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Abstract 

It is known that quantitative measures for the 

reliability of software systems can be derived from 

software reliability models. And, as such, support the 

product development process. Over the past four 

decades, research activities in this area have been 

performed. As a result, many software reliability 

models have been proposed. It was shown that, once 

these models reach a certain level of convergence, it 

can enable the developer to release the software. And 

stop software testing accordingly. Criteria to determine 

the optimal testing time include the number of 

remaining errors, failure rate, reliability requirements, 

or total system cost. In this paper we will present our 

results in predicting the reliability of software for agile 

testing environments. We seek to model this way of 

working by extending the Jelinski-Moranda model to a 

‘stack’ of feature-specific models, assuming that the 

bugs are labelled with the feature they belong to. In 

order to demonstrate the extended model, several 

prediction results of actual cases will be presented. The 

questions to be answered in these cases are: how many 

software bugs remain in the software and should one 

decide to stop testing the software? 

1. Introduction

Nowadays the lighting industry experiences an

exponential increasing impact of digitization and

connectivity of its lighting systems [1, 2]. The impact

is far beyond the impact on single products, but

extends to an ever larger amount of connected systems.

Continuously, more intelligent interfacing with the

technical environment and with different kind of users

is being built-in by using more and different kind of

sensors, (wireless) communication, and different kind

of interacting or interfacing devices, see Figure 1.

Figure 1: The growing population with increased 

urbanization results in the need to focus on energy efficiency 

and sustainability thereby increasing digitalization and 

rapidly evolving technologies containing software. 

The trend towards controlled and connected 

systems also implies that other components will start 

playing an equal role in the reliability of such systems. 

Here, reliability needs to be complimented with 

availability and other modelling approaches are to be 

considered [3]. In the lighting industry, there is a strong 

focus on hardware reliability, including going from 

component reliability to system reliability. However, in 

the controlled and connected systems, software plays a 

much more prominent role than in even sophisticated 

“single” products such as color-adjustable lamps at 

home, streetlights, UV sterilization lights and alike. In 

these systems, availability is more strongly determined 

by software reliability than by hardware reliability [3]. 

In a previous study, the reliability of software was 

evaluated using the Goel-Okumoto reliability growth 

model [4]. It is known that different models can 

produce very different answers when assessing 

software reliability in the future [5]. A significant 

amount of research has been performed in the area of 

reliability growth and software reliability, that 

considers the process of finding (and repairing) bugs in 

existing software, essentially during a test phase [6 - 

11]. A typical assumption is that the development of 

the software has finished, except for the bugs that have 

to be detected and repaired [5, 8, 12]. The software 

reliability models then answer questions such as: what 

is the number of remaining bugs?, how many would we 

find if we spend a specified number of additional 

weeks of testing, etc. [13, 14]. In a more recent study 

Rana et al. [15] demonstrated the use of eight different 

software reliability growth models that were evaluated 

on eleven large projects. Prior classification of the 

expected shape was proven to improve the software 

reliability prediction.  

In many software developments companies, 

software is developed in a cadence of sprints resulting 

in biweekly releases in the so-called Scaled Agile 

Framework (SAFe) [16]. This means there is a second 

reason why bugs are found, apart from finding them by 

doing tests, namely, new bugs are introduced because 

new features are added to the software continuously. 

An important class of software reliability growth 

models is known as General Order Statistics (GOS) 

models [17, 18]. The special case in which the order 

statistics come from an exponential distribution is 

known as the Jelinski-Moranda model [19]. The main 

assumption for this class of models is that the times 

between failures of a software system can be defined as 

the differences between two consecutive order 

statistics. It is assumed that the initial number of 
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failures, denoted by a, is unknown but fixed and finite. 

In this paper, we seek to model this way of working by 

extending the Jelinski-Moranda model to a ‘stack’ of 

feature-specific models, assuming that the bugs are 

labelled with the feature they belong to. The feature-

specific model parameters can be considered as random 

effects, so that differences between features are 

modelled as well. In order to demonstrate the extended 

model, two use cases will be presented. Here, we 

model the software testing phase to get a detailed sense 

of the software maturity. Once software is deemed 

mature enough by the organization, it is released to the 

end-users. The new, operational use of the software is 

different from testing phase, and this phase is not being 

modelled. The questions to be answered in the two 

cases are: how many software bugs remain in the 

software and should one decide to stop testing the 

software [20, 21]? This paper builds up the 

mathematical model that describes the number of bugs 

detected in every time interval (sprint), specified per 

software feature. We derive a way to evaluate the 

likelihood function, which is used in the next section 

on estimation. We set out with the model with only one 

feature, which is a variant of the Jelinski-Moranda 

model but adapted for the counts per sprint. We need 

expressions for conditional probabilities based on 

recent history, where only the cumulative counts turn 

out to be important. We extend the results to multiple 

features, where we shift the time axis as different 

software features are completed at different times. We 

conclude by describing how all ingredients are 

combined to the likelihood function. 

2. Mathematical derivations and approach 

Full details for the mathematical derivations can be 

found in [22]. The basic concept includes that a 

software tool has bugs, which are detected at time Ti 

after testing starts at time 0.  is independent and 

exponentially distributed, i.e., Individual bugs are 

found independently following an exponential 

distribution. To model agile software development, 

where new functionality is added after each sprint 

(taking say two working weeks), we consider software 

as a set of features: one feature can be considered a 

single part of the software, or the result of a single 

“sprint” of development. Bugs are found and fixed for 

the existing features (the latest and earlier features), 

and new features can be added at later points in time. 

This way, you can track and predict the remaining 

number of bugs for the current set of features (or any 

other interesting set of features). 

The bug reports may come from different sources 

(implemented regression tests and tests by the team). 

Only bugs of sufficient severity are considered in the 

predictions. To handle the various sources we simply 

took the aggregate counts per sprint as input, assuming 

that the total number of tests in a sprint was 

comparable, we get a discrete time axis that was 

reasonably close to both test effort and calendar time. 

Ticket data were fed into the code, where we 

distinguished tickets with severity levels S (high) and 

A (low). We used JIRA [23] output of bug data, a 

typical out is shown in Figure 2. Pick-and-mix was 

used for ticket severity allocation. These tickets either 

had the allocation open or closed. Open means the 

issues were being solved, closed means it was solved. 

Recurring tickets were treated as a new open ticket 

which can be closed as soon as it is known to be 

recurrent. Ticket severity is denoted as S, A, B, C, or 

D. S are issues seen as a blocker that need immediate 

attention. A is seen as critical, B as major C and D as 

minor severity levels. We have only analyzed the 

closed tickets. Figure 2 depicts the full flowchart of the 

process: from tickets to dashboard values. Actual sprint 

dates have an equal length for each sprint of two 

weeks. The outcome is produced automatically. 

 

Figure 2: Flowchart for automatic generation of software 
reliability predictions. 

3. Results 

We analyzed 8 system projects with the developed 

tool. All these projects are still in the development 

phase and follow clear software quality principles. In 

total, it concerns approximately 10.000 software tickets 

or bugs. Figure 3 depicts the ticket distributions when 

classified as high (A + S tickets) and low (B + C + C) 

tickets. The variation per project is clear, tickets 

classified as high cover approximately 12% of all, and 

low about 88%. This was to be expected as severe 

tickets should appear less then less severe ones. 

 

Figure 3: Ticket distributions for the 8 analyzed projects. 

Predicted results of 4 projects, 1, 4, 6 and 7, are 

depicted in Figure 4. It shows the cumulative growth of 

severe (orange – red) and less severe (blue – green) 

tickets as function of sprints (in this case weeks). For 



 

    

     

 

projects 4 and 6 no signs of maturity is near, for 

projects 1 and 7, maturity is in sight. The predicted 

data is shown in Table 1. This table depicts the average 

values of predicted nr of tickets in coming sprints. 

Some projects are seeing maturity that are those with a 

low nr of remaining bugs after 10 sprints such as 

project 1. Most projects are seeing good levels of 

maturity for high severity tickets. Project 5 is the 

exemption, with still a large amount of severe tickets 

remaining in the code. Again, all projects are still in the 

development stage. The predicted values presented in 

Table 1 can serve for decisions to be taken if the 

software can be launched into the market. Also, this 

data can be used to allocate manpower for further code 

development and/or enhancement. Question remains 

for all these projects: can we take that decision? 

 

 

Figure 4: Predicted tickets as function of sprints (weeks) for 

projects 1, 4, 6 and 7. Blue lines concerns low severity tickets 

orange lines the high ones. Future tickets are given in green 

and red. 

Table 1: Predicted nr of tickets for coming sprints. Average 

values +/- standard deviation. 

 P
ro

je
c
t 

Predicted nr of tickets 

High (A + S) Low (B + C + D) 

+1 sprint +10 sprints +1 sprint +10 sprints 

1 0.3 +/- 1.7 1.4 +/- 2.6 2.4 +/- 3.6 11.9 +/- 8.1 

2 0.7 +/- 2.3 3.2 +/- 4.8 2.6 +/- 3.4 12.7 +/- 8.3 

3 1.0 +/- 3.0 5.1 +/- 5.9 5.2 +/- 4.8 25.8 +/- 11.2 

4 0.5 +/- 1.5 2.4 +/- 3.6 14.7 +/- 7.8 71.0 +/- 20.0 

5 3.9 +/- 4.1 19.3 +/- 9.7 8.1 +/- 5.9 39.9 +/- 14.1 

6 0.6 +/- 1.4 2.9 +/- 4.1 15.0 +/- 8.0 75.2 +/- 18.8 

7 0.2 +/- 0.8 0.8 +/- 2.2 5.2 +/- 4.8 25.1 +/- 10.9 

8 0.2 +/- 0.8 1.0 +/- 2.0 2.2 +/- 3.8 10.5 +/- 7.5 

4. Discussion & conclusions 

Software failures differ significantly from hardware 

failures. They are not caused by faulty components or 

wear-out due to e.g. physical environment stresses such 

as temperature, moisture and vibration. Software 

failures are caused by latent software defects. These 

defects were introduced in the software while it was 

created. However, these defects were not detected 

and/or removed prior of being released to the customer. 

In order to prevent that these defects are noticed by the 

customer, a higher level of software reliability has to 

be achieved. This means to reduce the likelihood that 

latent defects are present in released software. 

Unfortunately, even with the most highly skilled 

software engineers following industry best practices, 

the introduction of software defects is inevitable. This 

is due to the ever-increasing inherent complexities of 

the software functionality and its execution 

environment. Here, software reliability engineering 

may be helpful, a field that relates to testing and 

modelling of software functionality in a given 

environment of a particular amount of time. But 

certainly, there is currently no method available that 

can guarantee a totally reliable software. In order to 

achieve the best possible software, a set of statistical 

modelling techniques are required that: 

• Can assess or predict the to-be-achieved reliability; 

• Based on the observations of software failures 

during testing and/or operational use. 

In order to achieve these two requirements, many 

software reliability models have been proposed. It was 

shown that, once these models reach a certain level of 

convergence, it can enable the developer to release the 

software. And stop software testing accordingly. 

Criteria to determine the optimal testing time include 

the number of remaining errors, failure rate, reliability 

requirements, or total system cost. Typical questions 

that need to be addressed are:  

• How many errors are still left in the software?  

• What is the probability of having no failures in a 

given time period?  

• What is the expected time until the next software 

failure will occur? 

• What is the expected number of total software 

failures in a given time period?  

Certainly, the question on “How many errors are 

left” is something completely different from “What is 

the expected number of errors in a given time period”. 

One cannot estimate the first directly, but you can 

estimate the second. In our approach, we are content 

with “expected number of errors that a long testing 

period would yield”.  

In this paper we presented an approach to predict 

software reliability for agile testing environments. The 

new approach divers from the many others in the sense 

that it combines features with tickets using Bayesian 

statistics. By doing that, a more reliable number of 

predicted tickets (read: software bugs) can be obtained. 

The developed system software reliability approach is 

applied to 8 software development projects, to 

demonstrate how software reliability models can be 

used to improve the quality metrics. The new approach 

is carved down in a tool, programmed in Python. The 



 

    

     

 

outcome of the predictions can be used in the Quality 

dashboard maturity grid to enable a better judgement of 

releasing the software or not. The strength of the 

software reliability approach is to be proven by more 

data and comparison with field return data. The 

outcome is satisfactory as a more reliable number of 

remaining tickets was calculated. As prominent 

advantage we note that divergence of the proposed 

fitting procedure is not an issue anymore in the new 

approach. 

Following is recommended for the future 

developments of the presented approach: 

• Gather more data from the software development 

teams. 

• Connect to the field quality community to gather 

field data of software tickets. 

• Make software reliability calculation part of the 

development process  

• Automate the Python code such that ticket-feature 

data can be imported on-the-fly. 

• Include machine learning techniques and online 

failure prediction methods, which can be used to 

predict if a failure will happen 5 minutes from now 

[24]. 

• Investigate the used of other SRGM models, 

including multistage ones, or those that can 

distinguish development and maintenance software 

defects [14, 15]. 

• Not focus on a specific software reliability model 

but rather assess forecast accuracy and then 

improve forecasts as was demonstrated by Zhao et 

al [25]. 

• Classify the expected shape of defect inflow prior 

to the prediction [15]. 
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