

Delft University of Technology

System Software Reliability

van Driel, Willem D.; Bikker, J.W.; Tijink, M.

DOI
10.1109/EuroSimE48426.2020.9152686
Publication date
2020
Document Version
Accepted author manuscript
Published in
2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments
in Microelectronics and Microsystems (EuroSimE)

Citation (APA)
van Driel, W. D., Bikker, J. W., & Tijink, M. (2020). System Software Reliability. In 2020 21st International
Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and
Microsystems (EuroSimE): Proceedings (pp. 1-5). Article 9152686 IEEE.
https://doi.org/10.1109/EuroSimE48426.2020.9152686
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/EuroSimE48426.2020.9152686
https://doi.org/10.1109/EuroSimE48426.2020.9152686

System Software Reliability

Willem D. van Driel1, J.W. Bikker, M. Tijink
1Signify Eindhoven / Delft University of Technology, The Netherlands

2CQM, Eindhoven, The Netherlands

willem.van.driel@signify.com

Abstract

It is known that quantitative measures for the

reliability of software systems can be derived from

software reliability models. And, as such, support the

product development process. Over the past four

decades, research activities in this area have been

performed. As a result, many software reliability

models have been proposed. It was shown that, once

these models reach a certain level of convergence, it

can enable the developer to release the software. And

stop software testing accordingly. Criteria to determine

the optimal testing time include the number of

remaining errors, failure rate, reliability requirements,

or total system cost. In this paper we will present our

results in predicting the reliability of software for agile

testing environments. We seek to model this way of

working by extending the Jelinski-Moranda model to a

‘stack’ of feature-specific models, assuming that the

bugs are labelled with the feature they belong to. In

order to demonstrate the extended model, several

prediction results of actual cases will be presented. The

questions to be answered in these cases are: how many

software bugs remain in the software and should one

decide to stop testing the software?

1. Introduction

Nowadays the lighting industry experiences an

exponential increasing impact of digitization and

connectivity of its lighting systems [1, 2]. The impact

is far beyond the impact on single products, but

extends to an ever larger amount of connected systems.

Continuously, more intelligent interfacing with the

technical environment and with different kind of users

is being built-in by using more and different kind of

sensors, (wireless) communication, and different kind

of interacting or interfacing devices, see Figure 1.

Figure 1: The growing population with increased

urbanization results in the need to focus on energy efficiency

and sustainability thereby increasing digitalization and

rapidly evolving technologies containing software.

The trend towards controlled and connected

systems also implies that other components will start

playing an equal role in the reliability of such systems.

Here, reliability needs to be complimented with

availability and other modelling approaches are to be

considered [3]. In the lighting industry, there is a strong

focus on hardware reliability, including going from

component reliability to system reliability. However, in

the controlled and connected systems, software plays a

much more prominent role than in even sophisticated

“single” products such as color-adjustable lamps at

home, streetlights, UV sterilization lights and alike. In

these systems, availability is more strongly determined

by software reliability than by hardware reliability [3].

In a previous study, the reliability of software was

evaluated using the Goel-Okumoto reliability growth

model [4]. It is known that different models can

produce very different answers when assessing

software reliability in the future [5]. A significant

amount of research has been performed in the area of

reliability growth and software reliability, that

considers the process of finding (and repairing) bugs in

existing software, essentially during a test phase [6 -

11]. A typical assumption is that the development of

the software has finished, except for the bugs that have

to be detected and repaired [5, 8, 12]. The software

reliability models then answer questions such as: what

is the number of remaining bugs?, how many would we

find if we spend a specified number of additional

weeks of testing, etc. [13, 14]. In a more recent study

Rana et al. [15] demonstrated the use of eight different

software reliability growth models that were evaluated

on eleven large projects. Prior classification of the

expected shape was proven to improve the software

reliability prediction.

In many software developments companies,

software is developed in a cadence of sprints resulting

in biweekly releases in the so-called Scaled Agile

Framework (SAFe) [16]. This means there is a second

reason why bugs are found, apart from finding them by

doing tests, namely, new bugs are introduced because

new features are added to the software continuously.

An important class of software reliability growth

models is known as General Order Statistics (GOS)

models [17, 18]. The special case in which the order

statistics come from an exponential distribution is

known as the Jelinski-Moranda model [19]. The main

assumption for this class of models is that the times

between failures of a software system can be defined as

the differences between two consecutive order

statistics. It is assumed that the initial number of

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

failures, denoted by a, is unknown but fixed and finite.

In this paper, we seek to model this way of working by

extending the Jelinski-Moranda model to a ‘stack’ of

feature-specific models, assuming that the bugs are

labelled with the feature they belong to. The feature-

specific model parameters can be considered as random

effects, so that differences between features are

modelled as well. In order to demonstrate the extended

model, two use cases will be presented. Here, we

model the software testing phase to get a detailed sense

of the software maturity. Once software is deemed

mature enough by the organization, it is released to the

end-users. The new, operational use of the software is

different from testing phase, and this phase is not being

modelled. The questions to be answered in the two

cases are: how many software bugs remain in the

software and should one decide to stop testing the

software [20, 21]? This paper builds up the

mathematical model that describes the number of bugs

detected in every time interval (sprint), specified per

software feature. We derive a way to evaluate the

likelihood function, which is used in the next section

on estimation. We set out with the model with only one

feature, which is a variant of the Jelinski-Moranda

model but adapted for the counts per sprint. We need

expressions for conditional probabilities based on

recent history, where only the cumulative counts turn

out to be important. We extend the results to multiple

features, where we shift the time axis as different

software features are completed at different times. We

conclude by describing how all ingredients are

combined to the likelihood function.

2. Mathematical derivations and approach

Full details for the mathematical derivations can be

found in [22]. The basic concept includes that a

software tool has bugs, which are detected at time Ti

after testing starts at time 0. is independent and

exponentially distributed, i.e., Individual bugs are

found independently following an exponential

distribution. To model agile software development,

where new functionality is added after each sprint

(taking say two working weeks), we consider software

as a set of features: one feature can be considered a

single part of the software, or the result of a single

“sprint” of development. Bugs are found and fixed for

the existing features (the latest and earlier features),

and new features can be added at later points in time.

This way, you can track and predict the remaining

number of bugs for the current set of features (or any

other interesting set of features).

The bug reports may come from different sources

(implemented regression tests and tests by the team).

Only bugs of sufficient severity are considered in the

predictions. To handle the various sources we simply

took the aggregate counts per sprint as input, assuming

that the total number of tests in a sprint was

comparable, we get a discrete time axis that was

reasonably close to both test effort and calendar time.

Ticket data were fed into the code, where we

distinguished tickets with severity levels S (high) and

A (low). We used JIRA [23] output of bug data, a

typical out is shown in Figure 2. Pick-and-mix was

used for ticket severity allocation. These tickets either

had the allocation open or closed. Open means the

issues were being solved, closed means it was solved.

Recurring tickets were treated as a new open ticket

which can be closed as soon as it is known to be

recurrent. Ticket severity is denoted as S, A, B, C, or

D. S are issues seen as a blocker that need immediate

attention. A is seen as critical, B as major C and D as

minor severity levels. We have only analyzed the

closed tickets. Figure 2 depicts the full flowchart of the

process: from tickets to dashboard values. Actual sprint

dates have an equal length for each sprint of two

weeks. The outcome is produced automatically.

Figure 2: Flowchart for automatic generation of software
reliability predictions.

3. Results

We analyzed 8 system projects with the developed

tool. All these projects are still in the development

phase and follow clear software quality principles. In

total, it concerns approximately 10.000 software tickets

or bugs. Figure 3 depicts the ticket distributions when

classified as high (A + S tickets) and low (B + C + C)

tickets. The variation per project is clear, tickets

classified as high cover approximately 12% of all, and

low about 88%. This was to be expected as severe

tickets should appear less then less severe ones.

Figure 3: Ticket distributions for the 8 analyzed projects.

Predicted results of 4 projects, 1, 4, 6 and 7, are

depicted in Figure 4. It shows the cumulative growth of

severe (orange – red) and less severe (blue – green)

tickets as function of sprints (in this case weeks). For

projects 4 and 6 no signs of maturity is near, for

projects 1 and 7, maturity is in sight. The predicted

data is shown in Table 1. This table depicts the average

values of predicted nr of tickets in coming sprints.

Some projects are seeing maturity that are those with a

low nr of remaining bugs after 10 sprints such as

project 1. Most projects are seeing good levels of

maturity for high severity tickets. Project 5 is the

exemption, with still a large amount of severe tickets

remaining in the code. Again, all projects are still in the

development stage. The predicted values presented in

Table 1 can serve for decisions to be taken if the

software can be launched into the market. Also, this

data can be used to allocate manpower for further code

development and/or enhancement. Question remains

for all these projects: can we take that decision?

Figure 4: Predicted tickets as function of sprints (weeks) for

projects 1, 4, 6 and 7. Blue lines concerns low severity tickets

orange lines the high ones. Future tickets are given in green

and red.

Table 1: Predicted nr of tickets for coming sprints. Average

values +/- standard deviation.

 P
ro

je
c
t

Predicted nr of tickets

High (A + S) Low (B + C + D)

+1 sprint +10 sprints +1 sprint +10 sprints

1 0.3 +/- 1.7 1.4 +/- 2.6 2.4 +/- 3.6 11.9 +/- 8.1

2 0.7 +/- 2.3 3.2 +/- 4.8 2.6 +/- 3.4 12.7 +/- 8.3

3 1.0 +/- 3.0 5.1 +/- 5.9 5.2 +/- 4.8 25.8 +/- 11.2

4 0.5 +/- 1.5 2.4 +/- 3.6 14.7 +/- 7.8 71.0 +/- 20.0

5 3.9 +/- 4.1 19.3 +/- 9.7 8.1 +/- 5.9 39.9 +/- 14.1

6 0.6 +/- 1.4 2.9 +/- 4.1 15.0 +/- 8.0 75.2 +/- 18.8

7 0.2 +/- 0.8 0.8 +/- 2.2 5.2 +/- 4.8 25.1 +/- 10.9

8 0.2 +/- 0.8 1.0 +/- 2.0 2.2 +/- 3.8 10.5 +/- 7.5

4. Discussion & conclusions

Software failures differ significantly from hardware

failures. They are not caused by faulty components or

wear-out due to e.g. physical environment stresses such

as temperature, moisture and vibration. Software

failures are caused by latent software defects. These

defects were introduced in the software while it was

created. However, these defects were not detected

and/or removed prior of being released to the customer.

In order to prevent that these defects are noticed by the

customer, a higher level of software reliability has to

be achieved. This means to reduce the likelihood that

latent defects are present in released software.

Unfortunately, even with the most highly skilled

software engineers following industry best practices,

the introduction of software defects is inevitable. This

is due to the ever-increasing inherent complexities of

the software functionality and its execution

environment. Here, software reliability engineering

may be helpful, a field that relates to testing and

modelling of software functionality in a given

environment of a particular amount of time. But

certainly, there is currently no method available that

can guarantee a totally reliable software. In order to

achieve the best possible software, a set of statistical

modelling techniques are required that:

• Can assess or predict the to-be-achieved reliability;

• Based on the observations of software failures

during testing and/or operational use.

In order to achieve these two requirements, many

software reliability models have been proposed. It was

shown that, once these models reach a certain level of

convergence, it can enable the developer to release the

software. And stop software testing accordingly.

Criteria to determine the optimal testing time include

the number of remaining errors, failure rate, reliability

requirements, or total system cost. Typical questions

that need to be addressed are:

• How many errors are still left in the software?

• What is the probability of having no failures in a

given time period?

• What is the expected time until the next software

failure will occur?

• What is the expected number of total software

failures in a given time period?

Certainly, the question on “How many errors are

left” is something completely different from “What is

the expected number of errors in a given time period”.

One cannot estimate the first directly, but you can

estimate the second. In our approach, we are content

with “expected number of errors that a long testing

period would yield”.

In this paper we presented an approach to predict

software reliability for agile testing environments. The

new approach divers from the many others in the sense

that it combines features with tickets using Bayesian

statistics. By doing that, a more reliable number of

predicted tickets (read: software bugs) can be obtained.

The developed system software reliability approach is

applied to 8 software development projects, to

demonstrate how software reliability models can be

used to improve the quality metrics. The new approach

is carved down in a tool, programmed in Python. The

outcome of the predictions can be used in the Quality

dashboard maturity grid to enable a better judgement of

releasing the software or not. The strength of the

software reliability approach is to be proven by more

data and comparison with field return data. The

outcome is satisfactory as a more reliable number of

remaining tickets was calculated. As prominent

advantage we note that divergence of the proposed

fitting procedure is not an issue anymore in the new

approach.

Following is recommended for the future

developments of the presented approach:

• Gather more data from the software development

teams.

• Connect to the field quality community to gather

field data of software tickets.

• Make software reliability calculation part of the

development process

• Automate the Python code such that ticket-feature

data can be imported on-the-fly.

• Include machine learning techniques and online

failure prediction methods, which can be used to

predict if a failure will happen 5 minutes from now

[24].

• Investigate the used of other SRGM models,

including multistage ones, or those that can

distinguish development and maintenance software

defects [14, 15].

• Not focus on a specific software reliability model

but rather assess forecast accuracy and then

improve forecasts as was demonstrated by Zhao et

al [25].

• Classify the expected shape of defect inflow prior

to the prediction [15].

Acknowledgments

The European project SCOTT is acknowledged for

funding the presented work in this paper.

References

1. Van Driel, W.; Fan, X. Solid State Lighting

Reliability: Components to Systems; Springer:

New York, 2012. 359 doi:10.1007/978-1-4614-

3067-4.

2. Van Driel, W.; Fan, X.; Zhang, G. Solid State

Lighting Reliability: Components to Systems Part

II; Springer: New York, 2016. doi:10.1007/978-3-

319-58175-0.

3. Papp, Z.; Exarchakos, G., Eds. Runtime

Reconfiguration in Networked Embedded Systems

- Design and Testing Practice; Springer:

Singapore, 2016. doi:doi: 10.1007/978-981-10-

0715-6.

4. Van Driel,W.; Schuld, M.;Wijgers, R.; Kooten,W.

Software reliability and its interaction with

hardware reliability. 15th International Conference

on Thermal, Mechanical and Multi-Physics

Simulation and Experiments in Microelectronics

and Microsystems (EuroSimE), 2014.

5. Abdel-Ghaly, A.A.; Chan, P.Y.; Littlewood, B.

Evaluation of competing software reliability

predictions. IEEE Trans. Softw. Eng. 1986, SE-12,

950–967.

6. Bendell, A.; Mellor, P., Eds. Software Reliability:

State of the Art Report; Pergamon Infotech

Limited: Maidenhead, 1986.

7. Lyu, M., Ed. Handbook of Software Reliability

Engineering; McGraw-Hill and IEEE Computer

Society: New York, 1996.

8. Pham, H., Ed. Software Reliability and Testing, Los

Alamitos, California, 1995. IEEE Computer

Society Press.

9. Xie, M. Software reliability models—past, present

and future. In Recent advances in reliability

theory, Bordeaux, 2000; Stat. Ind. Technol.,

Birkhäuser Boston: Boston, MA, 2000; pp. 325–

340.

10. Bishop, P.; Povyakalo, A. Deriving a frequentist

conservative confidence bound for probability of

failure per demand for systems with different

operational and test profiles. Reliability

Engineering & System Safety 378 2017, 158, 246–

253.

11. Adams, E. Optimizing preventive service of

software products. IBM Journal of Research and

Development 380 1984, 28, 2–14.

12. Xie, M.; Hong, G. Software reliability modeling,

estimation and analysis. In Advances in

Reliability; North-Holland: Amsterdam, 2001;

Vol. 20, Handbook of Statist., pp. 707–731.

13. Almering, V.; Van Genuchten, M.; Cloudt, G.;

Sonnemans, P. Using Software Reliability Growth

Models in Practice. Software, IEEE 2007, 24, 82–

88.

14. Pham, H., Ed. System Software Reliability;

Springer-Verlag: London, 2000. doi:10.1007/1-

84628-295-0.

15. Rana, R.; Staron, M.; Berger, C.; Hansson, J.;

Nilsson, M.; Törner, F.; Meding, W.; Höglund, C.

Selecting pm nhu8io0software reliability growth

models and improving their predictive accuracy

using historical projects data, Journal of Systems

and Software 2014, 98, 59–78.

16. Xie, M.; Hong, G.; Wohlin, C. Modeling and

analysis of software system reliability. In Case

Studies in Reliability and Maintenance; Blischke,

W.; Murthy, D., Eds.; Wiley: New York, 2003;

chapter 10, pp. 233–249.

17. Miller, D. Exponential order statistic models of

software reliability growth. IEEE Transactions on

Software, Engineering 1986, SE-12, 12–24.

18. Joe, H. Statistical Inference for General-Order-

Statistics and Nonhomogeneous-Poisson-Process

Software Reliability Models. IEEE Trans.

Software Eng. 1989, 15, 1485–1490.

19. Jelinski, Z.; Moranda, P. Software Reliability

Research. In Statistical Computer Performance

Evaluation; Freiberger, W., Ed.; Academic Press,

1972; pp. 465–497.

20. Dalal, S.R.; Mallows, C.L. When should one stop

testing software? J. Amer. Statist. Assoc. 1988, 83,

872–879.

21. Zacks, S. Sequential procedures in software

reliability testing. In Recent advances in life-

testing and reliability; CRC: Boca Raton, FL,

1995; pp. 107–126. Version April 21, 2020

submitted to Mathematics.

22. W.D. van Driel, J.W. Bikker, M Tijink, A. Di

Bucchianico, Software Reliability for Agile

Testing, Accepted for publication in Mathematics,

2020.

23. Atlassian. JIRA Software Description, 2020.

24. Salfner, F., L.M..M.M. A survey of online failure

prediction methods. ACM Computing Surveys

2010, 433 42, 12–24.

25. Zhao, X.; Robu, V.; Flynn, D.; Salako, K.; Strigini,

L. Assessing the Safety and Reliability of

Autonomous Vehicles from Road Testing. 30th

International Symposium on Software Reliability

Engineering (ISSRE) 436 2019, 2019.

