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ABSTRACT

Simulation models are often used to analyze the be-
havior and performance of infrastructure systems. The
use of simulation models in multi-actor design processes
is restricted to the analysis phase after conceptual de-
signs have been completed. To use simulation models
throughout the design process, simulation environments
need to be adapted to support the interactive and iter-
ative nature of design processes, making the shift from
a ‘hard’ to a ‘soft’ systems perspective. By using the
Discrete Event Systems specification, modular and hi-
erarchical component libraries can be constructed that
can be used in participatory design processes. In this
paper, we present our experiences on developing and
using simulation environments in design processes for
container terminals and rail systems. We present the
cases, the architecture of the design environments and
the use of them in actual design processes. Hereafter, we
will discuss the enhancement we are studying to support
the multiple perspectives present in multi-actor environ-
ments.

INTRODUCTION

The challenges in designing modern infrastructure sys-
tems are abundant. Multiple actors are involved that
have to keep track of investments, technical feasibility,
and, the nowadays increasingly important, societal and
environmental impact. Modeling and simulation (M&S)
can be used to support these multi-actor environments.
However, constructing simulation models requires spe-
cialized skills and a lot of time and effort. This does
not match well with the interactive and flexible char-
acter of a multi-actor design process. The use of M&S
in a multi-actor design process has to adhere to certain
requirements before it can be successfully employed.

Modern M&S environments stem from a ‘hard systems’
paradigm that is based on the conception that “there is a

desired state, S(1), and a present state S(0), and alterna-
tive ways of getting from S(0) to S(1); ‘problem solving,’
according to this view, consists of defining S(1) and S(0)
and selecting the best means of reducing the difference
between them” (Checkland 1978). This paradigm suf-
fers from a lack of recognition of different interests in a
decision making process. According to Rosenhead and
Mingers (2001) this means that in current simulation
environments

• problem formulation is in terms of a single objec-
tive;

• there are overwhelming data demands;

• people are treated as passive objects;

• there is a single decision-maker with abstract objec-
tives from which concrete actions can be deduced;

• and there is an attempt to abolish future uncer-
tainty, pre-taking future decisions.

‘Soft systems’ (Checkland 1978) have been presented
as a methodology that is closer to reality. It acknowl-
edges multiple actors and mostly diverging opinions, and
views the decision making process as a learning pro-
cess wherein the various actors engage to understand
the problem and each other’s opinion.
Although the soft systems methodology is not intended
to be used with simulation models, this could be a fruit-
ful combination. Aughenbaugh and Paredis (2004) pro-
vide a very thorough and to-the-point explanation as to
what simulation can bring to design and decision mak-
ing:

Without modeling and simulation, design
relies on implicit knowledge. Implicit knowl-
edge is unreliable in that designers do not know
the assumptions and uncertainty in the knowl-
edge explicitly. When decisions are coupled
and require input from several experts, there
is no way to make tradeoffs using only implicit
knowledge about uncertainties.



Robinson (2001) reports on the use of simulation as
a way of understanding the complexity of the prob-
lem and to facilitate the discussion among stakeholders.
den Hengst et al. (2007) further elaborates on Robin-
son (2001) by discussing what can be done but what are
still the limitations on using simulation models to foster
decision making processes. The major shortcomings of
modern simulation environments in multi-actor settings
are

• the expertise needed to build simulation models;

• the complex code to build the simulation model,
verify and validate it;

• the lack of knowledge of the actors concerning M&S
results in a hard to accept model;

• and finally, running the experiment takes a long
period (multiple hours) of time.

To use simulation models in design processes, it is im-
portant to shift from a hard systems perspective to a
multimethodological approach as presented by Robin-
son (2001) and den Hengst et al. (2007). This shift
sets specific requirements on the design environment and
changes the use of simulation models: whereas now sim-
ulation models are purely used as an analysis tool after
the conceptual design phase has been completed, it will
become a discussion platform throughout the entire de-
sign process.

Designing multi-actor design environments

According to Simon (1996), design processes follow a
path of first structuring the problem, followed by a for-
mulation of alternative solutions based upon selected
criteria and finally by a selection of the best alterna-
tive. To allow this, design environments need to pro-
vide sufficient flexibility in constructing the alternatives.
This calls for a modular framework that supports the
construction of alternative designs. den Hengst et al.
(2007) reminds us that the complex code can be a bur-
den: hiding this is necessary to use simulation models in
design processes. A feasible approach to allow modular-
ity and hide internal code would be to use component-
based modeling. Indeed, components provide the major
advantage of being self-contained, reusable, replaceable
and customizable (Verbraeck 2004).
Hu et al. (2005) discuss the suitability of the Discrete
Event Systems Specification (DEVS) (Zeigler and Prae-
hofer 2000) for component based-modeling and simula-
tion. To facilitate the easy development of simulation
models using existing components, they suggest the use
of variable structure in DEVS, which means dynamically
adding and removing components and couplings. Three
reasons are given for using variable structure in DEVS:
(1) to model systems that exhibit structure and behav-
ior changes, (2) to design and analyze a system under

development, and (3) to be able to load only a subset
of the system’s component when simulating very large
models. As the modularity and hierarchical structure
of model components provided by the DEVS formalism
could benefit model construction in general, recent work
has been focused on developing the Event-Scheduling
DEVS library (ESDEVS) (Seck and Verbraeck 2009).
ESDEVS implements the parallel DEVS formalism on
top of the DSOL library (Jacobs 2005). The ESDEVS
is based on the event-scheduling worldview wherein exe-
cutions of the internal transition function are scheduled
according to the specified time advance function and
unscheduled at the reception of external events. The
confluent transition function handles the coincidence be-
tween internal and external events. Dynamic structure
DEVS is also implemented in the ESDEVS library so
that components and coupling relations can be added
and removed dynamically during simulation runtime.
A component-based framework hides complex details of
simulation models while allowing an easy way of con-
structing alternative designs. This fits perfectly the idea
of having a design environment build for supporting an
interactive and iterative multi-actor design process. A
multi-actor design environment should support partici-
patory design: an engineering design process is seldom
performed by a single person or an actor. Many ac-
tors are involved and they all try to achieve their own
objectives. A design process should support a certain
convergence of interests of all actors.

Outline of the paper

In this introduction, we have motivated the need of re-
quiring a shift in the use of simulation to support design
processes in multi-actor environments. In our research,
we are particularly interested in supporting the design
of logistics systems. In the next section, we are going to
present a case study involving the design of automated
container terminals. For this case study, we have devel-
oped a simulation components library and accompany-
ing tools to use this library in interactive design sessions.
After this, we presentd a similar approach for the devel-
opment of rail transport systems. In both case studies,
we have studied how simulation models can be used in-
teractively in the design process, instead of purely as an
analysis tool after the conceptual design is concluded.
Hereafter, we will discuss what else is needed in a de-
sign process to better support decision makers. We will
present some concepts that are part of our future work
and finally conclude the paper.

AUTOMATED CONTAINER TERMINAL OP-
ERATIONS

Container terminals have become essential in today’s
supply chain of goods. There is a steady increase in
the use of automated equipment to improve the effiency



of loading and stacking containers in terminals. Equip-
ment for stacking containers can be automated as well as
equipment that is used for transporting the containers
from the stacks to the quay cranes. Exploring alterna-
tive types of equipment and design options is a time con-
suming and challenging task. A simulation component
library coupled to an AutoCAD design environment can
fasten the assessment of design decisions.

Architecture of the design environment

The 3D visualization tool serves as a platform for com-
municating design decisions to all actors involved in the
process. In Fumarola and Versteegt (2011) we have
shown that 3D visualization environments enhance com-
munication among actors by having an indisputable and
understandable presentation platform. Technically less
inclined people tend to prefer 3D visualizations above
technical 2D CAD drawings. For this reason, the 3D
visualization tool, which in diagram 1 is called ‘Virtual
Terminal’, is an integral part of the design environment.

The simulation components library has been developed
in DEVS (Zeigler and Praehofer 2000) using DSOL ES-
DEVS (Seck and Verbraeck 2009). It has been discussed
extensively in Fumarola et al. (2010): it contains a set
of components for each type of equipment in a com-
mon automated container terminal. The components li-
brary contains components for quay cranes, automated
guided vehicles, and rail mounted gantries. To control
the equipment, is has an implementation of terminal
operating system containing algorithms for path finding
and scheduling.

Both the visualization and simulation models are in-
stantiated using an XML file that is generated based
on CAD drawings. The XML contains the elements ex-
tracted from the CAD design that are important for the
visualization and simulation model. The visualization
tool uses a component library of 3D meshes to use the
appropriate 3D mesh for the given equipment. Likewise,
the simulation environment queries for the right simu-
lation component using the right name and parameters.
Using this structure, one single CAD drawing can be
used to fully instantiate the visualization and simula-
tion components. This is reflected in Figure 1.

Use of the design environment

The design environment is made to support the multi-
ple actors present in the design process for automated
container terminals. In Hu (2008) and Derksen (2009),
whose work were part of the same case study discussed
here, an analysis of the actors involved in the decision
making process has been carried out. The major iden-
tified actors are involved with

• innovation as a way to deploy novel equipment to
increase productivity;

• business as to keep costs and revenues in balance;

• engineering as to design a technically feasible ter-
minal;

• and, finally, environment and safety.

The design process of container terminals can be parti-
tioned roughly in five phases: project acquisition phase,
global engineering phase, detailed engineering phase,
implementation phase, and operation phase (Fumarola
and Versteegt 2011). The design environment can sup-
port actors in the global engineering phase and the
detailed engineering phase. In the global engineering
phase, conceptual designs are made that are based on
best practices and rules of thumb. Simulation is mostly
not used in this phase because of the quick and highly it-
erative character of this phase. The design environment
discussed here is highly suitable for the global engineer-
ing phase. It can be used to quickly assess different
designs using its easy to use interface. The same mod-
els can later be used in the detailed design phase, which
serves to study in depth the behavior of the system using
extensive scenarios.

RAIL SIMULATION LIBRARY

Modern rail transport planning and design are complex
and time-consuming. Many stakeholders such as the
transport authorities and operators are involved in de-
cision making, each to their own objectives and respon-
sibilities. To design and develop adequate simulation
tools that support these domain-experts in the decision
making process is a challenge. Different aspects of the
railway system, e.g. the infrastructure, control measures
and timetables, shall be combined in a self-contained
simulation package to allow for comprehensive experi-
mental analysis by multiple actors, and to provide them
with a platform that enhances common understanding
to reach well-informed decisions. Due to the long life
span of rail infrastructure and services, changes often
come up which lead to new issues to study. Thus rail-
bounded modeling particularly requires malleable com-
position and configuration in order to promote model
reusability. The design requirements mentioned earlier
embrace these needs, and therefore they are used as the
guidelines to design our rail simulation library.

Rail Model Hierarchy

Similar to the first case, rail models in the library are de-
fined following the DEVS formalism (Zeigler and Prae-
hofer 2000), which benefits the model structure with
modularity and hierarchical composition (or decompo-
sition). The library is built as an extension of the ES-
DEVS library (Seck and Verbraeck 2009). Two classes of
models are distinguished, the rail elements and the rail
components, as shown in Fig. 2, which are in line with



Figure 1: Architecture of the automated container terminal design environment

Figure 2: (Simplified) Model Composite Relation

the concept of atomic and coupled models in DEVS. Rail
elements are the irreducible models that can not be de-
composed, e.g. a rail vehicle, sensor, signal or a piece of
track segment; more see (Huang et al. 2010). Rail com-
ponents are resultants of composition that may contain
rail elements and rail components. The rail elements
and components can be composed into more complex
components, which in turn can be composed, and so
further recursively. As such, users can build complex
rail network with the components without knowing the
complex internal code.

Fig. 3 illustrates a simple example of the rail network
model hierarchy. A cloud shape denotes a rail compo-
nent, a rectangle denotes a rail element, and a one-to-
more relation is represented by a triple-line. In gen-
eral, a top level rail model (component) contains one
or more sources and sinks, which respectively generates
and removes vehicles in the simulation. (Each vehicle
generator in a source can schedule the vehicle genera-
tion according to a different timetable.) The rail model

Figure 3: An Example of the Rail Model Hierarchy

composition is flexible. It may contain stops, intersec-
tions, block systems, and other model composition. The
intersection, e.g., has signals to control the accessibility
of the track sections. Switches allow vehicles to move
from one track over another. The control unit computes
the signalling logic depending on the occupancy of the
tracks and switches. Each of those rail elements mod-
els one functionality of the rail infrastructure, and the
their aggregation forms a higher level component that
performs more complex tasks.
A rail vehicle (model element) is generated in a source.
As the vehicle drives in the rail network, it is moved



from one rail component to another (dynamic structure
DEVS). The rail network model, at its lowest descrip-
tion level, is a directed graph of linked rail infrastructure
elements (track segments, sensors, switches and signals).
A vehicle model is linked directly with an infrastruc-
ture element, each of which is capable of message prop-
agation, the principle object-to-object communication
mechanism used in the library. Its base concept is the
DEVS message passing through paired I/O ports.

Message Propagation

The message propagation can be along the traffic cur-
rent or in the opposite direction. When a vehicle lacks
information about its next infrastructure or the preced-
ing vehicle, it sends a request-message forward. The in-
frastructure element that gets the message propagates
the message until the next infrastructure of interest
and/or a preceding vehicle is found. The found element
(e.g., a track segment that has speed limit change, a sig-
nal or a vehicle) replies with a response-message which is
propagated backward until it reaches the original sender
of the request-message. If an element changes state, it
also sends an update-message backward to inform its
potential succeeding vehicle. A message contains in-
formation of the sender, the contemplated receiver (if
necessary), and the distance between the sender and
the receiver. According to this information, a vehicle’s
movement is computed until its next infrastructure or
its preceding vehicle (if any). Once the vehicle reaches
the next infrastructure (it will be linked to the next in-
frastructure) or its preceding vehicle, a new round of re-
quest and response message exchange is performed and
new movement is computed. Message propagation is a
communication mechanism that is transparent to model
users. The users only need to setup the rail network.
The message sending, forwarding, receiving and the dy-
namic linking of the vehicles are accomplished by the
model elements autonomously.

Rail Model Builder

To simplify model construction and configuration, we
have developed the CAD Rail Model Builder (CRMB)
as one of the possible approaches to interface with the
rail library. Many railway companies and authorities
use CAD and GIS applications for infrastructure de-
sign. The resulting design files can be used for model
generation. However, as these files often do not con-
tain information about the network topology in a hier-
archical way, a couple steps of data cleaning, prepro-
cessing and transformation are necessary to make the
data useful for DEVS model generation. For example,
when the orientation of the track drawing entities is not
in accord with the traffic current, the track orientation
needs to be corrected first. The positions of switches
and crossovers can be detected where more than two

track segments connect. Based on the position and ori-
entation of the connecting tracks, the switch type is de-
termined whether it is converging or diverging. In order
to identify certain model components, pattern recogni-
tion technics are applied. The identified elements, e.g.
tracks, switches and crossovers, that belong to one com-
ponent are grouped and indexed for model generation.
Some infrastructure components do not have a determi-
nate pattern of its composite elements. These elements
are defined by users in additional data sources (e.g., a
configuration file) for model generation.

Enhancements of the library

The rail simulation library is still in development. We
plan to separate the rail components into light-rail and
heavy-rail specific packages. Both based on the generic
rail simulation core. Such restructuring could reduce
the library core to a minimum. A graphical modeling
interface is also in design to provide a model configura-
tion alternative for users. In a recent paper (Huang and
Verbraeck 2009), we proposed a dynamic data-driven
approach for rail simulation. The idea is to automate
model calibration and validation by comparing model
output with rail operation data. In this context, the
DEVS based library design would also benefit our de-
velopment.

FUTURE WORK

In the light of the first and second case studies, we show
that DEVS model libraries can provide a feasible frame-
work for modeling infrastructure systems. Supporting
component-based modeling, developed DEVS libraries
offer modularity to the designer to customize and reuse
the model components. Yet, the conducted case studies
reveal that several issues need to be addressed to fully
support decision making in infrastructure systems.
The design process of infrastructure systems is multi-
actor by nature in which every actor has its own inter-
ests and perceives the system in his own way. Therefore,
the models should support different perspectives from
various actors. What is more, each unique perspective
can be decomposed into various levels of abstraction, so
called resolutions. This will allows the actors to change
the resolution of their models to specify the inputs at dif-
ferent levels of precision, analyze the output and reason
about the cause-effect relationships. However, the exist-
ing designs lack a common consistent framework result-
ing in a single perspective and statically defined models
at different resolutions. A framework with a set of rules,
design guidelines and constraints need to be introduced
in the existing design environment to allow a problem to
be studied inside the whole assumptions space, instead
of having a base case and trying to have some intu-
itions from that. This is important when dealing with
the design of infrastructure systems. In a recent paper



(Tekinay et al. 2010), we discussed the key issues and
preliminary design ideas to provide a multi-resolution
and multi-perspective modeling in multi-actor environ-
ments.

CONCLUSIONS

The purpose of this paper is to present our experiences
when designing and using the DEVS model libraries to
support decision making in infrastructure systems. Two
different model libraries including the library for auto-
mated container terminals and light-railway systems is
given a baseline case to discuss the challenges through-
out the design process. DEVS model libraries allow de-
signer to build component-based models which have the
advantage of being modular, extensible and reusable.
Such capabilities provided by DEVS model libraries are
arguably essential for designing infrastructure systems
where vast number of components and control mecha-
nisms involved. For the further studies, DEVS model
libraries will be a solid backbone for us to deal with the
next challenges of providing multiple perspectives at dif-
ferent levels of abstractions to support multiple actors.
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