporate both the rotation and vectoring modes, and work in all
three coordinate systems (circular, hyperbolic, and linear), unless this diversity is
required by the application. In practice, only a selection of these operation modes
is sufficient.

Still, the cost of an already “stripped” Cordic implementation can be prohibitive.
For some applications, alternatives based on non-Cordic arithmetic might prove ad-
vantageous. As an illustration, we take the application of QR-decomposition based
Recursive Least Squares (QRD-RLS) and refer the reader to [17]. We would con-
sider this as a good candidate for an implementation with Cordic arithmetic, as the
basic operations are embedded 2 x 2 Givens rotations, which match to the Cordic’s
vectoring and rotation modes for the circular coordinate system. Ercegovac and
Lang, in [18], purposefully avoid the use of Cordic, and present an implementa-
tion which uses separate multipliers, dividers, and square-rooters. Whereas it is
likely to have a better speed performance, the operations are no longer guaranteed
to be orthonormal, and there is a loss of robustness in the operations duc to the
possibility of a divide-by-zero cxception. Taking things a step further, Gentleman,
in [19], reformulates the algorithm, to arrive at a square-root-free version. This
lowers the number and the diversity of the operations, and makes it more attractive
to implement with more “conventional” multiply-add and divide arithmetic. Sim-
ilarly, Parhi et al., in [20, 21], present an alternative square-root free version, which
permits higher factors of pipelining, at the cost of giving up orthogonality.

Other than just the prohibitive cost factor, there are other factors that influence the
choice whether or not to choose other techniques over Cordic. We sum these up
below.

* Restricted scalability. Regarding the large amount of litcrature on Cordic
implementations, only a few architectural alternatives appear. These are the
bit-serial 1], the on-line [22, 23, 24], the word-serial [11], and the word-
parallel [12] architectures. There are to our knowledge no intermediate
forms. This greatly limits the choice of area-time trade-off in implcmenta-
tion. This becomes an essentially serious problem as the word-size increases.
On the one side there are the small but slow sequential architectures, and on
the other side the fast, but large, parallel architectures. An architecture for
Cordic which lies in between the word-serial and word-parallel alternatives,
as is commonplace for multipliers and dividers, is only hinted upon by a few
researchers, but is not considered a serious, cost effective alternative.

Limited absolute accuracy, low dynamic range. The classical Cordic al-
gorithm, as given by Volder, employs a fixed-point representation for the
angle of rotation, which implies a certain absolute accuracy. If the vector data
is in a floating-point representation, the absolute accuracy affects the preci-
sion of computations, and may even completely mask the results itself. This
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argument is not entirely true, as Cordic algorithms with a floating-point rep-
resentation of the angle do exist [6, 25, 26], but are significantly more com-
plex.

* High latency, low throughput The Cordic algorithm typically belongs to the
class of digit-recurrence [27] algorithms, like division and square-root. At
every step, a decision is made, based on results of the previous step. Schemes
to reduce the latency using feed-forward techniques, such as exist for the
Wallace multiplier [28], do not exist for Cordic.

1.4 Focus of this thesis

This thesis focuses on what we see as the two major disadvantages of the Cordic,
namely the problem of the limited accuracy and low dynamic range, and the prob-
lem of a relatively high cost of implementation combined with the lack of scalab-
ility. As our solution to the former problem, we present the floating-point Cordic
arithmetic in Chapter 2. As we mentioned earlier, floating-point Cordic arithmetic
was already founded by Walther (6] in as early as 1971, but his solution is suitable
only for efficient implementation as a sequential architecture, and is practically un-
workable for a parallel pipelined architecture. Our approach results in efficient im-
plementations for both types of architecture.

As for the latter of the problems, we present “fast rotation” techniques in Chapter 3
to intend to solve the issues of cost and scalability. Fast rotations [29], also called
orthonormal micro-rotations [30], are closely related to Cordic arithmectic and per-
form orthonormal rotation over a certain angle at a very low cost in implementa-
tion. Although they only exist for certain “nice” angles only, this set can be made
sufficiently large by a whole range of techniques. One can say that what fast rota-
tions are for Cordic is the analog of what Canonic Signed Digit (CSD) optimization
[31], and the work of Magenheimer et al. [32], are for multiplication. The lower
cost of implementation also result in an increase of throughput and a reduction of
the latency.

We have chosen to incorporate both topics together in this thesis, as they are closely
related, and fit in the frame of a “bigger picture”.

1.5 Pre-requisites and Conventions

We briefly describe some of the conventions that we adopt for this thesis.
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1.5.1 Rotations

Unless otherwise specified, when we speak about a rotation we inherently assume
a circular rotation in 2-D space. In this thesis, we treat hyperbolic rotations too,
and will explicitly mention when this is the casc.

We define a rotation over the angle o as given by the 2 x 2 rotation matrix R in:

R cos(a) -—sin(a) ‘ (1.1

sin(at)  cos(a)

The rotation adheres to the convention that a rotation is counterclockwise (CCW)
for positive angles a, and clockwise (CW) for negative angles.

1.5.2 Micro-rotations

Let us define a cosine/sine approximation pair as a tuple (c.s) in which s plays the
role of the sine and ¢ that of the cosine. In the remainder of this thesis, we speak
simply of an approximation pair when we refer to a cosine/sine approximation
pair. We impose the constraint that the approximation pair c.s must be exact rep-
resentable in the number system which we use for the computations.

We define the magnification factor m of an approximation pair as:

m=1vc2+s2. (1.2)

Note that the magnification factor is the 2-norm of the vector with components ¢
and s.

We define the angle a of the approximation pair as the anglc between the positive
axis and the vector [¢s]7, measured in a positive sense (counterclockwise). The re-
lationship between the approximation pair (c.s), magnification factor m and angle
a is given below in Equation (1.3).

¢ = mcos{a)
= msin(a) (1.3)

If ¢ > 0, then the following formula for the angle a is valid.

o= arctan(g) (1.4)

We define a generalized micro-rotation over the angle o as given by the 2 x2 matrix
Fin:

F— [ c —S} ] (1'5)
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Often, we impose the extra constraint that the implementation of F is cheap in terms
of computational/hardware complexity. This constraint restricts the possible val-
ues of a for the angle of rotation. The micro-rotation need not be orthonormal.
Substituting Equation (1.3) for the approximation pair in Equation (1.5) results in
the alternative formulation of F in:

cos(a) -sin(a)

F=m sin(at) cos(a) |- (1.6)

Let F; be generalized micro-rotations with corresponding approximation pairs ¢;. s;,
magnification factors m; and angles of rotation o.

Let P be the product of two generalized micro-rotations Fy and F, as in:
P=F, F,. (1.7)

Substituting Equation (1.5) in the above, we can writc out the product P in terms
of the approximation pairs as:

P

F-Fy

2 -5 c1 -5
$2 O 51

_ [C[(‘z—SlSZ —SlCZ—ClsZ:l

i

(1.8)

s1C2+ 182 €12 —=S81852

Alternatively, we can write out this product, substituting the F; according to Equa-
tion (1.6), resulting in:

P = F,F

I

cos(ay) ~sin(oy) | cos(ap) -—sin{oy)
sin(a;)  cos(oy) "2 sin(a)  cos(az)

_ cos(o +ap) -sin(ay + o)

= mm [ sin(cx11+oc22) cos(a11+a22) ] (1.9)

Referring to the results in Equations (1.8) and (1.9), we can state the following
about the product:

1. The product is commutative, that is P = F,-F; = F; - F». This is easy to
prove, given the alternative representation of Equation (1.6), and the fact that
rotations are commutative.
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2. The matrix P has the same structure as a generalized micro-rotation, and is
given by:

- [Clvz ‘51’2] . (1.10)

12 €12

where the coefficients ¢; 5. s; > follow as:

C12 = C1€2—5152
S12 = Cis+si6 . (1.11)

3. The overall angle of rotation o, 7, as effected by application of P, is given as
the sum of the individual angles of rotation ¢ in:

=01 +0;. (1.12)

4. The overall magnification factor m > of the product P is given by the product
of the individual magnification factors m; in:

my o =nmymy. (1.13)

Note that P is not necessarily a generalized micro-rotation by itself, since there is no
inherent guarantee that the ¢y 7,5 5 are exact representable in the number system.

1.5.3 Realization of a rotation with micro-rotations

The Cordic algorithm relies on the property that a rotation over the angle o can be
decomposed into a sequence of rotations over the angles o;. Hence we can approx-
imate the angle of rotation o by & with an error g4, as given by:

a:d+£(1, (1.14)

where the approximation @& is given the sum of N angles o;

=z

a=Sa. (1.15)
1

1]

i

As for now, we do not put any restrictions on the choice of the angles o; nor on the
number N of them, nor on the error in approximation .. Likewise, we define R
and E, to be rotation matrices that perform rotations over & and g, respectively,
R and E, being of the form of Equation (1.1). Conform the approximation of the
angle in Equation (1.14), we can express the rotation R as:

R=RE,. (1.16)
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We implement the rotations over o; by means of generalized micro-rotations F;,
each with approximation pair (c;.s;), and magnification factor m;. Let us define F
as the sequence of the N micro-rotations Fj, as given by:

N
F=Fy'-FF =]||F;. (1.17)

=

Based on the results gathered in Equation (1.9), we state that F performs a rota-
tion and magnification, where the overall angle of rotation is equal to & as in Equa-
tion (1.15), while the overall magnification factor K introduced is given by*:

N
K=T1m;. (1.18)

1=

Combining the above, we can write F as the product of the magnification factor K
and the rotation R, as in:

F=KR. (1.19)

We can now make a prior approximation of the rotation R by the sequence of micro-
rotations F in:

R~R=K"'F. (1.20)

Notc that we have to perform either a division with K or a multiplication with its
(pre-calculated) inverse, which is cheaper in implementation. In finite wordlength
computation, we approximate the inverse of the magnification factor K~' by K,
such that:

KK = 1+ex. (1.21)

where gk is the error in approximation, and is designed to be well below the er-
Tor in the representation of numbers. In many practical Cordic implementations,
the magnification factor is constant and known beforehand, and an efficient imple-
mentation of the multiplication with K can be constructed. We show examples of
this in Appendix 1.B.

We approximate the rotation R in both the angle of rotation and the magnification
factor, as the product of the sequence of micro-rotations F and the approximate in-
verse magnification factor K:

R~R=K!F=KF. (1.22)

*We prefer (o use the symbol K instead of m herc to be consistent with general Cordic literature
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The entire operation is contractive if ||v'|| < ||v||, which implies ex < 0. The etrors
introduced in this approximation follow from the successive substitution of Equa-
tions (1.19), (1.21) and (1.16) in the approximation of Equation (1.22).

KKR

(1+ EK)R

(1+ex)E;'R

ER . (1.23)

KF

Il

I

I

where the error matrix E is given by:

E = (1+8K)E&1
_ | (+ex)cos(eq) (1+ex)sin(eq)
B [—(Hfmsin(ea) (14 ex)cos(en) | - (1.249)

For small &4. £k, this matrix approaches the identity matrix.

1.6 Organization of this thesis

The organization of this thesis is as follows: In Chapter 2, we address the problem
of the poor relative accuracy the Cordic algorithm. We present a full floating-point
Cordic algorithm as the solution to this problem. This is when, apart from the input
data, the angle is in also a floating-point representation. In this chapter, we mainly
follow the work on floating-point Cordic as presented by Hekstra and Deprettere
in [25, 33, 34, 26]. We present the background, algorithm, and two architectures:
a sequential one and a parallel one, for floating-point Cordic.

In Chapter 3, we address the problem of the relatively high cost of computation of
the Cordic algorithm. We introduce the concept of fast rotations: related to Cordic
arithmetic, these are methods to rotate over (a set of fixed) angles, but at a much
lower cost. In this chapter, we follow the original work on fast rotations as presen-
ted by Hekstra in [29], and of Hekstra and Gétze in [30], and in recent publications
such as in [35]. We present the background, different methods, ways to implement,
and properties of fast rotations. This chapter serves as the reference in fast rotation
methods.

Referring to Figure 1.1, these first two Chapters 2 and 3 can be read independ-
ently from each other. The lines in the diagram indicate dependencics between the
chapters. The remaining of the thesis focuses on the application of fast rotations,
and depends on Chapter 3.

The topic of fast rotations as an alternative to Cordic has become quite popular in
a short time, judging from the number of recent papers [29, 36, 37, 30, 38, 39, 40,
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Chapter 1

i Introduction

i Chapter 2 | Chapter 3
! High-accuracy i Low-cost
Part 1 ! floating-point ! aritmetic methods for
Cordic algorithms i orthonormal rotation
— y —
’ N . A . ) A
Chapter 4 ; Chapter 5 Chapter 6
The use of ; Realization of
Part 11 : fast rotations ! . Eigenvalue decomposition orthogonal FIR filterbanks

in computer graphics i based on fast rotations for image compression

Figure 1.1. How to read this thesis.

35,41, 42, 43] and diversity of applications. Hence, in this thesis, we pay particular
attention to a number of applications from diverse fields in Chapters 4 o 6.

Looking at the history of the development of fast rotations, we see two parallel de-
velopments, both starting around the same time. One by the author himself [29],
and one by Jiirgen Gotze et al. in [36]. In the former, the basis is laid for what we
call the set of maximal fast rotations. The latter employs what they call a double
rotation and scaling method, which is a special form of what we call factored fast
rotations. Both came to be, purely out of the necessity to greatly reduce the com-
putational complexity of certain operations within a specific application. Hence,
we start with these two specific applications in Chapters 4 and 5 that have led to
the development of fast rotations.

In Chapter 4, we show how fast rotations arc applied in the various related prob-
lems of rendering of photo-realistic images using radiosity and ray-tracing. The
general field of this application is that of computer graphics. It is also the applica-
tion that has been the incentive behind the development of fast rotation methods. In
this chapter, we follow the work previously presented in many of the internal doc-
uments of the Radiosity Engine project [44, 45, 29, 46, 47, 48, 49]. We present the
background and details of two computation-intensive problems in radiosity render-
ing: intersection computation and cell traversal. For both we present an algorithm
that relies heavily on the use of fast rotations, and show that at least an order of
magnitude reduction of the computational complexity is gained, with respect to a
solution with conventional arithmetic.

In Chapter 5, we show how fast rotations are applied to the problem of eigenvalue
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decomposition of symmetric matrices. This is a typical application in the field of
matrix algebra. Again, almost an order of reduction in computational complexity
is achieved, with respect to known solutions based on Cordic arithmetic. In this
chapter, we mainly follow the work as presented in [36, 37, 30, 38], making a few
improvements here and there. We provide the background on the problem of eigen-
value decomposition(EVD), the Jacobi algorithm to solve the EVD, and present our
solution, based on fast rotations.

In Chapters 6 we present an important application of fast rotations in the field of
digital signal processing: the high-quality compression and reconstruction of med-
ical images. The compression relies on transform coding, using a Lapped Ortho-
gonal Transform (LOT) [50] filterbank, to achieve the required compression ratios,
while maintaining the quality. In this chapter, we rely in a large part on the work
of Heusdens [51], for the background on transform coding of images, and focus
more on the implementation of the FIR filterbank of the LOT using fast rotations.
For this we follow the work which was presented separately by Hekstra et al. in
[52, 40} and [39] and combine this into a whole. We present a programmable archi-
tecture and corresponding VLSI chip: the Parallel TransForm Engine (PTFE), that
is capable of implementing the LOT transform. The programmability of the archi-
tecture provides for a flexibility to implement any other commonly used transform.
We show that through the use of fast rotations combined with other techniques,
the computational complexity is greatly reduced, and that the implementation has
many desirable properties.
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1.A Examples of Cordic arithmetic
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Figure 1.2. Functions evaluated by Cordic for the different modes.
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Figure 1.3. Cordic schemes for the evaluation of the inverse trigonometric func-
tions.
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1.B Efficient implementation schemes for the inverse magnific-
ation factor
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Nmane | scaling sequence length
4.5 [2711+27% 2
6...8 | 271(14+272)(1-279) 3
9...11 | (1-22)(1-22)(1 +279(1+27) 4
12...16 | 271 (14279 (1-27%) (1 +27%) (1 +2°19) 5
17...23 | 2711427912791 + 279 (1 + 2719) (1 4 2719) 6
24...27 | 2711+ 2739 (1-270) (1 + 279 (1 + 2710y (1 +- 2716) (1 - 2-%3) 7
28 (1-22)(1-22)1 +27H 1+ 2791+ 27 Q-2 (1-2719 (1 +278) 8
29...31 [ 2711+ 272 (1-29)(1+ 279 (1 + 2710) (1 + 2716} (1 - 2723) (1 +27%8) 8
32...34 | 2711+ 272)(1-27%)(1+279) (1 +2710) (1 +2716) (1 -27B) (1 +2728) (1 + 273 | 9

Table 1.1. Low-cost factored scaling sequences for a given wordlength.
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2.1 Introduction

In this chapter, we present a floating-point Cordic algorithm that uses a floating-
point representation for the angle of rotation as well as for the vector data. We call
this a full floating-point Cordic algorithm. We also present the implementation of
this algorithm on both a sequential and a parallel architecture. The algorithm rclies
on a special floating-point representation of the angle. This representation allows
angle computations to be done with a guaranteed relative precision, which is ne-
cessary for a correct implementation of a floating-point Givens operator. In this
chapter, we will mainly follow the work on full floating-point Cordic as presented
by Hekstra and Deprettere in [1, 2, 3, 4]. We state that our algorithm is the only
known, to our current knowledge, to have an efficient implementation on a paral-
lel, pipelined architecture.

The underlying intercst in the full floating-point Cordic algorithm is the accurate
and robust realization of a Givens rotation [5] that works on floating-point data.
Such a floating-point Givens rotation is a useful computational element in DSP ap-
plications that rely on numerical matrix algebra. As an illustration we mention a
practical application of radar signal processing [6, 7, 8] that relies extensively on
the Minimum Variance Distortionless Response (MVDR}) algorithm. For the defin-
ition of the Givens rotation we refer the reader to Golub and Van Loan in [S]. We
state that a correct realization of a floating-point Givens rotation is able to zero a
given element in a matrix of floating-point values to a certain rclative precision.
We illustrate this in Example 2.1 below.

Asearly as 1971, Walther [9] has laid the foundation for Cordic arithmetic for when
the arguments, both vector and angle, are in floating-point number representation.
The use of a floating-point number representation of the angle was essential for
the application in question, which was the evaluation of the transcendental func-
tions for calculators and floating-point numerical co-processors. Since then, a few
researchers [10, 11, 12, 13] have published on advances in floating-point Cordic al-
gorithms and architectures for computation on floating-point numbers. For all the
above publications it is the case, however, that the input vector is in a floating-point
number representation, while the angle is in a fixed-point representation, conform
Volder’s classical algorithm [14]. Cavallaro and Luk, in [11], indeed argue that for
matrix computations, such as QR decomposition and Singular Value Decompos-
ition (SVD), a fixed-point representation of the angle is sufficient. A fixed-point
representation of the angle implies an absolutc accuracy, or absolute angle resol-
ution, with which any angle can be approximated.

We choose to argue differently, which we illustrate by our example below. To ex-
pose the destructive effects of the absolute accuracy in the angle, we consider the
following example:
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Example 2.1
Let the 2x 2 matrix A be given by

1.2000-10*® 1.4000-10*°
= : 2.
A [2,6400']0‘5 3.4700-10-5] @D
and the 2x 1 vectory be given by
1.1000-10®
B [ 2.3700-107° ] ' (22)

Let us define X as the 2 x 1 vector

x= [ j‘cl ] (2.3)

with unknowns x| and x3, such that the equation
Ax =y (2.4)

is satisfied.

Let us consider the problem of solving x using QR decomposition and back-
substitution. For a trcatise on QR decomposition, we refer the reader to Golub and
Van Loan [5, sec. 6.2]. The QR decomposition step transforms Equation (2.4) to

Rx =Qy. (23)

where Q is an orthogonal matrix, and R = QA is by definition an upper triangular

matrix. For this simple example, Q is a 2 x 2 rotation matrix, and hence is charac-

terized by a single parameter (angle) 0 in
_ | cos(B) -sin(B)

Q= { sin(0) cos(0) |- (2.6)

The exact solution for 8 in our example is § = -2.2000- 1071\, Applying this to
Equation (2.5) results in the sct of equations:
[ 1.2000-10"* 1.4000-10"¢ | [ x; ] [ 1.1000-107° 2.7
0.0 3.9000-10° | | x2 | | =5.0000-1077 '

Using standard back-solving techniques, we first solve forx, = -=1.2821-107!, and
use this to solve forx; = 1.0662- 10",
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Of course, any arithmetic technique that uses finite precision to determine 8, and
to perform the rotation Q is bound to introduce errors. We look at the error in 0
only, and define © = 8 + ¢ as the approximation to 6 with error €. Let us define
correspondingly the orthogonal matrix Q as the approximation to Q, and which is
given by:

(2.8)

= [ cos(8) -sin(B)
sin(B)  cos(d)

Let us now define & as the absolute angle resolution of the classical Cordic al-
gorithm. This is the bound of the error in approximating the angle. For our ex-
ample, we assume a precision of 12 bits, which results in a practical value for
d = arctan(2712) = 2.4414 - 10™*. Twelve bit precision may not sound like much,
but looking at the entire range of —x...7 we have a resolution of around 2.4414 -
107*/(2m) = 0.0039%, which at first sight would appear adequate. The resolution
limits the error of approximation ¢ to the domain -0 < € =&. Even then, we observe
that this resolution is still several orders of magnitude larger than the 0 of our ex-
ample. To see what the destructive effect of this absolute angle resolution is on our
solution, let us consider the worst-case situations, when € = #8, and disregarding
any other sources of error.

For the casc € = & = 2.4414-107%, we have 6 = 2.2000-107'" + 2.4414- 107* =
2.4414-107%, and see clearly that this error completely masks the value of 8. Ap-
plying the approximate Q to Equation (2.5) results in the set of equations:

2.9297-10%% 3.4180-10%2 | | x; 2.6855- 10*2 (2.9)

1.2000-10*% 1.4000-10° } [ X1 } B [ 1.1000- 1010 }
Note that the (2,1) entry of the matrix R = QA is non-zero, due to the approxima-
tion. For the back-solving, we however implicitly assume it to be (close enough
to) zero. Again, we first solve for x, = 7.8571 - 1071, and use this to solve for
x; = 1.2166- 1078, Note the large discrepancy between these and the exact solu-
tions for x1,x,, in this case about 8 respectively 1 orders of magnitude.

In the same way we solve the system of equations x;,x, for the case of e = -8 =
~2.4414-107*. The results are shown below for comparison.

—

exact, e =0 e=+9d e=-9
x| 1.0662-1070 1 1.2166-107% | -1.2166-107%
xz | -1.2821-10°' | 7.8571-10°' | 7.8571-107"

Clearly, both x| and x; are strongly affected by the error in approximation due to
the fixed, absolute resolution.




2.1 Introduction 29

One may argue that this example is an extreme case, but similar large differences in
the magnitude of the input do occur commonly in practice. They are due to the poor
balancing of the equations, a situation that occurs in problems, such as both the QR-
bascd and the inverse QR-based Recursive Least Squares (QRD-RLS, iQR-RLS)
and the Minimum Variance Distortionless Response (iOR-MVDR) algorithms [8,
15, 7].

Walther’s full floating-point Cordic algorithm would be able to overcome this prob-
lem, as it makes use of a floating-point representation of the angle. However, it is
not entirely suitable for our purposes due to the following drawbacks:

* It explicitly assumes that the numerical value of the angle is computed (the z
- iteration of the Cordic algorithm). This is a valid assumption for its initial
application, that of a floating-point numerical co-processor capable of cal-
culation of elementary functions. This, however, poses problems how to ac-
curately represent angles of vectors which are almost parallel to the x- or y-
axes. These angles would be very close to kx 5,k € {1,2.3}, and their finite
precision representation would give rise to similar problems as exposed in
Example 2.1.

* ltis particularly unsuitable for an efficient parallel implementation. In a par-
allel, pipelined implementation, the first stage implements the first step of
the algorithm, the second stage implements the second step, and so on. For
Walther’s algorithm, the starting value of the iteration index, the shifts for
the x and y iterations, and the scaling factor correction all depend upon the
exponents of the inputs. This implies that the functionality of each stage in
the pipeline is such that it should cover all possible situations. In practice
this means that each stage needs a variable shifter for each of the x and y
datapaths. For VLSI this is a very unattractive and area-consuming solution.

Both of the above problems are solved with the floating-point Cordic algorithm and
the introduction of a proper floating-point angle format as presented in [4]. The
results of this floating-point Cordic have been presented separately for a sequential
architecture in [2] and for a parallel architecture in [3]. In this chapter, we unify
our approach for both architectures.

2.1.1 Outline of this chapter

In Section 2.2, we start off by treating the floating-point representation of num-
bers. Analogous to this, in Section 2.3, we present a floating-point representation
of angles. We exploit certain properties of the angles which are crucial to achieve a
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higher relative accuracy than would be possible in a regular floating-point number
representation. In Section 2.4, we present our full floating-point Cordic algorithm.
Based on the algorithms reported on separately by the author in [2, 3] we have
unified this algorithm to be, at this stage, independent of the target architecture.
We treat the implementation of this algorithm on a sequential architecture in Sec-
tion 2.5. This work is based on that which has been presented earlier by the au-
thor in [2]. Similarly, we treat the implementation of this algorithm on a parallel
architecture in the adjoining Section 2.6. For this section, we follow the work as
presented earlier by the author in [3]. In Section 2.7, we validate the algorithm and
its implementations and prove its worthiness. We examine the behaviour of the
error in accuracy from the results of extensive simulations, and show that it is con-
form to the designed limits. We discuss the advantages and disadvantages of our
floating-point Cordic algorithms and implementations in Section 2.8, seen against
the background of the available alternatives. Finally, in Section 2.9, we give our
conclusions. In Appendix 2.A we enclose the proofs and derivations relevant to
this chapter. In Appendix 2.B, we present angle-bases for the floating-point Cordic
algorithms and architectures for various wordwidths.

2.2 Floating-point representation of numbers

Let us take a look at how floating-point numbers are represented. We assume that
on the interface to the algorithm, the in- and outputs are represented in an IEEE 754
standard compliant format. For the finer details of this representation, we refer the
reader to the text of the IEEE 754 standard [16). Internally to the algorithm, we use
a representation with a signed mantissa and exponent, which we explain in more
detail below.

For the sake of clarity, let us first define a notation to represent unsigned numbers
in base 2 (binary numbers). Let p.q be positive integers. Let d; € {0.1}, and —g =
i = p—1. The notation:

(dp_1dpy...dvdod_ydad_3...d_y)>. (2.10)
represents a number with the numerical value:

p-1 )
> di2'. (2.11)
i=-q

The d; are the digits of the number, the terms 2’ are the weights. The term p signi-
fies the number of digits in the integer part, while g signifies the number of digits
in the fractional part. The point in the representation is the binary point (compare:
decimal point for base 10). If there is no fractional part, we may leave out the binary
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point. For example: the number (110.101); is the base 2 notation for the number
6.625 in decimal notation.

The floating-point representation of a number x is a tuple (s.m.e) with:

sign A sign bit s, indicating the sign of the number and rcpresenting values
from {-1.1}.

mantissa An Ny -bit, unsigned, mantissa m. The number of bits Nyanc de-
termine the precision of the representation. Assuming correct rounding, the
mantissa m has an inherent accuracy of :lzlsb, where Isb = 27Nmant ig the
weight for the least significant bit.

exponent An N,,-bit exponent e. The number of bits Ney, determine the
dynamic range of the representation. The exponent may have a bias b, which
indicates at what value the range of exponents start. This bias does not affect
computations such as additions and rotations, so we will not see it later in the
floating-point Cordic algorithm.

The corresponding value of x is given by:

x=sm2°. (2.12)
Later on in this chapter, we will use a floating point representation as a tuple (n1.e)
that makes use of a signed mantissa. This is to keep certain equations simple, and
docs not affect anything significantly. The value of x is then given by:

x=m2°. (2.13)
The mantissa is said to bc normalized if it is restricted to

(0.1000...00); < |m| =< (0.1111...11);. (2.14)
Note that the most significant digit m_; = 1 for normalized numbers. If the above

restriction is lifted, then the mantissa is said to be denormalized, and takes on val-
ues in the domain:

(0.0000...00)> < |m| < (0.1111...11),. (2.15)
Example 2.2
Let us consider the case when Nyan = 4, Nexp = 2. Let the bias for the exponent

be set at b= -1. The valuc of the exponent is limited to:

b=-lse<2=(2%v_1)+b. (2.16)
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For normalized numbers, the value of the mantissa is limited to:
(0.1000); < |m| = (0.1111),. (2.17)

However, for denormalized numbers, the domain of possible values is extended to
include zero:

(0.0000); = |m| < (0.1111),. (2.18)
We construct the 2-D floating-point space, by considering all possible vectors (x,y),

where both x and y are numbers in our floating-point representation. The result is
shown in Figure 2.1.

3.0

20}

1.0F
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..............

Figure 2.1. The 2-D Floating-point space

Let x,y be numbers whose floating-point representation given by (sy.my,ex) and
(sy,my.ey) respectively. Let us define the normalized floating-point domain D, .,
as the set of 2-D points (x,y), where the mantissas m,, m;, are both normalized:

De, ey = {(x.y)lx = #m, 2%y = £my2% 1 < my.my < 2~1sb}. (2.19)
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Let us likewise define the partial normalized floating point domain Déf )e_‘, as the set
of 2-D points (x.y), where only the mantissa m, is normalized:

DL, = {(x )k = £m 2%y = £m,2% . 1 < my < 2-1sb}, (2.20)

and let us define the denormalized floating-point domain Df,fi)gy as the set of 2-D
points (x,y), where the normalization restriction is lifted for both m, and m,,.

’Déf,)ey = {(x.y)x = 2m 2%y = 2m, 2%} (2.21)

We state the following for these domains. Any vector v = (x,y) € De, ., has a coun-
terpart vV = (x'.y’) € D, _,, o such that they have the same angle of inclination and
have the same relative accuracy, as determined by the precision of the coordinates
of the vectors.

The floating point domains are visualized in Figure 2.1. The boxed areas represent
the domains D, ., in which the exponents of the x and y coordinates of the vector
are constant, and their mantissas are normalized. The points within such a region
represent all possible values for the floating-point numbers within the domain.

2.2.1 Accuracy requirements

Looking at the floating-point space, as shown in Figure 2.1, we can identify the
problem of the floating-point representation of the input vector, and its repercus-
sions on the representation of the angle. Let v = (x,y) be a vector from the region
De, e, The coefficients x.y are represented in a floating-point format. Let us as-
sume that ¢, > ey, and x > 0. This means that the vector v is lying close to the
positive x-axis. Let us also concentrate on the angle o between the vector v and
the positive x-axis. The larger the exponent ¢, is compared to ey, the smaller the
angle o, which is given by:

ey

. 2 ,
Ty )= arctan(@ 2876y, (2.22)

o = arctan( -
my - 26 my

in which this effect is also clearly visible.

The floating-point representation of numbers carries with it an inherent error in
the representation. At the best, this error is bounded by &;ouna = Isb/2 for perfect
rounding. Taking this into account in Equation (2.22) results in:

My xE 2% My = €y .
A+eq = arctan((—>—rm’—"i)—) — arctan(—2 1 ge-ery (223)
(% €round) * 26 My + Ergund
where g is the error induced by the representation of the vector v, on the angle a.
What we deduce from Equation (2.23) is that the error &, remains relative to the
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angle a. A smaller angle « results in a smaller error g4, but they remain propor-
tional to each other.

So, if we want to accurately represent an angle a, derived from a floating-point
vector v, we need to have an error of the representation of the angle, or angle res-
olution, which is smaller than, and comparable in size to, the angle &, induced by
the error in representation of the vector v. See also Appendix 2.A.3 for the deriv-
ation of such an angle resolution.

2.3 Floating-point representation of angles

A proper floating-point representation of angles has been crucial in the develop-
ment of the floating-point Cordic algorithm. We will go into detail to why we need
a floating point representation, and how it is built up.

2.3.1 The Angle base

Hekstra , in [1, 2, 3], introduced the notion of an angle base to represent angles.

We define the angle base A as the ordered sequence of N angles &, as given by
A={ap.a4...., Gy_1}. We call the angles &; the base angles of the representation.
They are similar in function to the weights in the floating-point representation of
numbers. The base angles are ordered in size, satisfying &; = ¢&;41. The number of
base angles is given by N. The largest base angle is given by &, and the smallest
is given by an-1.

Representation of angles

The angle base is a means to bind the base angles for the representation together.
We can represent an angle o using these base angles as:

N-1
a=Y 0;0+ta. (2.24)

=

where the o; form the digits of the angle representation. Normally speaking, for the
Cordic algorithm, 6; € {~1,+1}. The error in representation is given here as €.
From this equation we can clearly see that the sequence of ¢&; forms a number base
for a number representation, where the @; are the weights, where o; are the digits
of the representation, and where g is the representation error.

Let us define the digit sequence ¢ as the sequence of digits o;, given by:
¢ = (0¢.01.02.....0x_1) . (2.25)

We state that ¢ is a finite accuracy representation of the angle a.
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We define the angle resolution d as the bound of the error in the representation of

the angle, using a given angle base A. The error of representation €, is then bound
by:

lea] < 8. (2.26)

We state that the bound d is given by the value of the smallest angle éy_; of the
angle base:

8=y (2.27)

We define the angle domain of convergence y as the largest positive representable
angle for a given angle base .4. Any angle a that satisfies:

| s y. (2.28)

can be represented using the angle base .A. The value of y follows for when all the
o; are equal to +1, and is given by:

N-1
y= E ;. (2.29)
=0

Similarly, the largest negative angle is given by -y, for when all g; are equal to —1.

For use in a Cordic algorithm, the angle base A must satisfy the condition:

N-1
oy = Z & +9. (2.30)
i=k+1

Muller, in [17], refers to this as a discrete basis of the order 1.

Relation to micro-rotations

Lct F; be a generalized micro-rotation, as defined in Equation (1.5), with approx-
imation pair ¢;.s;, angle of rotation o, and magnification factor m;.

The angle base A is coupled to a micro-rotation base F which is an ordered se-
quence of the micro-rotations, N in number, givenby F = {Fy.F;..... Fy_1}. The
micro-rotation F; is capable of rotating over the angle o; = 0;- &;. In this way the
link is made to the base angles @;, and is it possible to rotate over the angle o with
this sequence of micro-rotations. See also Section 1.5.3.

Likewise, we definc the overall magnification factor K, as the product of the mag-
nification factors m;, as given by:

K= Hm (2.31)
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Indexing of floating-point angle bases

The classical Cordic algorithm, which works on fixed-point data, uses only a single
angle base A and micro-rotation base F, with which it performs the rotations. This
approach would fail for floating-point Cordic since the dynamic range of the angles,
coupled to the required accuracy, would implicate an angle base of enormous size.

Instead, we use a collection of angle bases and match these to regions in the 2-D
floating-point space. For a given region, it is possible to determine the maximum
angle y that needs to be represented, and also the required angle resolution 6. By
proper choice of these regions, we can keep the size N of the angle base small. If the
union of the regions covers the entire 2-D floating-point space, then this collection
of angle bases is capable of representing any angle a, corresponding to a vector v
from this space. This is the key concept behind the floating-point Cordic algorithm.

It is useful if we can index an arbitrary angle base A. Let us define the angle ex-
ponent K as an integer parameter, by which we index the angle base Ay, and all its
related properties. We shall see the precise function of the angle exponent later on.

The base angles of Ay are denoted by @i ;. The total number of base angles is given
by Ny, which may be different per angle base. Likewise, the smallest and largest
base angles are given by G y,-1 and G . The angle resolution is denoted by ,
and is given by:

B = Bl N1 - (2.32)

The domain of convergence is denoted by v and is given by:

Nx-1
Yk = Ot - (2.33)

The angle exponent k also indexes the micro-rotation base, as in Fy, and its related
properties, analogous to the angle base. The micro-rotations are denoted by Fy ;,
with approximation pair c ;, S« ;, angle of rotation oy ;, and magnification factor
my ;. The overall magnification factor is denoted by K, and is given by:

Ne-1
Ky = M i - (2.34)

=

Similarly, we re-define the digit sequence, ¢ as the sequence of digits o;, given by:
¢ = (00,01,02,---,ON,-1) - (2.35)

Note that ¢ has a variable length Ny, dependent on the angle exponent K.

We state that the tuple (x,¢) is the floating-point representation of a floating point
angle a. This is analogous to the floating-point representation of numbers, k plays
the role of the exponent e, while ¢ plays the role of the mantissa m.
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2.4 'The floating-point Cordic algorithm

In this section we present the floating-point Cordic algorithm, which at this stage
is still independent on the final choice of the architecture. We do, however, present
a global architecture, from which we later derive both a sequential and a paral-
lel, pipelined architecturc. We present the iteration scheme for the floating-point
Cordic which is the foundation to both architecturcs. This iteration scheme makes
use of the angle exponent k and the angle bases A to attain the required floating-
point accuracy. We finish of with an observation on what the constraints are for an
efficient implementation.

2.4.1 Global behaviour of the floating-point Cordic

The floating-point Cordic algorithm consists of operations at three distinctive
levels. They are:

1. floating-point interface The input vector is translated from the outside
floating-point format (IEEE 754 compliant) to the intcrnal floating-point
format. Likewise, the result is translated back from the internal format back
to the outside format. This may require renormalisation, range checking etc.

2. pre- and post-rotations These perform exact rotations over 7 and /2 radi-
ans, at a very low cost. The pre-rotations always bring the input vector to a
given region, so as to simplify the arithmetic within the core, and to guaran-
tee convergence.

3. floating-point core This performs the actual floating-point Cordic iteration
to rotate over a floating-point angle. The implementation of this core is a
further point of discussion, as this changes for the sequential or parallel ar-
chitecture.

A global prototype architecture for the floating-point Cordic is shown in Figure 2.2,
which displays these levels. The input to the floating-point Cordic is a vector vi,
with components Xi,. yin, and a floating point angle, with components Bi, and o,.
The output of the floating-point Cordic is analogous to the input, however with sub-
script “out”. See also Figure 2.2.

We do not go into detail on how the floating-point format conversions are done, but
refer only to [16], and state that this is similar to that of floating-point addition. In-
stead, we assume that the input is availablc in a (signed mantissa, exponent) format
such as (my in. €x.in), With the relationship:

Xin = mx‘inz({"i" (2.36)

to the input.x;,,, and similarly for y;,. We also assume that it is enough that the output
is delivered in the same internal format, with (#1y oy. €y out) and (My.0ut-€y.0ut)-
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Figure 2.2. A global, prototype architecture for the floating-point Cordic.
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Modes of operation

The Cordic algorithm, both the classical and the floating-point one, have two modes
of operation, namely rotation and vectoring. In both modes a rotation is per-
formed, the only difference is how the angle of rotation is obtained. Let § and a
be the internally available angles of rotation for the pre- and post-rotation stage,
and for the core respectively. Let us define 6 as the overall floating-point angle of
rotation, which is given by the sum of the individual angles:

0=P+a. (2.37)

The angle 3 is a so-called exact, or accuracy preserving angle. For circular rotation,
it is a multiple of 7t/2 and very cheap to implement. It is used to take advantage of
the available symmetry of the floating-point domain, as visible in Figure 2.1. The
angle « is a floating-point angle, as treated in the previous section, and restricted
to | = /4, thanks to the rotation over f3.

In both modes of operation, the rotation of the input vector over these angles is
performed, resulting in the output vector:

Xout | _ Xin
[ Yout ] =R(a)R(P) [}’in ] . (2.38)

For the 'rotation’ mode, these angles of rotation are taken from the input, and used
to perform the rotation, as given by:

ﬁ = Bin
6 = o - (2.39)

For the ’vectoring’ mode, these angles are determincd from the input vector
{Xin.Yin), in such a way that, when rotated according to Equation (2.38), the output
vector (Xou. Yout) lics along the positive x axis, and satisfies:

xow = 0
You = 0. (2.40)

Since the rotation is norm-preserving, the component x,y is equal to the length of
the input vector. The input angles are ignored. In both cases, the actual angle ro-
tated over is sent to the output, as given by:

ﬁout - B
Aot = O . (2.41)



40 Floating-point Cordic algorithms and architectures

Notation

Since we are dealing with a multitude of blocks and signals in the floating-point
Cordic algorithm, we define an implicit notation for the variables used within the
algorithm, to avoid a multitude of definitions. Let ’block’ be the name of one of the
blocks in the scheme of Figure 2.2: ’pre’, *post’, "core’ and otherwise ’in’ or "out’.
We consider the notation only for the x component. The same notation holds for
the y component, and possibly the angle. Let xyocx be defined as the x-coordinate
output of that block. The exponent and mantissa of the floating-point represcntation
of xpiock are implicitly given as e, piock and my piock, With:

Xplock = M block * 2500k . (2.42)

Inside the block, we identify as well iteration variables, which we denote by
Xblock (], €x block[i] and my prock [i].

2.4.2 Pre- and post-rotations

The combination of both the pre- and post rotations perform a rotation over 8. Let
Bpre be the angle belonging to the pre-rotation, and let 05 be the angle for the
post-rotation. Both are exact angles, and multiples of t/2. The angle f is the com-
bination of the above, and given by:

B = Bpre + Bpost - (2.43)

The pre-rotations by itself are used to condition the input vector, such that it is
brought to a pre-defined region of convergence. This is done to simplify the op-
erations within the core.

The input vector (xj,, yin), is rotated to the region of convergence using Bpre,» such
that the following properties hold for the resulting vector (Xpre, Ypre):

expre = €ypre (2.44)
Mypre =2 0 (2.45)

This is done with rotations over /2, and over . These rotations take effect in
changing the signs and exchanging the exponents and mantissas between x and y
and therefore do not affect the precision that is present in the data. The first pre-
rotation over rt/2 is performed if €yin > €x,in, Otherwise no rotation is performed.
The implementation of this rotation, working on floating-point data is shown in Al-
gorithm 1. The result of the rotation is an intermediate vector (Xpre[1],ypre(1])-

ALGORITHM 1
if (ey,in > ex,in) then
/* rotate overzt/2 */
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Go.pre = 1

(eX.prC[]]-mx,pre[l]) = (ey,in-_my.in)

(eypre[1).mypre[1]) == (ex.in.My.in)
else

/* no rotation */

O0.pre -= 0

(é’x.prc[l]-mx.pre[l]) = (exjn-mx,in)

(ey,pre[l]~my.prc[1]) = (ey,immy,in)
end if

The second pre-rotation, over m radians this time, is performed if the resulting
My pre[1] is negative, see Algorithm 2.

ALGORITHM 2
if (mxpre[1] < 0) then
/* rotate over w */
O1.pre := 1
(ex.pre~”lx‘prc) = (ex<pre[1]«_mx.pre[1])
(ey.pre~my.prC) = (ey‘pre[1]~_m_v.pre[1])
else
/* no rotation */
Ot pre -= 0
(ex‘prc- m_x:pre) = (ex.pre[l]- mx.pre[l])
(ey.pre-Mypre) 1= (eypre[1].mypre[1])
end if

The combination of these rotations bring the input data to the halfplane with my e =
0. The pre-rotations are visualized in Figure 2.3. The shaded areas indicate the
region in in which the vector (xpre.ypre) resides after this pre-rotation.

The angle Byre over which has been rotated, is given by:
n
2

The post-rotations compensate for the angle of rotation, if nccessary. For the vec-
toring’ mode, the input needs to be brought to this region of convergence anyway,
and hence:

B = Bpre
0

ﬁpost =

Bpre = C0,pre - +O1pre . (2.46)

(2.47)

For the ‘rotation” mode, however, f is enforced, and we need to compensate as
follows:

Bpost = B-Ppre (2.48)
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(a)

Figure 2.3. Pre-rotations of the data over (a) 7t/2 and (b) n radians.

In both cascs, Equation 2.43 is satisfied. The post-rotations are performed with a
similar technique as shown for the pre-rotations, and we will not discuss this fur-
ther.

2.4.3 The floating-point core

The floating-point core of the Cordic algorithm performs a rotation over the
floating-point angle o.. The input to the core is the vector (xpre.Ypre), coming from
the pre-rotation unit. This vector is rotated over the floating-point angle ., to form
the result (Xcore.Vcore). Depending upon the mode of operation, the angle a is
either enforced from outside (rotation” mode), or determined by the input vector
(’vectoring’ mode).

We assume that the angle « is represented by the tuple (k,g), as treated in Sec-
tion 2.3. We also assume that the necessary angle bases Ay, indcxed by the angle
exponent k arc pre-calculated and available.

We will show how the angle bases are employed to perform the rotation over a
floating-point angle.

The angle exponent and selection of the angle base

When we look at the floating-point domain in Figure 2.1 we see that when two re-
gions D have the same difference in exponents ey, — e, they share the same domain
of convergence and accuracy in angles. This is due to the equivalence:
my - 2% m

2 5 ) = arctan(—= - 297¢) (2.49)

my* my

arctan(

We can match a single angle base A, to these domains, with the index d = e, -
ey being the difference in exponents. This angle base is then suited to represent
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any angle that corresponds to a vector that lies in one of those regions, and with
the correct relative accuracy. In such a way, we can cover the entire floating-point
domain.

Let us consider the two modes of operation. For the “vectoring’ mode, we have to
compute the angle o, such that the vector (Xpre. ypre) is rotated to the positive x-axis.
In this case, we compute the angle exponent, as given by:

K = €ypre — Expre - (2.50)

and use this to select the angle base A to perform the rotations in the core. Com-
bining Equation (2.50) with (2.44), we obtain the bounds for the angle exponent,
as given by:

Kmin<k=<0. (2.51)

where Kpin = —(2¥ - 1) is the smallest value that the angle exponent can attain
in Equation (2.50).
We state that we can use the angle base Ay to represent the angle o with the proper

relative accuracy, and such that the vector (xpre. Ypre) is indeed rotated to align to
the x-axis .

For the ’rotation’ mode, the angle a is given by the input a;,. The angle cxpo-
nent K is part of this representation, and this is used for sclection the angle base A
to perform the rotations in the core. We have to use the angle base A, since the
floating-point angle « is represented in this angle base.

For the moment, we will assume that the angle bases A are given, and matched to
the regions in the floating-point domain. The construction of these angle bases is
deferred to Section 2.5 and the Appendices.

The floating-point Cordic iteration

For the rotation over the angle o, we use the micro-rotations, as given by the micro-
rotation base Fy, also indexed by the angle exponent k.

These micro-rotations are steered by the digits o; of the digit scquence ¢. The num-
ber of digits, and hence the number of micro-rotations is given by N.

The floating-point Cordic iteration that implements the sequence of micro-rotations
is given, in broadest terms, by:

xi+1] = o x[i]-0isci i)
Yi+1] = cciyli]+oiseix[i] (252)

fori=0.1..... Ny - 1. The initial input to the iteration is given by:

=
=)
|

Kix, pre

KiYpre (2.53)

y[0]
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Note that the input is prescaled with K, to compensate for the overall magnification
factor K. The result of the iteration is given by:

Xcore x[NK]

Yeore = ,V[Nx] . (2.54)

which is then passed on to the post-rotation unit.

We have dropped the subscripts for the core variables in order to keep the equations
readable. Each iteration performs a micro-rotation Fy ; over the angle ;- Gy ;.

For the ’vectoring’ mode, the digits o; are determined by:

[ 41 if yl]=0
""{ -1 if y[]<0 " (2.35)

as in classical Cordic, and such that yeoe — 0.

For the ’rotation” mode, the digits o; are provided in g, which is part of the repres-
entation of o.

The modified floating-point Cordic iteration

The floating-point iteration, as given by Equations (2.52) to (2.55) not of practical
use, as it hides the operations on the floating-point representation of x[i],y[i]. Writ-
ing the iteration of Equation (2.52) out in terms of mantissas and exponents results
in:

mei+ 1] 29 = e iomy[i] - 290 — sy - my[i] - 2601
myli+1]-2001 = ¢ omy[i] - 200 4 aysie o my[i] - 26400 (2.56)

which is a step in the right direction, but still too cluttered. We propose thc use
of block floating-point arithmetic inside the core, for as much as possible. This
implies that the exponents remain fixed during a sequence of computations. This
simplifies and even speeds up arithmetic, when compared to individual floating-
point operations. Let € core. €y.core b€ the exponents, which are determined before
the iteration starts, and remain fixed throughout the computation. The iteration can
then be greatly simplified to:

mx[l + 1] = Cxi My [l] _ OiSK,i . my[l] - D€y.core=€x.core
my[i+1] = cci-myli] + Oy - myi] - 28 corepeore 2.57)

Note that the iteration is now completely written out in terms of operations on man-
tissas only. The only difference with a classical Cordic iteration is the presence of
the terms 2ey.corc—ex.core .
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We would like to fix the exponents €y corc - €y core, Such that no overflow occurs for
the mantissas. This is guaranteed [1] for:

€x.core = max(ex,preaK + ey.prc) = €x,pre ‘
€ycore = max(ey,prc~ K+ ex«prc) . (2.58)

This result is based on the analysis of the largest possible value that may occur
in the iterations. The simplification for ey corc holds by grace of Equations (2.44)
and (2.51).

The input to the iteration, as given before in Equation (2.53), can also be expressed
in terms of mantissas only, as given by:

mx[o] = KKmx,pre
myl0] = Ky pre - 20reesene (2.59)

Note that only the y mantissa needs to be aligned.

The result of the iteration, and output of the core, is simply given by:

My core = mx[NK]
My core = my[NK] . (2.60)

Note that the exponents ey core. €y.core Were already fixed.

Micro-rotation model

We take a short look at the types of micro-rotations that we consider for the imple-
mentation. We are in principle free to choose any type. Adhering to the convention
started in [18, 2], we consider the simple and complex micro-rotation models.

The simple model is given by:

i = 1

Sxi = 2Six

o — . Si.K
Gx; = arctan(2%)

me; = V14+28ix (2.61)

where S; « is an integer, and S; < K.

The complex model is similar, and given by:

i = 1

ZSi.K WLT'I'AKZS:'K . (262)

Sk.i
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where 1 € {-1,0,+1}, S;«.S; . are integer, and S} « =Six s K. The formulas for
Q. ; and my ; are analogous to the simple method, but left out for brevity.

We gain an idea of the realization of the floating-point iteration, when we substitute
the simple model of Equation (2.61) in the iteration of Equation (2.57), and obtain:

mx[[ + 1] = mx[l] -0; my[l'] . ZSi‘,x‘*‘ey.mrc'C‘.x:core
myli 1] = myfi]+0;-myi] - 25t eeom o (2.63)

which we re-write to:

mli+1] = myi]-025Umy[i]
mli+1] = myfi]+025m[i] | (2.64)

where we introduce of the local shifts for the x. y datapaths, S,[i]. S, [i], as given by:

2
|

Six+ (ey core — €x. core)
: ’ ’ ’ 2.65
sy[l] = Six—(eycore— €x.core) ( )

It is clear from Equation (2.64) that the cost of a floating-point Cordic iteration, for
the simple model, is also two shift-add pairs, the same as for a fixed point imple-
mentation.

2.5 A Sequential Architecture for the Floating-point Core

In this section, we present a sequential architecture for the floating-point core of
the Cordic algorithm. For the implementation of this architecture we have chosen
a word-serial approach, similar to [19].

The set of angle bases .4 —necessary to implement the floating-point Cordic—
have been calculated for 12- and 24-bit mantissa sizes. For this purpose, a heuristic
search program, Bangles has been written. A detailed analysis of the implement-
ation parameters is made, which serve as input to the search program.

A simulation model was built to validate the correct working of the architecture
and algorithm, the results of which are presented in Section 2.7.

2.5.1 Practical Implementation

The sequential architecture is shown in Figure 2.4. The mantissa datapath, which
forms part of the core unit, is implemented to operate in word-serial fashion. This
means that in one cycle, only one micro-rotation is computed. An entire vectoring
or rotation operation will therefore take at most max{Ny} cycles plus additional
cycles for the scaling. In the construction of the angle bases Ay, we have taken
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Figure 2.4. Diagram of the sequential floating-point core.

care to keep the Ny roughly the same and to force the magnification factor to such
a value that scaling is performed in one cycle.

The reason for developing a word-serial architccture is two-fold. Thc obvious
reason is of course to save chip area. Since our goal is to produce a floating-
point Cordic that works on IEEE 754 singlc-precision data, requiring a mantissa
datapath of 24 bits, a fully parallel approach would yield an impractically large chip
area. The second reason is that the floating-point Cordic algorithm presented in this
chapter lends itself more to a word-serial implementation.

Requirements on the domain of convergence

The largest angle within a region D,_,, with fixed exponents (€x.pre-€y.pre) OCCUrS
when:

(1.00.. ¢00)2 - DCxpre

x
{y = (1.11...11)p- 2% (2.66)

Since this angle determines the domain of convergence, a suitable bound for y, of
the angle base Ay with K = ey e — €x pre, is given in Equation (2.67).

v = arctan(251) (2.67)

Angle accuracy requirements

The angle resolution J is determincd by the smallest angle in the anglc base. There
are a number of criteria to determine what the bound is for the necessary accuracy
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in the angle. We will adopt one which takes into account the given accuracy of the
input data, making sure that the error induced by the Cordic computation is less
than the error which can be accounted to the Nmane-bit accuracy of the mantissa
representation. A bound for the minimum angle d is derived in Appendix 2.A.3.
From this bound, we can state the following for the angle resolution , keeping in
mind the requirement that s, ; is easy to implement, say, a power of two:

SK,N—I — ZK_Nmam_l
G n-1 = arctan(25 Nmam-T) (2.68)
SN-],K = K ‘Nmanl -1

Magnification factor

We would like to force the magnification factor K to be such that the multiplication
with the approximative inverse Ky is cheap in hardware. In [18, 20] the magnific-
ation factor is forced to 2, using complex or additional micro-rotations. However,
this approach will not work for the Floating-point Cordic. If we force K — 2 for
every angle base A, then the resulting domain of convergence y, and the number
of base angles Ny will be unnecessary large. This is especially so for angle bases
with a small angle exponent k.

In Appendix 2.A.2 we derive a suitable value for the magnification factor, that is
optimal in the sense of combining an easy multiplication of the inverse magnific-
ation factor and a minimal number of micro-rotations. For an angle base A, with
domain of convergence satisfying condition (2.67), the ideal magnification factor
turns out to be:

Ky =~ (1-2%-1)-1 (2.69)

The multiplication with the inverse magnification factor then degenerates to a shift
and subtract operation, similar to a Cordic micro-rotation.

The generic angle base

As we can see from Equation (2.69), the magnification factor quickly approaches
1 as the angle exponent k gets smaller. Hence, after a certain limit, we revert to
a generic angle base which has a magnification factor of K¢ = 1 to the required
precision and its angle base defined by the template:

Sxi = 2K—i -
Gy, = arctan(27) . (2.70)
Si,K = K-1

It can be proven that this set of angles spans the required domain of convergence
Y« as set in Equation (2.67). The proof of the required angle accuracy is given in
Appendix 2.A.3.
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What remains to be found is the limiting value of k at which the magnification
factor of the angle base, which is given by Equation (2.70), becomes equal to 1 to
cnough precision. We call this the generic angle base limit Lgc,. In Appendix 2.A.1
we derive this limit to be:

Lgen = [_"rr\;_nt'lJ (2.71)

In practice this means that, for say a 12-bit floating-point Cordic with Lge, = -7
the 7 angle bases Ay ....4_¢ must be implemented.

El

Datapath Accuracy

The accuracy for the core datapath of the Floating-point Cordic follows the
guidelines presented in [18] for block floating-point Cordic. The datapath is
extended with a guard bit on the left (msb) to prevent overflow and extra bits on
the right (Isb) to defy the effect of accumulative round-off errors in the micro-
rotations. Simulations have proven these measures to be effective.

Computing the angle bases

Now that the domain of convergence vy and accuracy tpin ¢ are known, the set of
angles can be computed that make up the angle base {o;}.

For this purpose, we have written a heuristic search program Bangles that finds
an optimal set of angles under the given constraints of domain of convergence, ac-
curacy and magnification factor. Additional parameters to the program are to make
use of complex micro rotations and hence have the ability to force the magnifica-
tion factor to what Equation (2.69) dictates.

The result for a 12-bit floating-point Cordic is presented in Table 2.1.

Similar tables have been calculated for a 24-bit mantissa, as required by the IEEE
754 standard for single precision floating-point numbers.

2.6 A Parallel Architecture for the Floating-point Core

In this section, we present a parallel architecturc for the floating-point core of the
Cordic algorithm. For the implementation of this architecture we have chosen a
pipelined, word-parallel approach, similar to [18].

The set of angle bases .4 —necessary to implement the floating-point Cordic—
have been calculated for 12- and 24-bit mantissa sizes, similar to the sequential
architecture.

A simulation model was built to validate the correct working of the architecture
and algorithm, the results of which are presented in Section 2.7.
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Figure 2.5. Diagram of the parallel floating-point core.

The parallel architecture is shown in Figure 2.5. We place the following constraints
on the architecture. These constraints are the result of fine-tuning between al-
gorithm and architecture in order to optimize both for an efficient parallel, pipe-
lineable implementation.

* The micro-rotations take place in block floating-point datapaths that compute
on mantissas only, and are devoid of floating-point adders. These datapaths
can have different exponents, and thus mantissas have to be re-aligned when
transferred from one datapath to another.

* The programmability of the datapath is low. The shifts that are necessary to
implement multiplications with g; in the coarse micro-rotations, to perform
division and multiplication in the fine micro-rotations, or for scaling with K~
are fixed and hardwired in the implementation of the datapath.
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* The datapath is minimal in the sense of number of micro-rotations and width
of the internal data, under the above constraint of fixed shifts and while still
achieving the required relative precision.

This implics that the approach as used in the sequential architecture will fail. Look-
ing at the angle bases A, derived for this architecture would require too much
flexibility from the core in order to implement everything. Instead, we propose to
merge a number of angle bases together, so that one large one that encompasses all
is formed, with the domain of convergence of the largest, and the angle resolution
of the smallest. This has certain implications on the architecture concerning the
size of the datapaths. The proposed angle bases are shown in Table 2.2.

We distinguish four block-floating-point datapaths:

* Two for the coarse Cordic, the x and y datapath, with (fixed) exponents

e.\‘.COZiI’SC and e)‘.COill'SC‘

¢ Two for the fine Cordic, the x and y datapath, with (fixed) exponents ey fine
and e, fine-

Figure 2.5 shows the architecture, showing the block floating-point coarse and fine
datapath, and how they fit into their surroundings.

The exponents € course- - - - - €y fine arc computed such that overflow is controlled
and maximum relative precision is maintaincd while having a minimum allowable
datapath width.

Knowing that ¢y pre 2 €y pre from the pre-rotations, we choose:

€xfine = €x.coarse = €xpre (2.72)
and extend the fine and coarse x datapath with 1 msb guard digit for overflow [3].
Similarly, for the fine y datapath, we control overflow by taking:

€y fine = MaxX(€y pre. €x.pre + K) (2.73)

and extend the fine y datapath with 2 msb guard digits [3].

As for the remaining coarse y datapath, when rotating over a coarse angle for which
K > L, the exponents of the coarse datapath must be equal to each other. Otherwisc,
for fine angles with k < L, the exponent is taken equal to that of the fine y-datapath
that follows it.

eycoarse If K>L
ey ¢ = ) . 2.74
'y.coarse { €y fine if k<L ( )
As the exponents €y coarse. -« .- eyfine Of the individual datapaths take on differ-
ent values, alignment of the mantissas is nccessary when they transfer from one

datapath to the other. We distinguish four alignments.
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1. ay coarse, from the pre-rotations to the y, coarse datapath.
2. ay fine, from the y, coarse to the y. fine datapath.

3. ay fixed, from the x, coarse to the y, fine datapath.
4. ay fixed, from the y, coarse to the x. fine datapath.

The places where alignment occurs are shown in Figure 2.5. The first two align-
ments are given by:

Ay.coarse =  €ypre ~ Ey.coarse (2.75)
dyfine — €y.coarse ~ €y finc
¥,

The last two are dependent on other factors, their value is given in Equation (2.90).
There is no alignment necessary in the x datapath, since e, fne = €y.coarse = €y pre-

Definition of the Coarse Cordic

The “coarse™ Cordic is characterized by:

1. the base angles numbered «.. .., oN_1

2. amagnification factor Kcoarse The magnification factor Keparse is chosen such
that the multiplication with Kgolarsc (division by Kcoarse) is cheap to implement
in hardware.

3. an angle domain of convergence, Ycoarse, given by:
N-1
Yooarse = &+ (2.76)
=0

and satisfying Yeoarse = /4.

4. an angle resolution d as determined by the minimum angle dcoarse = a,,_;.
This angle resolution 8 should satisfy & < yfinc, Where ygp, is the angle domain
of convergence of the “fine” Cordic.

5. asufficient datapath width, such that the relative precision in the coordinates
of the input vector vy is not affected for |a| > yipe.

The function of the coarse Cordic micro-rotations is to rotate the vector Vpre =
(qu )prc over an angle Ocoarse tO Veoarse = (x,y )coarse-
In the case that the angle exponent k < L, indicating that o is already a “fine” angle

and Ooarse = 0, then the micro-rotations are skipped, irrespective of whether the
mode is vectoring or rotation. nevertheless, the y-mantissa is already aligned to
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the datapath of the fine Cordic that follows this. In this case, the recursion for the
mantissas is given by:

My coarse [i + 1] = mx‘course[i] @ 77)

My coarse [i + 1] = My coarsc [1] '
fori=0...N -1 with initialization

M coarse [0] = Mxprc (2.78)

my,COﬂl’SB [()] —_ my,pre . Za\xoﬂrsc

Otherwise, for L < « <0, the recursion for the coarse micro-rotations is given by:

My coarse i + 1] = mx.coarse[{] = O;" i * My coarse ] 2.79)
My coarse[I+ 1] = My coarse ] + 0;* a; * My coarsei]
for i = 0...N -1 with initialization
— -1,
] K e e @)
In the vectoring mode, the ¢; are determined from
o={ 1 it milso @8
In the rotation mode, the o; are determined from the input angle:
Oi = Oijin (2.82)
In either case, the alignment ay coqrsc for the y datapath is given by
Qy.coarse = €y,pre ~ Cy.coarse (2.83)
and the resulting vector vegarse i$ given by:
My coarse = My,coarse|N] (2.84)

My coarse = My coarse [N ]
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Definition of the Fine Cordic

The “fine” Cordic is characterized by:

1. a maximum angle domain of convergence Ync

2. an angle resolution &gy that varies with the angle exponent, such that the
relative precision of the angle is constant and that the precision in the input
vector (from which the angle is computed by vectoring) is preserved.

3. no need for scaling, as Kpne = 1 to enough precision by definition.

4, asufficient datapath width, such that the precision of the mantissas is not af-
fected by roundoff errors, and also such that no overflow occurs in compu-
tations.

The fine Cordic is not a Cordic as such, but more like a fused multiply-add. It relies
on a linearisation of the rotation over tigpe, such that sin ctfine —> S and cos atgipe —> 1.

R(0tfine) = [ ; _IS ] (2.85)

The approximation S = sin 0g, is then written as

M-1 _
S= 2} $i 27 e e (2.86)
=

where the fine micro-rotation quotient bits s; € {~1. 1}, the angle resolution &fpe =
O(2"M), and the exponent / defined as

ho— L if x>L
- Kk if k=L 2.87)
= min{L.x)
The s; play a similar role to the o; in the coarse micro-rotations.

The rccursion for the fine micro-rotations is given by:

mx.ﬁne[i + l} = My fine [l] -8 2_1_' My fixed @ 88)
my.ﬁne[i +1] = my fine [1] +5;27 " My fixed
for i = 0...N -1 with initialization
My finc [0] = Mycoarse
My fine [0 = My coarse * 2 (2.89)
Myfixed = My coarse " 20 '
Myfixed = Mycoarse " 27-ixed
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The alignments are computed from the differences in the exponents of the indi-
vidual datapaths, and given by:

Qyfine = €ycoarse —€y.fine
Axfixed = €xcoarsc—Eyfine + A (2.90)
Qyfixed = Cycoarse —€xfine T h

Like for the coarse micro-rotations, the s; are determined in the vectoring mode
from

bl e
In the rotation mode, the s; are determined from the input angle:

Si = Sijin (2.92)
In either case, the resulting vector vgy. is given by:

Myfine = My fine[N] (2.93)

My fine = My fine[N]

2.7 Validation of the algorithm

In an actual implementation of the floating-point Cordic algorithm, there are many
possible sources of errors which may influence the overall numerical accuracy of
the operations. We identify the following possible sources:

- finite wordlength computation.
All the computational elements in the implementation, such as shifters and
adders, have to compute to a given fixed wordlength. This condition must be
met in order for the implementation to be realizable in for instance a VLSI
circuit. The finite-wordlength introduces round-off errors in the computa-
tions.

- finite parameters.
Similar to the problem of finite wordlength representation, the parameters
that define the floating-point Cordic have to be finite. For the angle bases this
results in a given angle resolution. Also the magnification factor correction
has to be done in a fixed number of steps resulting in magnification errors.



56 Floating-point Cordic algorithms and architectures

- input data.
The input data contributes in two ways to the error. Due to the fixed
wordlength representation, there is an inherent representation error in the
input data. Secondly, the algorithm is most likely to exhibit a data-dependent
behaviour for the error, in which the magnitude of the error depends on the
actual value of the data.

It is practically impossible to predict in advance how these errors accumulate
through the actual implementation, and hence we must resort to simulations to
validate the algorithm. For this purpose, we have built simulation models of the
floating-point Cordic algorithm for the implementation on both sequential and
parallel architectures.

We have performed extensive simulations with these models, in both modes of the
Cordic (vectoring and rotation) and for a large range of possible input data.

We show the absolute and relative error behaviour in the angle-, the x- and the y-
components as a result of vectoring a large set of random input vectors. We do this
for both a simulation model of a parallel architecture, and that of a sequential ar-
chitecture. The designed precision for both is 12-bits. Internally, the computations
are done to a higher precision, so to avoid accumulation of round-off errors in the
operations. For the precision in the angle, we compare the result to that when com-
puted to a much higher precision. In all cases, we assume that the input is exact,
that is, we ignore any representation error in the input data. For the y-component,
we test how close the final result is to zero, which is the ultimate precision result
for vectoring. For the x-component, we compare the result to the length of the in-
put vector, computed to a much higher precision.This also gives us insight into the
error introduced in the correction of the magnification.

Let us first discuss the results for the parallel architecture. In Figure 2.6 we present
both the absolute and the relative error in the calculation of the angle. We see in
Figure 2.6(b) that the relative error stays constant for the smaller angles, which is
what was desired. For the classical fixed-point Cordic algorithm, this relative error
would increase all the time for smaller and smaller angles, and would eventually
exceed the actual value of the angle, at the point when it becomes close to the angle
resolution. The relative error becomes very much smaller for the larger angles (| |+
p/4), which is due to the angle representation.

In Figure 2.7, we present the absolute and the relative error in how close the res-
ult of the y-component is to zero. We can see that the residue is well below the
representation of the numbers in 12-bit accuracy.

In Figure 2.8, we present the absolute and relative errors in the x-component. We
see the influence of the error in the correction of the magnification factor. For very
small angles, with k|>> )| this error decreases in the way shown, since x is as-
sumed to be precise, and is very close to the length for these small angles.
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Similarly, In Figures 2.9, 2.10, and 2.11 we show the same results, but then for
a sequential architecturc. We note that the allover performance is comparable to
that of the parallel architecture. Note the difference in the error in the x-component
between Figures 2.11 and 2.8. The behaviour for that of the sequential architecture
can be explained that we are working with a number of different angle bases, each
having their own distinct error in the correction of the magnification factor.

2.8 Discussion

Ercegovac and Lang present a realization of a floating-point Givens rotation in [21],
which is not based on Cordic arithmetic. Instead they propose the usc of (on-line)
scheme to compute the rotation including floating-point square-root computation,
division, multiplication and addition. This approach uses more “standard” arith-
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metic, for which the floating-point arithmetic issues are well known, as opposed
to the floating-point Cordic, and computes the result to a similar relative precision.
However, the approach is not inherently robust, and knows exceptions, for example
when both inputs are zero.

2.9 Conclusions

We have presented a floating-point Cordic Algorithm that calculates angles to full
floating-point precision. We have introduced a new floating-point angle represent-
ation that preserves the accuracy present in the input data. This representation is
inherently more accurate than a fixed-precision floating-point representation. An
additional benefit of staying in the proposed angle representation is that the latency
between consecutive vectoring and rotation operations is reduced to a single stage.
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Figure 2.10. absolute and relative error in the y-component for a 12-bit floating-

point Cordic sequential architecture
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Figure 2.11. absolute and relative error in the magnification for a 12-bit floating-
point Cordic sequential architecture

This is analogous to the technique proposed in [22].

We have presented the implementation of this floating-point Cordic algorithm on
both a sequential and a parallel architecture. The advantage of the sequential ar-
chitecture is that it is has a relatively low cost in (VLSI) area, which is traded off
for a reduced throughput. When high throughput becomes an issue, we propose a
pipelined parallel architecture. Throughput is traded off here against a higher cost
of implementation (VLSI area). An added advantage is the use of our proposed
floating-point angle represcntation. By grace of this, the latency between consec-
utive vectoring and (multiple) rotation operations over the same angle is reduced to
asinglc stage. This causes that they can follow each other with one stage difference
in the pipe.

Our experience has been that for less “regular” binary arithmetic algorithms, such
as the floating point Cordic, the interplay between algorithm and architecture
is quite strong. This means that the choice of architecture can have great con-
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sequences on the algorithm. Disregarding this, we have managed to unify the
algorithm so that it is still independent on the final target architecture.

We have validated the implementation of the algorithm for both architectures. For
this purpose we have built appropriate simulation models. We have examined the
behaviour of the error, from the results of extensive simulations, and have shown
that it is conform to the designed limits. The floating-point Cordic algorithm has
been employed in a MVDR application by Fantini in [6, 7, 8]. Experiments have
shown the superiority over Cordic algorithms with a fixed-point angle represent-
ation. Concerning other Cordic algorithms that do employ a floating-point angle
representation, such as Walther’s [9], our algorithm has a clear advantage in that it
is the only known one for which an efficient implementation on a parallel architec-
ture exists. This becomes a serious issue for when high throughput, high accuracy,
and robust numerical computations are required by the application. Such a paral-
lel, pipelined floating-point Cordic architecture has been designed and verified by
Looye [23]. Itis used as a high throughput robust numerical coprocessor in a larger
system.




Appendix

2.A Proofs for this chapter

2.A.1 Derivation of the generic Cordic limit, Lg.,

The generic angle base Ay, with k t Lgep, is defined as the angle base with magni-
fication factor Ky = 1 to sufficient precision, and where the base angles {a;} given
by:

Si = -k+i

a; = 2% .

a: . arclan(Zk‘i) a4 {01 Nmant} (294)
N¢ = Nmantt+1

The limit Lg, is equal to the transition value of k where the magnification factor
Ky becomes equal to 1+ e with the error e < 2-Mman=1_ This bound comes from
the multiplicative nature of scaling with Kx. The error e must not be larger then
the smallest relative error, which is %lsb divided by the maximum value for the
mantissa. This works out to be:

2‘Nmam
2( 1- Z—Nmnm )
< Vo] (2.95)

We will now derive an approximation and an upper bound for Ky, and therefore for
the error e, from which we derive the limit Lgey.

If we substitute Equation (2.94) in (2.34), we obtain:
k_anil"l

Ky = (14223 (2.96)
i=k
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Using the inequality:
(1+25(1+ 28y g 1424 fork g0 (2.97)

and complete induction we can prove that

K: = ’ Nmam(1+22")
i=k
= (142%. ..
(1 4 220 Nmanet 1)y 4y 2(K-Noant) (2.98)
< 1422kt (2.99)

Again, continuing with this bound for KZ we derive a less tight bound for Kj fol-
lowing

K§ < 1427
< 14212200 (14 07K)2 (2.100)
K < 142% (2.101)
Combining this bound and Equation (2.95), we come to:

1+22k £ 1+2'Nman('1

2k £ =Nmant—1 (2.102)
and hence:
N -
Lgen = [m+m{J (2.103)

2.A.2 Relation between Domain Of Convergence r and Magnification factor
K

We have found that there is a definite relation between the domain of convergence
r of an angle base, its magnification factor K, and the number of base angles n.

For a given domain of convergence r there is an angle base with a maximum mag-
nification factor Kpax, and likewise, to attain a magnification factor of K|, there is
a lower bound on the domain of convergence gy;,. Without proof, we state that
the maximum value for K occurs when the base angles are chosen according to
a; = -2+ A suitable bound for the magnification factor is then given by:

¥ r -1
Kmax = (cos F) (2.104)

i=0
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The lower bound to the magnification factor is cqual to 1. This bound is attained
by taking » base angles of ; = r/n, and then forcing » to infinity.

H—>x n

n —~1 -
Kmin = lim H (COS f) = lim (cos i) =1 (2.105)
ol n

Likewise, from the above we can prove that for a given K there is no upper bound
Ymax for the domain of convergence.

Clearly, we do not want an infinite number of base angles. In general we can say
that decreasing the magnification factor for a fixed domain of convergence will res-
ult in an increase of the number of base angles which is also equal to the number
of micro-rotations.

The objectives in our search for an ideal magnification factor K for an angle base
with domain of convergence yi satisfying (2.67) are then the following:

1. To come as close as possible to the maximum magnification factor. This will
guarantee a minimal number of base angles.

2. To express this magnification factor in such a way that its inverse is a sum or
difference of two powers of two. This guarantees a simple implementation
of the prescaling function.

To satisty both objectives we propose that the scaling multiplication takes place as
1 - 2kseate | where the kyqte is chosen in such a way that the resulting magnification
factor, given by

Ke — (1 - 2k~u~'c) B (2.106)

is the closest t0 Kipux.

Practical calculations have shown that k., — 2K — 1 satisfics the above conditions.
Hence we will force the magnification factor to be equal to

Ky~ (1—22“-‘)_l (2.107)

with the same relative precision € as given by condition (2.95).
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2.A.3 Derivation of a bound for the angle resolution o

There are a number of criteria to determine the required accuracy of the Cordic.
Since most of these amount to the same bound, we adopt one that takes into ac-
count the inherent accuracy in the representation of the floating-point input. Let
the inherent accuracy ¢ in the mantissa be given by:

£= %mb = 27 Nmane (2.108)

Our reasoning is as follows. If we were to take a Cordic that produces angles which
have an error which is larger than can be accounted to the error in the input data, we
are obviously not computing to the full extent of the available input data, i.e. we are
ignoring least-significant bits. If, on the other hand, we would make a Cordic that
is arbitrarily accurate by adding extra micro-rotations beyond the necessary limit,
this accuracy would be masked by the error in the representation of the input data.
Our goal is, of course, only to perform necessary computations. For this purpose
we will derive a bound for the minimum angle 8.

The bound for the minimum angle & is given by the difference between the angle
B3, computed from the full precision input, and the angle 3, computed from the per-
turbed input.

S <B-p (2.109)

The full precision input data will amount to an angle p given by

my - 2%

= 2.
tanf T (2.110)
while the worst-case deviation from this is
- —-1sb/2) - 2¢
tanfp = 718 /22 (2.111)

(my+1sb/2) - 2¢x

The smallest, worst-case difference between these angles occurs when both man-
tissas are at their maximum: my,my, = 2 -1lsb. However, in order to simplify the
proof, we will slacken the bound by assuming m,,m, = 2.

Substituting the above, together with Equations (2.109), (2.110) and (2.111) in the
trigonometric equivalence

tanf} - tanﬁ

— — (2.112)
1+tanPtanf

tan(B~p) =
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results in the following equation for the bound:

2K_Nmam
1 4+ 22€ _22€-Nmam=1 4 2~Nmpam~1

tan §y < (2.113)

When we analyze the denominator, we see that it is less or equal to 2 for x < 0.
Therefore, we can safely assume the following bound for tan d, keeping in mind
that it has to be a power of two for easy implementation.

tan &y = 2%~ Nmun=1 (2.114)

Further analysis shows us that the denominator becomes smaller than 1 at k =<Lgen.
This means that, for the generic angle base, we can suffice with:

tan 6K — 2K—Nman| (2115)

2.B Examples of angle bases for common sizes
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[Anglebase | Ay A [ AL ] AS [ AL | A Ag | Ac |
[ x [ o -1 -2 -3 ] 4 -5 -6 =-7 |

Koo 1 3 33 =7 o | -1l | -13 —

K 2 ; L% LW B | S !
Cordic

iteration (Si S mide Six
1 04D [0 [GAD [@ASH[GID [ 60 [ (6— | «x+0
2 13) | B |G| (D) |60 |65 | 7—) | «+1
3 01— | G @6 1) 6> | 6—) | @—) | «x+2
s e e e | 6o 6o | a0 | w3
5 G | 4o | 6o |60 |00 | 68— [0y | w4
6 G4—) | @D |60 | (T B0 | O |(1—)| «+5 ||
7 > | 6627|680 |(10—) (12—) | -kK+6
8 6 | 60 | 68— | ©—) a0 1o || «+7
9 79 | 79 | =) |10 | 11— | (12— | (14—) | «+8 | |
10 G—) | 8—) |0 1) |12 | (13— | (5—) | «x+9
1 ©—) | 00 [11—) |20 |13 | s—) | (16—) | =« +10
12 10— | 10— | (12— | (13 —) | (14— | 15—) | (17 —) | =« +11
13 M=) |15 | a3 | o) | a5—) | (16—) | 18—) | -k +12
14 12—y 2ol |as— |a6—) |7 | 19— | —

15 (13—) | (13—) | (15— | (16—) | 17— | 18— | — —

16 — laa—| — — — — — —

Table 2.1. The series of angle bases A, for a 12-bit sequential floating-point

Cordic.
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| Anglebase [ A, Ac |
| K [-6=<x<0] k=-7]
kscule -1 -
K 2 1
Cordic
iteration || (S; Sinidk | Six
1 04 | —
2 a3n | —
3 a—) —
4 Q7-1) | —
5 3 | —
6 4—) —
7 G—) _
8 (6 —) _
9 (7—) -k+0
10 B—) | «x+1
1 ©O—) | -k+2
12 10—) | —x+3
13 (11—) | —k+4
14 (12—) | —k+5
15 (13—) | k46
16 (14—) | —k+7
17 (15—) | —k+8
18 (16—) | —k+9
19 (17—) | —x+10
20 (18—) | -+ 11
21 (19—) | ~k+12

Table 2.2. The series of angle bases Ay for a 12-bit parallel floating-point Cordic.
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3.1 Introduction

Fast rotations [1] are arithmetic methods for performing orthonormal rotation at a
very low cost in implementation. Related to Cordic[2, 3], they form a viable, low-
cost alternative to the more expensive Cordic arithmetic for certain applications.
Like Cordic, they maintain the desired properties of robustness and numerical sta-
bility. One can say that what fast rotations are for Cordic is the analog of what Ca-
nonic Signed Digit (CSD) optimization {4, 5, 6, 7], and the work of Magcnheimer
et al. [8], are for multiplication.

Fast rotations were introduced at the same time independently by the author [1] and
by Gotze (as orthonormal p-rotations) [9] in 1993. Though the above published
methods differ, the ideas behind them are the same, and they both belong to the
class of fast rotations, as we will show later in this chapter in more detail.

In this chapter, we intend to provide the reader with a comprehensive inventory of
the different classes and methods of fast rotations. Partially this includes previous
work by the author, published before in [10], partially joint work with Gotze [11,
12, 13], as well as previously unpublished work.

Fast rotations have been successfully employed as an alternative to Cordic in a
number of applications in signal and image processing and in computer graphics
[1,9,11,12,13,14,15, 10, 16, 17, 18]. A selection of these applications are presen-
ted in the adjoining Chapters 4 to 6, where it is shown how they can have a signi-
ficant advantage over other arithmetic techniques. In most cases, their use has led
to a reduction of the computational complexity by around one order, in some cases
by even more.

3.1.1 Definition of a Fast rotation

A fast rotation over an angle o is given by the matrix F as:
F:[C ‘S]. (3.1)

where (c, s) is a pairwise approximation of a (cosine, sine) pair, with magnification
factor m given by

m=c?+s2, (32)

and rotation angle a given by
s
a= arclan(z) , (3.3)

satisfying the following fast rotation conditions:
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1. close-to-orthonormal: The magnification factor m, which is the norm of F,
is close to unity, m = 1+ ¢, where the error € falls well below the precision of
the number representation. Hence, this crror is negligible compared to that
of rounding-off the data, making the operation in practice orthonormal. We
also call e the magnification error, as we desire the magnification to be (close
to) unity.

2. low-cost implementation: The fast rotation F is cheap to implement in
terms of hardware cost, in the order of a few shift and add operations. This
cost is a function of the magnitude of the angle of rotation and of the required
precision.

We illustrate this in the following example.

Example 3.1
Let us consider the approximation pair (c.s) as given by:

c = 1-27°
2740715 (3.4

If we calculate the magnification factor according to Equation (3.2), we obtain:

m = /(1-29)2+(274-2-15)2

V12842184 7-8_2-1812-30

V1+2-%

~ 14273 . (3.5)

If

Il

Notice how the intermediate products all cancel out, except for 1 and for 2730 res-
ulting in a magnification error of g ~ 273! = 0.0000000005. This is equivalent to ten
decimal places of precision, and hence we can consider this error to be quite small
already. We can observe now some aspects of the applicability of this approxima-
tion pair for a fast rotation. If we are to work with 24-bit precision numbers, then a
magnification error of this size is certainly negligible with respect to the representa-
tion error, and the approximation pair satisfies the first condition for fast rotations.
If the working precision is for example 64-bit, then the magnification error is no
longer negligible, and the first condition no longer satisfied. If, on the other hand,
we decrease the working precision to say 12-bits, then it does not make sensc to use
this approximation pair for a fast rotation —even though the error is negligible—,
as the last term 2713 in s is rendered inctfective, and no longer contributes to form-
ing the precision.




74 Low-cost arithmetic methods for orthonormal rotation

We can compute the angle of rotation in a similar way, by substituting the approx-
imation pair into Equation (3.3) and obtain:

2-1_7-15
arctan | <55

o

il

q

arctan(0.062591)
0.062510(3.5816 degrees) . (3.6)

u

Let us now consider the actual implementation. Let the input vector v be given as
v = [wew]7. Let us define the output vector v' = [viv}]" as the result of applying
the fast rotation F on the input vector v.

v = Fv. 3.7

Writing out Equation (3.7) into its scalar equations, substituting Equations (3.1)
and (3.4) results in:

Ve—Vy 2‘4 —v 2‘9 + vy 2—15
e 2y 2y IS (38)

ST
[l

The multiplications with a power of two translate to shift operations in the imple-
mentation. The calculation of the result as given by Equation (3.8) requires 6 shift
and 6 add/subtract operations. We prefer to speak in terms of shift-add pairs com-
prising of two shifts and two adds, and so the cost is 3 shift-add pair operations. A
rotation over the same angle and at the same precision, but then using Cordic would
require around 36 shift-add pairs. Hence we can conclude that also the second prop-
erty for fast rotations Is satisfied by this approximation pair.

O

There are many ways to implement this particular fast rotation. We show a few im-
portant ones in Figure 3.1(a) to (d). We distinguish between a direct and a factored
implementation.

The schemes in Figure 3.1(a), (b) and (c) are examples of direct implementations.
Every individual term in Equation (3.8) is apparent in the scheme. The number of
shift-add pairs for a direct implementation is hence the samc, irrespective of the
structure of the schemc. This is the most clear in schemes (a) and (b), where the
shift factors have a one to one correspondence to those in Equation (3.8). Of these
two, scheme (b) is an implementation with an optimized flattened adder tree, and
is most likely to have the least latency of all. However, we are more intcrested in
the schemes with a cascade structure, such as schemes (a), (c) and (d). Due to their
regularity and repeated structure, they lend themselves better to efficient scquen-
tial or pipelined implementations. Scheme (c) uses a cascade shift chain to form
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(a)

(d)
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a+b

a-b
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vy vy
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Multiplier / Shifter
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Figure 3.1. Different schemes to implement the fast rotation of Example 3.1
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the shifted terms, reusing already shifted results, and hence reducing the overall
complexity (area) of the shifters.

The scheme in Figure 3.1(d) is an example of a factored implementation. It is pos-
siblc to split the fast rotation F into a product F5 - Fy, where the F; are 2 x2 matrices,
having the same form as in Equation (3.1), though not necessarily fast rotations
themselves. For this example, F| is realized by the first stage, while F; is realized
by the latter two stages.

In the case of this particular example, all schemes result in the same cost: three
shift-add pairs. In subsequent chapters we will show the superiority of factored
implementations for higher order fast rotations.

3.1.2 Taxonomy

We can classify the fast rotations according to the taxonomy shown in Figure 3.2.

fast rotations

orthonormal exact orthonormal
within precision

direct factored

Figure 3.2. Taxonomy of fast rotations

The first dichotomy we see is that of into the class orthonormal within precision
and the class exact orthonormal . The former class is for when there is a mag-
nification error but not significant; [¢| > 0. The latter class is for when there is no
magnification error at all; € = 0.

We pay particular attention to the class orthonormal within precision in this
chapter. From the taxonomy, we see that this class is split up into two others: those
with a direct implementation, and those with a factored implementation.

* direct The direct form implementation is when each term in the approxim-
ation pair c.s is explicitly realized as a shift-add operation. The cost of im-
plementation is hence directly linked to the complexity of the approximation
pair.
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*» factored Factored fast rotations allow an implementation which is built up
out of a sequence of several smaller operations. The total cost of implement-
ation, which is the sum of the cost of the smaller operations, is significantly
lower than that of the dircct form implementation. In Section 3.4 we present
two variations of factored fast rotations: Gotze’s method of double rotations
with a fast scaling sequence [9, 19], and Hekstra’s method of extended rota-
tions [10].

Note that these classes are not mutually exclusive, as we have seen from the pos-
sible implementations of Example 3.1. A fast rotation with a factored implement-
ation always has a direct form implementation, though the reverse is not always
true.

On the other main branch of the taxonomy, there is the class of exact orthonor-

mal fast rotations. For circular rotation, these are are trivial rotations over ’%
However, for hyperbolic rotation, there are non-trivial solutions, such as Walther’s
[3] method to extend the range of hyperbolic Cordic. We treat both in more detail

in Section 3.5.

We furthermore define a fast rotation method to be a systematic method by which
to generate the approximation pairs for a number of diffcrent fast rotations. These
fast rotations are all derived from a common formula —usually parameterized—
for the method.

3.1.3 Outline of this chapter

In Section 3.2, we present the first few fast rotation Mcthods I through to V, and
a general method for so-called maximal fast rotations. We discuss the direct form
implementation of these methods, in terms of shift-add operations. In order get a
better grip on the underlying theory, we introduce a polynomial representation for
fast rotations in Section 3.3 and show the relationship between circular and hyper-
bolic fast rotations. In Section 3.4, we present the class of factored fast rotations.
We show how a fast rotation can have a factored form, when it is built up as a se-
quence of other operations. The total cost of implementation, as the sum of the cost
of these many smaller operations, can be significantly lower than that of the direct
form implementation. This leads to higher order fast rotations with a low cost. A
special class of fast rotations, the exact fast rotations, are treated in Section 3.5.
These are fast rotations over relatively large angles, with absolutely no error in or-
thonormality whatsoever. They exist for both circular and hyperbolic coordinate
systems. We show their use in extending the domain of the angle of rotation. Fi-
nally, in Section 3.6, we give our conclusions.
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3.2 Direct Form Fast Rotation Methods

We present the first few fast rotation methods, along with their properties, and a
generalization for a subset of these fast rotations.

For the sake of simplicity in the formulas, we will assume positive rotations in the
first quadrant only, with both c.s > 0.

3.2.1 Method I

The simplest of the fast rotation methods is the same as the standard Cordic [2]
micro-rotation, with the approximation pair given by:

c = 1
= 2% (3.9)

where the parameter x is an integer and, due to its nature, is also callcd the angle
exponent . Both the magnification factor m and angle of rotation « are a function
of this angle exponent and, after substitution of Equation (3.9) into (3.2) and (3.3),
are given by:

m= /1422 (3.10)

and
a = arctan(2%). (3.11)

Obviously, given a required precision, not all values of the angle exponent x are
suitable. For small enough values of k, the error in magnification becomes negli-
gible, and hence any additional scaling is unnecessary. We aim to use these rota-
tions only in that domain for which this indeed occurs.

In most cases, we let the finite word length in the computations determine the re-
quired precision of the fast rotations. We assume a mantissa size of Npuq bits,
with the weight of the lcast significant bit given by Isb = 2Mmn. When employ-
ing rounding-to-nearest, the error due to rounding is given by £;oung = Isb /2. For
rounding down, the error is given by €cyp = Isb. For simplicity’s sake, we will as-
sume the rounding-down model, and base our results on it. Equivalent results can
be found for the round-to-nearest model.

For a fast rotation to be considered orthonormal, the magnification factor m must
satisfy:

1= €chop < M < 1+ Echop- (3.12)
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By inspection of Equation (3.10), it follows that m > 1, so we need only consider
the right side inequality. Substitution of m, and squaring of both sides results in:

1422 < 1+ 2ecnop + Echop” - (3.13)

Subtracting 1 from both sides, and tightening the condition by removing the echopz
term on the right-hand side, we arrive at:

2% < 2¢chop < 2Echop - Echop” - (3.14)

Substituting €cpop by 27Nmar - and writing out the left hand incquality of (3.14) in
terms of the exponents only, we arrive at the upper bound x,, of the angle exponent
as:

~Numant + 1
K <Ky = %ﬁ (3.15)

This result is also well known from Cordic literature, where the “tail” of micro-
rotations with x = x,, do not influence the magnitude of the scaling factor any more.

Additionally, we define the lower bound for the angle exponent. Looking at the
smallest shift factor ! which has to be accounted for, we find the term 2% in ¢. If
this exceeds the width of the mantissa, i.e. when K << =Nmant, then due to the finite
wordlength arithmetic, the argument is shifted beyond the precision, and effect-
ively becomes zero, regardless of its value. This implies that the shift is ineffect-
ive for those values of the angle exponent, and may have been skipped. Hence, this
leads to the lower bound ; for the angle exponent in:

K > K; = ~Nmant - (316)
For values of the angle cxponent k beyond this bound, the fast rotation degrades to

the identity operator.

The implementation of the fast rotation is illustrated by the rotation of the vector
v = [vyvy)7 over the angle a to the vector v/ = [v,v}]" in:

Vil el |
[ VV(. ] =F |: vy ] ' (3.17)

Writing out the separate equations for the resulting vector v/, and substituting (3.9)
leads to the classical Cordic cquation.

/ K
v = n=2%
{ R T (3.18)

|
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Figure 3.3. Implementation of a Method I fast rotation.

Itis plain to see that this operation can be done in direct form with two shift- and two
add operations. The implementation is shown in Figure 3.3. We prefer to express
the cost of implementation in terms of shift-add pairs , as the computation in (3.18)
can be performed pairwise for v;.v;. This particular fast rotation method hence
requires 1 shift-add pair.

3.2.2 Method II

The next fast rotation method is based on the more accurate approximation pair:

c = 1_22K-1
s = 2% . (3.19)

The magnification factor m and rotation angle o follow from substitution of the c, s
pair of Equation (3.19) into (3.2) and (3.3), and are given by:

m= /14242 (3.20)

and

2K

o = arctan( (3.21)

1_221(—1)'

Note that, for the same angle exponent x, this method produccs rotations over
angles of similar magnitude, but with a higher precision, in terms of how close m
is to unity, as compared to Method I with the approximation pair of Equation (3.9).

Note also that, in writing out m? as the sum of the squares of ¢ and s, all terms cancel
out except for the lowest power 1 and the highest power 22, We call such fast
rotations maximal, as the maximum number of terms cancel out against each other.
The term with the highest power of 2, is the only term remaining that is a function

'Based on the assumption that k = 0, the shift factors in question are all negative. To avoid
confusion, we say that a shift or shift factor is the smallest if it is the most negative. The amount of
places shifted over is of course the largest, but in an absolute sense.
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of the angle exponent k, and hence the smallest possible error ¢ is attained. The
Method 1 fast rotations, although a trivial example, are also maximal.

We can use this rotation method, given the same required precision, for larger val-
ues of the angle cxponent k than the previous method. The upper bound x,, for the
angle exponcnt follows from a similar derivation as in Equations (3.12) to (3.16)
as:

‘Nmant + 3
—4 .

K=sK,= 3.22)

The lower bound k; for this method follows from the limit value of the angle expo-
nent x for which the term 22! in ¢ vanishes, given a mantissa size of Npan;. This
happens for

K> =t (3.23)

Note that this lower bound is the same as the upper bound of Method 1. At this
boundary, the term 227! in ¢ vanishes, and the method automatically degrades to
the Method I fast rotation.

Concerning the implementation; writing out Equation (3.17), substituting (3.19),
leads to:

(3.24)

{ Ve = ue= 25y, =25y,

! K 2x-1
vy = w25 -2

The cost of implementing this fast rotation is 4 shift- and 4 add operations, or two
shift-add pairs.

The implementation of the Method II fast rotation is shown in Figure 3.4. It is a
cascade realization, which makes use of a shift chain to keep the overall cost of
shifters low. This realization is based on the same principles as the one shown in
Figure 3.1(c).

3.2.3 Method III

The next fast rotation method, Method 111, is yet more accurate, and is given by the
approximation pair:

¢ = 1_22K—1
s o= 2%-2x3 (3.25)

The magnification factor m and rotation angle o for this method are given by:

m= /14266 (3.26)
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Figure 3.4. Implementation of a Method I fast rotation.
and
K _ 23K—3
Tt

Note that this is, due to the form of m in Equation (3.26), also 2 maximal fast ro-
tation.

(3.27)

o = arctan(

The upper bound x,, for the angle exponent for this method follows from an ana-
logous derivation as of Equations (3.12) to (3.16) as:

_Nmanl + 7

Ky = 6 (328)
The lower bound k; follows in a similar way as for the previous methods as:
-N, 3
K = _ma3m_+_ (3.29)

which shows a slight overlap with the upper bound of the Mcthod II fast rotations.
Concerning the implementation; writing out Equation (3.17), substituting (3.25),
leads to:

{ Ve = v =28, =22l 233y,

/) K 2k-1 3k-3 .
v, = Vy 4 28, = 27Ky = 27Ky,

(3.30)

The implementation of the Method III fast rotation, as a cascade realization with
a shift chain, is shown in Figure 3.5. Other schemes to implement this particular
fast rotation method are shown in Figure 3.1(a) to (d), including a factored rcaliz-
ation. The fast rotation we used in Example 3.1 is also a Method III fast rotation,
generated for the angle exponent x = —4.

The cost of implementing this fast rotation is three shift-add pairs. Note that the
cost in shift-add pairs for the direct form implementation of all the fast rotations is
equal to the sum of the number of terms in ¢ and s minus one, to account for the
term 1 in ¢. From the trend of the fast rotation methods presented so far, we can
see that a higher accuracy at a fixed order of magnitude of the angle rotation, or
a larger angle of rotation at a fixed accuracy both naturally imply a highcr cost of
implementation.
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Figure 3.5. Implementation of a Method 111 fast rotation.

3.2.4 Higher order fast rotations

These first thrce simple forms of fast rotation have been found by solving for ¢ and
s having a fixed number of power-of-two terms, and constraining m so that max-
imal fast rotations are found. While this is possible for a small number of terms, it
becomes unmanageable for higher order fast rotations. Moreover, they do not al-
ways exist for certain combinations of the number of terms, as in the case when ¢
and s have three and two terms respectively.

Instead, we proposc the Method IV rotation as given by the approximation pair:

1- 22K—l _ 24K—3
= x4 : (3.31)

C

The magnification factor m and rotation angle « are given by:

m = \/1+ 2864 2108 (3.32)

and

2K _ 25K—4

o = arctan( 1

_22K—1 _24»(—3) ; (3‘33)

Note that this is not a maximal fast rotation as we can see by the form of m in Equa-
tion (3.32).

Likewise, we propose the Mcthod V rotation, which again is maximal, as given by
the approximation pair:

c = 1_22K—1+24K—3
s = 2x-2¥2 g o%kS (3.39)

The magnification factor m and rotation angle a are given by:

m=\/1+ 21010 (3.35)
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and

oK _ 23K—2 + 25K-5

1-22k-1 4 24k-3 /° (3'36)

o = arctan(

The implementations of the Method IV and V fast rotations are shown in Fig-
ure 3.6(a) and (b).

(®)

V,"

Figure 3.6. Implementations of Mcthod IV and V fast rotations.

A gencral expression exists for a subset of maximal fast rotations, parameterized
in N, with the approximation pair given by:

N
= 23 (=x})i-1
¢ ,20( x°)
N
s = x(ZE(—xz)i—(—xz)N) , (3.37)
=0

where the variable x is introduced both for sake of simplicity, and to illustrate the
polynomial representation. Substituting x = 2% for N =0, and x = 2%~ for N = 1
leads to fast rotation methods, expressed as a function of the angle exponent k.

The previously presented Methods I, III and V are the first three members of this
series for N = 0,1, 2 respectively. Note well that the terms in ¢ and s do not follow
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the Taylor series expansion of cos(x) and sin(x). The fast rotation methods gener-
ated by Equation (3.37) only form a subset of the possible maximal fast rotations.
In Section 3.4 we present methods of construction that give a much larger coverage,
coupled with a more efficient implementation.

The magnification factor m follows from substitution of ¢.s of Equation (3.37)
into (3.2) and by successive elimination, and is given by

m = 1 _(_x2)2N+l

V14 x4+2 : (3.38)

I

which shows that the method is indeed maximal.

When implemented in a direct form, the cost of this general method is equal to
(2N + 1) shift-add pairs. In practice, it does not pay to go beyond Method III
(N = 1) with direct form implementation, as more efficient factored implement-
ation schemes exist for certain higher order fast rotations, as we shall sce in Sec-
tion 3.4.

3.2.5 Evaluation and trade-offs

Let us now look at the trade-offs between the three main parameters of a fast rota-
tion, namely: cost, accuracy, and angle of rotation.

We definc the cost L, of a fast rotation as the number of shift-add pair operations
required for its implementation. For example, the cost for a Method IIl fast rotation
isL=3.

We define the accuracy g, of a fast rotation as how close the magnification m is to
unity, or as how small the magnification error € is. We measure the accuracy as the
base 2 logarithm of the magnification crror, as given by:

q=~log,|m-1|= -log,e|. (3.39)

The accuracy q is an indication for at which bit position, relative to the most sig-
nificant bit position, the magnification error starts having its influence. The larger
the value of g, the higher the accuracy. For the angle of rotation a we make the
assumption that the different methods produce almost the same angle of rotation
for the same angle cxponent K.

Example 3.2

Let us consider the five methods presented so far, kceping the angle exponent fixed,
at for example x = -4, which should keep the angle of rotation a close to the same
value, and examining the effect the accuracy q and cost L. The cost is of course
directly related to the chosen method. The result of this cxperiment is shown in the
table below.
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Method | x a € q L
I -416.2419-107% ] 1.9512-10° | 9.001 | 1
i 4| 6.2541-107% | 1.9073-107° | 19.000 | 2
m | -4(6.2510-1072 | 4.6566-10719 | 31.000 | 3
IV | 4625411072 | 1.8208-107'% | 38.999 | 4
% -4| 6.2480-107% | 4.4409-1071¢ | 51.000 | 5

Note that the anglc of rotation for the diffcrent methods stays indeed more or less
the same.

Similarly, we consider the five methods, and try to tune the angle exponent x for
each, such that the resulting fast rotations have at least the same fixed accuracy,
say q = 30, and then examine the effect on the angle of rotation. The result of this

experiment is shown in the table below.

Method | a £ q L
1 -1513.0518-1075 | 4.6566- 10717 | 31.0000 | 1
b -7 | 7.8126-1073 | 4.6566-1071Y | 31.0000 | 2
1 -4 | 6.2510-1072 | 4.6566-1077 | 31.0000 | 3
1A% -3 1.2533-1071 | 4.6748-10719 | 30.9944 | 4
\% -2 12.4868-1071 | 4.6566-10710 | 31.0000 | 5

Note that this example is construed in such a way, that the resulting accuracies q of
the methods are very close together, q = 31, for integer values of the angle expo-
nent K. In this case, this has been done on purpose to accurately show the relation
between the angle of rotation o and the cost L. Normally speaking, it would be
difficult to find such values for q and x>

O

Looking at the results of Methods I through to V so far, it is obvious that the fol-
lowing relationships hold:

¢ For a given minimum required accuracy g, the cost L grows with an increase
of the angle of rotation c.

* For a given fixed angle of rotation a, which we achieve by fixing the angle
exponent K, the cost L grows with an increase of the accuracy g.

* For a fixed cost L, which amounts to a fixed method, the accuracy g dimin-
ishes with an increase of the angle of rotation .

The next values for which this happens is when the angle exponent K takes on the values
(=75.-37.-24,-18.-14) for Methods I to 'V, which results in ¢ = 151, so an accuracy of 151 bits!
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Let us consider the subset of maximal fast rotations, parameterized in N and
x (which is a function of the angle exponent k), as given by Equations (3.37)
and (3.38). We will use this to arrive at more precise relationships for the trade-
offs. The cost of such a fast rotation, when implemented in the dircct form, is
given by:

L=(N+1), (3.40)

the accuracy follows from substitution of Equation (3.38) in (3.39) as:

q = -log,|V/1+xW+2-1|, (3.41)

and the angle of rotation is given by:

s x2SV (LYo (oW
a=2= ( 22'2‘%,_(0’(‘_1 z)i(_’l‘) ) (3.42)

We apply the replacement rule SV ¢/ = 1= 4o Equation (3.42), which results

1-t
m:

1- —XZ)N+I N
Z%HT—(—X) )
I—(—2 V1

2- ()Y - (!
arctan <x1 — (_xz) —2(—x2)N+1 >

o = arctan | x

-1

(3.43)

We propose to use approximations for g and a, to simplify the formulas. For small
t, the approximation for square-root \/1+1 = %t is valid. Applying this to Equa-
tion (3.41), we approximate g with g, resulting in:
q = -logy|3x*'*?

1-(4N+2) logy(x) . (3.44)

We state that a is a weak function of N, and propose to use the approximation @,
defined as the limit for o when N goes to infinity, with x < 1, as given by:

a = lima

N-—->x

= arctan i
1+x2

= 2arctan(x) . (3.45)
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This approximation is valid for large N,and x < 1 as is the case for higher-order
methods. Solving for x in Equation (3.45) results in x = tan(&/2). Similarly, solv-
ing for N in Equation (3.40) results in N = (L - 1) /2. Substituting then x and N into
Equation (3.44), gives us the relationship between the three parameters, which we
sought after:

G =-2Llog,(tan(=)) +1. (3.46)

(SR

Using a first order approximation tan(z) = ¢ for the tangent, and forgetting about
the multiplicative or additive constants, we derive the proportionality relationship
between cost, accuracy and angle to be:

q x -Llog(a). (3.47)

Note well that this holds for a direct form implementation of the fast rotation. Equa-
tion (3.46) is particularly useful as a quick indicator for the cost, accuracy, or angle
of rotation for a fast rotation, given that the other parameters are known.

As an illustration, Figurc 3.7 shows for which parameters of angle of rotation o and
accuracy q the different methods can be applied. The regions in this figure show
the domain of application, as determined by the lower and upper bounds k;.k, on
the angle exponent k. The overlapping of the methods is shown by a dotted line,
the cheaper methods overlap the more expensive ones.

In the lower left corner of the plot, there is a region for which performing any rota-
tion is ineffective, the angle is too small to result in any change of the output vector
from the input, given the precision. Adversely, in the upper right corner, there is a
region where even higher order fast rotations must be used, and where the afore-
mentioned methods no longer suffice.

3.3 Polynomial representation

We have already seen an example of a polynomial representation for the maximal
fast rotations of Equation (3.37). We will use a polynomial representation as it fa-
cilitates the representation of fast rotations, simplifies the proofs, and allows us to
gain more insight into the underlying theory.

Let us define the polynomial approximation pair to be given by two polynomials
inx: ¢(x) and s(x), having similar roles as ¢ and s.

Similarly we define the (polynomial) magnification m(x) and the angle of rotation
a(x) to be given by:

m(x) = \/c?(x) + s2(x) (3.48)
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Figure 3.7. Domains of application of the fast rotation Methods I to V.
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and

a(x) = arctan(z;%) . (3.49)

In the polynomial representation of a fast rotation method, the powers of the angle
exponent in 2¥ are replaced by powers of the parameter x.

Example 3.3
The polynomial approximation pair for the fast rotation Method I is given by:

cx) =1
s(x) x . (3.50)

Il

Likewise, the polynomial representation of the magnification m(x) and angle of ro-
tation a(x) are given by

m(x) =V 1+x? (3.51)

and
a(x) = arctan(x). (3.52)

0

The relation between the approximation pair ¢, s and the polynomials c(x), s(x) for
the Method I fast rotations from the above example is given by:

.
s = s(2%) . (3.53)

We observe that the polynomials ¢(x) and s(x) generate approximation pairs for
the rational points x = 2%,

The polynomial approximation pair c(x),s(x) of Equation (3.50) is canonic. This
means that the term with the lowest power of x in s(x) is x itself. The polynomial
approximation pairs that we will work with are not necessary canonic, but can be
made to be with a simple transformation. However, we do adhere to the convention
that the lowest power of x in s(x) must be 1.
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Example 3.4
The polynomial representation of the fast rotation Method II is given by:
clx) = 1-2¢°
six) = 2
m(x) = V1+4x*
a(x) = arctan (%) . (3.54)

Note that this representation is on purpose not canonic, so as to avoid fractional
coefficients in the polynomials. Equations (3.19) to (3.21) are obtained by substi-
tution of x by 251,

O

We present the polynomial representation of the fast rotation Methods I through to

V in Table 3.1. The realization of these methods is displayed in Figure 3.8.

method c(x) s{x) m(x) canonic | maximal | substitution
1 1 x V1+x2 yes yes x=2¢
1 1-2x? 2x V1+ 4t no yes x =281
il 1-2x2 2-x3 V14x® no yes x = 2%
IV o 1-27-2¢ | -2 | VI+4F+40 | no no x =21
\% 1-202 4+ 2% | 2x-223 +X° V1+x10 no yes x=2%1

Table 3.1. Polynomial representation of fast rotation Mcthods I through to V.




92 Low-cost arithmetic methods for orthonormal rotation
Vi i(:)* Ve iegend
E 7 Adder / Subtractor
@ ;’ a —i() - a+b
- Q}* v b /
(OO e
_ - ,
b¢b< Multiplicr / Shifter
(b) 2 o .
(= L T -
Y < > +< ) £ /
BN - B g /
> D&
(c) S - ¥
:O—0—0r <O
% IS x
N S
=L D—T’D
@ iy I T "t N
= (=
+ + i ++< Q_»
SR
(e) ?&H

ERSUED ”}HQ —O-

Figure 3.8. Polynomial realization of fast rotation Methods I through to V.
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To aid further discussion, we introduce the auxiliary polynomial Uy (x) as being:
N

Uy(x) = Z)xi . (3.55)

We will use this polynomial extensively in the next sections, both to aid a compact
representation, and to simplify proofs, using the set of rules below.

(1-x)Un(x) = 1-x"! (3.56)
1-xN*1

Us(x) =~ (3.57)

A+ MUy () = Uny_y(x) (3.58)

(L4 oy (x) = Upory(x) (3.59)

Un_i(x) = ﬁl-i—x(zl) (3.60)

Un-1 (U1 () = Upvo1 (%) (3.61)

Observing Equation (3.37), we replace the summations with instances of the poly-
. i . .
nomial U(-x"), and are able to compactly represent the maximal fast rotations as:

clx) = 2Uyn(-x*)-1

s(x)

X (2UN(-x2) - (-xZ)N) . (3.62)
The formulas for m(x) and a(x) follow by application of the rules as:

m(x) = /1-(=x2)V i1l (3.63)

and

_(_XZ)N_(_XZ)NJrl > (364)

afx) = arctan (xl By Yo
Note that Equation (3.62), for the values of the parameter N = 0. 1.2 respectively,
gives the polynomial representation of the fast rotation Methods I, III, and V as
presented in Table 3.1.
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3.3.1 Hyperbolic fast rotations

We define cp,(x),sp(x) as the hyperbolic approximation pair , and the hyperbolic
fast rotation F}, as given by:

By () — [ ax) () } | 3.6

with the hyperbolic magnification factor my, (x), and the hyperbolic angle of rotation
oy (x), given by:

mp(x) = \/ep2(x) = sn2(x) (3.66)
and
ay(x) = arctanh(w) . (3.67)
ch(x)

The relationships between the circular and hyperbolic functions are well known.
From [20] they are given for the hyperbolic sine and cosine as:

cosh(x) = cos(ix)
sinh(x) = -isin(ix) , (3.68)

where i2 = -1. A similar relationship holds between circular and hyperbolic fast
rotations in:

)

cp(x) ix
s(ix) . (3.69)

c(
sp(x) -

I

Due to the nature of the circular polynomial approximation pairs that we have seen
so far, with c(x) and s(x) being even and odd functions respectively?, the relation-
ship (3.69) results in ¢y (x) and sy (x) having real coefficients. Hence the hyperbolic
fast rotation F}, is realizable.

Substitution of the relationships of (3.69) in Equations (3.66) and (3.67) leads to
the relationships between the hyperbolic and circular counterparts:

mp(x) = /c2(ix)+s%(ix) = m(ix)
op(x) = arctanh(—i%%) = —iafix) . (3.70)

3Note well that c(x) and s(x) being even and odd functions is not a natural conscquence for fast
rotations. There cxist polynomial approximation pairs that do not fit this pattern, and hence have
no realizable hyperbolic counterpart.
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The relationships (3.69) and (3.70) can be applied to obtain the dual, hyperbolic
forms of the fast rotation methods presented so far, as well as for most of the fast
rotations which are obtained with the techniques described in the next section.

Example 3.5
The hyperbolic fast rotation Method 111h, given below, follows from application of
the above relationships on the circular fast rotation Method 111, as given by:

ap(x) = 1+ 2x?
sp(x) = 2+x3
mp(x) = V1-x°
L3
op(x) = arctanh(%) . (3.71)

O

Similarly, we can apply these relationships to derive the other hyperbolic fast ro-
tations. The polynomial representation of the hyperbolic fast rotation Methods Ih
through to Vh are presented in Table 3.2.

method ch(x) sh(x) mp(x) canonic | maximal | substitution
Ih 1 X V1-x2 yes yes x=2%
ITh 1+ 2x2 2x VIt dxd no yes x=2%1
ITh 1+2¢° 2x 4 x3 V1-x6 no yes x =251
IVh | 1+ -2 2020 VI+4x8-4x10 ) no no x =251
Vho | 142742 | 2o+ 28 400 V1-x10 no yes x = 2%

Table 3.2. Polynomial representation of hyperbolic fast rotation Methods Ih
through to Vh.

It is evident that a circular fast rotation which is maximal, leads to a hyperbolic
counterpart that is also maximal.

Similarly, applying the relationships on Equation (3.62), we arrive at the general
expression for the subset of maximal hyperbolic fast rotations:

cn(x) = 2Un(%)-1
sh(x) = x(ZUN(xz)—(xz)N) . (3.72)

The corresponding formulas for my, (x) and oy, (x) follow as:

mp{x) = /1= (x)WrL, (3.73)
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and

2_(x2)N_(x2)N+l ) . (3.74)

1- ()N =2(x2)N+1

3.3.2 Unification of circular and hyperbolic rotations

ap(x) = arctan (x

A unification exists for the circular and hyperbolic fast rotations, quite like the one
given for Cordic by Walther [3].

To capture both the circular and hyperbolic modes of rotation in one common for-
mula, we define the circular/hyperbolic parameter ¢ as:

t: { +1 for hyperbolic mode (3.75)

-1 for circular mode

and use this parameter in the definition of the unified approximation pair
cult,x),su(t.x) as:

_ an(x) for =41
cult.x) = { c(x) for r=-1
_ sp(x) for t=+1
sult.x) = { sx) for t—-1 (3.76)
The unified fast rotation Fy(¢.x) is in turn defined as:
| cu(tx) tsy(t.x)
Fy(f.x) = [ airr) et | (3.77)

Note that we have purposcfully omitted the “linear” mode of rotation, defined in [3]
by t = 0. Whereas the formula of Equation (3.77) would still be correct, it makes
no sense to use the typical fast rotation formulas, as the linear case is best handled
by other low-cost techniques, such as canonic signed digit (CSD) decomposition
[4] or the multiplicative decomposition into 2 minimum number of CSD terms [8].

If we consider a term in c(x), we can always write it as Cx*"*% where C is a ra-
tional constant, n,k are both integer, and k € {0,1,2,3}. Then, applying Equa-
tion (3.69) to it, the corresponding term in ¢, (x) becomes C(ix)¥ % = #Cx*n 1k,
For even powers of x, that is when k € {0,2}, the term remains real. For k =0, it
stays the same, while for k = 2 it changes sign.

Likewise, we can re-write any term in s(x) as Sx* 7% with S a rational constant.

Again, applying Equation (3.69) to it, the corresponding term in sp(x) becomes
—iS(ix)*k = {F-18x4+k For odd powers of x, when k € {1,3}, the term remains
real. For k = 1 it stays the same, while for k = 3 it changes sign.

Summarizing, for circular approximation pairs with strictly even ¢(x) and odd s(x),

we can obtain the unified approximation pair through the substitution rules presen-
ted in Table 3.3 below.

Hence, the methods presented in Tables 3.1 and 3.2 can be combined into their uni-
fied counterparts, presented in Table 3.4 below.
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k || term in ¢(x) | term in cy(x) | term in ¢, (t,x)
0 Cx4n+0 Cx4n+0 Cx4n+

2 Cx4u+2 _Cx4n+2 _th4n+2
k || term in s(x) | term in sy(x) | term in sy (2.x)
1 Sx4n+1 Sx4n+! Sx4n-H
3 Sx4n+3 _Sx4n+3 _th4n +3

Table 3.3. Replacement rules for unified fast rotations.

method cy(t,x) su(tx) my(t,x)
Tu 1 x V1-ix2
Iy 1+ 2x? 2x V14+dxt
1llu 141242 2413 V1-txb
IVu | 147262 -2x* 20-2x° V14 4x8 - 44x10
Vu L4+2x2 + 2% | 2+ 123 +x° 1-x10

Table 3.4. Polynomial representation of unified fast rotation Mcthods Iu through
to Vu.

3.4 Factored fast rotation

Referring to Equation (3.47), we have shown that the cost of a direct form imple-
mentation grows with the increase of the accuracy and with the increase of the mag-
nitude of the angle of rotation, although very slowly. Inspection of Equations (3.47)
and (3.41) shows that the accuracy q is linearly proportional to the cost, and hence
the magnification error € is exponentially proportional to the cost.

In this section we will present factored implementation schemes that perform bet-
ter in the sense that the cost is even lower to achieve a certain small magnification
error for a given angle. These methods aim at factoring a fast rotation into simpler
operations, so that the overall cost is kept very low. Much lower in fact, than the
direct form implementation. We do not propose to factor any given fast rotation in
this way. Rather, we present two variations of parameterized factored fast rotation
methods, of which the factorization is known beforehand. We use this to our ad-
vantage to construct higher order fast rotations. The two variations of factored fast
rotations that we present are Gotze’s method of double rotations with a fast scaling
sequence [9, 19] in Section 3.4.1, and Hekstra’s method of extended rotations [10]
in Section 3.4.2.

We define a factored realization of a fast rotation F as the product of N factors F;,
i=1.2...N, as given by:

F=Fy-Fy-Fo Fy. (3.78)
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Whereas we are in principle free to choose the form of the factors F;, we constrain
the F; to be 2 x 2 p-rotations, with approximation pair c;.s;. For the factored fast
rotations that we consider in this section, this is sufficient. The individual factors
F; are given by:

N I B ¢
F; = [ s c } . (3.79)

The magnification factor m; and angle of rotation o; given by:

and

s
a; = arctan — . (3.81)
ci
We do not put any constraints on the individual magnification factors, as we did
for fast rotations. Only the overall magnification factor m should satisfy these con-
straints.

Using the property (1.9) for the concatenation of u-rotations, we able to derive the
formulas for the overall magnification factor m and the angle of rotation a of F.
The magnification factor m is given by the product of the individual magnification
factors m; in:

N
m= lJm,u (3.82)

Likewise, the overall angle of rotation o is given by the sum of the individual angles
of rotation o in:

N
o= 2 ;. (3.83)
=1

Let us now define ¢;. §; to be the intermediate approximation pair that corresponds
to the intermediate product of the F;, for i = 1,...k, with £k = N. We use prop-
erty (1.11) to recursively express the intermediate approximation pair as:

Ci = CiCi=Si1Si
§ = Ciasit+Siac . (3.84)

for i = 2, and with initial condition

1 = Q
§| = s§1 . (3.85)
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Clearly it follows from the definition that the overall approximation pair c,s of F
is given by the final intermediate approximation pair ¢. Sy, when k = N.

c = (N

= SN . (3.86)

We will refer to fast rotations that have a factored implementation in a shorthand
way as factored fast rotations .

3.4.1 Gotze’s double rotation method

Gotze presented, in [9], a factored fast rotation method which was based on a
double rotation Fy, followed by N -1 scaling stages F;, with i = 2,....N. The
method makes use of the fact that the magnification factor of a double rotation over
a simple micro-rotation, such as Method I, no longer has a square-root in the ex-
pression, and allows a fast scaling sequence to bring it to any arbitrary precision.

The approximation pair of the first factor Fy is given by:

. = 1—x7‘

s = 2x . (3.87)
This is a double rotation of Method 1, with magnification factor m; given by:
mp =/ (1+x2)2 =1+x%, (3.88)

and angle of rotation a; given by:

2x
ap = arctan(] 5) = 2arctan(x). (3.89)
Note that there is no longer a square-root in the expression of the magnification

factor, and that the angle of rotation is twice that of Method I, which was to be
expected.

The approximation pairs of the next factors F;, with i = 2, are given in parameter-
ized form as:

¢ = 1+(-—X2)("
5 = 0 . (390)

Note the absence of the terms s;, which indicates that this is a pure scaling opera-
tion. The magnification factors m; are given, for i = 2, by:

i
2i-2)

mi=ci=1+(-x*)?", (3.91)
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There is no effective rotation, so the angles of rotation a; are given by:

o; =0. (3.92)
Looking at the overall behaviour of all N factors F;, we observe the following. Let
us define m; v as the overall magnification factor of the F; with 2 < i < N, so the

ones that implement the scaling. As a direct result of the Rule (3.60), it follows
that m; 5 can be written as:

myn = Upn-i_y(-2%). (3.93)

Since we know that the scaling factors do not contribute to the rotation, we can
express the overall approximation pair ¢, s as given by:

¢ (1-x*)myy = (1‘x2)U2N-1—1(‘x2)
s = 2Amyy = 2x-Upni_y(-x?) (3.94)

i
|

The overall magnification factor m, which is given by the product m = mymyy,
follows, as a direct result of Rule (3.56), as given by:

m = mnynN

(1 +x2)U2~_|_1 (_x2)

1- (=)@ . (3.95)

Il

The overall angle of rotation a, is simply given by:
o = 2arctan(x). (3.96)

We can use this factored fast rotation method to construct fast rotations of any ar-
bitrary precision, by supplying enough many scaling stages, i.e. by incrcasing N.
The scaling sequence shows quadratic convergence.

The cost of implementation of the first factor F) is two shift-add pairs, that of the

remaining F;,i = 2 is one shift-add pair each. This results in the overall cost L,
parameterized in N, as given by:

L=N+1. (3.97)

Example 3.6
For example, let us consider Gotze’s factored fast rotation method for length N = 4.
This is a double rotation stage, followed by three scaling stages.
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The fast rotation F is given by the matrix product:
F — 1-x* -2x |1 -x> 0 .
Tl x 1-2 0 1-x

1+x* 0 1+x5 0
[ 0 1+x4] [ 0 1+x8] ' (3.98)
Written out in full, the approximation pair is given by:
c = (1—x2)U23_1(—x2)

N

Il

2xUys_y (=x%) . (3.99)

and the magnification factor and angle of rotation are given by:

m (x)

1-
1- (3.100)

and
o = 2arctan(x). (3.101)

The cost of this fast rotation is only 5 shift-add pairs. Compared to the Method V
fast rotation, the factored fast rotation has a significantly larger accuracy for a com-
parable angle of rotation.

O

The cascade realization of the factored fast rotation of Example 3.6 is shown in
Figure 3.9.

The accuracy ¢ for this factored fast rotation method, can be derived from Equa-
tions (3.39) and (3.95) as given by:

-log, |m-1]

~log,|(-*)""|

= -log,(x?")
-2¥log, (x) . (3.102)

i

q

il

i

Via Equations (3.96), (3.97), and (3.102) we can derive the trade-off relation
between angle, accuracy and cost to be given by:

g=-2t"1 logz(tan(%)) : (3.103)
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Figure 3.9. Cascade polynomial realization of Gotze’s double rotation method

We can simplify the above, to reveal the proportionality between the trade-off
factors, as given by:

g = -2 log(a). (3.104)

Note that, compared to Equation (3.47) this is clearly a superior method to direct
form implementations, but only for L large enough.

3.4.2 Hekstra’s extended rotation method

Hekstra presented the extended factored fast rotation method in (10], where each
of the factors F; contribute to the overall rotation, and their individual magnifica-
tion factors m; compensate out, to form a highly accurate fast rotation. This is in
contrary to Gotze’s method, where only the first factor contributes to the rotation.
This new method provides extra flexibility in the construction of fast rotations, as
the different choices of the direction of rotation for the individual rotation factors
result in different overall angles of rotation. Again it holds that, by increasing the
number of factors N, an arbitrary high accuracy can be reached.

We will demonstrate one type of such factored fast rotation methods only. Many
other types exist, but they all follow the same kind of construction that we will show
for this particular case. See [10] for more details. The approximation pair of the
first factor F is given by:

cy = 1
51 = X . (3.105)

This is nothing more than a Method I rotation, with magnification factor m; and
angle of rotation o as given by:

my=1+x2, (3.106)
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and
oy = arctan(x). (3.107)

The remaining factors F;, withi =2..... Nare given in parameterized form as:

¢ = 1-x237)

31’—3)

si = it (3.108)

where the parameter v); € {-1.+1} indicates the direction of rotation of the factor
F;.

The magnification factors m;, for i = 2, are given by:

m; — V1=x(2372) 4 4372 (3.109)

Note that the parameter 1); is no longer present in the magnification factor. The
structure of this magnification factor may look daunting, but it has been construc-
ted so that the overall magnification factor m is accuratc and also maximal. Let
us define m > as the product of the first two magnification factors, mj; ; = myms.
Writing this out in full results in:

mi2 = mm;
= VI+x° : (3.110)

which shows a three-fold increase in accuracy. By means of induction, we can
prove that the overall magnification factor m, for N factors, is given by:

m=\1+xZ¥", (3.111)

The angles of rotation o; of the remaining factors F;, withi = 2..... N,are given in
parameterized form as:

o, = arctan(

= mj;arctan(

~ niy _ (3.112)
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where @; is given by:

37

&; = arctan(

By means of the above simplification, we can write the overall angle of rotation o
as given by the summation:

N
a=o;+ Y Nid;. (3.114)

=

Note that the overall angle o depends on the choice of the direction parameters 7).
For practical reasons we have to fix 1y = +1, otherwise we have that the first two
factors combine to implement a Method I rotation, but at a much greater cost than
necessary.

There is no nice, closed expression for the approximation pair ¢, s, as these too de-
pend on the choice of the n;. The general formulas for factored fast rotations, as
given in Equations (3.84) to (3.86) still hold, of course.

The cost of the first factor F; of this particular factored fast rotation is one shift-add
pair. The cost for each of the remaining F;, the so called extensions, is two shift-
add pairs. Hence, the overall cost L, parameterized in the number of factors N, is
given by:

L=2N-1. (3.115)

Example 3.7
We illustrate this factored fast rotation method for N = 3.

The fast rotation F is given by the matrix product:

(1 = - 1-x5 w3
F*[x l] [ X 1—x2] [n3x3 1-x5 |- (3.116)

Note that we have fixed vy = +1. Two different fast rotations result still fornz €
{~1,41}. In general, with N = 2 factors, we obtain 2V~2 different fast rotations.

The overall magnification factor angle of rotation are given by:

m

i

mymaym3

V142V 1-x2 +x4/1-x6 4 x12
V1-x18 (3.117)
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and

=
Il

oy + 0+ 1303

Il

arctan(x) + arctan( ;2 )+1r]3arctan(——:3) . (3.118)

The cost of this fast rotation is only 5 shift-add pairs. Again, compared to both

Method V and Gétze’s factored fast rotation, this rotation has a significantly larger
accuracy for a comparable angle of rotation.

0

The cascade realization of the factored fast rotation of Example 3.7 is shown in
Figure 3.10.

OO OO

+n;3

f%@ L@—m 4{%@ -

F[ F» F3

Figure 3.10. Cascade polynomial realization of Hekstra’s extended rotation
method.

The accuracy g for this factored fast rotation method can be approximated only, and
follows by:

g = -log|m-1]|

—log, |V 1+x(23"1 -

I

1!

1 5an-1
-lﬂgz(;«\f(23 )

R

1
-2.3V-1 log(5x) : (3.119)

[t is difficult to find a closed formula for the trade-offs, since the angle is dependent
on the directions n;. However, for fixed n; = +1 which signifies the maximum
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angle of rotation, we can usc a similar approximation for the angle of rotation as in
Equation (3.45), given by:

o = 2arctan(x} . (3.120)

Via Equations (3.120), (3.115), and (3.119) we can derive the trade-off relation
between angle, accuracy and cost to be given by:

. 1
qz—2-3%10g2(§tan(%)). (3.121)

The proportionality between angle, accuracy, and cost is derived by simplifying the
above, resulting in:

g% -3 log(a). (3.122)

Note that, though Equation (3.104) compared to (3.122) suggests that Gotze’s
method provides more efficicnt fast rotations, this is only so for very high accur-
acy. For practical values, Hekstra’s method is favourable.

3.5 Exact orthonormal rotation

We dcfine the exact orthonormal rotations as the class of fast rotations, for which
the spccial condition

e=0 (3.123)

holds. They introduce no scaling error. For the circular mode, the members of this
class are trivial. For the hyperbolic mode, however, they are non-trivial, as we shall
see further on.

3.5.1 Circular mode exact orthonormal rotations

For the circular mode of rotation, the approximation pair must satisfy the condition:
crst=1, (3.124)

and simultanecusly satisfy the other conditions on fast rotations, such as being
cheap to realize. For binary arithmetic, these conditions naturally imply that both
¢ and s must be integer multiples of a power of two. This means that we can write
them as:

c = X/2N
s = Y/ 2V, (3.125)
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where X.Y. N are all integer. Substituting (3.125) into Equation (3.124) leads to the
Diophantine equation:

X>+Y?>=4". X.Y.Ninteger.N=0. (3.126)

which only has the trivial solutions:

_ 9N
{ /)Y, ; 62 (3.127)
and
X =0 .
{ v o— N - (3.128)

and no others. The proof of this is given in the appendix. A similar proof was also
given in [21, 22]. Substituting the solutions (3.127) and (3.128) of the Diophant-
inc equation back into Equation (3.125) results in the approximation pairs for the
circular mode exact rotations:

c =

s = 0 (3.129)
and

c = 0
= =1 . (3.130)

Note that the approximation pair of Equation (3.129) corresponds to the well-
known, albeit trivial, rotations over a = () or o0 = 7, while that of Equation (3.130)

corresponds to totations over oo = =3,

These rotations are cheap to realize, they require no additions, only negation. Fur-
thermore, they are accuracy-preserving, as no error is introduced in the result for
finite-wordlength computations.

3.5.2 Hyperbolic mode exact orthonormal rotations

For the hyperbolic mode of rotation, the approximation pair must satisfy the con-
dition:

c-si=1. (3.131)

and simultaneously satisfy the other conditions on fast rotations. Again, we writc
the approximation pair in terms of integer multiples of powers of two in:

c, = X/2V
s = Y/2N (3.132)
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where X.Y,N are all integer. Due to the nature of the hyperbolic functions, with
cosh(x) 2 0, and |sinh(x)| < cosh(x) we impose the following constraints:

0

X
X = . (3.133)

[\

Substituting (3.132) into Equation (3.131) leads to the Diophantine equation for the
hyperbolic mode:

X?_y?=4"_ X,Y,Ninteger, N2 0, (3.134)

Contrary to the circular mode, this equation has non-trivial solutions, given by:

X = (22
My (3.135)
{ Y= t(2”1_22”;)

where Ny, N, are integer, and satisfy N; + N, = 2N. The proof of this is given in
the appendix. Substituting the solution (3.135) of the Diophantine equation back
into Equation (3.132), and defining M = N; - N with M integer, results in the ap-
proximation pair for the hyperbolic mode exact rotations:

ZM + 2-M )

o

o = (
sno= =(EET) . (3.136)

The angle of rotation, ay, = arctanh(sy/cp), is found by rewriting the terms 2*M in
Equation (3.136) as natural exponents ¢*¥"2, Substituting this into the equation
for the angle of rotation results in:

MIn2 _ p-MIn2
ay, = arctanh (:W> , (3.137)
which simplifies to:
op==*MIn2. (3.138)

Note that these exact hyperbolic rotations are the same as proposed by Walther [3]
to extend the range of hyperbolic rotation for the Cordic algorithm.
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3.6 Conclusions

In this chapter, we have presented the theoretical background and a comprehens-
ive inventory of methods for fast rotations. Fast rotations are arithmetic methods
for performing orthonormal rotation at a very low cost in implementation, as an al-
ternative to Cordic. Although fast rotations exist only for certain angles of rotation,
they form a sufficient set to efficiently implement any orthogonal operation.

We have presented a taxonomy for the classes of fast rotations, and the significant
methods from each class. We have presented a polynomial representation for fast
rotation methods. The representation facilitates the understanding of the underly-
ing theory, and provides a link to other disciplines. We have shown the relationship
between the circular and the hyperbolic fast rotation methods, and how they can be
unified into one model. We have shown the trade-offs that exist between the angle
of rotation, accuracy, and cost of fast rotation methods.

In the adjoining chapters, we will present a number of applications that have made
use of fast rotations.
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Appendix

3.A Exact orthonormal rotation

3.A.1 Circular mode exact orthonormal rotations

THEOREM 3.1
The Diophantine equation:

X?+Y*=4Y, X.Y.NintegerN=0,

only has the trivial solutions:

X = 2V

Y =0
and

X =0

Y = =2V
PROOF

For N = 0, it follows that the only solutions are the trivial ones:

1

[t

{7z

and

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)
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Note that 1 = 2°, and hence the theorem holds for N = 0.

For N > 0, the right-hand term of (3.139) is even, and hence we state that if X is
odd, thenY is odd, and likewise if X is even, thenY is even too.

For XY odd, we make use of the well-known and easily verified fact that an odd
square is always a multiple of four plus one. Hence we can write:

X? 4L +1
Y? = 4M+1 , (3.144)

i

where L,M integer. Substitution of (3.144) into (3.139) leads to a disagreement,
since the left-hand term cannot be a multiple of four, while the right-hand term is,
for N > 0. From this we can conclude that there are no solutions for X,Y odd.

For the case where both XY are even we can perform a problem reduction. We
introduce the relationships X = 2X'.Y = 2Y' N+ 1= N', with X',Y' N’ integer
and N’ = 0. Substitution of this into (3.139) results in:

X?+yY?=4¥, X' Y N integer,N' =0, (3.145)

which is of the exact same form as the original (3.139). We can repeat this process
until we end up with a situation where either N = 0, resulting into the known trivial
solution, or N > 0 and both X,Y odd, with no solutions.

From induction of (3.145) it follows that, for N > 0, and XY both even, the only
solutions are those given by Equations (3.140) and (3.141). Hence the theorem
holds.

3.A.2 Hyperbolic mode exact orthonormal rotations

THEOREM 3.2
The Diophantine equation:

X2-y?2=4N X Y Ninteger,N=0, (3.146)

has the non-trivial solutions:

X M1 42M )
Py

i

with N1, N, integer, satisfying Ny + N, = 2N, and n,v = =1.

PROOF
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The left-hand side of Equation (3.146) can be factored as follows:
XY = (X+Y)(X-Y). (3.148)

These factors must integer, as they are the sum and difference of integers. The only
integer factorizations into two parts for Equation (3.146) are given by:

N = m2") (2", (3.149)

where Ny, N, are non-negative integers, satisfying Ny +N, = 2N, andm = =1. As-
signing the factors on both sides gives us:

X+Y) = m2M)
{ X-Y) = () (3.150)

Solving the above system of equations for X andY results in:

N N-
X = m(2422)
Y = n(¥55)

(3.151)

The extra degree of freedom in the signv of the expression forY in Equation (3.147)
comes from interchanging the role of Ny and N, which changes the sign. The sign
n of the expression for X then remains unaffected.
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4.1 Introduction

In this chapter, we show how fast rotations have been applied in computer graph-
ics, and what has been gained from their use over that of alternative arithmetic
techniques. The computer graphics application which we consider is that of photo-
realistic rendering of artificial images, by means of ray-tracing and radiosity shad-
ing. The rendering technique that we propose is described in detail in [1]. This
technique, however, requires an cnormous amount of quite high complexity arith-
metic functions to achieve the desircd photo-realism. Typical operations that we
encounter are: geometric transformations of polygons, computing bounding boxes
of a polygon in the spherical coordinate system, and the intersection computation
of a line segment with a polygon. The work presented in this chapter concerns the
implementation of a VLSI chip-set that forms a high-performance co-processor for
the Radiosity Engine! [2, 3, 1] that is capable of computing typical ray-tracing op-
crations, at a very high throughput. We will pay particular attention to the process
of intersection computation, and its implementation in the Intersection Computa-
tion Unit (ICU).

4.1.1 Outline of this chapter

In Section 4.2, we describe the problem of photo-realistic rendering of artificial
scenes. We identify that the most computationally intensive problem is the compu-
tation of the form-factors by means of sampling with a large ray frustum. In Sec-
tion 4.3, we go deeper into the details of sampling with a hemisphere ray frustum.
We show how hemisphere rays are constructed, and that the sampling requires the
computation of the intersection of rays with patches. Section 4.4 extensively cov-
ers the problem of intersection between a patch and a bundle of rays. We propose
our solution, which uscs an incremental computation scheme to lower the amount
of operations. The further introduction of fast rotation operations gives rise to a
large reduction of the computational complexity, and brings the implementation of
a high-throughput VLSI intersection computation unit (ICU) within reach. In Sec-
tion 4.5 we show that the introduction of fast rotations does not necessarily com-
plicate other operations related to the intersection. We show how the index space
bounding box (ISBB) computation is affected. Section 4.6 covers the implement-
ation aspects of the Radiosity Engine system for high performance photo-realistic
rendering. We focus on the implementation of the ASIC chip-set which forms the
computational heart of the system. Finally, in Section 4.7, we give our conclusions.

I'This research was funded by the Dutch Technology Foundation STW (Stichting voor de Tech-
nische Wetenschappen) under contract DEL99.1982
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4.2 Photo-realistic rendering

Rendering, or the production of photo-realistic images, requires the actual simula-
tion of the propagation of light through an environment. Shen, in [1], states that
realism can only be achieved by taking the global illumination into account, which
includes the effects of all objects in the environment. Two commonly used meth-
ods that do this are ray-tracing [4], which considers only specular reflections, and
radiosity [5], which considers only diffuse reflections. The rendering technique
we employ is a mixture of both. We refer the interested reader to [1] for further de-
tails. Likewise, we do not pretend to give a full treatise on the rendering technique
here, but only present that which is relevant for later discussion.

4.2.1 The environment

The use of radiosity requires it to work with preferably a closed environment. For
our case, the environment is bounded in 3D by a unit cube with its center in the
origin of the coordinate system. Any point V with coordinates V = (x,y,z) in the
environment is hence limited to:

1 1
—¥S X S?
R
2% 2z S5 . “1

We call the Cartesian coordinate system in which the environment is defined, the
global coordinate system. Unless otherwise specified, we assume that all points
and vectors are defined within this coordinate system.

We position the objects (i.c. teapot, painting, table, etc.) in this environment. Ob-
jects, in turn, arc built up out of patches. The patches make up the surface of
the object. To the patches are assigned certain surface properties, such as colour,
emission energy, reflective and refractive coefficients, etc., see [1] for more de-
tails. Within this chapter, we confine our focus to only the geometric properties
of patches. Whereas we are in essence free to choose any type of surface prim-
itive for patches, we choose them to be coplanar, convex polygons for reasons of
practicality, and to keep computations simple.

Definition of patches

Let Py, Py. ... be points in the global coordinate system, and let pg. p;. ... be their
corresponding vectors. We define a patch as a polygon having four vertices
Py, Py, P>. P3, with respective vectors pg.py. P2, P3. The polygon is assumed to be
both convex and coplanar. A patch has a front face and a back face. The orientation
of a patch is determined by the sequence of vertices. This orientation follows the
“right-hand” rule that states that, when looking at the back of a patch and the front
facing away, the vertices are counted clock-wise. This is illustrated in Figurc 4.1.



122 The use of Fast Rotations in Computer Graphics

Py

front face
!

back face ’

Py

Figure 4.1. The orientation of a patch, showing the front and back faces, and the
sequence of the vertices.

The surface properties, mentioned above, are only valid for the front face of the
patch. Objects are decomposed into patches in such a way that only the front faces
are “seen” in the environment.

4.2.2 Form-factor computation

Essential in the radiosity method is the computation of so-called form-factors. Let
us consider two patches in the environment, with indices k and £. We take patch & to
be the source patch, that is where the cnergy originates, and patch £ as a destination
patch.

The form-factor Fy ; between these two patches, from patch & to patch ¢, is defined
as the fraction of energy that leaves the source patch k and arrives on the destination
patch £. This takes into account the “visibility” and possible partial occlusion of
the destination patch ¢, as seen from the source patch k. If we know the energy
emitted by the source patch, we can use this form-factor to determine the amount
of energy that lands on the destination patch. This energy is then added to the input
energy of that patch; what the resulting output energy will be is a function of the
patch’s properties, such as its reflectance coefficient. When we consider all patches
in the environment in turn as source, and the remaining as destination, we arrive at
a system of equations in terms of the energy emitted by the patches. Solving the
equilibrium state of this system results in the radiosity solution for the environment.
See [1] for more details. Let A; be the area of a given patch with index i. Let dA; be
an infinitesimal differential area on the patch, located at an arbitrary sample point
s;. Let us consider the line segment between the sample points on the source patch,
sy and on the destination patch, s;. Let B;,i = {k, £} be the angle between the normal
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of patch i and the said line segment. See Figure 4.2 for an illustration of the setup
of the form-factor computation. The formula for the form-factor is given by the

destination
patch ¢

source
patch k

Figure 4.2. Setup for the form-factor computation
double surfacc intcgral:

1 "~ cos () cos(By)
Fyi= —/ / ——————"HIDdA;dA 4.2
SO A, -y (dAk (4.2)
where HID is a parameter for the occlusion, which takes the value 1 if the differ-
ential areas can see each other, and 0 if not. The sum of the form-factors is, by
definition, equal to unity. Let P be the set of patches in the environment.

> Fy=1 (4.3)
LEP
b+k

The analytical evaluation of the double surface integral of Equation (4.2) is a daunt-
ing, if not impossible, task. It is made cspecialty difficult by the presence of the oc-
clusion paramcter HID, which is a function of all patches in the environment that
lie between the two patches in question.

Instead we propose to (approximately) evaluate this integral using a summation,
where we sample the space, as seen from the sample point, with a large collection
of rays, as we will describe below.

211 suffices here to 1ake the subset of patches that can be *seen’ from the source patch. All patches
that cannot be "scen’ have a form-factor of zero.
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Sampling with rays

We propose to attack the problem of computing form-factors as follows. 3 Instead
of using an infinitesimal amount of sample points on the source patch, we use a
small, finite number of sample points. Let s now be a sample point on the source
patch, and let S be the set of sample points. For the sake of simplicity, we assume
them to be spaced in a regular grid on the source patch. Let dAy be the difterential
area, belonging to the sample point s, but no longer being infinitesimal.

Let us define a ray, r, as the line segment, starting from the said sample point s, and
continuing along a given ray direction r. The vector x lies on the ray if it satisfies
the line equation:

X=S+Ar 4.9

and where the parameter A satisfies A = 0. The parameter A is a measure of the
distance of the point x from the ray origin s. Rays are only shot into the half-space,
as seen from the front face of the source patch.

Let us define a ray frustum, R as a set of rays r € R, which all share a common
ray origin s. Let us assume that, for this treatise, the ray directions are all pre-
determined and fixed. Each ray then actually represents a small spherical volume
in space, and together, they make up the half-space as seen from the source patch.

Through the use of Nusselt’s analogue [1], we assign to each ray r, a pre-computed
delta form-factor f(r), which is the fraction of energy leaving the source patch,
that is represented by that ray. The sum of the delta form-factors is equal to unity.

r=1 4.5
r;lf() (4.5)

Effectively, the delta form-factor f(r) can be seen as being equivalent to the part
% dA; in Equation (4.2), where cos(By) is the angle of inclination of the
ray, measured from the normal, and where dA; is the projection of the spherical

volume, belonging to the ray, onto the destination patch.

Let us also define the occlusion function HID(s,r) as being 1 if the ray r, shot from
the sample point s on the source patch, ’sces’ the destination patch £ as the first
patch in its line of vision, and as being 0 otherwise. We also use the terminology
that the ray ’hits’ the destination patch.

We can now approximate the double surface integral of Equation (4.2) with the
double summation:

Foo= /%ks;SdAkr;zHID(s,r) f(r) (4.6)

*Most of what we will describe here, is the same as proposed by Shen in [1}.
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The accuracy of this approximation is heavily dependent on the choice of an ad-
equately fine sampling of the source patch, as determined by &, and of the space,
as determined by R. Especially a sufficiently fine density of the rays in R is ne-
cessary to catch finc details that may be present in the environment. Note that for
the Radiosity Engine, the typical density of the rays in R ranges from around 10*
to 107.

We pay particular attention to the inner summation of Equation (4.6), given by
S,er HID(s.r) f(r), as we identify this as the most computationally complex in the
entire rendering. We call this process ray frustum shooting from a given sample
point s on the source patch &.

Note that the term HID(s. r) here is implicitly linked to a given destination patch
£. If we take note of which rays r € R hit which patches, we have all the necessary
information to compute HID(s,r) for any given destination patch £ € P.

Our problem of computing all necessary form-factors Fy ;, with £ E P, £ # k, is now
reduced to the problem of shooting a ray frustum into the environment, checking
which patches are hit by which rays, and summing up the contributions of the delta
form-factors to form the form-factors of the corresponding patches. Essential in
this is the computation of the intersection of rays r with patches in the environment
to find out which rays hit which patch as the first in their line of vision. We will
discuss this next

4.3 Hemisphere ray sampling

First, we need to define a number of concepts for rays and ray frustums before we
can tackle the problem of ray-patch intersection.

4.3.1 The local coordinate system

Let s be the sample point on the source patch. Let n be the normal of the patch,
at the sample point, and such that it points in the direction of the front face of the
patch. Let e;.e;. €, be vectors of unit length, defined in the global coordinate sys-
tem, and together forming a basis. Let us define the local coordinate system for
the sampling to be the Cartesian coordinate system, with its origin located at the
sample point s, and with its z-axis aligned with the normal of the patch. We desig-
nate the axes of the local coordinates system to be x’,y’ and 2, with corresponding
direction vectors €/, €, and €. See Figure 4.3 for an illustration. We introduce the
convention that vectors with a prime, like p’, are defined in the local coordinate sys-
tem, unless otherwise specified. One notable exception is for the direction vectors
e, e} ¢, of the axes of the local coordinate system, which are defined in the global
coordinate system.
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z normal
of patch

source
patch k

x

Figure 4.3. The global and local coordinate systems

A point p’ defined in the local coordinate system, has an equivalent point p in the
global coordinate system. They are related to each other by a geometrical trans-
formation, which is a combined rotation and translation in 3-D space. Let us define
T; —¢ and TG, to be geometrical transformations to compute the global coordin-
ates from local ones, and vice versa. The following relations hold:

p=T—c(p)
p' = T5-1(p) 4.7

Let R; . be the 3 x 3 rotation matrix, given by:
R .= eee|. (4.8)

Keeping in mind that the origin of the local coordinate system is at the sampling
point s, the geometrical transformation 7; —.¢ can be written as:

P=T-c(p)=s+Ri~p. (4.9)

which is in effect a rotation to the correct coordinate axes, followed by a translation.
From the above, combined with Equation (4.7), the inverse transformation T,
follows as:

P =T5-L(p) =Rg-L " (P-$). (4.10)

where Rg»7 is also a 3 x 3 rotation matrix, and given by Rg—; = RZ]_,G.
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4.3.2 The hemisphere coordinate system

We define the hemisphere as a half sphere with unit radius, positioned on the front
face of the source patch, with its origin at thc sampling point s, and with its apex
in the direction of the patch normal. We use the hemisphere to define the sampling
rays. It is closely connected to the local coordinate system of the patch.

Let @,0 be two angles. We define the hemisphere coordinate system as given by
all possible tuples (¢, 0), where @, 0 are constrained by:

0< 8 <mx/2
0s ¢ <2n (4.11)

Let I’ be a vector, defined in the local coordinate system. The point r’ lies on the
hemisphere if it satisfies the equation:

0
r =Ry (@)Rx(6) | O |, (4.12)
1

where Ry, (@) and R,(8) are embedded rotation matrices, given by:

cosp -sing 0
Ry(@)=| sing cosgp O |, (4.13)
0 0 1

and

cos6 O sin®
R.(0) = 0 1 0 . (4.14)
-sin® 0 cosH

The matrix R,.(0) performs a rotation over the angle 0 in the z,x plane, while the
matrix Ry, () performs a rotation over the angle @ in the x,y plane. The vector
r’ has unit length since the rotations do not affect the length of vectors. The rela-
tion between the vector ' on the hemisphere and a point (¢.8) in the hemisphere
coordinate system, as set by Equation (4.12), is also illustrated in Figure 4.4.

Writing out Equation (4.12), substituting (4.13) and (4.14) results in an alternative
form for I/, given by:

sin(6) cos(@)
r = | sin(8)sin(p) | . (4.15)
cos(0)

though we prefer the form as given by Equation (4.12).
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Figure 4.4. Construction of the ray direction r’ in the hemisphere coordinate sys-
tem, showing the orientation of the angles 8 and ¢

4.3.3 Hemisphere rays

In Equation (4.4), we have seen the definition of a ray in the global coordinate sys-
tem. Transformation of the ray equation to the local coordinate system, through
application of Equation (4.10), leads to:

x =Ar, (4.16)

where x' is a point on the ray, and r’ is the direction vector of the ray, both defined in
the local coordinate system. The ray parameter A is the same as in Equation (4.4),
and satisfies A = 0. Note that the origin of the ray is at the origin of the local co-
ordinate system, which is of course the sampling point s.

We define a hemisphere ray, in the local coordinate system, as the line segment
starting from the origin of the hemisphere, satisfying Equation (4.16), and where
the ray direction vector r’ lies on the hemisphere, and is given by Equation (4.12).

We sample the space, as seen by the sample point on the source patch, with a
bundle, or frustum, of rays R. We call this set of rays the hemisphere rays. The
direction vectors r of the hemisphere rays are determined by a regular, uniformly
spaced grid in the hemisphere coordinate system.

The ray index space

Let us define Ny as the number of hemisphere rays in the 8 dimension, and Ny, as
the number of hemisphere rays in the @ dimension. Let us define the ray index
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(i, ) for the hemisphere rays, with i, j both integer and constrained to:

O< i =Ny-1
O< j =Ng-1 ., 4.17)

The pairs (i, j) form a two-dimensional, rectangular, regular grid with sides Ny, and
Ng. The total number of rays N; in this ray index space, and hence in the hemi-
sphere, is given by

Ny = NgNq . (4.18)

We use the ray index (i, j) to index the hemisphere rays. We call the space of ray
indices (i, j) the ray index space.

Hemisphere ray direction vectors

Let us define the vector ] ; as being the ray direction, in the local coordinate sys-
tem, for the hemisphere ray with ray index (i, j).

Let the angles ¢; and 0; form two monotonous increasing sequences for the indices
i=0,1,...and j=0,1,..., and satisfying:

O ¢ =2mn
0 0; =3 (4.19)

and where the indices (i, j) satisfy the conditions set in Equation (4.17).

The pair of angles (¢;,0;), forming a point in the hemisphere coordinate system,
determine the direction of the hemisphere ray with index (i. j). The direction vector
r; j» defined in the local coordinate system, of this hemisphere ray is given, analog-
ous to Equation (4.12), by:

0
r}; =Ry (@)Rx(8) | O | . (4.20)
1

Hemisphere ray resolution

For convenience in computations, as we will show later on, we choose the distri-
bution of the angles of the rays to be uniform. We define a constant angular ray
resolution A, and Ag, and use this to define the uniformly distributed angles 6;

and @; as:
06; = ('+1)~A
i = u 2 ]
1
@ = (i+35) 8¢ . 4.21)
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Substituting Equation (4.21) into (4.11), and combining this with the conditions
posed in Equation (4.17), we derive the relation between the ray resolutions Ay, Ag
and the number of rays Ng,. Ny to be:

2n 1
N, = |Z5-2
- = [l

n 1

Ng = |74—-2| . 4.22
v = o 3 (422)
Note that, since we are dealing with a sampling problem, we are free to choose the
ray resolutions A, Ag such that the rotation is easy and cheap to implement, i.e.
one of the fast rotation methods of Chapter 3.

Practical values for the ray resolution

As mentioned before, the design criteria for the Radiosity Engine, require the dens-
ity of hemisphere sampling rays N, to range from around 10* to 107. From these
figures we derive the range of practical values for the number of rays, Ny and N,
and the required angle resolutions Ay, and Ag.

The rectangular space spanned by the rays in the hemisphere coordinate space has
an aspect ratio of 4 : 1 for ¢ versus 8. Let us assume that the angle resolution is
the same in both dimensions for the extreme cases, so that A, = Ag. Then, apply-
ing Equation (4.22) to Equation (4.18), ignoring the floor operators, results in the
following approximation:

N, = N6Nq>

_ 2n 1 n 1
oA 2] 280 2
2n X
A 2Ag

-~ T (4.23)

We use this approximation to derive target ranges for ray resolutions. For the afore-
mentioned range of the total number of rays, this results in the target ranges presen-
ted in Table 4.1.

Note that these values are targets only, and not strict values. The actual ranges are
determined by the choice of the resolutions Ay, Ag or the number of rays Ny, Ng.
These in turn depend significantly on the choice of the arithmetical operations at
the lowest level, as we shall see in the following sections.
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| parameter [ symbol | min. value | max. value |
total number of rays N, 1.0-10* 1.0-107
number of rays in ¢ Ny 2.0-10° 6.32-10°
number of rays in 0 Ny 5.0-10' | 1.58-10°
ray resolution in @ Ay 3.14-107 | 9.93-107*
ray resolution in 0 Ay | 3.14-102 | 9.93-107*

Table 4.1. Target ranges for the ray resolution

4.3.4 Sampling of a patch with hemisphere rays

In the sampling of a destination patch with the hemisphere rays, we are trying to
determine which of the rays actually hit the patch in question as the first in the line
of vision. The delta form-factors of these rays contribute to the form-factor of the
patch. This is then used to find out what amount of energy of the source patch is
received by the destination patch.

The determination of the rays that hit the patch is done in two phases. First, a subset
of the hemisphere rays is selected. It makes no sensc to test certain rays if they hit
the patch, if you can determine beforehand, on basis of their geometry that they
never will. For instance, a ray shot to one corner of the environment will not hit a
patch in another corner. Second, the rays are tested if they actually intersect with
the patch, and the intersection distances to the patches are sorted, so the closest
patch for that ray is found.

In this section, we consider how the selection of the rays is done, on the basis of
a bounding box that contains the patch. Any ray not penetrating the bounding box
is by definition not going to hit the patch. We choose to use a bounding box in the
spherical coordinate system, which simplifies the selection of the rays.

The Spherical Bounding Box

The spherical coordinate system, with coordinates (¢.9.R), is defined, in relation
to a point (x'.y’.7) in the local coordinate system as:

X' = Rcos(8)
y' = Rsin(0)cos(g)
Z = Rsin(0)sin(g) . (4.24)

In this system, R is the distance of the point (x'.y".Z') to the origin of the local co-
ordinate system (the sample point s), while the angles 8. ¢ fix the dircction, as in
the hemisphere coordinate system. The anglc 6 is also known as the elevation, and
@ as the azimuth.

We define the spherical bounding box (SBB) of a patch as a tuple

{({Pmin- Pmax ) - (Omin- ()max) . Rmin)
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with:
0< Quin=<@max =27
0< Onin=Omax =73
Os Ruin . (4.25)

The spherical bounding box describes a bounding box in the spherical coordinate
system of Equation (4.24), such that the patch in question is completely contained
within. The SBB can be used to select rays in the hemisphere coordinate system,
to test for intersection with the patch in question. Any ray that lies outside the SBB
is, by definition, never going to intersect the patch, and hence need not be tested.
In this way, a fraction of the hemisphere rays, only those that matter, are selected,
reducing the amount of unnecessary intersection computations. This is the under-
lying principle of the Shelling Technique [1], using spatial isolation of patches, for
all three spherical dimensions, to reduce the amount of unnecessary computations.
For the full description of the SBB computation, we refer to [6, 7, 8].

The Index Space Bounding Box

The index space bounding box, or ISBB for short, is defined as the tuple
((I1,uy), (Lo, u2)), with Iy, uy, I, u, integer, and

O0< h=su sNy
O0< bL=<u =Ny . (4.26)

The tuple (/;,u;) represents the lower and upper bounds for the index i, while the
tuple (I, u;) represents the lower and upper bounds for the index j, defining a rect-
angular region in the ray index space.

A ray with ray index (i, j) is contained within the index space bounding box if the
conditions:

I =is u
L sj= w “4.27)

hold.

We use the ISBB to select a subset of the hemisphere rays R to test with the patch
for intersection. Any ray outside of the ISBB is guaranteed, by definition, to miss
the patch and needs not to be tested. We need both the concept of an SBB and
of an ISBB. The SBB is computed from the (local) coordinates of the patch. It is
independent of the actual resolution of the hemisphere rays. The ISBB depends on
the resolution of the hemisphere rays. However, since multiple resolutions may be
required in the shooting process, it is easier to recompute the ISBB from the SBB
of a patch, instead of directly from the patch coordinates.
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Computation of the index space bounding box from the SBB

A ray with index (i, j), and therefore with angles ¢;.0;, is contained within the
spherical bounding box if the conditions

Bmin i< Omax (4.28)

hold.

Our goal is to compute the ISBB from the SBB, such that any ray contained within
the SBB, is also contained within the ISBB. Or, to state the dual form: any ray,
not contained within the ISBB is also not contained within the SBB. Figure 4.5
illustrates the relationship between the SBB and the ISBB.

Aq

- T O

N A
il . |. . .sBB. ’

................................... e . .
1V 7 Bmin

e b At

Figure 4.5. Computing the ISBB from the Spherical bounding box

Hence we can state that the necessary conditions for the index bounds are given by:

Q-1 < Pmin
(p(ul 1) > Qmax

B-1) < OBmin

By > Omax - (4.29)

Note that the above conditions (4.29) are necessary and adequate. However, in or-
der to find the optimum bounds, we can tighten these conditions. We show this for
.
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We narrow the condition (4.29) for /| , so as to find the maximum value that /; can
attain. In that case, i = [, is contained within the SBB, while i = (/; - 1) lies just
outside the SBB. Hencc we state:

Q(1-1) < Pmin = Q) - (4.30)

Substitution of Equation (4.21) into the above condition leads to:

Pmin 1
-1 -=—=<1, .
1 < A(P 3 <) (4 31)

from which, through the definition of the ceiling operator, the formula for the op-
timum bound /; follows as:

Pmin 1
=™ _ . 4.

Similarly, we can derive the optimum values for the other bounds, resulting in (no
proof given):

L = ‘Vq)min_l-( u = (fpmax_l}
Ay 2 Ay, 2

9min 1 emax 1
L = -= = -=1. 43
2 [ Ay 2 u A, 2 (4.33)

Notc that these are the optimum bounds, and not necessarily the ones we want to
use, due to the presence of a division operation in the computation. In later scctions
we will present sub-optimum bounds which require less complex computations.

4.4 Ray-patch Intersection Computation

In this section we treat the intersection between a patch and a ray frustum. Rather
than working on a single ray basis for ray-patch intersection, we can use the know-
ledge of the structure of the frustum to our advantage to reduce the complexity of
the operations. We know that we are dealing with a sampling problem here, and
we shall show that we can use this knowledge too to choose certain sampling res-
olutions that simplify operations.
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44.1 Requirements for intersection computation

We are interested in finding the intersection points of a patch with a ray frustum,
With ’patch’ we mean any of the destination patches, as ’seen’ from the sample
point s. More specifically, we want to know:

1. whether a ray r from the frustum R does indeed intersect with the patch, or
misses it completely. We call this the hit or no-hit information. If we can
tell beforehand if it misses, then we do not need to compute the intersection
point.

2. the distance from the sample point s, which is the origin of the ray, to the in-
tersection point x on the patch. This is needed to ’sort’ the patches which are
intersected by the ray, such that the first in line of vision (smallest distance)
is selected as being ’seen’ from the sample point.

3. the coordinates of the intersection point X. The rendering algorithm that we
use requires that, if a ray hits a patch with specular (hard) reflection proper-
ties, the ray will continue at a later stage from that intersection point. This in
turn requires the knowledge of the exact intersection point on the patch. As
we shall see later on, we choose to represent this intersection point in a local
patch coordinate system rather than in, say, the global coordinate system.

There are well documented ways to compute the interscetion point [9, 10] and the
related quantities as required above, but we arc looking in particular for a method
that is both cheap to implement in VLSI, as well as numerically robust. The latter
constraint is necessary for finite wordlength, fixed-point computations.

We base this work on the method proposed by Hekstra in [10]. This method, called
the “bounding planes” method, computes the hit/no-hit information, the intersec-
tion distance and the coordinates of the intersection point. The latter are given in
the patch coordinate system, from which the coordinates of the intersection point
in either the local or the global coordinate system can be computed. The method is
particularly cfficient in the re-use of already computed results, by means of incre-
mental computation schemes. Also it allows the use of fast rotations at the heart
of the incremental operation, which greatly reduces the computational complexity.
The method is robust, and the corresponding architecture has an efficient VLSI im-
plementation. Our additional contribution here is the use of an alternative patch
coordinate system, which reduces the complexity even further.

4.4.2 The patch coordinate systems

We define the patch coordinate system by a tuple (1. v), and state that any point
x on the patch can be represented as a bi-lincar combination the patches vertices,
in terms of the parameters up and v as given by:

x = (I-vg)({(1-ug)po + (uo)p1)
+ (va) (1 =upy)ps + (up)p2) - (4.34)
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where ug, v are confined to:

O< ug =1
O0< vg =1. (4.35)

Note that the above only holds if the patch is indeed both convex and coplanar. An
illustration of the (vg,vh) patch coordinate system is shown in Figure 4.6.
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Figure 4.6. The (ug, vo) patch coordinate system.

We propose to use an alternative form of patch coordinate system, which is based
on splitting the patch into two triangular polygons, rather than one square polygon.
We split the patch along the line PyP; into two triangles T and 7. Let triangle Ty
be given by the vertices PyP; P», and let 7] be given by the vertices PyP,P;. Let us
define the parameter ¢ as being 0 if a point is inside triangle Ty, and as being 1 if it
is inside triangle 7. We define the alternative patch coordinate system by a tuple
(ta,ua,va), where the parameters t5,up, v, satisfy:

tn €{0,1}
O0< u, =1
0= vy =1 (4.36)

and state that any point x on the patch can be represented as a bi-linear combination
the patches’ vertices, in terms of the parameters ¢, ,u, and v, as given by:

x = (L-va) (T-ua)po+ @a)pr) 4,
+ (va) (1 —ua)po + (ua)p2) ’ (4.37)
4.37

x = (L-va)((1-ua)po+ (a)P2) 4,

+ (va) (1-up)ps + (ua)p2)
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which can be simplified to:

x=(1-up)po+ (ua)((1-va)p1+(va)p2) if 1o =0
(4.38)
x=(1-up) (1=-va)po+ (va)p3) + (ua)p2 if th=1

An illustration of the (¢4, ua,v,) patch coordinate system is shown in Figure 4.7.
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Figure 4.7. The (t5.us.v,) patch coordinate system.

We use the patch coordinate system for a number of purposes:

1. To formulate the problem of finding the intersection point between a ray and
a patch.

2. Totestif the ray hits the patch. The patch coordinates of the intersection point
satisfy Equation (4.36), if and only if the ray intersects the patch.

3. To store the intersection point. From the patch coordinates (£5.ua.va) of
the intersection point, we can compute its coordinates in the global coordin-
ate system using Equation (4.38), or in the local coordinate system, using an
analogous formula.

4. To compute the intersection distancc. The distance from the sample point to
the intersection point can also be written as a bi-linear combination of dis-
tances to the vertices of the patch, as we shall see later.
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5. To perform radiosity shading of the patch. To compute the light intensity at
a given point of the patch, a bi-linear intcrpolation is done of the radiosity
values at the vertices of the patch. Likewise, the patch coordinates can also
be used for the inverse problem, that of distributing the ray’s energy to the
patch vertices.

4.4.3 The bounding planes method

The method we use to compute the intersection point is the “bounding planes”
method, as proposed by Hekstra in [10]. In principle, the bounding planes are used
to determine whether a ray intersects with a patch or not (hit/ no-hit). The effective-
ness of the method lies in the fact that we re-use many of the results of the bounding
plane computations for the computation of the patch coordinates. In turn, the in-
tersection distance computation follows from these patch coordinates.

The essential operation in all the above computations is the computation of an inner
product of a given vector (bounding plane normal or patch vertex) with the direc-
tion vector r of the ray. Since we are dealing with a ray frustum R, as determined
by the ISBB of the patch, we have to perform these inner product computations for
each ray in the frustum. We show how we can use knowledge of the structure of
the ray frustum to incrementally compute thesc inner products at a very low com-
putational cost using the fast rotations of Chapter 3. These fast rotations exist for
certain angles only, and have an inherent magnification factor which is not exactly
equal to unity. We conclude by looking at practical values for the ray resolution, as
determined by the choice of fast rotations, and the effect on the accuracy of com-
putations.

Hit / no-hit computation

We define a bounding plane as the plane which goes through the sample point S,
being the origin of the rays, and two adjacent vertices of the destination patch P, P},
see Figure 4.8.

We define the bounding plane normal ny;, as the normal of the bounding plane, and
such that it is on the side of the planc, on which the patch is, when its front face is
facing the sample point. The bounding plane normal is given by the cross-product*:

ng = (p;—S) % (Px—S$). (4.39)

See also Figure 4.8 for the orientation of the bounding plane normal. Let v be a
vector to a point on the bounding plane. The plane equation of the bounding plane
is then given by:

Ng"V=n"S. (4'40)

1 0 0
“The definition of the cross-product follows the “right-hand” rule: |: 0 :l x [ 1 J = l: 0 }
0 0 1
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Figure 4.8. Bounding plane setup.

Rewriting Equation (4.39) in the local coordinate system results in:
;o /
ny, = ppx P (4.41)

which shows the advantage to compute the bounding plane normals in the local
coordinate system. Similarly, the plane equation of Equation (4.40) simplifies to:

n, v =0, (4.42)

We usc the bounding planes to find out whether a ray intersects the patch
without computing the intersection point explicitly. Let us consider the bounding
planes that lie on the circumference of the patch, with bounding plane normals
ng;.Nnj2.N23.03). A ray intersects with the patch, if and only if, the ray is inside
the pyramidal cone formed by these bounding planes. This means it must lie on
the right side of the bounding plane, facing the normal, for all bounding planes
simultaneously.

Let us consider the line equation of the ray, given by Equations (4.4) and (4.16) in
the global and local coordinate systems. To test whether a point x on the ray is on
the right side of a bounding plane, we use the following procedure. We can express
the point x as:

X=v+dny. (4.43)

where v is a vector to a point in the bounding plane, and d is a dimensionless para-
meter. The point x is on the right side of the bounding plane or on the plane itself,
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if and only if d 2 0. Solving for d, substituting Equations (4.43) and (4.4) in the
plane Equation (4.40), results in:

d:)\“kl'r

, 4.44
Ny - Ny ( )

with an analogous formula in the local coordinate system. Regarding the fact that
A= 0for a valid point on the ray, and n; - ng; > 0, we introduce the pseudo-distance
Oy as given by:

O =ngr, (4.45)
and state that, for a ray to be on the right side of the bounding plane, it must satisfy:

O = 0. (4.46)
In the local coordinate system, we can rewrite Equation (4.45) as:

d=my,-r. (4.47)

The pseudo-distance is a measure of how far the ray is located from the bounding
plane. We will see its use later on in the determination of the intersection point.

Concerning the test whether a ray intersects with a patch, we can state the follow-
ing. A ray with origin s and direction vector r intersects the (convex, co-planar)
patch if and only if the pseudo-distances 8g;.82,823.930 are all simultaneously
greater or equal to zero:

601 =2 0
02 =2 0
623 = 0
8 = 0. (4.48)

This is illustrated in Figure 4.9, where the dark shaded region corresponds to all
pseudo-distances greater or equal to zero. The lighter shading corresponds to a
single bounding plane. In the intersection computation, we perform this hit / no-
hit computation first, to see if it is necessary to proceed with calculating the actual
intersection.

Due to the nature of the cross-product, the following properties hold for the bound-
ing plane normal ny; and the pseudo-distance ;.

Using the property axb = -(bxa) of the cross product, we arrive at

Ny = -hy
o = -0 . (4.49)
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Figure 4.9. The regions defined by the bounding planes, showing the signs of the
pseudo-distances.

Let A, p be dimensionless parameters. Let the vector p,, be the linear combination
of the vectors p; and py, as given by:

Pm = Apj+ upx. (4.50)

Using the distributive property ax (b+c¢) = (axb) + (ax ¢) and the associative
property ax (Ab) = A(axb) of the cross product, we arrive at:

Nim = M+ pni
Oim = 7\.6{1'4-[16,‘1( . (4.51)

Patch coordinate computation

Once it is known whether a ray actually intersects the patch, we can continue with
finding the intersection point and the intersection distance. We do not explicitly
compute the coordinates of the intersection point X in the global or local coordinate
system. Instead, we compute the (f5.ua.v,) patch coordinates of the intersection
point, as defined by Equations (4.36) and (4.38). From this coordinate system, we
can compute the local or global coordinates, following Equation (4.38).

First we must determine in which of triangles Tj. T} the intersection point lies. We
propose to use an extra bounding plane through S, Py, and P,, with triangle T on its
right side. We compute the pseudo-distance 8¢z, which implies that X is in triangle
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Ty if 8gp = 0 and in triangle Ty otherwise. From this, we determine £, to be given
by:

. 0 if dp<O
’A‘{l if S0 (452)

Let x be the vector that points to the intersection point. The solution of the intersec-
tion point follows from setting X on the patch in Equation (4.38) equal to x on the
ray in Equation (4.16). The solution of ¢, from Equation (4.52) tells us which of
the systems of the triangles to choose. Instead of attempting to solve the patch co-
ordinates directly from the system of the individual coordinates, we use a method
with parametcrized planes, that can be seen as a form of bounding plancs.

For this treatise, we assumc that 1, = 0, so we sclect only the equations that are
valid for this value. We consider only triangle Ty, with vertices Py. Py, P>. Further-
more, we prefer to perform all computations in the local coordinate system. To
recapitulate, the ray equation is given by

x =ar,
and the patch equation is given by:
X = (1-up)py + (up) (1=va)pi + (va)p2)
for £, = 0. Let P, be the point between vertices Py and P», with vector p!, given by:
Py = (1-va)pi + (va)p)- (4.53)

Let us consider the plane that goes through the points S, Py and P,. This plane is
parameterized in v, only. The plane normal is given by:

n) = p, xpp- (4.54)
and the plane equation for a point x on the plane is given by:
n,x =0. (4.55)

Sce Figure 4.10 for an illustration of the construction of this plane.

Substitution of Equation (4.53) and (4.41) reduces the normal to:
m, = (1-va)pyxPo+ (va)P2 xP)
= (1-va)nj, + (va)ng, . (4.56)

where we encounter the bounding plane normals again.
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ray

Figure 4.10. Construction of the plane, parameterized in v,.

Setting the ray Equation (4.16) equal to the plane Equation (4.55) and substitut-
ing (4.56) results in the partial solution for the intersection point:

A((1=va)ng, x4 (va)ng, ') = 0. 4.57)

Using our knowledge that A = 0, and substituting Equation (4.45) results in the
equation for the patch coordinate v,, expressed in terms of the pseudo-distances,
as given by:

(1-v4)d01 + (va)d02 = 0. (4.58)

Note that the pseudo-distances 8y; and §g; have been computed before for the hit
/ no-hit and the ¢, calculation. The value of v, follows from the solution of Equa-
tion (4.58) as given by:

do1

VA = .
801 - 02

(4.59)

Instead of solving v, by means of Equation (4.59), which requires a division, we
prefer to express the coordinates in the form of Equation (4.58), and to solve it with
a subdivision process, as we shall show later. This is a more robust operation than
division, and has the advantage that other computations, such as the distance com-
putations, can be performed on-line with the subdivision process.

For determining the u, coordinate, we use a similar procedure. Let us define the
points P,y and P,, parameterized in u, only, with vectors p.,;.p/, given by:
Py = (1-un)pj+ (us)p)

/

Py = (1-un)ph+ (ua)ph - (4.60)
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ray

n

Figure 4.11. Construction of the plane, parameterized in u,.

We use these points to build a bounding plane, going through the points S, P,;, P2,
which is parameterized in u, only. Let n, be the normal of this bounding plane.
See Figure 4.11 for an illustration of the construction of this plane. Using a similar
derivation as in Equations (4.55) to (4.56), we arrive at the value for n, as given
by:

m, = (1-up)(ngy —njy) + (up)nj, . (4.61)

which has a similar structure to Equation (4.56). Note that all the bounding plane
normals, nj, ng,, N, have been computed before for other calculations. The solu-
tion of u then follows, with a similar derivation as in Equations (4.57) to (4.59),
as given by:

(1-un)(820-810) + (ua)d21 = 0. (4.62)

We can also derive the solutions for the case 5 = 1, that result in the complete set
of equations for u,,v, as given by:

(1-un)(820-010) + (4a)d21 =0 if 1, =0 (4.63)
(1-up)d30+ (ua)(d32+820) =0 if £y =1 ’

and

{(1—vA)601+(vA)6020 if 1,=0" (4.64)

(1-va)d2+(va)d32 =0 if 1,=1

Together with Equation (4.52), they form the solution of the intersection point, as
expressed in the (5.1, va) patch coordinate system.
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Intersection distance computation

We definc the intersection distance ¢, as the Euclidean distance between the origin
of the ray, S, to the intersection point X. The intersection distance is given by:

“
Il

l[x -]
N (4.65)

Normally speaking, computing the distance would require three subtractions, three
multiplications or squaring operations, two additions and a square-root operation.
If the length of the direction vector ||r|| is known, then one could also compute A,
which requires at least one division, and then to multiply this with ||r|| to form the
distance.

For hemisphere rays, the ray direction vector r is normalized, i.e. ||r|| = 1. We use
this to formulate a technique to compute the intersection distance, without having
to perform expensive square-root or division operations. We choose to concentrate
on the inner product X - r, which we re-write according to:

X'r = Ar-r
AIr?
= tr|| . (4.66)

!

Under the assumption that the ray direction is normalized, we can state:

t=xr. (4.67)
From Equation (4.38), we know that we can express the intersection point x as a
bi-linear combination of the patches’ vertices, in terms of the (¢5,u4, v ) patch co-

ordinates. Substituting this Equation (4.38) in (4.67), results in:

t=(1-up)po-r+ (ua) (1-va)pr-r+(va)pz-r) if 1, =0

.(4.68)
t=(1-up)((1-va)po-r+(va)ps-r)+(ua)p2-r if 1a=1
Defining the distances ¢; as given by:
L=pir, (4.69)
we can simplify Equation (4.68) to:
t=(1-up)to+ (up) ((1-valti 4+ (va)f2) if 14 =0
(4.70)

t=(1-up) ((1-valto+ (va)ts) + (ua)ty if th=1
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Note that the distance 1; is the distance from the vertex P; to the plane, going through
the sample point S and with normal given by r. In the local coordinate system, the
same holds, and the ¢; can also be computed accordingly, as given by:

ti=pir. (4.71)

So, if we have the patch coordinates, we can compute the intersection distance us-
ing the above formulas. If the #; are given, this requires at most three multiplications
and two additions. It is also possible to construct # on-line, during the evaluation of
the patch coordinates in the sub-division process, as we shall see later. This results
in an even more efficient implementation.

Normally speaking, the evaluation of the ¢, requiring four 3-D inner product com-
putations, is considered costly. However, we will present a technique of computing
these inner products at an extremely low cost, so this is no longer prohibitive.

4.4.4 Fast generation of inner products

As we have seen previously, much of the intersection computation revolve around
the calculation of the inner product between a given vector and the ray direction.

In Table 4.2 we recapitulate the different quantities for which we have to compute
such an inner product, and where they are used. These quantities have to be re-

| type of computation quantities | formula | equations ]
hit / no-hit B01,012.023.000 | o =1, ¥ | (4.43)
patch coordinates 801,012.023.030,802 | O = My, -1 | (4.52), (4.63), (4.64)
intersection distance o, 1,12, 13 w=p,r |(4.70)

Table 4.2. Inner product computations for intersection

computed for every ray that is tested for intersection with the patch. These rays
are, as mentioned before, selected by the ISBB. The bounding plane normals for
the patch, five in total, are computed once per patch only, and re-used for every ray
in the ISBB.

Letr] ; be a hemisphere ray with ray index (, j). The ray is tested against the patch
if the ray index satisfies:

I]S i =
L= j su . 4.72)

We are, in principle, free to generate these rays any way we like. Most likely, we
will use two nested 'for’ loops to generate them.
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A naive way of computing the quantities of Table 4.2 would be to first compute
the ray direction r;;, and then to compute the inner products. A quick calculation
reveals the cost to be: two sine/cosine computations, 2+ 9x 3 = 29 multiplications
and 9x2 = 18 additions.

Instead we propose the following scheme. Let v/ be a vector with which to com-
pute the inner product with the ray directions ;- The vector v’ can be any of the
bounding plane normals nj, or the vertices pj, as was shown in Table 4.2.

Let v;; be the desired quantity, corresponding to the ray indexed by (i, j), formed
by the inner product as given by:

V,‘jZVI‘l‘;j. (473)

‘We prefer to write this inner product as (v’)Trﬁ j» since we will use it in equations
involving matrices.

If we substitute Equation (4.20) for the ray direction vector in the above, we obtain:
0
vij =V Ry(@:)Rx(6;) | 0 | . (4.74)
1
Let us define the alternative, indexed rotation matrices Ry (i) and R..(j), as given
by:

cos(g;) —sin(g;) 0

Ry (i) = | sin(g;) cos(g;) O (4.75)
0 0 1
and
= . | cos(8;) -sin(8;)
Ra()) = sin(BJJ-) cos(BJ—}) ] ) (4.76)

With the above, we can re-write Equation (4.74) to:
) 0 1] 1
vii=VIR,(i) | 0 0 | Ru()) { 0 } ) 4.77)
10

We will now explore the possibilities of incremental computation of the v;;. Let us
define the vector v;; as given by:

1
0 | Rulj). (4.78)
0
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which allows us to re-write Equation (4.74) once more to:

1
vij = Vit [ 0 J . (4.79)

which shows that the computation of v;; is merely the selection of the x component
of the vector v;,.

Let R(a) be the 2 x 2 rotation matrix, given by:

| cos{a) ~sin(a)
R{a) = [ sin{a)  cos(a) (4.80)
It is easy to see that the incremental relationship:
Roc(j+1) = Rax(/)R(Ap) (4.81)

holds for the indexed rotation matrix R, (j). Applying this to Equation (4.79), res-
ults in the incremental relationship for the vectors v;; which is given by:

vl = Vi R(A) (4.82)

This shows that v; ; can be computed from v;; with just a single rotation over the
angle resolution Ag. The desired quantity v; ; then follows by selection of the x
component of v; ;. 1, at no extra cost.

The computation scheme that we propose consists of first computing the vector v; ,
for index i on a row-by row basis for /; < i = u;. This is typically an expensive
computation, but computed only once per i. From here on, we can compute the
vectors v; ; a single rotation using with the incremental schemc of Equation (4.82)
forlh < j=u,.

One further, essential improvement is the replacement of the rotation R(Ag) with
one of the fast rotation methods of Chapter 3. This does, however, restrict our
choice of the angle resolution Ag. Since we are dealing with a sampling problem,
we are free to choose or adjust our sampling resolution to what we desire, so this
restriction is not a problem.

We take Fg, conform Equation (3.1) of Chapter 3, to be given by:

s C

Fo = [ © ] , (4.83)

with magnification factor m and angle of rotation a as given in Equations (3.2)
and (3.3).
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We propose to use Method II fast rotations, as they are the most suitable over the
entire range of angle resolutions, and with the desired accuracy. Let us define the
angle exponents Kg and K, which determine the angle resolutions Ag and A,. We
will only use the angle exponents kg in actual fast rotations. Even though, we use
the angle exponent K, in a similar way to fix the angle resolution Ay. The approx-
imation pair (c.s) is then given, conform Equation (3.19), by:

c = 1-2%01
= 2% . (4.84)
This, in turn, fixes the angle resolution Ag, as given by:

2o

Ag = arctan(m

). (4.85)

and the magnification factor m, as given by:

m=\/1+2%e-2. (4.86)

Similarly, the angle resolution Ay is given by:

2K

AfP = arctan(m

). (4.87)

even though it is not used for fast rotations.

To compensate for the magnification factor for low resolutions, we redefine the in-
dexed rotation matrix R,.(j), as given by:

A mlcos(8;) -m/sin(6))

Rali) = misin(0;)  m/ cos(6;) (4.88)
such that the incremental relationship
Ru(j+1) = Rux(j)Fp (4.89)

holds. With this knowledge, we can re-write Equation (4.82) to derive the incre-
mental scheme with fast rotations as:

1
Vijr1 = v;3+1 0
1
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Incorporating fast rotations in the incremental scheme results in a large reduction
of the computational complexity. The quantities in Table 4.2 can be computed in-
crementally with 9 fast rotations per ray, which amounts to 36 shift-add opera-
tions. Compared to the naive scheme, with 29 multiplications, 18 additions, and
sine/cosine computations, this is more that an order of magnitude less®. Moreover,
a fast rotation can be executed in a single clock cycle, resulting in a throughput per
ray of only 9 cycles.

Practical values for the ray resolution

We have seen that the ray resofution is determined by an integer angle exponent
Kgp,Kg. Regarding the target minimum and maximum values for the angle resolu-
tion, as presented in Table 4.1, we can determine the range of the angle exponents.
The range of angle exponents K. kg, the corresponding angle resolutions Ag, Ag,
and the number of rays Ny, Ng, N, are shown on Table 4.3. The total number of
rays N,, as presented in this table, is based on the assumption that the angle resolu-
tions Ay, Ag are equal. In practical cases, this assumption can be dropped for extra
flexibility in possible configurations.

[ KeKo [ AgAg | Ny No | N ]
-4 1625-107] 99 24 2376

-5 |313-1072| 200 49 9800

-6 |1.56-1072| 401 100 | 4.01-10*
-7 [7.81-10% | 803 200 | 1.61-10°
-8 [3.91-10 | 1607 401 | 6.44-10°
-9 [1.95-107 | 3216 803 | 2.58-10°
-10 [9.77-107% | 6433 1607 | 1.03-10’
-11 | 4.88-107% | 12867 3216 | 4.14-107
-12 | 2.44-107* | 25735 6433 | 1.66-10°

Table 4.3. Practical values for the ray resolution

We propose to use the range for kg, kg from -4 (low resolution) up to and including
—12 (very high resolution). Judging from the target limits, as proposed in Table 4.3,
the range of -5....,-10 would suffice. We have chosen to extend it in both direc-
tions with additional resolutions (shown in boldface in the table). The reason be-
hind this is that there are different modes of frustum shooting, aside from shooting

all hemisphere rays, we also allow:

3 Assuming a word-size of 24 bit, the multiplications amount in 29 x 24 = 696 adder equival-
ents. Together with the remaining additions, not even taking thc sine/cosine into account, this is
714 additions. This is almost a factor of 20.




4.4 Ray-patch Intersection Computation 151

¢ shooting of a part of the hemisphere at a locally much higher resolution. An
example of this is the shooting of shadow rays towards light sources in the
environment only.

* shooting of a narrow frustum at the apex of the hemisphere. An example
of this is the shooting of a reflection frustum of an almost specular surface.
The construction of the rays, using a regular grid in the hemisphere coordin-
ate system, causes the rays to be very dense at the apex in the ¢ dimension.
Here we can choose a much lower resolution for A, only, resulting in a lower
number of rays.

Accuracy considerations

The use of fast rotations and the incremental computation scheme introduces errors
in the results. A single fast rotation introduces a magnification error € which is
inherent in the magnification factor m. This error €, for the used Method I as given
by Equation (3.20), is a function of the angle exponent ky. Fast rotations are only
used for rotations in the O dimension, so we only consider this dimension, and the
angle exponent Kg.

The incremental computation scheme causes a buildup of these errors. In a single
thread of computation, at most Ny consccutive fast rotations occur. Let us consider
the error buildup in n consecutive fast rotations. We define the overall magnific-
ation error g, as the error in magnification of n consecutive fast rotations. The
overall magnification factor is given as the product of n individual magnification
factors, yielding m". This resuits in the overall magnification error ¢,,) as given by:

gy =m"-1. (4.91)

For £ small enough, we can use the first order approximation:

3(”) = m"-1
(1+¢)"-1
~ ne . (4.92)

Similarly, we define the overall accuracy g, analogous to Equation (3.39), as a
measure of how close the overall magnification factor is to unity. It gives an indic-
ation at which bit position the error has an influence, or conversely, in how many
bits accurate the result is. The overall accuracy ¢, is given by:

i) = —logy [m" — 1| = ~log; [e ] (4.93)
Applying Equation (4.92), we arrive at the approximation, for small ¢, as given by:

dny = _10g2 |E(H)|

-log, |ne]

-log,(n) -log, ¢

-log,(n) +q . (4.94)

U

[

R
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The above approximation shows that log,(n) bits of accuracy are lost, compared
to the accuracy q of a single fast rotation. This is what we would expect from the

error buildup.

For the range of angle exponents that we consider, we have calculated the overall
magnification error €(,,, and overall accuracy g(,), as presented in Table 4.4. The
worst case number of consecutive fast rotations that can occur is given by n = Ny.
Note that both Ny and ¢ are a function of the angle exponent xg.

L% | No | e E(Ng) qvy) |
-4 | 24 | 1.907-100° 4.578-107° [14.42
-5 49 | 1.192:1077 5.841-10° | 17.39
-6 | 100 | 7.451-10° 7.451-1077 | 20.36
-7 | 200 |4.657-10°'° 9.313-10°% | 23.36
-8 | 401 | 2.910-10°""  1.167-10°% | 26.35
-9 | 803 | 1.819-10712 1.461-107° | 29.35
-10| 1607 | 1.137-10°13 1.827-10710 | 32.35
-11 | 3216 | 7.105-10° 2.285-10°!! | 35.35
-12 | 6433 | 4.441-1071% 2.857-10712 | 38.35

Table 4.4. Overall accuracy per ray resolution

We see that the overall accuracy is the lowest for the lower resolutions, as we could
expect since the angle of rotation is the largest. This error influences only the ac-
curacy of the intersection distance computation. It is not prohibitive, since we com-
pensate for the growth in the magnification in the incremental scheme. For the same
ray, the overall magnification is always the same. Relatively, in the comparison of
the intersection distances of two patches, hit by the same ray, there is no error.

Another source of error buildup, this time possible destructive for the accuracy, is
that of round-off errors in the operations. For the Method 11 fast rotations, this is the
error induced by two addition operations. Regarding the maximum number of con-
secutive fast rotations Ny for the highest resolution kg = —12, as given in Table 4.4,
this results in a loss of accuracy of around log,(2Ng) = log,(12866) ~ 13.6 bits.
The datapath that performs the fast rotations has been extended with an adequate
amount of bits to counteract this error buildup.

4.5 Implications on other operations

We have seen in Section 4.4 that the “law of nice numbers” applies to the problem
of computing the intersection points between a patch and a frustum of rays. By
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choosing the angle resolutions Ay.Ag such that they correspond to a fast rotation
angle (our “nice number”), the computational cost is lowered dramatically.

Such choices, however, influence a whole number of operations which surround
the intersection computation. There is no guarantee that the law of nice numbers
automatically applics to these operations. Usually we see a trade-off. Onc example
of this is the relation between the angle resolution for one dimension, say A, and
the number of rays in that dimension, in this case Ny. Our trade-off here is:

* either to have Ny, as a power of two, which is favourable for memory usage.
The angle resolution Ay, is then such that it requires expensive rotation tech-
niques.

* or to choose Ay to be a fast rotation angle, which is favourable to reduce the
computational cost. The number of rays Ny, is then no longer near a power
of two, which implies that the memory is not fully used.

Our main objective is to reduce the computational complexity, which in this case
outweighs the efficient use of memory, and would make the first option the pre-
ferred one.

We will use the computation of the ISBB from the SBB as an example, and see how
the choice of the angle resolution influences the computational complexity.

4.5.1 ISBB computations

The computation of the optimal index bounds requires division (or multiplication),
subtraction and floor and ceiling operations. Regarding the implementation, we
would like to especially avoid the division and ceiling operations in the computa-
tion of the bounds, as given in Equation (4.33).

For K. kg small enough, we can make use of the following approximation for the
value of the angle resolution:

A(P = 2KQ’
Ag = 2% (4.95)

Substituting the above approximation in Equation (4.22) gives us the following es-
timate for the number of rays:

N(P znZ—K¢+l <2—Kq+3
Ny =m27®o=l %+l (4.96)

Note that the number of hemisphere rays are not close to a power of two, which
would be desired for efficient memory usage.
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To simplify the arithmetic operations involved in the computation of the bounds,
making use of the fact that Ay is close to 2%, we propose to use the following for-
mula to obtain the sub-optimal index bounds:

oo (3w - [

2Kg 2Kq
Omi 8max
12 = [—%J u = {ZKHJ . (497)

In this approximation, the division by, for example, A, is replaced by a multiplic-
ation by 27, which is basically a shift left operation over -k, bit positions. Fur-
thermore, we introduce some more slack and use only floor operators. This renders
the address translation as no more than the shifting and selecting of the bits of the
representations of ¢ and 0, when thesc are represented in radians. The suboptimal
bounds, as given by Equation (4.97) must still satisty the conditions as posed in
Equation (4.29).

We will examine under what circumstances these conditions are satisfied. For the
discussion below, we consider only the bound @pm,x. Substituting the sub-optimal
bound ¢max of Equation (4.97) into the condition of Equation (4.29) gives:

Pmax < Q@ +1)
Pmax < (w1 +1+1/2)Ay

emx < ([B]+1+1/2)A - (4.98)

Using the property for the floor opcrator:
x-1<|x]=x. (4.99)
and using this to tighten the condition, we obtain:

Pmax _ Pmax
< —+1/2. 4.100
o o1 (@.100)

We can re-write this to form the condition for the value of Ag:

Prmax2"?

Ap > ——mM——.
N Pmax + 2Ke~1

(4.101)

The bound @p,x can take on values between O and 2n. Analysis of the function in
the right term of (4.101), shows that first derivative in @ is always positive. The
maximum takes place at the maximum value of @npax = 2%, resulting in:

2n2%e

> —. 4.102
7 2w 2K ( )
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A similar condition can be established for the other bounds, which combined with
the above condition (4.102), results in:

2n2¥e 272K
m< w<m. (4103)
To evaluate this condition, we must substitute the value for A, as given by Equa-
tion (4.87), into condition (4.103) for all values in the range Ky = ~12..... -4. We
consider only the ¢ component since this is more restrictive due to its larger range.
For the Method I fast rotation that we have proposed, the above formulas hold for
the whole range of resolutions Ky € {-12.....-4} that we are interested in.

Compensating for the error in SBB or IPBB computation

The results presented above are valid only if the @max and @min values are computed
without any residue error. In a practical situation, this is not the case. The current
implementation computes the SBB to within an absolute error of € = 2719 This
error was found to be fine enough for practical application. Let gmax be the non-
exact result of the SBB computation, with an inherent error, and let ¢pax be the
exact result. The value of ¢,y is then limited to the range given by:

(Pmax -&< (bmux < (Pmax + E. (4104)
Unfortunately, the error is not small enough, so that (the modified) condi-

tion (4.103) is no longer satisfied for k < -8. Taking into account the inexact
value for gmax and @min, we modify condition (4.29) using (4.104) to:

Py < QPmin—¢€
Puy+1) > Pmax TE
O-1) < Omin—€
Ouasy) > Omaxte . (4.105)

This relation between the inexact SBB and the ISBB, according to the conditions
of Equation (4.105) is illustrated in Figure 4.12.

Without further proof we present the simplified upper and lower bounds of the
ISBB, taking into account the incxact computation of the SBB, as given by:

| Pmin—¢ | Pmax + €
b= L A J “i = [ K¢ ‘\
Omin—¢€ Omax + €
b= |t | e | Bt K (4.106)

The computation of these bounds requires very little hardware in terms of datapath
and control. Only one add-subtract operation plus a shift operation is nccessary.
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Figure 4.12. Computing the ISBB from an inexact SBB

The floor operation is nothing more than selecting a certain (fixed) number of bits
from the result. The term € is a power of two, and in this case the least significant
bit of the representation. In case the hardware functionality is provided, the adder
can be replaced by an incrementer/decrementer.

4.6 Implementation issues

It is a challenging problem to do the mixed software / hardware co-design of a
parallel, high performance system, capable of photo-realistic rendering of artificial
scenes. Moreover, when the requirement to come up with an efficient implement-
ation has to be met. The Radiosity Engine [3] is such a system.

Smart techniques exist, such as the Shelling Technique [1], to reduce the amount
of wasteful computations in the rendering algorithm. Without such preliminary,
and in-depth work to reduce the computational complexity of the algorithm first,
it would not make sense to attempt to map the algorithm onto any kind of system
at all. While these techniques work well on ’software’ which runs on a general-
purpose uniprocessor, they pose new and challenging problems in VLSI system
design when the algorithm is to be mapped on weakly programmable, mixed
software-hardware systems. Classical methods for mapping algorithms onto onto
parallel architectures, such as presented by Kung in [11] are quite quickly rendered
useless.

A typical example of this is when an algorithm contains nested loops of which the
loop bounds are non-manifest and data-dependent. This means that the dimensions
of the loop space are not known at the moment of mapping. It is not possible to
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make up the dependence graph of the operations at “compile-time” to map this onto
an architecture.

This implies that the systcm, must have a self-scheduling strategy to distribute
workload over parallel processors. We see this happen at several levels in the sys-
tem. At the highest level, workload balancing cvens out the computational load
over the parallel Engine boards in the system. At the lowest level, tasks are dis-
tributed on-line over three identical subdivision units to increase the throughput
within the ICU ASIC.

The existence of data-dependent loop bounds also implies that the rates, or com-
putation times of certain operations, within the system are no longer fixed. We are
dealing with variable rate systems. With multi-dimensional data-dependent loops,
we are dealing with a variable multi-rate system. Systolic architecture solutions are
out of the question here.

We have found it necessary to develop models and methodologies to design and
implement VLSI systems which are capable of tackling all of the above prob-
lems. This has lead to the concept of a multi-rate peristaltic pipeline (rather than
systolic). which has been applied in the ICU.

In this section, we pay particular attention to the ICU as the most important member
of the chip-set, and hope to illustrate some of the methodology and models with it.
The ICU is also important as it incorporates, as the first, a fast rotation unit. The
application of fast rotations has brought the feasibility of the ICU, at its current
performance, well within reach.

4.6.1 The Radiosity Engine

The Radiosity Engine [3] is a high-performance system for photo-realistic image
generation of artificial environments. Figure 4.13 shows the architecture of the Ra-
diosity Engine. The host, for which we use a Hewlett-Packard HP9000/747i, is
connected to a VME backplane through which it communicates with a cluster of
Engine Boards. The Engine boards themselves have a local network with which
they exchange information. They are designed specifically for high-speed radiosity
and ray-tracing computation, such as cell traversal and intersection computation.

The Engine board itself consists of a Texas Instruments TMS320C40 DSP chip and
a chip-set of three dedicated ASICs (CTU, GTU, ICU) to speed up computation.
A schematic of the Engine board is shown in Figure 4.14. In this schematic, only
the most important details, relevant for this treatise, are depicted. In Figure 4.20 in
Appendix 4.A we show a photograph of the Engine board itself, as built by TNO-
TPD. The principal components of the Engine board are:

* DSP This is a Texas Instruments TMS320C40 DSP chip, which is dedicated
mainly to coordination, communication, and data retrieval tasks. It coordin-
ates the operation of the ASICs, providing them with data and instructions.
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Figure 4.13. Schematic of the Radiosity Engine

It communicates with other Engine boards via the local interconnection net-
work, and with the host over the high bandwidth VME bus. It maintains a
database with cell, patch and ray information which is required for the ren-
dering algorithm.

Local Memory This is used for local storage of part of the environment data-
base (the patch and cell databases). The host predicts in advance which part
is most likely to be used the most intensive in the computation. This predic-
tion strategy, which is a key component of the Shelling Technique, is meant
to reduce the amount of communication over the VME bus. The memory
is also used as message-passing buffer for communication between the host
and the Engine board.

CTU The Cell Traversal Unit (CTU) is a dedicated ASIC for high-speed
cell traversal in the environment. The input for this unit is a description of a
spherical region in space —a so-called subshell— which must be traversed.
The result of its operation is a set of cells that coincide with that subshell.
These cells are necessary to address the patches which are contained in the
region.

GTU The Geometry Transformation Unit (GTU) is a dedicated ASIC for
geometry transformations. It transforms the coordinates of a patch to a local
coordinate system by rotations and translation. Aside this, it also computes
a spherical bounding box (SBB) of a patch, which is a description of a spher-
ical region in space within which the patch lies. The SBB is used in the in-
tersection computation to select those rays in the hemisphere with which to
intersect the patch.

ICU The Intersection Computation Unit (ICU) is by far the most complic-
ated and diverse of the ASICs. It is dedicated to compute the intersection
points between patches and rays. With the found intersection distance it sorts
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the patches to find, per ray, the first patch in the line of vision. This inform-
ation about the intersection points is passed on, in compressed form, to the
DSP which uses it to compute the form-factors between the patches. The
whole of the intersection computation is by far the most computationally de-
manding operation in the rendering.

global bus N
i i i -
1
Jocal o 4 VME |4 —
interconnection  -e—- "C40 DSP Local Memory interface
network |
VME backplanc
local bus ; t ‘
@B (é
| 4
[ 1
l CTU GTU @_> ICU 1

Figure 4.14. Schematic of the Engine Board, showing the principal components

There are a number of FIFO queues between the DSP and ASICs, marked with a
“Q” in the schematic. These are added to take up the irregular shocks in the com-
putation. The arrival time of data is non-deterministic, so all ASICs employ hand-
shake mechanisms to control and schedule themselves when valid data arrives.

4.6.2 ASIC co-processor design methodology

The mapping procedure that we employ maps those parts that form a group of op-
erations running at the same rate, i.e., computations within a loop or conditional
statement, to a functional unit (FU). The FU is primarily designed to be part of a
pipeline, data and instructions flow in one main direction only. The operation of
the FU can introduce a change of rate from input to output. The whole algorithm
for computing the intersections, which is a nested loop program, is mapped to a
chain of functional units. The communication down the FUs is the state inform-
ation which is sent to the inner loops. The mapping strategy leads to a chain, or
pipeline, of parallel working FUs, each of which is dedicated to a specific task. This
dedication to a single task greatly reduces the control overhead and increases the
fraction of silicon area dedicated to computation. The input / output behaviour of
such a pipeline is not that of the classical single token in / single token out model.
Instead, a FU produces a data-dependent number of tokens out as a result of a single
token in. We dub this kind of pipeline a peristaltic pipeline, due to the nature in
which it operates. It employs a self-scheduling strategy, executing instructions and
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data in the order at which they arrive at the FUs. The FUs communicate by means
of two mechanisms: message passing and memory bank passing.

4.6.3 The Functional Unit model

The underlying hardware model of the FUs is best explained with actual examples
from the implementation of the ICU. Figure 4.15 shows the icon of a typical FU,
in this casc the Intersect FU, which is part of the ICU.

(PMessIn[26:0) activeBank Inter%
possivateBank _Inter

MactiveMessTn
[[possivateMessIn MemOp_Tnter(28:01[[)
DotoOut _Inter(22:01(])
activeOp_Inter(]
possivateOp_Inter(]

[Delock DotaIn Inter(23:01()
octiveDataIn_Inter {J]
QNreset possivoteDatoIn_Inter )

Intersect?
IJpossivateMessOut
(PoctiveMessOut

[FMessOut[ZG 01 Workingl 8 ()14_'_1

Figure 4.15. The Functional Unit interface of the Interscct unit.

The communication ports of the FU are clearly visible as message in and out ports
(MessIn, MessOut) on the left side and as a memory operation port (MemOp) on
the right side. All ports have accompanying handshake lines, denoted by “active’
and ’passivate’, to indicate the arrival and acceptance of valid data at these ports.
The handshake mechanism used is a clock synchronous 2-cycle scheme, allowing
data transfer at every clock cycle.

The controller of the FU is designed to be timing-independent by grace of this hand-
shake asynchronous communication scheme. For example, a read request on the
memory port can take several cycles to complete, dependent on resource availabil-
ity, without influencing the operation of the FU or of any other part of the system.

Hierarchical construction of Functional Units

The FUs allow several methods of construction. The most basic is the chaining
of FUs, forming a pipeline. Such a chain can itsclf be abstracted to a single FU
by hierarchical composition. The Intersect FU —its internal schematic is shown in
Figure 4.16—is a fine example of this. Since it contains several FUs which require
simultaneous access to the same memory resource, a memory. arbiter is added.

Parallel operating FUs are also permitted, as we can see with the Subdivide FU.
Internally, as shown in the schematic in Figure 4.17, it consists of three SubUnit
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FUs working in parallel, and governed by a distribution unit. Any message which is
meant for a SubUnit FU is recognized by the distributer, and scheduled accordingly
on the next available unit. Any message not meant for these units has to wait until
all FUs are idle, and is then passed on to the output port. The sequence ordering of
the messages is maintained.

Data transfer mechanisms

There are two mechanisms by which data is transferred between functional units.
These are message passing and memory bank passing.

FU’s communicate down the line by means of messages, which is the equivalent
of an instruction with accompanying data. A message consists of a single word
message header and a data field consisting of a (prescribed) number of data words.
Together, they form an instruction for the FU. The controller of the FU is hard-
coded to receive, decode and execute such instructions.

Loop variables, variables that change at every iteration of the loop, and basically
other variables that do not take up a lot of space are passed down to the FU by means
of this message passing. The FU has two ports for this purpose, the MessIn and the
MessOut port. Both work with a handshake mechanism to indicate the arrival of
valid data.

Any message that is not meant for the FU in question —this is detected by a special
field in the header word— is passed on, through the message output port, to sub-
sequent FUs. The FU can, in response to a message, generate by itself new mes-
sages for subscquent FUs. This is an example of self-scheduling.

High-volume variables or constants, not bound to loop iterations, are passed down
to the FU by means of memory bank passing. A bank of memory, reserved for
certain variables, is handed down to the FU once «ll the data in that bank is valid
for that operation.

The FU typically performs multiple operations on such a bank of memory, and once
finished with the bank, passes it on to the next FU in line. The memory operations
on this block of memory are given through the MemOp port of the FU. If the FU
in question will never access this block, the port is non-existent.

It is possible that two or more FUs need access to this “pool” of variables in the
same block of computations. Hence, we need arbitration over the memory to de-
cide who can access what. The bank is passed on to other FUs once this set of co-
operating FUs have all given the signal that they are finished with their operations.

The time it takes for the actual transfer of the bank is very fast, basically a few clock
cycles. The data stays in the same place in the memory, only the access of the FU
to this data is enabled. The actual “switching” of the banks is transparent for the
FUs, and is performed by a special memory bank manager unit in the ICU.
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4.6.4 Peristaltic pipelined operation

The FUs communicate through asynchronous transfer of messages. They are
triggered by the arrival of valid messages, which contain instructions and data for
their operation.

The arrival times of these messages are data- and situation dependent. For example,
the retrieval time of a patch depends on where it is stored (local memory is short,
host memory is long) and on availability of communication channels (bus arbit-
ration, network routing). The execution time of certain operations of FUs is also
data-dependent. For instance, in the Subdivide FU of the ICU, a subdivision op-
eration can take more or less time, depending on whether the required accuracy is
met (early completion).

The most important property of the peristaltic pipeline operation, however, is that
the number of output messages (tokens) for a FU is also data-dependent, due to the
non-manifest loop bounds. As an example of this, the Generate FU of the ICU,
generates all the rays in a certain region of space, which is determined by the patch
geometry. The actual number of the rays generated —and therefore operations at a
later FU, such as the Subdivide FU— is hence dependent on the data itself, and is
not known at compile- or schedule-time. The FUs are in this sense self-scheduling,
L.e., the necessary control and data messages for a certain FU are generated and sent
by a previous FU.

Performance

Ideally, a pipelined system such as this operates at maximum performance when
balance is achieved in the throughput of the individual stages is matched. For every
linked pair of stages in the pipeline, the output rate of the producing stage must
match the input rate of the receiving stage. In the case of the peristaltic pipeline,
this varies strongly, and so does the location of the bottleneck over time.

The objective that we set instead is to keep those FUs that correspond to the critical
inner loops, as busy as possible, as these influence the overall throughput. Even if
this is at the expense of other FUs possibly running idle. In the case of the ICU,
the critical FU is the Subdivide FU, which comprises of no less than three SubUnit
FUs working in parallel to attain the required high performance.

Actual simulation of the circuit of the ICU has given the results for the activity
of the FUs, showing the typical peristaltic behaviour in Figure 4.18. The signals,
indicating the activity of the FUs, belong to respectively the Index, Generate(2 x),
RayfFilter, Subdivide(3 x) and the Update FUs in the Intersect FU of Figure 4.16.

The same activity signals are shown in Figure 4.19, but then over a shorter time
frame, revealing more details. One can clearly see the variation in the activity, and
that the position of the bottleneck changes over time.

To measure the performance of the FUs after fabrication, a small performance
measuring unit (itself an FU) is added as the last in the pipeline. It integrates the
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activity signals over a time period, and sends the performance data in a lightweight
message to the DSP for evaluation. In this way we can trace the time-varying loc-
ation of the bottlencck, and how it depends on certain data.

4.6.5 Physical Design

Both the ICU and GTU have been designed in an 1.0u CMOS process, with
Compass tools, using their usc370/vdp300 libraries. They have been fabricated at
European Silicon Structures (ES2) in France.

The operating frequency of both ASICs is 2SMHz. This gives rise to an equivalent
2 million intersection points per second, at peak performance.

The die size of the GTU measures 9 x Smm?. Figure 4.21 in Appendix 4.A shows
a photograph of the layout of the GTU. Clearly visible in this photograph are a
word-serial Cordic which is used in the computation of the SBB, and the multiplier-
accumulator which is used for the geometry transformation. The GTU has been
designed by André van der Avoird [12, 13, 14].

The die size of the ICU measures 11.5 x 11.5mm2, with an active core size of
10x 10mm?. The transistor count is around a quarter of a million transistors. Fig-
ures 4.22 and 4.23 in Appendix 4.A show a photographs of the layout of the ICU,

4.7 Conclusions

In this chapter, we have looked at a part of the problem of the design of the Radios-
ity Engine, which is a high performance, parallel architecture, dedicated to photo-
realistic rendering of artificial scenes. Algorithms for photo-realistic rendering nor-
mally require an enormous amount of high complexity arithmetic functions. We
have identified the computation of the intersection between a ray and a patch as po-
tentially the most demanding in terms of computational load and complexity. The
Shelling Technique [1], which is the result of an intensive system study of the Ra-
diosity Engine, helps to reduce part of the amount of operations by sclecting only
those intersection computations that contribute, and eliminating those for which it
is known that they don’t.

We have presented an integrated scheme that computes whether ray intersects with
a patch (hit) and, if so, computes the patch coordinates of the intersection point and
the distance to the intersection point. The scheme, which is an improved and exten-
ded version of the bounding-plane method [10], relies heavily on the computation
of the inner product between the ray direction r and a given set of vectors. These
inner products can be generated efficiently by means of incremental computation,
where every new result requires only one rotation. At this stage we have employed
the fast rotation techniques of Chapter 3, by choosing the ray resolution such that
a fast rotation can be used in the incremental computation. We are allowed to ad-
apt the ray resolution in this way, because we are dealing with a sampling problem.
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We have examined the effect of the choice of the ray resolution on other operations,
and found that there were no adverse consequences. The overall reduction of the
computational complexity, and hence the workload, has been reduced with more
than an order of magnitude. Compared to a naive implementation of computing
the inner products, which is the most critical operation, a gain of almost a factor of
20 is made.

The research has led to the feasibility and the implementation of the Intersection
Computation Unit (ICU) ASIC. Together with the Geometry Transformation Unit
(GTU) and the Cell Traversal Unit (CTU), they form a high performance graphics
co-processor subsystem of the Radiosity Engine. The use of the Shelling Tech-
nique has resulted in a rendering algorithm with such properties, that its mapping
onto a parallel, high performance architecture posed new and challenging problems
in VLSI system design. This has led to the development of a new methodology
and the concept of a peristaltic —rather than systolic— variable multi-rate pipeline
which is used in the design of the ICU. A performance measuring unit has been in-
corporated in the ICU, to measure the behaviour of such a system.
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Appendix

4.A Images of the Radiosity Engine and ASICs
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5.1 Introduction

In this chapter we consider the use of fast rotations in the realization of matrix al-
gebra algorithms, in this case the cigenvalue decomposition (EVD) of a symmetric
matrix.! We present an EVD algorithm that is based on that of the cyclic-by-rows
Jacobi algorithm, where our modification is that the angle of the rotations is approx-
imated such that it corrcsponds to that of a fast rotation, as presented in Chapter 3.

The computation to determine which fast rotation to use in the approximation of the
optimal angle, itself consists of only fast rotations, keeping the overall cost low, and
facilitating on-line computation.

The work presented in this chapter was performed in part in cooperation with Jiirgen Gétze,
TU Miinchen, during his stay at TU Delft.
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A significant reduction of the number of required shift—add operations is achieved,
with respect to the algorithm based on exact rotation with, for example, Cordic
arithmetic.

All types of fast rotations (and the computation to determine the optimal angle) can
be implemented as a cascade of only four basic types of shift—add stages. These
stages can be executed on a modified sequential floating-point Cordic architecture,
making the presented algorithm highly suitable for VLSI-implementation.

5.1.1 Outline of this chapter

In Section 5.2, we provide the background on Eigenvalue decomposition, and
present the cyclic-by-rows Jacobi EVD algorithm, on which our algorithm is
based. In Section 5.3, we prescnt the modified EVD algorithm that employs fast
rotations. We show that all operations, both the approximate rotation and the de-
termination of the optimal angle, are based on fast rotations, keeping the overall
cost low. In Section 5.4, we touch on the implementation and arithmetic issues
involved in building a high-throughput floating-point EVD architecture. The ana-
lysis of the performance of the modified EVD algorithm is given in Section 5.5.
Here we show that a great reduction in the computational cost is achieved, when
comparcd to the EVD algorithm based on exact rotations with Cordic arithmetic.
Finally, in Section 5.6, we give our conclusions.

5.2 Eigenvalue decomposition
The EVD of a n x n symmetric matrix A is defined as
A=Q'AQ,

where Q is an nx 1 orthogonal matrix, Q7Q = QQ7 = I, and A = diag(A4.....A,)
18 an n x n diagonal matrix containing the eigenvalues A; of A.

Computing the EVD of a symmetric matrix is a frequently encountered problem in
a great number of scientific applications, e.g. signal processing [1, 2, 3]. In order
to meet the real time requirements prescnt in many of these applications, it is often
necessary to compute the EVD on a parallel architecture.

The method of choice for the fast parallel computation of the EVD is the Jacobi
method, since it offers a significantly higher degree of parallelism than the re-
spective QR-method [4, 5]. One sweep of a cyclic Jacobi method (consisting of
n(n-1)/2 rotation evaluations and their application to the matrix) can be imple-
mented on an upper triangular array of processors with nearest neighbour intercon-
nections in O(n) time [4, 6}. Usually, O(log, n) sweeps are required [4]. Besides
this suitability for a parallel implementation the Jacobi method offers a higher nu-
merical accuracy than the QR—method [7].
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The computational complexity of the Jacobi method depends largely on the evalu-
ation and application of the rotations that make up Q. In [8], the different strategies
that have been tried to bring down the cost, are categorized. In this chapter, we will
follow in large lines the algorithm as given in [8].

5.2.1 The iterative Jacobi algorithm for EVD

The Jacobi method to compute the EVD of an n x n symmetric matrix A is given
by:

M(O) = A
My = Q(/:)M</1>Q(T,,)~ 5.1

where 4 is the iteration, Q;, is an embedded 2 x 2 rotation at iteration 4. After
enough many iterations, M;,, converges to the diagonal matrix of eigenvalues, A.

The cyclic-by-row Jacobi method computes the EVD of a #n xn symmetric matrix
by applying a sequence of orthonormal rotations to the left and right of A, as shown
in the following algorithm:

h:=1;M;):=A
for s := 1 to number of sweeps
fori:=1ton-1
for j:=i+1ton
M 1) = Qij(07) My Q7 ;(81)
h:=h+1
end
end
end

where Q; ;(8) is an orthonormal plane rotation over the angle 6 in the (i. j) plane,
and defined by (cos8.—sin0.sinf.cos0) in the (ii.ij. ji. jj) positions of the nxn
identity matrix.

The index pairs are chosen in the cyclic-by—row manner
(i./)=(1.2)(1.3)...(1.n)(2.3)...(2.n) .. .(n=1.n). (5.2)

The execution of all N = n(n—1)/2 index pairs (. j) according to (5.2) is called a
sweep. Since the matrices M ;,, remain symmetric for all 4, it is sufficient to work
with the upper triangular part of the matrix throughout the algorithm.

Let us define the off—diagonal quantity £, for the symmetric matrix M as:

(5.3)
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Note that this is the same as the Frobenius norm of the upper triangular part of M,
above the main diagonal.

A similarity transformation My 1, = Q,'j(eh)M(/,)Q,-Tj(eh) yields [9]:

2 2
(Foen)? = €)= ()= (")) (5.4)
h+1 h)

Obviously, a reduction of Ey;, is obtained if lml( ) < |ml( ; |. This reduction is

J
maximal if m,(,;* Y = 0. Therefore,

lim £y =0 < lim My, > diag[h.... ). (5.5)

h—c0

Without loss of generality we will drop the index 4 and only consider the 2x 2 sym-
metric EVD subproblem

_ Y
{ m; m/:j }: ( cos 0 —Smﬁ} [ mi; mi;j } {cose —sme} (5.6)

| . o )
mi; mj; sin@ cosO mij mj sin® cos6

in the sequel. Thus, m;] j 1s given by:
r 1 .
mij =5 [(2m; ;) cos20 - (m; ;—m;;)sin26)] . (5.7)

Solving m: j = 0 one obtains the optimal angle of rotation 8y, for which maximal
reduction of E (i.e. m; ; = 0) is achieved:

1
Bopt = 3 arctan(t), (5.8)

o 2myy [T n
where T = i, -m; » and where the range of By is limited to |6opt| = § -

5.3 EVD with approximate rotations

Using approximate rotations enables the reduction of the complexity of the vec-
torization and the rotation mode [6, 10, 11]. For a reduction of the off-diagonal
quantity E it is not necessary to meet mf j = 0, but it is sufficient, when using an
approximate angle 6y, that

\m] ;| = d|" |m; ;| withO<|d| <1, (59
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where the reduction d is a function of the approximate angle 0,p, and the matrix
data, given by:

1
d(Oapp.T) = 08 20,pp — = sin20,pp . (5.10)

This is the basis for the design of approximate rotations, i.e. rotations that meet
(5.9).

The approach used is to construct a set 7 = {Fy,F_,...} of fast rotations. We
define the fast rotation F;(o) as given by:

Fi(o) = [ (5.11)

¢ -as
as c

where ¢, s 2 0, and where the direction parameter 0 € {-1.+1} indicates the dir-
ection of the rotation. The angle of rotation is given as - o, where

ax = arctan(g). (5.12)

The approximation pair c¢,s is chosen such that Fy implements the rotation over
an angle +ay in a minimal number of shift-add opcrations, while satisfying the
accuracy requirements, as set by the application. The angles o form the ordered
set of approximation angles A = {ag.a_....}. Both angle oy and fast rotation
Fy are selected by the integer angle index «, satisfying x < 0. In Section 5.3.1, we
will present methods to construct such fast fast rotations and how to determine the
optimal angle index x.

Using approximate rotations must be paid by an increase in the number of required
sweeps. It has been shown in [10, 11, 12], however, that the overall cost, in terms of
shift—-add operations, obtained for the Jacobi method using approximate rotations
is significantly lower than for the Jacobi method using exact rotations.

5.3.1 Construction of the set of fast rotations

The ordered set of approximation angles A, for a given accuracy Ny, is construc-
ted using the aforementioned methods. For Ny = 32 Table 5.1 shows when to
select which method, depending on the value of the angle index k, as well as the
angle, and the cost for rotation and possible scaling. The fast rotations are chosen
such that they satisfy the accuracy condition using the cheapest possible method.

5.3.2 Determining the optimal approximate rotation

The crucial point for approximatc rotations is to find the approximate angle 8,,, =
O ag, where 0 € {-1.+1} is the direction of the rotation and the angle ay € A,
with the angle index K, is chosen such that |¢/(8,pp.T)| is minimal.
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angle || method | (factored) approximation pair angle cost
index
K (c,s) [o
0 Ext [{(2T,1-279),(1-27%,27),

(1-2718,2°6)1 1.179911 6

-1| Ext |{(1-27%27"1-27%),(1-2712,27%)} | 0.521209 5
2| EBxt |{(1-27272-27),(1-2718.27%)} | 0.252616 5
=3 Ext | {(1-277.273),(1-2714,277)} 0.133137 4
-4| Bxt |{(1-27,27%,(1-2"18.2%)} 6.449377107% | 4
=S|om -2 2 -2 3.1251310% | 3
-6 I | (1-2713 27622 1.5625210% | 3
=74 M (1-271,277 272 7.812521073 3
=8l o T(a-217.2% 3.9062610° | 2
9| o |(1-21,29 1.9531310 | 2
-10 I (1-27%1,2-10 9.7656310™* 2
~11 I | (a-27221 4.8828110% | 2
-12 I (1-273 2712) 2.44141107% 2
-13 1 (1-27%72713) 1.2207010™* 2
-4 on | (1-2221 61035210 | 2
-15 n (1-27312715) 3.05176107° 2
-16 i (1,2°16) 1.5258810~ | 1
-17 1 (1,2°17) 7.62939107¢ | 1
-18 1 (1,2°1%) 3.8147010°% | 1
-19 I (1,2719) 1.9073510°% | 1
=20 I (1,2720) 9.536741077 1
-21 I (1,224 4768371077 | 1
-22 I (1,2722) 2.384191077 | 1
-23 1 (1,2723) 1.19209107 | 1
24 1 (1,2724) 5.9604610% | 1
-25 I (1,27%) 2.9802310°° | 1
-26 I (1,2726) 1.490121078 1
27 1 (1,2777) 7.45058107° | 1
-28 I (1,2°28) 372529107 | 1
-29 1 (1,272%) 1.86265107° 1
-30 I (1,2730 93132310710 | 1
=31 I (1,273 46566110710 | 1
-32 1 (1,273 2328311070 | 1

Table 5.1. The set A of fast rotations for 32-bit accuracy, showing the method used,

the angle and the cost in shift-add pairs.
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The direction of rotation o follows from the sign of the optimal angle 6,,, and is
given by:

o = sign(t) = sign(m; ;) - sign(m; j—m;;). (5.13)

In order to determine the angle index «, we introduce the working domain limits
&« and define the condition for choosing the angle o as being:

g1 < T = g«. (5.14)

where gy is determined such that, when t satisfies (5.14), then |d {0 a.T)| is min-
imal over the set of angles A. Note, that minimizing |d (0 a.T)| is equivalent to
choosing the angle o (= B,pp) Which is closest to the optimal angle 8oy, The limit
g follows from the solution of:

d(0x.gx) = —d (0 +1.8x) - (5.15)

i.e. the point in the domain [t| where oy and oy, 1 lead to the same reduction of the
off-diagonal element. The solution of (5.15) yields:

gk = tan(ay + O41) = tanyg. (5.16)

where ¢ = 0 + Q11 is the working limit in the angle domain.

In [12], for this particular set of approximative angles, and through the use of
floating-point arithmetic the search is narrowed down to check which of three con-
secutive angles gives the maximal reduction (minimal |d|). Here we show that this
sclection can also be executed by using fast rotations.

Construct the vector v given by:

v | | myjmmig
V= { vy :| = { omi j| . 5.17)

The angle between v and the x-axis is equal to the required arctan(t) = 26op. To
test whether |t| is greater or smaller than the limit g, is equivalent to checking
whether this angle is resp. greater or smaller in absolute value to the limit angle
Yx-

Hence we rotate v over the angle -Gy = -0 (0 + O 1 1), 10 Obtain v/ = [V, v)’.]T
(see Figure 5.1). When the y-component v;, is of the same sign as vy, then the angle

between v and the x-axis is larger than y,, and we will select a1 as the approx-
imate angle. If, however, v( is of opposite sign to vy, then the angle is smaller, and
we select a,. The rotation over - yi is performed as two consecutive rotations
over o and a1, implemented as fast rotations:

!

v =Q(-0v) v="Fyi(-0) F(-0)v. (5.18)
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Figure 5.1. Separation of consecutive angles o and oy ).

Obviously, for our example in Figure 5.1 we have to use o since vy > 0and v; <0
holds.

The search for the optimal angle ax € A, which effects in the greatest reduction
of the off-diagonal element m;, j» can be narrowed to a check of three consecutive
angles. This can simply be achicved by looking at the exponents of [v,.vy]. We
obtain an estimate for the optimal angle index « as follows.

Let the components vy, vy, be given in a floating-point representation, where m,, my
are the mantissas, and e,, ¢, are the exponents of this representation. We compute
an indication k for the angle index k, based on the exponents of vy, vy only, and
which is given by k = e, - e,. Based on this indication, we state that the optimal
angle index x can be found in the range given by k € {K - 1,x,x + 1}. This is
illustrated in Figure 5.2. The domains of possible values for vy and vy are indicated
by the black bars on the x and y axis, respectively. This domain is determined by the
range of the mantissas of the floating-point representation of vy, vy. These domains
of the mantissa describe a rectangle in the (x,y)-space. It is easy to show that this
rectangle covers at most three possible rotation angles, i.e., Bapp € {01, 0k, Oy 1 .

Now the method described above (Figure 5.1) can be adapted to test which one of
the three consecutive angles to use. For this we compute v’ and v” according to

vl

VII

Fi11(-0) -Fi(-0) v
Fk_l(—G)'F,((—O)'V s (5.19)

Q(-ov) v
= Q(-oy1)-V
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Figure 5.2. Dctermination of optimal approximate angle.

2

to—

and choose the correct angle of rotation, using the selection tree, based on the res-
ulting signs of v} vy

k+1 ifsign(vy) = sign(vy)
K=< k-1 ifsign(vy) # sign(vy) (5.20)
k otherwise

If the intermediate results of the rotations are re-used, this sclection mechanism
costs at most three fast rotations (note that this selection can also be executed by
unscaled rotations). For our example in Figure 5.2 we obtain vy, > 0, v;, < 0. v’y’ >0,
such that o is the optimal approximate angle 0app.

The resulting total reduction |d(t.8,pp)|, using the above method for determining
the approximate angle is shown in Figure 5.3 for the set of angles .4 with 32-bit
accuracy.

5.4 Implementation issues for a fast rotation architecture
We now take a closer look at the possible architecture of the fast rotation unit. We

state that the four basic types of shift—add stages, as shown in Figure 5.4(a) are
sufficient to implement any kind of fast rotation.

P X
[y,}—FK(cr) [y} (5.21)
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Figure 5.4. The four basic shift—add stages (a) and their unification (b).
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Each of the stages implements a pair of shift-add operations. In turn, these four
types of stages are combined in the unified stage, as shown in Figure 5.4(b), which
forms the basis of the fast fast rotation architecture.

Method III is used for illustrating the architecture design. Writing out (5.21) for
the fast rotation of method III yields:

¥ = x-0(y-25) - (x-22 ) 4 o(y-2%3)
Y o= ytole2- (2% -0 27 (5.22)

The rotation of (5.22) is realized as a cascade of simple stages, as shown in Fig-
ure 5.5(c). The sequence of shifted values of x, being {x-2%,x-2%1 x-23%-31 are
computed through consecutive shifts over k,x - 1 and x -2 positions. The same is
done for the shifted values of y. Intermediate shifted results are stored in auxiliary
variables x,, y,. Similar sequences exist for the other fast rotation methods (I, II)as
is shown in Figures 5.5(a) and 5.5(b), respectively. The extended rotation method
is a factored rotation method of Chapter 3, and is shown in Figure 5.5(d), for three
factors.

5.4.1 Floating-point realization

The realization of an fast rotation of floating-point x,y data over the angle oy is
performed in three stages.

1. floating point preprocessing; alignment of mantissas
2. block floating-point execution of the rotation

3. floating-point post processing; renormalisation

We assume a block floating-point datapath to realize the rotation. This means that
the exponents of the x and y datapaths remain constant throughout a sequence of

operations, in this case: the shift and add operations in the cascade realization. The

x and y summation path each has their own fixed exponent eidp) Tesp. e;dp)‘
The first stage is the floating-point pre-processing. From the exponents ey, e, and

the angle index (or angle exponenr) x, we compute the exponents e)(rdp). e;dp) which

are used inside the block floating-point datapath.

P = max(ey, e, +K)
™ = max(ey.ec+x) . (5.23)

These datapath exponents are chosen such that the final and intermediate results do
not overflow the individual datapaths, while still maintaining full accuracy. Only
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(a)

b)

(@)

Figure 5.5. Cascade realization of the fast rotations (mcthod I (a), method 11 (b),
method III (¢), a factored method with N = 3 (d)).
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one extra MSB bit must be added as a precaution. The mantissas are aligned ac-
cordingly before they enter the block floating-point datapath.

(dp)
m,((dp b = mx-2""“’*p
(dp)
my® = my20-e" (5.24)

The sccond stage is the block floating-point cxecution of the rotation. Operations
are performed on the mantissas only, greatly speeding up operations since expens-
ive floating-point additions are eliminated. Writing out the rotation in terms of
mantissas only, we arrive at the following equation for block floating-point fast ro-
tation:

m., c-mi® _gs-28. mﬁdp)
m, c m;dp) o5 28 P (5.25)
where A = e}dp) --e,((dp  is the difference in exponents between the x and y datapath.

The above formula is the basis for the same cascade realizations as in Figure 5.5.
The only difference in the execution of the cascaded stages is that, for the “Rota-
tion” stages only, the k, and &, shifts are offset by A resp. —A. This is necessary to
align data transferred from the x to the y datapath resp. from the y to the x datapath.
From Equations (5.23) we can prove that A remains bounded by k < A < —x. This
guarantees that only negative shifts (shift right operations) occur during the com-
putation.

The third and last step is the floating-point post-processing. The results of the fixed-

point computation is paired with the corresponding exponents as (m;.e,((dm) and

(m;.eﬁdp)) and renormalized to proper floating-point representation.

5.4.2 Architecture considerations

Due to the variable length of the different fast rotations, a sequential architecture for
the computational core of the processor is highly favourable. The communication
between processors in a parallel system, however, must be capable to handle the
variations in computation time.

As for the computational core itself, the floating-point sequential Cordic architec-
ture presented in [13] only needs slight modifications to accommodate the func-
tionality of the unified stage of Figure 5.4(b), making it suitable to perform fast
rotations, as well as the normal Cordic operations.

5.5 Analysis of the performance

A random symmetric matrix A of dimcnsion 20 x 20 is used to illustrate the per-
formance of the algorithm. We assume a wordlength of 32 bit for all our imple-
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Figure 5.6. Off-diagonal norm vs. sweeps for the Jacobi method.

mentations. The Jacobi method is terminated if the off-diagonal norm is smaller
than 1078 - || M| .

In Figure 5.6 the reduction of the off-diagonal norm vs. the sweeps is shown. Obvi-
ously, using only one fast rotation for approximating the rotation shows no ultimatc
quadratic convergence (solid line) as does the Jacobi method with exact rotations
(dash—dotted line).

As shown in [12] the quadratic convergence of the Jacobi method can be regained
by adapting (increasing) the number of fast rotations executed per plane rotation
Q; ;. Executing r = 1 fast rotations per plane rotation, increases the accuracy of the
approximate rotation. Therefore, the conditions for quadratic convergence [11, 12]
are met as the diagonalization advances. Here, the Jacobi method is executed with
an adaptive number r of fast rotations per plane rotation (dashed line), where r =
HKmean\/ 10/ and Kpeqn 1 the mean value of the angle indices used in the previous
swecp (r = 1 in the first sweep).

In Figure 5.7 the required number of shift-add operations per sweep is shown.

The Jacobi method using the original (exact) Cordic requires a constant number of
shift-add operations per sweep, since each rotation requires a constant number of
shift-add operations. For a 32 bit Cordic, we need 80 shift-add operations per ro-
tation: 64 for the micro-rotations plus 16 for the scaling of both vector compon-
ents. The use of approximate rotations, i.e., one fast rotation per plane rotation
reduces the number of shift—add operations per sweep significantly. Furthermore,
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Figure 5.7. Shift-add operations per sweep for the Jacobi method.

Method exact r=1 radaptive
# of sweeps 7 12 9
total # of shift-add | 912000 101280 105120

Table 5.2. Total number of sweeps and total number of shift-add operations.

the nature of the Jacobi method guarantees that the less complex fast rotation meth-
ods are used as the matrix becomes more and more diagonally dominant during the
course of the algorithm , i.e. ultimately only method 7 (the least complex method)
is required. Therefore, the number of required shift~add operations per sweep re-
duces during the course of the Jacobi method (solid line). Since the quadratic con-
vergence is lost this must be paid by a greater number of sweeps.

However, this trade—off between number of sweeps and computational cost (num-
ber of shift-add operations) works out to be in favour of the approximate rotation
scheme. Table 5.2 shows the total number of sweeps and the total number of shift—
add operations required for computing the EVD of the matrix.

Finally, in Figure 5.8 we show the reduction of the off-diagonal norm vs. the shift—
add opcrations. Obviously, the Jacobi methods using approximate rotations obtain
the reduction of the off-diagonal norm with significantly less computational cost,
i.e., the overall reduction per shift-add operation is significantly better for the ap-
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Figure 5.8. Off—diagonal norm vs. shift—add operations for the Jacobi method.

proximate rotations than for the exact rotations. Note, that the exact method actu-
ally reduces the off—diagonal norm to O(107'3), although the stopping criteria is
1078+ ||M||r. This is due to the fast reduction of the off-diagonal norm when quad-
ratic convergence of the algorithm is reached. Therefore, the Jacobi method with
exact rotations actually requires 7 sweeps and 912000 shift—add operations (Fig-
ures 5.6 and 5.8 are only shown for the actual stopping criteria).

The adaptive scheme works as well as the simple r = 1 scheme. When working on
a parallel array of processors, the off-chip communication becomes a function of
the number of sweeps. In this case it is advantageous to use the adaptive scheme,
with less sweeps, as it reduces the off—chip communication.

5.6 Conclusions

In this chapter a Jacobi—type algorithm for computing the EVD of a symmetric mat-
rix was presented. It uses different types of fast rotations as approximate rotations.
These fast rotations are characterized that the cost decreases with the size of the
angle of rotation. We construct a set of fast rotations, which are indexed by an angle
index k, which may be compared to the angle exponent. The evaluation of the angle
index K, which determines the approximate rotation angle and the used type of fast
rotation, can also be performed, using at most three fast rotations. Therefore, the
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entire Jacobi-type method can be performed by the execution of fast rotations. It
is shown how these fast rotations are executed on a floating point Cordic-like ar-
chitecture, making it is highly suitablc for VLSI implementation.

The nature of the Jacobi method causes the size of the angles to decrease as the
algorithm progresses. This has a positive effect on the use of fast rotations, which
become even cheaper for such smaller angles, eventually ending up at only one
shift-add pair per fast rotation, for Method I.

The modification that we have shown for EVD, that of replacing exact rotations
with approximate, fast rotations, can also be applied with success on other matrix
algebra algorithms. It works for the SVD of a rectangular matrix if the SVD prob-
lem is mapped to a symmetric EVD problem with increased dimension [9, 14]. The
modification can also be applied to the SVD without this mapping procedure [15]
by applying the approximate rotation scheme to the Cordic based SVD methods
presented in [16, 17]. It has quite recently also been reported to work for QR and
QR-RLS algorithms.
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6.1 Introduction

In this chapter, we consider the use of fast rotations in the efficient realization of
orthogonal filterbanks. The application in which these filterbanks are used is that
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of transform coding for high quality compression of medical images without block-
ing artifacts. We propose to realize the orthogonal filterbank as a network of fast
rotations. Since the filter coefficients are fixed, we can perform the analysis of the
realisation off-line. This implies that we have extra degrees of freedom, and can
spend a large amount of computational effort to come up with a realisation with
the lowest achievable cost.

Image transforms, such as the Lapped Orthogonal Transform (LOT), various modi-
fications of the LOT, the Discrete Cosine Transform (DCT), and Wavelet trans-
forms which are all commonly used in transform coding for data compression, can
be recursively decomposed as a network of orthogonal matrices of decreasing size.
The basis functions on which the transform is built can approximated to any or-
der of accuracy by realizing the set of orthogonal matrices in its decomposition
by means of so-called fast rotations which are orthonormal within the range of the
required accuracy. For the approximation to be optimal, all orthogonal matrices
in the decomposition must be simultaneously expressed in terms of fast rotations.
We present a procedure to compute the optimal solutions being either the solution
of minimum cost for a given lower bound of the accuracy or the solution with the
highest accuracy for a given upper bound of the cost.

Compression of X-ray image series with the transforms implemented as proposed
in the chapter has shown that high accuracy at low bit rates can be achieved at a
small implementation cost. Real time compression and coding of image sequences
giving rise to Gbit/sec data-rates is achievable using a single chip and transforms
of any size between 8 x 8 and 32 x 64.

6.1.1 Outline of this chapter

In Section 6.2, we present the background on data compression of images with or-
thogonal transforms. We show how the LOT transfer can be recursively decom-
posed into a network of smaller orthogonal matrix operations and butterfly opera-
tions. In Section 6.3, we propose a method to realize orthogonal matrices by de-
composing them into a network of fast rotations. This realization can be continued
until the required precision is met, making it a successive approximation. This de-
composition allows a low-cost realization, but one that is orthogonal, at every step
of the approximation. In Section 6.4, we apply the approximation technique on the
network of orthogonal matrix operations of the LOT of Section 6.2. We pose the
problem to find an optimal approximation for the whole LOT, i.e., one that meets
the accuracy requirements, and spends a minimal amount of computations. We
show that this leads to a multi-parameter optimization problem, with an enormous
search space. We present a heuristic search algorithm to tackle this problem, and
present the solutions for the LOT. In Section 6.5, we present the architecture for a
Parallel Transform Engine (PTFE) which is capable of implementing the complete
network of the LOT, by sequential execution of the low-level operations in this net-
work. These operations are of the type of rotation, scaling, and butterfly operations.
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All of these can be expressed in terms of basic shift-and-add operations. We also
present the implementation of a prototype PTFE ASIC that has been fabricated. In
Section 6.6, we give our conclusions. In Appendix 6.A, we show photographs of
the layout of the prototype PTFE ASIC.

6.2 Orthogonal image transforms

Data compression of images —such as X-ray image sequences— for storage pur-
poses is heavily constrained by the requirement that the rcconstructed images
should not reveal coding artifacts. Compression techniques using discrete cosine
transforms (DCT) [1] or conventional lapped orthogonal transforms (LOT) [2] fail
to meet these requirements at high compression ratios. The modified lapped trans-
form (MLOT) overcomes some of these problems, but it is not orthogonal which
is a disadvantage from the point of view of implementation. In [3], Heusdens has
presented a new LOT which is orthogonal and does not introduce any blocking
artifacts when applied to medical image compression. The new LOT, however,
does not allow a realization in terms of DCT or DST (Discrete Sine Transform)
operations. Even, then, it still allows a recursive decomposition into orthogonal
operations of decreasing size, a fact which we can use to our advantage.

6.2.1 The structure of lapped orthogonal transforms

The lapped orthogonal transform is a lower triangular banded Toeplitz matrix op-
crator .A(A) with upper triangular banded Toeplitz inverse S(S), SA = Z, where
A is the analysis matrix and S is the synthesis matrix, which are given by:

r-.. * 1
A Ay
B 0 A A
A= 0 0 Ay A
6 0 0 A A
) (6.1)
I S S S ]
$$ S 0 0 0
L S S 0 0
e S S 0
1 S
L N ]
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For reason of convention, we write A = [A;A;] and S = [S;S,] Both matrices have
dimension N x 2N and have the following structure:

_ Ay AnJ _p. | Su  SyJ
A_PA[AM Ay | TP Sar ~8yJ |7 62

where P4 and Pg are permutation matrices, Ay; = B4Ay; and Sy, = B4 TSy, for

some invertible matrix B4, and J the mirror identity.

We will concentrate on the analysis side only, and hence only look at the realization

of A. A similar derivation, as we are about to present, holds for S too. Putting
= 2(A11 +AnJ), A, = ,(A“ -AyJ)and Up = [A,TA,T)7, and similarly for

S the matrix A is decomposed as:

e LA M w] e

Figure 6.1 shows the network corresponding to this decomposition of A, when ap-
plied to a part of the image as:

Xi+1

y,-:A[ Xi } (6.4)

where X;,X;;1 are two N x 1 vectors of consecutive samples of the image, and the
N x 1 vector y; is the result of the filtering operation. The blocks BF;, BF; in the
diagram represent the two butterfly operators that appear in Equation (6.2).

Vi -t -

N N2

~——] [~
P | ya (B 2 18R

Figure 6.1. The first step in the decomposition of the LOT analysis matrix

Due to the overlap in the computation of consecutive y;, one of the Uy operators
can be eliminated from the network [3], by introducing state between consecutive
transforms, and leads to a more CfﬁClem computatlon The Equation (6.3) is split
up into two parts, introducing the ¥ 5 x 1 vectors s;,s; as the external and internal
state variables, and is written out as:

S; . I—I. .
H - [1 I]U“"

]
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The more efficient network corresponding to Equation (6.5) is shown in Figure 6.2
and will be used later on in the realization of the LOT.

Si -
N2
- ; .
¥i - -—r X
N N2 v LBH N W N
- -~ -——f— Si.1
Pa v2 [Bs N2 [BR N2

Figure 6.2. The reduced network of the LOT analysis matrix

Now since Uy = [AeTAOT}T with A, and A, even and odd, respectively, it holds
that this matrix has a similar decomposition to A as given by:

U“:PU“[I BUU][Ul Ul][} -H ©6)

It turns out that the same type of decomposition holds for Uy, and in fact, the entire
decomposition of Uy can be written out recursively as:

I Uk+1 I J
U, =P . 6.7
¢ U*[ BUkH Uk+1HI-J] ©7
where the By, are decreasing in size by N x N, % x % ..... 1x 1. The recursion is a

remarkable property and will in general not exist, that is will stop after the decom-
position of A [4]. The recursively defined network that belongs to this decompos-
ition of Uy is shown in Figure 6.3, the block BF again representing the butterfly
operator in the expression.

—r—] -/
P v By R L v |BF

Figure 6.3. The recursive decomposition of the Uy submatrices

In [4], it is shown that the synthesis matrix S has the property that the network para-
meters are exactly the same as thosc for the decomposition of the analysis matrix
A, though only reversed in sequence.
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6.3 Efficient orthogonal realization

We consider the matrix-vector multiplication of an arbitrary matrix A with a vector
X, as given by:

y = Ax. (6.8)

For sake of brevity, we consider only the case of A having the dimensions m x n,,
with m < n,. Other cases follow from transposition. As well as this we impose
that A has all singular values smaller than or equal to one, o; = 1, or more specific:
AAT < 1. This constraint can always be satisfied with proper scaling of the matrix.

We now define the orthogonal embedding G of A as:
G = [AJA], (6.9)

with the matrix G having orthonormal rows and of size m xn, n = n, +n., and with
the matrix A of size m x n., n. < m, chosen such that the orthogonality condition
holds for the matrix G in:

GG =AAT + AAT =1. (6.10)
We briefly state that such A, exists for an arbitrary matrix A, and can be constructed

by the Cholesky factorization of I- AAT.

It is easily shown that the product of Equation (6.8) can be written as y = GPyx,
with the extension matrix P; given by:

P = [Onc""a } : 6.11)
In,, XNq

For the case that A is already orthogonal, the matrix A is of dimension zero, n = n,,

and P; becomes the identity matrix.

Without proof, we state that there exists an orthogonal matrix Q, with QQ7 =
QTQ =1, of size n xn, that factorizes G such that

I

QGT=p, = [ moxm ] . (6.12)
O(n—m)xm

We call the matrix P, of size nx m, a selection matrix for reasons that will become

clear later on. For the case that A is a square matrix, with m = n, P, becomes the

identity matrix.

Substituting the result of Equation (6.12) into the product of Equation (6.11) we ob-
tain the desired expression for the matrix-vector product in terms of an orthogonal
rotation matrix.
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6.3.1 Factorization of Q by means of fast rotations

Any orthogonal rotation matrix Q can be implemented as a sequence of elementary
rotations. A common example of this is QR decomposition. We opt to factorize the
matrix G, where Q is composed of a sequence of 2 x 2 fast rotations g;, as presented
in Chapter 3.

The factorization of Q, by means of a so-called greedy algorithm, proceeds as fol-
lows. Setting the initial matrices Qp = I,Rg = GT, we factorize G with the recur-
sion:

Q = ¢ Q

R, g Ri1, (6.14)

where the embedded 2 x 2 fast rotation matrix gy, determined by the index pair (i, j)
and rotation angle ., is given by the 7 x n identity matrix with embedded entries:

{Qii qij ] _ [c —S] . (6.15)
qji 4jj s ¢
The angle of rotation a satisfies:
s
a= arctan(z) . (6.16)

At every step ¢ of the factorization, the index pair (i, j) and the approximation pair
¢, s that make up g; are chosen according to the greedy rule that the quantity:

A = Off(R,_;) - Off(R,). (6.17)

is maximized. The function Off(R) = 3, r,?j is a metric for the amount of off-
diagonal energy in the matrix R, and measures the progress of the annihilation of
the off-diagonal entries. The quantity A, being the difference in off-diagonal energy
gained in one step, is a measure of how fast the algorithm converges. Note that
this algorithm belongs to the class of iterative Jacobi algorithms, and ultimately
converges to the required solution of:

Tlim Qr = Q
limRy = Po. (6.18)

6.3.2 Finding the optimal rotation parameters

The optimal ¢, that maximizes A is found by going over all combinations of the
index pair (i, j), and for each pair determining the optimal rotation angle ctopr and
evaluating A. For determining the optimal rotation angle ctp we need only to look
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at small submatrices of the i and j™ columns and rows of R’ = R,, g, and R =
R;_;, as other entries in the matrices have no influence on the annihilation of off-
diagonal energy.

ror i T
¥ /]z[H o (6.19)
Tii T s ¢ Tii Tij
For maximal annihilation of the off-diagonal energy, we have to minimize the

quantity (r;j)2 + (r’ji)z. It is easy to prove that, by differentiating the said quant-
ity and setting this to zero, the solution for the optimal angle then follows as being:

B, YO N
Qopt = arclan(z—(l%) /2. (6.20)
Tatr =T

The optimal angle Qopt itself is not used in the rotation. Instead we choose the
closest possible approximation pair ¢, s with angle of rotation a, so that the cost
of rotation is minimized. The quantity A is then evaluated for this combination of
index pair (i, j) and angle a by application of Equation (6.17) on Equation (6.19)
as:

= (rf+r5) - () + (7)) (6.21)
6.3.3 Practical realization

For practical cases, the factorization need not be continued to infinity. For a preset
accuracy, usually expressed in terms of remaining off-diagonal energy in Ry, the
factorization can be terminated after, say, T steps. The approximation Q = Q7 of
the matrix Q is then used in the approximate realization of § in:

y=P,TQP;x. (6.22)

Here, the matrix A is approximated by A= Pg QPI.

The matrix vector product, as expressed in Equation (6.22), is realized as a network
of the T 2x 2 fast rotation operations in the factorization of . The extension matrix
P, and the selection matrix P, have no other task than to add zeros at certain inputs
of the network and to select certain outputs of the network as the result. They do
not contribute in any additional cost.

6.3.4 Realization of the recursive network for the LOT transform

The recursive network of the LOT transform, as shown in Figures 6.1 and 6.3,
contains the orthogonal rotation matrices {By, By, . By, , By, - ..}, as well as some
trivial butterfly operations. For each of these rotation matrices we apply the ap-
proximate realization of Equation (6.22). The optimal number of steps required
for the realization of each matrix is calculated by a heuristic optimization program,
working with the constraints that a certain accuracy criteria is met for the total real-
ization, while maintaining a minimal cost.
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6.4 Recursive approximate realization of the LOT

A property of the matrices B4, By, By, , ... in the recursive network of the LOT is
that all are orthogonal and already mainly diagonal. This propcrty is essential for
an even faster convergence of the approximations of these matrices. For the full
recursion of the proposed 16 x 32 LOT, we approximate each of the matrices with
the matrices ﬁA.ﬁun,ﬁUl , Buz, using the technique described in the previous sec-
tion, with respectively Ty, Ty, Ty, . Ty, steps in the approximations. The approxim-
ation A follows from the reconstruction using these approximates. For complete-
ness, we have to mention that the recursive decomposition ends with the matrices
By,. Uy, and that these too are used in the reconstruction. Since both are trivial 1x1
matrices, By, = [1].Us = [§] , with an exact realization of no real cost, they need
not be approximated.

The number of steps used in the respective approximations of the matrices form an
index i= (Tx.Ty,. Ty, . Ty,) to a P-parameter approximation (in this case, P = 4).
We call the corresponding approximation A = fma (i) the solution belonging to this
index, where fi,(i) is the reconstruction function, in terms of the index i. Clearly
this function depends on a given factorization of the matrices.

We also dcfine the function fuu (i) and the function fycc(i), both in terms of the
index i, as the overall cost function of the solution, and the overall accuracy of the
solution. We measure the overall cost as total number of shift-add operations in the
resulting network, which is a weighted sum of the cost of the realization of sub-
matrices and of the introduced butterfly operations. We measure the accuracy of
the solution as the norm of the difference between original and approximation, for
which we take fucc(i) = —log,(||A - Al|), where the approximation A is given by
A = fna(i). Analysis of the cost and accuracy functions reveals that the cost func-
tion fuost(i) is monotonous throughout the solution space. Hence we can write, for
any index i, and any positive increment & = 0:

fcost(i + 6) = fcosl(i)~ Vi.Vd=0. (6.23)

The accuracy function f,c(i) is close-to-monotonous, that is, for most indices i
and increment & = 0, but not for all the monotonicity holds. The disturbance of the
monotonicity is small and very local in nature, so that we can set an —empirically
determined— error bound € > 0, such that we can write:

Facclit®) te= faeli).  Vi.V820. (6.24)

Further analysis reveals that, when choosing an increment & in only one dimen-
sion, the accuracy function exhibits saturation. This means that an increase in ac-
curacy in only one of the matrices is only cost-effective up to a certain level, until
the combined accuracies of the other matrices start to play a role, and saturation
sets in. This is a clear indication that, in order to find cost-effective solutions, a
simultaneous approximation of the matrices must be made.



206 Realization of orthogonal FIR filterbanks for image compression

6.4.1 The search for optimal solutions

For the search of a cost-effective solution to the approximation problem, let us
first define the target accuracy ararger and target cost Crarger for the search, and state
that any solution i must satisfy both facc(i) 2 aarget and feost (i) < Crarger. Further-
more, we define a cell C(p, q) in the solution space as the collection of points lying
between the bounding indices p,q with p < q, and write i EC(p,q) < psi=q.
Hence, we formulate the discriminative property of a cell C(p,q), that it contains
no cost-effective solutions if focc(q) +€ < Grarget O feost(P) > Ctarget-

We have implemented a heuristic 2°-tree branch and bound search algorithm [5],
that is capable of finding cost-effective solutions either by finding the best solution s
for a given target accuracy dyarger, Such that faec(s) = Atarger and feog(S) is minimal,
or by finding the best solution s for a given target cost Ctarget, Such that fooq(s) =
Carget and fycc(S) is maximal.

To explain the operation we take the first case, with a given target accuracy Ararget
and initial target cost of c(uger = %, and search the entire solution space as follows.
First, we factorize each the matrices By, By,.... in the recursive decomposition
of the LOT independently, until they reach a sufficient level of (maximum) accur-
acy, thus setting the bounds of the index to the solution as the number of steps re-
quired to reach this maximum accuracy. For the 16 x32 LOT, the upper bounds are
(128,128,27.5), leading to a solution space of size 2.2 x 10°. For the 32x64 LOT,
this results in upper bounds of (511,511,128,27.5) and a solution space of size
4.3x10°. Next, a given cell (the root of the search is the entire solution space) is
splitinto at most 27" subcells, and each of these is tested whether they could contain
any solutions. If a cell may contain solutions, it is split and checked recursively. If
not, the corresponding branch of the search tree is cut off. If a solution is found
during the search, it is used to set the new target cost carger dynamically, so that
less cells need to be examined. The result of the search is a solution that satisfies
the constraints and has guaranteed minimum cost.

We have made the interface between the search program and the objective functions
face(1), feost (i) such that it can be used for other transforms. We have used it for
approximated networks for MLOT, DCT, and wavelet transforms with success.

6.4.2 Results

In Table 6.1, we show the results for approximate realizations of the 16 x 32 LOT,
of increasing accuracy. The accuracy is shown here as the norm of the differences,
IA-A.

Our method shows a rapid convergence, so that solution number 16 in the table,
with cost only 776 shift-add-pair operations, is already (visually) indistinguish-
able form the original, both in smoothness of the basis-functions and in the fre-
quency responses. As a comparison, a direct implementation would require 512
high-accuracy multiply-add operations (= 10.000 additions), without having the
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['solution | index [ target acc. | actual acc. | cost |

4 (13831 04210 [04163 |314
8 |(251852) |0.1606 | 01578 | 494
12 [(363272) | 00613 | 0.0602 | 644
16 | (4544113) |00234 [0.0231 | 776
20 [(6456113) |0.0089 |0.0088 | 900
24 [ (8277133) |00034 00033 | 1046
28 |(9085184) |00013 | 0.0013 | 1122
32 [(10396225) |0.0005 |0.0005 | 1194
36 | (116 115245) | 0.0002 | 0.0002 | 1266
40 | (127124265)]0.0001 | 0.0001 | 1314 |

Table 6.1. Optimal solutions for the 16 x 32 LOT with full recursion depth and
varying target accuracy.
desirable properties that orthogonal implementations like this one has. Of course,

a multiplier implementation following the DCT decomposition is chcaper, but fails
for many transforms, such as our new LOT.

We have also tested our search program on partial depth recursive decompositions
of the LOT. In Table 6.2, we show the results for full depth (level = 5) until direct
(Ievel = 0) implementations.

recursion | approximated index actual | cost
depth | matrices acc.

5 Ba.By,.By, . By,.(By,.Uy) | (4544 113) | 0.0231 | 776
4 B4.By,.By,.By,. Us (4545113 3) | 0.0230 | 780
3 B4.By,.By,. Uy (4949917) | 0.0231 | 948
2 Ba, By,. Uy (49 45 66) 0.0211 | 1428
1 B4.Ug (56 260) 0.0230 | 1988
0 A (691) 0.0226 | 3808

Table 6.2. Optimal solutions for the 16 x 32 LOT with different levels of partial
recursion and a fixed target accuracy of 0.0233.

The solutions are targeted at the accuracy of solution number 16 of Table 6.1. The
results clearly show that the full depth recursive decomposition of the LOT, with
simultaneous approximation of the submatrices leads to the best results.
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6.5 Architecture of the transform engine

The TransForm Engine (TFE) [6, 7] implements the complete recursive flowgraph
of Figure 6.1 and 6.3 by sequential execution of the low-levcl operations in this
flowgraph. These operations are of the type of rotation, scaling, and butterfly op-
erations. All of these can be expressed in terms of basic shift-and-add operations.

We have deliberately chosen for a sequential architecture approach for the TFE for
two important reasons:

* routing / communication. As the flowgraph of a single transform operation
is of a highly irregular nature at the lowest level, a parallel version would
have high routing overhead due to the communication demand. In a sequen-
tial version, this irregular communication translates itself into a randomly ac-
cessible storage structure, such as a register file, and makes it more manage-
able.

* flexibility. A scquential machine is morc flexible in the sense that different
transform sizes and even different transform families can be mapped onto it.
A different transform translates itself to a different control sequence for its
implementation. This control sequence can be seen as a “stored program”
for the transform.

Dataln Stateln
Aout Xin
. . Bout . Yin . .
Register File Routing Rotation Pipe
Network
Ain —f— Xout
Bin ﬂ""

- ? | !

Controiln

W Y
DataOut StateQut

Figure 6.4. Architecture of a single transform engine (TFE).

The architecture of the TFE, as shown in Figure 6.4, is composed of the following
subunits:

1. A pipelined rotation engine, capable of implementing any type of rotation,
scaling or butterfly operation. A pipelined unit is chosen to greatly increase
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the throughput of the machine, and also to increase the ratio of silicon area
for computation versus that for storage and communication.

The pipeline is built out of identical stages, of which one is shown in Fig-
ure 6.5. These stages are designed such that they can implement any se-
quence of fast rotations of the types described in [8, 9], any scaling operation
and butterfly operations.

2. Aregister file, capable of storing all necessary input, output and intermediate
results. As all operations are of the type (2-in, 2-out), the storage demand
stays constant throughout the execution of the flowgraph.

3. A simple routing network, which routes the data between the rotation pipe,
the register file and the in- and output ports.

o,
COMPASSY
QNS
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wme-Spec schematic
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Figure 6.5. Schematic of a single pipe stage.

For all the above units it holds that they do not have any local control. All control
signals in the TFE are bundled together and brought out as a single, very wide, con-
trol word. The removal of local control is possible as the flowgraphs of the trans-
forms in question are static and data-independent, and therefore allow an imple-
meniation as a sequence of control words.

Using a pipelined rotation engine has serious repercussions on the factorization of
the matrices. For one, all rotation operations must be constructed in such manner
that they fit exactly in the number of available pipeline stages, or a multiple thereof,
as not to waste any computational power. As well as this, precautions must be taken
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to guarantec that the data dependencies in the resulting flowgraph are such that the
pipeline can be filled at all times without having to introduce too many dummy
operations and hence losing performance.

The above problems have been solved in the pipelined greedy factorization
algorithm, which produces a sequence of rotation operations g, that permit a
pipelined schedule. The matrix is factored according to the greedy algorithm un-
der the additional constraint that, for any sequence of operations, the operation gy
has no conflict (data dependency) with consecutive operations {q,qk+1,...} for
the duration that it resides in the pipeline. A second additional constraint is that
all the g, fit in a multiple of the number of pipeline stages; the length of the g as
expressed in stages, is also the time it resides in the pipeline.

Whereas in the non-pipelined greedy algorithm, the closest simple fast rotation is
chosen for g,, the pipelined version takes a group of fast rotations, such that their
total length is a multiple of the pipeline depth. The resulting g, is a better approx-
imation, and hence the algorithm converges faster, requiring less steps. However,
the nature of the fast rotations greatly limits the practical length of the pipeline,
and with it, the achievable level of internal parallelism in the TFE. Practical exper-
iments [4] have shown that, for the proposed transform and accuracy requirements,
a pipeline depth of 4 stages is still considered as cost-effective.

The recursive flowgraph of the LOT contains parallel independent instances of the
same (smaller) rotation matrices. These are scheduled in an interleaved manner
onto the pipeline, thus weakening the conflict constraint, and allowing a less con-
strained factorization of the smaller matrices.

6.5.1 Architecture of the PTFE

The architecture of the system of parallel transform engines (PTFE) is shown in
Figure 6.6. It consists of a linear array of transform engines (TFE’s), as described
in the previous section, working in parallel and which are governed by a global
controller (Main Control). Connections between the TFE units (control and state
signals) are of a highly local nature, minimizing routing overhead. All TFE units
are connected to global busses for input and output of transform data. Both types of
busses are implemented in double to increase throughput of data. Operation of the
TFE units is skewed in time. Every TFE executes the same sequence of operations,
as dictated by the control sequence, only with a fixed time difference.

A single global controller is used for the entire system of TFE’s. This global
controller (Main Control) stores the entire control sequence for the transform and
delivers it to the first TFE unit in the chain when the input sequence arrives. The
control is skewed in time and delivered to subsequent TFE units by means of
FIFO’s (ControlDelay). This architecture greatly reduces the control overhead as
opposed to each TFE having its own, stored control sequence. Moreover, we have
implemented the storage for the control sequence as a RAM, making the system
(re)programmable for almost any type of transform. At power-up or in download
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Figure 6.6. The architecture of the system of parallel transform engines (PTFE).

mode, this RAM is filled, either from a small serial ROM, or from a dedicated
interface port.

The control at each TFE determines when it can read the input busses, and when
it can send results over the (tri-state) output bus. This control sequence must be
conflict-free. Figure 6.7 shows the typical schedule of the TFE’s in time, and how
the input and output phases of consecutive TFE’s adjoin. The input and output

Time
| | | | L. -

TFE1- [ tnpm | P ' [ oupu [ _.tmgii Computation |- oupu |

i
TFE 2 | Input ‘ C i | OulpuIJ
TFE 3 [t | Compuati [ oruipur

TFE Nm.\chq} ‘ Input | Computation Ompm]
'
Machine

Figure 6.7. Time schedule of the TFE units.

phases are shown as partially overlapping with the computation phase. Special con-
straints are placed on the input and output sequence, as to allow a schedule where
useful computation can start as early as possible, and can continue as long as pos-
sible. Additional stringent constraints can be placed on schedule and register alloc-



212 Realization of orthogonal FIR filterbanks for image compression

ation to even overlap the output phase with the input phase of the next transform
on the same TFE unit.

The length of the input, output and computation phases is heavily dependent on
the size and type of transform, the required accuracy, and the efficiency of the fac-
torization. If a single PTFE chip does not have enough resources to provide the
required throughput, more than one chip can be chained together in a system of
PTFE’s. Synchronization links between the PTFE chips schedule the system and
prevent any system bus conflicts.

6.5.2 Mapping the flowgraph onto the architecture

Mapping the flowgraph of the transform onto the TFE architecture is basically a list
scheduling problem. The schedule is greatly simplified by the fact that the natural
order of the sequence of rotations, as produced by the pipelined greedy factoriz-
ation algorithm, is of such nature that it can be used directly as a schedule. The
problem remains of merging the (sub)schedules of the recursive network into one
global schedule, with additional constraints on the sequence in which the input and
output is produced, and how the state transfer between machines is synchronized.

6.5.3 Implementation of a prototype PTFE ASIC

A prototype of the PTFE, containing only 3 TFE’s, has been designed in a 0.8
CMOS process, using Compass tools. It has been fabricated at European Silicon
Structures (ES2) in France.

The designed operation frequency of the ASIC is 40MHz. The die size of the PTFE
measures 11 x 10mm?. It is packaged in a 144 pin PGA package. In Figure 6.8 in
Appendix 6.A we show a photograph of the layout of the prototype PTFE. Clearly
visible in this photograph are the three TFE units, and the large storage for the in-
struction sequence that defines the transform. In Figure 6.9 we show a photograph
of the detailed layout of a single TFE. Visible in the photograph are the 4 stage
deep fast rotation pipeline, the register file for storage of intermediate variables,
the memory to delay the incoming instruction sequence, and the local controller.
Note the relatively small size of the controller. The PTFE has been designed by
Zeng Zhigiang [7, 6].

6.6 Conclusions

We have shown that the operators in Equation (6.1) can be implemented in an effi-
cient way using fast rotations. The basic transform matrix A of dimension N x 2N,
where the transform size N can be as large as 32, is recursively decomposed into a
network of rotation matrices and butterfly operators. The recursive decomposition
of the block rows ensures that the structure of the transform matrix A is preserved
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under approximation of the submatrices, and using orthogonal operations preserves
the orthogonality- that is the conditioning - of the transform. The rotation matrices
that appear are approximated by a finite length greedy factorization into fast rota-
tions. This leads to the flowgraph of an efficient realization in terms of fast rotation
and trivial butterfly operations. The approximations are optimal in the sense that
both cost and accuracy are no more than required by the application.

The resulting flowgraph is mapped onto a powerful transform engine (TFE), which
is centered around a rotation pipeline. Care has been taken to increase greatly the
amount of silicon that is active with useful computations. A single chip implement-
ation of the PTFE containing 8 of such TFE units working in parallel, would be the
target for our application. A prototype PTFE, containing only 3 TFE’s has been
designed in a 0.8 CMOS process. It has a (re)programmable controller that is
downloaded with the scheduled control sequence of the transform. This flexibil-
ity in the programming makes it that the system can handle much more than one
type of transform.

We have mapped many transforms on the architecture, including the DCT, LOT’s
which can be decomposed in terms of DCT’s, and LOT’s that cannot. Also for
transforms that do not allow recursive decomposition can an approximating flow-
graph be derived and mapped on the architecture. Very good results have been
obtained with compression and coding of X-ray image sequences for storage pur-
poses. In this application, we have used the LOT from [3, 4] which does not intro-
duce blocking artifacts and which cannot be decomposed in terms of DCT’s.
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Second and third TFE’s

First Transform Engine (TFE)

Storage for transform
instruction sequence

Figure 6.8. Photograph of the layout of the PTFE chip, showing the TFE’s and the
storage for the instruction sequence.
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Instruction sequence
delay memory

Controller

K Four stage deep
fast rotation
pipeline

Register file for
intermediate variable
storage

Figure 6.9. Detail photograph of the layout of the PTFE chip, showing the fast ro-
tation pipe, control, and storage of a single TFE.
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accuracy-preserving, 107
angle resolution, 34
angle base, 34

angle exponent, 36, 78
angle resolution, 35
azimuth, 131

base angle, 34

bias, 31

bounding box
index space, 132
spherical, 131

canonic representation, 90
cascade realization, 74

cell traversal unit, 158
complex micro-rotation, 45
CTU, see cell traversal unit

delta form-factor, 124
denormalized, 31

direct form implementation, 74, 76
domain of convergence, 35

elevation, 131

EVD, see Eigenvalue decomposition
exact orthonormal, 76, 106
exponent, 31

extension matrix, 202

factored fast rotations, 99
factored form implementation, 74, 77
fast rotation method, 77

geometry transformation unit, 158

global coordinate system, 121

greedy algorithm, 203, 210

GTU, see geometry transformation
unit

hemisphere, 127

hemisphere rays, 128

hit, 124, 135

hyperbolic approximation pair, 94

ICU, see intersection computation
unit

index space bounding box, 132

intersection computation unit, 158

ISBB, see index space bounding box

mantissa, 31
maximal fast rotation, 80

normalized, 31

orthogonal embedding, 202
orthonormal within precision, 76

patch, 121

peristaltic, 157

pipclined greedy algorithm, 210
pseudo-distance, 140

radiosity, 121

ray index space, 129

ray frustum, 124

ray frustum shooting, 125
ray index, 128
ray-tracing, 121
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INDEX

SBB, see spherical bounding box

selection matrix, 202

shift-add pair, 80

sign, 31

simple micro-rotation, 45

spatial isolation, 132

spherical bounding box, 131

spherical coordinate system, 131

SVD, see Singular value decomposi-
tion

systolic, 157




GLOSSARY OF SYMBOLS

General, Chapters 2 and 3

a angle of rotation (general).

a approximated angle of rotation.

a(x) angle of rotation.

Qp, O (X) hyperbolic angle of rotation.

ay(x) angle of rotation of a unified fast rotation.

a; base angle.

r overall angle domain of convergence.

Y angle domain of convergence.

3, O; angle resolution.

€ error (general). error in magnification (specific).

€o error in approximation of an angle.

€K crror in the overall magnification.

€round error in rounding towards nearest.

Echop error in rounding towards minus infinity.

K angle exponent.

O, O; digits of the angle representation.

K overall magnification factor (Cordic).

K finite-precision inverse of K.

L cost of a fast rotation.

Nexp number of bits in the representation of the exponent.

Nmant number of bits in the representation of the mantissa.

¢, c(x) cosine part of a (polynomial) sine-cosine approximation pair.
Ch» Cp(x) cosine part of a (polynomial) hyperbolic sine-cosine approximation pair.
cy(tox) cosine part of a polynomial unified sinc-cosine approximation pair.
q accuracy of a fast rotation (in bits).

s, S(x) sinc part of a (polynomial) sinc-cosine approximation pair.
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s, 5(x) sine part of a (polynomial) hyperbolic sine-cosine approximation pair.
sult,x) sine part of a polynomial unified sine-cosine approximation pair.
m, m(x) magnification factor.
My, ny(x) magnification factor of a hyperbolic fast rotation.
my(t,x) magnification factor of a unified fast rotation.
E, rotation matrix for the error €.
F, F; fast rotation matrix. also
F; factor matrix of a factored fast rotation.
R rotation matrix.
R approximate rotation matrix.
A, A angle base.
Chapter 4
Ay, Ag angle resolution for hemisphere coordinates.
€(n) overall magnification error of n consecutive fast rotations.
() angle, azimuth in the hemisphere.
0 angle, elevation in the hemisphere.
@i, 0; hemisphere coordinates of a ray.
Ko, Kg angle exponent.
ray parameter.
A; area of a patch.
dA; differential area on a patch.
F,F; form-factor.
HID occlusion parameter,
Ny, No number of rays along the g, 8 axes in the ray index space.
N, number of rays.
P; vertex of a patch.
T; triangle.
I - geometry transformation, local to global coordinate system.
T6-1 geometry transformation, global to local coordinate system.
X intersection point.
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fi fi

q(n)

r
EnUAVA
un.vp

Ry()
R ()
R; ¢, Ro-t

€y, €y, €;
n

n,',j

P, Pi

I, rj

S, S;

X

X

P
R
S

Chapter 5

A
A

Y

Y

delta form-factor of a ray

overall accuracy of n consecutive fast rotations.
ray

patch coordinates.

patch coordinates.

rotation matrix (azimuth).
rotation matrix (elevation).
rotation matrices for geometry transformations.

local coordinate system basis vectors.

normal of the source patch at the sample point.
bounding planc normal.

vector to a patch vertex.

ray direction vector.

sample point on the source patch.

vector to the intersection point. also

vector to a point on the patch, or to a point on the ray.

set of patches in the environment.
ray frustum.
set of sample points.

matrix of Eigenvalues.
Eigenvalue.

limit angle.
approximate limit angle.

off-diagonal energy

reduction factor.
limit tangent.
approximate limit tangent
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M iteration matrix.

Q orthogonal matrix.

A set of fast rotation angles.

F set of fast rotations.

Abbreviations

Cordic Coordinate Rotation Digital Computer
SBB Spherical Bounding Box

ISBB Index Space Bounding Box

ICU Intersection computation unit

GTU Geometry Transformation Unit

CTU Cell Traversal Unit

DSP Digital Signal Processor

FIFO First In, First Qut memory

QR, QRD QR Decomposition

iQR Inverse QR Decomposition

EVD Eigenvalue Decomposition

SVD Singular Value Decomposition

RLS Recursive Least Squares

MVDR Minimum Variance Distortionless Response
DCT Discrete Cosine Transform

DST Discrete Sine Transform

LOT Lapped Orthogonal Transform

MLT, MLOT  Modified Lapped Orthogonal Transform
TFE TransForm Engine

PTFE Parallel TransForm Engine

CMOS Complementary Metal Oxide Semiconductor
LSI Large Scale Integration

VLSI Very Large Scale Integration

ASIC Application Specific Integrated Circuit
PGA Pin Grid Array

FLOPS FLoating-point Operations Per Second
Isb least significant bit.

msb most significant bit.




SUMMARY

High performance numerical computations are required in quite many applications
in the field of digital signal processing (DSP). We use the term “high performance”
here in a dual context: that of very high speed, high throughput and low latency of
the computations, and/or that of very high accuracy and large dynamic range of the
data. For example, current and planned future applications exist in processing of
radar signals or radio astronomy signals, that require a computational power in the
order of Giga FLOPS (10° Floating-Point Operations Per Second) through to Tera
(10'2) FLOPS and even on to Peta (101%) FLOPS. It is therefore essential that com-
puter arithmetic techniques arc developed that enable the efficient implementation
of high performance numerical processors.

Most of the applications that we consider use matrix algebra algorithms for the
main core of their signal processing. Examples of such algorithms are: QR de-
composition (QRD), Singular Value Decomposition (SVD), Eigenvalue Decom-
position (EVD), Minimum Variance Distortionless Response (MVDR), Recurs-
ive Least Squares (RLS). The Cordic (COordinate Rotation DIgital Computer) al-
gorithm, which performs a 2 x 2 rotation of a vector, plays an important rolc in the
efficient and robust realization of thcsc matrix algebra algorithms.

Implementations of the Cordic algorithm exist, which employ a combination of a
pipelined architccture, the use of redundant arithmetic, a special logic and circuit
design, or even a high-speed VLSI process, such that an extreme high throughput
is achieved. Throughputs have been reported in excess of 500 million rotations per
second !, The classical Cordic algorithm, on which these high-throughput imple-
mentations are based, has a number of shortcomings. One of these shortcomings
is that it inherently only works well on fixed-point data, and not on floating-point
data. The applications that we consider, however, more and more often encounter
a large dynamic range in signals and hence require floating-point operations for ef-
ficient implemecntation. Another shortcoming is that the cost of realizing a rotation
is still relatively high, compared to, say, realizing an addition or multiplication.

'Not even considering the computation of the necessary sine and cosine of the angle, a rotation
is alrcady the equivalent of 6 floating-point operations for the matrix multiplication of the rotation
matrix with the vector.
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This thesis is made up of two parts. The first part is computer arithmetic oriented
and the second part is more application oriented.

In the first part, we focus on what we see as the two major shortcomings of the
Cordic, namely the problem of the limited accuracy and low dynamic range due
to fixed point operation, and the problem of a relatively high cost of implementa-
tion. To overcome the former shortcoming, we propose a full floating-point Cordic
algorithm, i.e. one that employs a floating-point representation for the vector com-
ponents and for the angle, that allows an efficient implementation for both a se-
quential architecture, as well as for a parallel, pipelined architecture. The latter
ensures a high throughput of computations. A full floating-point Cordic algorithm
was presented before by Walther, and indeed has been used successfully in early
desk and hand-held calculators, all the way through to INTEL’s 80x87 series of nu-
merical co-processors. However, this algorithm does not have an efficient imple-
mentation for a parallel architecture, so no high throughput is guaranteed.

To overcome the second shortcoming, we propose a new, Cordic related technique
that we have called “Fast rotation”. This is a technique to perform rotations at an
extremely low cost in implementation. Even though fast rotations only exist for
certain “nice” angles only, the technique has proven to be powerful enough to be
applied with success in a large range of signal processing applications.

So much, in fact, that in the second part of the thesis, we focus on a number of
applications in which fast rotations have been applied with success.

The first application which we consider, from the field of computer graphics, is the
photo-realistic rendering of artificial scenes. This application, in fact, has led to
the development of fast rotations: techniques to rotate over certain fixed angles at
avery low cost. The use of fast rotations in this application has led to the feasibility
and the actual implementation of the Intersection Computation Unit (ICU) ASIC, a
dedicated VLSI chip that computes intersection points with a high accuracy, and at
a high throughput. We show that a reduction in the cost of computation of a factor
of around 20 is gained over an implementation with multipliers, and a factor of
around 15 over an implementation with Cordic.

The second application is the realization of orthogonal matrix algebra algorithms,
in this casc Eigenvalue decomposition (EVD), by means of fast rotations. We con-
sider the problem of on-line computation of the EVD, which implies that both the
calculation of the angles of rotation and their application must be computed at low
cost and high-speed. We show that both operations can indeed be done using fast
rotations. A reduction of a factor of 7 to 8 is gained in the cost of computation over
the use of the classical Cordic technique for EVD.

The third and last application is the realization of an orthogonal filterbank, used in
transform coding for high quality compression of medical images, by means of fast
rotations. The difference with the previous application is that the analysis phase of
how to realize the filterbank with fast rotations is performed off-line. This allows
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a greater freedom in the methods of realization, and we can use a greater computa-
tional effort in this phase to search for a realization with the lowest achievable cost.
Compared to a direct implementation of the filterbank with multipliers, we achicve
a reduction in the cost of computation of roughly an order of magnitude. However,
other efficient techniques exist, which are also applicable to our filterbank, such as
the fast implementation of the Discrete Cosine Transform (DCT). Our technique is
comparable in cost, but has other desirable properties that make it more attractive
to use. We present a prototype ASIC, equipped with a number of parallel operating
pipelined fast rotation units, which is capable of implementing such filterbanks at
low cost and high flexibility.
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SAMENVATTING

Veel toepassingen in het gebied van de digitale signaalverwerking vereisen het
gebruik van high performance numericke berekeningen. Wij gebruiken de term
“high performance” (hoge prestatie) in een dubbele context: die van een hoge
berekeningssnelheid en een hoge verwerkingscapaciteit van data, en die van een
hoge berekeningsnauwkeurigheid en een groot dynamisch bereik van de data.
Bijvoorbeeld, er bestaan al (plannen voor) toepassingen voor het verwerken van
radarsignalen en radio-astronomie signalen die ecn rekenkracht vereisen die in
het gebied ligt van GigaFLOPS (10° FLOPS = zwevende komma bewerkingen
per seconde) tot TeraFLOPS (10'2), en zelfs door tot PetaFLOPS (101). Het is
daarom van essentieel belang dat er technieken in de computer aritmetiek worden
ontwikkeld die het verwezenlijken van efficiénte high performance numerieke
processoren bewerkstelligen.

Een groot deel van de toepassingen die wij in beschouwing nemen, berusten op
matrix algebraische algoritmen voor de kern van hun berekenigen. Voorbeelden
hicrvan zijn de QR ontbinding (QRD), de singuliere waarde ontbinding (SVD),
de Eigenwaarde ontbinding (EVD), Minimum Variance Distortionless Response
(MVDR) en de recursieve Kleinste kwadraten methode (RLS). Het Cordic (CO-
ordinate Rotation DIgital Computer) algoritme, welk een 2 x 2 rotatie uitvoert van
een vector over een hoek, speelt een belangrijke rol in de efficiénte en robuuste uit-
voering van deze matrix algebraische algoritmen.

Er bestaan realisaties van het Cordic algoritme, die gebruik maken van een com-
binatie van een pipeline architectuur, van redundante rckentechnieken, van een
specifiek logisch of circuit ontwerp, of zelfs van een hoge-snelheid VLSI pro-
ces, om een extreem hoge verwerkingscapaciteit te bereiken. In de literatuur zijn
meldingen gemaakt van een verwerkingscapaciteit die de 500 miljoen rotaties per
seconde” overstijgt. Het conventionele Cordic algoritme, welk ten grondslag ligt
aan deze realisaties, heeft echter een aantal tekortkomingen. Een dczer tekortko-
mingen is dat het algoritme inherent alleen geschikt is voor vaste komma berek-
eningen, en niet geschikt is voor zwevende komma berekeningen. Bij het soort

2 . . . . - .
2Afgezien van de complexc berekening voor de sinus en cosinus van de hoek, is cen rotatie
vergelijkbaar met tenminste 6 zwevende komma berekeningen.
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van toepassingen die wij beschouwen, worden wij in meerdere mate geconfron-
teerd met een groot dynamisch bereik van de data en van de signalen, zodat een
zwevende komma representatie en bewerkingen een vereiste zijn.

Een andere tekortkoming is dat de rekenkosten om een rotatie uit te voeren, relatief
hoog uitvallen vergeleken met die voor bijvoorbeeld vermenigvuldigen of optellen.

Dit proefschrift bestaat it twee delen. Het eerste deel is gericht op de computer
aritmetiek (rekenkunde), terwijl het tweede deel meer is gericht op de toepassingen.

In het eerste deel concentreren wij ons op wat wij zien als de twee grootste tekortko-
mingen van het conventionele Cordic algoritme. Deze zijn de beperkte nauwkeur-
igheid en laag dynamisch bereik door de inherente vaste komma bewerkingen, en
de relatief hoge kosten voor het uitvoeren van een rotatie. Om de eerste tekortko-
ming tenict te doen, stellen wij een volledig zwevende komma Cordic algoritme
(een die ecn zwevende komma representatie voor zowel de vector als voor de hoek
gebruikt) voor, die een verwezenlijking toestaat op zowel een sequentiéle als op
ecn parallelle, pipeline architectuur. Deze laatste garandeert een hoge verwerking-
scapaciteit. Een volledig zwevende komma Cordic algoritme was al eerder gepres-
enteerd door Walther, en dit algoritme is met succes gebruikt vanaf dc eerste rek-
enmachines tot aan de gehele lijn van de INTEL 80x87 numerieke co-processoren.
Echter, dit algoritmc staat geen efficiénte verwezenlijking toe op cen parallelie ar-
chitectuur, welk nodig is om een hoge verwerkingscapaciteit te garanderen.

Om de tweede tekortkoming teniet te doen, stellen wij een nicuwe, aan Cordic gere-
lateerde techniek, voor die wij “fast rotations” (snelle rotaties) hebben genoemd.
Dit is een rekenkundige technick om met extreem lage kosten een rotatie uit te vo-
eren. Ook al bestaan snelle rotaties alleen voor bepaalde “toepasselijke” hoeken,
heeft de techniek zich al met succes bewezen in een breed scala van signaalver-
werking toepassingen.

In zoverre zelfs, dat wij het tweede deel van het proefschrift wijden aan ccn aantal
toepassingen waarin snellc rotaties met succes zijn toegepast.

De eerste van de toepassingen komt uit het gebied van de computer graphics, en
betreft het foto-realistisch weergeven van kunstmatige scénes. Het is juist dezc
applicatie die de drijfveer is geweest voor de ontwikkeling van de snelle totatie
technick. Het gebruik van snelle rotaties binnen deze toepassing heeft geleid tot de
haalbaarheid en de verwezenlijking van de Intersection Computation Unit (snijpunt
berekenings eenheid, afgekort ICU), een geintegreerd circuit dat toegespitst is op
het met een hoge nauwkeurigheid en hoge verwerkingscapaciteit berekenen van
snijpunten. We laten zien dat een vermindering in de berekeningskosten met een
factor van ongeveer 20 is gehaald, ten opzichte van een uitvoering met enkel ver-
menigvuldigers, of met een factor van ongeveer 15 ten opzichte van een uitvoering
met Cordic.

De tweede toepassing is die van het verwezenlijken van matrix algebraische algor-
itmen, in dit specificke geval een Eigenwaarde ontbinding (EVD), met behulp van
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snelle rotaties. Wij beschouwen het geval waarbij zowel het uitrekenen van de hoek
alswel het uitvoeren van de rotatie “on-line” (op de plek) gebeuren. Dit houdt in
dat beide berekeningen lage kosten met zich mee moeten brengen. Wij laten zien
dit inderdaad kan, en dat beide berckeningen met uitsluitend snelle rotaties bew-
erkstelligd kunnen worden. Een vermindering van de berekeningskosten met een
factor 7 tot 8 is gehaald voor het EVD probleem, ten opzichte van een uitvoering
met Cordic.

De derde, en tevens laatste toepassing is het verwezenlijken van een orthogonale
filterbank, die wordt gebruikt voor de hoge kwaliteit compressie van medische
beelden, met behulp van snelle rotaties. Het verschil met de vorige toepassing is dat
de analyse fase, van hoe de filterbank met een netwerk van snelle rotaties wordt ger-
ealiseerd, nu “off-line” (niet op de plek) plaatsvindt. Dit geeft ons een veel grotere
vrijheid in aanpak, en geeft tevens de mogenlijkheid een veel grotere rekenkracht
te benutten om een realisatie te vinden die de laagst haalbare rekenkosten met zich
meebrengt. Vergeleken met een naieve uitvoering met behulp van vermenigvuldi-
gers, halen wij een orde verschil in de vermindering van rekenkosten. Er bestaan
echter ook andere efficiénte technicken, die gebruik maken van de ontbinding van
de Discrete Cosinus Transformatie (DCT), en die ook op onze filterbank van toep-
assing zijn. Deze zijn van vergelijkbare kosten als onze techniek, ware het niet dat
de realisatic met snelle rotaties andere gewenste eigenschappen heeft die het voor-
deliger maken. Wij tonen tevens een prototype geintegreerd circuit die uitgerust
is met een aantal, in parallel werkende en ge-pipeline’de snelle rotatie eenheden,
waarmec het mogelijk is om orthogonale filterbanken te realiseren met lage reken-
kosten, en cen hoge flexibiliteit.
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