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Abstract

The recent emergence of Al-driven code generation
models can potentially transform programming ed-
ucation. To pinpoint the current state of research on
using Al code generators to support learning and
teaching programming, we conducted a systematic
literature review with 21 papers published since
2018. The review presents the teaching and learn-
ing practices in programming education that utilize
these models, the characteristics and performance
indicators of the code generation models, and as-
pects to be considered when utilizing the models
in programming education, including the risks and
challenges of using code generation models for ed-
ucational practices. Al code generators can be an
assistive tool for both learners and instructors if the
risks are mitigated.

1 Introduction

Large Language Models (LLMs), like OpenAI’s Generative
Pre-trained Transformer (GPT) models and the Codex model,
have the ability to generate code from natural language de-
scriptions, enabling natural language programming and per-
forming a wide range of tasks, including code-to-code op-
erations like code completion, translation, repair, as well
as language-to-code operations like code explanation [10].
These Al-driven code generation models offer both opportu-
nities and challenges for educators and students in program-
ming education, as highlighted by existing research. For ex-
ample, code generators might automatically correct syntax,
allowing students to concentrate more on the problem-solving
components of computational thinking [1]. Additionally, by
producing programming exercises and explanations for the
solutions, these tools could help educators develop curricula
[1]. Also, another study results indicate that Al code genera-
tors allowed novice programmers to perform better and faster
with less frustration, and did not reduce their performance on
manual code modification or writing code in the absence of
the code generator [10]. On the other hand, auto-generated
code raises concerns about academic integrity and the risk of
users excessively relying on the generated outputs [10].

Given their availability and accessibility, code generation
models have the potential to transform how programming is
taught and learned in the near future. However, the sudden
emergence of these tools may catch educators off-guard, leav-
ing them unprepared for the significant impact of code gener-
ation models on education [1]. Hence, it is critical to review
and adapt our educational practices to incorporate these new
technologies.

Al-driven code generation models have started to become
a part of the education landscape, yet there is limited under-
standing of how best to adapt our teaching practices to ef-
fectively manage the challenges and benefits associated with
their use. This study aims to address this gap by providing a
comprehensive review of the current state of code generation
models’ use in teaching and learning programming, and by
identifying best practices. Through this systematic literature

review, we aim to synthesize guidelines that will leverage the
benefits of Al-generated code while mitigating the risks.

The main question that will be answered is How can code
generation models be used in practices for teaching and
learning programming? The following research questions
have been formulated to guide our systematic literature re-
view.

* RQ1: What are the practices that use code generation
models for teaching and learning programming?

* RQ2: What are the characteristics of the code genera-
tion models that are used in teaching and learning prac-
tices?

* RQ3: What indicators are used for evaluating the perfor-
mance of code generation models in teaching and learn-
ing practices?

* RQ4: What aspects should be considered when utilizing
code generation models in teaching and learning prac-
tices?

The rest of the paper is organized as follows: Section 2
presents the methodology, Section 3 presents the results of
the review, Section 4 discusses the results and limitations,
Section 5 presents threats to validity, Section 6 discusses re-
sponsible research and finally, Section 7 concludes the study.

2 Methods

We conducted a systematic literature review by adapting the
guidelines proposed by Kitchenham and Charters [11]. A
systematic literature review is preferred as it follows a well-
defined procedure, ensuring transparency and reproducibil-
ity. Section 2.1 describes the search process, including the
databases chosen and the search strings used. Section 2.2 de-
scribes the criteria for the inclusion and exclusion of the pa-
pers. Section 2.3 describes the screening process and finally,
Section 2.4 explains the information extraction.

2.1 Search Process

Initially, two databases, ACM Digital Library and Scopus,
were selected for relevant paper searches. ACM Digital Li-
brary covers a wide array of computer science topics, in-
cluding programming languages, artificial intelligence, and
human-computer interaction, making it a valuable literature
source for the research questions. Secondly, Scopus is a mul-
tidisciplinary database encompassing various academic fields
such as science, engineering, technology, health sciences, and
social sciences. Scopus is chosen as it provides a broad range
of articles from different academic fields that can help us get
a comprehensive understanding of the use of code generation
models in education and help us access papers that are not
present in the ACM database.

The search string developed to retrieve resources from the
databases is shown in Figure 1. The string was created by
pinpointing search terms from the research questions, then
listing their synonyms, and also by including specific large
language models or code generation tools like ChatGPT and
Github Copilot.

In systematic reviews, publication bias can result in sys-
tematic bias if left unaddressed [11, p. 15]. Therefore, Google



( “code generation model*” OR Codex OR “Github Copilot” OR
ChatGPT OR “Al coding assistants” OR “Al code-generators”
OR “code generation”) AND (teaching OR education OR
learning OR educat* OR learn* OR instructor*) AND
(“computer science” OR “computing education” OR
programming OR “coding practices” OR “software
engineering”’) AND (assessment® OR curriculum OR curricula
OR practices OR proposal OR tools)

Figure 1: Search String for ACM and Scopus

Scholar is used to identify additional resources. Google
Scholar expands the search to include unpublished work, ad-
dressing the concern of positive outcomes being published
more frequently than negative results [11, p. 15]. Further-
more, considering the recent availability of large language
models and code generation models to the public, Google
Scholar served as a valuable tool for identifying more re-
sources.

Google Scholar offers limited options to combine multiple
search terms with Boolean operators and does not allow you
to limit your search to title, abstract, and keywords. Thus, a
more strict query is used to search in the full text of publica-
tions. The new search string is provided in Figure 2.

education learning teaching Codex OR “Github Copilot” OR
ChatGPT OR “Al coding assistants” OR “code generation
models” “computing education” OR “programming education”
curricula OR practices OR proposal OR tools OR strategies
“large language models”

Figure 2: Search String for Google Scholar

The search performed on 08/05/2023 was limited to pa-
pers published in the last 5 years (2018-2023), considering
the novelty of LLMs for code generation. Search results
were recorded in spreadsheets, which were later merged into
a a single file to identify duplicates and record subsequent
screening.

2.2 Criteria

The following inclusion and exclusion criteria are determined
to define the scope of our research.
Inclusion Criteria:

e Journal articles and conference proceedings that are
written in English

* Papers that present or discuss the use of LLMs for code
generation for educational purposes

 Papers published in the last five years (2018-2023)

* Papers that focus on the impact of Al code generation on
Computer Science and programming education

Exclusion Criteria:
* Papers that are not written in English

* Papers irrelevant to code generation models with large
language models

 Papers irrelevant to use of code generation models in
programming education

* Papers that are inaccessible

2.3 Selection Process

The selection process included three steps, Identification,
Screening, and Eligibility. Figure 3 displays each step clearly
and provides the number of articles included in each step. Ini-
tially, 162 records were identified from the databases; 47 were
from the ACM database and 115 were from Scopus. Further-
more, we identified 79 records from Google Scholar. Exclud-
ing duplicated results, 217 records remained for the screening
process.

|
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Records included (n=21)

Figure 3: PRISMA flow diagram

During the Screening step, the title and abstract of each ar-
ticle are screened to decide whether it potentially meets the
selection criteria provided in Section 2.2. As a result, 36
records were included.

During the Eligibility step, we reviewed the methodology,
discussion, and conclusion sections of the articles to verify
their relevance to the research scope. This step ensured that
the criteria in Section 2.2 are applied correctly in the Screen-
ing step and that the selected papers address at least one
sub-question, either by presenting the use of code generation
models in programming education, introducing indicators to
evaluate the models used, or describing aspects that should be
considered when utilizing these models. After this process,
we ended up with 21 relevant articles to review.

2.4 Coding and Information Extraction

Information extraction was performed using a combination of
deductive and inductive coding approaches. Initially, main
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themes and codes were derived deductively from the re-
search questions, and subsequently, new codes were gener-
ated through an iterative review of the articles. Information
extraction is conducted using the Atlas.ti' software.

During the reading process, extracted quotes were matched
with relevant codes or themes. For RQ1, the main theme was
educational practices, including teaching, learning practices,
and tools. Additional codes like assessment and content gen-
eration were added during the iterative process. For RQ2,
the main theme was characteristics of code generation mod-
els, with subcategories like accuracy, performance, and lim-
itations. For RQ3, the main theme was performance indica-
tors, after reading the papers we categorized relevant quotes
as quantitative and qualitative metrics. For RQ4, we included
categories of risks, ethical use, and alignment with learning
objectives, which were refined upon reading the articles.

3 Results

The results of the review are analyzed for each research ques-
tion. Section 3.1 presents teaching and learning practices that
use LLM-based code generation models as well as the edu-
cational tools that utilize the models. Section 3.2 provides
the characteristics of the code generation models used in the
practices discussed in Section 3.1. Section 3.3 presents the
performance metrics to evaluate the code generation models
that are used in programming education. Finally, Section 3.4
discusses the aspects to be considered when using code gen-
eration models in programming education.

3.1 RQ1: The educational practices that use code
generation models

The results for this research question are divided into three
subcategories: teaching practices, learning practices, and ed-
ucational tools that use LLM-based code generation models.
Findings indicate that teachers can use the models mainly to
generate assignments and evaluate student work, while for
students, the models function as virtual tutors. Tables 1 and 2
list teaching and learning activities that use code generation
models, with reference papers and representative quotes.

Teaching Practices

Instructors can utilize LLM-based code generation models
to automate the generation of programming assignments, in-
cluding sample answers with explanations and test cases.
These models also facilitate code translation between pro-
gramming languages [3], simplifying content creation. By
leveraging these models, instructors can also generate novel
exercise variations based on existing exercises [8]. More-
over, the models’ ability to contextualize problem statements
[19] and create personalized questions tailored to student’s
interests [13] allows instructors to create engaging questions.
It is worth mentioning that the papers in Table 1 all recog-
nize the necessity of manually reviewing Al-generated mate-
rials to ensure accuracy and clarity, given the unreliability of
LLMs. However, researchers still agree that this practice re-
duces teachers’ workload, as evaluation is easier compared to
creating exercises from scratch. For instance, Sarsa et al. [19]

"https://atlasti.com/

state that code generation tools aid instructors in overcoming
writer’s block and generating ideas quickly, even if the re-
sulting exercises are not used directly. Moreover, Geng et al.
[8] suggest that instructors and TAs can manually review the
generated exercises or homework to ensure correctness and
appropriateness.

Furthermore, LLMs can assist teachers in partially au-
tomating the grading process by identifying strengths and
weaknesses in writing assignments, and providing natural
language feedback on student code, as presented in Table 1.
This capability can save teachers considerable time when pro-
viding individualized feedback to students.

Learning Practices

According to the papers, LLM-based code generation models
can be used by learners to generate practice materials, alterna-
tive solutions for programming questions, code explanations,
and suggestions. Table 2 summarizes the learner activities.
Overall, the models can help students study and practice pro-
gramming by generating personalized learning materials and
functioning as a tutor, especially for students who do not have
access to tutoring.

Code generation models can create additional learning re-
sources in programming education, such as practice exer-
cises, sample answers, and alternative solutions. According
to Geng et al. [8], these models can generate personalized ex-
ercises tailored to the student’s proficiency level, improving
the learning experience. The models can also offer multiple
solutions to a given programming problem, introducing stu-
dents to different problem-solving approaches. Furthermore,
tools like Github Copilot and ChatGPT offer valuable assis-
tance to learners by providing immediate feedback on their
code. They can explain the code, suggest optimizations, pro-
vide syntax tips, clarify error messages, and suggest ways to
fix the errors. Moreover, these tools are capable of various
types of code explanations. Given a code snippet, GPT-3 can
analyze time complexity, identify common mistakes, summa-
rize code, trace execution, fix bugs and explain how they were
fixed, create real-world analogies, list relevant programming
concepts, and predict console output [14].

Moreover, the added benefit of ChatGPT, mentioned in [18,
9], is its ability to generate conversational dialogues, allowing
learners to ask questions in the same way they would ask their
tutors, thus making the learning process more intuitive, inter-
active, and beginner-friendly. Additionally, [8] highlights that
since students can input their own text prompts, these models
help them learn at their preferred pace and in alignment with
their learning style.

Educational Tools

Three papers [23, 5, 10] extensively explain and evaluate an
educational tool that uses LLM-based code generation mod-
els. This subsection explores the Robosourcing model [5],
The Coding Steps web app for learning basic Python pro-
gramming [10], and the MMAPR model [23] for repairing
bugs in student code.

The Coding Steps [10] is a web app designed for learn-
ing basic Python programming. It offers a beginner-friendly
programming environment with a series of tasks introduc-
ing new concepts. Learners can progress through these tasks



Activity Activity Detail Representative Quotes References
Exercise descriptions “[...] programming exercise, its solution, and the code explanation were all
sample answerz an d generated automatically by OpenAl Codex™ [19] [13, 22, 9,
Automatic Pie | “ChatGPT can help instructors generate exercises, quizzes, and scenarios for 12, 19]
. explanations »
generation of student assessment” [12]
assignments Test cases for the ex- “OpenAl Codex model is able to provide [...] automated tests to verify the [3.9, 19]
ercises student’s solutions, and additional code explanations.” [9] >
Personalized  prob- “‘generate a personalized Parsons problem, one that is based on the student’s [13.3.19]
lems incorrect solution using LLMs” [3] >
“By simply inputting a prompt or a topic, ChatGPT can generate a range of
Variations of ques- questions with varying levels of difficulty and complexity.” [8] 8. 19]
tions “Codex can generate novel variations of the exercise that could then be deployed ’
to students” [19]
“Teachers can use large language models to semi-automate the grading of stu-
Grading Assignment d'ent”work by highlighting potential strengths and weakness of the work in ques- [17. 18, 9]
Assessment and tion” [9]
evaluation “the model can be used to grade assignments and quizzes” [18]
o “[...] can help teachers to identify areas where students are struggling, which
Identifying areas stu- .
. adds to more accurate assessments of student learning development and chal-  [9]
dents are struggling lenges.” [9]
“[...] used NLP-based models to generate feedback for textual student answers [18. 22, 9
Feedback Generation  in large courses, where grading effort could be reduced by up to 85 % with a 19]’ >
high precision and an improved quality perceived by the students.” [9]
Table 1: Teaching practices using Code Generation Models
Activity Representative Quotes References
“ChatGPT can be utilized to generate exercises that are customized to a student’s individual skill level,
Generate practise 2110w1ng them to practice and apply programming concepts in a targeted apd efchtlve manner.” [§] [18. 8. O,
. Our results suggest that it may be possible for individual students to provide their own keywords and
exercises . . . . . . 12, 19]
have tailored exercises generated for their personal use, possibly using teacher created exercises as
primes.” [19]
“Al-generated solutions provide a low-cost way for students to generate exemplar solutions to check
their work when practicing” [1]
Generate exem- ., | | soluti h hanism in i [18, 12, 1,
lar solutions For example, as model solutions have been proposed as a support mechanism in mtroductqry pro- 5 19]
p gramming Nygren et al. (2019), students could generate model solutions with Codex for historical ™
assignment, test and exam problems, where solutions may not otherwise exist.” [19]
“These models could suggest alternative, and more efficient or idiomatic ways of implementing pro-
grams, which could help learners to improve their coding style.” [1]
Generate alterna- “Code generation tools can also be used to help expose students to the variety of ways that a problem [8, 15, 1,
tive solutions can be solved.” [1] 19]
“They could also generate alternative correct solutions for a problem they have solved, to reflect on
their own solution and to compare different algorithms and language constructs.” [19]
Improve  student lChgt(“{’P"l; can help optimize codes by suggesting ways to reduce the memory usage and time com- 182
code plexity” [13] . . . . . . . [18, 23]
“ChatGPT can identify errors in code and provide potential suggestions and code snippets.”[18]
“For example, if a student is working with a programming language that they are not familiar with,
Clarify error mes- ChatGPT can provide assistance by clarifying error messages and offering suggestions for how to fix
sages and provide them.” [8] [13,8, 1]
suggestions “Codex is capable of explaining error messages in natural language - often effectively - and that that
it can also provide correct fixes based on input code and error messages” [1]
Support concep- .. .
ChatGPT can generate easy-to-understand explanations and pseudocode that are useful for learners  [13, 17, 8,
tual understand- . . "
ing to understand algorithmic concepts.” [18] 18, 20, 1]
. “ChatGPT can also provide syntax tips to help students write correct and efficient code. This includes
Provide  syntax . ; . .
tips suggestions for common programming structures and best practices, as well as guidance on how to  [8, 15]
p avoid syntax errors.” [8]
“GPT models are capable of explaining code in plain and easily understandable terms.” [20]
Code explana-  “This use case shows GPT-3 can identify and explain time complexity.” [14] [13, 17, 3,
tions “GPT-3 can automatically create a checklist of common mistakes students might make regarding a 1, 20, 14]

given code snippet.” [14]

Table 2: Learning practices using Code Generation Models



independently while having access to an Al code generator
powered by OpenAl Codex. To enable Al code generation,
users input their desired code behavior in natural language
using a textbox, and clicking the generate button inserts the
code generated by OpenAl Codex. The prompt message for
each API call to Codex is customized by combining six pre-
defined examples, existing code in the editor, and the user’s
requested behavior. This conditioning ensures the AI model
generates beginner-level Python code that considers the user’s
context. Furthermore, the study examining novice program-
mers’ interaction with *The Coding Steps’ demonstrated that
students who utilized the AI generator were able to under-
stand and work with the generated code effectively. Using an
Al code generator improved task completion and correctness
scores while reducing errors and completion times. Addition-
ally, these students performed similarly to the control group
in manual code modification tasks, suggesting no decline in
manual-coding performance.

Robosourcing [5] is a model for generating practice ques-
tions in a scalable manner as a learnersourcing activity.
Learnersourcing involves learners collectively creating con-
tent for future learners while enhancing their own learning
experience [21]. In the Robosourcing model, learners first
provide a priming exercise that includes a problem statement,
sample solution, and relevant themes. Using this, the system
generates a pool of exercises that undergo initial automatic fil-
tering. Learners can further filter and edit the exercises before
adding them to an exercise database. This model utilizes Al
code generation to shift the learner’s focus from content cre-
ation to evaluation. Also, the researchers tested the feasibility
of the Robosourcing model using Codex and found impres-
sive outcomes in generating coherent programming exercises
with sample solutions and automated tests. Although there
were some accuracy concerns, these issues could be easily
fixed manually.

Finally, Zhang et al. [23] presented MMAPR, a multi-
modal automated repair system that utilizes Codex as its core
component to automatically fix errors in students’ Python
programming assignments. It considers multiple sources that
aid in code repair, including instructor-provided test cases,
task descriptions in natural language, compiler messages for
syntax errors, and even other students’ submissions if acces-
sible. The system also aims to minimize unnecessary code
generation and avoids modifying correct portions of the pro-
gram. MMAPR, utilizing Codex as its core, can address both
syntactic and semantic errors in Python assignments through
a combination of methods like multi-modal prompts, iterative
querying and program chunkung.

3.2 RQ2: Characteristics of the Code Generation
Models used in Educational Practises

All reviewed papers employed OpenAl’s various GPT mod-
els for code generation. Among them, six studies [23, 5, 19,
7, 10, 2] used OpenAl Codex, while three studies [13, 15, 16]
focused on analyzing Github Copilot, which is powered by
Codex too. One study [14] used GPT-3, while [20] studied
both GPT-3 and GPT-3.5. Several studies [17, 6, 8, 18, 9, 12]
explored the use of ChatGPT on various educational tasks,
while only one [6] used its latest version, GPT-4. Lastly, [3,

4, 22, 1] did not specify an LLM, instead focusing on the ed-
ucational opportunities and challenges of Al code generation.

Performance and Limitations of the Models

Out of the 21 papers reviewed, 10 [17, 6, 8, 18, 23, 5, 20, 19,
7, 16] feature empirical studies examining the performance
and characteristics of code generation models. Among these,
6 papers [17, 6, 8, 18, 20, 7, 16] argue that while the models
can generally produce well-structured and accurate solutions
for programming assignments, they have several limitations.
Furthermore, [5, 19] discuss the limitations of Codex in gen-
erating programming assignments, while [19] also delves into
the characteristics of generated code explanations.

The study in [17] involving 24 students revealed that while
students who used ChatGPT achieved higher scores in less
time, they encountered inaccuracies or inconsistencies in the
generated code, preventing perfect scores. The study notes
that ChatGPT provides coherent and well-structured code
with comprehensive explanations, but executing the gener-
ated code in the IDE can lead to errors due to limitations in
input/output size, output truncation, and inconsistencies re-
sulting from multiple queries to ChatGPT. Similarly, in an-
other study [18], researchers found that adjustments to the
generated code were still required for error-free compila-
tion, despite ChatGPT achieving an average code accuracy
of 85.42% when generating code from problem descriptions.
Moreover, Codex’s performance is similar to ChatGPT. By
evaluating Codex’s responses to 23 programming questions
from their CS1 course, Finnie-Ansley et al. [7] observed that
10 of them were successfully solved on the first attempt, some
with minor formatting errors. Codex achieved a rank of 17
out of 71 students, placing it in the top quartile of class perfor-
mance. Similarly, [16] indicated that some of Github Copi-
lot’s code solutions lacked clarity, for instance, they included
redundant opening and closing files and unreachable code.

Furthermore, Savelka et al. [20] evaluated GPT models
on 530 multiple-choice questions (MCQ) from three Python
courses and found out that GPT models perform better in
handling questions involving the generation of code or nat-
ural language explanations compared to MCQs. They fur-
ther demonstrated that GPT models perform worse on MCQs
with code snippets than those without. While fill-in-the-blank
questions and completing natural language statements about
code are handled relatively well, MCQs requiring analysis
and reasoning about code, such as true/false questions or pre-
dicting output, are the most challenging. Similarly, Dobslaw
and Bergh [6] supported these findings, showing that even
the latest GPT model, GPT-4, faces challenges with various
question types. GPT-4 frequently struggled with MCQs, of-
ten selecting only some of the correct options. Additionally,
it had difficulties in questions involving graph traversal and
executing search algorithms based solely on textual descrip-
tions of graphs.

Regarding the generation of programming exercises,
Denny et al. [5] observed that approximately one-third of the
exercises generated by Codex were deemed immediately us-
able for teaching purposes and served as starting points for
learners to evaluate and modify. Likewise, Sarsa et al. [19]
also noted that Codex-generated programming exercises of-



ten required adjustments before using them in a course, as
problem statements frequently did not address corner cases,
and many exercises either lacked tests or had flawed ones.

Finally, regarding code explanations, [19] found that
Codex explanations cover approximately 90% of the code
but contain inaccuracies in about 67.2% of the explanation
lines. However, these errors are usually minor and can be
easily addressed by instructors or teaching assistants. More
importantly, the study highlights the limitations of Codex in
generating high-level code descriptions. Despite attempting
various explicit priming statements, Codex tends to generate
line-by-line code explanations.

3.3 RQ3: Indicators for Evaluating the
Performance of Code generation models in
teaching and learning practices

Three papers [5, 19, 10] systematically analyze the perfor-
mance of the models with a list of performance indicators. To
study the performance of LLM-based code generation mod-
els for automatically generating exercises, sample solutions,
and code explanations, Denny et al. [5] and Sarsa et al. [19]
used a list of performance metrics which is provided in Ta-
ble 3. On the other hand, Kazemitabaar et al. [10] focused
on evaluating the impact of Al code generators on learner be-
havior rather than directly examining the performance of the
models.

The metrics used in [10] are listed with their definitions
in Appendix A.1. The metrics were categorized into three
groups: (i) overall training metrics which include indicators
like completion rate and the amount of received feedback, (ii)
per-task performance which involves correctness score, com-
pletion time, and encountered errors, and (iii) Al code genera-
tor usage that includes metrics such as the percentage of code
written by Codex, and the Jaccard text similarity between fi-
nal submission and Codex-generated code.

3.4 RQ4: Aspects to be considered when using
code generation models in teaching and
learning

Academic Integrity Eleven papers [17, 8, 15, 18, 5, 20, 9,
12, 1, 7, 16] discuss the risk of Al code generators facilitat-
ing plagiarism and compromising academic integrity. Denny
et al. [5] states that familiarizing students with these technolo-
gies by using them in education could increase their use for
plagiarism. Moreover, [15, 18, 7] mention the difficulty in de-
tecting Al-generated answers. Al-generated code is diverse in
structure, resistant to standard plagiarism detection tools, and
does not involve communication with others like traditional
cheating methods, making it difficult to detect misconduct.
On top of this, Geng et al. [8] highlight that if these tools are
used for assessment purposes, it may undermine the valid-
ity of academic assessments. To mitigate the risks, Qureshi
[17] suggests revising academic integrity policies and honor
codes to address the use of Al tools, providing clear and sim-
ple guidelines for the proper use of LLMs in education, and
training students on academic integrity to ensure they fully
understand the importance of maintaining ethical standards.
[9] adds to the mitigation strategy by encouraging research

on analysis techniques and measures to distinguish machine-
generated from human-generated text, and incentives to de-
velop curricula and instructions that require the creative and
complementary use of code generation models.

Over-reliance FEight papers [17, 8, 15, 18, 20, 1, 2, 9]
highlight the risk of over-reliance on code generation tools.
Rahman and Watanobe [18] and Kasneci et al. [9] accentu-
ated that the ease of acquiring answers and code from these
tools can be a barrier to improving learners’ critical think-
ing and problem-solving skills. Over-reliance on the mod-
els can lead to the loss of creativity [17], and amplify lazi-
ness [18] as the Al-generated responses may discourage stu-
dents from exploring alternative solutions. Likewise, Prather
et al. [15] hypothesized that “over-reliance on tools like Copi-
lot could possibly worsen a novice’s metacognitive program-
ming skills and behaviors”. Moreover, Becker et al. [1] stated
that novices using models like Github Copilot, which pro-
vide embedded support in an IDE, may become reliant on
auto-suggested solutions, potentially resulting in students not
reading problem statements carefully and a lack of critical
thinking about the steps required to solve a problem. Geng
et al. [8] argues that this dependency on Al-generated code
could gradually diminish the quality of education and devalue
computer science degrees. Rahman and Watanobe [18] adds
onto that by claiming additional research is needed to develop
academic curricula, question-and-answer formats, and exams
that effectively tackle the raised challenges.

Accuracy and Reliability of the models Accuracy and re-
liability concerns of Codex and ChatGPT are highlighted in
five papers [17, 6, 9, 12, 1]. The lack of consistency and ac-
curacy in the code generation models’ responses are already
mentioned in Section 3.3. Likewise, according to [17], Chat-
GPT has a tendency to generate solutions with non-existent
rules or equations and to provide unreliable, untraceable, and
unverifiable answers. It is also noted in [6] that ChatGPT
tends to make errors in arithmetic and deduction while sup-
porting them with excellent explanations. This ability of the
models makes it difficult for students to distinguish the er-
rors and unverified information, leading to students accept-
ing false or misleading information as true [9]. Likewise, ac-
cording to [1], Codex can recommend syntactically incorrect
code, including undefined variables, functions, and attributes.
The suggested solutions from Codex may seem correct at first
glance but may not actually fulfill the intended task. To mit-
igate the risks, [9] stresses educating students on the critical
evaluation of information and teaching strategies for explo-
ration, investigation, and verification.

Appropriateness for beginners Papers [9, 1, 7] raise con-
cerns about the appropriateness of these code generation
models for beginners. According to [7], students using Codex
to generate model solutions for exercises may hinder their
learning if the generated solutions are incorrect or of poor
style, resulting in the adoption of inappropriate conventions
and poor coding style. While this is a risk with any crowd-
sourced solution, the customized nature of Codex’s solutions
may lead students to perceive them as more credible. Further-
more, [1] states that the coding styles of publicly available
code are different, and potentially more advanced, compared



Qualitative Metrics for Programming Ex-
ercises

Definition

Sensibleness
Novelty
Topicality

Readiness for Use

whether the problem statement describes a practical problem that could be given to students to
solve [5, 19]

whether the copy of the programming exercise or a similar programming exercise already exists
and can be found online [5, 19]

whether the generated problem incorporates the provided theme and concepts from the required
sets (e.g. matches the CS concepts provided in the prompt) [5]

the amount of manual work a teacher would have to make for the exercises and the associated
sample solution and tests [5, 19]

Quantitative Indicators for Programming
Exercises

Definition

Executability of Sample Solutions
Automated Tests
Statement Coverage

whether the sample solutions could be run [5, 19]
whether the sample solution passed the automated tests [5, 19]
the statement coverage of the automated tests when the code runs [5, 19]

Metrics for Code Explanations

Definition

Presence and Frequency of Mistakes
Completeness of Code Explanations

Accuracy of Explained Lines

the types of mistakes present and determining and how common they were in the explanations
for the different priming programs [19]

whether all parts of the code were explained in the generated explanations (Yes/No) [19]

the proportion of correctly explained lines out of all the generated explanation lines, indicating
the accuracy of the code explanations [19]

Table 3: Metrics used for evaluating automatically generated programming exercises and natural language explanations of code samples. The
qualitative metrics were first assessed by Yes / No / Maybe statements by the researchers and then were quantitatively analyzed by Yes / No /
Maybe counts. The quantitative metrics for evaluating the automatically generated programming exercises are conducted programmatically.

to those of typical novice programmers. Given that these
models are trained on publicly available code, the style of
the generated code may differ from those of typical novice
programmers and their instructors.

Other ethical implications Papers also discussed harmful
biases and the issue of code reuse. Five papers [15, 18, 5,
9, 1] highlight the issue of harmful bias, claiming that code
generation models are not immune to the bias in Al, and can
possibly reflect stereotypes, represent only certain groups of
people, etc. Furthermore, two papers [15, 1] highlight that the
Al-generated code can present challenges in terms of licens-
ing and attribution. Publicly available codes that are used to
train these models may have various licenses. However, Al-
generated code often lacks clear attribution, leading to poten-
tial license violations. Thus, instructors should educate their
students about how the models are trained and their responsi-
bilities when reusing code.

The Future of Programming Education with Code
Generation Models
Two papers [6, 7] propose contextualized, specific, and ap-
plied assessments that enable students to utilize code genera-
tion tools while still engaging in problem-solving. Likewise,
[4] advocates shifting the focus from detecting and preventing
the use of these tools to embracing and integrating them.
Furthermore, Becker et al. [1] and MacNeil et al. [13] sug-
gested a shift in the focus of programming courses. While
teaching in CS|1 traditionally focuses on syntax and basic pro-
gramming principles, as code generation models can handle
low-level implementation tasks, students can shift their focus
to higher-level algorithms. This could lead to a teaching ap-
proach that prioritizes algorithmic problem-solving, utilizing

Al code generation for implementation and delaying syntax
discussions until later stages [1]. Similarly, according to [13],
as software engineers may take on more design-oriented roles
in the future, the focus of courses could potentially shift to-
wards prompt engineering, code evaluation, and debugging.

Finally, Dobslaw and Bergh [6] and Geng et al. [8] discuss
the need for a transitional period for novice programmers. As
mentioned earlier, understanding and assessing Al-generated
code may be challenging for new programmers. Thus, pro-
gramming education is still crucial for individuals to effec-
tively use code generation tools [8]. Instead of introducing
students to these technologies from day one, it may be more
beneficial for them to prioritize building a strong foundation
in core computing concepts [6].

4 Discussion

The findings suggested that LLM-based code generators have
the potential to improve teaching and learning by acting as
a teacher’s assistant and a student’s virtual tutor. However,
their performance is not always satisfactory, and the risks of
using them should be considered at all times.

For RQI, the teaching and learning practices found in the
papers were generally repetitive and lacked depth, with many
papers citing the same research. The proposed learning and
teaching activities were often shallow, such as ’personalized
learning’, and not always backed by empirical studies. This
emphasizes the need for further research on the practical ap-
plications of code generation models in computing education,
as there are still significant knowledge gaps and uncertainties
among educators regarding the effective integration of these
models into teaching and learning processes. Nevertheless,



it is still clear that these tools are only assistive and cannot
replace a teacher. Furthermore, the evaluated prototypes and
tools provide a starting point to utilize code generation mod-
els effectively in programming education. Particularly, the
Coding Steps web app [10] reveals how Al coding assistants
developed by education professionals can support complete
beginners while incorporating control mechanisms to prevent
over-utilization. In light of this study, we believe that espe-
cially for novice programmers, prompts can be tailored to
limit the generation of huge chunks of code and constraints
can be imposed to prevent direct use of generated code.

Answering RQ2 proved challenging due to the diversity
of code generation models examined in the papers and their
varying versions, making it difficult to generalize their char-
acteristics and limitations. Additionally, the empirical studies
differed significantly in their experimental designs, ranging
from large-scale evaluations using hundreds of programming
questions to smaller-scale evaluations involving twenty stu-
dents. Nevertheless, we concluded that various versions of
GPT-3, GPT-3.5, and Codex share similar limitations. While
they excel at generating code and text explanations, they
struggle with reasoning-based questions such as MCQs. We
believe it is crucial to clearly communicate the limitations and
unreliability of these tools to students so that they do not con-
sider the generated answers as the hard truth.

In response to RQ3, while evaluating the accuracy of the
generated material is crucial, the qualitative metrics proposed
by [8, 10] - sensibleness, novelty, topicality, and readiness for
use - offer valuable insights for other researchers and educa-
tors to evaluate the Al-generated code and teaching material.

Regarding RQ4, the reviewed papers discussed the chal-
lenges of using models in education but lacked specific ac-
tionable guidelines for educators to ensure safe student inter-
action. Further research in developing new technologies, such
as ways to obstruct over-utilization or Al-based plagiarism
detectors to safeguard the integrity of education, is necessary.
Furthermore, we suggest developing novice-friendly user in-
terfaces and new tools to promote the safe and appropriate
use of code generation models in education, by addressing
academic integrity, over-reliance, and unreliability concerns.

Finally, it should be noted that the issue of unequal access
to education persists due to the dominance of English-based
innovations. 4 out of 21 reviewed papers [22, 9, 19, 10] ad-
dress the research and innovation gap in this area for non-
English languages. While LLMs hold promise for enhancing
programming education in English, they can lead to unfair
access to educational technologies for non-English speakers.
Unfortunately, the impact of code generation models on non-
English programming education remains unexplored.

S Threats to Validity

The present study faces several threats to its validity due to
limitations in its design and execution. Firstly, the study was
conducted within a relatively short time frame of 9 weeks,
only by one person. This limited time may have constrained
the researcher’s ability to thoroughly review a wide range of
relevant papers and fully delve into the topic. Additionally, as
systematic literature reviews typically benefit from the exper-

tise and input of multiple researchers, the absence of a collab-
orative effort may have further restricted the scope and depth
of the study.

Additionally, the research area is relatively new, indicating
that more extensive research is likely to emerge in the future.
Consequently, the findings may be omitting important studies
or advancements that were published during or after the study
was conducted.

Another potential threat to the validity of this study is the
dynamic nature of LLMs, with continuous improvements to
the models. Since the papers reviewed in this study presented
results based on current and older versions of GPT models,
it is important to acknowledge that the empirical results re-
ported in these papers might differ if evaluated on updated
versions of the models, which might alter the recommenda-
tions that were presented on the use of these models. Con-
sequently, the findings of this study may not hold for future
versions of the models.

Another limitation stems from our decision to include only
literature written in English. This language restriction was
driven by the author’s comfort and the availability of a greater
number of papers in English. However, this choice could have
resulted in the exclusion of relevant studies written in other
languages, potentially introducing bias and limiting the gen-
eralisability of the findings.

Furthermore, it should be noted that the author does not
possess expertise in programming education or LLMs. This
lack of specialized knowledge may have influenced the depth
of the analysis.

Despite these limitations, it is hoped that this study will
contribute to a better understanding of the use of code gener-
ation models in programming education and stimulate further
research in this field.

6 Responsible Research

To ensure reproducibility, the systematic literature review is
chosen as the method of the study, as systematic literature
reviews have a solid search method. We clearly stated how
the data is obtained and provided the list of papers obtained
in each step as a spreadsheet. Moreover, to mitigate the po-
tential impact of publication bias, which can skew research
outcomes, we used Google Scholar as an additional resource
alongside two scientific databases to include both published
and unpublished works. Additionally, to avoid confirmation
bias, which is our tendency to search for information that sup-
ports our beliefs and interpret evidence in ways that are pref-
erential to our existing beliefs, we went through all the pre-
sented data in a systematic way to avoid jumping to conclu-
sions. We first extracted quotes and assigned them to codes,
then we tried to categorize the quotes again to put them into
tables or paragraphs. We went back to the papers multi-
ple times to ensure we are not skipping any data. This ap-
proach helped mitigate the impact of personal beliefs, leading
to more reliable and unbiased research outcomes.

Finally, we acknowledge that due to our decision to include
sources from Google Scholar, some of the included papers in
this study are preprints and not peer-reviewed, which raises
questions about the quality of their findings. Therefore, fur-



ther systematic reviews should be conducted once more peer-
reviewed articles on LLM-based code generation models are
available.

7 Conclusion

The use of LLM-based code generators in programming ed-
ucation presents a promising avenue with possibilities to im-
prove student’s learning experience and alleviate the work-
load of teachers by providing assistance. However, in order
to fully utilize their educational potential, it is essential to
thoroughly analyze the limitations and risks associated with
the use of these tools.

This systematic review of 21 articles emphasized the use
of Al code generators in programming education and its po-
tential advantages as a teacher’s assistant in the creation and
evaluation of assessments and as a student’s virtual tutor that
creates practice material, offers feedback, and provides sug-
gestions. While the study reflects optimism regarding the op-
portunities presented by code generation tools for education,
we also synthesized the limitations and risks of using them
in programming education, while offering insights into the
future of programming education.

While code generation models have transformative poten-
tial in teaching and learning, ensuring safe usage is crucial
as failure to address the models’ accuracy limitations, risk
of misconduct and over-reliance pose a significant danger to
computing education. Future studies should explore integrat-
ing Al code generators in classrooms and designing program-
ming assessments that encourage critical thinking rather than
relying on these tools as answer generators.
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A Appendices
A.1 Metrics used to analyze learners’ performance and behavior in [10]

Overall Training Metrics

Definition and Source

Completion Rate (percentage)
Personalized Feedback (count)
Feedback length (characters)

Direct hints (count)

Definition: How far a learner progressed through the training phase regardless of correctness
of tasks or skips: number of seen tasks divided by total tasks count.

Definition: Total number of personalized feedbacks a learner received during the training
phase. Source: code submission logs.

Definition: The length (number of characters) of the personalized feedback a learner received
during the training phase. Source: code submission logs.

Definition: Total number of personalized feedbacks a learner received that included direct
hints towards solving the problem. Source: code submission logs.

Per-Task Performance

Definition and Source

Coding Correctness Score (percentage)
MCQ Correctness Score (percentage)
Completion Time (seconds)
Documentation Referenced (count)

Encountered Errors (count)

Definition: How correct was a learner’s solution to a single task. Source: Final submission in
the submissions log that was graded independently by two researchers.

Definition: Whether a learner responded correctly to a multiple-choice question. Source:
submission logs.

Definition: Active time a learner spent working on a task (by removing inactivity gaps of
longer than one minute). Source: aggregated logs.

Definition: Whether a learner referenced the Python documentation for a task or not. Source:
documentation logs.

Definition: Number of errors a learner encountered after running their code categorized into
syntax, data-type, and semantic errors. Source: console logs.

Al Code Generator Usage

Definition and Source

Code Generator Usage Per Task (count)

Al-Generated Code Ratio (percentage)

Tasks Broke Down into Subgoals (count)

Prompt Similarity with Task Description

(percentage)

Definition: Number of unique prompts and codes generated using the Al code generator
during a single task. Source: code generator logs.

Definition: The percentage of code in a task that was generated by an Al code generator, as
opposed to being written manually by the learner calculated using the Jaccard text similarity
coefficient [37]. Source: code submission logs and code generator logs.

Definition: Whether different parts of the final submission for a task was generated from
different codex usages. Calculation Method: averaging over the maximum hamming distance
between each line of the final submission and each line in the codex generated codes. Source:
code submission logs and code generator logs.

Definition: Similarity between the prompt used for generating code and the task description.
Source: code generator logs and task descriptions.

Table 4: Definitions, sources, and calculation methods of metrics used for evaluating learner behavior as they interacted with The Coding
Steps web app [10]
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