
Computation Capabilities of Server-Side Trusted Execution Environments
A Comparison of TEEs to Privacy-Preserving Technologies

Vlad-S, tefan Popescu1

Supervisor and Responsible Professor: Lilika Markatou1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Vlad-S, tefan Popescu
Final project course: CSE3000 Research Project
Thesis committee: Lilika Markatou, Tim Coopmans

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
While securing data-in-use was assured by well-
known encryption algorithms, the industry shifted
towards trusting hardware manufacturers in ex-
change for efficiency speedups through Trusted Ex-
ecution Environments. However, there are many
technologies to choose from, each with its own
design and trade-offs. Additionally, no work was
conducted to systematically compare Trusted Ex-
ecution Environments side-by-side with privacy-
preserving techniques. Therefore, this literature re-
view analyzes, in the first part, Intel’s SGX, Key-
stone, Intel’s TDX, and AMD’s SEV from four an-
gles that are strongly tied to data-in-use protection
(functionality, efficiency, security, and usability).
We observed that even though complex and inher-
ently suffering to hardware-related attacks, TEEs
offer a great option for confidential computing.
Lastly, this research compares these state-of-the-
art technologies to four other privacy-preserving
techniques (Fully Homomorphic Encryption, Se-
cure Multi-Party Computation, Oblivious RAM,
and Structured Encryption) by drawing common
properties and displaying them in equal use cases,
showing that TEEs are a great choice for many use
cases, but with stronger security issues.

1 Introduction
Cloud servers have become an essential part of today’s in-
frastructure. As our dependence on them increased, so did
their complexity, even though the software used by these de-
vices tends to contain critical vulnerability bugs that can leak
sensitive user data [1] or allow unauthorized remote access
to the system [2]. Although cryptography standards can en-
sure data safety at rest and in transit, the attack surface is
increased when computing time is taken into account, which
can be a vulnerable step for a malicious user with leveraged
privileges [3]. To address the issue of stealing data-in-use,
multiple security models that promise confidentiality and in-
tegrity were generalized, such as Oblivious RAM [4], Secure
Multi-Party Computation [5], Structured Encryption [6],
or Fully Homomorphic Encryption [7].

One promising method to strengthen security in the cloud
is by running software inside Trusted Execution Environ-
ments (TEEs), which are a technology able to leverage hard-
ware extensions that can safely execute computations with
respect to data integrity and confidentiality and code integrity
[8]. They distinguish themselves from other methods by us-
ing built-in silicon-level cryptographic capabilities to encrypt
and decrypt memory in separate isolated environments [9].

Currently, the implementations of this technology differ
from manufacturer to manufacturer, each with varying secu-
rity designs and trade-offs. For example, ARM’s TrustZone
abstracts itself from the rest of the hardware by introducing a
”trusted world of execution” [10, p. 118], while Intel’s Soft-
ware Guard Extension (SGX) isolates computation through
enclaves and ensures authenticity and integrity using remote

attestation [11]. Thus, it might be difficult for an organization
that handles sensitive data to assess the risks they are exposed
to when choosing between these technologies.

To the best of our knowledge, no existing study pro-
vides a comprehensive analysis of TEEs, Fully Homomorphic
Encryption (FHE), Secure Multi-Party Computation (MPC),
Oblivious RAM (ORAM), and Structured Encryption (StE)
within the same context. Existing literature tends to focus
on individual technologies or pairwise comparisons, leaving
a disparity in understanding their relative strengths, limita-
tions, and appropriate use cases.

To combat the knowledge gap, the study is split into
two parts: highlighting the existing properties of cloud-
based Trusted Execution Environments and comparing them
to those of four other confidential computing technologies
(Oblivious RAM, Secure Multi-Party Computation, Struc-
tured Encryption, and Fully Homomorphic Encryption).
Thus, the research questions can be formulated as follows:

1. What are the computational limitations and capabilities
of server-side Trusted Execution Environments concern-
ing functionality, efficiency, security, and usability?

2. How do Trusted Execution Environments compare to
Fully Homomorphic Encryption (FHE), Oblivious RAM
(ORAM), Structured Encryption (StE), and Secure
Multi-Party Computation (MPC)?

To answer these questions, the work is organized as fol-
lows. Section 2 presents key terminology for understand-
ing Trusted Execution Environments, previous work, and the
methodology of this research. Section 3 will showcase an
overview of related technologies, followed by relevant imple-
mentations of TEEs. The first question will be answered in
detail in Section 4 by splitting the properties into four cate-
gories. The second question will be elaborated on in Section
5. In the last parts of the publication, Section 6 will underline
possible risks that the research is creating, as well as repro-
ducibility concerns, while Sections 7 and 8 will summarize
the findings in the previous sections and come up with recom-
mendations on possible future research that can be conducted
to overcome the mentioned limitations.

As part of our contributions, we compiled selection crite-
ria to restrict the detailed view to four state-of-the-art tech-
nologies: Intel SGX [11], Keystone [12], Intel TDX [13], and
AMD SEV [14]. By the end of this research, we evaluated the
TEEs, presenting their key takeaways under similar features.
Overall, we noticed that confidential virtual machines offer a
more user-friendly deployment with better performance than
their enclave-based counterparts, but at the cost of a broader
trusted computing base.

Lastly, we compared Trusted Execution Environments with
the other four privacy-preserving methods. While all of them
lacked in complexity when compared to TEEs and had better
security assurances, Fully Homomorphic Encryption is still
unfeasible due to efficiency issues, Oblivious RAM is meant
to protect access patterns rather than direct data manipula-
tion, and Structured Encryption is functionally limited to a
set of querying operations. Secure Multi-Party Computation
approaches the capabilities of TEEs in general use cases, at
the cost of preprocessing overhead.

1



2 Preliminaries
2.1 Background
To introduce some relevant terminology for Trusted Execu-
tion Environments, three concepts highlighted in the security
models of most TEEs are comprehensively described below.
These concepts form the foundation for understanding how
cloud-based TEEs achieve data-in-use confidentiality and in-
tegrity, and execution integrity. A broader perspective of se-
curity and architectural features has been included in the work
by Maene et al. [15].

Attestation
Attestation has been defined in 2011 by Coker et al. as the
process where an attester proves to an auditor that certain
properties exist by presenting supporting cryptographic evi-
dence [16]. In the current context, the server has to assure
the client that the system is untampered. In cloud environ-
ments, it is of extensive use to be able to perform this pipeline
from any client outside of the server. Thus, remote attesta-
tion using evidence generated by the hardware root of trust
is usually a fundamental feature of server-side execution en-
vironments [17]. Additionally, some TEEs can perform local
attestation to enable secure communication between channels
on the same machine.

Isolation
Sabt et al. [18] abstracted, among other terms, the concept of
isolation as the presence of a separation kernel mechanism
which enables the division between multiple environments
with controlled common partitions. They have also high-
lighted four policies that this feature meets: data separation,
sanitization, control of information flow, and fault isolation.
Generally, strong isolation can be assured in Trusted Execu-
tion Environments by nested virtualization [19] or by splitting
the system into separate blocks with different privileges and
capabilities [20].

Trusted Computing Base
The trusted computing base (TCB) of a TEE is the summa-
tion of hardware and software components vital for the se-
curity, which, once the rest of the system is compromised,
protects the execution environment from threats [15]. While
it is preferable to handle sensitive logic in hardware, Trusted
Execution Environments with HW-only TCBs are not upgrad-
able, thus making security changes impossible. The size of
software TCB can range from thousands of lines of code
[21, 12] to millions [19], a measurement which usually serves
as a trade-off between the complexity of the functions of a
TEE and its security.

2.2 Related Work
Previous research has been conducted in comparing dif-
ferent implementations of Trusted Execution Environments.
Mofrad et al. [22] claimed they were the first to compare two
widely used technologies in this field by means of use cases,
security, functionality, and performance. An investigation on
design trade-offs of popular cloud implementations was con-
ducted by Li et al. [23], introducing the TEE Runtime Archi-
tectural Framework (TRAF) and highlighting four modes of
TEE runtime management, focusing on security.

Distinctions between privacy-preserving computation al-
gorithms and Trusted Execution Environments have been an-
alyzed in the past. Xu et al. [24] compared Homomorphic En-
cryption, Secure Multi-Party Computation, and Trusted Exe-
cution Environments in the context of blockchain, referring
to detailed research highlighting use cases of these technolo-
gies. However, it was done in parallel rather than analyz-
ing common characteristics. Mulligan et al. [25, p. 137]
stated that FHE and MPC ”will inevitably become attractive”
in the context of future performance improvements, mention-
ing the advantage of the lack of trusted hardware in the two
cryptographic approaches. Oblivious RAM, Structured En-
cryption, and TEEs have not been compared side-by-side, but
rather combined to complement each other. Kane et al. [26]
introduced an oblivious graph querying scheme, where two
ORAM techniques were used, and trusted execution dimin-
ished the communication complexity.

2.3 Methodology
To identify relevant literature on Trusted Execution Envi-
ronments, the research was conducted using the Backward
Snowballing method, starting from a System of Knowledge
basis [23]. This led to a strong foundation of tens of mate-
rials from which four state-of-the-art general-purpose cloud
Trusted Execution Environments and their properties were
extracted: Intel’s Software Guard eXtension (SGX) [21] and
Trusted Domain eXtension (TDX) [13], AMD’s Secure En-
crypted Virtualization (SEV) [14], and Keystone [12]. They
were filtered based on a choosing criteria, which is further
detailed in the next section.

Furthermore, to enrich the literature with newer and less-
cited work, a search query was compounded for Scopus1,
leading to 69 bodies of work (May 2025). It was meant to
find correlations between the four mentioned Trusted Execu-
tion Environments, where functionality, efficiency, security,
and usability properties are highlighted. The exact version of
the query, including the applied search filters, can be found in
Appendix A.

The comparison among the five techniques has been done
with the assistance of the four colleagues who have individ-
ually followed a pre-established research process compara-
ble to this reference. Similarly, they presented through a lit-
erature review existing protocols in FHE, MPC, ORAM, or
StE, and showcased relevant properties for functionality, effi-
ciency, security, and usability. For completeness and correct-
ness reasons, other queries have been performed on Google
Scholar 2 where needed, with terms found in Appendix A.

3 Existing Technologies
The following section will initially investigate the starting
points for the current implementations of Trusted Execu-
tion Environments. Then, it will present the selection cri-
teria, which will be applied to the existing literature to pick
four state-of-the-art technologies. Lastly, we will present the
defining characteristics of the selected TEEs.

1https://www.scopus.com/search/form.uri
2https://scholar.google.com/

2

https://www.scopus.com/search/form.uri
https://scholar.google.com/


TD Operating
System

VM Operating
System

Keystone
Runtime

Enclave
Application

Other
Applications

Host Operating System

TDX Module Hypervisor/Security Monitor

AMD-SP

App 1 App 2

TME-MK PMP MEE

Enclave
Application

Intel TDX [13] AMD SEV [14] Keystone[12] Intel SGX [11] Non-TEE

App 1 App 2

Encrypted RAM Encrypted RAMEncrypted RAM Unencrypted RAMEncrypted RAM

Less
Privileged

More
Privileged

(a)

(b)

(c)

(d)

(e)

Figure 1: Execution stack from user-space to hardware of a high-level overview of selected Trusted Execution Environments.
(a) User-level software; (b) Kernel-level software; (c) Highest privilege software; (d) Specialized security hardware; (e) System Random
Access Memory;

3.1 Early Architectures
Before the existence of modern-day TEEs, the industry of
privacy-preserving computations had to rely on more re-
stricted hardware. Smart cards were the first technology to
reliably execute unmodifiable code, controlled only by the
manufacturer, on an isolated, trusted chip [27]. An impact-
ful use case is the replacement of magnetic stripe cards by
a French banking association, which reduced fraud by 75%
[28]. In parallel with the financial sector, these cards are still
widely used in identification, access, or the medical sector.

The field of isolated computation on specialized hardware
saw a rapid growth in popularity and power, with technolo-
gies such as Java cards or Subscriber Identity Modules
(SIMs) being added to the modern infrastructure. In the
meantime, the hardware of personal computers was not inher-
ently deployed with security in mind, which was needed with
the increase in popularity [29]. For that, the Trusted Com-
puting Group (TCG)3 was formed by vendors to add hard-
ware roots-of-trust (RoTs) to PCs. In 2003, they released
the first Trusted Platform Module specification, TCPA 1.1b,
which laid the basis of a new technology capable of storing
and reporting integrity metrics, using the hardware root-of-
trust [30]. This standard was the foundation of contemporary
Trusted Execution Environments, many using the hardware
RoT, attestation, and some of the measurements during se-
cure boot.

Initially, TEEs were designed for mobile devices. One of
the first Trusted Execution Environments to be widely de-
ployed to commodity machines was ARM’s TrustZone [31],
with its release in the early 2000s. Even though it was not
commonly used in the early stages, Apple started using it in
the iPhone 5s’ biometrics authentication system to protect the
user’s fingerprint [32]. Currently, this technology is deployed
in billions of mobile phones worldwide.

With a growing industry of isolated execution on edge de-
vices, the Open Mobile Terminal Platform organization was
the first identity to define Trusted Execution Environments in

3https://trustedcomputinggroup.org/about/board-of-directors/

2009 formally [33]. Successively, in 2011, GlobalPlatform4

released specifications for an interoperable TEE, called OP-
TEE, aimed towards TrustZone-enabled devices [34].

Uses in cloud servers were later conceptualized with the
release of an extension to the x86 64 architecture brought by
Intel in their first TEE: Intel SGX [11]. The main contribution
brought by this technology was its capability of protecting the
computations and keys from the operating system. Among
other cloud-based TEEs, we denote: Intel TDX [13], AMD
SEV [14], IBM PEF [35], ARM CCA [36], or open-source
options, such as Sanctum [37] or Keystone [12].

3.2 Selection Criteria
Two selection criteria were defined to identify the four tech-
nologies discussed in Section 4: the system has to be designed
for diverse cloud usages, and the TEE has to be popular in
literature, with applied use cases. Included in the comparison
will be technologies that matched the criteria the best: Intel
SGX [11], Keystone [12], AMD SEV [14], and Intel TDX
[13]. Fig. 1 keeps a high-level overview of the designs, pre-
senting the five main privilege levels.

Cloud Integration
Our initial goal was to omit entries unrelated to cloud com-
puting. Technologies mainly designed for mobile architec-
tures, such as ARM Trustzone [10] and OpenTEE [38], were
excluded. Even though still classified as Trusted Execution
Environments, technologies incapable of performing compu-
tations, such as Trusted Platform Modules (TPMs) [39], are
out of scope for the fifth section, and thus were omitted. From
the large pool of TEE implementations, we tried to focus on
designs beneficial in the world currently.

Popularity
Both the number of search results on Google Scholar and the
widespread usage in the industry served as important selec-
tion criteria, which became an important aspect in the com-
parison among the other four privacy-preserving techniques.

4https://globalplatform.org/

3

https://trustedcomputinggroup.org/about/board-of-directors/
https://globalplatform.org/


The template of the queries was ’ ”[technology name]” ”ex-
ecution environment” ’, where [technology name] was re-
placed by the specific name of the technology being evaluated
(e.g., Intel TDX). Our chosen TEEs yielded the following
number of search results (as of June 2025): Intel SGX with
5260, followed by Keystone (1320), AMD SEV (954), and
Intel TDX (377). Note that Intel TDX was released the latest.
With known cloud providers, such as Microsoft, Google, and
Alibaba, providing hardware-based confidential computing-
ready environments [40, 41, 42], it served as extra validation
to further include implementations that matched the first two
criteria.

3.3 Enclave-based Technologies
Intel Software Guard Extension
Intel SGX [11] is the oldest of the chosen technologies for
this comparison, with its first version being released in 2015
for Xeon processors. The isolation technique extends to the
x86 64 instruction set architecture by including new process-
manipulating instructions that developers can indirectly use
through the Intel SGX SDK. The enclaves are completely iso-
lated from each other and run entirely in the user space [43].
Data and code are stored in the Enclave Page Cache (EPC),
a section located in the CPU-protected Processor Reserved
Memory (PRM, Fig. 1e) [21]. It is encrypted using the hard-
ware memory encryption engine (MEE, Fig. 1d).

Initially, Intel SGX was not designed for unmodified high-
performance computation, suffering from major slowdowns
in the case of memory-consuming processes or when running
multi-threaded programs [44]. Therefore, a second genera-
tion with a more permissive EPC allocation and a better CPU
cache size was created, called SGXv2.

One of the drawbacks of running entirely in the least priv-
ileged level is the need to rely on the host operating system
to handle system calls, and to call instructions such as ECRE-
ATE or EDESTROY to create and to end existing enclaves,
respectively. This design flaw led to attacks where the OS-
controlling malicious actor could perform a ROP-chain at-
tack [45] or where the execution integrity was dismantled by
crafted exception [46].

We considered this technology in the comparison mainly
due to its popularity in existing literature, as some current
technologies are built on the security model of SGX.

Keystone
Keystone [12] is the only open-source5 technology of the
four, having transparency and customizability as the main de-
sign principles. Notably, developers can exclude unwanted
trusted software when the computation does not depend on it.
Additionally, Keystone is only limited to the RISC-V archi-
tecture, and vendors are the ones who can support this tech-
nology by implementing the required cryptographic primi-
tives, such as the Physical Memory Protection (PMP, Fig. 1d).

Similarly to Intel SGX, developers can create applications
that run in the user space called eapps. In contrast to the other
discussed enclave-based technology, Keystone’s trusted stack
offers a higher privilege component, the Keystone Runtime,

5https://github.com/keystone-enclave/keystone

which communicates directly with the RISC-V security mon-
itor. While providing an SDK, one can also execute binaries
that are entirely or partially managed by the runtime, thus fur-
ther reducing the surface of the trusted computing base [12].

While not being known for its industrial usage, we chose
Keystone as it is the most popular academically oriented TEE,
followed by Sanctum [37], with 618 search results as of June
2025. Moreover, we aimed to introduce at least one open-
source project.

3.4 Confidential Virtual Machines

Intel Trusted Domain Extension
The newest of all, released in 2021 as a continuation of Intel
SGX, Intel TDX was introduced with the 5th generation of
the Xeon processors [19]. Its design leverages an extension
called TDX Module (Fig. 1c), which replaces the responsibili-
ties of the hypervisor and controls all virtual machines, called
here Trusted Domains. This new component communicates
with the hypervisor using SEAM instructions [13], and man-
ages the Secure Extended Page Table, encrypted by the Total
Memory Encryption Multi-Key (TME-MK, Fig. 1d).

Some components are reused between the two Intel Trusted
Execution Environments. For example, attestation is done
similarly to its predecessor by invoking an Intel SGX enclave
called the TD-quoting enclave through a special new instruc-
tion called SEAMREPORT [13]. Since both technologies can
use the same process, environments running each TEE can
attest to each other [47].

While not the most popular among the queried technolo-
gies, TDX falls within the scope of our study thanks to its
fast adoption in cloud servers. Among use cases, we remark
its deployment in data analytics [48] and AI workloads [49].

AMD Secure Encrypted Virtualization
Launched as an integration of AMD hardware memory en-
cryption in the AMD-V virtualization architecture of EPYC
processors, AMD SEV leverages an AES encryption engine
by using a 32-bit microcontroller integrated in the hardware
called AMD Secure Processor (AMD-SP, Fig. 1d) [14]. Con-
trary to the design of Intel TDX, AMD SEV extends its TCB
by trusting the hypervisor when managing the virtual ma-
chines’ resources by enhancing the memory layout, adding
an extra bit to allow for partial memory encryption [22].

Security extensions have been launched years after the ini-
tial release to improve the flawed design, namely SEV-ES
(Encrypted State) [50] and SEV-SNP (Secure Nested Pag-
ing) [51]. The first addition blocks the hypervisor from read-
ing unencrypted register values once VMs stop running [50].
AMD SEV-SNP, built on top of ES, solved integrity issues
using a Reverse Map Table data structure and introduced an
optional extra division of the privilege levels [51].

AMD SEV is the most popular confidential virtual ma-
chine, being deployed in cloud AMD-based processors [41].
Thus, it was included in the survey as the state-of-the-art
model for CVMs. Moreover, the lack of integrity protection
in the first iteration of this technology led to a better under-
standing of the security requirements in TEEs [23].

4

https://github.com/keystone-enclave/keystone


4 Properties of TEEs
Tables covering all details discussed below can be found in
Appendix B, split by subsections. They summarize key find-
ings, including data extracted from existing literature.

4.1 Functionality
Parties Involved in Computation
The main parties participating in the secure computation
process are the server, the client, and the attesting service.
Firstly, the purpose of the server is to provide TEE-enabled
hardware, as well as physical resources. It is not considered to
be part of the trusted side. Secondly, the client verifies the en-
vironment, initiates the computing process, and receives the
results. They sit between the server and the attesting service.
Lastly, the attesting service verifies the quotes received from
the client to validate their genuineness and integrity. It is part
of the trusted set.

Remote Attestation
Intel SGX and Intel TDX use the Quoting Enclave (QE) com-
ponent, which holds all signing functionality, as the process is
”too complex to be implemented in hardware” [21, p. 83]. In
SGX, the QE leverages Intel Enhanced Privacy IDs (EPIDs)
to sign without revealing information about the platform [11].
In TDX, the TDX module generates a report, which is verified
by the Quoting Enclave (QE) and then signed using an attesta-
tion key that is certified by Intel’s Provisioning Certification
Key [19]. Keystone generates the attestation key through a
secure boot that is signed by the root-of-trust [17]. One use-
ful feature of attestation in this technology is the capability of
adding arbitrary data. Similarly to Keystone, AMD SEV uses
the root-of-trust that is strongly tied to the hardware, while the
SNP extension is capable of performing remote attestation at
any time [17].

Data Sealing
A feature present in enclave-based TEEs, sealing is the pro-
cess of storing encrypted data on permanent storage to be
used later, even after a system reset. Since permanent stor-
age is not part of the TCB, it is of great necessity to hide
data from possible adversaries accessing the disk. In Key-
stone, get sealing key can be called in the Supervisor Binary
Interface (SBI), and is derived from the enclave hash and the
security monitor’s private key [52]. Intel SGX data sealing
keys can have two modes: sealing to the Enclave Identity and
sealing to the Sealing Identity. The latter is useful especially
when willing to share sealing keys among multiple enclaves
[11]. Concluding, enclave-based TEEs offer additional func-
tionality, with Intel’s sealing being more flexible.

4.2 Efficiency
Task Performance Overhead
Generally, confidential virtual machines and Keystone offer
a near-native performance, but take extensive time to boot
[12, 19]. In the case of early versions of vanilla Intel SGX,
the small size of the EPC of just 128 MB and the poor multi-
thread scaling led to a massive degradation in performance
for multi-threaded high computation tasks (up to 126×) [44].

However, this limitation has been addressed in SGXv2 by
permitting dynamic EPC allocation [53].

One of the largest bottlenecks is the usage of I/O operations
due to the limitations on accessing shared memory. Cop-
polino et al. [54] benchmarked Intel SGX with Gramine and
Occlum extensions, Intel TDX, and AMD SEV on I/O inten-
sive processes, NGINX, and Node.js. It was shown that the
smallest overhead was in TDX, with an average of 28.6%,
followed by SEV and SGX by a large margin. Overall, con-
fidential virtual machines offer the best performance, with
Keystone being close in results, and SGX improving greatly
with the release of SGXv2.

Memory Protection Overhead
On top of execution latency, TEEs also add extra integrity
protection overhead through the usage of memory metadata
or authentication codes. In CVMs, additional bytes are used
to assure memory integrity, which represent MAC values in
TDX [13] or Reverse Map Table entries in AMD SEV-SNP
[51]. Contrary to the specifications of the Confidential Com-
puting Consortium, AMD SEV does not use any memory in-
tegrity protection mechanisms. Similarly to TDX, SGX uses
MACs for integrity, on top of EPC page metadata kept in the
PAGEINFO structure [21]. Keystone adds extra overhead to
protect memory integrity by either attaching software to the
Runtime component or leveraging a hardware memory en-
cryption engine [12].

4.3 Security
Trusted Computing Base Size
Enclave-based TEEs are lighter in trusted components, yet it
is difficult to measure the security based on size in terms of
lines of code. Intel SGX’s design was made to minimize the
TCB. Thus, only CPU microcode and some privileged con-
tainers, such as the Quoting Enclave, are part of the trusted set
[21]. As Keystone offers an open-source implementation of
its primitives, it is trivial to measure the TCB. As mentioned
by the authors, an eapp running on the default implementa-
tions of the security monitor and the runtime reaches a total of
15 thousand lines of code [12]. Under similar configurations,
the trusted computing bases of Intel TDX and AMD SEV are
of related sizes when comparing blocks of equal responsi-
bility [19]. However, the measurement does not include the
Quoting Enclave and the TDX Module Loader sizes. With the
number of lines of code in CVMs sitting in the order of mil-
lions, including the guest operating system, their TCBs suffer
from complexity issues. Therefore, enclave-based TEEs are
to be preferred in a security-first policy from this aspect.

Threat Model
The threat model of Trusted Execution Environments usually
excludes data in states other than in use. However, consid-
ering the functionalities described above, processes such as
attestation and sealing that generate data in transit and at rest,
respectively, should be included in the discussion [8]. The
strong protection mechanisms imply a powerful adversary,
which can be categorized under the following scenarios:

• Software-controlling attacker, capable of controlling
high privilege level processes, such as the operating sys-

5



tem or the hypervisor. This includes a potentially ma-
licious cloud service provider or a remote attacker who
compromises the host system.

• Physical access attacker, capable of monitoring hard-
ware and performing basic attacks. This scenario is usu-
ally omitted in threat models of individual TEEs.

On the trusted side, we denote the client requesting the
computation results, the TEE components part of the trusted
computing base, and the attesting service. Attacks such as
breaking cryptographic primitives, performing difficult hard-
ware intrusions, or denial of service are considered outside of
the scope of the threat model.

Architectural Design Flaws
Work classifying the specific attacks concerning Trusted Ex-
ecution Environments was done by Muñoz et al. [55]. Even
though the publication covers mostly mobile technologies,
the following taxonomy can also be applied to cloud-based
implementations:

• Software attacks, regarding host software such as the
operating system and the hypervisor, or programs run-
ning inside the TEE.

• Architectural attacks, exploiting hardware flaws or
logic, including micro-architectural components such as
the cache or the encryption engine.

• Side-channel attacks, where information can be leaked
through indirect signals, such as power usage or timing.

Software code-reuse attacks have been theorized in Intel
SGX [56]. In this work, an attacker was shown to be capa-
ble of exploiting a possible memory corruption vulnerability
to control the entire enclave by being able to place arbitrary
data in memory. To mitigate this issue, the author proposed
adding an extra layer of encryption by XORing arbitrary data
writes with a secret key. To generalize, the SDKs of Keystone
and Intel SGX are primarily written in C/C++, so developers
have to consider the memory issues when developing enclave
applications.

Design-logic attacks on confidential virtual machines at
the hypervisor level interaction were shown feasible by inject-
ing interrupts. For example, Heckler [57] rips the confiden-
tiality and integrity checks in Intel TDX and AMD SEV-SNP,
allowing the hypervisor to bypass authentication mechanisms
in services such as sudo or OpenSSH. Mitigation techniques
were proposed by the authors in collaboration with the ven-
dors through code patches, but only Intel fully stopped this
attack. Therefore, attack vectors on TEEs differ among de-
signs, and both CVMs and enclave-based Trusted Execution
Environments have architecture security flaws.

A subclass of the side-channel category, Speculative at-
tacks such as Spectre [58] or Meltdown [59] were shown to
be viable in Trusted Execution Environments. The SGXpec-
tre attack [60] managed to retrieve sealing keys through cache
timing. Similarly, malicious access to the hypervisor in SEV
led to the leakage of AES encryption keys [61], while an ex-
tensive report by Google [62] on TDX revealed the required
prerequisites for an attacker to perform Spectre. Lastly, Key-
stone was tested for Spectre exploitation, but was found se-
cure thanks to its cache protection [63].

Known Public Attacks
By querying the CVE.org6 database in June 2025, AMD SEV
and Intel SGX, including their extensions, display 49 and 48
known public vulnerabilities of any score, respectively. Ten
CVEs are assigned to Intel TDX, but with higher scores, the
minimum being 5.6. Keystone does not have any entries, but
some GitHub issues regarding security problems can be found
in the open-source repositories [64, 65].

4.4 Usability
Ease of deployment
A very useful criterion to measure how convenient it is for de-
velopers to move their applications to a trusted environment
is the ease of deployment. Steps not related to computation,
such as attestation, are omitted. Thus, this subsection answers
the question ”What modifications must be made to integrate
TEEs into an existing cloud computing stack?”. Below, we
show that Intel SGX requires the most modifications of all
subjects, CVMs being the easiest to use of all TEEs.

Intel’s TDX permits unmodified user-level apps to run in-
side the protected VM, only with some modifications to the
operating system, called in this case the TDX-Enlightened
OS [66]. The AMD SEV design allows for no modifica-
tion of the ecosystem. With confidential virtual machines
being straightforward in porting existing or legacy systems,
enclave-based Trusted Execution Environments have some
prerequisites. While developers can use unmodified RISC-V
binaries in Keystone, the host requires creating minimal soft-
ware that launches the enclave runtime and application [67].
Lastly, Intel SGX requires code modification by leveraging
the SGX SDK. In an interview conducted by Geppert et al.
[68], changes in this direction are seen as expensive to imple-
ment for current systems, and adoption is expected to be done
only once regulated. This challenge can be partially over-
come through open-source extensions such as Occlum [69]
or Gramine [70].

Debugging
Developers are permitted under specific conditions to inspect
decrypted memory and registers, step through their programs,
or monitor execution states using the provided platform tools.
Generally, TEEs enable debugging only if it is allowed prior
to launching the process. Thus, the debugging method in
AMD SEV is through an API and can be enabled by setting
the guest policy NODBG bit [71]. Using the two commands,
the developers can decrypt and encrypt memory through the
firmware. In Intel TDX, trusted domains can be debugged by
both On-TD software, allowing for all architectural supported
features, or by Off-TD software, at the VMM level, to modify
guest state [66]. Intel SGX enclaves opt for a debugging bit
in the enclave metadata [21]. The processes are meant not
to be stopped between instructions when deployed in Release
mode. Even if it is expected for a general-purpose debugger
to see the execution as one instruction, an attack [72] man-
aged to single-step the flow of an enclave. Keystone does
not permit explicit debugging for enclave applications, but
the SM can be debugged through standard ways, as described
on the GitHub repository [73].

6https://www.cve.org

6

https://www.cve.org


5 Comparison with Other Techniques
Tables summarizing the topics reached below can be found in
Appendix C. Additional contributions brought by the graph-
ics are the applicability and the use cases of each technology,
as shown in columns three and four of Table 5.

5.1 Fully Homomorphic Encryption
Homomorphic Encryption is a privacy-preserving technique
that allows users to perform operations directly on encrypted
data, without revealing the plaintext in the untrusted com-
putation environment [7]. It is based on mathematical NP-
hardness properties and is composed of four probabilistic
polynomial-time algorithms: KeyGen, Enc, Dec, and Eval.
Of great interest is the Fully Homomorphic Encryption tech-
nique, with the first generation being proposed in 2009 by
Gentry [74]. It is the variant capable of performing arbitrary
computations on encrypted data.

Functionally, Fully Homomorphic Encryption can per-
form the same operations as Trusted Execution Environ-
ments. While TEEs’ operations are seen as the decryption
of memory on the hardware level, FHE transforms operations
into functionally complete logic gate sets, such as the NAND
gate [75]. An overhead in Trusted Execution Environments
that is not found in Fully Homomorphic Encryption is the
need for attestation.

From an efficiency perspective, TEEs outperform FHE by
a margin. While confidential virtual machines and Keystone
were shown to reach near-native speeds for most computa-
tions, it is not yet feasible to use FHE schemes to perform any
kind of complex operations [76]. The analyzed algorithms
showed a clear bottleneck in bootstrapping or in the KeyGen
primitive, some taking hours to perform AES encryption.

The security model of Fully Homomorphic Encryption has
a different paradigm than that of Trusted Execution Envi-
ronments. While previously we analyzed documented attack
vectors and settings in which they can be performed, the prop-
erties of FHE have been abstracted through indistinguishabil-
ity. By default, FHE is semantically secure, making it IND-
CPA secure, and extensions to existing constructions led to
IND-CCA1 assurances, but not to IND-CCA2 [77]. Side-
channel attacks, a drawback of the TEE security, were viable
in Fully Homomorphic Encryption only for client-side adver-
saries [78].

5.2 Secure Multi-Party Computation
Secure Multi-Party Computation is a cryptographic paradigm
that enables a group of users to privately compute without
ever disclosing their data to the others [5]. At the basis of this
technique, there stand two useful protocols: Oblivious Trans-
fer [79], used to securely deliver inputs from one party to an-
other without revealing which input was chosen, and Shamir
Secret Sharing [80], which enables the distribution of private
data across multiple parties.

As in the case of Fully Homomorphic Encryption, Secure
Multi-Party Computation can functionally perform the same
operations as TEEs by evaluating logic circuits. The first pro-
tocols that enabled arbitrary circuits in MPC were Yao’s Gar-
bled Circuits [81] and GMW [82]. Similarly to TEEs by hav-
ing to share inputs among parties, a cloud server and a client

using either of the technologies have to interact before the
computation is performed. As another important aspect, MPC
allows for workload distribution across multiple systems, a
property that is not considered in the design of Trusted Exe-
cution Environments. Efforts to extend this feature to TEEs
were previously theorized with proof-of-concepts [83].

From a performance point of view, Secure Multi-
Party Computation suffers from slow preprocessing (offline)
phases, similarly to how confidential virtual machines en-
counter slow startups. In a benchmarking suite of a widely
used MPC protocol called SPDZ [84], performing basic arith-
metic approximations was done in milliseconds, which is or-
ders of magnitude slower than the near-native capabilities of
TEEs. The offline phases were, as expected, the bottlenecks,
with seconds of preprocessing at most. Even though the over-
head is considerable, it is less than in Fully Homomorphic
Encryption, and extensive work is done in reducing the com-
puting time through compilers [85].

The distributed model of Secure Multi-Party Computation
shifts some of the trust among parties. The misbehaving par-
ties are denoted corrupted and can be of three categories:
semi-honest, malicious, or covert [5], with the latter two re-
flecting real settings. While many of the MPC schemes were
designed to resist stronger adversaries, the ones with weaker
assurances, such as Yao’s GC, can be extended for perfor-
mance costs [86]. As breaking cryptographic protocols is out-
side of the threat model of TEEs, MPC offers in this way a
stronger security.

5.3 Oblivious RAM
Oblivious RAM is a privacy-preserving technique that hides
a client’s access patterns in an untrusted environment. It was
conceptualized by Goldreich as a method of securing soft-
ware against adversaries observing the frequency of memory
read and write operations [4]. The key point in ORAM is to
make all steps oblivious; therefore, the schemes use special-
ized sorting, hashing, random permuting, or storing [87].

Functionally, Oblivious RAM and Trusted Execution En-
vironments perform different types of computation. While
TEEs can run any processing on encrypted data, ORAM is
only used in the context of querying stored data on an un-
trusted server, with all calculations being done client-side. A
recurring theme in these two techniques is the implementa-
tion in hardware, which was done for Path ORAM [88] in a
secure processor [89].

As in the case of previous protocols, Oblivious RAM has
some computation overhead in each step. Of great inter-
est are the communication, query, and storage (both client
and server-side) complexities. There is no oblivious RAM
scheme that has the best efficiency in balance of perfor-
mance and memory overhead [87]. The hardware-based
Path ORAM implementation on the Ascend processor [89] re-
vealed an average performance slowdown of 12-13.5×, sig-
nificantly higher than the near-native execution speeds typi-
cally achieved by Trusted Execution Environments.

Both Trusted Execution Environments and Oblivious RAM
are designed with the assumption that the cloud service
provider (CSP) cannot be trusted. However, the generally
considered adversary in ORAM is semi-honest [87], com-

7



pared to malicious in TEEs. Another shared property of these
technologies is the exposure to side-channel attacks, as access
timing reveals patterns correlating to memory behavior [90].
Fortunately, these security issues of Trusted Execution En-
vironments can be diminished by Oblivious RAM solutions.
For example, Alam and Chen [91] developed an easy-to-use
framework for oblivious computation using Intel SGX that
aims at hiding access patterns, one of the problems in Intel
SGX side-channel attacks [92].

5.4 Structured Encryption
A well-known technique for enabling secure and efficient
data querying inside untrusted environments is Structured En-
cryption. Originally proposed by Chase and Kamara [6], it
allows efficient search operations while limiting information
leakage beyond the query or the data. This method was cre-
ated to be usable with the current systems, and is capable of
running SQL queries [93], being implemented by MongoDB
for queryable databases [94].

While not capable of performing any possible computation
like FHE, MPC, or TEEs, Structured Encryption is a pow-
erful tool for querying data. Thus, a user of StE can run
boolean or range searches on encrypted data structures, such
as multimaps, trees [95], or graphs [6]. Even if restricted only
to querying, Structured Encryption has enough functionality
to enable Private Set Intersection [95], a useful computation
that allows two or more parties to calculate the intersection of
their items without revealing other items to the others.

The efficiency of Structured Encryption is one of the most
remarkable advantages, as it is enhanced by parallel com-
puting to achieve sublinear performance [96]. By being ef-
ficient in I/O access, an area where Trusted Execution En-
vironments struggle, StE can achieve minimal performance
overhead. However, fast I/O is possible if the storage space
grows linearly or if one performs a constant number of op-
erations [97]. As such, we consider Structured Encryption a
better option when having to perform I/O heavy operations,
compared to TEEs.

Structured Encryption is known to leak information about
the way the data is structured, the size of the response, or the
accessing patterns [98]. This statement applies to both pas-
sive and active adversaries, and mitigations for any of them
compromise performance. As discussed in ORAM, the se-
curity of Trusted Execution Environments also suffers from
memory-accessing patterns in the case of side-channel at-
tacks, volume leakage not being a problem as it is in StE.

6 Responsible Research
No conflict of interest exists between the author and any of
the vendors providing the technologies in this work, nor any
of the authors whose work was mentioned. The selection cri-
teria in Section 3 were chosen before assessing the implemen-
tations, keeping a neutral perspective on the findings. How-
ever, we acknowledge that both the selection criteria and the
extracted materials in the literature review may reflect inher-
ent bias. To combat this issue, we attempted, where possible,
to verify the information from multiple sources and maintain
transparency in the research.

Artificial intelligence was not used to generate text for any
sections of this scientific material, but to correct spelling and
grammar mistakes through Grammarly and Writefull. These
tools are freely available for commercial use, but with lim-
ited features. All materials have been individually collected
and reported by the authors. This decision was made to en-
sure critical engagement through an own understanding of
the studied technologies while adhering to academic integrity
policies.

From an ethical viewpoint, this study does not cover hu-
man interaction, sensitive data, or critical tests that could af-
fect the functionality of live systems. However, we advise
caution when interpreting the results presented in this work,
as they are drawn from secondary resources, rather than pri-
mary research. The readers are encouraged to reevaluate the
stated claims.

Under no circumstances do the authors of this work en-
courage the malicious use, distribution, or fabrication of the
vulnerabilities mentioned previously. The presentation of se-
curity issues, CVEs, and threat models is showcased solely
for educational, academic research, to strengthen the under-
standing of these issues in the context of privacy-preserving
technologies.

Regarding reproducibility, all materials are extracted
from publicly available forums or websites (e.g., Google
Scholar, Scopus, and IEEE eXplore). We recognize that some
indicators in this research are time-dependent and will change
if queries are to be further conducted in the future. Here, we
denote the number of materials found on Scopus and Google
Scholar, the ”Popularity” queries of Section 3.2, as well as
the number of CVEs in Section 4.3. We provided all the used
queries in Appendix A, including the platform and the used
filters. These should be interpreted relative to the research
period, April-June 2025.

7 Future Work and Limitations
The study was conducted under format constraints and lim-
ited time, providing a broader overall material than expected.
Some details could have been added to offer a clearer com-
parison concerning efficiency, security, and usability. For
example, to understand the performance issues of each dis-
cussed technique, additional benchmarking tests could have
been conducted to collect data of significant use, both be-
tween TEEs and the five privacy-preserving methods. Among
other properties of great interest in discussion, we recom-
mend future work comparing live migration, secure boot ver-
ification, trusted I/O, and mitigations against cache and phys-
ical attacks. Additionally, we leave the possibility of com-
bining two or more of the discussed techniques for future re-
search. We would expect an increase in security, as seen in
the ORAM-TEE merge, with a decrease in performance.

8 Conclusions
This work highlighted in Sections 3 and 4 the main properties
of Intel SGX, Keystone, Intel TDX, and AMD SEV concern-
ing functionality, efficiency, security, and usability by review-
ing literature regarding Trusted Execution Environments. We
displayed in Tables 1 to 4 the trade-offs of each technology

8



and showed that each design differs greatly from the others.
Moreover, we remarked that there is no ”silver bullet” when
choosing to work with TEEs, and even though they offer gen-
erally insignificant performance overheads, they suffer from
damaging attacks caused by strong malicious actors.

Intel SGX, the most popular technology among existing
TEEs, was not initially designed for high-performance com-
putations, considering its small EPC size. However, SGXv2
removed such limitations and improved the efficiency of par-
allelized programs. Being the first breakthrough in Trusted
cloud Execution Environments, it inspired many other ven-
dors to implement such isolation techniques in their proces-
sors.

Keystone showed that TEEs do not have to be fully tied to
specific hardware models, but leverage primitives that enable
security at the physical level. While not used at a large scale
in the industry, it is an actively improved open-source imple-
mentation that supports and facilitates scientific research.

Intel TDX is a powerful continuation of Intel SGX, inherit-
ing attestation mechanisms. Among the four discussed tech-
nologies, it is the only one to include high-privilege software
in its TCB, called the TDX Module, whose purpose is to man-
age the trusted domains.

AMD SEV was the first widely adopted confidential virtual
machine. Even though it did not initially implement many of
the security mechanisms that are necessary to protect against
integrity attacks, extensions to it were added to diminish these
issues. As of June 2025, popular cloud vendors enable AMD
SEV-SNP for services running on AMD EPYC processors.

In the fifth section, we surveyed other promising tech-
niques to perform computations on encrypted data. Tables
5 and 6 display a summary of their features. While in the-
ory, the algorithmic approaches appeared promising with the
ongoing growth in computing power, in practice, they still
have a considerable overhead (FHE, MPC) or are limited to
a subset of operations (ORAM, StE). However, they counter
stronger adversaries when compared to TEEs, which shift the
security responsibility to the hardware vendors.

References
[1] Zakir Durumeric, Frank Li, James Kasten, Johanna

Amann, Jethro Beekman, Mathias Payer, Nicolas
Weaver, David Adrian, Vern Paxson, Michael Bailey,
et al. The Matter of Heartbleed. In Proceedings of the
2014 conference on internet measurement conference,
pages 475–488, 2014.

[2] Douglas Everson, Long Cheng, and Zhenkai Zhang.
Log4shell: Redefining the Web Attack Surface. In Proc.
Workshop Meas., Attacks, Defenses Web (MADWeb),
pages 1–8, 2022.

[3] Ellison Anne Williams. Data Protection: Data in
Use Is the Point of Least Resistance. https://www.
securityweek.com/data-use-point-least-resistance/,
April 2024.

[4] Oded Goldreich. Towards a Theory of Software Pro-
tection and Simulation by Oblivious RAMs. In Pro-
ceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 182–194, 1987.

[5] Yehuda Lindell. Secure Multiparty Computation. Com-
munications of the ACM, 64(1):86–96, 2020.

[6] Melissa Chase and Seny Kamara. Structured Encryption
and Controlled Disclosure. In International conference
on the theory and application of cryptology and infor-
mation security, pages 577–594. Springer, 2010.

[7] Chiara Marcolla, Victor Sucasas, Marc Manzano, Ric-
cardo Bassoli, Frank HP Fitzek, and Najwa Aaraj. Sur-
vey on Fully Homomorphic Encryption, Theory, and
Applications. Proceedings of the IEEE, 110(10):1572–
1609, 2022.

[8] Confidential Computing Consortium. A Technical
Analysis of Confidential Computing. Confidential Com-
puting Consortium–Linux Foundation, Technical Report
v1, 3, 2022.

[9] Oualid Demigha and Ramzi Larguet. Hardware-Based
Solutions for Trusted Cloud Computing. Computers Se-
curity, 103:102117, 2021.

[10] Clive Shepherd and Konstantinos Markantonakis.
Trusted Execution Environments, chapter 6.3. Springer
International Publishing AG, Cham, 2024.

[11] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative Technology for CPU Based Attes-
tation and Sealing. In Proceedings of the 2nd interna-
tional workshop on hardware and architectural support
for security and privacy, volume 13. ACM New York,
NY, USA, 2013.

[12] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanovic, and Dawn Song. Keystone: An Open Frame-
work for Architecting Trusted Execution Environments.
In Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys’20, 2020.

[13] Intel. Intel Trust Domain Extensions Whitepaper. Tech-
nical report, Intel Corporation, 2020. Accessed: 2025-
05-22.

[14] David Kaplan, Jeremy Powell, and Tom Woller. AMD
Memory Encryption. White paper, 13:12, 2016.

[15] Pieter Maene, Johannes Götzfried, Ruan De Clercq,
Tilo Müller, Felix Freiling, and Ingrid Verbauwhede.
Hardware-Based Trusted Computing Architectures for
Isolation and Attestation. IEEE Transactions on Com-
puters, 67(3):361–374, 2017.

[16] George Coker, Joshua Guttman, Peter Loscocco, Amy
Herzog, Jonathan Millen, Brian O’Hanlon, John Rams-
dell, Ariel Segall, Justin Sheehy, and Brian Sniffen.
Principles of Remote Attestation. International journal
of information security, 10:63–81, 2011.

[17] Jämes Ménétrey, Christian Göttel, Anum Khurshid,
Marcelo Pasin, Pascal Felber, Valerio Schiavoni, and
Shahid Raza. Attestation Mechanisms for Trusted Exe-
cution Environments Demystified. In IFIP International
Conference on Distributed Applications and Interoper-
able Systems, pages 95–113. Springer, 2022.

[18] Mohamed Sabt, Mohammed Achemlal, and Abdel-
madjid Bouabdallah. Trusted Execution Environment:

9

https://www.securityweek.com/data-use-point-least-resistance/
https://www.securityweek.com/data-use-point-least-resistance/


What It is, and What It is Not. In 2015 IEEE Trust-
com/BigDataSE/Ispa, volume 1, pages 57–64. IEEE,
2015.

[19] Masanori Misono, Dimitrios Stavrakakis, Nuno Santos,
and Pramod Bhatotia. Confidential VMs Explained: An
Empirical Analysis of AMD SEV-SNP and Intel TDX.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 8(3):1–42, 2024.

[20] Sandro Pinto and Cesare Garlati. Multi Zone Security
for ARM Cortex-M Devices. In Embedded World Con-
ference, volume 2020, page 99, 2020.

[21] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. Cryptology ePrint Archive, Paper 2016/086,
2016.

[22] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Wei-
dong Shi. A Comparison Study of Intel SGX and AMD
Memory Encryption Technology. In Proceedings of the
7th International Workshop on Hardware and Architec-
tural Support for Security and Privacy, pages 1–8, 2018.

[23] Mengyuan Li, Yuheng Yang, Guoxing Chen, Mengjia
Yan, and Yinqian Zhang. Sok: Understanding De-
sign Choices and Pitfalls of Trusted Execution Environ-
ments. In Proceedings of the 19th ACM Asia Confer-
ence on Computer and Communications Security, pages
1600–1616, 2024.

[24] Yuqing Xu, Guangxia Xu, Yong Liu, Yuan Liu, and
Ming Shen. A Survey of the Fusion of Traditional Data
Security Technology and Blockchain. Expert Systems
with Applications, page 124151, 2024.

[25] Dominic P Mulligan, Gustavo Petri, Nick Spinale,
Gareth Stockwell, and Hugo JM Vincent. Confidential
Computing—a Brave New World. In 2021 international
symposium on secure and private execution environment
design (SEED), pages 132–138. IEEE, 2021.

[26] Seyni Kane and Anis Bkakria. A Privacy-Preserving
Graph Encryption Scheme Based on Oblivious RAM.
In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 101–108. Springer, 2024.

[27] David Naccache and David M’Raihi. Cryptographic
Smart Cards. IEEE micro, 16(3):14–24, 1996.

[28] Katherine M. Shelfer and J. Drew Procaccino. Smart
Card Evolution. Commun. ACM, 45(7):83–88, July
2002.

[29] Will Arthur, David Challener, Kenneth Goldman, Will
Arthur, David Challener, and Kenneth Goldman. His-
tory of the TPM. A Practical Guide to TPM 2.0: Using
the New Trusted Platform Module in the New Age of Se-
curity, pages 1–5, 2015.

[30] Trusted Computing Group. TCG Architec-
ture Overview Specification, Version 1.1b.
https://trustedcomputinggroup.org/wp-content/uploads/
TCPA Main TCG Architecture v1 1b.pdf, 2003.
Accessed: 2025-06-09.

[31] Sandro Pinto and Nuno Santos. Demystifying ARM
Trustzone: A Comprehensive Survey. ACM computing
surveys (CSUR), 51(6):1–36, 2019.

[32] Wenhao Li, Yubin Xia, and Haibo Chen. Research on
ARM TrustZone. GetMobile: Mobile Computing and
Communications, 22(3):17–22, 2019.

[33] Open Mobile Terminal Platform. Advanced Trusted En-
vironment: OMTP TR1. Technical report, Technical
Report (v1. 1), 2009.

[34] Heedong Yang and Manhee Lee. Demystifying ARM
TrustZone TEE Client API Using OP-TEE. In The 9th
International Conference on Smart Media and Applica-
tions, pages 325–328, 2020.

[35] Guerney DH Hunt, Ramachandra Pai, Michael V Le,
Hani Jamjoom, Sukadev Bhattiprolu, Rick Boivie, Lau-
rent Dufour, Brad Frey, Mohit Kapur, Kenneth A Gold-
man, et al. Confidential Computing for OpenPOWER.
In Proceedings of the Sixteenth European Conference
on Computer Systems, pages 294–310, 2021.

[36] ARM. Arm Confidential Compute Architecture.
https://www.arm.com/architecture/security-features/
arm-confidential-compute-architecture, 2021.

[37] Victor Costan, Ilia Lebedev, and Srinivas Devadas.
Sanctum: Minimal Hardware Extensions for Strong
Software Isolation. In 25th USENIX Security Sympo-
sium (USENIX Security 16), pages 857–874, 2016.

[38] Brian McGillion, Tanel Dettenborn, Thomas Ny-
man, and N Asokan. Open-TEE–an Open Virtual
Trusted Execution Environment. In 2015 IEEE Trust-
com/BigDataSE/ISPA, volume 1, pages 400–407. IEEE,
2015.

[39] Dongxi Liu, Jack Lee, Julian Jang, Surya Nepal, and
John Zic. A Cloud Architecture of Virtual Trusted Plat-
form Modules. In 2010 IEEE/IFIP International Con-
ference on Embedded and Ubiquitous Computing, pages
804–811. IEEE, 2010.

[40] Microsoft Azure. Confidential Computing Doc-
umentation. https://learn.microsoft.com/en-us/azure/
confidential-computing/, 2025. Accessed: 2025-05-26.

[41] Google Cloud. Confidential VM Overview.
https://cloud.google.com/confidential-computing/
confidential-vm/docs/confidential-vm-overview, 2024.
Accessed: 2025-05-26.

[42] Alibaba Cloud. TEE-Based Confidential Com-
puting. https://www.alibabacloud.com/help/en/
ack/ack-managed-and-ack-dedicated/user-guide/
tee-based-confidential-computing/, 2025. Accessed:
2025-05-26.

[43] Juan Wang, Zhi Hong, Yuhan Zhang, and Yier Jin. En-
abling Security-Enhanced Attestation with Intel SGX
for Remote Terminal and IoT. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 37(1):88–96, 2017.

10

https://trustedcomputinggroup.org/wp-content/uploads/TCPA_Main_TCG_Architecture_v1_1b.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCPA_Main_TCG_Architecture_v1_1b.pdf
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://learn.microsoft.com/en-us/azure/confidential-computing/
https://learn.microsoft.com/en-us/azure/confidential-computing/
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/tee-based-confidential-computing/
https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/tee-based-confidential-computing/
https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/tee-based-confidential-computing/


[44] Ayaz Akram, Anna Giannakou, Venkatesh Akella, Ja-
son Lowe-Power, and Sean Peisert. Performance Anal-
ysis of Scientific Computing Workloads on General
Purpose TEEs. In 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages
1066–1076. IEEE, 2021.

[45] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde,
Prateek Saxena, and Zhiping Cai. Smashex: Smash-
ing SGX Enclaves Using Exceptions. In Proceedings
of the 2021 ACM SIGSAC conference on computer and
communications security, pages 779–793, 2021.

[46] Supraja Sridhara, Andrin Bertschi, Benedict Schlüter,
and Shweta Shinde. SIGY: Breaking Intel SGX En-
claves with Malicious Exceptions & Signals. arXiv
preprint arXiv:2404.13998, 2024.

[47] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez,
Salman Ahmed, Zhongshu Gu, Hani Jamjoom, Huber-
tus Franke, and James Bottomley. Intel Tdx Demysti-
fied: A Top-Down Approach. ACM Computing Surveys,
56(9):1–33, 2024.

[48] Intel Corporation. Ant Group Develops Confi-
dential Computing for SaaS. https://www.intel.
com/content/www/us/en/customer-spotlight/stories/
ant-group-customer-story.html, April 2024. Customer
success story.

[49] Sam Lugani and Jai Haridas. How Confidential
Computing Lays the Foundation for Trusted AI. https:
//cloud.google.com/blog/products/identity-security/
how-confidential-computing-lays-the-foundation-for-trusted-ai/,
May 2025. Google Cloud Blog, Identity Security.

[50] David Kaplan. Protecting VM Register State with SEV-
ES. White paper, 46:158, 2017.

[51] AMD. Strengthening VM Isolation with Integrity
Protection and More. White Paper, January,
53(2020):1450–1465, 2020.

[52] Markus Switalla. A Review of the Keystone Trusted
Execution Framework. 2023.

[53] Muhammad El-Hindi, Tobias Ziegler, Matthias Hein-
rich, Adrian Lutsch, Zheguang Zhao, and Carsten Bin-
nig. Benchmarking the Second Generation of Intel
SGX Hardware. In Proceedings of the 18th Interna-
tional Workshop on Data Management on New Hard-
ware, pages 1–8, 2022.

[54] Luigi Coppolino, Salvatore D’Antonio, Giovanni
Mazzeo, and Luigi Romano. An Experimental Evalu-
ation of TEE Technology: Benchmarking Transparent
Approaches Based on SGX, SEV, and TDX. Computers
& Security, 154:104457, 2025.

[55] Antonio Muñoz, Ruben Rı́os, Rodrigo Román, and
Javier López. A Survey on the (in)security of
Trusted Execution Environments. Computers Security,
129:103180, 2023.

[56] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso
Frassetto, and Ahmad-Reza Sadeghi. The Guard’s

Dilemma: Efficient {Code-Reuse} Attacks Against In-
tel {SGX}. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1213–1227, 2018.

[57] Benedict Schlüter, Supraja Sridhara, Mark Kuhne, An-
drin Bertschi, and Shweta Shinde. {HECKLER}:
Breaking Confidential {VMs} with Malicious Inter-
rupts. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 3459–3476, 2024.

[58] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[59] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In 27th USENIX Security Sympo-
sium (USENIX Security 18), 2018.

[60] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten H Lai. Sgxpectre: Steal-
ing Intel Secrets from SGX Enclaves via Speculative
Execution. In 2019 IEEE European Symposium on Se-
curity and Privacy (EuroS&P), pages 142–157. IEEE,
2019.

[61] Li-Chung Chiang and Shih-Wei Li. Reload+ Reload:
Exploiting Cache and Memory Contention Side Chan-
nel on AMD SEV. In Proceedings of the 30th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 2, pages 1014–1027, 2025.

[62] Erdem Aktas, Cfir Cohen, Josh Eads, James Forshaw,
and Felix Wilhelm. Intel Trust Domain Extensions
(TDX) Security Review. Google security review, 2023.

[63] Anh-Tien Le, Trong-Thuc Hoang, Ba-Anh Dao, Akira
Tsukamoto, Kuniyasu Suzaki, and Cong-Kha Pham. A
Cross-Process Spectre Attack via Cache on RISC-V
Processor with Trusted Execution Environment. Com-
puters and Electrical Engineering, 105:108546, 2023.

[64] Keystone Enclave. Support for Per-Thread Stack.
https://github.com/keystone-enclave/keystone-runtime/
issues/21, 2020. Accessed: 2025-06-01.

[65] Keystone Enclave. VA Double-Mapping Vulnera-
bility. https://github.com/keystone-enclave/keystone/
issues/83, 2019. Accessed: 2025-06-01.

[66] Intel Corporation. Intel® TDX Module 1.0 Public
Specification. https://cdrdv2-public.intel.com/733568/
tdx-module-1.0-public-spec-344425005.pdf, 2023.
Accessed: 2025-06-08.

[67] Keystone Enclave Project. Keystone Enclave Project
- Tutorials. https://docs.keystone-enclave.org/en/latest/
Getting-Started/Tutorials/index.html, 2025. Accessed:
2025-06-08.

11

https://www.intel.com/content/www/us/en/customer-spotlight/stories/ant-group-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/ant-group-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/ant-group-customer-story.html
https://cloud.google.com/blog/products/identity-security/how-confidential-computing-lays-the-foundation-for-trusted-ai/
https://cloud.google.com/blog/products/identity-security/how-confidential-computing-lays-the-foundation-for-trusted-ai/
https://cloud.google.com/blog/products/identity-security/how-confidential-computing-lays-the-foundation-for-trusted-ai/
https://github.com/keystone-enclave/keystone-runtime/issues/21
https://github.com/keystone-enclave/keystone-runtime/issues/21
https://github.com/keystone-enclave/keystone/issues/83
https://github.com/keystone-enclave/keystone/issues/83
https://cdrdv2-public.intel.com/733568/tdx-module-1.0-public-spec-344425005.pdf
https://cdrdv2-public.intel.com/733568/tdx-module-1.0-public-spec-344425005.pdf
https://docs.keystone-enclave.org/en/latest/Getting-Started/Tutorials/index.html
https://docs.keystone-enclave.org/en/latest/Getting-Started/Tutorials/index.html


[68] Tim Geppert, Jan Anderegg, Leoncio Frei, Simon
Moeller, Stefan Deml, David Sturzenegger, and Nico
Ebert. Overcoming Cloud Concerns with Trusted Ex-
ecution Environments?: Exploring the Organizational
Perception of a Novel Security Technology in Regulated
Swiss Companies. In 55th Hawaii International Con-
ference on System Sciences (HICSS), virtual, 3-7 Jan-
uary 2022, pages 6822–6829. University of Hawai’i at
Manoa, 2022.

[69] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,
Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. Oc-
clum: Secure and Efficient Multitasking Inside a Single
Enclave of Intel SGX. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 955–970, 2020.

[70] Chia-Che Tsai, Donald E Porter, and Mona Vij.
{Graphene-SGX}: A Practical Library {OS} for Un-
modified Applications on {SGX}. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages
645–658, 2017.

[71] Advanced Micro Devices, Inc. AMD SEV
Key Management API Specification. https:
//www.amd.com/content/dam/amd/en/documents/
epyc-technical-docs/programmer-references/
55766 SEV-KM API Specification.pdf, 2020. Ac-
cessed: 2025-06-09.

[72] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A Practical Attack Framework for Precise Enclave
Execution Control. In Proceedings of the 2nd Workshop
on System Software for Trusted Execution, pages 1–6,
2017.

[73] Keystone Enclave Project. How to Debug - Keystone
Documentation. https://github.com/keystone-enclave/
keystone/blob/master/docs/source/Getting-Started/
How-to-Debug.rst, 2025. Accessed: 2025-06-09.

[74] Craig Gentry. A Fully Homomorphic Encryption
Scheme. Stanford university, 2009.

[75] Léo Ducas and Daniele Micciancio. Fhew: bootstrap-
ping homomorphic encryption in less than a second. In
Annual international conference on the theory and ap-
plications of cryptographic techniques, pages 617–640.
Springer, 2015.

[76] Paulo Martins, Leonel Sousa, and Artur Mariano. A
Survey on Fully Homomorphic Encryption: An Engi-
neering Perspective. ACM Computing Surveys (CSUR),
50(6):1–33, 2017.

[77] Ran Canetti, Srinivasan Raghuraman, Silas Richelson,
and Vinod Vaikuntanathan. Chosen-Ciphertext Secure
Fully Homomorphic Encryption. In IACR International
Workshop on Public Key Cryptography, pages 213–240.
Springer, 2017.

[78] Furkan Aydin and Aydin Aysu. Leaking Secrets in
Homomorphic Encryption with Side-Channel Attacks.
Journal of Cryptographic Engineering, 14(2):241–251,
2024.

[79] Michael O Rabin. How to Exchange Secrets with Obliv-
ious Transfer. Cryptology ePrint Archive, 2005.

[80] Adi Shamir. How to Share a Secret. Communications
of the ACM, 22(11):612–613, 1979.

[81] Andrew Chi-Chih Yao. How to Generate and Exchange
Secrets. In 27th annual symposium on foundations of
computer science (Sfcs 1986), pages 162–167. IEEE,
1986.

[82] Silvio Micali, Oded Goldreich, and Avi Wigderson.
How to Play ANY Mental Game. In Proceedings of the
Nineteenth ACM Symp. on Theory of Computing, STOC,
pages 218–229. ACM New York, 1987.

[83] Simon Ott, Benjamin Orthen, Alexander Weidinger,
Julian Horsch, Vijayanand Nayani, and Jan-Erik Ek-
berg. MultiTEE: Distributing Trusted Execution Envi-
ronments. In Proceedings of the 19th ACM Asia Confer-
ence on Computer and Communications Security, pages
1617–1629, 2024.

[84] Abdelrahaman Aly and Nigel P Smart. Benchmarking
Privacy Preserving Scientific Operations. In Interna-
tional Conference on Applied Cryptography and Net-
work Security, pages 509–529. Springer, 2019.

[85] Marcella Hastings, Brett Hemenway, Daniel Noble, and
Steve Zdancewic. Sok: General Purpose Compilers for
Secure Multi-Party Computation. In 2019 IEEE sym-
posium on security and privacy (SP), pages 1220–1237.
IEEE, 2019.

[86] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenx-
iang Chen, Chong-Zhi Gao, Hongwei Li, and Yu-an
Tan. Secure Multi-Party Computation: Theory, Practice
and Applications. Information Sciences, 476:357–372,
2019.

[87] Zhao Chang, Dong Xie, and Feifei Li. Oblivious RAM:
A Dissection and Experimental Evaluation. Proceed-
ings of the VLDB Endowment, 9(12):1113–1124, 2016.

[88] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hu-
bert Chan, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM: An Extremely
Simple Oblivious RAM Protocol. Journal of the ACM
(JACM), 65(4):1–26, 2018.

[89] Christopher W Fletcher, Marten van Dijk, and Srini-
vas Devadas. A Secure Processor Architecture for En-
crypted Computation on Untrusted Programs. In Pro-
ceedings of the seventh ACM workshop on Scalable
trusted computing, pages 3–8, 2012.

[90] Christopher W Fletchery, Ling Ren, Xiangyao Yu,
Marten Van Dijk, Omer Khan, and Srinivas Devadas.
Suppressing the Oblivious RAM Timing Channel While
Making Information Leakage and Program Efficiency
Trade-Offs. In 2014 IEEE 20th International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 213–224. IEEE, 2014.

[91] AKM Mubashwir Alam and Keke Chen. TEE-MR:
Developer-Friendly Data Oblivious Programming for

12

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://github.com/keystone-enclave/keystone/blob/master/docs/source/Getting-Started/How-to-Debug.rst
https://github.com/keystone-enclave/keystone/blob/master/docs/source/Getting-Started/How-to-Debug.rst
https://github.com/keystone-enclave/keystone/blob/master/docs/source/Getting-Started/How-to-Debug.rst


Trusted Execution Environments. Computers & Secu-
rity, 148:104119, 2025.

[92] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng
Xie. Security Vulnerabilities of SGX and Countermea-
sures: A Survey. ACM Computing Surveys (CSUR),
54(6):1–36, 2021.

[93] Seny Kamara and Tarik Moataz. SQL on Structurally-
Encrypted Databases. In Advances in Cryptology–
ASIACRYPT 2018: 24th International Conference on
the Theory and Application of Cryptology and Informa-
tion Security, Brisbane, QLD, Australia, December 2–6,
2018, Proceedings, Part I 24, pages 149–180. Springer,
2018.

[94] Alankrit Chaturvedi. Security Challenges and Solutions
in MongoDB. International Journal of Science and Re-
search (IJSR), 9(1), 2020.

[95] Archita Agarwal, David Cash, Marilyn George, Seny
Kamara, Tarik Moataz, and Jaspal Singh. Updatable
Private Set Intersection from Structured Encryption.
Cryptology ePrint Archive, 2024.

[96] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charan-
jit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu, and
Michael Steiner. Dynamic Searchable Encryption in
Very-Large Databases: Data Structures and Implemen-
tation. Cryptology ePrint Archive, 2014.

[97] David Cash and Stefano Tessaro. The Locality of
Searchable Symmetric Encryption. In Advances in
Cryptology–EUROCRYPT 2014: 33rd Annual Inter-
national Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings 33, pages 351–368.
Springer, 2014.

[98] Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’neill. Generic Attacks on Secure Outsourced
Databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 1329–1340, 2016.

13



A Queries for Reproducibility
The listed query was used in Scopus to retrieve relevant literature. It was meant to find features regarding efficiency, security,
functionality, and usability as presented in surveys for the four chosen technologies.

TITLE-ABS-KEY((”trusted execution environment*” OR ”trusted environment*”) AND (”cloud” OR ”server-side”)
AND (efficien* OR secur* OR function* OR usabil*) AND (compar* OR survey OR evaluation OR review) AND
(”Intel SGX” OR ”AMD SEV” OR ”Intel TDX” OR ”Keystone”))

Filters:

• Only include articles and conference papers.
• Publication stage should be final.
• Exclude non-English items.

”[technology-name]” ”[keyword]”

Entries for [technology-name]: ”fully homomorphic encryption”, ”oblivious ram”, ”structured encryption”, ”secure multi-
party computation”, ”secure multiparty computation”.

Entries for [keyword]: ”benchmark”, ”performance”, ”use case”, ”efficiency”, ”security”, ”attacks”, ”threat model”, ”usabil-
ity”, ”functionality”, ”trusted execution environment”.

B Properties of TEEs

Table 1: Comparison of TEE implementations on functionality.

Technology Attestation Data sealing

Intel SGX [11] QE with EPIDs Enclave/Sealing Identity modes
Keystone [12] Hardware with secure boot-signed key SBI-derived key
Intel TDX [13] QE with Intel PCK N/A (VM-based)
AMD SEV [14] Hardware root-of-trust only N/A (VM-based)

Table 2: Comparison of TEE implementations on efficiency.

Technology Performance overhead Integrity overhead

Intel SGX [11] High (up to 126× I/O in early versions) EPC metadata + MACs
Keystone [12] Near-native (higher than CVMs) Runtime software or MEE hardware
Intel TDX [13] Near-native (28.6% avg I/O overhead) MACs for integrity
AMD SEV [14] Near-native (higher than TDX) SEV: None; SNP: Reverse Map Table

Table 3: Comparison of TEE implementations on security.

Technology TCB size Known Vulnerabilities (June 2025)

Intel SGX [11] Minimal (CPU microcode + QE) 48 CVEs
Keystone [12] Smallest (can be variable) No CVEs (GitHub issues)
Intel TDX [13] Largest (incl. TDX Module Loader + QE) 10 CVEs (higher min score: 5.6)
AMD SEV [14] Large (more hardware) 49 CVEs

Table 4: Comparison of TEE implementations on usability.

Technology Deployment Debugging

Intel SGX [11] Code modifications (SDK/Gramine/Occlum) Debug bit in metadata (restricted in Release mode)
Keystone [12] RISC-V binaries or SDK SM debuggable; enclave apps restricted
Intel TDX [13] Minimal changes (TDX-Enlightened OS) On-TD/Off-TD debugging
AMD SEV [14] No modifications needed API-based (NODBG bit)

14



C Comparison with Privacy-Preserving Techniques

Table 5: Functionality and Usability Comparison of Privacy-Enhancing Techniques

Technique Computation
Type

Parties
Communication Applicability Use Cases

FHE Any computation Non-interactive
Client-server

Available in
open-source libraries

Medical data analysis
Recommender systems

Confidential ML

MPC General computation
(excluding specialized protocols)

Multiple clients or
distributed parties

Used in practice
but with limitations

Secure auctions
DNA comparison

Collaborative research

ORAM Data access Non-interactive
Client-server

Used in secure processors
and oblivious DBs

SGX integration
ObliDB, Signal protocol

StE Specific data access
on encrypted structures

Non-interactive
Client-server

Practical protocols for
specific structures

Encrypted DBMS
(e.g. MongoDB)

TEE Any computation
Interactive

Client-server with
attestation service

Optional in real world
cloud deployment

Data analytics
Trusted AI workloads

Medical Federated Learning

Table 6: Security and Performance Comparison of Privacy-Enhancing Techniques

Technique Threat
Model

Information
Leakage

Performance
Overhead

FHE IND-CCA2
Adaptive attack None by itself High: Key Generation

& Polynomial Operations

MPC Semi-honest or
malicious

Nothing beyond
function output Constant or Linear

ORAM Semi-honest or
malicious

Leakage through
side-channel attacks Logarithmic

StE Semi-honest Access pattern
sometimes response volume Sublinear

TEE Malicious actor
controlling server

Access patterns,
plaintext in CPU

Generally near-native,
bottleneck in I/O heavy

15


	Introduction
	Preliminaries
	Background
	Attestation
	Isolation
	Trusted Computing Base

	Related Work
	Methodology

	Existing Technologies
	Early Architectures
	Selection Criteria
	Cloud Integration
	Popularity

	Enclave-based Technologies
	Intel Software Guard Extension
	Keystone

	Confidential Virtual Machines
	Intel Trusted Domain Extension
	AMD Secure Encrypted Virtualization


	Properties of TEEs
	Functionality
	Parties Involved in Computation
	Remote Attestation
	Data Sealing

	Efficiency
	Task Performance Overhead
	Memory Protection Overhead

	Security
	Trusted Computing Base Size
	Threat Model
	Architectural Design Flaws
	Known Public Attacks

	Usability
	Ease of deployment
	Debugging


	Comparison with Other Techniques
	Fully Homomorphic Encryption
	Secure Multi-Party Computation
	Oblivious RAM
	Structured Encryption

	Responsible Research
	Future Work and Limitations
	Conclusions
	Queries for Reproducibility
	Properties of TEEs
	Comparison with Privacy-Preserving Techniques

