
 
 

Delft University of Technology

Carving Information Sources to Drive Search-Based Crash Reproduction and Test Case
Generation

Derakhshanfar, P.

DOI
10.4233/uuid:aac5f17a-63d5-45c7-9570-3cea057cd016
Publication date
2021
Document Version
Final published version
Citation (APA)
Derakhshanfar, P. (2021). Carving Information Sources to Drive Search-Based Crash Reproduction and
Test Case Generation. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:aac5f17a-63d5-45c7-9570-3cea057cd016

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:aac5f17a-63d5-45c7-9570-3cea057cd016
https://doi.org/10.4233/uuid:aac5f17a-63d5-45c7-9570-3cea057cd016


 Carving Information Sources to Drive
 Search-Based Crash Reproduction

and Test Case Generation
Pouria  Derakhshanfar



Carving Information Sources to Drive
Search-Based Crash Reproduction

and Test Case Generation



Carving Information Sources to Drive
Search-Based Crash Reproduction

and Test Case Generation

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op donderdag 22 april 2021 om 10.00 uur

door

Pouria DERAKHSHANFAR

Master of Science in Computer Engineering,
Sharif University of Technology Tehran, Iran,

geboren te Tehran, Iran.



Dit proefschrift is goedgekeurd door de

promotoren: Prof. dr. A.E. Zaidman, Prof. dr. A. van Deursen
copromotor: Dr. A. Panichella

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. A. van Deursen, Technische Universiteit Delft
Prof. dr. A.E. Zaidman, Technische Universiteit Delft
Dr. A. Panichella, Technische Universiteit Delft

Onafhankelijke leden:
Prof. dr. P.A.N. Bosman, Technische Universiteit Delft
Prof. dr. B. Baudry, KTH Royal Institute of Technology, Sweden
Prof. dr. P. Tonella, Università della Svizzera Italiana, Switzerland
Prof. dr. Ph. McMinn, University of Sheffield, England
Prof. dr. E. Visser, Technische Universiteit Delft, reserve lid

Dr. X. Devroey has, as daily-supervisor, contributed significantly to the preparation of this
dissertation.
The work in the thesis has been partially funded by the EU Project STAMP ICT-16-10
No.731529.
The work in the thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).



v

Keywords: Search-based Software Testing, Crash Reproduction, Class Integration
Testing, Carving Information Sources

Printed by: IPSKAMP printing (www.proefschriften.net)

Cover: ’Genetic gradient’ by Atefeh Alaeddin and Arefeh Alaeddin

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/phd-thesis-template

The author set this thesis in LATEX using the Libertinus and Inconsolata fonts.

ISBN 978-94-6421-312-6

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

www.proefschriften.net
https://github.com/Inventitech/phd-thesis-template
http://repository.tudelft.nl/


As you start to walk on the way, the way appears.

Rumi



vii

Contents

Summary xiii

Samenvatting xv

Acknowledgments xvii

1 Introduction 1
1.1 Background & Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Search-based Software Test Generation. . . . . . . . . . . . . . . 3
1.1.2 Search-based Crash Reproduction ². . . . . . . . . . . . . . . . . 7

1.2 Challenges In Search-based Crash Reproduction And Test Generation . . . 8
1.3 Research Goals & Questions . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Research Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Origins Of The Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Open Science. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7.1 Open-source Search-based Test Case Generation Implementations . 14
1.7.2 Open-source Evaluation Infrastructures . . . . . . . . . . . . . . 14

2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction 17
2.1 Background and related work . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Automated Crash Reproduction . . . . . . . . . . . . . . . . . . 18
2.1.2 Search-based Crash Reproduction With EvoCrash. . . . . . . . . 20

2.2 Benchmark Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Projects Selection Protocol . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Stack Trace Collection And Preprocessing . . . . . . . . . . . . . 25

2.3 The JCrashPack Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Running Experiments With ExRunner . . . . . . . . . . . . . . . . . . . 28
2.5 Application To EvoCrash: Setup. . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Application To EvoCrash: Results . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Crash Reproduction Outcomes (RQ1). . . . . . . . . . . . . . . . 32
2.6.2 Impact of Exception Type and Project on Performance (RQ2). . . . 38

2.7 Challenges For Crash Reproduction (RQ3) . . . . . . . . . . . . . . . . . 42
2.7.1 Input Data Generation . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.2 Complex Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.3 Environmental Dependencies . . . . . . . . . . . . . . . . . . . 44
2.7.4 Static Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 45

²This section is partly based onB. Cherry, X. Devroey, P. Derakhshanfar, and B. Vanderose. Crash reproduction
difficulty, an initial assessment, BENEVOL’20 [1]



viii Contents

2.7.5 Abstract Classes And Methods . . . . . . . . . . . . . . . . . . . 46
2.7.6 Anonymous Classes . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7.7 Private Inner Classes . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7.8 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7.9 Nested Private Calls . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7.10 Empty enum Type. . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7.11 Frames With try/catch . . . . . . . . . . . . . . . . . . . . . . 48
2.7.12 Missing Line Number . . . . . . . . . . . . . . . . . . . . . . . 48
2.7.13 Incorrect Line Numbers . . . . . . . . . . . . . . . . . . . . . . 49
2.7.14 Unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.1 Empirical Evaluation For Crash Reproduction . . . . . . . . . . . 50
2.8.2 Usefulness For Debugging . . . . . . . . . . . . . . . . . . . . . 50
2.8.3 Benchmark Building . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Future Research Directions For Search-Based Crash Reproduction . . . . . 52
2.9.1 Context Matters . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.9.2 Stack Trace Preprocessing And Target Frame Selection. . . . . . . 53
2.9.3 Guided Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.9.4 Improving Testability . . . . . . . . . . . . . . . . . . . . . . . 53

2.10 Threats To Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Search-based Crash Reproduction using Behavioral Model Seeding 57
3.1 Background And Related Work. . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Search-Based Crash Reproduction . . . . . . . . . . . . . . . . . 59
3.1.2 Seeding Strategies For Search-Based Testing . . . . . . . . . . . . 60
3.1.3 Behavioral Model-Based Testing . . . . . . . . . . . . . . . . . . 62

3.2 Behavioral Model and Test Seeding for Crash Reproduction . . . . . . . . 63
3.2.1 Model inference . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Abstract Object Behaviors Selection . . . . . . . . . . . . . . . . 65
3.2.3 Guided Initialization and Guided Mutation . . . . . . . . . . . . . 66
3.2.4 Test Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.1 Test Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.2 Model Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.2 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.3 Data Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.1 Test Seeding (RQ1) . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.2 Behavioral Model Seeding (RQ2) . . . . . . . . . . . . . . . . . . 76

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6.1 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . 81
3.6.2 Model Seeding Configuration . . . . . . . . . . . . . . . . . . . 82



Contents ix

3.7 Threats To Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.8 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Improving Search-based Crash Reproduction With Helper Objectives 87
4.1 Background And Related Work. . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Single-Objective Search Heuristics . . . . . . . . . . . . . . . . . 89
4.1.2 Single-Objective Search . . . . . . . . . . . . . . . . . . . . . . 90
4.1.3 Decomposition-based Multi-objectivization . . . . . . . . . . . . 90

4.2 Multi-Objectivization with Helper-Objectives (MO-HO) . . . . . . . . . . 91
4.2.1 Helper-objectives . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.2 Multi-objective Evolutionary Algorithms. . . . . . . . . . . . . . 92

4.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.2 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.1 Best MOEA for MO-HO (RQ1) . . . . . . . . . . . . . . . . . . . 97
4.4.2 Crash Reproduction (RQ2) . . . . . . . . . . . . . . . . . . . . . 98
4.4.3 Efficiency (RQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.4 Corner Cases Analysis . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.1 Effectiveness And Applicability . . . . . . . . . . . . . . . . . . 103
4.5.2 Factors In The Benchmark Crashes That Impact The Success Of

MO-HO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.3 Crash Reproduction Cost . . . . . . . . . . . . . . . . . . . . . . 105
4.5.4 Extendability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Threats To Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7 Conclusion And Future Work . . . . . . . . . . . . . . . . . . . . . . . 106

5 Basic Block Coverage for Search-Based Crash Reproduction 109
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Coverage Distance Heuristics . . . . . . . . . . . . . . . . . . . 111
5.1.2 Search-based Crash Reproduction . . . . . . . . . . . . . . . . . 112

5.2 Basic Block Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.2 Secondary Objective . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 Threats to validity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 121



x Contents

6 Generating Class-Level Integration Tests Using Call Site Information 123
6.1 Background And Related Work. . . . . . . . . . . . . . . . . . . . . . . 125

6.1.1 Search-based Approaches For Unit Testing . . . . . . . . . . . . . 125
6.1.2 Search-Based Approaches For Integration Testing . . . . . . . . . 125

6.2 Class Integration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2.1 Coupled Branch Testing Criterion . . . . . . . . . . . . . . . . . 129
6.2.2 Cling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.2 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4.1 CBC achieved by Cling (RQ1.1) . . . . . . . . . . . . . . . . . . 138
6.4.2 CBC achieved by Cling vs. unit tests (RQ1.2) . . . . . . . . . . . 139
6.4.3 Line Coverage and Mutation Scores (RQ2) . . . . . . . . . . . . . 140
6.4.4 Integration Faults Exposed by Cling (RQ3). . . . . . . . . . . . . 145

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.5.1 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.5.2 Test generation cost . . . . . . . . . . . . . . . . . . . . . . . . 147
6.5.3 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.7 Conclusion And Future Work . . . . . . . . . . . . . . . . . . . . . . . 149

7 Commonality-Driven Unit Test Generation 151
7.1 Background And Related Work. . . . . . . . . . . . . . . . . . . . . . . 152

7.1.1 Search-Based Unit Test Generation . . . . . . . . . . . . . . . . . 152
7.1.2 Usage-based Test Generation . . . . . . . . . . . . . . . . . . . . 153

7.2 Test Generation For Common And Uncommon Behaviors . . . . . . . . . 153
7.2.1 Commonality As A Secondary Objective . . . . . . . . . . . . . . 155

7.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3.1 Subject And Execution Weights . . . . . . . . . . . . . . . . . . 156
7.3.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.4.1 Commonality Score (RQ1) . . . . . . . . . . . . . . . . . . . . . 157
7.4.2 Structural Coverage (RQ2) . . . . . . . . . . . . . . . . . . . . . 157
7.4.3 Mutation Analysis (RQ3) . . . . . . . . . . . . . . . . . . . . . . 159

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.5.1 Execution Weights . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.5.2 Impact On Mutation Analysis . . . . . . . . . . . . . . . . . . . 160
7.5.3 Usefulness For Debugging . . . . . . . . . . . . . . . . . . . . . 161

7.6 Threats To The Validity. . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.7 Conclusion And Future Work . . . . . . . . . . . . . . . . . . . . . . . 161

8 Conclusion 163
8.1 Research Questions Revisited . . . . . . . . . . . . . . . . . . . . . . . 163
8.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2.1 Implications for research . . . . . . . . . . . . . . . . . . . . . . 166



Contents xi

8.2.2 Implications for developers. . . . . . . . . . . . . . . . . . . . . 166
8.3 Recommendations For Future Work . . . . . . . . . . . . . . . . . . . . 168

8.3.1 Search-based Crash Reproduction . . . . . . . . . . . . . . . . . 169
8.3.2 Search-based Integration Testing . . . . . . . . . . . . . . . . . . 169
8.3.3 Carving Knowledge For Search-based Test Generation . . . . . . . 169

Bibliography 171

Glossary 194

Curriculum Vitæ 195

List of Publications 199





xiii

Summary
Software testing plays a crucial role in software development to improve the software’s
consistency and performance. Since software testing activities demand considerable effort
in the development process, many automated techniques have been introduced to aid de-
velopers and testers in various testing phases, thereby reducing the costs related to these
tasks. One category of these automated approaches seeks to generate software tests auto-
matically using different strategies. One of the successful strategies, which is applied to
industrial cases, uses metaheuristic search-based approaches for test generation automa-
tion. These approaches use various search techniques to produce tests for different levels,
such as unit testing and system-level tests. The assessments of these techniques confirm
their usefulness in fault detection and debugging practices. However, most of these tech-
niques use structural coverage criteria (e.g., line and branch coverage) for test generation.
Despite the usefulness of these general criteria, it has been shown that they are not al-
ways enough for revealing faults. Previous studies show that these criteria have a fault
detection likelihood of about 50%.

This thesis investigates the application of novel search objectives and search-based
test generation methods, based on information carved from multiple sources (e.g., source
code, hand-written tests, etc.), on search-based test generation. In particular, in the first
part of the thesis, we introduce new search objectives and methods to cover an instance
of specific software behavior called crash reproduction. Then, we present a new search-
based approach for testing integration points between two coupled classes to find class
integration-level faults. Finally, we propose new search objectives to generate unit-level
tests exercising the software common and uncommon execution patterns observed during
the software operation.

Our results regarding the assessment of new search-based crash reproduction strate-
gies show that these introduced techniques improve the search process’s effectiveness
and efficiency. In other words, these techniques drove the state-of-the-art in search-based
crash reproduction to reproduce more crashes andmore quickly. Moreover, evaluating the
novel search-based class-integration test generation approach indicates that this approach
complements the state-of-the-art search-based unit test generation in fault detection. Fi-
nally, this thesis reports mixed results for the search objectives introduced for exercising
common and uncommon execution patterns. We observed that these objectives improve
the mutation score achieved by the generated tests in some cases, while we see the oppo-
site in some other cases.

In summary, this thesis introduced new techniques for search-based test generation by
looking at the existing knowledge carved from different resources. The results reported in
this thesis confirm these approaches’ positive impact on generating tests covering unde-
tected bugs and faults with higher efficiency. This thesis is a step towards the development
of fully-automated tools helping developers in software testing.





xv

Samenvatting
Het testen van software speelt een cruciale rol bij softwareontwikkeling om de consis-
tentie en prestaties van de software te verbeteren. Aangezien het testen van software
een aanzienlijke inspanning vergt in het ontwikkelingsproces, zijn er meerdere geauto-
matiseerde technieken voorgesteld om ontwikkelaars en testers te helpen in verschillende
testfasen, waardoor de kosten die hieraan gekoppeld zijn, verlaagd worden. Een categorie
van deze geautomatiseerde technieken tracht om automatisch softwaretests te genereren
met behulp van verschillende strategieën. Een strategie die hier succesvol in is, welke ook
toegepast wordt voor industriële doeleinden, maakt gebruik van meta heuristische zoek
gebaseerde benaderingen voor het automatisch genereren van deze testen. Deze benade-
ringen gebruiken verschillende zoektechnieken om tests te produceren voor verschillende
niveaus, zoals unit-tests en tests op systeemniveau. De resultaten die verkregen worden
met deze technieken bevestigen hun nut bij het opsporen van fouten en het debuggen van
de code. De meeste van deze technieken gebruiken echter structurele dekkingscriteria
(bijv. Dekking van lijnen en aftakkingen) voor het genereren van de tests. Ondanks het
nut van deze algemene criteria is aangetoond dat ze niet altijd voldoende zijn voor het ont-
dekken van fouten. Eerdere studies hebben aangetoond dat deze criteria fouten kunnen
opsporen met een kans van 50%.

Dit proefschrift onderzoekt de toepassing van nieuwe zoekdoelstellingen en zoek geba-
seerde testgeneratiemethoden, gebaseerd op informatie uit meerdere bronnen (bijv. Bron-
code, handgeschreven tests, enz.), op zoek gebaseerde testgeneratie. In het bijzonder in-
troduceren we in het eerste deel van het proefschrift nieuwe zoekdoelen en methoden om
een specifiek soort softwaregedrag, genaamd crashreproductie, te behandelen. Vervolgens
presenteren we een nieuwe zoek gebaseerde benadering voor het testen van de integratie-
punten tussen twee gekoppelde klassen om fouten op klasse-integratieniveau te vinden.
Ten slotte stellen we nieuwe zoekdoelen voor om tests op unit-niveau te genereren door
gebruik te maken van de veelvoorkomende en ongebruikelijke uitvoeringspatronen van
de software die worden waargenomen tijdens de werking van de software.

Onze resultaten betreffende de beoordeling van nieuwe zoek gerelateerde crashrepro-
ductiestrategieën laten zien dat deze geïntroduceerde technieken de effectiviteit en effici-
ëntie van het zoekproces verbeteren. Met andere woorden, deze technieken hebben ervoor
gezorgd dat de state-of-the-art in zoek gebaseerde crashreproductie meer crashes kan vin-
den en dit ook sneller doet. Bovendien geeft de evaluatie van deze nieuwe methode voor
het genereren van klasse-integratietests aan dat deze benadering een aanvulling vormt op
de state-of-the-art.

Ten slotte rapporteert dit proefschrift gemengde resultaten voor de zoekdoelen die
zijn geïntroduceerd voor het uitvoeren van veelvoorkomende en ongebruikelijke uitvoe-
ringspatronen. We hebben vastgesteld dat deze doelstellingen in sommige gevallen de
mutatiescore verbeteren, terwijl we in sommige andere gevallen het tegenovergestelde
zien.



xvi Samenvatting

Samenvattend introduceerde dit proefschrift nieuwe technieken voor zoek gebaseerde
testgeneratie door te kijken naar de bestaande kennis die verworven wordt uit verschil-
lend bronnen. De resultaten die in dit proefschrift worden gerapporteerd, bevestigen de
positieve impact van deze technieken op het genereren van tests voor niet-gedetecteerde
bugs en fouten met een hogere efficiëntie. Dit proefschrift is een stap in de richting van de
ontwikkeling van volledig geautomatiseerde tools die ontwikkelaars helpen bij het testen
van software.



xvii

Acknowledgments
When I moved to the Netherlands to start my Ph.D., I knew that I am here to learn many
newmaterials about doing research on Software Engineering (especially Software Testing).
However, I did not realize that this journey will also teach me lots of valuable lessons that
will change my life. When I look back, I see that this path helped me to know myself and
my life much better. I owe all of these to all the people who helped during my Ph.D. First
of all, I should thank my supervisors/promoters Andy, Xavier, Annibale, and Arie: thank
you for everything. Without your supervision and supports, I would not achieve to this
point. Any meeting with you was a class for me, and this dissertation wouldn’t be like
this without your feedback and revisions. I also want to thank the committee members
for reading and helping to improve this thesis.

In the following paragraphs, I would like to express my appreciation to some of the
people who had significant roles in this beautiful yet challenging adventure. Please accept
my apologies if I did miss out on some of the names. I am thankful for any person who
helped me in the last three and a half years.

Andy: as I always advise any person who is searching for a Ph.D. position, the first
important factor in improving during your Ph.D. is a supervisor who believes in you, sup-
ports you, and gives you the freedom to find your research path while making sure that
you are not taking the wrong way. This is the lesson that I learned when I worked with
you. You always helped me with even the most minor issues I had, even though you had
a busy schedule. Even the first day that I talked with you, I was so nervous that I couldn’t
even speak proper English. However, after 5 minutes, you gave me enough confidence to
pull myself together. I am always thankful for all of your help and supports.

Xavier: you are both one of the best colleagues and one of the best friends that I have
had in my life. During my Ph.D., You were there for me every single day that I wanted
to talk with you. The talk could be either about a new crazy idea for the next paper or
even when I just wanted to speak with someone about my personal issues. In both cases,
you helped me as a supportive friend. I am that much lucky that I cannot say if this thesis
is my most significant achievement during my Ph.D. or our friendship. Thank you for
everything, including being my beer sommelier ⌣.

Annibale: you are highly knowledgeable as a senior researcher. But at the same time,
you can be as cool as a junior bachelor student :D I managed to study the concepts of
search-based software engineering by reading the relevant papers. Still, I started to gain
more profound knowledge about this topic after having regular meetings with you. Thank
you for all of the chats that we had about either research or general things. By the way,
with all of the respect, I still think that a broken pasta which is cooked two times is more
delicious :)).

Arie: being part of the Software Engineering Research Group was one of the best ex-
periences that I had in my life. I always appreciate the chance that this group gave me to



xviii Acknowledgments

have a Ph.D. here. Moreover, I am also thankful for your guidance, feedback, and revisions
for my research. Also, Thanks to you for teaching me to have impactful communication.

Enrique: you are one of the kindest persons that I have ever seen in my life. I hope
that we can hang out again in the near future.

Mehdi: having a cool friend with the same nationality is always a blessing in an inter-
national group. Thank you for being that person for me ⌣.

Luís: it is always fascinating for me to find a person who likes the same type of music
as me. I really appreciate that I found my officemate as that person. I will never forget all
of the freaky pieces of music that we have listened, while we were working at the office.

Mitchell thank you for helping me whenever I needed help (including translating the
summary of this thesis). Also, hanging out with you was always fun.

Carolin your positiveness and the goodmoodwas always encouraging forme⌣. Thank
you for that.

Gilles: visiting Namur university was quite pleasant and exciting for me. Thank you
for inviting me there. Also, thank you for collaborating with me. Hopefully, we can meet
again soon and brainstorm about future collaborations while we are having a beer.

Minaksie: during my Ph.D., I was always sure that anything which leads to you will
be smoothly handled. Thank you for making every paperwork much easier ⌣.

Davide, Jean, Luca, Marco, Anand, Joseph, and Leonhard: thank you for all of the coffee
breaks. Hanging out with you guys was always refreshing and lovely.

I would like to also thank the Master students who worked with Xavier and me for
their thesis: Boris, Shang, Björn, and Sven. I wish you success in your future careers.

Atefeh: I don’t know how to thank you for all of the things you have done for me.
When I have started my Ph.D., you were utterly supportive about that. Your patience,
kindness, and each of your sacrifices were an inspiration for me. We made the impossible,
possible. We have passed many hard days, but finally, we tackled all of them. I loved you
for any second that I missed you while we were away from each other. And, I will love
you for any second that we will spend with each other in our future.

Last but not least, my parents, Maman Baba, thank you for supporting me while I was
studying overseas and away from you. Without you, I would not be here. I hope that you
are proud of me.

This adventure had its ups and downs for me. I am happy that I have experienced it,
and now I am finishing it with writing this thesis. Now, I am ready to start a new chapter
of my life. Again, Thank you, everybody.

Pouria
Delft, March 2021



1

1

1
Introduction

Software testing is one of the essential and expensive tasks in software development. Hence,
many approaches were introduced to automate different software testing tasks. Among these
techniques, search-based test generation techniques have been vastly applied in real-world
cases and have shown promising results. These strategies apply search-based methods for
generating tests according to various test criteria such as line and branch coverage.

In this thesis, we introduce new search objectives and techniques using various knowledge
carved from resources like source code, hand-written test cases, and execution logs. These
novel search objectives and approaches (i) improve the state-of-the-art in search-based crash
reproduction, (ii) present a new search-based approach to generate class-integration tests cov-
ering interactions between two given classes., and (iii) introduce two new search objectives for
covering common/uncommon execution patterns observed during the software production.

This chapter is partly based on  P. Derakhshanfar. Well-informed Test Case Generation and Crash
Reproduction, ICST’20 (Doctoral Symposium) [2].



1

2 1 Introduction

S oftware testing is an indispensable part of software engineering, widely studied from
various aspects by researchers in this field. As mentioned by Bertolino [3], one of

the biggest dreams in software testing research is 100% automatic testing, and one of the
research paths towards reaching this dream is the automation of test generation.

A survey by McMinn [4] shows that search-based software testing techniques are ap-
plicable to a vast range of automated software testing problems, including automated test
generation. The application of metaheuristic approaches for automating the process of
software test generation has been an interesting research path in recent years. The ap-
proaches model the software testing goals, which should be achieved by hand-written test
cases, into optimization problems and solve them using search algorithms [5].

The approaches aim to produce tests for different levels of testing. For instance, many
approaches are proposed for unit testing [6–9] and system-level testing [10–15]. Moreover,
these approaches can be categorized into white-box [6–10], grey-box [16–19], and black-
box [11–15] testing techniques.

The evaluations that were performed indicate the usefulness of the generated tests.
More specifically, the generated tests can not only achieve high structural and mutation
coverage [20, 21], but are also helpful for catching faults [22] and debugging [23]. They
have also been successfully deployed in industry [24, 25].

Most of these approaches aim at a general coverage criteria (e.g., line and branch cover-
age). However, generated tests with high structural coverage are not always successful at
detecting faults. Gay et al. [26] have shown that these types of coverage criteria are poor
indicators for failure detection and mutation score in some cases. As an example, a test
case can cover a statement without passing failure revealing data. In this case, we have the
coverage, but the fault will remain undetected without the adequate test oracle. Moreover,
Shamshiri et al. [22] reported that the tests generated by EvoSuite, which is one of the
better automatic unit test generation tools, are only successful in exposing about 50% of
industrial faults despite the high structural coverage scores.

Furthermore, search-based test generation for specific problems has a lot of open chal-
lenges. Among them, fitness functions defined for search-based test generation suffer
from a lack of guidance and underuse contextual information. In particular, Salahirad
et al. [27] indicated that the strongest fitness function (branch coverage) has about 25%
likelihood of fault detection. As an outcome, they suggest using classical branch and line
coverage as primary objectives and using other objectives that aid to trigger the faults as
secondary objectives.

In this thesis, we go beyond classical search objectives that aim at maximizing struc-
tural coverage. In particular, we investigate how information collected from differ-
ent sources (i.e., source code, hand-written tests, etc.) can help to design and reinforce
search objectives. In doing so, we hypothesize that we can exercise specific behaviors,
and thus trigger specific kinds of faults.

First, we focus on one of the instances of test generation for specific software behav-
iors: search-based crash reproduction. These crash reproduction approaches [28–33]
accept crash-related data as input and generate a test that reproduces this given crash. Our



1.1 Background & Context

1

3

studies on crash reproduction focus on leveraging the collected contextual information to
improve the effectiveness (i.e., the number of reproduced crashes and how often they can
be reproduced) and efficiency (i.e., the time required to reproduce a crash) of the search
process, trying to reproduce the given crash.

Second, we concentrate on generating tests for exercising integration points be-
tween two classes. We consider the execution of different scenarios in the interaction
between two coupled classes as test objectives for the test generation process. We in-
troduce a new test criterion for class integration testing, which is suitable for defining
search objectives. Then, we design a search-based test generation algorithm according to
this newly defined criterion. We investigate if this algorithm can reveal integration level
faults which are not detectable with search-based unit testing.

Finally, we investigate a novel search objective for search-based unit testing that covers
the common and uncommon execution patterns. To detect the common and uncom-
mon patterns, we monitor the execution patterns during the operation of the software.

1.1 Background & Context
This section presents an overview of search-based software test generation and automated
crash reproduction and how they are connected to this thesis.

1.1.1 Search-based Software Test Generation
McMinn [4] defined search-based software testing (SBST) as “using a meta-heuristic opti-
mizing search technique, such as a genetic algorithm, to automate or partially automate a
testing task”. Within this realm, test data generation at different testing levels (such as unit
testing, integration testing, etc.) has been actively investigated [4]. This section provides
an overview of earlier work in this area.

One of the most successfully used optimization techniques in search-based test gener-
ation is the genetic algorithm [34]. Figure 1.1 depicts how search-based test generation
techniques uses genetic algorithm for test generation.

In the first step, the algorithm generates a population of individuals. Each individual is
either a single test case or test suite (a set of test cases). These individuals can be entirely
randomly generated, or the algorithm can use seeding strategies in which it uses some
information, such as hand-written tests, and generate tests using these existing data. Then,
each generated individual is evaluated for fitness using one or multiple fitness functions
(box 2 in Figure 1.1). Next, it uses the fittest individuals (according to fitness function(s))
to generate the next population of individuals (box 3).

For producing the next generation of individuals, first, the algorithm gets the individ-
uals with the best fitness values (box 3.1 in Figure 1.1). Then, it uses two genetic operators
for generating new tests: Crossover (box 3.2 in Figure 1.1), which combines two selected
individuals (parents) to create two new individuals (offsprings), and Mutation (box 3.3 in
Figure 1.1), which add/remove/modify one ormore statements in a selected test to generate
a new one. Finally, the newly generated individuals are re-inserted into a new population
(box 3.4 in Figure 1.1).

The iteration between fitness evaluation (box 2 in Figure 1.1) and producing the next
generation (box 3 in Figure 1.1) will continue until either the allocated budget is exhausted



1

4 1 Introduction

Initialize population

Evaluate fitness
Next generation

Selection

Crossover

Mutation

Reinsertion

[objectives are fulfilled or  
budget exhausted]

1

2
3

3.1

3.2

3.3

3.4

Figure 1.1: General overview of search-based test generation techniques using genetic algorithm.

or all of the search objectives (represented as fitness functions) are fulfilled.

Search-based approaches for unit testing
Search-based software test generation algorithms have been extensively used for unit test
generation. Previous studies confirmed that thus generated tests achieve a high code cov-
erage [20, 35], real-bug detection [25], and debugging cost reduction [36, 37], complement-
ing hand-written tests. Also, a recent study by Panichella et al. [38] empirically showed
that the unit tests generated by search-based test generation techniques have a low rate
of test smell occurrence.

From McMinn’s [4] survey about search-based test data generation, we observe that
most of the current approaches rely on the control flow graph (CFG) to abstract the source
code and represent possible execution flows. The 𝐶𝐹𝐺𝑚 = (𝑁𝑚 ,𝐸𝑚) represents a method¹
𝑚 as a directed graph of basic blocks (i.e., sequences of statements execute one after
each other) of code (the nodes 𝑁𝑚), while 𝐸𝑚 is the set of the control flow edges. An edge
connects a basic block 𝑛1 to another one 𝑛2 if the control may flow from the last statement
of 𝑛1 to the first statement of 𝑛2.

Listing 1.1 presents the source code of Person, a class representing a person and they
transportation habits. A Person can drive home (lines 4-10), or add energy to her car
(lines 12-18). Figure 1.2 presents the CFG of two of Person’s methods, with the labels
of the nodes representing the line numbers in the code. Since method driveToHome calls
method addEnergy, node 6 is transformed to two nodes, which are connected to the entry

¹Or function in procedural programming languages.



1.1 Background & Context

1

5

Example 1.1: Class Person
1 class Person{
2 private Car car = new Car();
3 protected boolean lazy = false;
4 public void driveToHome (){
5 if (car.fuelAmount < 100) {
6 addEnergy ();
7 } else {
8 car.drive();
9 }

10 }
11
12 protected void addEnergy (){
13 if (this.lazy) {
14 takeBus ();
15 } else {
16 car.refuel ();
17 }
18 }
19 }

and exit point of the called method. This transformation is explained in the last paragraph
of this section.

Many approaches based on CFGs combine two common heuristics to reach a high
branch and statement coverage in unit-level testing. These two heuristics are the approach
level and the branch distance. The branch distance measures (based on a set of rules) the
distance to satisfying (true branch) and the distance to not satisfying (false branch) a par-
ticular branching node in the program.

The approach level measures the distance between the execution path and a target
node in a CFG. For that, it relies on the concepts of post-dominance and control depen-
dency [39]. A node A is control dependent on node B in a control flow graph if node B
contains a branch, which can change the execution path away from reaching node A.

As an example, in Figure 1.2, node 8 is control dependent on node 5 and node 8 post-
dominates edge ⟨5,8⟩. The approach level is the minimum number of control dependencies
between a target node and an executed path by a test case.

One of the best tools for performing search-based test generation is EvoSuite [40].
This tool gets a Java application and one of its classes as a class under test. Then, it starts
a genetic algorithm to generate a test suite fulfilling different testing criteria for the given
class. This tool contains multiple genetic algorithms [41, 42]. Also, it can generate tests
according to various criteria such as line coverage, branch coverage, weak mutation, etc.

This thesis leverages the information carved from different sources (e.g., hand-written
tests, source code, etc.) to introduce search objectives complementing approach level and
branch distance for different test generation scenarios.

Evolutionary-based approaches for integration testing
Search-based approaches are widely used for test ordering [43–46, 46–54], typically with
the aim of executing those tests with the highest likelihood of failing earlier on. How-
ever, to the best of our knowledge, search-based approaches have rarely been used for
generating integration tests. Ali Khan et al. [55] have proposed a high-level evolutionary
approach that detects coupling paths in data-flow graphs of classes and generates tests
for the detected coupling paths. Moreover, they proposed another approach for the same



1

6 1 Introduction

Entry

13

14 16

Exit

Entry

5

8

Exit

6c

6r

Person

addEnergy() driveToHome()

Figure 1.2: Class-level CFG for class Person

goal, which uses Particle Swarm Optimization [56]. However, the paper does not describe
the fitness function and genetic algorithm used in their approach, nor any evaluation for
examining the quality of the tests generated by this approach. The paper also does not
check whether the tests can complement tests generated by existing search-based unit
testing approaches. Besides, since objectives are defined according to the def-use paths
between classes, the number of search objectives can grow exponentially, thus severely
limiting the scalability of the approach.

In Chapter 6 we propose a novel approach for class integration test generation. Instead
of using the data flow graph, which is relatively expensive to construct as it needs to find
the coupling paths, we use the information available about the the integration between
classes to calculate the fitness of the generated tests.

Search-based approaches for other testing levels
Arcuri [10] proposed EvoMaster, an evolutionary-based white-box approach for system-
level test generation for RESTful APIs. A test for a RESTful web service is a sequence
of HTTP requests. EvoMaster tries to cover three types of targets: (i) the statements
in the System Under Test (SUT); (ii) the branches in the SUT; and (iii) different returned
HTTP status codes. Although EvoMaster tests different classes in the SUT, it does not
systematically target different integration scenarios between classes.

In contrast to EvoMaster, other approaches perform fuzzing [11], “an automated tech-
nique providing random data as input to a software system in the hope to expose a vulnerabil-
ity.” Fuzzing uses information like grammar specifications [11, 13–15] or feedback from
the program during the execution of tests [12] to steer the test generation process. These



1.1 Background & Context

1

7

Example 1.2: XWIKI-13377 crash stack trace [59]
0 java.lang.ClassCastException: [...]
1 at [...]. BaseStringProperty.setValue ([...]:45) (@@)
2 at [...]. PropertyClass.fromValue ([...]:615) (@@)
3 at [...]. BaseClass.fromMap ([...]:413)
4 [...]

fuzzing approaches generate only input data but do not generate a full test case containing
method call sequences.

The approaches introduced in this thesis perform white-box testing.

1.1.2 Search-based Crash Reproduction ²
Another application of search-based test generation techniques is in automated crash
reproduction. Information about a software crash, like a stack trace for Java applications,
are usually reported to the developers through an issue tracker. Based on the report’s
information, the developers debug the software by identifying the crash’s root cause and
applying a fix to the code. To ease their investigation, developers can start their debugging
process by reproducing and exposing the crash, and (latter) write a test case to ensure that
the fix does not induce regression errors [57]. Recent developments lead to the (partial)
automation of the crash reproduction and exposure process. When a new issue is created,
an automated process fetches the stack trace and try to generate a crash reproducing test
case able to reproduce and expose the crash [58]. Various approaches have been developed
to automate the generation of a crash reproducing test case [28, 30, 31, 33]. Among those,
search-based crash reproduction yields the best results by reproducing more crashes and
generating helpful test cases [28]. It has also been confirmed that crash reproducing test
cases generated by this approach aid developers in fixing bugs [28].

Search-based crash reproduction takes as input the application in which the crash hap-
pened, and a stack trace (reported in a crash report) with one of its frames indicated as
the target frame. Then, it initiates a search process to generate a test case, which repro-
duced the given stack trace from the deepest frame up to the target frame. For instance,
by passing the stack trace in Listing 1.2 as the given tack trace and frame 2 as the target
frame, search-based crash reproduction generates a test case which reproduces the first
two frames of the given stack trace with the same type of exception (ClassCastException).

Fitness function
To reproduce a given crash, search-based crash reproduction relies on a fitness function
called Crash Distance (described in Equation 1.1) to evaluate the generated test cases,
thereby guiding an evolutionary algorithm towards generating a crash reproducing test
case for a given stack trace.

𝑓 (𝑡) = {
3×𝑑𝑠(𝑡) + 2×𝑚𝑎𝑥(𝑑𝑒) +𝑚𝑎𝑥(𝑑𝑡 ) line is not reached
2×𝑑𝑒(𝑡) +𝑚𝑎𝑥(𝑑𝑡 ) line is reached
𝑑𝑡 (𝑡) exception is thrown

(1.1)

²This section is partly based onB. Cherry, X. Devroey, P. Derakhshanfar, and B. Vanderose. Crash reproduction
difficulty, an initial assessment, BENEVOL’20 [1]



1

8 1 Introduction

Where 𝑑𝑠(𝑡) ∈ [0,1] measures the distance between the execution of a generated test 𝑡
from reaching the line of the target frame (target line) using the approach level and branch
distance [4]; 𝑑𝑒(𝑡) ∈ {0,1} is a binary value indicating if 𝑡 throws the same type of exception
as the given stack trace (𝑑𝑒(𝑡) = 0) or not (𝑑𝑒(𝑡) = 1); 𝑑𝑡 (𝑡) ∈ [0,1] compares the similarity
of the frames in the given thrown stack trace by test 𝑡 against the frames in the given stack
trace; and 𝑚𝑎𝑥(.) indicates the maximum possible value for each heuristic.

Since considering 𝑑𝑒(𝑡) and 𝑑𝑡 (𝑡) is only relevant if test 𝑡 covers the target line (𝑑𝑠(𝑡) =
0), Crash Distance (first line of Equation 1.1) sets the maximum value for these two heuris-
tics before achieving the target line coverage. Therefore, 𝑓 (𝑡) ∈]3,6] before reaching the
target line. Likewise, as shown by the second line of Equation 1.1, measuring the stack
trace similarity (𝑑𝑡 (𝑡)) is not relevant before fulfilling the exception coverage (𝑑𝑒(𝑡)), and
thereby Crash Distance sets the maximum possible value for 𝑑𝑡 (𝑡). Hence, 𝑓 (𝑡) ∈]1,3] be-
fore 𝑡 throws the same type of exception as the given stack trace. Finally, when 𝑑𝑠(𝑡) and
𝑑𝑒(𝑡) are zero, 𝑓 (𝑡) ∈ [0,1] according to the value of 𝑑𝑡 (𝑡). Since the process is a minimiza-
tion process, the three heuristics are equal to zero for a crash reproducing test case.

In this thesis, we have implemented a new open-source search-based crash repro-
duction framework called Botsing. This framework contains the previously introduced
search-based crash reproduction approach (e.g., EvoCrash). Also, the novel techniques
introduced in this thesis are all implemented in this framework.

1.2 Challenges In Search-based Crash ReproductionAnd
Test Generation

Since the search-based crash reproduction approaches are evaluated by a limited num-
ber of crashes, the limits and challenges of these techniques remained largely unrecog-
nized. In this thesis, we first identify search-based crash reproduction challenges. Hence,
we empirically evaluate search-based crash reproduction by a new Java crash benchmark
called JCrashPack and identify the challenges by performing an extensive manual analy-
sis. Some of the identified challenges are dedicated only to the crash reproduction problem,
but some other challenges are general search-based test generation issues.

After identifying the challenges, we intend to address them by introducing novel solu-
tions to improve the effectiveness and efficiency of the crash reproduction search process.
For this goal, we investigate the application of contextual information collected from dif-
ferent sources such as source code, hand-written test cases. While some identified chal-
lenges in search-based crash reproduction are due to the existing general search-based test
generation limitations, we go beyond crash reproduction and introduce new search-based
techniques to cover other specific software behaviors.

1.3 Research Goals & Questions
This thesis seeks to understand the challenges in search-based crash reproduction and test
case generation and utilizes the existing information in different sources such as source
code and hand-written test cases to address the identified challenges. Hence, to present
indications towards this thesis, we seek to answer the following research questions:

Since our initial goal is improving the effectiveness and efficiency of the search-based



1.4 Research Outline

1

9

crash reproduction, first, we need to understand its challenges. Hence, the first research
question tries to address this goal.

RQ1: What are the challenges in search-based crash reproduction?

After identifying the challenges, we study novel ways to tackle them by enhancing
the search process from different aspects. This enhancement is done by utilizing the con-
textual information collected from source code and existing tests. The second research
question investigates the new techniques addressing the detected challenges using the
observed contextual information.

RQ2: Based on the identified challenges, how can we leverage the existing knowl-
edge, carved from information sources, to steer the crash reproduction search process?

Since some of the detected challenges in search-based crash reproduction are observ-
able in other search-based test generation techniques, the observed contextual information
can guide the search process to generate tests for other criteria, as well. Hence, the last
question concentrates on novel search-based techniques for testing in two levels of unit
testing and class integration testing.

RQ3: How can we leverage the existing knowledge, carved from information sources, to
design search-based test generation approaches for unit and class integration testing?

This thesis answers 𝑅𝑄3 by (i) introducing a whole new search-algorithm for class
integration testing using the collected information about the method calls from one class
(caller class) to the other one (callee class), and (ii) introducing a new search objective for
search-based unit testing considering the common and uncommon execution paths in the
class under test.

After answering these research questions, we will be able to understand the challenges
in search-based software test generation better. Besides, we can confirm that (i) automated
test generation for specific software behaviors can cover, and reveal, faults that are not
detectable by other search-based test generation techniques, using only the classical struc-
tural coverage search objectives; and (ii) using other contextual information collected from
various sources (such as source code, existing test cases, and execution logs) guides the
search process to achieve higher fault detection.

1.4 Research Outline
This section briefly presents the various chapters in this thesis. Table 1.1 outlines the
connections between each defined research question and chapters in this thesis.

Chapter 2: Crash reproduction approaches help developers during debugging by gen-
erating a test case that reproduces a given crash. Several solutions have been proposed



1

10 1 Introduction

Table 1.1: Connection of chapters with research questions

Research Question Chapters
𝑅𝑄1: What are the challenges in search-based crash reproduction? 2
𝑅𝑄2: Based on the identified challenges, how can we leverage the ex-
isting knowledge, carved from information sources, to steer the crash
reproduction search process?

3 to 5

𝑅𝑄3: How can we leverage the existing knowledge, carved from infor-
mation sources, to design search-based test generation approaches for
unit and class integration testing?

6 & 7

to automate this task. However, the proposed solutions have been evaluated on a limited
number of projects, making comparison difficult. In this chapter, we enhance this line of
research by proposing JCrashPack, an extensible benchmark for Java crash reproduction,
together with ExRunner, a tool to simply and systematically run evaluations. JCrash-
Pack contains 200 stack traces from various Java projects, including industrial open source
ones, onwhichwe run an extensive evaluation of EvoCrash, the state-of-the-art approach
for search-based crash reproduction. Our results include a detailed manual analysis of
EvoCrash outputs, from which we derive 14 current challenges for crash reproduction.
Finally, based on those challenges, we discuss future research directions for search-based
crash reproduction for Java.

Chapter 3: According to the results of Chapter 2, one of the fundamental challenges of
search-based crash reproduction is creating objects needed to trigger the crash. One way
to overcome this limitation is seeding: using information about the application during
the search process. With seeding, the existing usages of classes can be used in the search
process to produce realistic sequences of method calls which create the required objects.
In this chapter, we introduce behavioral model seeding: a new seeding method which
learns class usages from both the system under test and existing test cases. Learned usages
are then synthesized in a behavioral model (state machine). Then, this model serves to
guide the evolutionary process. To assess behavioral model-seeding, we evaluate it against
test-seeding (the state-of-the-art technique for seeding realistic objects) and no-seeding
(without seeding any class usage). Our results indicate that behavioral model-seeding
outperforms both test seeding and no-seeding by a minimum of 6% without any notable
negative impact on efficiency.

Chapter 4: The state-of-the-art search-based crash reproduction approaches use a sin-
gle fitness function called Crash Distance to guide the search process toward reproducing
a target crash. Despite the reported achievements, these approaches do not always suc-
cessfully reproduce some crashes due to a lack of test diversity (premature convergence).
In this study, we introduce a new approach, called MO-HO, that addresses this issue via
multi-objectivization. In particular, we introduce two new Helper-Objectives for crash re-
production, namely test length (to minimize) and method sequence diversity (to maximize),
in addition to Crash Distance. We assessedMO-HO using five multi-objective evolutionary



1.4 Research Outline

1

11

algorithms (NSGA-II, SPEA2, PESA-II, MOEA/D, FEMO) on crashes selected from JCrash-
Pack. Our results indicate that SPEA2 is the best-performing multi-objective algorithm
for MO-HO. We evaluated this best-performing algorithm for MO-HO against the state-
of-the-art: single-objective approach (Single-Objective Search) and decomposition-based
multi-objectivization approach (De-MO). Our results show that MO-HO reproduces five
crashes that cannot be reproduced by the current state-of-the-art. Besides, MO-HO im-
proves the effectiveness (+10% and +8% in reproduction ratio) and the efficiency in 34.6%
and 36% of crashes (i.e., significantly lower running time) compared to Single-Objective
Search andDe-MO, respectively. For some crashes, the improvements are very large, being
up to +93.3% for reproduction ratio and -92% for the required running time.

Chapter 5: Search-based crash reproduction approaches rely on the approach level and
branch distance heuristics to guide the search process and generate test cases covering
the lines, which appeared in the given stack trace. Despite the positive results achieved
by these two heuristics, they only use the information related to the coverage of explicit
branches (e.g., indicated by conditional and loop statements), but ignore potential implicit
branchings within basic blocks of code. If such implicit branching happens at runtime
(e.g., if an exception is thrown in a branchless-method), the existing fitness functions can-
not guide the search process. To address this issue, we introduce a new secondary ob-
jective, called Basic Block Coverage (BBC), which takes into account the coverage level
of relevant basic blocks in the control flow graph. We evaluated the impact of BBC on
search-based crash reproduction because the implicit branches commonly occur when
trying to reproduce a crash, and the search process needs to cover only a few basic blocks
(i.e., blocks that are executed before crash happening). We combined BBC with existing fit-
ness functions (namely STDistance and Crash Distance) and ran our evaluation on JCrash-
Pack crashes. Our results show that BBC, in combination with STDistance and Crash Dis-
tance, reproduces 6 and 1 new crashes, respectively. BBC significantly decreases the time
required to reproduce 26.6% and 13.7% of the crashes using STDistance and Crash Distance,
respectively. For these crashes, BBC reduces the consumed time by 44.3% (for STDistance)
and 40.6% (for Crash Distance) on average.

Chapter 6: Search-based approaches have been used in the literature to automate the
process of creating unit test cases. However, related work has shown that generated unit-
tests with high code coverage could be ineffective, i.e., they may not detect all faults or
kill all injected mutants. In this chapter, we propose Cling, an integration-level test case
generation approach that exploits how a pair of classes, the caller and the callee, interact
with each other throughmethod calls. In particular, Cling generates integration-level test
cases that maximize the Coupled Branches Criterion (CBC). CBC is a novel integration-
level coverage criterion, measuring the degree to which a test suite exercises the interac-
tions between a caller and its callee classes. We implemented Cling and evaluated the
approach on 140 pairs of classes from five different open-source Java projects. Our results
show that (1) Cling generates test suites with high CBC coverage; (2) such generated
suites can kill on average 7.7% (with a maximum of 50%) of mutants that are not detected
by tests generated at the unit level; (3) Cling can detect integration faults (32 for our sub-



1

12 1 Introduction

ject systems) that remain undetected when using automatically generated unit-level test
suites.

Chapter 7: Various search-based test generation techniques have been proposed to auto-
mate the generation of unit tests fulfilling different criteria (e.g., line coverage, branch cov-
erage, mutation score, etc.). Despite several advances made over the years, search-based
unit test generation still suffers from a lack of guidance due to the limited amount of infor-
mation available in the source code that, for instance, hampers the generation of complex
objects. Previous studies introduced many strategies to address this issue, e.g., dynamic
symbolic execution or seeding, but do not take the internal execution of the methods into
account. This chapter introduces a novel secondary objective called commonality score,
measuring how close the execution path of a test case is from reproducing a common
or uncommon execution pattern observed during the operation of the software. To as-
sess the commonality score, we implemented it in EvoSuite and evaluated its application
on 150 classes from JabRef, open-source software for managing bibliographic references.
Our results are mixed. Our approach leads to test cases that indeed follow common or
uncommon execution patterns. However, if the commonality score can have a positive
impact on the structural coverage and mutation score of the generated test suites, it can
also be detrimental in some cases.

Chapter 8: Finally, we summarize our findings and conclusions in this thesis. This chap-
ter also elaborates on the potential future work that can, first, improve the search-based
crash reproduction, and second, investigate novel search-based algorithms for covering
other software specific behaviors that can be interesting for developers.

1.5 Research Methodology
This thesis answers the aforementioned research questions by following an approach based
on design science [60]. The design science paradigm contains two iterative phases: Build
and Evaluation. The former phase concentrates on developing a purposeful artifact to
solve an unsolved problem (here, search-based test generation techniques for specific be-
haviors such as crash reproduction and class integrations). The latter phase evaluates the
designed artifact. The Evaluation phase reveals the limitations and challenges in the built
artifact, and thereby, the weaknesses can be identified and resolved in the next phase of
the Build process. This iteration usually continues multiple times, and in each iteration,
one (or more) novel techniques are introduced (to improve the existing artifact) and be
assessed by the Evaluation process. Also, both Build and Evaluation evolve in this process
according to the new findings.

In this thesis, we define a framework for search-based test case generation for crash re-
production. This framework includes a benchmark for crash reproduction approaches con-
taining real-world and non-trivial crashes, an extensible platform for search-based crash
reproducing test case generation, and accompanying guidelines for efficient usage of the
platform in an industrial setting. This framework applies the existing search-based crash
reproduction approach to real-world crashes and identifies the challenges (to answer 𝑅𝑄1).
We then improve the crash reproduction approach by addressing the identified challenges



1.6 Origins Of The Chapters

1

13

(to answer 𝑅𝑄2). Finally, we go beyond search-based crash reproduction and introduce a
novel approach for generating tests to cover other specific behaviors (e.g., class integra-
tion testing). Accordingly, we extend the evaluation process to assess the new artifacts,
as well (to address 𝑅𝑄3).

1.6 Origins Of The Chapters
All chapters of this thesis (except Chapter 7, which is currently under review) have been
published in peer-reviewed journals and conferences. Hence, all chapters contain a ded-
icated background, related work, and conclusion section. This section lists the origin of
each chapter.

For all chapters, except Chapter 7, the author of this thesis was the lead author of the
paper, responsible for the design of the algorithms and experiments, tool implementation,
carrying out experiments, analysis of the results, and the writing of the paper. For chapter
2, this role was shared with Mozhan Soltani.

• Chapter 2 was published in the paper ”A benchmark-based evaluation of search-
based crash reproduction” in Empirical Software Engineering (EMSE) 2020.

• Chapter 3 was published in the paper ”Search‐based crash reproduction using be-
havioural model seeding” in theJournal of Software: Testing, Validation, and Relia-
bility (STVR) 2020.

• Chapter 4 was published in the paper ” Good Things Come In Threes: Improving
Search-based Crash ReproductionWith Helper Objectives” at the International Con-
ference on Automated Software Engineering (ASE) 2020.

• Chapter 5 was published in the paper ”It is not Only About Control Dependent
Nodes: Basic Block Coverage for Search-Based Crash Reproduction” at the Sym-
posium on Search-Based Software Engineering (SSBSE) 2020.

• Chapter 6 was published as a paper titled ”Generating Class-Level Integration Tests
Using Call Site Information”, which is currently under revision in Transactions on
Software Engineering journal (TSE).

• Chapter 7 was published in the paper ”Commonality-Driven Unit Test Generation”
at Symposium on Search-Based Software Engineering (SSBSE) 2020.

1.7 Open Science
Open science is the “movement to make scientific research, data and dissemination ac-
cessible to all levels of an inquiring society” [61]. All of the implementations used in our
studies are available via GitHub. Also, replication packages of all of our studies, presented
in this thesis, are openly available in Zenodo. These replication packages contain the list
of subject systems used in each study, a Docker-based infrastructure to rerun all of the
experiments, and all test cases generated by each of the search-based approaches.

Table 1.2 shows the replication packages of each chapter in this thesis.



1

14 1 Introduction

Table 1.2: Connection of chapters with replication packages

Chapter Replication package Zenodo DOI
2 [62] 10.5281/zenodo.3766689
3 [63] 10.5281/zenodo.3673916
4 [64] 10.5281/zenodo.3979097
5 [65] 10.5281/zenodo.3953519
6 [66] 10.5281/zenodo.4300634
7 [67] 10.5281/zenodo.3894711

1.7.1 Open-source Search-based Test Case Generation Implementa-
tions

Search-based crash reproduction (Botsing)
In this thesis, we present Botsing³: an open-source, extendable search-based crash repro-
duction framework. Botsing implements search-based crash reproduction approaches in-
troduced in previous studies [28, 32, 68]. The tool takes as input a stack trace and software
under test. Then, it starts a single-objective or multi-objective search process to generate
a test reproducing the crash.

Botsing has been designed as an extendable framework for implementing new fea-
tures and search algorithms for crash reproduction. For example, in Chapter 3 we perform
a study on the impact of various seeding strategies on crash reproduction, for which we
have implemented multiple seeding strategies in Botsing.

From an industrial perspective, Botsing is used by our partners in the STAMP project.⁴
They confirmed the relevance of Botsing for debugging and fixing application crashes [69].
The feedback —as well as the crash reproducing test cases— from our partners using Bots-
ing is openly available in the STAMP GitHub repository.⁵

Search-based test generation for class integration (Cling)
Chapter 6 addresses 𝑅𝑄3 by introducing a novel search-based technique to test the inte-
gration between two classes looking at their call-sites information. We have implemented
this approach as an open-source tool called Cling⁶. This tool gets application’s bytecode
and two classes in the application (the caller class and callee class) and produces a test
suite that covers the various interactions between these two classes.

Common/uncommon execution patterns test generation in unit testing
In Chapter 7, we implement novel secondary objectives considering the common/uncom-
mon execution patterns in EvoSuite.

1.7.2 Open-source Evaluation Infrastructures
Assessing crash reproduction
To evaluate the different search-based crash reproduction techniques, we created JCrash-
Pack, an open-source crash benchmark, which contains 200 non trivial Java crashes col-
³https://github.com/STAMP-project/botsing
⁴Available at http://stamp-project.eu/
⁵Available at https://github.com/STAMP-project/botsing-usecases-output.
⁶https://github.com/STAMP-project/botsing/tree/master/cling

https://github.com/STAMP-project/botsing
http://stamp-project.eu/
https://github.com/STAMP-project/botsing-usecases-output
https://github.com/STAMP-project/botsing/tree/master/cling


1.7 Open Science

1

15

lected from seven open-source projects: Closure compiler, Apache commons-lang, Apache
commons-math, Mockito, Joda-Time, XWiki, and ElasticSearch. Moreover, to ease bench-
marking using JCrashPack, we developed a bash-based execution runner, openly avail-
able on GitHub.⁷ This experiment runner (called ExRunner) runs different instances of
a crash reproduction tool (here, Botsing) in parallel processes and collects relevant in-
formation about the execution in a CSV file. These collected data helps to identify the
search-based crash reproduction benchmark.

Assessing class integration
To assess Cling against the state-of-the-art, we used subjects from five Java projects,
namelyClosure compiler,Apache commons-lang,Apache commons-math,Mockito, and Joda-
Time. These projects have been used in prior studies to assess the coverage and the effec-
tiveness of unit-level test case generation [22, 42, 70, 71], program repair [72, 73], fault
localization [74, 75], and regression testing [76, 77].

Moreover, we have implemented another open-source runner ⁸ (similar to ExRun-
ner). This runner collects more information about the test suites generated by different
approaches: branch coverage and mutation score measured by PIT⁹, which is a state-of-
the-art mutation testing tool for Java code, to mutate the callee classes.

Assessing common/uncommon execution patterns test generation
To assess our common/uncommon execution patterns search objective, we choose JabRef
(46 KLOC), an open-source Java bibliography reference manager with a graphical user
interface working with BibTex files. We instrumented JabRef using Spoon [78] to monitor
the execution paths while users are using it. We sampled 150 classes from this project for
our evaluation.

Since we want to measure the strong mutation score of test suites generated by Evo-
Suite + our novel secondary objectives against regular EvoSuite, we use the same open-
source infrastructure as the one we used to assess Cling.

⁷https://github.com/STAMP-project/ExRunner-bash
⁸https://github.com/STAMP-project/Cling-application
⁹http://pitest.org

https://github.com/STAMP-project/ExRunner-bash
https://github.com/STAMP-project/Cling-application




2

17

2
A Benchmark-Based Evaluation of
Search-BasedCrash Reproduction

EvoCrash is the state-of-the-art in automated crash reproduction. It has been previously
evaluated on 54 crashes[36], and its relevance for debugging has been confirmed [28].
Also. it has been shown that EvoCrash outperforms other approaches based on backward
symbolic execution [30], test case mutation [33], and model-checking [31], evaluated on
smaller benchmarks [28].

However, all those crashes benchmarks were not selected to reflect challenges that
are likely to occur in real-life stack traces, raising threats to external validity. Thus the
questions ofwhether the selected applications and crasheswere sufficiently representative,
if EvoCrash will work in other contexts, and what limitations are still there to address
remained unanswered.

The goal of this chapter is to identify challenges in search-based crash reproduction by
performing an empirical evaluation. To that end, we devise a new benchmark of real-world
crashes, called JCrashPack. It contains 200 crashes from seven actively maintained open-
source and industrial projects. These projects vary in their domain application and include
an enterprise wiki application, a distributed RESTful search engine, several popular APIs,
and a mocking framework for unit testing Java programs. JCrashPack is extensible, and
can be used for large-scale evaluation and comparison of automated crash reproduction
techniques for Java programs.

To illustrate the use of JCrashPack, we adopt it to extend the reported evaluation on
EvoCrash [36] and identify the areaswhere the approach can be improved. In this chapter,
we provide an account of the cases that were successfully reproduced by EvoCrash (87
crashes out of 200). We also analyze all failed reproductions and distill 14 categories of
research and engineering limitations that negatively affected reproducing crashes in our
study. Some of those limitations are in line with challenges commonly reported for search-
based structural software testing in the community [21, 34, 79] and others are specific to
search-based crash reproduction.

This chapter is published as a paper with two first authors. The author of this thesis and the other first author
contributed equally to this work.



2

18 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

Our categorization of challenges indicates that environmental dependencies, code com-
plexity, and limitations of automated input data generation often hinder successful crash
reproduction. In addition, stack frames (i.e., lines in a stack trace), pointing to varying
types of program elements, such as interfaces, abstract classes, and anonymous objects,
influence the extent to which a stack trace-based approach to crash reproduction is effec-
tive.

Finally, we observe that the percentage of successfully reproduced crashes drops from
85% (46 crashes out of 54 reported by Soltani et al. [28]) to 43% (87 out of 200) when evalu-
ating crashes that are from industrial projects. In our observations, generating input data
for microservices, and unit testing for classes with environmental dependencies, which
may frequently exist in enterprise applications, are among the major reasons for the ob-
served drop in the reproduction rate. These results are consistent with the paradigm shift
to context-based software engineering research that has been proposed by Briand et al.
[80].

The key contributions of this chapter are:

• JCrashPack,¹ a carefully composed benchmark of 200 crashes, as well as their cor-
rect system version and its libraries, from seven real-world Java projects, together
with an account of our manual analysis on the characteristics of the selected crashes
and their constituting frames, including size of the stack traces, complexity mea-
sures, and identification of buggy and fixed versions.

• ExRunner,² a bash script for automatically running experiments with crash repro-
duction tools in Java.

• Empirical evidence [62], demonstrating the effectiveness of search-based crash re-
production on real world crashes taken from JCrashPack.

• The identification of 14 categories of research and engineering challenges for search-
based crash reproduction that need to be addressed in order to facilitate uptake in
practice of crash reproduction research.

The remainder of the chapter is structured as follows: Sections 2.2 to 2.4 describe the
design protocol for the benchmark, the resulting benchmark JCrashPack, as well as the
ExRunner tool to run experiments on JCrashPack. Sections 2.5 to 2.7 cover the experi-
mental setup for the EvoCrash evaluation, the results from our evaluation, and the results
challenges that we identified through our evaluation. Sections 2.8 to 2.11 provide a dis-
cussion of our results and future research directions, an analysis of the threats to validity,
and a summary of our overall conclusions.

2.1 Background and related work
2.1.1 Automated Crash Reproduction
Software crashes commonly occur in operating environments and are reported to devel-
opers for inspection. When debugging, reproducing a reported crash is among the tasks a

¹Available at https://github.com/STAMP-project/JCrashPack.
²Available at https://github.com/STAMP-project/ExRunner-bash

https://github.com/STAMP-project/JCrashPack
https://github.com/STAMP-project/ExRunner-bash


2.1 Background and related work

2

19

developer needs to do in order to identify the conditions under which the reported crash
is triggered [57, 81]. In particular, for Java programs, when a crash occurs, an exception is
thrown. A developer strives to reproduce it to understand its cause, then fix the bug, and
finally add a (non-)regression test to avoid reintroducing the bug in future versions.

Manual crash reproduction can be a challenging and labor-intensive task for develop-
ers: it is often an iterative process that requires setting the debugging environment in a
similar enough state as the environment in which the crash occurred [57].

To help developers in this process, various automated techniques have been suggested.
These techniques can be divided into three categories, based on the kind of data used
for crash reproduction: record-replay approaches [82–88] record data from the running
program; post-failure approaches [32, 89–94] collect data from the crash, like a memory
dump; and stack-trace based post-failure [29–31, 33, 36] use only the stack trace produced
by the crash. We briefly describe each category hereafter.

Record-replay approaches. These approaches record the program runtime data and
use them during crash reproduction. Themain limitation is the availability of the required
data. Monitoring software execution may violate privacy by collecting sensitive data, the
monitoring process can be an expensive task for the large scale software, and may induce
a significant overhead [30–32]. Tools like ReCrash [82], ADDA [83], Bugnet [84], jRapture
[85], MoTiF [86], Chronicler [87], and SymCrash [88] fall in this category.

Post-failure approaches. Techniques from this category use the software data col-
lected directly after the occurrence of a failure. For instance, RECORE [32] applies a
search-based approach to reproduce a crash by using the stack trace and a core dump,
produced by the system when the crash happened, to guide the search.

Although these tools limit the quantity of monitored and recorded data, the availability
of such data still represents a challenge. Yu et al. [89] addressed this issue for system-level
concurrency failure reproduction by introducing DESCRY. This approach only uses the
default execution logs and applies both static and dynamic analysis combined with sym-
bolic execution to generate the input data and interleaving schedule. However, even this
approach suffers from two limitations: (i) since this tool relies on symbolic execution, ap-
plying it on the large and complex projects leads to path explosion; (ii) the performance of
this tool is strongly linked to the quality of the software log. Other post-failure approaches
include: Weeratunge et al. [90], Leitner et al. [91, 92], and Kifetew et al. [93, 94].

Stack-trace based post-failure. Recent studies in crash reproduction [29–31, 33, 36]
focuses on utilizing data only from a given crash stack trace to enhance the practical
application. Table 2.1 illustrates an example of a crash stack trace from Apache Ant³ [95]
which is comprised of a crash type (java.lang.NullPointerException) and a stack of
frames pointing to all method calls that were involved in the execution when the crash
happened. From a crash stack frame, we can retrieve information about: the crashing
method, the line number in themethodwhere the crash happened, and the fully qualifying
name of the class where the crashing method is declared.

³ANT-49755: https://bz.apache.org/bugzilla/show_bug.cgi?id=49755

https://bz.apache.org/bugzilla/show_bug.cgi?id=49755


2

20 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

Table 2.1: The crash stack trace for Apache Ant-49755.

java.lang.NullPointerException:
Level Frame

1 at org.apache.tools.ant.util.FileUtils.createTempFile(FileUtils.java:888)
2 at org.apache.tools.ant.taskdefs.TempFile.execute(TempFile.java:158)
3 at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291)

The state of the research in crash reproduction [29–31, 33, 36, 96, 97] aims at generating
test code that, once executed, produces a stack trace that is as similar to the original one
as possible. They, however, differ in their means to achieve this task.

ESD [96], a debugger based on execution synthesis, uses forward symbolic execution
and static analysis to reach reproduction. This tool focusesmore on concurrency andmem-
ory safety bugs. Similarly, BugRedux [97] uses forward symbolic execution. BugRedux is
a crash reproduction tool for C programs.

Since these two tools rely on forward symbolic execution, they can be applied only on
medium-size applications. Also, as illustrated by Braione et al. [7], symbolic execution test
generation approaches face limitationswhen generating complex input data structures. To
address these limitations, STAR [30] applies optimized backward symbolic execution and
uses a novel technique for method sequence composition to generate a unit test that sat-
isfies the computed preconditions, and eventually reproduces the target crash. However,
as reported by Chen et al. [30], STAR still suffers from the path explosion problem stem-
ming from utilizing symbolic execution. It only supports 3 types of exceptions: explicitly
thrown exceptions, NullPointerException, and ArrayIndexOutOfBoundsException.

JCHARMING [31] applies model checking to reproduce the reported bugs. To prevent
state explosion in the model, it utilizes program slicing. Since JCHARMING can be applied
to any frame from a given crash stack trace, the approach can reproduce any fraction of
the target crash stack trace.

MuCrash [33] is based on exploiting existing test cases written by developers and mu-
tating them until they trigger the target crash. Test case mutation in MuCrash is directed
by selecting tests for the classes included in the target crash stack trace.

Finally, Concrash [29] focuses on reproducing concurrency failures that violate thread-
safety of a class. Concrash iteratively generates test code and looks for a thread interleav-
ing that triggers a concurrency crash. In order to steer the test generation process and
avoid expensive computations, Concrash applies the pruning strategies to avoid redun-
dant and irrelevant test code. In contrast to other crash reproduction techniques, Concrash
only reproduces the minority of the crashes in the issue tracking systems. As reported by
Yuan et al. [98], inter-leaving crashes cause only 10% of failures in the distributed data-
intensive systems. Besides, Coelho et al. [99] state that this number is even lower in
Android applications (2.9%).

2.1.2 Search-based Crash Reproduction With EvoCrash
Search-based algorithms have been increasingly used for software engineering problems
since they are shown to suite complex, non-linear problems, with multiple optimization
objectives that may conflict or competing [100]. EvoCrash [28, 36] is a search-based ap-



2.1 Background and related work

2

21

proach to crash reproduction, which applies a guided genetic algorithm to search for a unit
test that reproduces the target crash. They have shown that this search-based technique
outperforms other automated crash reproduction approaches.

EvoCrash takes as input a stack trace with one of its frames set as the target frame.
The target frame is composed of a (i) target class, the class to which the exception has been
propagated; a (ii) target method, the method in that class; and a (iii) target line, the line
in that method where the exception has been propagated. It then seeks to generate a unit
test that replicates the given stack trace from the target frame (at level 𝑛) to the deepest
frame (at level 1). For instance, if we pass the stack trace in Table 2.1 as the given trace
and indicate the second frame as the target frame (level 2), the output of EvoCrash will
be a unit test for the class TempFilewhich replicates the first two frames of the given stack
trace with the same type of the exception (NullPointerException).

Guided genetic algorithm
The search process in EvoCrash begins by randomly generating unit tests for the target
frame. In this phase, called guided initialization, the target method corresponding to the
selected frame (i.e., the failing method to which the exception is propagated) is injected
in every randomly generated unit test. During subsequent phases of the search, guided
crossover and guided mutation, standard evolutionary operations are applied to the unit
tests. However, applying these operations involves the risk of losing the injected failing
method. Therefore, the algorithm ensures that only unit tests with the injected failing
method call remain in the evolution loop. If the generated test by crossover does not
contain the failing method, the algorithm replaces it with one of its parents. Also, if the
resulting test does not contain the failing method after a mutation, the algorithm redoes
the mutation until the failing method is added to the test again. The search process con-
tinues until either the search budget is over or a crash reproducing test case is found.

To evaluate the generated tests, EvoCrash applies the following weighted sum fitness
function [28] (called Crash Distance, hereafter) to a generated test 𝑡 :

𝑓 (𝑡) = {
3×𝑑𝑠(𝑡) + 2×𝑚𝑎𝑥(𝑑𝑒𝑥𝑐𝑒𝑝𝑡 ) +𝑚𝑎𝑥(𝑑𝑡𝑟𝑎𝑐𝑒) if the line is not reached
3×𝑚𝑖𝑛(𝑑𝑠) + 2×𝑑𝑒𝑥𝑐𝑒𝑝𝑡 (𝑡) +𝑚𝑎𝑥(𝑑𝑡𝑟𝑎𝑐𝑒) if the line is reached
3×𝑚𝑖𝑛(𝑑𝑠) + 2×𝑚𝑖𝑛(𝑑𝑒𝑥𝑐𝑒𝑝𝑡 ) +𝑑𝑡𝑟𝑎𝑐𝑒(𝑡) if the exception is thrown

(2.1)

Where:

• 𝑑𝑠 ∈ [0,1] indicates the distance between the execution of 𝑡 and the target statement
𝑠 located at the target line. This distance is computed using the approach level, mea-
suring the minimum number of control dependencies between the path of the code
executed by 𝑡 and 𝑠, and normalized branch distance, scoring how close 𝑡 is to satis-
fying the branch condition for the branch on which𝑠 is directly control dependent
[4]. If the target line is reached by the test case, 𝑑𝑙(𝑡) equals to 0.0;

• 𝑑𝑒𝑥𝑐𝑒𝑝𝑡 (𝑡) ∈ {0,1} indicates if the target exception is thrown (𝑑𝑒 = 0) or not (𝑑𝑒 = 1);
• 𝑑𝑡𝑟𝑎𝑐𝑒(𝑡) ∈ [0,1] indicates the similarity of the input stack trace and the one gener-
ated by 𝑡 by looking at class names, methods names and line numbers;

• 𝑚𝑎𝑥(⋅) denotes the maximum possible value for the function.



2

22 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

Since the stack trace similarity is relevant only if the expected exception is thrown by
𝑡 , and the check whether the expected exception is thrown or not is relevant only if the
target line where the exception propagates is reached, 𝑑𝑒𝑥𝑐𝑒𝑝𝑡 and 𝑑𝑡𝑟𝑎𝑐𝑒) are computed
only upon the satisfaction of two constraints: the target exception has to be thrown in the
target line 𝑠 and the stack trace similarity should be computed only if the target exception
is actually thrown.

Unlike other stack trace similaritymeasures (e.g., [32]), Soltani et al. [28] do not require
two stack traces to share the same common prefix to avoid rejecting stack traces where
the difference is only in one intermediate frame. Instead, for each frame, 𝑑𝑡𝑟𝑎𝑐𝑒(𝑡) looks
at the closest frame and computes a distance value. Formally, for an original stack trace
𝑆∗ and a test case 𝑡 producing a stack trace 𝑆, 𝑑𝑡𝑟𝑎𝑐𝑒(𝑡) is defined as follows:

𝑑𝑡𝑟𝑎𝑐𝑒(𝑡) = 𝜑( ∑
𝑓 ∗∈𝑆∗

𝑚𝑖𝑛 {𝑑𝑖𝑓 𝑓 (𝑓 ∗, 𝑓 ) ∶ 𝑓 ∈ 𝑆}) (2.2)

Where 𝜑(𝑥) = 𝑥/(𝑥 +1) is a normalization function [4] and diff (𝑓 ∗, 𝑓 ) measures the differ-
ence between two frames as follows:

𝑑𝑖𝑓 𝑓 (𝑓 ∗∗, 𝑓 ) = {
3 if the classes are different
2 if the classes are equal but the methods are different
𝜑 (|𝑙∗ − 𝑙|) otherwise

(2.3)
Where 𝑙 (resp. 𝑙∗) is the line number of the frame 𝑓 (resp. 𝑓 ∗).

Each of the three components if the fitness function defined in Equation 2.1 ranges
from 0.0 to 1.0, the overall fitness value for a given test case ranges from 0.0 (crash is fully
reproduced) to 6.0 (no test was generated), depending on the conditions it satisfies.

Comparison with the state-of-the-art
Crash reproduction tools. Table 2.2 presents the number of crashes used in the bench-
marks used to evaluated stack-trace based post-failure crash reproduction tools as well as
their crash reproduction rates. EvoCrash has been evaluated on various crashes reported
in other studies and has the highest reproduction rate.

EvoSuite. Table 2.2 also reports the comparison of EvoCrash with EvoSuite, using
exception coverage as the primary objective, applied by Soltani et al. [28]. All the crashes
reproduced by EvoSuite could also be reproduced by EvoCrash on average 170% faster
and with a higher reproduction rate.

Usefulness for debugging
When reproducing a stack trace with EvoCrash, there is no guarantee that the generated
test completely reproduces the conditions in which the crash happened in the first place.
Besides the random nature of search-based approaches, test cases are generated at the unit
level, while crashes usually happen at the system level. However, rather than reproducing
the exact same conditions of the crash, the goal of crash reproduction is to help developers
fix the underlying bug.



2.2 Benchmark Design

2

23

Table 2.2: The number of crashes used in each crash reproduction tool experiment, the gained reproduction by
them, and the involved projects.

Tool Reproduced/Total Rate Projects

EvoCrash [28, 36] 46/54 85%

Apache Commons Collections
Apache Ant
Apache Log4j
ActiveMQ
DnsJava

JFreeChart

EvoSuite [28] 18/54 33%

Apache Commons Collections
Apache Ant
Apache Log4j
ActiveMQ
DnsJava

JFreeChart

STAR [30] 30/51 59%
Apache Commons Collections

Apache Ant
Apache Log4j

MuCrash [33] 8/12 66% Apache Commons Collections

JCharming[31] 8/12 66%

Apache Ant
Apache Log4j
ActiveMQ
DnsJava

JFreeChart

Chen et al. [30] introduced a usefulness criterion for the crash reproduction approaches.
According to this criterion, a crash reproducing test is useful to the developers if it covers
the buggy frame, i.e., if the target frame for which the reproduction is successful is higher
than the frame that points to the buggy method. Soltani et al. [28] refined that criterion
through a controlled experiment with 35 master students in computer science and two
crashes to assess the degree to which the tests generated by EvoCrash helps to debug
code. Their results indicate that the reproducing tests generated by EvoCrash help the
participants to fix the bugs more often, although not significantly, and significantly faster.
They confirmed the usefulness criterion defined by the Chen et al. [30], but also found
evidence that test cases categorized as not useful, according to this criterion, can still help
developers fix the bug.

2.2 Benchmark Design
Benchmarking is a common practice to assess a new technique and compare it to the state
of the art [101]. For instance, SF110 [21] is a sample of 100 Java projects from SourceForge,
and 10 popular Java projects from GitHub, that may be used to assess (search based) test
case selection techniques. In the same way, Defects4J [71] is a collection of bugs com-
ing from popular open-source projects: for each bug, a buggy and a fixed version of the
projects, as well as bug revealing test case, are provided. Defects4J is aimed to assess
various testing techniques like test case selection or fault localization.



2

24 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

In their previous work, Soltani et al. [36], Xuan et al. [33], and Chen and Kim [30] used
Apache Commons Collections [102], Apache Ant [95], and Apache Log4j [103] libraries.
In addition to Apache Ant and Apache Log4j, Nayrolles et al. [31] used bug reports from
8 other open-source software.

In this chapter we enhance previous efforts to build a benchmark dedicated to crash
reproduction by collecting cases coming from both state of the art literature and actively
maintained industrial open-source projects with well documented bug trackers.

2.2.1 Projects Selection Protocol
As Table 2.2 clearly shows, current crash reproduction tools are not evaluated using a
common benchmark. This hampers progress in the field as it makes it hard to compare
approaches. To be able to perform analysis of the results of a crash reproduction attempt,
we define the following benchmark requirements for our benchmark:

BR1, to be part of the benchmark, the projects should have openly accessible binaries,
source code, and crash stack traces (in an issue tracker for instance);

BR2, they should be under active maintenance to be representative of current software
engineering practices and ease communication with developers;

BR3, each stack trace should indicate the version of the project that generated the stack
trace; and

BR4, the benchmark should include projects of varying size.

To best of our knowledge, there is no benchmark fulfilling those requirements. The
closest benchmark is Defects4j. However, only 25% of the defects manifest through a crash
stack trace (BR1) and the projects are relatively small (BR4). To address those limitations,
we built a new benchmark dedicated to the crash reproduction tools.

To build our benchmark, we took the following approach. First, we investigated projects
collected in SF110 [21] and Defects4J [71] as state of the art benchmarks. However, as most
projects in SF110 have not been updated since 2010 or earlier, we discarded them from our
analysis (BR2). From Defects4J, we collected 73 cases where bugs correspond to actual
crashes: i.e., the execution of the test case highlighting the bug in a given buggy version
of a project generates a stack trace that is not a test case assertion failure.

As also discussed by Fraser and Arcuri [21], to increase the representativeness of a
benchmark, it is important to include projects that are popular and attractive to end-users.
Additionally to Defects4J, we selected two industrial open-source projects: XWiki [104]
and Elasticsearch [105]. XWiki is a popular enterprise wiki management system. Elastic-
search, a distributed RESTful search and analytic engine, is one of the ten most popular
projects on GitHub⁴. To identify the top ten popular projects from Github, we took the
following approach: (i) we queried the top ten projects that had the highest number of
forks; (ii) we queried the top ten projects that had the highest number of stars; (iii) we
queried the top ten trending projects; and (iv) took the intersection of the three.

Four projects were shared among the above top-ten projects, namely: Java-design-
patterns [106], Dubbo[107], RxJava [108], and Elasticsearch. To narrow down the scope

⁴This selection was performed on 26/10/2017.



2.2 Benchmark Design

2

25

of the study, we selected Elasticsearch, which ranked the highest among the four shared
projects.

2.2.2 Stack Trace Collection And Preprocessing
For each project, we collected stack traces to be reproduced as well as the project binaries,
with specific versions on which the exceptions happened.

Defects4J. From the 395 buggy versions of the Defects4J projects, we kept only the bugs
relevant to our crash reproduction context (73 cases), i.e., the bugs that manifest as crashes.
We manually inspected the stack traces generated by the failing tests and collected those
which are not JUnit assertion failures (i.e., those which are due to an exception thrown
by the code under test and not by the JUnit framework). For instance, for one stack trace
from the Joda-Time project:

0 java.lang.IllegalArgumentException:
1 at org.joda.time.Partial.<init >( Partial.java :224)
2 at org.joda.time.Partial.with(Partial.java :466)
3 at org.joda.time.TestPartial_Basics.testWith_baseAndArgHaveNoRange (...)

We only consider the first and second frames (lines 1 and 2). The third and following lines
concern testing classes of the project, which are irrelevant for crash reproduction. They
are removed from the benchmark, resulting in the following stack trace with two frames:

0 java.lang.IllegalArgumentException:
1 at org.joda.time.Partial.<init >( Partial.java :224)
2 at org.joda.time.Partial.with(Partial.java :466)

We proceeded in the same way for each Defects4J project and collected a total of 73 stack
traces coming from five (out of the six) projects: JFreeChart, Commons-lang, Commons-
math, Mockito, and Joda-Time. All the stack traces generated by the Closure compiler test
cases are JUnit assertion failures.

Elasticsearch. Crashes for Elasticsearch are publicly reported to the issue tracker of the
project on GitHub⁵. Therefore, we queried the reported crashes, which were labelled as
bugs, using the following string ”exception is:issue label:bug”. From the resulting
issues (600 approx.), we manually collected the most recent ones (reported since 2016),
which addressed the following: (i) the version which crashed was reported, (ii) the issue
was discussed by the developers and approved as a valid crash to be fixed. The above
manual process resulted in 76 crash stack traces.

XWiki. XWiki is an open source project which has a public issue tracker⁶. We investi-
gated first 1000 issues which are reported for XWIK-7.2 (released in September 2015) to
XWIK-9.6 (released in July 2017). We selected the issues where: (i) the stack trace of
the crash was included in the reported issue, and (ii) the reported issue was approved by
developers as a valid crash to be fixed. Eventually, we selected a total of 51 crashes for
XWIKI.

⁵https://github.com/elastic/elasticsearch/issues
⁶https://jira.xwiki.org/browse/XWIKI/

https://github.com/elastic/elasticsearch/issues
https://jira.xwiki.org/browse/XWIKI/


2

26 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

Commons−lang Commons−math Mockito Joda−Time JFreechart XWiki Elasticsearch

0

1

2

3

4

Application version

A
ve

ra
ge

 C
C

N

(a) Average methods Cyclomatic Complexity Number (CCN)

Commons−lang Commons−math Mockito Joda−Time JFreechart XWiki Elasticsearch

0

100

200

300

Application version

K
N

C
S

S

(b) Thousands of Non-Commenting Sources Statements (KNCSS)

Figure 2.1: Complexity and size of the different projects

2.3 The JCrashPack Benchmark
Theresult of our selection protocol is a benchmarkwith 200 stack traces called JCrashPack .
For each stack trace, based on the information from the issue tracker and the Defects4J
data, we collected: the Java project in which the crash happened, the version of the project
where the crash happened and (when available) the fixed version or the fixing commit ref-
erence of the project; the buggy frame (i.e., the frame in the stack trace targeting the
method where the bug lays); and the Cyclomatic Complexity Number (CCN) and the
Non-Commenting Sources Statements (NCSS) of the project, presented in Figure 2.1. Due
to the manual effort involved in filtering, verifying and cleaning up stack traces, issues,
the collection of stack traces and binaries (including the project’s dependencies binaries)
took about 4.5 person-months in total.

Figure 2.1 presents the average Cyclomatic Complexity Number (CCN) per method for
each project and the Non-Commenting Sources Statements (NCSS) per project, ordered by
version number, to give an idea of the complexity of a project. Also, Table 2.3 gives the
number of versions and the average number of non-commenting source statement for
each project in JCrashPack. As illustrated in the table and figure, JCrashPack contains
projects of diverse complexities (the CCN for the least complex project is 1.77, and for
the most complex is 3.38) and sizes (the largest project has 177,840 statements, and the
smallest one holds 6,060 statements on average), distributed among different versions.

Table 2.4 shows the distribution of stack traces per exception type for the six most
common ones, the Other category denoting remaining exception types. According to this
table, the included stack traces in JCrashPack covers different types of the exceptions.
Also, they are varied in the size (number of frames): the smallest stack traces have one
frame and the largest, a user-defined exception in Other, has 175 frames.



2.3 The JCrashPack Benchmark

2

27

Table 2.3: The number of versions and average number of statements (𝑁𝐶𝑆𝑆) for each project.

Applications Number of versions 𝑁𝐶𝑆𝑆
Commons-lang 22 13.38k
Commons-math 27 29.98k
Mockito 14 6.06k
Joda-Time 8 19.41k
JFreechart 2 63.01k
XWiki 32 177.84k
Elasticsearch 46 124.36k
Total 151 62.01k

JCrashPack is extensible and publicly available on GitHub.⁷ We provide guidelines to
add new crashes to the benchmark andmake a pull request to include them in JCrashPack
master branch. The detailed numbers for each stack trace and its project are available on
the JCrashPack website.

⁷At https://github.com/STAMP-project/JCrashPack

https://github.com/STAMP-project/JCrashPack


2

28 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

Table 2.4: Number of stack traces (st), total number of frames (fr), and average number of frames (𝑓 𝑟 ) and
standard deviation (𝜎 ) per stack trace for the different exceptions: NullPointerException (NPE), IllegalArgu-
mentException (IAE), ArrayIndexOutOfBoundsException (AIOOBE), ClassCastException (CCE), StringIndex-
OutOfBoundsException (SIOOBE), IllegalStateException (ISE), and other exceptions types (Other).

Applications N
PE

IA
E

A
IO

O
BE

C
C
E

SI
O
O
BE

IS
E

O
th

er

Total
Commons-lang st 5.0 3.0 2.0 0.0 6.0 0.0 6.0 22.0

fr 8.0 3.0 12.0 0.0 10.0 0.0 12.0 45.0
𝑓 𝑟 1.6 1.0 6.0 1.7 2.0 2.0
𝜎 0.9 0.0 5.7 1.0 1.5 2.1

Commons-math st 3.0 3.0 4.0 2.0 1.0 0.0 14.0 27.0
fr 8.0 7.0 9.0 11.0 1.0 0.0 70.0 106.0
𝑓 𝑟 2.7 2.3 2.2 5.5 1.0 5.0 3.9
𝜎 0.6 1.5 2.5 6.4 NA 3.0 3.0

Mockito st 2.0 0.0 2.0 2.0 0.0 0.0 8.0 14.0
fr 3.0 0.0 12.0 2.0 0.0 0.0 48.0 65.0
𝑓 𝑟 1.5 6.0 1.0 6.0 4.6
𝜎 0.7 7.1 0.0 3.8 4.1

Joda-Time st 0.0 3.0 0.0 0.0 0.0 0.0 5.0 8.0
fr 0.0 5.0 0.0 0.0 0.0 0.0 26.0 31.0
𝑓 𝑟 1.7 5.2 3.9
𝜎 0.6 1.5 2.2

JFreechart st 1.0 1.0 0.0 0.0 0.0 0.0 0.0 2.0
fr 6.0 6.0 0.0 0.0 0.0 0.0 0.0 12.0
𝑓 𝑟 6.0 6.0 6.0
𝜎 NA NA 0.0

XWiki st 20.0 4.0 0.0 6.0 1.0 0.0 20.0 51.0
fr 535.0 39.0 0.0 131.0 8.0 0.0 687.0 1400.0
𝑓 𝑟 26.8 9.8 21.8 8.0 34.4 27.5
𝜎 33.3 3.7 22.2 NA 47.0 37.0

Elasticsearch st 18.0 10.0 6.0 0.0 1.0 7.0 34.0 76.0
fr 222.0 152.0 102.0 0.0 15.0 135.0 717.0 1343.0
𝑓 𝑟 12.3 15.2 17.0 15.0 19.3 21.1 17.7
𝜎 9.8 9.2 18.0 NA 11.9 13.4 12.5

Total st 49.0 24.0 14.0 10.0 9.0 7.0 87.0 200.0
fr 782.0 212.0 135.0 144.0 34.0 135.0 1560.0 3002.0
𝑓 𝑟 16.0 8.8 9.6 14.4 3.8 19.3 17.9 15.0
𝜎 23.9 8.5 13.3 19.3 4.8 11.9 26.3 22.3

2.4 Running Experiments With ExRunner
We combine JCrashPackwith ExRunner, a tool that can be used for running experiments
with a given stack trace-based crash reproduction tool. This tool (i) facilitates the auto-
matic parallel execution of the crash reproduction instances, (ii) ensures robustness in the
presence of failures during the crash reproduction failure, and (iii) allows to plug different
crash reproduction tools to allow a comparison of their capabilities.

Figure 2.2 gives an overview of ExRunner architecture. The job generator takes as
input the stack traces to reproduce, the path to the Jar files associated to each stack trace,
and the configurations to use for the stack trace reproduction tool under study. For each
stack trace, the job generator analyzes the stack frames and discards those with a target
method that does not belong to the target system, based on the package name. For instance,
frames with a target method belonging to the Java SDK or other external dependencies are
discarded from the evaluation. For each configuration and stack trace, the job generator
creates a new job description (i.e., a JSON object with all the information needed to run



2.4 Running Experiments With ExRunner

2

29

Stack traces

Jo
b 

ge
ne

ra
to

r

Observer

Thread 1

Thread n

.

.

Job 1
Logs

Results

Tool configuration Job n

Test case

Jar files
.
.

Logs

Results
Test case

Figure 2.2: ExRunner overview

the tool under study) and adds it to a queue.
To speed-up the evaluation, ExRunner multithreads the execution of the jobs. The

number of threads is provided by the user in the configuration of ExRunner and depends
on the resources available on the machine and required by one job execution. Each thread
picks a job from the waiting queue and executes it. ExRunner users may activate an
observer that monitors the jobs and takes care of killing (and reporting) those that do not
show any sign of activity (by monitoring the job outputs) for a user-defined amount of
time. The outputs of every job are written to separate files, with the generated test case
(if any) and the results of the job execution (output results from the tool under study).

For instance, when used with EvoCrash, the log files contain data about the target
method, progress of the fitness function value during the execution, and branches covered
by the execution of the current test case (in order to see if the line where the exception
is thrown is reached). In addition, the results contain information about the progress of
search (best fitness function, best line coverage, and if the target exception is thrown), and
number of fitness evaluations performed by EvoCrash in an output CSV file. If EvoCrash
succeeds to replicate the crash, the generated test is stored separately.

As mentioned by Fraser et al. [109], any research tool developed to generate test cases
may face specific challenges. One of these is long (or infinite) execution time of the test
during the generation process. To manage this problem, EvoSuite uses a timeout for
each test execution, but sometimes it fails to kill sub-processes spawned during the search
[109]. We also experienced EvoCrash freezing during our evaluation. In order to handle
this problem, ExRunner creates an observer to check the status of each thread executing
an EvoCrash instance. If one EvoCrash execution does not respond for 10minutes (66%
of the expected execution time), the Python script kills the EvoCrash process and all of
its spawned threads.

Another challenge relates to garbage collection: we noticed that, at some point of
the execution, one job (i.e., one JVM instance) allocated all the CPU cores for the exe-
cution of the garbage collector, preventing other jobs to run normally. Moreover, since
EvoCrash allocates a large amount of heap space to each sub-process responsible to gen-
erate a new test case (since the execution of the target application may require a large
amount of memory) [109], the garbage collection process could not retrieve enough mem-
ory and got stuck, stopping all jobs on the machine. To prevent this behaviour, we set
-XX:ParallelGCThreads JVM parameter to 1, enabling only one thread for garbage collec-



2

30 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

tion, and limited the number of parallel threads per machine, depending on the maximal
amount of allocated memory space. We set the number of active threads to 5 for running
on virtual machines, and 25 for running on two powerful machines. Using the logging
mechanism in EvoCrash, we are able to see when individual executions ran out of mem-
ory.

ExRunner is available together with JCrashPack.⁸ It has been used to perform bench-
marking for search-based crash reproduction approaches, both EvoCrash and Botsing
(an open-source search-based crash reproduction framework for assessing the new tech-
niques introduced in this thesis), yet it has been designed to be extensible to other available
stack trace reproduction tools using a plugin mechanism. Integrating another crash repro-
duction tool requires the definition of two handlers, called by ExRunner: one to run the
tool with the inputs provided by ExRunner (i.e. the stack trace, the target frame, and the
classpath of the software under test); and one to parse the output produced by the tool
to pick up relevant data (e.g., the final status of the crash reproduction, progress of the
tool during the execution, etc.). Relevant data are stored in a CSV file, readily available for
analysis.⁹

2.5 Application To EvoCrash: Setup
Having JCrashPack available allowed us to perform an extensive evaluation of Evo-
Crash, a state-of-the-art tool in search-based crash replication [28]. Naturally, our first re-
search question deals with the capability of EvoCrash to reproduce crashes from JCrash-
Pack:
RQ1.1 To what extent can EvoCrash reproduce crashes from JCrashPack?

Since the primary goal of our evaluation is to identify current limitations, we refine the
previous research question to examine which frames of the different crashes EvoCrash is
able to reproduce:
RQ1.2 Towhat extent can EvoCrash reproduce the different frames of the crashes from JCrash-

Pack?

The diversity of crashes in JCrashPack also allows us to investigate how certain types of
crashes affect reproducibility. Thus, we investigate whether the exception type and the
project nature have an influence on the reproduction rate:
RQ2.1 How does project type influence performance of EvoCrash for crash reproduction?

In addition, different types of projects might have impact on how costly it is to reproduce
the reported crashes for them. The second research question studies the influence of the
exception and project type on the performance of EvoCrash:
RQ2.2 How does exception type influence performance of EvoCrash for crash reproduction?

Finally, we seek to understand why crashes could not be reproduced:
RQ3 What are the main challenges that impede successful search-based crash reproduction?
⁸See https://github.com/STAMP-project/ExRunner-bash.
⁹ The ExRunner documentation includes a detailed tutorial describing how to pro-
ceed, available at https://github.com/STAMP-project/EvoCrash-JCrashPack-application#
run-other-crash-replication-tools-with-exrunner.

https://github.com/STAMP-project/ExRunner-bash
https://github.com/STAMP-project/EvoCrash-JCrashPack-application#run-other-crash-replication-tools-with-exrunner
https://github.com/STAMP-project/EvoCrash-JCrashPack-application#run-other-crash-replication-tools-with-exrunner


2.5 Application To EvoCrash: Setup

2

31

2.5.1 Evaluation Setup
Number of executions. Due to the randomness of Guided Genetic Algorithm in Evo-
Crash, we executed the tool multiple times on each frame. The number of executions has
to strike a balance between the threats to external validity (i.e., the number of stack traces
considered) and the statistical power (i.e., number of runs) [21, 110]. In our case, we do
not compare EvoCrash to other tools (see for instance Soltani et al. [28, 36]), but rather
seek to identify challenges for crash reproduction. Hence we favor external validity by
considering a larger amount of crashes compared to previous studies [28] and ran Evo-
Crash 10 times on each frame. In total, we executed 18,590 EvoCrash runs.

Search parameters. We used the default parameter values [21, 111] with the following
additional configuration options: we chose to keep the reflection mechanisms, used to call
private methods, deactivated. The rationale behind this decision is that using reflection
can lead to generating invalid objects that break the class invariant [112] during the search,
which results in test cases helplessly trying to reproduce a given crash [30].

After a few trials, we also decided to activate the implementation of functional mock-
ing available from EvoSuite [113] in order to minimize possible risks of environmental
interactions on crash reproduction. Functional mocking works as follows: when, in a
test case, a statement that requires new specific objects to be created (as parameters of a
method call for instance) is inserted, either a plain object is instantiated by invoking its
constructor, or (with a defined probability, left to its default value in our case) a mock ob-
ject is created. This mock object is then refined using when-thenReturn statements, based
on the methods called during the execution of the generated test case. Functional mock-
ing is particularly useful in the cases where the required object cannot be successfully
initialized (for instance, if it relies on environmental interactions or if the constructor is
accessible only through a factory).

Investigating the impact of those parameters and other parameters (e.g., crossover rate,
mutation rate, etc. to overcome the challenges as identified in RQ3) is part of our future
work.

Search budget. Since our evaluation is executed in parallel on different machines, we
choose to express the budget time in terms of number of fitness evaluations: i.e., the num-
ber of times the fitness function is called to evaluate a generated test case during the exe-
cution of the guided generic algorithm. We set this number to 62,328, which corresponds
to the average number of fitness evaluations performed by EvoCrash when running it
during 15 minutes on each frame of a subset of 4 randomly selected stack traces on one
out of our two machines. Both of the machines have the same configuration: A cluster
running Linux Ubuntu 14.04.4 LTS with 20 CPU-cores, 384 GBmemory, and a 482 GB hard
drive.

We partitioned the evaluation into two, one per available machine: all the stack traces
with the same kind of exception have been run on one machine for 10 rounds. For each
run, we measure the number of fitness evaluations needed to achieve reproduction (or the
exhaustion of the budget if EvoCrash fails to reproduce the crash) and the best fitness
value achieved by EvoCrash (0 if the crash is reproduced and higher otherwise). The



2

32 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

whole process is managed using ExRunner. The evaluation itself was executed during 10
days on our 2 machines.

2.6 Application To EvoCrash: Results
In this section, we answer the first two research questions on the extent to which the
selected crashes and their frames were reproduced and the impact of the project and the
exception type on the performance of EvoCrash. We detail the results by analyzing the
outcome of EvoCrash in a majority of 10 executions for each frame of each stack trace.
We classify the outcome of each execution in one of the five following categories:

reproduced: when EvoCrash generated a test that successfully reproduced the
stack trace at the given frame level;

ex. thrown: when EvoCrash generated a test that cannot fully reproduce the stack
trace, but covers the target line and throws the desired exception. The frames of the
exception thrown, however, do not contain all the original frames;

line reached: when EvoCrash generated a test that covers the target line, but does
not throw the desired exception;

line not reached: when none of the tests produced by EvoCrash could cover the
target line within the available time budget; and

aborted: when EvoCrash could not generate an initial population to start the
search process.

Each outcome denotes a particular state of the search process. For the reproduced frames,
EvoCrash could generate a crash-reproducing test within the given time budget (here,
62,328 fitness evaluations). For the frames that could not be reproduced, either EvoCrash
exhausted the time budget (for ex. thrown, line reached, and line not reached outcomes)
or could not perform the guided initialization (i.e., generate at least one test case with
the target method) and did not start the search process (aborted outcomes). For instance,
if the class in the target frame is abstract, EvoCrash may fail to find an adequate im-
plementation of the abstract class to instantiate an object of this class during the guided
initialization.

2.6.1 Crash Reproduction Outcomes (RQ1)
For RQ1, we first look at the reproduced and non-reproduced crashes to answer RQ1.1. If
EvoCrash was successful in reproducing any frame of a stack trace in a majority of 10
executions, we count the crash as a reproduced crash. Otherwise, we count the crash
as not reproduced. To answer RQ1.2, we detail the results by analyzing the outcome of
EvoCrash in a majority of 10 executions for each frame of each stack trace.

Figure 2.3 shows the number of reproduced and not reproduced crashes for each project
(and all the projects) and type of exception. EvoCrash is successful in reproducing the
majority of crashes (more than 75%) from Commons-lang, Commons-math, and Joda-Time.
For the other projects, EvoCrash reproduced 50% or less of the crashes, with only 2 out



2.6 Application To EvoCrash: Results

2

33

17 5

4 2

4 2

2

3

4 1

1 1

1

1

22 5

11 3

1

2

3 1

3

2 1

22 29

3 17

1

4 2

4

10 10

2 10

1 5

2

2

1 1

17 58

8 21

2 3

1

6

3 12

4 15

6 2

3 2

3

87 110

30 50

2 3

6 2

6 5

5 9

16 13

22 28

JFreechart XWiki Elasticsearch (all)

Commons−lang Commons−math Mockito Joda−Time

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

(all)

Other

ISE

SIOOBE

CCE

AIOOBE

IAE

NPE

(all)

Other

ISE

SIOOBE

CCE

AIOOBE

IAE

NPE

not reproduced reproduced

Figure 2.3: Reproduction outcome for the different crashes

of 12 crashes reproduced for Mockito. Crashes with an IllegalArgumentException are the
most frequently reproduced crashed: 16 out of 29 (55%).

Before detailing the results of each frame of each crash, we first look at the frame
levels that could be reproduced. Figure 2.4 presents for the 87 stack traces that could be
reproduced, the distribution of the highest frame level that could be reproduced for the
different crashes for each type of exception (in Figure 2.4a) and each application (in Figure
2.4b). Aswe can see, EvoCrash replicates lower frame levelsmore often than higher levels.
For instance, for 39 out of the 87 reproduced stack traces, EvoCrash could not reproduce
frames beyond level 1 and could reproduce frames up to level 5 for only 9 crashes.

Figure 2.4a indicates that EvoCrash can replicate only the first frame in 14 out of 22
NPE crashes, while there is only one NPE crash for which EvoCrash could reproduce a
frame above level 3. In contrast, it is more frequent for EvoCrash to reproduce higher
frame levels of IAE stack traces: the highest reproduced frames in 6 out of 16 IAE crashes
are higher than 3. Those results suggest that, when trying to reproduce a crash, propagat-
ing an illegal argument value through a chain of method calls (i.e., the frames of the stack
trace) is easier than propagating a null value. According to Figure 2.4b, EvoCrash can
reproduce frames higher than 6 only for Commons-math crashes. The highest reproduced
frames in most of the reproduced crashes in this project are higher than level 2 (12 out of
22). In contrast, for Elasticsearch the highest reproduced frame is 1 in most of the crashes.

Both the number of crashes reproduced and the highest level at which crashes could
be reproduced confirm the relevance of our choice to consider crashes from XWiki and
Elasticsearch, for which the average number of frames (resp. 27.5 and 17.7) is higher than
for Defects4J projects (at most 6.0 for JFreeChart), as they represent an opportunity to
evaluate and understand current limitations.



2

34 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

14

5

2

1

8

2

4

2

2

1

1

1

4

2

5

1

1

1

5

7

8

1

4

3

1

1

39

15

12

6

6

7

1

1

2

4

6

8

NPE
IA

E

AIO
OBE

CCE

SIO
OBE

IS
E

Oth
er (a

ll)

H
ig

he
st

 r
ep

ro
du

ce
d 

fr
am

e 
le

ve
l

(a) In each type of exception

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

12

4

1

8

2

6

1

1

2

1

1

1

1

2

1

1

2

1

8

4

3

3

1

3

8

4

1

2

1

1

39

15

12

6

6

7

1

1

2

4

6

8

Com
m

on
s−

lan
g

Com
m

on
s−

m
at

h

M
oc

kit
o

Jo
da

−T
im

e

JF
re

ec
ha

rt

XW
iki

Elas
tic

se
ar

ch (a
ll)

H
ig

he
st

 r
ep

ro
du

ce
d 

fr
am

e 
le

ve
l

(b) In each type of application

Figure 2.4: Highest reproduced frame levels

Frames reproduction outcomes
To answer RQ1.2, we analyze the results for each frame individually. Figure 2.5 presents a
summary of the results with the number of frames for the different outcomes. Figure 2.6
details the same results by application and exception.

Overall, we see in Figure 2.5 that EvoCrash reproduced 171 frames (out of 1,859), from
87 different crashes (out of 200) in the majority of the ten rounds. If we consider the frames
for which EvoCrash generated a crash-reproducing test at least once in the ten rounds,
the number of reproduced frames increases to 201 (from 96 different crashes). In total,
EvoCrash exhausted the time budget for 950 frames: 219 with a test case able to throw
the target exception, 245 with a test case able to reach the target line, and 486 without a
test case able to reach the line. EvoCrash aborted the search for 738 frames, 455 of which
were from Elasticsearch, the application for which EvoCrash had the most difficulties to
reproduce a stack trace.

Figure 2.6 details the results by applications (columns) and exceptions (lines). The last
line (resp. column), denoted (all), provides the global results for the applications (resp.
exceptions). In the remainder of this section, we discuss the results for the different appli-
cations and exceptions.

Defects4J applications
For the Defects4J applications, presented in the first five columns in Figure 2.6, in total,
90 (out of 244) of the frames from 48 (out of 71) different crashes were reproduced. For 94
frames, EvoCrash exhausted the time budget (46 ex. thrown, 25 line reached, and 23 line
not reached) and aborted for 60 frames from the Defects4J projects.

In particular, only 4 frames out of 61 frames for Mockito were successfully reproduced.
For instance, EvoCrash could not reproduce MOCKITO-4b, which has only one frame. From



2.6 Application To EvoCrash: Results

2

35

171

219

245

486

738
25%

50%

75%

0%/100%

aborted line not reached line reached ex. thrown reproduced

Figure 2.5: An overview of the reproduction outcome

our evaluation, we observe that one very common problem when trying to reproduce a
ClassCastException is to find which class should be used to trigger the exception.

1 public void noMoreInteractionsWantedInOrder(Invocation undesired){
2 throw new VerificationInOrderFailure(join( ...,
3 ”...” + undesired.getMock () + ”’:”, ...));
4 }

The exception happens when the undesired.getMock() call returns an object that cannot
be cast to String. During the search, EvoCrash mocks the undesired object and assigns
some random value to return when the getMock method is called. EvoCrash generates a
test able to cover the target line, but failing to trigger an exception. Since the signature of
this method is Object getMock(), EvoCrash assigns only random Object values to return,
where, from the original stack trace, a Boolean value is required to trigger the exception.

XWiki and Elasticsearch
XWiki is one of the industrial open source cases in the evaluation, for which 53 (out of
706) frames were successfully reproduced, 430 could not be reproduced with the given
time budget (125 ex. thrown, 127 line reached, and 178 line not reached), and 223 aborted
during the generation of the initial population. EvoCrash reproduced only 28 (out of
909) frames from Elasticsearch, for which, the majority of frames (455) aborted during the
generation of the initial population. However, EvoCrash was able to start the search for
426 frames (48 ex. thrown, 93 line reached, and 285 line not reached).

Variability of the reproductions. We also observed that XWiki and Elasticsearch have
the highest variability in their outcomes. For XWiki (resp. Elasticsearch), 4 (resp. 3)



2

36 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

Commons−lang Commons−math Mockito Joda−Time JFreechart XWiki Elasticsearch (all)

N
P

E
IA

E
A

IO
O

B
E

C
C

E
S

IO
O

B
E

IS
E

O
ther

(all)

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

ab
or

te
d

lin
e 

no
t r

ea
ch

ed

lin
e 

re
ac

he
d

ex
. t

hr
ow

n

re
pr

od
uc

ed

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

N
um

be
r 

of
 fr

am
es

 (
lo

ga
rit

hm
ic

 s
ca

le
)

Figure 2.6: Detailed reproduction outcome for the different frames.

frames that could be reproduced in a majority of time could however not be reproduced 10
out of 10 times, compared to 2 frames for Commons-lang and Commons-math. This could
indicate a lack of guidance in the current fitness function of EvoCrash. For instance, for
the Elasticsearch crash ES-26833, EvoCrash could only reproduce the third frame 4 times
out of 10 and was therefore not considered as reproduced. After a manual inspection,
we observed that EvoCrash gets stuck after reaching the target line and throwing the
expected exception. From the intermediate test cases generated during the search, we see
that the exception is not thrown by the target line, but a few lines after. Since the fitness
value improved, EvoCrash got stuck into a local optima, hence the lower frequency of



2.6 Application To EvoCrash: Results

2

37

reproduction for that frame.¹⁰ Out future work includes improvement of the guidance
in the fitness function and a full investigation of the fitness landscape to decrease the
variability of EvoCrash outcomes.

Importance of large industrial applications. Compared to Defects4J and XWiki ap-
plications, the crash reproduction rate drops from 36.9% for Defects4J, to 7.5% for XWiki,
and only 3% for Elasticsearch. Those results emphasize the importance of large industrial
applications for the assessment of search-based crash reproduction and enforce the need
of context-driven software engineering research to identify relevant challenges [80].

Additionally to the larger variability of reproduction rate, we observe that frequent
use of Java generics and static initialization, and most commonly, automatically gener-
ating suitable input data that resembles http requests are among the major reasons for
the encountered challenges for reproducing Elasticsearch crashes. In Section 2.7 we will
describe 14 categories of challenges that we identified as the underlying causes for the
presented execution outcomes.

Exceptions
The lines in Figure 2.6 presents the outcomes for the different exceptions. In particular,
NPE, IAE, AIOOBE, and CCE are the most represented exceptions in JCrashPack. For
those exceptions, EvoCrash could reproduce, respectively, 32 (out of 499), 40 (out of 250),
6 (out of 99), and 10 (out of 72) frames. Looking at the reproduction frequency, IAE is the
most frequently reproduced exception (16%), followed by CCE (13.8%), NPE (6.4%), and
AIOOBE (6%).

This contrast with the number of frames for which EvoCrash aborted the search,
where NPE has the lowest frequency (181 frames, 36.2%), followed by IAE (101 frames,
40.4%), CCE (30 frames, 41.6%), and AIOOBE (48 frames, 48.4%). Interestingly, those num-
bers show that EvoCrash is able to complete the guided initialization for NPEs more often
than for other exceptions.

Figure 2.6 also shows that the number of test cases that reach the line is low for NPEs,
meaning that whenever EvoCrash generates at test able to cover the line (line reached),
the evolution process will be able to progress and generate another test that throws an
exception (ex. thrown).

Summary (RQ1) To what extent can EvoCrash reproduce crashes from JCrash-
Pack, and how far it can proceed in the stack traces? Overall, EvoCrash repro-
duced 171 frames (out of 1,859 - 9%), from 87 different crashes (out of 200 - 43.5%) in a
majority out of 10 executions. Those numbers climb to 201 frames (10.8%) from 96 crashes
(48%) if we consider at least one reproduction in one of the 10 executions. In most of the
reproduced crashes, EvoCrash can only reproduce the first two frames. It indicates that
since EvoCrash needs higher accuracy in setting the state of the software under test for
reproducing higher frames, increasing the length of the stack trace reduces the chance of
this tool for crash reproduction. When looking at larger industrial applications, the crash

¹⁰A detailed analysis is available at https://github.com/STAMP-project/EvoCrash-JCrashPack-application/
blob/master/results/manual-analysis/Elasticsearch/ES-26833.md

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-26833.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-26833.md


2

38 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

Table 2.5: Statistics for the average number of fitness evaluations for the reproduced frames (fr) belonging to
different stack traces (st), grouped by applications, out of 10 rounds of execution. The confidence Interval (CI)
is calculated for the median bootstrapping with 100,000 runs, at a 95% confidence level.

Applications st fr Min Lower Quart. Median CI Med. Upper Quart. Max
Com.-lang 19 213 1 2.0 [ 5.0 ,22.0] 15.0 237.0 52,240
Com.-math 24 471 1 13.0 [ 124.0 ,211.0] 178.0 1,046.5 58,731
Mockito 2 40 1 1.0 [ 1.0 ,1.0] 1.0 5.2 138
Joda-Time 6 138 1 15.5 [ 79.1 ,369.0] 253.5 1,290.2 40,189
JFreechart 1 41 1 10.0 [ -292.0 ,350.0] 221.0 1,188.0 20,970
XWiki 25 531 1 2.5 [ 14.0 ,30.0] 23.0 209.0 34,089
Elasticsearch 19 287 1 4.0 [ 5.0 ,32.0] 23.0 125.0 17,461
Total 96 1721 1 4.0 [ 34.0 ,59.0] 48.0 534.0 58,731

Table 2.6: Statistics for the average number of fitness evaluations for the reproduced frames (fr) belonging to
different stack traces (st), grouped by exceptions, out of 10 rounds of execution. Confidence Interval (CI) is
calculated for median with bootstrapping with 100,000 runs, at 95% confidence level.

Applications st fr Min Lower Quart. Median CI Med. Upper Quart. Max
NPE 26 330 1 6.0 [ 9.0 ,63.0] 44.5 220.0 34,089
IAE 16 399 1 2.0 [ 7.0 ,12.0] 10.0 49.0 38,907
AIOOBE 5 58 1 15.5 [ 252.0 ,1,104.5] 675.0 1,671.2 53,644
CCE 6 103 1 6.5 [ 74.0 ,210.0] 120.0 560.0 10,197
SIOOBE 8 95 1 12.5 [ 122.0 ,945.0] 505.0 2,326.0 52,240
ISE 2 42 1 1.0 [ 1.0 ,3.0] 2.0 105.8 1,138
Other 33 694 1 7.0 [ 99.0 ,139.0] 125.5 825.0 58,731
Total 96 1721 1 4.0 [ 34.0 ,59.0] 48.0 534.0 58,731

reproduction rates drop from 36.9% for Defects4J to 7.5% for XWiki and 3% for Elastic-
search. The most frequently reproduced exceptions are IllegalArgumentExceptions. The
exceptions for which EvoCrash is the most frequently able to complete the guided initial-
ization are NullPointerExceptions.

2.6.2 Impact of Exception Type and Project on Performance (RQ2)
To identify the distribution of fitness evaluations per exception type and project, we fil-
tered the reproduced frames out of the 10 rounds of execution. Tables 2.5 and 2.6 present
the statistics for these executions, grouped by application and exception types, respec-
tively.

We filtered out the frames that were not reproduced to analyze the impact of project
and exception types on the average number of fitness evaluations and, following recom-
mendations by Arcuri and Briand [110], we replaced the test of statistical difference by
a confidence interval. For both groups, we calculated confidence intervals with a 95%
confidence level for medians with bootstrapping with 100,000 runs.¹¹

As Table 2.5 shows, for four projects (Commons-lang, Mockito, XWiki, and Elastic-
search) the median number of fitness evaluations is low. On the contrary, the cost of
crash reproductions for Commons-math, Joda-Time, and JFreechart are higher in compar-
ison to the rest of projects. By comparing those results with the projects sizes reported in
Table 2.3, where the largest projects are XWiki (with 𝑁𝐶𝑆𝑆 = 177.84𝑘) and Elasticsearch
(with 𝑁𝐶𝑆𝑆 = 124.36𝑘), we observe that the effort required to reproduce a crash cannot be

¹¹We used the boot function from the boot library in R to compute the basic intervals with bootstrapping.
See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results to repro-
duce the statistical analysis.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results


2.6 Application To EvoCrash: Results

2

39

solely predicted by the project size. This is consistent with the intuition that the difficulty
of reproducing a crash only depends on the methods involved in the stack trace.

Similarly, according to Figure 2.1a, the average CCN for Mockito, XWiki, and Elastic-
search is lower compared to other projects. Table 2.5 shows that reproducing crashes from
these projects is less expensive, and that reproducing crashes from Commons-math, Joda-
Time, and JFreechart, which all have higher average CCN, is more expensive. We also
observe that the average CCN for Commons-lang is high, however, contradicting the in-
tuition that crashes from projects higher CCN are more expensive to reproduce, the cost
for reproducing crashes in Commons-lang is low compared to other projects. This can
be explained by the levels of the frames reproduced by EvoCrash: according to Figure
2.4, the average level of the reproduced frames in the crashes from Commons-lang is low
compared to the other projects and, as we discussed in the previous section, reproducing
crashes with fewer frames is easier for EvoCrash.

In general, we observe that the performance of EvoCrash depends on the complexity
of the project and the frame level in the stack trace. Future work includes further inves-
tigations to determine which other factors (e.g., code quality) can influence EvoCrash
performance.

From Table 2.6, we observe that for CCE, SIOOBE, and AIOOBE, the cost of generating
a crash-reproducing test case is high, while for NPE, IAE, and ISE, the cost is lower. One
possible explanation could be that generating input data which is in a suitable state for
causing cast conflicts, or an array which is in the right state to be accessed by an illegal
index is often non-trivial.

In contrast, to trigger an NPE, it is often enough to return a null value not checked
by the crashing method. For example, Listing 2.1 shows the stack trace of CHART-4b, a
crash from the JFreeChart application. The crash happens at line 1490 of the createScat-
terPlot method presented in Listing 2.2. Listing 2.3 shows the test case generated by
EvoCrash that reproduces the 6th frame (line 6 in Listing 2.1) of the stack trace. First, the
test initializes the mocks used as mandatory parameters values (from line 2 to 4), before
calling the createScatterPlot method (at line 5). The ds XYDataset mock is used along
the various calls (from line 6 to 1 in Listing 2.1), up to the method getDataRange presented
in Listing 2.4 that triggers the NPE at line 4493. In our case, the null value is returned by
the getRendererForDataset call with the propagated ds mock at line 4491.

Example 2.1: Stack trace for the crash CHART-4b
0 java.lang.NullPointerException
1 at org.jfree.chart.plot.XYPlot.getDataRange(XYPlot.java :4493)
2 at org.jfree.chart.axis.NumberAxis.autoAdjustRange(NumberAxis.java :434)
3 at org.jfree.chart.axis.NumberAxis.configure(NumberAxis.java :417)
4 at org.jfree.chart.axis.Axis.setPlot(Axis.java :1044)
5 at org.jfree.chart.plot.XYPlot.<init >( XYPlot.java :660)
6 at org.jfree.chart.ChartFactory.createScatterPlot(ChartFactory.java :1490)

Example 2.2: Code excerpt from JFreeChart ChartFactory.java
1478 public static JFreeChart createScatterPlot(String title , String xAxisLabel ,
1479 String yAxisLabel , XYDataset dataset , PlotOrientation orientation ,
1480 boolean legend , boolean tooltips , boolean urls) {
1481
1482 if (orientation == null) {
1483 throw new IllegalArgumentException(”Null␣’orientation ’␣argument.”);



2

40 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

1484 }
1485 NumberAxis xAxis = new NumberAxis(xAxisLabel);
1486 xAxis.setAutoRangeIncludesZero(false);
1487 NumberAxis yAxis = new NumberAxis(yAxisLabel);
1488 yAxis.setAutoRangeIncludesZero(false);
1489
1490 XYPlot plot = new XYPlot(dataset , xAxis , yAxis , null);
1491
1492 [...]
1493 }

Example 2.3: The test case generated by EvoCrash for reproducing the 6th frame of CHART-4b
1 public void test() throws Throwable {
2 XYDataset ds = mock(XYDataset.class , new ViolatedAssumptionAnswer ());
3 doReturn (0).when(ds).getSeriesCount ();
4 PlotOrientation pl = mock(PlotOrientation.class , new ViolatedAssumptionAnswer ());
5 ChartFactory.createScatterPlot (( String) null , (String) null , (String) null , ds, pl, true ,

true , true);
6 }

Example 2.4: Code excerpt from JFreeChart XYPlot.java
4490 public Range getDataRange(ValueAxis axis) {
4491 XYItemRenderer r = getRendererForDataset(d); // d == ds and getRendererForDataset(d)

returns null
4492 [...]
4493 Collection c = r.getAnnotations (); // r is null and throws a NPE
4494 [...]
4495 }

Considering the presented results in Figure 2.6 and Table 2.5, crash replication for
various exceptions may be dependent on project type. Figure 2.7 presents the results of
crash reproduction grouped both by applications and exception types. As the figure shows,
the cost of reproducing NPE is lower for Elasticsearch, compared to XWiki and JFreechart,
and the cost of reproducing IAE is lower for Commons-lang than for Elasticsearch. We
also observe differences in terms of costs of reproducingAIOOBE and SIOOBE for different
projects.

Summary (RQ2.1) How does project type influence performance of EvoCrash for
crash reproduction? We observed that the factors are (i) the complexity of the the
project, and (ii) the level of the reproduced frames (reproducing higher frame requires
more effort). Furthermore, we see no link between the size of the project and the effort
required to reproduce one of its crashes.

Summary (RQ2.2) How does exception type influence performance of EvoCrash
for crash reproduction? For the exceptions, we observe that for ClassCastException,
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException, the cost of
generating a crash-reproducing test case is high, while for NullPointerException, Ille-
galArgumentException, and IllegalStateException, the cost is lower. This result indicates
that the cost of reproducing types of exceptions for a non-trivial scenario (e.g., class con-
flicts or accessing an illegal state of an array) needs a more complex input generation.
Furthermore, accessing the corresponding complex state is more time consuming for the
search process.



2.6 Application To EvoCrash: Results

2

41

Commons−lang Commons−math Mockito Joda−Time JFreechart XWiki Elasticsearch (all)

N
P

E
IA

E
A

IO
O

B
E

C
C

E
S

IO
O

B
E

IS
E

O
ther

(all)

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

N
um

be
r 

of
 fi

tn
es

s 
ev

al
ua

tio
n 

(lo
g.

 s
ca

le
)

Figure 2.7: Average number of fitness evaluations for the reproduced frames for each applications and exception
type.



2

42 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

2.7 Challenges For Crash Reproduction (RQ3)
To identify open problems and future research directions, we manually analyzed the exe-
cution logs of 1,653 frames that could not be reproduced in any of the 10 executions. This
analysis includes a description of the reasonwhy a frame could not be reproduced.¹² Based
on those descriptions, we grouped the reason of the different failures into 13 categories
and identified future research directions. Table 2.7 provides the number and frequency of
frames classified in each category.¹³ The complete categorization table is available in our
replication package.¹⁴

For each challenge, we discuss to what extent it is crash-reproduction-specific and
its relation to search-based software testing in general. In particular, for challenges previ-
ously identified by the related literature in search-based test case generation, we highlight
the differences originating from the crash reproduction context.

2.7.1 Input Data Generation
Generating complex input objects is a challenge faced by many automated test generation
approaches, including search-based software testing and symbolic execution [7]. Usually,
the input space of each input is large and generating proper data enabling the search
process to cover its goals is difficult.

As we can see from Table 2.7, this challenge is substantial in search-based crash repro-
duction. Trying to replicate a crash for a target frame requires to set the input arguments
of the target method and all the other calls in the sequence properly such that when calling
the target method, the crash happens. Since the input space of a method is usually large,
this can be challenging. EvoCrash uses randomly generated input arguments and mock
objects as inputs for the target method. As we described in Section 2.6, we observe that
a widespread problem when reproducing a ClassCastException (CCE) is to identify which
types to use as input parameters such that a CCE is thrown. In the case of a CCE, this
information can be obtained from the error message of the exception. Our future work
includes harvesting additional information, like error messages, to help the search process.

We also noticed that some stack traces involving Java generic types make EvoCrash
abort the search after failing to inject the target method in every generated test during the
guided initialization phase. Generating generic type parameters is also a recognized chal-
lenge for automated testing tools for Java [114]. To handle these parameters, EvoCrash,
based on EvoSuite’s implementation [114], collects candidate types from castclass and
instanceof operators in Java bytecode, and randomly assign them to the type parame-
ter. Since the candidate types may themselves have generic type parameters, a threshold
is used to avoid large recursive calls to generic types. One possible explanation for the
crashes in these cases could be that the threshold is not correctly tuned for the kind of
classes involved in the recruited projects. Thus, the tool fails to set up the target method
to inject to the tests. Based on the results of our evaluation, handling Java generics in Evo-

¹²Available at https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/
results/manual-analysis.

¹³For each category, we provide illustrative examples from https://github.com/STAMP-project/
EvoCrash-JCrashPack-application/tree/master/results/examples.

¹⁴The full table is available at https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/manual-analysis/categorisation.csv.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/manual-analysis
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/manual-analysis
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/examples
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/tree/master/results/examples
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/categorisation.csv
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/categorisation.csv


2.7 Challenges For Crash Reproduction (RQ3)

2

43

Table 2.7: Challenges with the number and percentage of frames identified for this challenge.

Category Frames Frequency
Input Data Generation 825 49.91%
Abstract Class 242 14.64%
Anonymous Class 142 8.59%
Static Initialization 141 8.53%
Complex Code 118 7.14%
Private Inner Class 56 3.39%
Environmental Dependencies 52 3.15%
Irrelevant Frame 37 2.24%
Unknown Sources 16 0.97%
Nested calls 10 0.60%
try/catch 7 0.42%
Interface 6 0.36%
Empty Enum Type 1 0.06%
Total 1653 100%

Example 2.5: Excerpt of the stack trace for the crash XWIKI-13708
0 java.lang.NullPointerException: null
1 at com.xpn.xwiki.internal.template.TemplateListener.onEvent(TemplateListener.java :79)
2 at org.xwiki.observation.internal.DefaultObservationManager.notify ([...]:307)
3 at org.xwiki.observation.internal.DefaultObservationManager.notify ([...]:269)
4 [...]

Crash needs further investigation to identify the root cause(s) of the crashes and devise
effective strategies to address them.

For instance, EvoCrash cannot reproduce the first frame of crash XWIKI-13708¹⁵, pre-
sented in Listing 2.5. The target method onEvent (detailed in Listing 2.6) has three pa-
rameters. EvoCrash could not reach the target line (line 78 in Listing 2.6) as it failed to
generate a fitted value for the second parameter (source). This (Object) parameter should
be castable to XWikiDocument and should return values for getXObject() or getAttach-
ment() (using mocking for instance).

Chosen examples: XWIKI-13708, frame 1; ES-22922, frame 5; ES-20479, frame 10.¹⁶

2.7.2 Complex Code
Generating tests for complex methods is hard for any search-based software testing tool
[115]. In this study, we indicate a method as complex if (i) it contains more than 100 lines
of code and high cyclomatic complexity; (ii) it holds nested predicates [115, 116]; or (iii) it
has the flag problem [34, 116], which include (at least one) branch predicate with a binary

¹⁵https://jira.xwiki.org/browse/XWIKI-13708
¹⁶See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/InputDataGeneration.md.

https://jira.xwiki.org/browse/XWIKI-13708
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/InputDataGeneration.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/InputDataGeneration.md


2

44 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

Example 2.6: Code excerpt from method onEvent in TemplateListener.java

72 public void onEvent(Event event , Object source , Object data) {
73 XWikiDocument document = (XWikiDocument) source;
74
75 if (document.getXObject(WikiSkinUtils.SKINCLASS_REFERENCE) != null) {
76 if (event instanceof AbstractAttachmentEvent) {
77 XWikiAttachment attachment = document.getAttachment ((( AbstractAttachmentEvent)

event).getName ());
78 String id = this.referenceSerializer.serialize(attachment.getReference ()); // target

line
79 [...]
80 }
81 }
82 }

(boolean) value, making the landscape of the fitness function flat and turning the search
into a random search [115].

As presented in Section 2.1.2, the first component of the fitness function that is used
in EvoCrash encodes how close the algorithm is to reach the line where the exception
is thrown. Therefore, frames of a given stack trace pointing to methods with a high code
complexity¹⁷ are more costly to reproduce, since reaching the target line is more difficult.

Handling complex methods in search-based crash reproduction is harder than in gen-
eral search-based testing. The search process in crash reproduction should cover (in most
cases) only one specific path in the software under test to achieve the reproduction. If there
is a complex method on this path, the search process cannot achieve reproduction without
covering it. Unlike the more general coverage driven search-based testing approach (with
line coverage for instance), where the are usually multiple possible executions paths to
cover a goal.

Chosen examples: XWIKI-13096, frame 3; ES-22373, frame 10.¹⁸

2.7.3 Environmental Dependencies
As discussed by Arcuri et al. [117], generating unit tests for classes which interact with
the environment leads to (i) difficulty in covering certain branches which depend on the
state of the environment, and (ii) generating flaky tests [118], which may sometimes pass,
and sometimes fail, depending on the state of the environment. Despite the numerous
advances made by the search-based testing community in handling environmental depen-
dencies [21, 117], we noticed that having such dependencies in the target class hampers the
search process. Since EvoCrash builds on top of EvoSuite [41], which is a search-based
unit test generation tool, we face the same problem in the crash reproduction problem as
well.

For instance, Listing 2.7 shows the stack trace of the crash XWIKI-12584.¹⁹ During the

¹⁷In some cases for Elasticsearch, the failing methods have nearly 300 lines of source code.
¹⁸See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/ComplexCode.md.

¹⁹Reported at https://jira.xwiki.org/browse/XWIKI-12584 and analyzed at https://github.com/
STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/ComplexCode.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/ComplexCode.md
https://jira.xwiki.org/browse/XWIKI-12584
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md


2.7 Challenges For Crash Reproduction (RQ3)

2

45

Example 2.7: Stack trace for the crash XWIKI-12584
0 java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to java.lang.String
1 at [...]. XWikiHibernateStore.searchDocumentReferencesInternal ([...]:2457)
2 at [...]. XWikiHibernateStore.searchDocumentsNamesInternal ([...]:2440)
3 at [...]. XWikiHibernateStore.searchDocumentsNames ([...]:2246)
4 at [...]. XWikiHibernateStore.searchDocumentsNames ([...]:2230)
5 at [...]. XWikiCacheStore.searchDocumentsNames ([...]:373)
6 at [...]. XWiki.searchDocuments ([...]:576)

evaluation, EvoCrash could not reproduce any of the frames of this stack trace. During
our manual analysis, we discovered that, for the four first frames, EvoCrash was unable
to instantiate an object of class XWikiHibernateStore,²⁰ resulting in an abortion of the
search. Since the class XWikiHibernateStore relies on a connection to an environmental
dependency (here, a database), generating unit test requires substantial mocking code²¹
that is hard to generate for EvoCrash. As for input data generation, our future work
includes harvesting and leveraging additional information from existing tests to identify
and use relevant mocking strategies.

Chosen examples: ES-21061, frame 4; XWIKI-12584, frame 4.²²

2.7.4 Static Initialization
In Java, static initializers are invoked only once when the class containing them is loaded.
As explained by Fraser and Arcuri [21], these blocksmay depend on static fields from other
classes on the classpath that have not been initialized yet, and cause exceptions such as
NullPointerException to be thrown. In addition, they may involve environmental depen-
dencies that are restricted by the security manager, which may also lead to unchecked
exceptions being generated.

In our crash reproduction benchmark, we see that about 9% (see Table 2.7) of the
cases cannot be reproduced as they point to classes that have static initializers. When
such frames are used for crash reproduction with EvoCrash, the tool currently aborts
the search without generating any crash reproducing test. As Fraser and Arcuri [21] dis-
cuss, automatically determining and solving all possible kinds of dependencies in static
initializers is a non-trivial task that warrants dedicated research.

Chosen examples: ES-20045, frames 1 and 2.²³

XWIKI-12584.md.
²⁰See https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/
xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/
XWikiHibernateStore.java

²¹See https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/
xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/
XWikiHibernateStoreTest.java

²²See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/EnvironmentalDependencies.md.

²³See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/StaticInitialisation.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Xwiki/XWIKI-12584.md
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/XWikiHibernateStore.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/XWikiHibernateStore.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/main/java/com/xpn/xwiki/store/XWikiHibernateStore.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/XWikiHibernateStoreTest.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/XWikiHibernateStoreTest.java
https://github.com/xwiki/xwiki-platform/blob/xwiki-platform-7.2-milestone-2/xwiki-platform-core/xwiki-platform-oldcore/src/test/java/com/xpn/xwiki/store/XWikiHibernateStoreTest.java
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/EnvironmentalDependencies.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/EnvironmentalDependencies.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/StaticInitialisation.md


2

46 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

2.7.5 Abstract Classes And Methods
In Java, abstract classes cannot be instantiated. Although generating coverage driven unit
tests for abstract classes is possible (one would most likely generate unit tests for concrete
classes extending the abstract one or use a parameterized test to check that all implementa-
tions respect the contract defined by the abstract class), when a class under test is abstract,
EvoSuite (as the general test generation tool for java) looks for classes on the classpath
that extend the abstract class to create object instances of that class. In order to cover (e.g.,
using line coverage) specific parts of the abstract class, EvoSuite needs to instantiate the
right concrete class allowing to execute the different lines of the abstract class.

For crash reproduction, as we can see fromTable 2.7, it is not uncommon to see abstract
classes and methods in a stack trace. In several cases from Elasticsearch, the majority of
the frames from a given stack trace point to an abstract class. Similarly to coverage-driven
unit test generation, EvoCrash needs to instantiate the right concrete class: if EvoCrash
picks the same class that has generated the stack trace in the first place, then it can generate
a test for that class that reproduces the stack trace. However, if EvoCrash picks a different
class, it could still generate a test case that satisfies the first two conditions of the fitness
function (section 2.1.2). In this last case, the stack trace generated by the test would match
the frames of the original stack trace, as the class names and line numbers would differ.
The fitness function would yield a value between 0 and 1, but it may never be equal to 0.

Chosen examples: ES-22119, frames 3 and 4; XRENDERING-422, frame 6.²⁴

2.7.6 Anonymous Classes
As discussed in the study by Fraser et al. [41], generating automated tests for covering
anonymous classes ismore laborious because they are not directly accessible. We observed
the same challenge during the manual analysis of crash reproduction results generated by
EvoCrash. When the target frame from a given crash stack trace points to an anonymous
object or a lambda expression, guided initialization in EvoCrash fails, and EvoCrash
aborts the search without generating any test.

Chosen examples: ES-21457, frame 8; XWIKI-12855, frames 30 and 31.²⁵

2.7.7 Private Inner Classes
Since it is not possible to access a private inner class, and therefore, not possible to directly
instantiate it, it is difficult for any test generation tool in Java to create an object of this
class. As for anonymous classes, this challenge is also present for crash reproduction
approaches. In some crashes, the target frame points to a failing method inside a private
inner class. Therefore, it is not possible to directly inject the failing method from this class
during the guided initialization phase, and EvoCrash aborts the search.

²⁴See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/AbstractClass.md.

²⁵See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/AnonymousClass.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/AbstractClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/AbstractClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/AnonymousClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/AnonymousClass.md


2.7 Challenges For Crash Reproduction (RQ3)

2

47

Chosen example: MATH-58b, frame 3.²⁶

2.7.8 Interfaces
In 6 cases, the target frame points to an interface. In Java, similar to abstract classes, inter-
faces may not be directly instantiated. In these cases also, EvoCrash randomly selects the
classes on the classpath that implement the interface and, depending on the class picked
by EvoCrash, the fitness function may not reach 0.0 during the search if the class is dif-
ferent from the one used when the input stack trace has been generated. This category is
a special case of Abstract classes and methods (described in Section 2.7.5), however, since
the definition of a default behavior for an interface is a feature introduced by Java 8 [119]
that has, to the best of our knowledge, not been previously discussed for search-based
testing, we choose to keep it as a separate category.

Chosen example: ES-21457, frame 9.²⁷

2.7.9 Nested Private Calls
In multiple cases, the target frame points to a private method. As we mentioned in Section
2.5, those private methods are not directly accessible by EvoCrash. To reach them, Evo-
Crash detects other public or protected methods which invoke the target method directly
or indirectly and randomly choose during the search. If the chain of method calls, from
the public caller to the target method, is too long, the likelihood that EvoCrash may fail
to pick the right method during the search increases.

In general, calling private methods is challenging for any automated test generation
approach. For instance, Arcuri et al. [113] address this problem by using the Java reflec-
tion mechanism to access private methods and private attributes during the search. As
mentioned in Section 2.5.1, this can generate invalid objects (with respect to their class in-
variants) and lead to generating test cases helplessly trying to reproduce a given crash [30].

Chosen examples: XRENDERING-422, frames 7 to 9.²⁸

2.7.10 Empty enum Type
In the stack trace of the ES-25849 crash,²⁹ the 4th frame points to an empty enumeration
Java type.³⁰ Since there are no values in the enumeration, EvoCrash was not able to
instantiate a value and aborted during the initialization of the population. Frames pointing
to code in an empty enumeration Java type should not be selected as target frames and
could be filtered out using a preliminary static analysis.

²⁶See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/PrivateInnerClass.md.

²⁷See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/Interface.md.

²⁸See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/NestedPrivateCalls.md.

²⁹The analysis is available at https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/results/manual-analysis/Elasticsearch/ES-25849.md.

³⁰See https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5bf3414bd01f88c5/core/
src/main/java/org/elasticsearch/index/fielddata/ordinals/GlobalOrdinalsBuilder.java.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/PrivateInnerClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/PrivateInnerClass.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/Interface.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/Interface.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/NestedPrivateCalls.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/NestedPrivateCalls.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-25849.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-25849.md
https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/ordinals/GlobalOrdinalsBuilder.java
https://github.com/jimczi/elasticsearch/blob/0a4b38b60c2752cdc6de819f5bf3414bd01f88c5/core/src/main/java/org/elasticsearch/index/fielddata/ordinals/GlobalOrdinalsBuilder.java


2

48 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

Chosen example: ES-25849, frame 4.

2.7.11 Frames With try/catch
Some frames have a line number that designates a call inside a try/catch block. When
the exception is caught, it is no longer thrown at the specific line given in the trace, rather
it is typically handled inside the associated catch blocks. From what we observed, often
catch blocks either (i) re-throw a checked exception, which yield chained stack traces
with information that is not exactly as the input stack trace but can still be used for crash
reproduction; or (ii) log the caught exception. Since EvoCrash only considers uncaught
exceptions that are generated as the result of running the generated test cases during the
search, the logged stack traces is presently no use for crash reproduction. Also, even if a
stack trace is recorded to an error log, this stack trace is not themanifestation of a crash per
se. Indeed, once the exception logged, the execution of the program continues normally.

For instance, for the crash ES-20298,³¹ EvoCrash cannot reproduce the fourth frame
of the crash. This frame points to the following method call in a try and catch:

1 try {
2 processResponse(response);
3 } catch (Throwable t) {
4 onFailure(t);
5 }

Even if an exception is thrown by the processResponse method, this exception is caught
and logged, and the execution of the program continues normally.

Generally, if an exception is caught in one frame, it cannot be reproduced (as it cannot
be observed) from higher level frames. For instance, for ES-20298, all frames above level
4 cannot be reproduced since the exception is catch in frame 4 and not propagated to the
higher frames. This property of a crash stack trace implies that, for now, depending on
where in the trace such frames exist, only a fraction of the input stack traces can actually
be used for automated crash reproduction. Future development of EvoCrash can alleviate
this limitation by, additionally to the monitoring of uncaught exceptions, read the error
log to affecting the propagation of exceptions during execution. However, unlike other
branching instructions relying on boolean values, for which classical coverage driven unit
test generation can use the branch distance (see Section 2.1.2) to guide the search [4],
there is little guidance offered for try/catch instructions since the branching condition is
implicit in one or more instructions in the try.

Chosen example: ES-14457, frame 4.³²

2.7.12 Missing Line Number
31 frames in JCrashPack have frames with a missing line number, as shown in Listing 2.8.
This happens if the Java files have been compiled without any debug information (by
default, the Java compiler add information about the source files and line numbers, for

³¹Reported at https://github.com/elastic/elasticsearch/issues/20298 and analyzed at https:
//github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/
Elasticsearch/ES-20298.md

³²See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/TryCatch.md.

https://github.com/elastic/elasticsearch/issues/20298
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-20298.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-20298.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/manual-analysis/Elasticsearch/ES-20298.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/TryCatch.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/TryCatch.md


2.7 Challenges For Crash Reproduction (RQ3)

2

49

Example 2.8: An excerpt of the stack trace from the crash XRENDERING-422 with missing line numbers
1 at org.apache.xerces.parsers.XMLParser.parse(Unknown Source)
2 at org.apache.xerces.parsers.AbstractSAXParser.parse(Unknown Source)
3 at org.xml.sax.helpers.XMLFilterImpl.parse(XMLFilterImpl.java :357)

instance, when printing a stack trace) or if the frame points to a class part of the standard
Java library and the program has been run in the Java Runtime Environment (JRE) and
not the JDK.

Since EvoCrash currently requires a line number to compute the fitness values during
the search, those frames have been ignored during our evaluation and do not appear in
the results. Yet, as frames with missing line number appear in JCrashPack (and in other
stack traces), we decided to mention this trial here as a search-based crash reproduction
challenge. A possible solution, as the future work, is to relax the fitness function so that
it can still approximate fitness if line numbers are missing.

Chosen example: XRENDERING-422.³³

2.7.13 Incorrect Line Numbers
In 37 cases, the target frame points to the line in the source code where the target class or
method is defined. This happens when the previous frame points to an anonymous class
or a lambda expression. Such frames practically cannot be used for crash reproduction as
the location they point to does not reveal where exactly the target exception occurs. One
possible solution would be to consider the frame as having a missing line number and use
the relaxed fitness function to approximate the fitness.

Chosen examples: MATH-49b, frames 1 and 4.³⁴

2.7.14 Unknown
We were unable to identify why EvoCrash failed to reproduce 16 frames (out of 1,653
frames manually analyzed). In these cases, neither the logs nor the source code could help
us understand how the exception was propagated.

Summary (RQ3) What are the open problems that need to be solved to enhance
search-based crash reproduction? Based on the manual analysis of the frames that
could not be reproduced at least once out of 10 rounds of executions, we identified 13 chal-
lenges for search-based crash reproduction. We confirmed challenges previously iden-
tified in other search-based software testing approaches and specified how they affect
search-based crash reproduction. And discovered new challenges, more specific to search-

³³The stack trace is available at https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/
master/evaluation/JarFiles/resources/logs/XWIKI/XRENDERING-422/XRENDERING-422.log

³⁴See https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/
examples/IrrelevantFrames.md.

https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/logs/XWIKI/XRENDERING-422/XRENDERING-422.log
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/evaluation/JarFiles/resources/logs/XWIKI/XRENDERING-422/XRENDERING-422.log
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/IrrelevantFrames.md
https://github.com/STAMP-project/EvoCrash-JCrashPack-application/blob/master/results/examples/IrrelevantFrames.md


2

50 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

based crash reproduction and explained how the can affect other search-based software
testing approaches.

These challenges are related to the difficulty to generate test cases due to complex
input data, environmental dependencies, or complex code; abstraction (static initialization,
interfaces, abstract, and anonymous classes); encapsulation mechanisms (private inner
classes and nested private calls in the given stack trace) of object-oriented languages; or
the selection of the target frame in crash reproduction (in try/catch blocks, in empty
enumerations, when the location in the source code is unknown, or when the frame has
an incorrect line number).

2.8 Discussion
2.8.1 Empirical Evaluation For Crash Reproduction
Conducting empirical evaluation for crash reproduction is challenging. It requires to col-
lect various artifacts from different sources and to analyze the results to determine, in
the case of a negative outcome, the cause that prevents the crash reproduction. Some are
easy to fix, like missing dependencies that were added to the project linked to the stack
trace, and for which we rerun the evaluation on the stack traces. The others are detailed
in Section 2.7, and serve to identify future research directions.

One of the most surprising causes is due to a line mismatch in some stack traces. Dur-
ing the manual analysis of our results, we found out that three frames in two different
stack traces, coming from Defects4J projects, target the wrong lines in the source code:
the line numbers in the stack traces point to lines in the source code that cannot throw
the targeted exception. Since the stack traces were collected directly from the Defects4J
data (which reports failing tests and their outputs), we tried to regenerate them using the
provided test suite and found a mismatch between the line numbers of the stack traces
indeed. We reported those two projects to the Defects4J developers:³⁵ a bug in JDK7 [120]
causes this mismatch. Since EvoCrash relies on line numbers to guide its search, it could
not reproduce the crashes. We recompiled the source code, updated the stack trace accord-
ingly in JCrashPack, and rerun the evaluation for those two stack traces.

Thanks to JCrashPack and ExRunner, we are now able to ease empirical evaluation
for crash reproduction. ExRunner can be extended to other crash reproduction tools³⁶
for comparison, or assess the development of new ideas in existing tools. Our future work
also includes the prioritization of crashes from JCrashPack to allow quick feedback on
new ideas in a fast and automated way [24].

2.8.2 Usefulness For Debugging
In our evaluation, we focused on the crash-replication capabilities of EvoCrash and iden-
tified problems affecting those capabilities. We considered the generated tests only to
classify the outcomes of the EvoCrash generation process but did not assess their actual
usefulness for debugging.

Chen et al. [30] introduced a usefulness criterion for the crash reproduction approaches.
According to this criterion, a crash reproducing test is useful to the developers if it covers

³⁵See the issue at https://github.com/rjust/defects4j/issues/142.
³⁶See how to extend ExRunner at https://github.com/STAMP-project/ExRunner.

https://github.com/rjust/defects4j/issues/142
https://github.com/STAMP-project/ExRunner


2.8 Discussion

2

51

the buggy frame: i.e., if the target frame for which the reproduction is successful is higher
than the frame that points to the buggy method.

In our previous work [28], we conducted a controlled experiment to assess the useful-
ness of EvoCrash for debugging and bug fixing of two crashes (one from Apache Com-
mons Collections and one from Apache Log4j) with 35 master students. Results show that
using a crash-replicating test case generated by EvoCrash may help to locate and fix the
defects faster. Also, this study confirmed the usefulness criterion defined by the Chen
et al. [30] but also found evidence that test cases categorized as not useful can still help
developers to fix the bug.

Since JCrashPack also includes two open source industrial and actively maintained
applications, it represents an excellent opportunity to confirm the usefulness of EvoCrash
in an industrial setting. The key idea is to centralize the information in the issue tracker
by providing a test case able to replicate the crash reported in an issue in the same issue
(as an attachment for instance). This can be automated using, for instance, a GitHub,
GitLab or JIRA plugin that executes EvoCrash when a new issue contains a stack trace.
To assess the usefulness of EvoCrash in an industrial setting, we plan to setup a case study
[121] with our industrial partners. Hereafter, we outline the main steps of the evaluation
protocol using XWiki as subject: (i) select four crashes to fix (two from open issues and
two from closed issues) for which EvoCrash could generate a crash reproducing test for
frame 3 or higher; (ii) clone the XWiki Git repository in GitHub and open four issues,
corresponding to the four crash; (iii) remove the fix for the two fixed issues; (iv) for each
issue, append the test case generated by EvoCrash; (v) ask (non-XWiki) developers to fix
the issues; and finally, (vi) repeat the same steps without adding the test cases generated
by EvoCrash (i.e., omit step iv). We would measure the time required to fix the issues (by
asking participants to log that time). For the two previously fixed issues, we will compare
the fixes provided by the participants with the fixes provided by XWiki developers. And
for the two open issues, we will ask feedback from the XWiki developers through a pull
request with the different solutions.

2.8.3 Benchmark Building
JCrashPack is the first benchmark dedicated to crash reproduction. We deliberately made
a biased selectionwhen choosing Elasticsearch as themost popular, trending, and frequently-
forked project fromGitHub. Elasticsearchwas among several other highly ranked projects,
which addressed other application domains, and thus were interesting to explore. In the
future, further effort should extend JCrashPack, possibly by: (i) using a random selection
methodology for choosing projects; (ii) involving industrial projects from other applica-
tion domains; and (iii) automatically collecting additional information about the crashes,
the stack traces, and the frames to further understand current strengths and limitations of
crash reproduction.

Building JCrashPack required substantial manual effort, not just for finding the issues,
but also for collecting the right versions of the system itself and its dependencies needed
to reproduce the given crash. Since we want it to be representative of current crashes, we
need to automate this effort as much as possible: for instance, by mining stack traces from
issue tracking systems [122].

Despite the benefits that the evaluation infrastructure could get from the inclusion of



2

52 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

JCrashPack bugs in Defects4J, i.e., the isolation of the bugs to ease replicability of the eval-
uations [71], we designed JCrashPack as a standalone instead of extending Defects4J.The
main reason is that not all bugs in Defects4J manifest as crashes (only 73 out of 395 where
selected to be part of JCrashPack). We also believe that the integration of the two bench-
marks is not a smooth and easy process. Defects4J requires isolation of the buggy and fixed
versions of the source code, as wel as a test case able to expose the bug [71]. However, not
all issues were fixed at the time we collected the crashes in JCrashPack. Also, XWiki and
Elasticsearch are much larger applications (124,000 NCSS for Elasticsearch, 177,000 NCSS
for XWiki distributed in a hierarchy of several thousands of Maven projects) compared
to the API libraries considered in Defects4J (63,000 NCSS for JFreeChart). Only building
them with their default test suites already raised several issues. For those reasons, isolat-
ing the bug, the patch, and the non-regression test cases for such kind of large projects is
not a trivial task.

2.9 Future Research Directions For Search-Based Crash
Reproduction

From the evaluation and the challenges derived from our manual analysis, we devise the
following future research directions. While the same challenge can be addressed in dif-
ferent ways, some requiring technical improvements of EvoCrash and other raising new
research directions, we focus the discussion of this section on the latter.

2.9.1 Context Matters
While search-based crash-reproduction with EvoCrash [28, 36] outperformed other ap-
proaches based on (i) backward symbolic execution [30], (ii) test case mutation [33], and
(iii) model-checking [31], our evaluation shows that the extent to which crashes are re-
produced varies. These results indicate the need for taking various types of contexts and
properties of software applications into account when devising an approach to a problem.
Thus, we show that indeed, rather than seeking a universal approach to search-based crash
reproduction, it is important to find out and address challenges specific to various types of
application domains (e.g., RESTful microservices vs. enterprise wiki applications) [123].

Furthermore, search-based crash replication boils down to seeking the execution path
that will reproduce a given stack trace. As with other search-based testing approaches, it
faces challenges about input data generation during the search when the input space is
large. Previous research on mocking and seeding [113, 124] address this problem by using
functional mocking and extracting objects and constants from the bytecode.

We believe that taking context into account should go one step further for crash repli-
cation. With the development of DevOps [125] and continuous integration and delivery
pipelines, there is an increasing amount of available data on the execution of the software.
Those data can be used to guide the search more accurately. For instance, by seeding the
search using values observed in the execution logs and setting up values for environmental
dependencies (databases, external services, etc.).



2.9 Future Research Directions For Search-Based Crash Reproduction

2

53

2.9.2 Stack Trace Preprocessing And Target Frame Selection
Various factors may influence the selection of a target frame in a stack trace. As observed
in our evaluation, when not performed cautiously, this selection leads to unsuccessful
executions of EvoCrash. For instance, frames targeting code in a private inner class, or
irrelevant source code location (like, as we observed, class header or annotation) should
be discarded before performing the selection.

Frames targeting code in abstract classes or interfaces (only if the target method is
defined in the interface, which is possible from Java 8) may be of some use to find the
cause of the crash: for instance, to identify an incorrect subclass implementation [112].
However, as abstract classes and interfaces cannot be directly instantiated, the stack trace
generated by EvoCrash can never be exactly the same as the given stack trace. And, as
for input arguments and generic type parameters, EvoCrash has no indication on which
subclass to pick, making the search difficult. In this case, considering higher level frames
(i.e., frames that are lower in the stack trace) may help to pick the right subclass.

Those reasons motivate the need to develop stack trace analysis techniques in order
to help the selection of a target frame. This analysis will discard irrelevant and unknown
source location frames and provide a visualization to the developer to have a clear view on
what are his or her options, for instance by marking stack traces that point to interfaces
and abstract classes and recommend him to pick higher level frames.

For a given stack trace, this analysis will also identify frames pointing to a try/catch
block. Those stack traces are commonly reported by users to issue tracking systems but
cannot (for now) be completely reproduced by EvoCrash. Further investigation on cur-
rent error handling practices in Java code [126, 127] and how they are reported by users
[128] will help us to devise efficient approaches to replicate such stack traces.

2.9.3 Guided Search
Besides usage of contextual information to enhance the generation of test cases during
the search process, we also consider to enhance the guidance itself. Search based testing
algorithms have several parameters (365 in EvoCrash), like population size, search bud-
get, probability of applying crossover and mutation, etc. As demonstrated by Arcuri and
Fraser [111], default parameters values work well on average, but may be fare from opti-
mal for specific frames and stack traces. A better characterization of the stack traces in
JCrashPack, trying different parameters, as well as improving the fitness function itself
are part of our future work. For instance the fitness function could take other elements
into account (e.g., compute a similarity for exception messages). We will also consider
multi-objectives search, where, for a given target frame, reproducing each lower frame
becomes an objective of the search. We plan to reuse our evaluation infrastructure to
compare those different approaches and investigate their different fitness landscapes to
gain deeper understanding of the search process for crash reproduction. And eventually
devise guidelines on EvoCrash settings to maximize crash reproduction for a given stack
trace and its characteristics.

2.9.4 Improving Testability
Finally, as we observed, code complexity was among the major challenges in crash repro-
duction with EvoCrash. To improve testability, several testability transformation tech-



2

54 2 A Benchmark-Based Evaluation of Search-BasedCrash Reproduction

niques [34, 115, 129–131] have been proposed in the literature so far. Future research may
investigate testability transformation techniques and their impact on search-based crash
reproduction.

2.10 Threats To Validity
Evaluations of crash reproduction approaches, such as the one we conducted for Evo-
Crash, come with threats to internal validity, external validity, and reliability. The over-
arching goal of JCrashPack is to reduce such threats for all evaluations of any crash
reproduction tool, by offering a curated set of crashes to conduct such evaluations.

Concerning external validity, we carefully designed JCrashPack so that it offers a
mix of small and large systems, as well as of different types of exceptions. Furthermore,
it includes open source systems directly developed by industry. Nevertheless, any set
is incomplete, which is why we keep JCrashPack open for extension, as discussed in
Section 2.8. For example, there still remain several other domains, such as gaming or
financial applications, for which there is no representative project in the benchmark.

With respect to internal validity, implementation faults can be a source of confound-
ing factors. These can occur in the tools themselves, such as EvoCrash or EvoSuite, but
also in the infrastructure used to actually conduct the experiment. To address the latter,
JCrashPack comes with ExRunner, which automates the process of scheduling, execut-
ing, monitoring, and reporting crash reproduction attempts.

Concerning reliability, JCrashPack and ExRunner make it easy to repeat experi-
ments, thusmaking it possible for researchers to independently replicate each others crash
reproduction findings.

Besides these threats partially mitigated by JCrashPack, our evaluation of EvoCrash
comes with additional threats to (internal and external) validity. This particularly relates
to the randomized nature of genetic algorithms, which we addressed by running the eval-
uations 10 times, and following the guidelines by Arcuri and Briand [110] for analyzing
the results. Furthermore, such threats concern the risk of bias during the manual analysis,
which we mitigated by using cross-checking: the result of each manual analysis has been
validated by at least one other person. In case of disagreement, we asked for a third opin-
ion. Finally, our evaluation includes only one tool: EvoCrash. Previous work showed
that EvoCrash performs better than other state-of-the-art crash reproduction tools. Un-
fortunately, since to the best of our knowledge, no other tool was publicly available, we
were not able to confirm that conclusion on the crashes in JCrashPack. We believe that
JCrashPack enhances the current state-of-the-practice in crash reproduction research by
offering a publicly available benchmark for which other tool providers can report their
results.

2.11 Conclusion
Experimental evaluation of crash reproduction research is challenging, due to the com-
putational resources needed by reproduction tools, the difficulty of finding suitable real
life crashes, and the intricacies of executing a complex system so that the crash can be
reproduced at all.

To remedy this problem, this chapter sets out to create a benchmark of Java crashes,



2.11 Conclusion

2

55

that can be reused for experimental purposes. To that end we propose JCrashPack and
ExRunner, a curated benchmark of 200 real life crashes, and a tool to conduct massive
experiments on these crashes. This benchmark is publicly available and can be used to
compare existing and new tools against each other, as well as to analyze how proposed
improvements to existing reproduction techniques actually constitute an improvement.

We applied the state of the art search-based Java crash reproduction tool, EvoCrash,
to JCrashPack. Our findings include that the state of the art can reproduce 87 crashes
out of 200 in a majority of time, that crash reproduction for industry-strength systems
is substantially harder, and that NullPointerExceptions are generally easiest to repro-
duce. Furthermore, we identified 13 challenges that crash reproduction research needs to
address to strengthen uptake in practice, as well a future research directions to address
those challenges.

JCrashPack can be extended in various ways: by including more crashes from other
types of applications; by automating the collection of information about the crashes and
stack traces to further understand current strengths and limitations of crash reproduction;
as well as automating the collection of the crashes themselves. Furthermore, since execut-
ing crash reproduction tools on 200 crashes may be time taking, JCrashPack could be
extended to offer prioritization for benchmarks, based on the known theoretical strengths
and limitations if the tools. For instance, by ordering crashes based on the cyclomatic
complexity of the involved frames to evaluate search-based or symbolic execution-based
crash reproduction approaches.

Finally, our future work for EvoCrash itself include improving input data generation
by taking information from the execution context and the application (e.g., existing source
code and test cases) into account. We alsowant to deeper our understanding of stack traces
in order to be able to recommend target frames to the developers. Finally, we will improve
the search process itself by refining the fitness function to improve the guidance through
the different frames of the stack trace.





3

57

3
Search-based Crash Reproduction
using Behavioral Model Seeding

As confirmed by Chapter 2, one of the challenges of search-based crash reproduction is
to bring enough information into the test generation process. For instance, complex ele-
ments (like strings with a particular format or objects with a complex structure) are hard
to initialize without additional information. This can lead to two different issues: first,
complex elements take more time to be generated, which can prevent finding a solution
within the time budget allocated to the search; and second, elements that require com-
plex initialization procedures (e.g., specific sequences of method calls to set up an object)
may prevent starting the search if the search-based approach is unable to create an initial
population.

Rojas et al. [124] demonstrated that seeding is beneficial for search-based unit test gen-
eration. More specifically, by analyzing source code (collecting information that relates to
numeric values, string values, and class types) and existing tests (collecting information
about the behavior of the objects in the test) and making them available for the search
process, the overall coverage of the generated test improves. However, current seeding
strategies focus on collecting and reusing values and object states as-is.

In this chapter, we define, implement, and evaluate a new seeding strategy, called
behavioral model seeding, which abstracts behavior observed in the source code and test
cases using transition systems. The transition systems represent the (observed) usages of
the classes and are used during the search to generate objects and sequences of method
calls on those objects.

Behavioral model seeding takes advantage of the advances made by the model-based
testing community [132] and uses them to enhance search-based software testing. This
seeding strategy helps the search process: (i) it provides the possibility of covering the
given crash by collecting information from various resources (e.g., source code and ex-
isting test cases) to infer a unique transition system; and (ii) it finds the most beneficial
seeding candidates, for guiding the crash reproduction search process, by defining a ratio-
nal procedure for the selection of abstract object behaviors from the inferred models.



3

58 3 Search-based Crash Reproduction using Behavioral Model Seeding

We also adapt test seeding, introduced by Rojas et al., for search-based crash repro-
duction. Contrarily to model seeding, test seeding relies only on the states of the objects
observed during the execution of the test to seed a search process. Unlike search-based
unit test generation, search-based crash reproduction does not seek to maximize the cov-
erage of the class, but rather generates a specific test case able to reproduce a crash. Since
test seeding has only been applied to search-based unit test generation [124], we first eval-
uate the use of test seeding for crash reproduction. We then compare the results of test
seeding with the application of model seeding, which combines information on the ob-
jects states coming from the test cases with information collected in the source code, to
search-based crash reproduction.

We performed an evaluation on 122 crashes from 6 open-source applications to answer
the following research questions:

RQ1 What is the influence of test seeding used during initialization on search-based crash
reproduction?

RQ2 What is the influence of behavioral model seeding used during initialization on
search-based crash reproduction?

We consider both research questions from the perspective of effectiveness (of initializing
the population and reproducing crashes) and efficiency. We also investigate the factors
(e.g., the cost of analyzing existing tests) that influence the test and model seeding ap-
proaches and gain a better insight into how search-based crash reproduction works and
how it can be improved. Generally, our results indicate that behavioral model seeding
increases the number of crashes that we can reproduce. More specifically, because of the
randomness in the test generation process, we execute the crash replication multiple times
and we observe that in the majority of these executions 4 crashes (out of 122) can be repli-
cated; also, this seeding strategy can reproduce 9 crashes, which are not reproducible at
all with no seeding, in at least one execution. In addition, this seeding strategy slightly im-
proves the efficiency of the crash reproduction process. Moreover, model seeding enables
the search process to start for three additional crashes. In contrast, using test seeding in
crash-reproduction leads to a lower crash-reproduction rate and search initialization.

The contributions of this chapter are:
1. An evaluation of test seeding techniques applied to search-based crash reproduc-

tion;
2. A novel behavioral model seeding approach for search-based software testing and

its application to search-based crash reproduction;
3. An open source implementation of model seeding in the Botsing toolset¹; and
4. The discussion of our results demonstrating improvements in search-based crash

reproduction abilities and contributing to a better understanding of the search-based
process. All our results are available in the replication package [63].

The remainder of the chapter is structured as follows: Section 3.1 provides background
on search-based crash reproduction, and model-based testing. Section 3.2 describes our
behavioral model seeding strategy. Section 3.3 details our implementation, while Section
3.4 explains the evaluation setup. Section 3.5 presents our results. We discuss them and

¹Available at https://github.com/STAMP-project/botsing.

https://github.com/STAMP-project/botsing


3.1 Background And Related Work

3

59

explain threats to our empirical analyses in Section 3.6. Section 3.8 discusses future work
and Section 3.9 wraps up the chapter.

3.1 Background And Related Work
Application crashes that happen while the system is operating are usually reported to de-
veloper teams through an issue tracking system for debugging purposes [133]. Depending
on the amount of information reported from the operation environment, this debugging
process may take more or less time. Typically, the first step for the developer is to try
to reproduce the crash in his development environment [57]. Various approaches [29–
31, 33, 36] automate this process and generate a crash-reproducing test case without re-
quiring human intervention during the generation process. Previous studies [28, 30] show
that such test cases are helpful for the developers to debug the application.

For Java programs, the information reported from the operations environment ideally
includes a stack trace. For instance, Listing 3.1 presents a stack trace coming from the crash
XWIKI-13372.² The stack trace indicates the exception thrown (NullPointerException
here) and the frames, i.e., the stack of method calls at the time of the crash, indexed from
1 (at line 1) to 26 (not shown here).

Various approaches use a stack trace as input to automatically generate a test case
reproducing the crash. CONCRASH [29] focuses on reproducing concurrency failures
that violate thread-safety of a class by iteratively generating test code and looking for
a thread interleaving that triggers a concurrency crash. JCHARMING [31, 134] applies
model checking and program slicing to generate crash reproducing tests. MuCrash [33]
exploits existing test cases written by developers. MuCrash selects test cases covering
classes involved in the stack trace and mutates them to reproduce the crash. STAR [30]
applies optimized backward symbolic execution to identify preconditions of a target crash
and uses this information to generate a crash reproducing test that satisfies the computed
preconditions. Finally, RECORE [32] applies a search-based approach to reproduce a crash
using both a stack trace and a core dump produced by the systemwhen the crash happened
to guide the search.

3.1.1 Search-Based Crash Reproduction
Search-based approaches have been widely used to solve complex, non-linear software
engineering problems, which have multiple and sometimes conflicting optimization ob-
jectives [135]. Recently, Soltani et al. [36] proposed a search-based approach for crash
reproduction called EvoCrash. EvoCrash is based on the EvoSuite approach [21, 41]
and applies a new guided genetic algorithm to generate a test case that reproduces a given
crash using a distance metric, similar to the one described by Rossler et al. [32], to guide
the search. For a given stack trace, the user specifies a target frame relevant to his de-
bugging activities: i.e., the line with a class belonging to his system, from which the stack
trace will be reproduced. For instance, applying EvoCrash to the stack trace from Listing
3.1 with a target frame 2 will produce a crash-reproducing test case for the class BaseS-
tringProperty that produces a stack trace with the same two first frames.

²Described in issue https://jira.xwiki.org/browse/XWIKI-13372.

https://jira.xwiki.org/browse/XWIKI-13372


3

60 3 Search-based Crash Reproduction using Behavioral Model Seeding

Example 3.1: Stack trace of the XWIKI-13372 crash
0 java.lang.NullPointerException: null
1 at com [...] BaseProperty.equals ([...]:96)
2 at com [...] BaseStringProperty.equals ([...]:57)
3 at com [...] BaseCollection.equals ([...]:614)
4 at com [...] BaseObject.equals ([...]:235)
5 at com [...] XWikiDocument.equalsData ([...]:4195)
6 [...]

Soltani et al. [36] demonstrated the usefulness of the tests generated by EvoCrash
for debugging and code fixing. They also compared EvoCrash to EvoSuite and showed
that EvoCrash reproduces more crashes (85%) than EvoSuite (33%), and, for the crashes
reproduced by both approaches, EvoCrash took on average 145 seconds while EvoSuite
took on average 391 seconds. These results illustrate the limitations of high-code-coverage-
driven test case generation and the need for adequate guidance for crash reproduction.

An overview of the EvoCrash approach is shown at the right part of Figure 3.2 (box 5).
The first step of this algorithm, called guided initialization, is used to generate a random
population. This random population is a set of random unit tests where a target method
call (i.e., themethod in the target frame) is injected in each test. During the search, classical
guided crossover and guided mutation are applied to the tests in such a way that they
ensure that only the tests with a call to the target method are kept in the evolutionary
loop. The overall process is guided by a weighted sum fitness function [68], applied to
each test 𝑡 :

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) = 3×𝑑𝑙(𝑡) + 2×𝑑𝑒(𝑡) +𝑑𝑠(𝑡) (3.1)

The terms correspond to the following conditions when executing the test: (i) whether
the execution distance from the target line (𝑑𝑙 ) is equal to 0.0, in which case, (ii) if the target
exception type is thrown (𝑑𝑒), in which case, (iii) if all frames, from the beginning up until
the selected frame, are included in the generated trace (𝑑𝑠). The overall fitness value for a
given test case ranges from 0.0 (crash is fully reproduced) to 6.0 (no test was generated),
depending on the conditions it satisfies.

3.1.2 Seeding Strategies For Search-Based Testing
In addition to guided search, a promising technique is seeding. Seeding strategies use
related knowledge to help the generation process and optimize the fitness of the popula-
tion [136–138]. We focus here on the usage of the source code and the available tests as
primary sources of information for search-based testing. Other approaches, for instance,
search for string inputs on the internet [139], or use the existing test corpus [140] to mine
relevant formatted string values (e.g., XML or SQL statements).

Seeding from the source code
Three main seeding strategies exploit the source code for search-based testing [124, 136,
141]: (i) constant seeding uses static analysis to collect and reuse constant values appear-
ing in the source code (e.g., constant values appearing in boundary conditions); (ii) dynamic
seeding complements constant seeding by using dynamic analysis to collect numerical
and string values, observed only during the execution of the software, and reuse them for



3.1 Background And Related Work

3

61

seeding; and (iii) type seeding is used to determine the object type that should be used
as an input argument, based on a static analysis of the source code (e.g., by looking at
instanceof conditions or generic types for instance).

Seeding from the existing tests
Rojas et al. [124] suggest two test seeding strategies, using dynamic analysis on existing
test cases: cloning and carving. Dynamic analysis uses code instrumentation to trace the
different methods called during an execution, which, compared to static analysis, makes it
easier to identify inter-procedural sequences of method calls (for instance, in the context
of a class hierarchy). Cloning and carving have been implemented in EvoSuite and can
be used for unit test generation.

For cloning, the execution of an existing test case is copied and used as amember of the
initial population of a search process. Specifically, after its instrumentation and execution,
the test case is reconstructed internally (without the assertions), based on the execution
trace of the instrumented test. This internal representation is then used as-is in the initial
population. Internal representation of the cloned test cases are stored in a test pool.

For carving, an object is reused during the initialization of the population andmutation
of the individuals. In this case, only a subset of an execution trace, containing the creation
of a new object and a sequence of methods called on that object, is used to internally build
an object on which the methods are called. This object and the subsequent method calls
are then inserted as part of a newly created test case (initialization) or in an existing test
when a new object is required (mutation). Internal representations of the carved objects³
are stored in an object pool.

The integration of seeding strategies into crash reproduction is illustrated in Figure 3.2,
box 5. As shown, the test cases (respectively objects) to be used by the algorithm are
stored in a test case (respectively object) pool, from which they can be used according
to user-defined probabilities. For instance, if a test case only contains the creation of a
new LinkedList (using new) that is filled using two add method calls, the sequence, corre-
sponding to the execution trace <new, add, add>, may be used as-is in the initial population
(cloning) or inserted by a mutation into other test cases (carving).

Challenges in seeding strategies
The existing seeding techniques use only one resource to collect information for seeding.
However, it is possible that the selected resource does not provide enough information
about class usages. For instance, test seeding only uses the carved call sequences from the
execution of the existing test cases. If the existing test cases do not cover the behavior of
the crash in the interesting classes, this seeding strategy may even misguide the search
process. Additionally, if the number of observed call sequences is large, the seeding strat-
egy needs a procedure to prioritize the call sequences for seeding. Using random call se-
quences as seeds can sometimes misguide the search process. Existing seeding strategies
do not currently address these issues.



3

62 3 Search-based Crash Reproduction using Behavioral Model Seeding

size()

add(Object)iterator()

S0 get(int)

remove(int)

S1

S2S3

remove(int)

S4

S5

S6

size()

add(Object)

size()

add(Object)

Figure 3.1: Transition system for method call sequences of the class java.util.LinkedList derived from Apache
commons math source code and test cases.

3.1.3 Behavioral Model-Based Testing
Model-based testing [132] relies on abstract specifications (models) of the system under test
to support the generation of relevant (abstract) test cases. Transition systems [142] have
been used as a fundamental formalism to reason about test case generation and support
the definition of formal test selection criteria [143]. Each abstract test case corresponds to
a sequence of method calls on one object: i.e., a path in the transition system starting from
the initial state and ending in the initial state, a commonly used convention to deal with
finite behaviours [144]. Once selected from the model, abstract test cases are concretized
(by mapping the transition system’s paths to concrete sequences of method calls) into
executable test cases to be run on the system. In this chapter, we derive abstract test cases
(called abstract object behavior hereafter) and concretize them, producing pieces of code
creating objects and invoking methods on such objects. Those pieces of code serve as
seeds for search-based crash reproduction.

Figure 3.1 shows an example of a transition system representing the possible sequences
of method calls on java.util.List objects. Figure 3.1 illustrates usages of methods in
java.util.List objects, learned from the code and tests, in terms of a transition system,
from which sequences of methods calls can be derived.

The obtained transition system subsumes the behavior of the sequences used to learn
it but also allows for new combinations of those sequences. These behaviors are relevant
in the context of seeding as the diversity of the objects induced is useful for the search
process. Also, generating invalid behaviors from the new combinations is not a problem
here as they are detectable during the search process.

Abstract object behavior selection
The abstract object behaviors are selected from the transition system according to criteria
defined by the tester. In the remainder of this paper, we use dissimilarity as selection cri-
teria [145, 146]. Dissimilarity selection, which aims at maximizing the fault detection rate
by increasing diversity among test cases, has been shown to be an interesting and scalable
alternative to other classical selection criteria [146, 147]. This diversity is measured us-
ing a dissimilarity distance (here, 1 - the Jaccard index [148]) between the actions of two
abstract object behaviors.

³In this paper, we use the term object to refer to a carved object, i.e., an object plus the sequence of methods
called on that object.



3.2 Behavioral Model and Test Seeding for Crash Reproduction

3

63

Model Inference
The model may be manually specified (and in this case will generally focus on specific
aspects of the system) [132], or automatically learned from observations of the system
[149–154]. In the latter case, the model will be incomplete and only contain the observed
behavior of the system [155]. For instance, the sequence <new, addAll > is valid for a
java.util.List object but cannot be derived from the transition system in Figure 3.1 as
the addAll method call has never been observed. The observed behavior can be obtained
via static analysis [156] or dynamically [157]. Model inference may be used for visualiza-
tion [150, 154], system properties verification [158, 159], or generation [149, 151, 152, 156,
160, 161] and prioritization [144, 162] of test cases.

3.2 Behavioral Model and Test Seeding for Crash Repro-
duction

The goal of behavioral model seeding (denoted model seeding hereafter) is to abstract
the behavior of the software under test using models and use that abstraction during the
search. At the unit test level (which is the considered test generation level in this study),
each model is a transition system, like in Figure 3.1, and represents possible usages of a
class: i.e., possible sequences of method calls observed for objects of that class.

Themain steps of ourmodel seeding approach, presented in Figure 3.2, are: the inference
of the individual models 3⃝ (described in Section 3.2.1) from the call sequences collected
through static analysis 1⃝ performed on the application code (described in Section 3.2.1),
and dynamic analysis 2⃝ of the test cases (described in Section 3.2.1); and for each model,
the selection of abstract object behaviors 4⃝, that are concretized into Java objects (de-
scribed in Section 3.2.2), stored in an object pool from which the guided genetic algorithm
5⃝ (described in Section 3.2.3) can randomly pick objects to build test cases during the
search process.

3.2.1 Model inference
Call sequences are obtained by using static analysis on the bytecode of the application 1⃝
and by instrumenting and executing the existing test cases 2⃝.

We use 𝑛-gram inference to build the transition systems used for model seeding. 𝑁 -
gram inference takes a set of sequences of actions as input to produce a transition system
where the 𝑛𝑡ℎ action depends on the 𝑛−1 previously executed actions.

A large value of 𝑛 for the 𝑛-gram inference would result in wider transition systems
with more states and less incoming transitions, representing a more constrained behavior
and producing less diverse test cases. In contrast, a small value of 𝑛 enables better diversity
in the behavior allowed by themodel (ending up inmore diverse abstract object behaviors),
requires less observations to reach stability of the model, simplifies the inference, and
results in a more compact model [151, 152]. For these reasons, we use 2-gram inference
to build our models.

For each class, the model 3⃝ is obtained using a 2-gram inference method using the
call sequences of that class.

For instance, in the transition system of Figure 3.1, the action size(), executed from
state 𝑠3 at step 𝑘 only depends on the fact that the action add(Object) has been executed



3

64 3 Search-based Crash Reproduction using Behavioral Model Seeding

Guided Genetic Algorithm

app.jar

tests.jar

Pr[clone] Guided
initialization

Fitness
evaluation

[fitness == 0 or 
budget exhausted]

Selection

Guided
crossover

Guided
mutation

Reinsertion

Stacktrace

Test
pool

Object
pool

Test seeding

Behavioral model seeding

populatesCloning and
carving

Static analysis

Instrumented
execution Call

sequ.

Models
inference

populates

Object
behavior
selectionModels

Pr[pick init]

Pr[pick mut]
1

2

3 4

5

A

Figure 3.2: General overview of model seeding and test seeding for search-based crash reproduction

at step 𝑘 − 1, independently of the fact that there is a step 𝑘 − 2 during which the action
iterator() has been executed.

Calls to constructors are considered as method calls during model inference. However,
constructors may not appear in any transition of the model if no constructor call was
observed during the collection of the call sequences. This is usually the case when the call
sequences used to infer the model have been captured from objects that are parameters or
attributes of a class. If an abstract object behavior does not start by a call to a constructor,
a constructor is randomly chosen to initialize the object during the concretization.

For one version of the software under test, the model inference is a one time task.
Models can then be directly reused for various crash reproductions.

Static analysis of the application
The static analysis is performed on the bytecode of the application. We apply this analysis
to all of the available classes in the software under test. In eachmethod of these classes, we
build the control flow graph, and for each object of that method, we collect the sequences
of method calls on that object. For each object, each path in the control flow graph will
correspond to one sequence of method calls. For instance, if the code contains an if-
then-else statement, the true and false branches will produce two call sequences. In
the case of a loop statement, the true branch is considered only once. The static analysis
is intraprocedural, meaning that only the calls in the current method are considered. If an
object is passed as a parameter of a call to a method that (internally) calls other methods
on that object, those internal calls will not appear in the call sequences. This analysis
ensures collecting all of the existing relevant call sequences for any internal or external
class, which is used in the project.

Dynamic analysis for the test cases
Since the existing manually developed test cases exemplify potential usage scenarios of
the software under test, we apply dynamic analysis to collect all of the transpired se-
quences during the execution of these scenarios. Contrarily to static analysis, which
would require an expensive effort and produce imprecise call sequences, dynamic anal-
ysis is interprocedural. Meaning that the sequences include calls appearing in the test



3.2 Behavioral Model and Test Seeding for Crash Reproduction

3

65

cases, but also internal calls triggered by the execution of the test case (e.g., if the object
is passed as a parameter to a method and methods are internally called on that object ).
Hence, through dynamic analysis, we gain a more accurate insight into the class usages
in these scenarios.

Dynamic analysis of the existing tests is done in a similar way to the carving approach
of Rojas et al. [124]: instrumentation adds log messages to indicate when a method is
called, and the sequences of method calls are collected after execution. In similar fashion
to static analysis, we collect call sequences of any observed object (even objects which are
not defined in the software under test). The representativeness of the collected sequences
depends on the coverage of the existing tests.

3.2.2 Abstract Object Behaviors Selection
Abstract object behaviors are selected from the transition systems and concretized to pop-
ulate the object pool used during the search. To limit the number of objects in the pool,
we only select abstract object behaviors from two categories of models: models of inter-
nal classes (i.e., classes belonging to packages of the software under test) and models of
dependency classes (i.e., classes belonging to packages of external dependencies) that are
involved in the stack trace. Since we do not seek to validate the implementation of the
application, the states are ignored during the selection process.

Selection
There exist various criteria to select abstract object behaviors from transition systems [132].
To successfully guide the search, we need to establish a good ratio between exploration
(the ability to visit new regions of the search space) and exploitation (the ability to visit
the neighborhood of previously visited regions) [163]. The guided genetic operators which
are introduced in the EvoCrash approach [36] guarantee the exploitation by focusing the
search based on the methods in the stack trace. However, depending on the stack trace,
focusing on particular methods may reduce the exploration. Poor exploration decreases
the diversity of the generated tests and may trap the search process in local optima.

To improve the exploration ability in the search process, we use dissimilarity as the
criterion to select the abstract object behaviors. Compared to classical structural coverage
criteria that seek to cover as many parts of the transition system as possible, dissimilarity
tries to increase diversity among the test cases by maximizing a distance 𝑑 (i.e., the Jaccard
index [148]):

𝑑 = 1− {𝑐𝑎𝑙𝑙1𝑖 ∈ 𝑏1} ∩ {𝑐𝑎𝑙𝑙2𝑗 ∈ 𝑏2}
{𝑐𝑎𝑙𝑙1𝑖 ∈ 𝑏1} ∪ {𝑐𝑎𝑙𝑙2𝑗 ∈ 𝑏2}

Where 𝑏1 =< 𝑐𝑎𝑙𝑙11, 𝑐𝑎𝑙𝑙12,… > and 𝑏2 =< 𝑐𝑎𝑙𝑙21, 𝑐𝑎𝑙𝑙22,… > are two abstract object behav-
iors.

Concretization
Each abstract object behavior has to be concretized to an object and method calls be-
fore being added to the objects pool. In other words, for each abstract object behavior,
if the constructor invocation is not the first action, one constructor is randomly called;
and the methods are called on this object in the order specified by the abstract object



3

66 3 Search-based Crash Reproduction using Behavioral Model Seeding

Example 3.2: Concretized abstract object behavior for LinkedList based on the transition systemmodel of Figure
3.1

1 int[] t = new int [7];
2 t[3] = -2147483647;
3 EuclideanIntegerPoint ep = new EuclideanIntegerPoint(t);
4 LinkedList <[...] > lst = new LinkedList <>();
5 lst.add(ep);
6 lst.add(ep);

Example 3.3: Stack trace excerpt for MATH-79b
1 java.lang.NullPointerException
2 at ... KMeansPlusPlusClusterer.assignPointsToClusters ()
3 at ... KMeansPlusPlusClusterer.cluster ()

behavior with randomly generated parameter values. Due to the randomness, each con-
cretization may be different from the previous one. For each abstract object behavior, 𝑛
concretizations (default value is 𝑛 = 1 to balance scalability and diversity of the objects
in the object pool) are done for each abstract object behavior and saved in the object
pool. For instance, Listing 3.2 shows the concretized abstract object behavior <add(Object),

add(Object)> derived from the transition system model of Figure 3.1. The type of the param-
eters (EuclideanIntegerPoint) is randomly selected during the concretization and created
with required parameter values (an integer array here).

3.2.3 Guided Initialization and Guided Mutation
Classes are instantiated to create objects during two main steps of the guided genetic algo-
rithm: guided initialization, where objects are needed to create the initial set of test cases;
and guidedmutation, where objects may be required as parameters when adding amethod
call. When no seeding is used, those objects are randomly created (as in the concretization
step described in Section 3.2.2) by calling the constructor and random methods.

Finally, to preserve exploration in model seeding, objects are picked from the object
pool during guided initialization (resp. guided mutation) according to a user-defined prob-
ability 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡] (resp. 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡]), and randomly generated otherwise. In our eval-
uation, we considered four different values for 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡] ∈ {0.2,0.5,0.8,1.0}, to study
the effect of model seeding on the initialization of the search process. Furthermore, we
fixed the value of 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡] = 0.3, corresponding to the default value of 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡]
for test seeding for classical unit test generation in EvoSuite.

As an example of object picking in action, test case generation with model seeding
generated the test case in Listing 3.4 for the second frame of the stack trace from the crash
MATH-79b from the Apache commons math project, reported in Listing 3.3. The target
method is the last method called in the test (line 10) and throws a NullPointerException,
reproducing the input stack trace. The first parameter of the method has to be a Collec-
tion<T> object. In this case, the guided genetic algorithm picked the list object from the
object pool (from Listing 3.2) and inserted it in the test case (lines 2 to 7). The algorithm
also modified that object (during guided mutation) by invoking an additional method on
the object (line 9).



3.3 Implementation

3

67

Example 3.4: Test generated for frame 2 of MATH-79b (Listing 3.3)
1 public void testCluster () throws Exception{
2 int[] t = new int [7];
3 t[3] = ( -2147483647);
4 EuclideanIntegerPoint ep = new EuclideanIntegerPoint(t);
5 LinkedList <[...] > lst = new LinkedList <>();
6 lst.add(ep);
7 lst.add(ep);
8 KMeansPlusPlusClusterer <[...] > kmean = new KMeansPlusPlusClusterer <>(12);
9 lst.offerFirst(ep);

10 kmean.cluster(lst , 1, ( -1357));}

3.2.4 Test Seeding
As described in Section 3.1.2, test seeding starts by executing the test cases (Figure 3.2 box
A⃝) for carving and cloning, and subsequently populating the test and object pools. Like
for model seeding, only internal classes and external classes appearing in the stack trace
are considered.

For crash reproduction, the test pool is used only during guided initialization to clone
test cases that contain the target class, according to a user-defined 𝑃𝑟[𝑐𝑙𝑜𝑛𝑒] probability.
If the target method is not called in the cloned test case, the guided initialization also
mutates the test case to add a call to the target method. The object pool is used during
the guided initialization and guided mutation to pick objects. As described by Rojas et
al. [124], the properties of using the object pool during initialization (𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡]) and
mutation (𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡]) are indicated as a single property called p_object_pool in test
seeding.

3.3 Implementation
Relying on the EvoCrash experience (Chapter 2), we developed Botsing, a framework
for crash reproduction with extensibility in mind. Botsing also relies on EvoSuite [6]
for the code instrumentation during test generation and execution by using evosuite-client
as a dependency. Our open-source implementation is available at https://github.com/
STAMP-project/botsing. The current version of Botsing includes both test seeding and
model seeding as features.

3.3.1 Test Seeding
Test seeding relies on the implementation defined by Rojas et al. [124] and available in
EvoSuite. This implementation requires the user to provide a list of test cases to consider
for cloning and carving. In Botsing, we automated this process using the dynamic anal-
ysis of the test cases to automatically detect those accessing classes involved in a given
stack trace. We also modified the standard guided initialization and guided mutation to
preserve the call to the target method during cloning and carving.

3.3.2 Model Seeding
As mentioned in Section 3.2, Botsing uses a combination of static and dynamic analysis
to infer models. The static analysis ( 1⃝ in Figure 3.2) uses the reflection mechanisms of
EvoSuite to inspect the compiled code of the classes involved in the stack traces, and

https://github.com/STAMP-project/botsing
https://github.com/STAMP-project/botsing


3

68 3 Search-based Crash Reproduction using Behavioral Model Seeding

collect call sequences. The dynamic analysis ( 2⃝ in Figure 3.2) relies on the test seeding
mechanism used for cloning that allows inspecting an internal representation of the test
cases obtained after their execution and collect call sequences. The resulting call sequences
are then used to infer the transition system models of the classes using a 2-gram inference
tool called YAMI [144] ( 3⃝ in Figure 3.2). From the inferred models, we extract a set of
dissimilar (based on the Jaccard distance [148]) abstract object behaviors ( 4⃝ in Figure 3.2).
For abstract object behavior extraction, we use the VIBeS [164] model-based testing tool.
Abstract object behaviors are then concretized into real objects. For this concretization,
we rely on the EvoSuite API.

3.4 Empirical Evaluation
Our evaluation aims to assess the effectiveness of each of the mentioned seeding strategies
(model and test seeding) on search-based crash reproduction. For this purpose, first, we
evaluate the impact of each seeding strategy on the number of reproduced crashes. Second,
we examine if using each of these strategies leads to a faster crash reproduction. Third,
we see if each seeding strategy can help the search process to start more often. Finally, we
characterize the impacting factors of test and model seeding.

Since the focus of this study is using seeding to enhance the guidance of the search ini-
tialization, we examine different probabilities of using the seeded information during the
guided initialization in the evaluation of each strategy. Hence, we repeat each execution
of test seeding with the following values for 𝑃𝑟[𝑐𝑙𝑜𝑛𝑒]: 0.2, 0.5, 0.8, and 1.0. Likewise, we
execute each execution of model seeding with the same values for 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡] (which is
the only property that we can use for modifying the probability of the object seeding in
the initialization of model seeding).

3.4.1 Research Questions
In order to assess the usage of test seeding applied to crash reproduction and our new
model seeding approach during the guided initialization, we performed an empirical eval-
uation to answer the two research questions defined in introduction of this chapter.

RQ1 What is the influence of test seeding used during initialization on search-based
crash reproduction? To answer this research question, we compare Botsing executions
with test seeding enabled to executions where no additional seeding strategy is used (de-
noted no seeding hereafter), from their effectiveness to reproduce crashes and start the
search process, the factors influencing this effectiveness, and the impact of test seeding
on the efficiency. We divide RQ1 into four sub-research questions:
RQ1.1 Does test seeding help to reproduce more crashes?
RQ1.2 Does test seeding impact the efficiency of the search process?
RQ1.3 Can test seeding help to initialize the search process?
RQ1.4 Which factors in test seeding impact the search process?

RQ2 What is the influence of behavioral model seeding used during initialization on
search-based crash reproduction? To answer this question, we compare Botsing execu-
tions with model seeding to executions with test seeding and no seeding. We also divide
RQ2 into four sub-research questions:



3.4 Empirical Evaluation

3

69

Table 3.1: Projects used for the evaluation with the number of crashes (Cr.), the average number of frames
per stack trace (𝐟𝐫𝐦), the average cyclomatic complexity (𝐂𝐂𝐍), the average number of statements (𝐍𝐂𝐒𝐒), the
average line coverage of the existing test cases (𝐋𝐂), and the average branch coverage of the existing test cases
(𝐁𝐂).

Application Cr. 𝐟𝐫𝐦 𝐂𝐂𝐍 𝐍𝐂𝐒𝐒 𝐋𝐂 𝐁𝐂
JFreeChart 2 6.00 2.79 63.01k 67% 59%
Commons-lang 22 2.04 3.28 13.38k 91% 87%
Commons-math 27 3.92 2.43 29.98k 90% 84%
Mockito 12 5.08 1.79 6.06k 97% 93%
Joda-Time 8 3.87 2.11 19.41k 89% 82%
XWiki 51 27.45 1.92 181.68k 73% 71%

RQ2.1 Does behavioral model seeding help to reproduce more crashes compared to no
seeding?

RQ2.2 Does behavioral model seeding impact the efficiency of the search process com-
pared to no seeding?

RQ2.3 Can behavioral model seeding help to initialize the search process compared to no
seeding?

RQ2.4 Which factors in behavioral model seeding impact the search process?

3.4.2 Setup
Crash selection
In Chapter 2, we introduced a new benchmark, called JCrashPack, containing 200 real-
world crashes from seven projects: JFreeChart, a framework for creating interactive charts;
Commons-lang, a library providing additional utilities to the java.lang API; Commons-
math, a library of mathematics and statistics components; Mockito, a testing framework
for object mocking; Joda-time, a library for date and time manipulation; XWiki, a popu-
lar enterprise wiki management system; and ElasticSearch, a distributed RESTful search
and analytics engine. We use the same benchmark for the empirical evaluation of model-
seeding and test-seeding on crash reproduction.

To use test and model seeding for reproducing the crashes of JCrashPack, first, we
needed to apply static and dynamic analysis on different versions of projects in this bench-
mark. We successfully managed to run static analysis on all of the classes of JCrashPack.
On the contrary, we observed that dynamic analysis was not successful in the execution of
existing test suites of ElasticSearch. The reason for this failure stemmed from the technical
difficulty of running ElasticSearch tests by the EvoSuite test executor. Since both of the
seeding strategies need dynamic analysis, we excluded ElasticSearch cases from JCrash-
Pack for this experiment. JCrashPack contains 122 crashes after excluding ElasticSearch
cases. Table 3.1 provides more details about our dataset.

We used the selected crashes for the evaluation of no seeding andmodel seeding. Since
test seeding needs existing test cases that are using the target class, we filtered out the
crashes which contain only classes without any using tests. Hence, we used only 59
crashes for the evaluation of test seeding. More information about average number of
used test classes for test seeding is available in Table 3.2.



3

70 3 Search-based Crash Reproduction using Behavioral Model Seeding

Table 3.2: Information about test classes andmodels used, respectively, for test andmodel seeding in each project.
𝑡𝑒𝑠𝑡 designate the average number of test classes used for test seeding. Also, 𝑠𝑡𝑎𝑡𝑒, 𝑡𝑟𝑎𝑛𝑠, and 𝐵𝐹𝑆 denote the
average number of states, transitions, and BFS height of the used models, respectively. The standard deviations
of each of these metrics (𝜎 ) are located beside them.

Project 𝑡𝑒𝑠𝑡 𝜎
chart 29.17 20.01
lang 1.45 2.03
math 1.24 1.37
mockito 0.73 2.15
time 9.24 9.55
xwiki 0.14 1.09

Project 𝑠𝑡𝑎𝑡𝑒 𝜎 𝑡𝑟𝑎𝑛𝑠 𝜎 𝐵𝐹𝑆 𝜎
chart 56.67 50.40 157.50 167.86 21.00 17.50
lang 39.69 51.49 117.96 158.07 5.58 7.32
math 14.00 12.46 34.22 40.59 5.20 4.11
mockito 12.18 10.93 21.45 22.70 5.32 3.90
time 63.35 40.85 230.80 167.99 16.10 11.79
xwiki 47.94 90.94 139.15 323.75 11.08 17.04

Model inference
Since the selected crashes for this evaluation are identified before the model inference
process, we have applied the dynamic analysis only on the test cases which use the classes
involved in the crashes. During the static analysis, we spot all relevant test cases which
call the methods of the classes that have appeared in the stack traces of the crashes. Next,
we apply dynamic analysis only on the detected relevant test cases. This filtering process
helps us to shorten the model inference execution time without losing accuracy in the
generated models.

More information about the inferred models is available in Table 3.2.

Configuration parameters
We used a budget of 62,328 fitness evaluations (corresponding on average to 15 minutes
of executing Botsing with no seeding on our infrastructure) to avoid side effects on ex-
ecution time when executing Botsing on different frames in parallel. We also fixed the
population size to 100 individuals as suggested by the latest study on search-based crash
reproduction [68]. All other configuration parameters are set at their default value [124],
and we used the default weighted sum scalarization fitness function (Equation 3.1) from
Soltani et al. [68].

For test seeding executions, aswe described at the beginning of this section, we execute
each execution with four values for 𝑃𝑟[𝑐𝑙𝑜𝑛𝑒]: 0.2 (which is the default value), 0.5, 0.8, and
1.0. Also, we used the default value of 0.3 for p_object_pool.

We also use values 0.2, 0.5, 0.8, and 1.0 for 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡] for model seeding executions.
The value of 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡], which indicates the probability of using seeded information
during the mutation, is fixed at 0.3. In addition to model seeding configurations, we fix
the size of the selected abstract object behaviors to the size of the individual population
in order to ensure that there are enough test cases to initiate the search.

For each frame (951 in total), we executed Botsing for no seeding (i.e., no additional
seeding compared to the default parameters of Botsing) and each configuration of model
seeding. Since test seeding needs existing test cases which are using the target class, we
filtered out the frames that do not have any test for execution of this seeding strategy.
Therefore, we executed each configuration of test seeding on the subset of frames (171 in
total).



3.4 Empirical Evaluation

3

71

Infrastructure
We used 2 clusters (with 20 CPU-cores, 384 GB memory, and 482 GB hard drive) for our
evaluation. For each stack trace, we executed an instance of Botsing for each framewhich
points to a class of the application. We discarded other frames to avoid generating test
cases for external dependencies. We ran Botsing on 951 frames from 122 stack traces for
no-seeding and each model-seeding strategy configuration. Also, we ran Botsing with
test-seeding on 171 frames from 59 crashes. To address the random nature of the evaluated
search approaches, we repeated each execution 30 times. We executed a total of 186,560
independent executions for this study. These executions took about 18 days overall.

3.4.3 Data Analysis Procedure
To check if the search process can reach a better state using seeding strategies, we analyze
the status of the search process after executing each of the cases (each run in one frame
of a stack trace). We define 5 states:
(i) not started, the initial population could not be initialized, and the search did not

start;
(ii) line not reached, the target line could not be reached;
(iii) line reached, the target line has been reached, but the target exception could not be

thrown;
(iv) ex. thrown, the target line has been reached, and an exception has been thrown but

produced a different stack trace; and
(v) reproduced the stack trace could be reproduced.

Since we repeat each execution 30 times, we use the majority of outcomes for a frame
reproduction result. For instance, if Botsing reproduces a frame in the majority of the 30
runs, we count that frame as a reproduced.

To measure the impact of each strategy in the crash reproduction ratio (RQ1.1 and
RQ2.1), we use the Odds Ratio (OR) because of the binary distribution of the related data: a
search process either reproduces a crash (the generated test replicates the stack trace from
the highest frame which is reproduced by at least one of the other searches) or not. Also,
we apply Fisher’s exact test, with 𝛼 = 0.05 for the Type I error, to evaluate the significance
of results.

Moreover, to answer RQ1.2 and RQ2.2, which investigate the efficiency of the dif-
ferent strategies, we compare the number of fitness function evaluations needed by the
search to reach crash reproduction. Thismetric indicates if seeding strategies lead to better
initial populations that need fewer iterations to achieve the crash reproducing test. Since
efficiency is only relevant for the reproduced cases, we only applied this comparison on
the crashes which are reproduced at least once by no seeding or the seeding strategy (test
seeding for RQ1.2 and model seeding for RQ2.2). We use the Vargha-Delaney statistic
[165] to appraise the effect size between strategies. In this statistic, a value lower than 0.5
for a pair of factors (𝐴,𝐵) gives that 𝐴 reduces the number of needed fitness function eval-
uations, and a value higher than 0.5 shows the opposite. Also, we use the Vargha-Delaney
magnitudemeasure to partition the results into three categories having large, medium, and
small impact. In addition, to examine the significance of the calculated effect sizes, we use
the non-parametric Wilcoxon Rank Sum test, with 𝛼 = 0.05 for Type I error. Moreover, we
do note that since the reproduction ratio of each strategy is not 30/30 for each crash, exe-



3

72 3 Search-based Crash Reproduction using Behavioral Model Seeding

cutions that could not reproduce the frame simply reached the maximum allowed budget
(62,328).

To measure the impact of each strategy in initializing the first population (RQ1.3 and
RQ2.3), we use the same procedure as RQ1.1 and RQ2.1 because the distribution of re-
lated data in this aspect is binary too (i.e., whether the search process can start the search
or not).

For all of the statistical tests in this study, we only use a level of significance 𝛼 = 0.05.
Since the model inference (in model seeding) and test carving (in test seeding) tech-

niques can be applied as one time processes before running any search-based crash repro-
duction, we do not include them in the efficiency evaluation.

To answer RQ1.4 and RQ2.4, we performed a manual analysis on the logs and crash
reproducing test case (if any). We focused our manual analysis on the crash reproduction
executions for which the search in one seeding configuration has a significant impact (ac-
cording to the results of the previous sub-research questions) on (i) initializing the initial
population, (ii) crash reproduction, (iii) or search process efficiency compared to no-seeding.
Based on our manual analysis, we used a card sorting strategy by assigning keywords to
each frame result and grouping those keywords to identify influencing factors.

3.5 Evaluation Results
We present the results of the evaluation and answer the two research questions by com-
paring each seeding strategy with no-seeding.

3.5.1 Test Seeding (RQ1)
Crash reproduction effectiveness (RQ1.1)
Figure 3.3 demonstrates the comparison of each seeding strategy (left-side of the figure is
for test seeding and right-side is for model seeding) with the baseline (no seeding). Fig-
ures 3.3a and 3.3b show the overall comparison, while Figures 3.3c and 3.3d illustrate the
per project comparison. In each of these figures, the yellow bar shows the number of
reproduced crashes in the majority of the 30 executions, and the orange bar shows the
non-reproduced crashes.

According to Figure 3.3a, test s. 0.8 reproduced the same number of crashes. How-
ever, the other configurations of test-seeding reproduced fewer crashes in the majority of
times. Moreover, according to Figure 3.3c, test seeding reproduces one more crash com-
pared to no seeding. Also, some configurations of test seeding can reproduce one extra
crash in XWiki and commons-lang projects. On the contrary, all of the configurations of
test seeding missed one and two crashes in JFreeChart and commons-math, respectively.
Finally, we cannot see any difference between test seeding and no seeding in the Joda-
Time project.

Table 3.4 demonstrates the impact of test-seeding on the crash reproduction ratio com-
pared to no-seeding. It indicates that test s. 0.2 & 0.5 have a better crash reproduction ratio
for one of the crashes, while they perform significantly worse in 4 other crashes compared
to no-seeding. The situation is almost the same for the other configurations of test seeding:
test s. 0.8 & 1.0 are significantly better in 2 crashes compared to no-seeding. However, they
are significantly worse than no-seeding in 5 other crashes. The other interesting point in



3.5 Evaluation Results

3

73

37 22

36 23

36 23

37 22

35 24

no s.

test s. 0.2

test s. 0.5

test s. 0.8

test s. 1.0

0% 25% 50% 75% 100%

not reproduced reproduced

(a) test-seeding vs. no-seeding (for all projects to-
gether)

66 56

69 53

70 52

69 53

69 53

no s.

model s. 0.2

model s. 0.5

model s. 0.8

model s. 1.0

0% 25% 50% 75% 100%

not reproduced reproduced

(b) model-seeding vs. no-seeding (for all projects
together)

14 5

15 4

15 4

15 4

15 4

14 3

12 5

12 5

12 5

12 5

1 4

2 3

2 3

2 3

1 4

5 3

5 3

5 3

5 3

5 3

1 1

2

2

2

2

2 6

2 6

2 6

3 5

2 6

C
om

m
ons−

lang
C

om
m

ons−
m

ath
M

ockito
Joda−

T
im

e
JF

reechart
X

W
iki

0% 25% 50% 75% 100%

no s.

test s. 0.2

test s. 0.5

test s. 0.8

test s. 1.0

no s.

test s. 0.2

test s. 0.5

test s. 0.8

test s. 1.0

no s.

test s. 0.2

test s. 0.5

test s. 0.8

test s. 1.0

no s.

test s. 0.2

test s. 0.5

test s. 0.8

test s. 1.0

no s.

test s. 0.2

test s. 0.5

test s. 0.8

test s. 1.0

no s.

test s. 0.2

test s. 0.5

test s. 0.8

test s. 1.0

not reproduced reproduced

(c) test-seeding vs. no-seeding (per project)

16 6

18 4

18 4

17 5

18 4

23 4

22 5

22 5

22 5

22 5

3 9

4 8

4 8

4 8

4 8

5 3

5 3

5 3

5 3

5 3

1 1

1 1

1 1

1 1

1 1

18 33

19 32

20 31

20 31

19 32

C
om

m
ons−

lang
C

om
m

ons−
m

ath
M

ockito
Joda−

T
im

e
JF

reechart
X

W
iki

0% 25% 50% 75% 100%

no s.

model s. 0.2

model s. 0.5

model s. 0.8

model s. 1.0

no s.

model s. 0.2

model s. 0.5

model s. 0.8

model s. 1.0

no s.

model s. 0.2

model s. 0.5

model s. 0.8

model s. 1.0

no s.

model s. 0.2

model s. 0.5

model s. 0.8

model s. 1.0

no s.

model s. 0.2

model s. 0.5

model s. 0.8

model s. 1.0

no s.

model s. 0.2

model s. 0.5

model s. 0.8

model s. 1.0

not reproduced reproduced

(d) model-seeding vs. no-seeding (per project)

Figure 3.3: Outcomes observed in the majority of the executions for each crash in total and for each application.



3

74 3 Search-based Crash Reproduction using Behavioral Model Seeding

this table is the standard deviation crash reproduction ratio. This value is slightly higher
for all of the test seeding configurations compared to no seeding. The values of odds ratios
and and p-values for crashes with significant difference is available in Table 3.3.

The underlying reasons for the observed results in this section are analyzed in RQ1.4.

Crash reproduction efficiency (RQ1.2)
Table 3.5 demonstrates the comparison of test-seeding and no-seeding in the number of
needed fitness function evaluations for crash reproduction. The average number of fit-
ness function evaluations increases when using test-seeding. It means that test-seeding
is slower than no-seeding on average. test s. 0.8 has the highest average fitness function
evaluations.

Moreover, the standard deviations of both no seeding and test seeding are high values
(more than 20k evaluations). This notable variation is explainable due to the nature of
search-based approaches. In some executions, the initialized population is closer to the
objectives, and the search process can achieve reproduction faster. Similar variations are
reported in the JCrashPack empirical evaluation as well (Chapter 2). According to the
reported standard deviations, we can see that this value increases for all of the configura-
tions of test seeding compared to no seeding.

Also, the values of the effect sizes indicate that the number of crashes that receive
(large or medium) positive impacts from test s. 0.2 & 0.5 for their reproduction speed is
higher than the number of crashes that exhibit a negative (large or medium) influence.
However, this is not the case for the other two configurations. In the worst case, test s. 1.0
is considerably slower than no-seeding (with large effect size) in 13 crashes.

Guided initialization effectiveness (RQ1.3)
Table 3.6 indicates the number of crashes where test-seeding had a significant (p-value
< 0.05) impact on the search initialization compared to no-seeding. As we can see in this
table, any configuration of test-seeding has a negative impact on the search starting pro-
cess for 4 or 5 crashes. Additionally, this strategy does not have any significant beneficial
impact on this aspect except on one crash in test s. 0.8. Also, the standard deviation of the
average search initialization ratios, in all of the configurations of test seeding, is increased
compared to no seeding. For instance, this value for test s. 0.8 is about three times more
than no seeding.

Influencing factors (RQ1.4)
To finding the influencing factors in test seeding, we manually analyzed the cases which
cause significant differences, in various aspects, between no-seeding and test-seeding.
From our manual analysis, we identified 3 factors of the test seeding process that influ-
ence the search: (i) Crash-Test Proximity, (ii) Crash-Object Proximity, and (iii) Test
Execution Cost.

Crash-Test Proximity For the first factor, we observe that cloning existing test cases
in the initial population leads to the reproduction of new crashes when the cloned tests
include elements which are close to the crash reproducing test. For instance, all of the
configurations of test seeding are capable of reproducing the crash LANG 6b, while no-
seeding cannot reproduce it. For reproducing this crash, Botsing needs to generate a string



3.5 Evaluation Results

3

75

of a specific format, and this format is available in the existing test cases, which are seeded
to the search process.

However, manually developed tests are not always helpful for crash reproduction. Ac-
cording to the results of Table 3.5, test s. 1.0, which always clones test cases, is consider-
ably and largely slower than no-seeding in 13 crashes. In these cases, cloning all of the
test cases to form the initial population can prevent the search process from reaching the
crash reproducing test. As an example, Botsing needs to generate a simple test case, which
calls the target method with an empty string and null object, to reproduce crash LANG-
12b. But, test s. 1.0 clones tests which use the software under test in different ways. To
summarize, the overall quality of results of our test seeding solution is highly dependent
on the quality of the existing test cases in terms of factors like the distance of existing test
cases to the scenario(s) in which the crash occurs and the variety of input data.

Crash-Object Proximity For the second factor, we observe that (despite the fixed value
of 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡] for test seeding), the objects with call sequences carved from the existing
tests and stored in the object pool can help during the search depending on their diversity
and their distance from the call sequences that we need for reproducing the given crash.
For instance, for crash MATH-4b, Botsing needs to initialize a List object with at least
two elements before calling the target method in order to reproduce the crash. In test-
seeding, such an object had been carved from the existing tests and allowed test seeding
to reproduce the crash faster. Also, test-seeding can replicate this crash more frequently:
the number of successfully replicated executions, in 30 runs, is higher with test-seeding.

In contrast, the carved objects can misguide the search process for some crashes which
need another kind of call sequence. For instance, in crash MOCKITO-9b, Botsing cannot
inject the target method into the generated test because the carved objects do not have
the proper state to instantiate the input parameters of the target method.

In summary, if the involved classes in a given crash are well-tested (the existing tests
contain all of the usage scenarios of these classes), we have more chances to reproduce by
utilizing test-seeding.

Test Execution Cost The third factor points to the challenge of executing the existing
test cases for seeding. The related tests for some crashes are either expensive (time/re-
source consuming) or challenging (due to the security issues) to execute. Hence, the Evo-
Suite test executor, which is used by Botsing, cannot carve all of them.

As an example of expensive execution, the EvoSuite test executor spends more than 1
hour during the execution of the related test cases for replicating frame 2 of crashMath-1b.

Also, as an example for security issues, the EvoSuite test executor is not successful in
running some of the existing tests. It throws an exception during this task. For instance,
this executor throws java.lang.SecurityException during the execution of the existing
test cases for CHART-4b, and it cannot carve any object for seeding.

In some cases, test-seeding faces the mentioned problems during the execution of all
of the existing test cases for a crash. If test seeding cannot carve any object from existing
tests, there will be no useful call sequence in the object pool to seed during the search
process. Hence, although the project contains some potentially valuable test scenarios for



3

76 3 Search-based Crash Reproduction using Behavioral Model Seeding

reproducing the given crash, there is no difference between no seeding and test seeding
in these cases.

Summary (RQ1)
Test seeding (for any configuration) loses against no-seeding in the search initialization
because some of the related test cases of crashes are expensive or even impossible to ex-
ecute. Also, we observe in the manual analysis that the lack of generality in the existing
test cases prevents the crash reproduction search process initialization. In these cases, the
carved objects from the existing tests mismatch the search process in the target method
injection. Moreover, this seeding strategy can outperform no seeding in the crash repro-
duction and search efficiency for some cases (e.g., LANG 6b), thanks to the call sequences
carved from the existing tests. However, these carved call sequences can be detrimental
to the search process in some cases, if the carved call sequences do not contain beneficial
knowledge about crash reproduction, overusing them can misguide the search process.

3.5.2 Behavioral Model Seeding (RQ2)
Crash reproduction effectiveness (RQ2.1)
Figure 3.3b draws a comparison between model-seeding and no-seeding in the crash re-
production ratio according to the results of the evaluation on all of the 122 crashes. As
mentioned in Section 3.4.2, since model seeding collects call sequences both from source
code and existing tests, it can be applied to all of the crashes (even the crashes that do not
have any helpful test). As depicted in this Figure, all of the configurations ofmodel-seeding
reproduce more crashes compared to no-seeding in the majority of runs. We observe that
model s. 0.2 & 0.5 & 1.0 reproduce 3 more crashes than no-seeding. In addition, in the best
performance of model-seeding, model s. 0.8 reproduces 70 out of 122 crashes (6% more
than no-seeding).

Figure 3.3d categorizes the results of Figure 3.3b per application. As we can see in this
figure, model seeding replicates more crashes for XWiki, commons-lang, and Mockito.
However, no-seeding reproduces one crash more than model-seeding for commons-math.
For the other projects, the number of reproduced crashes does not change between no-
seeding and different configurations of model-seeding.

We also check how many crashes can be reproduced at least once with model seed-
ing, but not with no seeding. In total, model-seeding configurations reproduce nine new
crashes that no-seeding cannot reproduce.

Table 3.4 indicates the impact of model-seeding on the crash reproduction ratio. As
we can see in this table, model s. 0.2 has a significantly better crash reproduction ratio
in 3 crashes. Also, other configurations of model-seeding are significantly better than
no seeding in 4 crashes. This improvement is achieved by model-seeding, while 2 out
of 4 configurations of model-seeding have a significant unfavorable impact on only one
crash. The values of odds ratios and and p-values for crashes with significant difference is
available in Table 3.3.

Crash reproduction efficiency (RQ2.2)
Table 3.7 compares the number of the needed fitness function evaluations for crash repro-
duction in model-seeding and no-seeding. As we can see in this table, the average effort



3.5 Evaluation Results

3

77

is reduced by using model-seeding. On average mode s. 1.0 achieves the fastest crash
reproduction.

According to this table, and in contrast to test-seeding, model-seeding’s efficiency is
slightly positive. The number of crashes thatmodel-seeding has a positive large ormedium
influence (as Vargha-Delaney measures are lower than 0.5) on varies between 3 to 5. Also,
model-seeding has a large adverse effect size (as Vargha-Delaney measures are higher
than 0.5) on one crash, while this number is higher for test-seeding (e.g., 13 for test s. 1.0).
Table 3.7 does not include the cost of model generation for seeding as mentioned in our
experimental setup. In our case, model generation was not a burden and is performed only
once per case study. We will cover this point in more detail in Section 3.6.

Guided initialization effectiveness (RQ2.3)
Table 3.6 provides a comparison between model-seeding and no-seeding in the search ini-
tialization ratio. As shown in this Table, model s. 0.2 & 0.5 significantly outperform no
seeding in starting the search process for two crashes. This number increases to 3 for
model s. 0.8 & 1.0. In contrast to test-seeding, most of the configurations of model-seeding
do not have any significant negative impact on the search initialization (only model s. 0.2
is significantly worse than no-seeding in one crash). Notably, the average search initializa-
tion ratios for all of the model seeding configurations are slightly higher than no seeding.
In the best case for model seeding, model s. 0.8 & 1.0 is 30/30 runs, and the standard
deviations for these two configurations are 0 or close to 0.

Influencing factors (RQ2.4)
We have manually analyzed the crashes which lead to significant differences between
different configurations of model seeding and no seeding. In doing so, we have identi-
fied 4 influencing factors in model-seeding on search-based crash reproduction, namely:
(i) using Call sequence dissimilarity for guided initialization, (ii) having Information
source diversity to infer the behavioral models, (iii) Sequence priority for seeding by
focusing on the classes involved in the stack trace, and (iv) having Fixed size abstract
object behavior selection from usage models.

Call sequence dissimilarity Using dissimilar call sequences to populate the object
pool inmodel seeding seems particularly useful for search efficiency compared to test seed-
ing. In particular, if the number of test cases is large, model seeding enables (re)capturing
the behavior of those tests in the model and regenerate a smaller set of call sequences
which maximize diversity, augmenting the probability to have more diverse objects used
during the initialization. For instance, Botsing with model-seeding is statistically more
efficient than other strategies for replicating crash XWIKI-13141. Through our manual
analysis we observed that model-seeding could replicate crash XWIKI-13141 in the initial
population in 100% of cases, while the other seeding strategies replicate it after a couple
of iterations. In this case, despite the large size of the target class behavioral model (35
transitions and 17 states), the diversity of the selected abstract object behaviors guarantees
that Botsing seeds the reproducing test cases to the initial population.

Information source diversity Having multiple sources to infer the model from helps
to select diversified call sequences compared to test seeding. For instance, the sixth frame



3

78 3 Search-based Crash Reproduction using Behavioral Model Seeding

of the crash XWIKI-14556 points to a class called HqlQueryExecutor. No seeding cannot
replicate this crash because it does not have any guidance from existing solutions. Also,
since the test carver could not detect any existing test which is using the related classes,
this seeding strategy does not have any knowledge to achieve reproduction. In contrast,
the knowledge required for reproducing this crash is available in the source code, and
model-seeding learned it from static analysis of this resource. Hence, this seeding strategy
is successful in accomplishing crash reproduction.

Sequence priority By prioritizing classes involved in the stack trace for the abstract
object behaviors selection, the object pool containsmore objects likely to help to reproduce
the crash. For instance, for the 10th frame of the crash LANG-9b, model seeding could
achieve reproduction in the majority of runs, compared to 0 for test and no seeding, by
using the class FastDateParser appearing in the stack trace.

Fixed size abstract object behavior selection The last factor points to the fixed num-
ber of the generated abstract object behaviors from each model. In some cases, we ob-
served that model-seeding was not successful in crash reproduction because the usage
models of the related classes were large, and it was impossible to cover all of the paths
with 100 abstract object behaviors. As such, this seeding strategy missed the useful dissim-
ilar paths in the model. As an example, model-seeding was not successful in replicating
crash XWIKI-8281 (which is replicated by no-seeding and test-seeding). In this crash, the
unfavorable generated abstract object behaviors for the target class misguided the search
process in model seeding.

Summary (RQ2)
Model seeding achieves a better search initialization ratio compared to no seeding. With
respect to the best achievement of model seeding (model s. 0.8 & 1.0), they decrease the
number of not started searches in 3 crashes. Moreover, compared to no seeding, model
seeding increases the number of crashes that can be reproduced in the majority of times to
6%. It also reproduces 9 (out of 122) extra crashes that are unreproducible with no-seeding.
In addition, model seeding improves the efficiency of search-based crash reproduction
compared to no seeding. It takes, on average, less fitness function evaluations. Also, model
seeding delivers more positive significant impact on the efficiency of the search process
compared to no seeding.

In general, model seeding outperforms no seeding in all of the aspects of search-based
crash reproduction. According to the manual analysis that we have performed in this
study, model seeding achieves this performance thanks to multiple factors: Call sequence
dissimilarity, Information source diversity, and Sequence priority. Nevertheless, we ob-
serve a negative impacting factor in model seeding, as well. This factor is the fixed size
abstract object behavior selection.



3.5 Evaluation Results

3

79

Table 3.3: Odds ratios of model/test seeding configurations vs. no seeding in crash reproduction ratio. This table
only shows the crashes, which reveal statistically significant differences (p-value < 0.05). An Odds ratio value
higher than 1.0 gives that the seeding strategy is better than no seeding, and a value lower than 1.0 shows the
opposite.

Conf. Crash Odds Ratio (p-value)
test s. 0.5 LANG-6b Inf (2.37e-02)

MATH-1b 0.00 (1.69e-17)
MATH-61b 0.00 (1.69e-17)
CHART-4b 0.00 (1.69e-17)
TIME-20b 0.00 (1.94e-03)
TIME-10b 207.79 (2.36e-12)
TIME-5b 3.52 (3.52e-02)

test s. 0.8 LANG-6b Inf (1.94e-03)
MATH-1b 0.00 (1.69e-17)
MATH-61b 0.00 (1.69e-17)
CHART-4b 0.00 (1.69e-17)
TIME-20b 0.00 (4.64e-05)
TIME-10b Inf (9.23e-14)
TIME-7b 0.00 (6.19e-07)

test s. 1.0 LANG-51b 0.21 (8.21e-03)
LANG-6b Inf (4.64e-05)
MATH-1b 0.00 (1.69e-17)
MATH-61b 0.00 (1.69e-17)
CHART-4b 0.00 (1.69e-17)
TIME-20b 0.00 (5.83e-06)
TIME-10b 69.79 (2.82e-10)

test s. 0.2 MATH-1b 0.00 (1.69e-17)
MATH-61b 0.00 (1.69e-17)
CHART-4b 0.00 (1.69e-17)
TIME-20b 0.00 (3.19e-04)
TIME-10b Inf (9.23e-14)
TIME-7b 0.00 (1.05e-02)

Conf. Crash Odds Ratio (p-value)
model s. 0.2 LANG-9b Inf (1.94e-03)

LANG-51b 0.17 (3.33e-03)
MOCKITO-10b Inf (1.43e-08)
XWIKI-13141 13.95 (5.58e-03)

model s. 0.5 LANG-9b Inf (2.37e-02)
MOCKITO-10b Inf (1.87e-07)
XWIKI-13141 Inf (7.97e-04)
XWIKI-14152 6.66 (7.41e-03)

model s. 0.8 LANG-9b Inf (1.94e-03)
LANG-51b 0.29 (3.70e-02)
MOCKITO-10b Inf (8.27e-10)
XWIKI-13141 Inf (7.97e-04)
XWIKI-14152 11.24 (2.51e-04)

model s. 1.0 LANG-9b Inf (1.94e-03)
MOCKITO-10b Inf (5.34e-08)
XWIKI-13141 13.95 (5.58e-03)
XWIKI-14152 32.80 (5.62e-08)



3

80 3 Search-based Crash Reproduction using Behavioral Model Seeding

Table 3.4: Evaluation results for comparing seeding strategies (test and model seeding) and no-seeding in crash
reproduction. ratio and 𝜎 designate average crash reproduction ratio and standard deviation, respectively. The
numbers in the comparison only count the statistically significant cases.

Conf. Reproduction Comparison to no s.
ratio 𝜎 better worse

test s. 1.0 23.7 11.01 2 5
test s. 0.8 23.4 10.74 2 5
test s. 0.5 23.8 10.76 1 4
test s. 0.2 23.5 10.93 1 4
no s. 25.4 9.65 - -

Conf. Reproduction Comparison to no s.
ratio 𝜎 better worse

model s. 1.0 22.0 11.58 4 0
model s. 0.8 21.9 11.92 4 1
model s. 0.5 21.8 11.86 4 0
model s. 0.2 21.6 12.00 3 1
no s. 21.3 12.32 - -

Table 3.5: Evaluation results for comparing test-seeding and no-seeding in the number of fitness evaluations
evaluations and 𝜎 designate average fitness function evaluations needed for crash reproduction and standard
deviation, respectively. The numbers in the comparison only count the statistically significant cases.

Conf. Fitness Comparison to no s.
large medium small

evaluations 𝜎 < 0.5 > 0.5 < 0.5 > 0.5 < 0.5 > 0.5
no s. 10,467 22,368.13 - - - - - -
test s. 0.2 14,089 25,464 4 3 1 1 2 -
test s. 0.5 13,366 25,043 5 3 1 - 2 1
test s. 0.8 14,254 25,496 3 4 1 5 1 3
test s. 1.0 13,856 25,097 3 13 4 3 1 3

Table 3.6: Evaluation results for comparing seeding strategies (test and model seeding) and no-seeding in search
initialization. ratio and 𝜎 designate average successful search initialization ratio and standard deviation, respec-
tively. The numbers in the comparison only count the statistically significant cases.

Conf. Search started Comparison to no s.
ratio 𝜎 better worse

test s. 1.0 26.9 9.22 0 5
test s. 0.8 27.9 7.67 1 4
test s. 0.5 26.9 9.22 0 5
test s. 0.2 27.4 8.49 0 4
no s. 29.5 3.94 - -

Conf. Search started Comparison to no s.
ratio 𝜎 better worse

model s. 1.0 30.0 0.28 3 0
model s. 0.8 30.0 0.00 3 0
model s. 0.5 29.7 2.75 2 0
model s. 0.2 29.5 3.87 2 1
no s. 29.2 4.72 - -

Table 3.7: Evaluation results for comparing model-seeding and no-seeding in the number of fitness evaluations
evaluations and 𝜎 designate average fitness function evaluations needed for crash reproduction and standard
deviation, respectively. The numbers in the comparison only count the statistically significant cases.

Conf. Fitness Comparison to no s.
large medium small

evaluations 𝜎 < 0.5 > 0.5 < 0.5 > 0.5 < 0.5 > 0.5
no s. 18,713.1 28,023.93 - - - - - -
model s. 0.2 18,016.1 27,699.61 2 1 1 1 2 1
model s. 0.5 17,646.9 27,463.02 2 1 2 - 2 1
model s. 0.8 17,564.5 27,400.27 3 1 2 - 1 3
model s. 1.0 17,268.8 27,190.73 3 1 2 - 1 2



3.6 Discussion

3

81

3.6 Discussion
3.6.1 Practical Implications
Model derivation costs Generating seeds comeswith a cost. For ourworst case, XWIKI-
13916, we collected 286K call sequences from static and dynamic analysis and generated
7,880 models from which we selected 6K abstract object behaviors. We repeated this pro-
cess 10 times and found the average time for call sequence collection to be 14.2 seconds;
model inference took 77.8 seconds; and abstract object behavior selection and concretiza-
tion took 51.5 seconds. We do note however that the model inference is a one-time process
that could be done offline (in a continuous integration environment). After the initial in-
ference of models, any search process can utilize model seeding. To summarize, the total
initial overhead is ∼ 2.5 minutes, and the total nominal overhead is around ∼ 1.25 minute.
We argue that the overhead of model seeding is affordable giving its increased ef-
fectiveness. The initial model inference can also be incremental, to avoid complete
regeneration for each update of the code, or limited to subparts of the application (like
in our evaluation where we only applied static and dynamic analysis for classes involved
in the stack trace). Similarly, abstract object behavior selection and concretization may
be prioritized to use only a subset of the classes and their related model. In our current
work, this prioritization is based on the content of the stack traces. Other prioritization
heuristics, based for instance on the size of the model (reflecting the complexity of the
behavior), is part of our future work.

Applicability and effectiveness Generally, test seeding alone does not make crash
reproduction more effective. Actually, test seeding has a more negative impact on the
search-based crash reproduction. Test seeding only uses dynamic analysis, which entails
that it collects more accurate information from the potential usage scenarios of the soft-
ware under test; it also means that this strategy collects more limited information for
seeding. If these limited amounts of call sequences differ from the call sequences needed
to reproduce the crash scenario, test seeding can misguide the crash reproduction search
process.

In contrast to test-seeding, we observe that model seeding always performs better
than no seeding with different configurations. As such, we observe that model seeding
can reproduce more crashes than other strategies. Also, since model seeding also
exploits test cases, thereby subsuming test seeding regarding the observed behavior of the
application that is reused during the search, greater performance can be attributed to the
analysis of the source code translated in the model.

In our experiments, various configurations of model seeding reproduced 8 new crashes
that neither test seeding nor no seeding strategies could reproduce. Additionally, only
model seeding could reproduce stack traces withmore than seven frames (e.g., LA-
NG-9b). Still, model seeding missed the reproduction of one crash which is reproduced by
no seeding. Despite the achieved improvements by model seeding, this seeding strategy
could not outperform no-seeding dramatically (crash reproduction improved by 6%). To
better understand the reasons for the results, we manually analyzed the logs of Botsing
executions on the crashes for which model seeding could not show any improvements.
Through this investigation, we noticed that the generated usage models in these cases are
limited and they do not contain the beneficial call sequences for covering the particular



3

82 3 Search-based Crash Reproduction using Behavioral Model Seeding

path that we need for crash reproduction. The average size of the generated model in
this study is 7 states and 14 transitions. We believe that by collecting more call sequences
from different sources (i.e., log files), model seeding can increase the number of crash
reproductions.

We also observed two crashes that all of the test seeding configurations could repro-
duce them significantly more often compared to all of the configurations of model seeding:
LANG-6b and TIME-5b. We manually analyzed the crash reproduction process in these
two crashes to understand the reason for test seeding outperforming model seeding. In
the former crash, test seeding is the only seeding strategy that can reproduce the crash
because of the Crash-Test Proximity (explained in section 3.5.1 as an example of this
factor). In the latter crash, we observed that the size of the inferred model for the target
class is big (it has 99 states and more than 300 transitions).

We witnessed that the size of the generated abstract behaviors set is commensurate
to the size of the inferred model. If we have a small model, and we choose too many
abstract behaviors, we will get similar abstract behaviors that misguide the search process.
The mutation operator may counter this negative impact during the search by potentially
adding the missing method calls. In contrast, if we chose a small set of abstract behaviors
from a behavioral model with a large size, we will miss the chance of using all of the
potentials of the model for increasing the chance of crash reproduction by the search
process.

Extendability The usage models can be inferred from any resource providing call se-
quences. In this study, we used the call sequences derived from the source code and ex-
isting test cases. However, we can extend the models with extra resources (e.g., execution
logs). Also, the abstract object behavior selection approach can be adapted according to
the problem. In this study, we used the dissimilarity strategy to increase the diversity of
the generated tests. Moreover, model seeding makes a distinction between using the ob-
ject pool during guided initialization and guided mutation (as shown in Figure 3.2). This
distinction enables us to study the influence of seeding during the different steps of the
algorithm independently.

3.6.2 Model Seeding Configuration
Model seeding can be configured with different 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡] and 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡] probabil-
ities. Like many other parameters in search-based test case generation [166], the values
of those parameters could influence our results. Although a full investigation of the effect
of 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡] and 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡] on the search process is beyond the scope of this pa-
per, we set up a small experiment on a subset of crashes (10 crash in total) with 15 new
configurations, each one run 10 times.

Tables 3.8 and 3.9 presents the configurations used for 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡] and 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡]
with, for each one, the crash reproduction effectiveness (Table 3.8), and the crash repro-
duction efficiency (Table 3.9). In general, we observe that changing the probability of
picking an object during guided initialization (𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡]) has an impact on the search
and leads to more reproduced crashes with a lower number of fitness evaluations. This
confirms the results presented in Section 3.5. Changing the probability of picking an ob-
ject during mutation (𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡]) does not seem to have a large impact on the search.



3.6 Discussion

3

83

Table 3.8: Evaluation results for comparing different configurations of model seeding in crash reproduction.
rate and 𝜎 designate average crash reproduction rate and standard deviation, respectively. The numbers in the
comparison only count the statistically significant cases.

Conf. Reproduction Comparison to other conf.
rate 𝜎 better worse

Pr[init]=0.0 Pr[mut]=0.3 18.8 13.81 0 11
Pr[init]=0.0 Pr[mut]=0.6 19.0 13.64 0 10
Pr[init]=0.0 Pr[mut]=0.9 19.0 13.55 0 13
Pr[init]=0.2 Pr[mut]=0.0 20.4 12.42 2 2
Pr[init]=0.2 Pr[mut]=0.3 19.6 12.87 0 7
Pr[init]=0.2 Pr[mut]=0.6 19.8 12.88 1 5
Pr[init]=0.2 Pr[mut]=0.9 19.4 13.15 0 7
Pr[init]=0.5 Pr[mut]=0.0 20.8 12.17 3 1
Pr[init]=0.5 Pr[mut]=0.3 20.6 12.29 3 2
Pr[init]=0.5 Pr[mut]=0.6 19.4 13.24 0 7
Pr[init]=0.5 Pr[mut]=0.9 20.0 12.58 1 5
Pr[init]=0.8 Pr[mut]=0.0 21.8 11.46 8 0
Pr[init]=0.8 Pr[mut]=0.3 21.6 11.53 6 0
Pr[init]=0.8 Pr[mut]=0.6 21.8 11.77 8 0
Pr[init]=0.8 Pr[mut]=0.9 20.8 11.96 3 2
Pr[init]=1.0 Pr[mut]=0.0 21.6 11.53 6 0
Pr[init]=1.0 Pr[mut]=0.3 23.0 11.31 12 0
Pr[init]=1.0 Pr[mut]=0.6 21.6 11.82 8 0
Pr[init]=1.0 Pr[mut]=0.9 22.6 11.30 11 0

A full investigation of the effects of 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡] and 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡] on the search process
is part of our future work.



3

84 3 Search-based Crash Reproduction using Behavioral Model Seeding

Table 3.9: Evaluation results for comparing different configurations of model seeding in the number of fitness
evaluations rate and 𝜎 designate average fitness function evaluations needed for crash reproduction and standard
deviation, respectively. The numbers in the comparison only count the statistically significant cases.

Conf. Fitness Comparison to other configurations
large medium small

evaluations 𝜎 < 0.5 > 0.5 < 0.5 > 0.5 < 0.5 > 0.5
Pr[init]=0.0 Pr[mut]=0.3 23,456.5 30,105.20 - 5 - 3 - 3
Pr[init]=0.0 Pr[mut]=0.6 23,066.3 29,976.23 - 2 - 5 - 3
Pr[init]=0.0 Pr[mut]=0.9 23,030.9 30,001.82 - 7 - 4 1 2
Pr[init]=0.2 Pr[mut]=0.0 20,179.0 29,012.80 - - 1 2 1 -
Pr[init]=0.2 Pr[mut]=0.3 21,803.0 29,620.34 - 2 2 5 - 1
Pr[init]=0.2 Pr[mut]=0.6 21,448.9 29,441.74 - 2 - 3 1 2
Pr[init]=0.2 Pr[mut]=0.9 22,214.6 29,752.12 - 2 2 5 1 1
Pr[init]=0.5 Pr[mut]=0.0 19,371.3 28,668.58 - - 2 1 3 -
Pr[init]=0.5 Pr[mut]=0.3 19,766.8 28,849.00 - - 1 2 2 -
Pr[init]=0.5 Pr[mut]=0.6 22,245.2 29,729.80 - - - 4 - 3
Pr[init]=0.5 Pr[mut]=0.9 21,030.0 29,302.03 - 2 - 3 1 2
Pr[init]=0.8 Pr[mut]=0.0 17,329.0 27,693.98 2 - 6 - - 1
Pr[init]=0.8 Pr[mut]=0.3 17,710.5 27,919.28 1 - 4 - 3 -
Pr[init]=0.8 Pr[mut]=0.6 17,327.0 27,694.60 2 - 6 - - -
Pr[init]=0.8 Pr[mut]=0.9 19,383.3 28,659.38 - - 1 1 2 2
Pr[init]=1.0 Pr[mut]=0.0 17,730.5 27,906.92 1 - 4 - 3 1
Pr[init]=1.0 Pr[mut]=0.3 14,863.9 26,275.53 7 - 3 - - -
Pr[init]=1.0 Pr[mut]=0.6 17,692.5 27,930.17 2 - 5 - 1 -
Pr[init]=1.0 Pr[mut]=0.9 15,656.9 26,798.15 7 - 5 - 1 -

3.7 Threats To Validity
Internal Validity
We selected 122 crashes from 5 open source projects: 33 crashes have previously been stud-
ied [68] and we added additional crashes fromXWiki and Defects4J (see Section 3.4). Since
we focused on the effect of seeding during guided initialization, we fixed the 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡]
value (which, due to the current implementation of Botsing, is also used as 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡]
value in test seeding) to 0.3, the default value used in EvoSuite for unit test generation.
The effect of this value for crash reproduction, as well as the usage of test and model
seeding in guided initialization, is part of our future work. We cannot guarantee that our
extension of Botsing is free of defects. We mitigated this threat by testing the exten-
sion and manually analyzing a sample of the results. Finally, each frame has been run 30
times for each seeding configuration to take randomness into account and we derive our
conclusions based on standard statistical tests [110, 167].

External validity
We cannot guarantee that our results are generalizable to all crashes. However, we used
JCrashPack, which is the most recent benchmark for Java crash reproduction. This bench-
mark is assembled carefully from seven Java projects and contains 200 real-life crashes.
Since the EvoSuite test executor is unsuccessful in running the existing test cases of one
of the seven projects in JCrashPack (ElasticSearch), thereby test seeding and dynamic
analysis of model-seeding are not applicable on crashes of this project, we excluded Elas-
ticSearch crashes from JCrashPack. The diversity of crashes in this benchmark also sug-
gests mitigation of this threat.



3.8 Future Work

3

85

Verifiability
A replication package of our empirical evaluation is available at https://github.com/
STAMP-project/ExRunner-bash/tree/master. The complete results and analysis scripts
are also provided as a dataset in Zenodo [63] for long-term storage. Our extension of
Botsing is released under a Apache-2.0 license and available at https://github.com/
STAMP-project/botsing.

3.8 Future Work
Weobserved that one of the advantageous factors inmodel seeding, which helps the search
process to reproducemore crashes, consists in usingmoremultiple resources for collecting
the call sequences. Further diversification of sources is worth considering. In our future
work, we will consider other sources of information, like logs of the running environment,
to collect relevant call sequences and additional information about the actual usage of the
application.

Also, collecting additional information from the log fileswould enable using full-fledged
behavioral usage models (i.e., a transition system with probabilities on their transitions
quantifying the actual usage of the application) to select and prioritize abstract object be-
haviors according to that usage as it is suggested by statistical testing approaches [144].
For instance, we can put a high priority for the most uncommon observed call sequences
for the abstract object behavior selection. We observed that selecting the most dissimilar
paths in model-seeding helps the search process through crash reproduction. However,
there is no guarantee that this approach is the best one. In future studies, we examine this
approach with the new abstract object behavior selection approaches that we gain by the
new full-fledged behavioral usage models.

In this study, we focus on the impact of seeding during guided initialization by using
different values for 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑖𝑛𝑖𝑡] and 𝑃𝑟[𝑐𝑙𝑜𝑛𝑒] and setting 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑚𝑢𝑡] to the default
value (0.3). However, our results show that even with the default value 0.3, using seeded
objects during the search process helps to reproduce several crashes. Our future work in-
cludes a thorough assessment of that factor. Furthermore, in the current version of model
seeding, we noticed that the fixed size for the selected abstract object behaviors from the
usage models could negatively impact the crash reproduction process. This set’s size af-
fects Botsing’s performance and must be chosen carefully. If too small, abstract object
behaviors may not cover the transition system sufficiently, missing out on important us-
age information. Too few abstract object behaviors can misguide the search process. In
contrast, too many of them will lead to a time-consuming test concretization process. In
future investigations, we will study the integration of the search process with the abstract
object behavior selection from the models. This integration can guide the seeding (e.g., the
abstract object behavior selection) using the current status of the search process.

Finally, we hypothesize that this seeding strategy may be useful for other search-based
software testing applications and we will evaluate this hypothesis in our future work.

3.9 Conclusion
Manual crash reproduction is labor-intensive for developers. A promising approach to alle-
viate them from this challenging activity is to automate crash reproduction using search-

https://github.com/STAMP-project/ExRunner-bash/tree/master
https://github.com/STAMP-project/ExRunner-bash/tree/master
https://github.com/STAMP-project/botsing
https://github.com/STAMP-project/botsing


3

86 3 Search-based Crash Reproduction using Behavioral Model Seeding

based techniques. In this chapter, we evaluate the relevance of using both test and be-
havioral model seeding to improve crash reproduction achieved by such techniques. We
implement both test seeding and the novel model seeding in Botsing.

For practitioners, the implication is that more crashes can be automatically reproduced,
with a small cost. In particular, our results show that behavioral model seeding outper-
forms test seeding and no seeding without a major impact on efficiency. The different
behavioral model seeding configurations reproduce 6% more crashes compared to no seed-
ing, while test seeding reduces the number of reproduced crashes. Also, behavioral model
seeding can significantly increase the search initialization rate for 3 crashes compared to
no seeding, while test seeding performs worse than no seeding in this aspect. We hypoth-
esize that the improvements achieved by model seeding can be further extended by using
more resources (i.e., execution logs) for collecting the call sequences which are beneficial
for the model generation.

From the research perspective, by abstracting behavior through models and taking ad-
vantage of the advances made by the model-based testing community, we can enhance
search-based crash reproduction. Our analysis reveals that (1) using collected call se-
quences, together with (2) the dissimilar selection, and (3) prioritization of abstract object
behaviors, as well as (4) the combined information from source code and test execution,
enable more search processes to get started, and ultimately more crashes to be reproduced.

In our future work, we will explore whether behavioral model seeding has further
ranging implications for the broader area of search-based software testing. Furthermore,
we aim to study the effect of changing the seeding probabilities on the search process, ex-
plore other sources of data to generate the model and try different abstract object behavior
selection strategies.



4

87

4
Improving Search-based Crash

Reproduction With Helper
Objectives

EvoCrash relies on a single-objective evolutionary algorithm (Single-Objective Search here-
after) that evolves test cases according to an objective (Crash Distance hereafter) measur-
ing how far a generated test is from reproducing the crash. Crash Distance combines three
heuristics: line coverage (how far is the test from executing the line causing the crash?),
exception coverage (does the test throw the same exception as in the crash?), and stack trace
similarity (how similar is the exception stack trace from the one reported in the crash?).
Although Single-Objective Search performs well compared to the other crash reproduc-
tion approaches, a more extensive empirical study in Chapter 2 evidenced that it is not
successful in reproducing complex crashes (i.e., large stack traces). Hence, further studies
to enhance the guidance of the search process are required.

Just like any other evolutionary-based algorithm, Single-Objective Search requires to
maintain a balance between exploration and exploitation [163]. The former refers to the
generation of completely new solutions (i.e., test cases executing new paths in the code);
the latter refers to the generation of solutions in the neighborhood of the existing ones
(i.e., test cases with similar execution paths). Single-Objective Search ensures exploitation
through Guided Mutation, which guarantees that each solution contains the method call
causing the crash (and reported in the stack trace) [28]. However, the low exploration of
Single-Objective Search may lead to a lack of diversity, trapping the search in local optima
[163].

To tackle this problem, our prior study [68] investigated the usage of Decomposition-
based Multi-Objectivization (De-MO) to decompose the Crash Distance in three distinct
(sub-)objectives. A target crash is reproduced when the search process fulfills all three
sub-objectives at the same time. The empirical evaluation shows that De-MO slightly im-
proves the efficiency for some crashes. However, since the sub-objectives are not conflict-
ing, while conflicting objectives maintain more diversity in the population and guide the
search process away from local optima [168], their combined usage can be detrimental for



4

88 4 Improving Search-based Crash Reproduction With Helper Objectives

crash reproduction [68]. Our other previous study [169] also conjectured that increasing
diversity via additional objective is a feasible yet unexplored research direction to follow.
However, no systematic empirical study has been conducted to evaluate that hypothesis
further.

In this study, we investigate a new strategy to Multi-Objectivize crash reproduction
based on Helper-Objectives (MO-HO) rather than decomposition. More specifically, we
add two additional helper-objectives to Crash Distance (first objective): method sequence
diversity (second objective) and test case length minimization (third objective). The sec-
ond objective aims to increase the diversity in the method sequences; more diverse se-
quences are more likely to cover diverse paths and, consequently, improve exploration.
The third objective aims to address the bloating effect (i.e., the generated test cases can be-
come longer and longer after each generation until the all of the system memory is used),
as diversity can lead to an unnecessary and counter-productive increase of the test case
length [42, 170]. Since these three objectives are conflicting, we expect an improvement in
the solutions’ diversity and, hence, improving the effectiveness (crash reproduction ratio)
and efficiency.

To assess the performance ofMO-HO on crash reproduction, we use fivemulti-objective
evolutionary algorithms (MOEAs): NSGA-II [171], SPEA2 [172], MOEA/D [173], PESA-II
[174], and FEMO [175]. We apply them to 124 non-trivial crashes from JCrashPack (Chap-
ter 2). Those crashes can only be reproduced by a test case that brings the software under
test to a specific state and invokes the target method with one or more specific input pa-
rameters. We performed an internal assessment amongMO-HO algorithms to find the best
multi-objective evolutionary algorithm for this optimization problem. According to the re-
sults observed in this assessment, SPEA2 outperforms other MOEAs in crash reproduction
using MO-HO helper-objectives.

Furthermore, we compared the best-performing MO-HO (MO-HO + SPEA2) against
two state-of-the-art approaches (Single-Objective Search [28] and De-MO [68]) from the
perspectives of crash reproduction ratio and efficiency. Our results show that MO-HO out-
performs the state-of-the-art in terms of crash reproduction ratio and efficiency. This
algorithm improves the crash reproduction ratio by up to 100% and 93.3% (10% and 8%, on
average) compared to Single-Objective Search and De-MO, respectively. Also, after five
minutes of search, MO-HO reproduces five and six crashes (4% and 5% more crashes) that
cannot be reproduced by Single-Objective Search and De-MO, respectively. In addition,
MO-HO reproduces crashes significantly faster than Single-Objective Search and De-MO
in 34.6% and 37.9% of the crashes, respectively.

A replication package, enabling the full-replication of our evaluation and data analysis
of our results is available on Zenodo [64].

4.1 Background And Related Work
Several approaches have been introduced in the literature that aim to reproduce a given
crash. Some of these techniques (e.g., ReCore [32]) use runtime data (i.e., core dumps).
However, collecting the runtime data may induce a significant overhead and raises pri-
vacy concerns. In contrast, other approaches [29–31, 33] only require the stack traces of
the unhandled exception causing the crash, collected from executions logs or reported is-
sues. For Java programs, a stack trace includes the list of classes, methods, and code line



4.1 Background And Related Work

4

89

0 java.lang.ArrayIndexOutOfBoundsException: 4 (@@)
1 at [...]. FastDateParser.toArray(FastDateParser.java :413) (@@)
2 at [...]. FastDateParser.getDisplayNames ([...]:381)
3 at [...]. FastDateParser$TextStrategy.addRegex ([...]:664) (@@)
4 at [...]. FastDateParser.init ([...]:138)
5 at [...]. FastDateParser.<init >([...]:108)
6 [...] (@@)

Figure 4.1: LANG-9b crash stack trace [71]

numbers involved in the crash. As an example, Figure 4.1 shows a stack trace produced
by a crash (due to a bug) in Apache Commons Lang. This stack trace contains the type
of the exception (ArrayIndexOutOfBoundsException) and frames (lines 1-6) indicating the
stack of active method calls during the crash.

Among the various approaches solely using a stack trace as input, STAR [30] and
BugRedux [97] use backward and forward symbolic execution, respectively; MuCrash
[33] mutates the existing test cases of the classes involved in the stack trace; JCharming
[31, 134] applies model checking and program slicing for crash reproduction; and Con-
Crash [29] is designed to use pruning strategies to reproduce the crash-reproducing test
case.

EvoCrash is an evolutionary-based approach that applies a Single-Objective Genetic
Algorithm (Single-Objective Search) to generate a crash-reproducing test case for a given
stack trace and a target frame (i.e., the class under test for which the test case is generated).
The generated test will trigger a crash with a stack trace that is identical to the original one,
up to the target frame. For instance, for the stack trace in Figure 4.1 with a target frame
at line 3, EvoCrash generates a test case that reproduces the first three frames of this
stack trace (i.e., identical from lines 0 to 3). A previous empirical evaluation [28] shows
that EvoCrash performs better compared to other crash reproduction approaches relying
on model checking and program slicing [31, 134], backward symbolic execution [30], or
exploiting existing test cases [33]. The study also confirms that automatically generated
crash-reproducing test cases help developers to reduce their debugging effort.

4.1.1 Single-Objective Search Heuristics
To evaluate the candidate tests, and consequently guide the search process, Single-Objecti-
ve Search applies a fitness function called theCrashDistance. This fitness function contains
three components: (i) the line coverage distance, indicating the distance between the
execution trace and the target line (the line number pointed to by the target frame), (ii)
the exception type coverage, indicating whether the target exception is thrown, and (iii)
the stack trace similarity, indicating whether all frames (from the beginning up to the
target frame) are included in the triggered stack trace.

Definition 4.1.1 (Crash Distance [28]) For a given test case execution 𝑡 , the Crash Dis-
tance (𝑓 ) is defined as follows:

𝑓 (𝑡) = {
3×𝑑𝑠(𝑡) + 2×𝑚𝑎𝑥(𝑑𝑒) +𝑚𝑎𝑥(𝑑𝑡𝑟 ) if line not reached
3×𝑚𝑖𝑛(𝑑𝑠) + 2×𝑑𝑒(𝑡) +𝑚𝑎𝑥(𝑑𝑡𝑟 ) if line reached
3×𝑚𝑖𝑛(𝑑𝑠) + 2×𝑚𝑖𝑛(𝑑𝑒) +𝑑𝑡𝑟 (𝑡) if exception thrown

(4.1)



4

90 4 Improving Search-based Crash Reproduction With Helper Objectives

Where 𝑑𝑠(𝑡) ∈ [0,1] indicates how far the test 𝑡 is from reaching the target line using two
heuristics: approach level and branch distance [4]. The former measures the minimum
number of control dependencies between the execution path of 𝑡 and the target line; the
latter indicates how far 𝑡 is from satisfying the branch condition on which the target line is
control dependent. And 𝑑𝑒(𝑡) ∈ {0,1} indicates whether an exception with the same type as
the target exception is thrown (0) or not (1). Finally, 𝑑𝑡𝑟 (𝑡) ∈ [0,1] calculates the similarity
between the stack trace produced by 𝑡 and the expected one, based on classes, methods,
and line numbers appearing in both stack traces. Functions 𝑚𝑎𝑥(.) and 𝑚𝑖𝑛(.) denote the
maximum andminimum possible values for a function, respectively. Concretely, 𝑑𝑒(𝑡) and
𝑑𝑡𝑟 (𝑡) are only calculated upon the satisfaction of two constraints: exception type coverage
and stack trace similarity are relevant only when we reach the target line (first constraint)
and when we have the same type of exception (second constraint), respectively.

4.1.2 Single-Objective Search
The search process starts with a guided initialization during which an initial population
of randomly generated test cases is created. The algorithm ensures that each test case
calls the target method (pointed to by the target frame) at least once. In each generation,
the fittest test cases are evolved by applying guided mutation and guided crossover.
Guided mutation applies a classical mutation to the test cases while ensuring that the
mutated test contains one or more calls to the target method. Similarly, guided crossover
is a variant of the single-point crossover that preserves calls to the target methods in the
offsprings. Accordingly, each generated test case contains at least one call to the target
method (i.e., the method triggering the crash) [28].

With those operators, Single-Objective Search improves the exploitation, but it penal-
izes exploration of new areas of the search space by not generating diverse enough test
cases. As a consequence, the search process may get stuck in local optima.

4.1.3 Decomposition-based Multi-objectivization
To increase diversity during the search, a prior study [68] investigated the usage of Decomp-
osition-based Multi-Objectivization (called De-MO hereafter) to decompose the Crash Dis-
tance in three distinct (sub-)objectives. De-MO on the Crash Distance (temporarily) decom-
poses the function in three distinct (sub-)objectives: 𝑑𝑠(𝑡), 𝑑𝑒(𝑡), and 𝑑𝑡𝑟 (𝑡). Then, De-MO
uses a multi-objective evolutionary algorithm optimizing three objectives to generate one
crash-reproducing solution. In the end, the global optimal solution is a test case in the
Pareto front produced by MOEAs that satisfies all of the sub-objectives simultaneously.
The empirical evaluation shows that De-MO increases the efficiency of the crash repro-
duction process for some specific cases compared to Single-Objective Search. However, it
loses efficiency in some other cases.

In particular, in Multi-objectivization, search objectives should be conflicting to in-
crease the diversity of generated solutions [168]. However, the three sub-objectives in
De-MO [68] are tightly coupled and not conflicting: the stack trace similarity (𝑑𝑡𝑟 (𝑡)) can-
not be computed for test case 𝑡 without executing the target line (𝑑𝑠(𝑡) = 0) and throwing
the correct type of exception (𝑑𝑒(𝑡) = 0). Also, the type of exception (𝑑𝑒(𝑡)) is not relevant,
while test 𝑡 does not cover the statement in the target line (𝑑𝑠(𝑡) = 0.0).



4.2 Multi-Objectivization with Helper-Objectives (MO-HO)

4

91

4.2 Multi-ObjectivizationwithHelper-Objectives (MO-HO)
Decomposing the Crash Distance leads to a set of dependent sub-objectives, which reduces
the effect of improving diversity through multi-objectivization [168]. In this study, we fo-
cus on using new helper-objectives in addition to the Crash Distance, rather than decom-
posing it. We define two helper-objectives called method sequence diversity and test
length minimization that aim to (i) increase diversity in the population (i.e., generated
tests) and (ii) address the bloating effect [42, 147]. Then, we use five different evolution-
ary algorithms belonging to different categories of MOEAs (e.g., decomposition-based and
rank-based) to solve this optimization problem. In the remainder of this section, we first
discuss the two helper-objectives. Next, we present the MOEAs used to solve this problem.

4.2.1 Helper-objectives
As suggested by Jensen et al. [168], adding helper-objectives to an existing single objective
can help search algorithms escape from local optima. However, this requires that the
helper objectives are in conflict with the primary one [168]. Therefore, defining proper
helper-objectives is crucial.

Method Sequence Diversity. The first helper-objective seeks to maximize the diver-
sity of the method-call sequences that compose the generated tests because more diverse
tests might execute different paths or behaviors of the target class. Notice that each test
case is a sequence of statements, where each statement belongs to one of the following
five different categories [42]: primitive statements, constructors, field statements, method
calls, or assignments. Furthermore, the length of a test case is variable, i.e., it is not fixed a
priori and can vary during the search.

In recent years, several functions have been introduced to measure test case diversity
[147]. These functions measure the diversity between two test cases by using a binary
encoding function to calculate the distance between the corresponding encoded vectors
using the Levenshtein distance [176], Hamming distance [177], etc. For three or more test
cases, the overall diversity corresponds to the average pairwise diversity of the existing
test cases [147]. These metrics have been used in other testing tasks (e.g., automated test
selection), but not in crash reproduction.

To measure the value of this helper-objective for the generated solutions, we follow
a similar procedure. Let us assume that 𝐹 = {𝑓1, 𝑓2, ..𝑓𝑛} is a set of public and protected
methods in the target class (i.e., method calls that can be called directly by the generated
tests), and 𝑇 = {𝑡1, 𝑡2, ..𝑡𝑚} is a set of generated test cases. To calculate the diversity of
𝑇 , we first need to encode each 𝑡𝑘 ∈ 𝑇 into a binary vector. We use the same encoding
function proposed by Mondal et al. [147]: each test case 𝑡𝑘 ∈ 𝑇 corresponds to a binary
vector 𝑣𝑘 of length 𝑛 (i.e., the number of public and protected methods in the target class).
Each element 𝑣𝑘[𝑖] of the binary vector denotes whether the corresponding method 𝑓𝑖 ∈ 𝐹
is invoked by the test case 𝑡𝑘 . More formally, for each method 𝑓𝑖 ∈ 𝐹 , the corresponding
entry 𝑣𝑘[𝑖] = 1 if 𝑡𝑘 calls 𝑓𝑖 ; 𝑣𝑘[𝑖] = 0 otherwise.

Then, we calculate the diversity for each pair of test cases 𝑡𝑘 and 𝑡𝑖 as the Hamming
distance between the corresponding binary vectors 𝑣𝑘 and 𝑣𝑖 [177]. TheHamming distance
(Hamming) between two vectors corresponds to the number ofmismatches (Thenumber of
positions at which the corresponding bits are different) over the total length of the binary



4

92 4 Improving Search-based Crash Reproduction With Helper Objectives

vectors. For instance, the Hamming distance between 𝐴 = ⟨1,1,0,1,0⟩ and 𝐵 = ⟨0,1,0,1,1⟩
equals to 2/5 = 0.4.
Definition 4.2.1 (Method Sequence Diversity) Given an encoding function𝑉 (.), themethod
sequence diversity (𝑀𝑆𝐷) of a test 𝑡 ∈ 𝑇 corresponds to the average Hamming distance of that
test from the other test cases in 𝑇 :

𝑀𝑆𝐷(𝑡) =
∑𝑡𝑖∈𝑇⧵{𝑡}𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑉 (𝑡),𝑉 (𝑡𝑖))

|𝑇 | − 1 (4.2)

In our approach, 𝑀𝑆𝐷 should be maximized to increase the chance of the generated
test to execute new paths or behaviors in the target class. Since our tool (see Section 4.3.1)
is designed for minimization problems, weminimize the method sequence similarity using
the formula:

𝑓𝑀𝑆𝐷(𝑡) = 1−𝑀𝑆𝐷(𝑡) (4.3)
Test Length Minimization While increasing method sequence diversity can help

to execute diverse paths of the target class, a previous study [170] also showed that test
diversity metrics (such as call sequence diversity) can reduce coverage. This is due to the
bloating effect, i.e., diversity will also promote larger test cases over short ones. Let us
assume that we have a set of short test cases with few method calls in our population
(most of the elements in their binary vectors are 0). A lengthy test case 𝑡𝐿 that calls all
the methods of the target class will have a binary vector containing only 1 values. As a
consequence, 𝑡𝐿 will have a large Hamming distance from the existing test cases.

Larger tests introduce two potential issues: (i) they are likely more expensive to run
(extra overhead), and (ii) they may contain spurious statements that do not help code
coverage (which is a part of Crash Distance). In the latter case, mutation can become
less effective as it may mutate spurious statements rather than the relevant part of the
chromosomes. Therefore, test diversity is in conflict with Crash Distance. To avoid the
bloating effect, our second helper-objective is test length minimization, which counts the
number of statements in a given test:

Definition 4.2.2 (Test Length Minimization) For a test case 𝑡 with a length |𝑡 |, the fit-
ness function is:

𝑓𝑙𝑒𝑛(𝑡) = |𝑡| (4.4)

4.2.2 Multi-objective Evolutionary Algorithms
In this study, our goal is to solve a multi-objectivized problem by minimizing the three
objective functions (Crash Distance, 𝑓𝑀𝑆𝐷 , and 𝑓𝑙𝑒𝑛). In theory, we could consider various
MOEAs, each coming with different advantages and disadvantages over different opti-
mization problems (e.g., multimodal, convex, etc.). However, we cannot establish upfront
what type of MOEA works better for crash reproduction as the shape of the Pareto Front
(i.e., type of problem) for crash reproduction is unknown. Hence, we chose five MOEAs
from different categories to determine the best algorithm for MO-HO: NSGA-II uses the
non-dominated sorting procedure; SPEA2 is an archive-based algorithm that selects the
best solutions according to the fitness value; PESA-II divides the objective space to hyper-
boxes and selects the solutions from the hyper-boxes with the lower density; MOEA/D



4.2 Multi-Objectivization with Helper-Objectives (MO-HO)

4

93

decomposes the problem to multiple sub-problems; and FEMO, is a (1+1) evolutionary al-
gorithm that evolves tests solely with mutation and without crossover.

We use the same stopping conditions for all search algorithms, which is a maximum
search budget, or when the target crash is successfully reproduced, i.e., a solution with a
Crash Distance of 0.0 is found. Also, to increase exploitation during the search, all algo-
rithms use the guided crossover and guided mutation operators.

In the following subsections, we briefly describe the selected search algorithms and
their core characteristics.

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [171].
In NSGA-II, offspring tests are generated, from given a population of size 𝑁 , using genetic
operators (crossover and mutation). Next, NSGA-II unions the offspring population with
the parent population into a set of size 2𝑁 and applies a non-dominated sorting to select the
𝑁 individuals for the next generation. This sorting is performed based on the dominance
relation and crowding distance: the solutions are sorted into subsequent dominance fronts.
The non-dominated solutions are in the first front (𝐹𝑟𝑜𝑛𝑡0). These solutions have a higher
chance of being selected. Furthermore, crowding distance is used to raise the chance of the
most diverse solutions within the same front to be selected for the next generation. In each
generation, parent test cases are selected for reproduction using the binary tournament
selection.

Strength Pareto Evolutionary Algorithm 2 (SPEA2) [172].
Besides the current population, SPEA2 contains an external archive that collects the non-
dominated solutions among all of the solutions considered during the search process.
SPEA2 assigns a fitness value to each solution (test) in the archive. The fitness value of
solution 𝑖 is calculated by summing up two values: Raw fitness (𝑅(𝑖) ∈ ℕ0), which rep-
resents the dominance relation of 𝑖; and Strength value (𝑆(𝑖) ∈ [0,1]), which estimates the
density of solutions in the same Pareto front (solutions that are not dominating each other).
A solution with lower fitness value is “better” and has a higher chance of being selected.
For instance, the non-dominated solutions have a 𝑅(𝑖) = 0, and their fitness values are
lower than 1.

The external archive has a fixed size, which is given at the beginning of the search
process. After updating the archive in each iteration, the algorithm checks if the size of
the archive exceeds this given size. If the size of the archive is smaller than the given
size, SPEA2 fills the archive with the existing dominated solutions. In contrast, if the
size of the archive is bigger than the given size, this algorithm uses a truncation operator
to remove the solutions with a high fitness value from the archive. After updating the
archive, SPEA2 applies binary tournament selection based on the calculated fitness values,
selects parent solutions, and generates offspring solutions via crossover and mutation.

Pareto Envelop-based Selection Algorithm (PESA-II) [174].
Similar to SPEA2, PESA-II benefits from an external archive. In each generation, the
archive is updated by storing the non-dominated solutions in the archive and the current
population. However, the difference is in the selection strategy and archive truncation. In
this algorithm, instead of assigning a fitness value to each of the solutions in the archive,
the objective space is divided, based on the existing solutions, into hyper-boxes or grids.



4

94 4 Improving Search-based Crash Reproduction With Helper Objectives

Non-dominated solutions in a hyper-box with lower density have a higher chance of being
selected and a lower chance of being removed.

Multi-objective EvolutionaryAlgorithmBased onDecomposition (MOEA/D) [173].

This algorithmdecomposes the𝑀-objectives problem into𝐾 single-objective sub-problems
and optimizes them simultaneously. Each sub-problem has different weights for the opti-
mization objectives. The 𝐾 sub-problems 𝑔(𝑥|𝑤1),… , 𝑔(𝑥|𝑤𝐾 ) are obtained using a scalar-
ization function 𝑔(𝑥|𝑤) and a set of uniformly-distributed weight vectors𝑊 = {𝑤1,… ,𝑤𝑘}.
The decomposition can be donewith several techniques such asweighted sum [178], Tcheby-
cheff [178], or Boundary Intersection [179, 180]. In each generation, MOEA/D maintains
the best individuals for each subproblem 𝑔(𝑥|𝑤𝑖), while the reproduction (based on crossover
andmutation) is allowed only among solutions (tests) within the same neighborhood (mat-
ing restriction).

Fair Evolutionary Multi-objective Optimizer (FEMO) [175].
This algorithm is a local (1+1) evolutionary algorithm. It means that in each iteration, only
one solution is evolved by the mutation operator to have only one offspring solution for
the next generation. FEMO contains an archive. In the first iteration, it generates a random
solution and places it in the archive. In the next generations, it selects one individual from
the archive and evolves it by mutation operator to generate a new solution. Finally, if
the new solution dominates at least one of the solutions in the archive, it adds the new
solution to the archive and removes the dominated solutions.

Each solution in the archive has a weight (𝑤) that indicates the number of times that
a solution was selected from the archive. So, the initial weight of a newly generated test
case is 0. During the selection, FEMO selects a solution randomly from the solutions in
the archive that have the lowest 𝑤 .

4.3 Empirical Evaluation
To assess the impact of MO-HO on crash reproduction, we performed an empirical evalu-
ation and answered the following research questions.

RQ1: Which Multi-Objective algorithm performs better with MO-HO’s search objectives
in terms of crash reproduction?

RQ2: What is the impact of the MO-HO algorithm on crash reproduction compared to
Single-Objective Search and De-MO?

RQ3: How does MO-HO’s efficiency compare to Single-Objective Search and De-MO?

4.3.1 Implementation
Since other crash reproduction approaches are not openly available, we implemented
a new open-source evolutionary-based crash reproduction framework, called Botsing.¹
Botsing is well-tested and designed to be easily extensible for new techniques (new evolu-
tionary algorithms, new genetic operators, etc.). It relies on EvoSuite [6], an evolutionary-
based unit test generation tool, for code instrumentation and for the internal representa-
tion of an individual (i.e., a test case) by using evosuite-client as a dependency.
¹Available at https://github.com/STAMP-project/botsing

https://github.com/STAMP-project/botsing


4.3 Empirical Evaluation

4

95

For this study, we implemented the techniques used in previous studies for crash re-
production (Single-Objective Search and De-MO) in Botsing. Moreover, we implemented
all of the MO-HO approaches, which include the two fitness functions for our new helper-
objectives (method sequence diversity and test length) and the fiveMOEAsmentioned above.

4.3.2 Setup
Crash Selection
We selected our crashes from JCrashPack (Chapter 2). Based on the reported results
in Chapter 2 and our prior studies on decomposition-based crash reproduction [68], we
know that Single-Objective Search and De-MO face various challenges to reproduce many
of the crashes in this benchmark. For this study, we apply our approach and state-of-the-
art algorithms to 124 crashes from JCrashPack. These crashes stem from six open-source
projects: JFreeChart, a framework for building interactive charts; Commons-lang, a library
providing extra utilities to the java.langAPI; Commons-math, a library for mathematical
and statistical usages; Mockito, a testing framework for mocking objects; Joda-time, a
library for date and time manipulation; XWiki, a large-scale enterprise wiki management
system.

Algorithm Selection
Weattempted to reproduce the selected crashes using seven evolutionary algorithms: Single-
Objective Search,De-MO, andMO-HOwith fiveMOEAs (NSGA-II, SPEA2, PESA-II,MOEA/D,
and FEMO). For each crash, we ran each algorithm on each frame of crash stack traces. We
repeated each execution 30 times to take randomness into account, for a total number of
199,710 independent executions. We ran the evaluation on servers with 40 CPU-cores, 128
GB memory, and 6 TB hard drive.

Evaluation procedure
In RQ1, we perform an internal assessment of MO-HO by comparing all MOEAs to de-
termine the best-performing one when optimizing the search objectives in MO-HO. Then,
to answer RQ2 and RQ3, we use the best-performing MO-HO configuration (MOEA) to
evaluate its effectiveness and efficiency against the state-of-the-art crash reproduction
approaches.

Parameter Settings
We set the search budget to fiveminutes, as suggested by previous studies on evolutionary-
based crash reproduction [28]. Also, we fixed the population size and archive size (if
needed) to 50 individuals, as recommended in prior studies on test case generation [42].
For MO-HO with PESA-II, the number of bisections for gridding is set to the default value
of five grids. In MO-HO with MOEA/D, the weight vectors are obtained using a variant
simplex-lattice design [181] and using the Tchebycheff approach as the aggregation function.
Finally, we set the neighborhood selection probability to 0.2 (set to the default value [182])
and the maximum number of solutions that can be replaced in each generation to 50. For all
MOEAs, we use the guided mutation with mutation probability 𝑝𝑚 = 1/𝑛 (𝑛 is the length of
the test case), and guided crossover with crossover probability 𝑝𝑐 = 0.8 (the same parameters
used for the suggested baselines).



4

96 4 Improving Search-based Crash Reproduction With Helper Objectives

4.3.3 Data Analysis
To evaluate the crash reproduction ratio (i.e., the percentage of successful crash reproduc-
tion attempts in 30 rounds of runs) of different algorithms, we follow the same procedure
as the study presented in Chapter 3: for each crash 𝐶 , we find the highest frame that can
be reproduced by at least one of the algorithms (𝑟𝑚𝑎𝑥 ). We analyze the crash reproduction
ratio of each algorithm for a target crash 𝐶 targeting frame 𝑟𝑚𝑎𝑥 .

To check whether the performance (reproduction ratio) of MOEAs significantly differs
from one another, we use the Friedman test [183]. The Friedman test is a non-parametric
version of the ANOVA test [184], i.e., it does not make any assumption about the data dis-
tribution. It is a multiple-problem statistical test and has been widely used in the literature
to compare randomized algorithms [167, 185]. Friedman’s test allows to rank and statis-
tically compare different MOEAs over multiple independent problems, i.e., crashes in our
case. For Friedman’s test, we use a level of significance 𝛼 = 0.05. If the 𝑝-values obtained
from Friedman’s test are significant (𝑝-values <= 0.05), we apply pairwise multiple com-
parison using Conover’s post-hoc procedure [186]. To correct for multiple comparison
errors, we adjust the 𝑝-values from Conover’s procedure using Holm-Bonferroni [187].

To answer 𝑅𝑄2, we need to determine whether an algorithm reproduces a crash. Since
we repeat each execution 30 times, we use the majority of outcomes for a crash reproduc-
tion result. In other words, if an algorithm could reproduce a crash in ≥ 15 runs (i.e., re-
production ratio of ≥ 50%), we count that frame as reproduced.

To compare the number of reproduced crashes by each algorithm, we used the same
procedure used by Almasi et al. [25] and Campos et al. [188]: we check crash reproduction
status and reproduction ratio of the best-performing MO-HO algorithm (according to the
results of 𝑅𝑄1), Single-Objective Search, and De-MO at five time intervals: 1, 2, 3, 4 and 5
minute.

To evaluate the efficiency of the algorithms (𝑅𝑄3), we analyze the time spent by the
best MO-HO algorithm, Single-Objective Search, and De-MO for generating a crash re-
producing test cases. Since efficiency is only applicable to the reproduced crashes, we
compare the efficiency of algorithms on the crashes that are reproduced at least once by
one of the algorithms. If, for one execution, an algorithm was not able to reproduce the
crash, it means that it consumed the maximum allowed time budget (5 minutes). To assess
the effect size of differences between algorithms, we use the Vargha-Delaney Â12 statistic
[165]. A value of Â12 < 0.5 for a pair of factors (𝐴,𝐵) shows that 𝐴 reproduced the target
crash in a shorter time, while a value of Â12 > 0.5 indicates the opposite. Besides, Â12 = 0.5
means that there is no difference between the factors. To evaluate the significance of ef-
fect sizes (Â12), we use the non-parametric Wilcoxon Rank Sum test, with 𝛼 = 0.05 for the
Type I error.

A replication package of our evaluation is available on Zenodo [64]. It contains the
selected crashes, the results and data analysis presented in this chapter, as well as the
implementation of MOEAs in Botsing and a Docker-based infrastructure to enable the
full-replication of our evaluation.

4.4 Results
This section presents the results of our empirical evaluation and answers, one by one, our
research questions.



4.4 Results

4

97

Table 4.1: MOEAs ranking (in MO-HO) in terms of crash reproduction ratio (Friedman’s test) and results of the
pairwise comparison (𝑝-value ≤ 0.05)

Rank MOEA Rank value Significantly better than
1 SPEA2 2.63 (2), (3), (4), (5)
2 PESA-II 2.86 (4), (5)
3 NSGA-II 2.90 (4), (5)
4 MOEAD 4.97 (5)
5 FEMO 5.05

●
●●●●●●●0.00

0.25

0.50

0.75

1.00

FEMO MOEA/D NSGA−II PESA−II SPEA2

Algorithms

R
ep

ro
du

ct
io

n 
R

at
io

 (
pe

rc
en

t)

Figure 4.2: Crash reproduction ratio (out of 30 executions) of MO-HO algorithms. The upper and lower edge
of each box present the upper and lower quartile, respectively. (□) denotes the arithmetic mean and (—) is the
median.

4.4.1 Best MOEA for MO-HO (RQ1)
Figure 4.2 presents the crash reproduction ratio of the MOEAs applied to our MO-HO
framework. For this analysis, we consider the number of times (in percentage) each
MOEAs could reproduce a given crash across 30 runs and using a search budget of five
minutes. On average (the squares in Figure 4.2), the best algorithm for MO-HO is SPEA2,
with an average and median of 76% and 100% of successful reproductions, respectively.
SPEA2 is Followed by PESA-II, NSGA-II, and MOEAD. Also, this figure shows that the first
quartile of the crash reproduction ratio of SPEA2 is, at least, about 25% higher than other
MOEAs.

According to Friedman’s test, the differences in reproduction ratios are statistically
significant (𝑝-value ≤ 0.05). This means that some MOEAs are significantly better than
others within our MO-HO framework. For completeness, Table 4.1 reports the ranking
produced by the Friedman test. To better understand for which pairs of MOEAS the sta-
tistical significance holds, we applied the post-hoc Conover’s procedure for the pairwise
comparison. The results of the comparison are also reported in Table 4.1. According to this
table, the best-performing algorithm is MO-HO + SPEA2, which has a significantly higher



4

98 4 Improving Search-based Crash Reproduction With Helper Objectives

●

●●●●●●●

60 seconds budget 120 seconds budget 180 seconds budget 240 seconds budget 300 seconds budget

De−MO MO−HO Single De−MO MO−HO Single De−MO MO−HO Single De−MO MO−HO Single De−MO MO−HO Single

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Algorithms

R
ep

ro
du

ct
io

n 
R

at
io

 (
pe

rc
en

t)

Figure 4.3: Crash reproduction ratio (out of 30 executions) of MO-HO against state-of-the-art in five different
time intervals. (□) denotes the arithmetic mean and (—) is the median.

●

●

●

●

●

●

●

●

●

●

0

1

2

3

5

6

7

8

60 120 180 240 300
Time budget (seconds)

# 
of

 c
ra

sh
es

MOHO.reproduces ● ●less more than ● De−MO Single objective

Figure 4.4: Number of crashes reproduced only by MO-HO or only by one of the state-of-the-art algorithms.

crash reproduction ratio compared to other MO-HO algorithms. The next algorithms are
MO-HO + PESA-II and MO-HO + NSGA-II. These two algorithms are significantly better
than MO-HO + MOEAD and MO-HO + FEMO. Finally, the worst algorithm in terms of
crash reproduction is FEMO, which is significantly worse than other MOEAs.

Summary (RQ1). MO-HO + SPEA2 achieved the highest performance in terms of crash
reproduction ratio compared to MO-HO + other MOEAs. The next best-performing MOEAs,
in terms of crash reproduction, are PESA-II and NSGA-II.

4.4.2 Crash Reproduction (RQ2)
Figure 4.3 depicts the crash reproduction ratio of the best-performing MO-HO configura-
tion (i.e., with SPEA2), Single-Objective Search, and De-MO at five time intervals (search
budgets). As indicated in this figure, the average crash reproduction ratio of MO-HO is
higher than other algorithms at all of the time intervals. Also, the median crash repro-



4.4 Results

4

99

duction ratio for this algorithm is always 100%. Furthermore, the maximum improvement
achieved by MO-HO with the five-minutes search budget is in XWIKI-14599 (with 100%
improvement) andMATH-3b (with 93.3% improvement) compared to Single-Objective Sea-
rch and De-MO, respectively. In contrast, the largest reduction in reproduction ratio by
MO-HO (with the five-minutes budget) is inXCOMMONS-1057 (with 30% drop) andXWIKI-
13616 (with 40% reduction) compared to Single-Objective Search and De-MO, respectively.
We will explain the negative factors in MO-HO, which lead to negative results for this
algorithm in some corner cases, in Section 4.4.4.

Moreover, we can see that De-MO is the second-best algorithm in all of the time in-
tervals. In the first 60 seconds of the crash reproduction process, on average, its crash
reproduction ratio is 4% better than Single-Objective Search. However, in contrast to the
other two algorithms, the crash reproduction ratio of this algorithm changes only slightly
after the first 120 seconds. Hence, at the end of the search process, the average crash
reproduction ratio of De-MO is only 2% better than Single-Objective Search. In contrast,
since the crash reproduction ratio of MO-HO keeps growing, on average, it remains more
effective than Single-Objective Search (about 10%) even after 300 seconds. The other in-
teresting point in Figure 4.3 is the first quantile of MO-HO. In the first 60 seconds, this
value is lower than 12%, but it grows up to 62% after 300 seconds. This improvement is
not observable in state-of-the-art algorithms.

Furthermore, MO-HO is more stable in crash reproduction after 300 seconds budget
compared to the other algorithms. Figure 3 demonstrates that the interquartile range (i.e.,
the difference between first and third quartile) of crash reproduction ratio in MO-HO with
the 300 seconds budget is 46% smaller than the interquartile range of other algorithms
(being 38.3% for MO-HO, 76.6%. for Single-Objective Search, and 70.8% for De-MO).

Also, Figure 4.4 shows the number of crashes, which are reproduced by MO-HO, but
not by the state-of-the-art algorithms and vice versa in different time intervals. As indi-
cated in this figure, in all of the time intervals, the number of crashes that are reproduced
by MO-HO is higher than the crashes that it cannot reproduce. In the best case (after
1 minute of search), MO-HO reproduces eight and seven new crashes that cannot be re-
produced by Single-Objective Search and De-MO, respectively. In contrast, there is only
one crash that can be reproduced by De-MO and not by MO-HO. Also, after five minutes,
MO-HO still reproduces more crashes than the baselines: it reproduces five and six new
crashes that cannot be reproduced by Single-Objective Search and De-MO, respectively.

The crashes that are reproduced by MO-HO after five minutes but not by Single-Obje-
ctive Search are: TIME-10b frame 5, XCOMMONS-
928 frame 2, XWIKI-14227 frame 2, XWIKI-14475 frame 1, and XWIKI-14599 frame 1. And the
crashes that are reproduced by MO-HO after five minutes but not by De-MO are: MOCKITO-
16b frame 4, TIME-5b frame 3, XWIKI-13377 frame 3, XWIKI-14227 frame 2, MATH-3b frame
1, and MOCKITO-10b frame 1.

Figure 4.5 shows the crash’s stack trace reported in the issue XWIKI-14227. MO-HO
is the only approach that can reproduce the first two frames of this stack trace. Here,
the target method is useMainStore (Figure 4.6), which does not have any input argument.
Hence, to reproduce this crash, the crash reproducing test generated by MO-HO (depicted
in Figure 4.8) should invoke specific methods (e.g., setWiki, setWikiId) to set different
local variables in the xwikiContext0 object, and then, pass this object to the class under test



4

100 4 Improving Search-based Crash Reproduction With Helper Objectives

0 java.lang.NullPointerException: null
1 at [...]. XWiki.getPlugin(XWiki.java :5619)
2 at [...]. ActivityStreamConfiguration.useMainStore ([...]:85)
3 [...]

Figure 4.5: XWIKI-14227 crash’s stack trace.

82 public boolean useMainS tore ( ) {
83 XWikiContext c on t e x t = c o n t e x t P r o v i d e r . g e t ( ) ;
84 i f ( c on t e x t . i sMainWiki ( ) ) { return fa l s e ; }
85 Ac t i v i t y S t r e amP l u g i n p l ug i n = ( A c t i v i t y S t r e amP l u g i n )

c on t e x t . ge tWik i ( ) . g e t P l u g i n [ . . . ] c on t e x t ) ; / / <−− t a r g e t l i n e
86 }

Figure 4.6: Method useMainStore appears in the second frame of the XWIKI-14227 crash’s stack trace.

(here, ActivityStreamConfiguration). Since the crash reproducing test case generated
by MO-HO does not add any plugin to the xWiki0 object, the execution of this test indeed
leads to a NullPointerException thrown at line 5619 of the getPlugin method in Figure
4.7. Generating such a specific test case requires a search process with high exploration
ability, which can generate diverse test cases.

We do note that Single-Objective Search cannot even generate a test case covering
the target line (line 85 of the useMainStore method). However, De-MO can cover the
target line thanks to more test generation diversity delivered by the application of multi-
objectivization.

Moreover, Single-Objective Search and De-MO reproduces two crashes that cannot
be reproduced by MO-HO after five minutes. We will analyze these corner cases later in
Section 4.4.4.

In addition, after five minutes of crash reproduction, De-MO reproduced six crashes,
which are not reproduced by Single-Objective Search. Still, there are more crashes (seven)
that can be reproduced by Single-Objective Search but not by De-MO. This result shows
that despite the new crashes reproduced byDe-MO, this algorithmwas counter-productive
with respect to the total number of reproduced crashes.

Summary (RQ2). On average, MO-HO has the highest crash reproduction ratio inde-
pendently from the search budgets.

4.4.3 Efficiency (RQ3)
Figure 4.9 shows the time (in seconds) needed by the MO-HO and the state-of-the-art al-
gorithms to successfully reproduce the crashes in our benchmark. On average, the fastest
algorithm is MO-HO, with an average search time of 71 seconds per crash replication. The
median of its running time is lower than 10 seconds. The second fastest algorithm is De-
MO that, on average, uses 84 seconds to reproduce the crashes. The slowest algorithm is
Single-Objective Search, which demands, on average, about 100 seconds.

Moreover, the biggest improvements achieved byMO-HO in terms of efficiency are for
XWIKI-14599, in which MO-HO requires only 3% of the time required by Single-Objecti-
ve Search to achieve crash reproduction, and MATH-3b, in which MO-HO requires only



4.4 Results

4

101

5617 public XWik i P l u g i n I n t e r f a c e g e t P l u g i n ( [ . . . ] ) {
5618 XWikiPluginManager p l u g i n s = ge tP lug inManager ( ) ;
5619 Vector < S t r i ng > p l u g i n l i s t = p l u g i n s . g e t P l u g i n s ( ) ;
5620 [ . . . ]
5621 }

Figure 4.7: Method getPlugin appears in the first frame of the XWIKI-14227 crash’s stack trace.

1 public void t e s t 0 ( ) throws Throwable {
2 Ac t i v i t y S t r e amCon f i g u r a t i o n ac0 = new Ac t i v i t y S t r e amCon f i g u r a t i o n ( ) ;
3 XWikiContext xWikiContext0 = new XWikiContext ( ) ;
4 XWiki xWiki0 = new XWiki ( ) ;
5 xWikiContext0 . s e tWik i ( xWiki0 ) ;
6 xWikiContext0 . s e tW ik i I d ( ” 4~ YR l f I > .U { i b ” ) ;
7 Prov ide r <XWikiContext > p r o v i d e r 0 = ( P rov ide r <XWikiContext > )

mock ( [ . . . ] ) ;
8 doReturn ( xWikiContext0 ) . when ( p r o v i d e r 0 ) . g e t ( ) ;
9 I n j e c t o r . i n j e c t ( ac0 , [ . . . ] , ” c o n t e x t P r o v i d e r ” , ( Ob j e c t ) p r o v i d e r 0 ) ;

10

11 / / Und e c l a r e d e x c e p t i o n !
12 ac0 . useMa inS tore ( ) ;
13 }

Figure 4.8: Crash-reproducing test case generated by MO-HO for the XWIKI-14227 crash.

7% of the time required by De-MO to finish the crash reproduction task. However, the
biggest efficiency losses by MO-HO are in MATH-81b with 45 seconds drop (15% of time
budget) and XRENDERING-481 with 145 seconds drop (48% of time budget) compared to
Single-Objective Search and De-MO, respectively.

Table 4.2 compares the budget consumption of the algorithms from a statistical point of
view, i.e., according to the effect sizes (Â12 < 0.5) and statistical significance (p-value < 0.5).
According to this table, MO-HO is the fastest algorithm: it significantly reproduced 43
(34.6% of crashes) and 47 (37.9% of crashes) crashes faster than Single-Objective Search
and De-MO, respectively. Most of these significant improvements have large effect sizes
(35 against Single-Objective Search and 33 againstDe-MO). In cases thatMO-HO improves
efficiency, on average, this algorithm decreases the time required for crash reproduction
by 47% and 58% compared to De-MO and Single-Objective Search, respectively.

Furthermore, Table 4.2 shows a few cases, in which MO-HO increases the consumed
time compared to the state-of-the-art: 3 against Single-Objective Search and 5 against De-
MO. In most of these cases (7 out of 8), the crash reproduction process needs to reproduce a
crash with only one frame. Even the exceptional case is a stack trace with three frames. In
contrast, in cases that MO-HO wins, we have many crashes with more frames (six frames,
for instance). Also, this table shows that De-MO is significantly slower than Single-Obje-
ctive Search in 11 crashes. Meanwhile, MO-HO is only slow in reproducing three crashes.
Hence, our proposed algorithm reduces the cases inwhich themulti-objectivization search
process is slower than the single objective search by 73%.

Summary (RQ3). The fastest crash reproduction algorithm is MO-HO with an average



4

102 4 Improving Search-based Crash Reproduction With Helper Objectives

●● ●●●●●●●●●●●●●●

●

●●●●●●●●●●
●
●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●

●

●●●

●

●●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●●
●
●●●●●

●

●●●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●

●●
●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●

●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●
●
●●●●●●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●

●

●●

●●●●●●

●

●●●●●●●●●

●

●

●●●

●

●●●

●

●●●●●

●

●

●●●

●

●●●

●

●

●

●●●●●

●

●●●●●

●

●

●

●●

●

●●●●

0

100

200

300

De−MO MO−HO Single

Algorithms

C
om

su
m

ed
 T

im
e 

(s
ec

on
ds

)

Figure 4.9: Overall budget consumption in seconds (log. scale). (□) denotes the arithmetic mean and (—) is the
median.

Table 4.2: Pairwise comparison of the budget consumption with a small (S), medium (M), and large (L) effect size
Â12 < 0.5 and a statistical significance < 0.05.

#(Â12 < 0.5) Single De-MO MO-HO
L M S L M S L M S

Single - - - 7 - 4 1 - 2
De-MO 13 7 2 - - - 3 2 -
MO-HO 35 6 2 33 10 4 - - -

improvement in running time in 34.6% of the crashes compared to the state of the art.

4.4.4 Corner Cases Analysis
Despite the notable improvements achieved by MO-HO, there are few specific cases, in
which Single-Objective Search or De-MO outperform MO-HO. For instance, in Section
4.4.2, Single-Objective Search and De-MO reproduce two crashes that are not reproduced
by MO-HO. Also, we observed in Section 4.4.3 that the efficiency of these two algorithms
is higher than MO-HO in 8 crashes.

To understand whyMO-HO is counter-productive in a few cases, we performed a man-
ual analysis to analyze the factors inMO-HO that negatively impact the crash reproduction
process. Results of our analysis point to two adverse factors: extra overhead in calcu-
lating the objectives (fitness evaluation) and helper-objectives misguidance.

Extra calculation in fitness evaluation
In some cases, crash reproduction is trivial, and the search process reproduces it in a few
seconds. For instance, in TIME-8b [71], Single-Objective Search and De-MO reproduce the
crash in about a second. The time required by MO-HO to reproduce this crash is three
seconds (3 times more). This stems from the fact that fitness function evaluation in MO-
HO is more time-consuming than the state-of-the-art: Single-Objective Search andDe-MO
need to calculate only the crash distance for each test case evaluation, whileMO-HO needs



4.5 Discussion

4

103

0 java.lang.ArrayIndexOutOfBoundsException: 2
1 at org.apache.commons.math.linear.BigMatrixImpl.operate(BigMatrixImpl.java :997)

Figure 4.10: MATH-98b crash’s stack trace [71].

991 public BigDec imal [ ] op e r a t e ( B igDec imal [ ] v ) {
992 f ina l int nRows = th i s . getRowDimension ( ) ;
993 f ina l int nCols = th i s . getColumnDimension ( ) ;
994 f ina l BigDec imal [ ] out = new BigDec imal [ v . l e ng t h ] ;
995 for ( in t row = 0 ; row < nRows ; row++) {
996 . . .
997 out [ row ] = sum ; / / <−− t a r g e t l i n e
998 }
999 . . .

1000 }

Figure 4.11: Method operate appears in the first frame of the MATH-98b crash’s stack trace [71].

to calculate the call diversity, as well. This extra calculation lengthens the search process
by a couple of seconds. In these cases, the increased crash reproduction time is lower than
5 seconds, and it is negligible in practice.

Helper-objectives misguidance
In some other cases, the scenario, which leads to crash reproduction, needs a simple se-
quence of methods calls to the target class. Still, the complexity of this scenario stems
from the input arguments used for the method calls. In these cases, since crash reproduc-
tion does not need the call diversity, method sequence diversity objective misguides the
search process. Alternatively, we need another objective for method input argument di-
versity (i.e., improves the diversity of the input arguments for method calls). Adding new
helper-objectives to consider other aspects of diversity is part of our future agenda.

As an example, let us analyze MATH-98b (Figure 4.10), in which MO-HO doubled the
time consumed by the crash reproduction search process against state-of-the-art. This
crash concerns an ArrayIndexOutOfBoundsException . Also, this crash has only one frame.
For reproducing this crash, the generated test case needs to instantiate a class called BigMa-
trixImpl and call amethod named operate (Figure 4.11)with precise input values. Method
getColumnDimension used in operate returns the number of rows in the data variable,
which has been set in the constructor. To reproduce this crash, the generated test case
should pass an array with a size smaller than the passed size to the constructor. In this
case, method argument diversity could help the search process, and the method call diver-
sity is not helpful.

4.5 Discussion
4.5.1 Effectiveness And Applicability
Generally, De-MO reproduces some crashes that cannot be reproduced by Single-Objecti-
ve Search due to its improved exploration ability, resulting from the multi-objectivization



4

104 4 Improving Search-based Crash Reproduction With Helper Objectives

of the crash distance. However, since the decomposed objectives in this approach depend
on one another (e.g., the stack trace similarity is not helpful if the generated test does not
throw the given type of exception), they may misguide the search process in various cases.
For instance, as we saw in Section 4.4.2, Single-Objective Search reproduces six crashes
that are not reproducible by De-MO.

In contrast, MO-HO has three conflicting search objectives. From the theory [168],
the objective function must be conflicting to increase the overall exploration ability. Our
results confirm the theory: the chance of the search process getting trapped in a local
optimum is lower by usingMO-HO objectives compared to the ones used inDe-MO. As we
observed in Section 4.4.2, after 1minute of search,MO-HO reproduces 8 and 7 crashesmore
than Single-Objective Search and De-MO, respectively. Also, it continues outperforming
with larger search budgets (2, 3, 4, and 5 minutes) until the end of the search process. It
reproduces 5 and 6 crashes more than Single-Objective Search and De-MO, respectively,
while it cannot reproduce only two crashes, reproduced by the other algorithms.

Note that reproducing each crash needs a particular test case which drives the software
under test to a particular state, and then, it calls a method with proper input variables.
To achieve this goal, each crash reproducing test case needs to create multiple complex
objects. Hence, reproducing five new crashes (4% of crashes available in our benchmark)
is a significant improvement for MO-HO.

4.5.2 Factors InThe Benchmark CrashesThat ImpactThe Success Of
MO-HO

There are multiple factors/characteristics of the crashes in our benchmark that might
impact the performance of our approach positively. We identify the following relevant
factors: (1) the type of the exception (e.g., null pointer exception), (2) the size the stack
frames, (3) the number of classes involved in the crashes, (4) the number of methods of
the deepest class in the crash stack. To verify whether these factors influence the perfor-
mance of our algorithm, we used the two-way permutation test [189]. The permutation
test is a well-established non-parametric to assess the significance of factor interactions in
multi-factorial analysis of variance (non-parametric ANOVA). We use a significance level
𝑎𝑙𝑝ℎ𝑎=0.05 and a very large number of iterations (1,000,000) to ensure the stability of the
results over multiple executions of the procedure [189].

For the sake of our analysis, we considered the difference in crash reproduction rate
between MO-HO and the baselines as the dependent variable, while the co-factors are
our independent variables. According to the permutation test, the type of exception (𝑝-
value=0.006) and the number of crash stack frames (𝑝-value=0.001) significantly impact the
performance ofMO-HO compared to Single Objective Search. We can also observe similar
results when considering the improvements of MO-HO against De-MO: 𝑝-values=< 10−12
for both exception type and the number of frames). In other words, there are certain
types of exceptions and stack trace sizes for which MO-HO is statistically better than the
state-of-the-art approaches.

From a deeper analysis, we observe that for NullPointerExcep-tion and org.joda.tim-
e.IllegalFieldValueException,MO-HO achieves a higher reproduction ratio than Single
Objective Search when the stack traces contain up to three frames for NPE (+22% in repro-
duction rate) and up to five frames for IllegalFieldValueEx-ception (+50% in reproduc-



4.6 Threats To Validity

4

105

tion rate). Instead, for stack traces with more frames, the differences in reproduction ratio
are negligible (±1% on average) or negative (-10% in reproduction ratio). Besides, MO-
HO achieves better reproduction ratios for the following exceptions independently of the
stack size: XWikiExceptions (+23% on average), UnsupportedOperationException (+6% on
average), MathRuntimeException (+14% on average).

Finally, MO-HO outperforms De-MO when reproducing NullPoin-terException with
1-3 frames (+8% on average), ClassCastExcep-tion (+8% on average), StringOutOfBound-
sException (+18% with more than 2 frames, on average), IllegalFieldException (+8% on
average), UnsupportedOperationException (+23% on average), MockitoException (+83%
for short traces, on average), and MissingMethodInvocation (+80% on average).

4.5.3 Crash Reproduction Cost
In this study, we observed that since MO-HO increases the diversity of the generated test
cases, it can dramatically improve the efficiency of crash reproduction. This algorithm sig-
nificantly improved the speed of the search process in more than 36% of crashes compared
to Single-Objective Search and De-MO. In cases in which MO-HO had a significant impact,
it improves the crash reproduction speed by more than 47%.

Our prior study (Chapter 2) suggested 5 minutes as the search budget because the
search process cannot reproduce more after 5 minutes. However, we observed that despite
the high efficiency of MO-HO, this algorithm continues to reproduce more crashes in the
second half of the time budget. Section 4.4.2 shows that MO-HO keeps increasing the
crash reproduction ratio even in the last minutes of the search process, while the previous
multi-objectivization approach (De-MO) changes only slightly after the first 2 minutes of
crash reproduction. Hence, increasing the search budget for MO-HO can lead to a higher
crash reproduction ratio.

4.5.4 Extendability
The improvement achieved by the proposed helper-objectives shows the impact of suitable
objectives on increasing the diversity of the generated test cases and result in improving
the effectiveness and efficiency of the crash reproduction search process. Hence, we hy-
pothesize that this approach can be extended by adding new relevant helper-objectives.

4.6 Threats To Validity
Internal validity. We cannot ensure that our implementation of Botsing is without
bugs. However, we mitigated this threat by testing our tool and manually analyzing some
samples of the results. We used a previously defined benchmark for crash reproduction,
which contains 124 non-trivial crashes from six open-source projects and applications.
Moreover, we explained howwe parametrized the evolutionary algorithms in Section 4.3.2.
We used the default values of these algorithms in the other open-source implementations
like EvoSuite and JMetal. The effect of these values for crash reproduction is part of
our future work. Finally, to take the randomness of the search process into account, we
followed the guidelines of the related literature [110] and executed each evolutionary crash
reproduction algorithm for 30 times.

External validity. We report our results for only 124 crashes introduced by JCrash-



4

106 4 Improving Search-based Crash Reproduction With Helper Objectives

Pack (Cahpter 2), which is an open-source crash reproduction benchmark collected from
six open-source projects. However, we recall here that we cannot guarantee that our re-
sults are generalizable to all crashes. EvaluationMO-HO on a larger benchmark frommore
projects is part of our future work.

Reproducibility. Weprovide Botsing as an open-source publicly available tool. Also,
the data and the processing scripts used to present the results of this chapter, including the
subjects of our evaluation (inputs), the evolution of the best fitness function value in each
generation of each execution, and the produced test cases (outputs), are openly available
as a docker image [64].

4.7 Conclusion And Future Work
Crash reproduction can ease the process of debugging for developers. Evolutionary ap-
proaches have been successfully used to automate this process. Existing evolutionary-
based approaches use one single objective (i.e., Crash Distance) to guide the search and
rely on guided genetic operators. Later strategies applied multi-objectivization via decom-
position (De-MO) in an attempt to improve diversity (and, therefore, exploration). How-
ever, the latter strategy may misguide the search process because the sub-objectives are
not strongly conflicting.

In this study, we apply a new approach called Multi-Objectivization using Helper-
Objectives (MO-HO) to tackle the problems of the former techniques. In MO-HO, multi-
objectivization is performed by adding two helper-objectives that are in conflict withCrash
Distance. We evaluated MO-HO with five MOEAs, which are selected from different cat-
egories of multi-objective algorithms. Our results indicate that MO-HO is the most ef-
ficient algorithm, significantly outperforming Single-Objective Search and De-MO. Also,
this algorithm is able to reproduce 8 and 5 more crashes in 1 and 5 minutes, respectively,
compared to the state-of-the-art. Moreover, in contrast to the previous multi-objectivized
crash reproduction approach (De-MO), the crash reproduction ability of MO-HO increases
with large search budgets (i.e., above two minutes).

We performed an additional analysis to find the correlation between the different as-
pects of the crashes and the ability of MO-HO in reproducing them. The result of this
analysis shows that two factors in crashes significantly impact the performance of MO-
HO: (i) type of exception and (ii) the number of crash stack frames.

Furthermore, we observed that Single-Objective Search and De-MO could outperform
MO-HO but only in a few cases. We performed a manual analysis to characterize the neg-
ative factors leading to the adverse results in these cases. Our analysis reveals that two
negative factors are at play in these cases: (i) extra calculations in fitness evaluation and
(ii) helper-objectives misguidance. We also showed in Section 4.4.4 that while the differ-
ences in extra calculations in fitness evaluation are significant, they are often negligible in
practice.

The contributions of the chapter are as follows:
1. An open-source implementation of seven crash reproduction techniques (Section

4.3.1).
2. An empirical comparison of seven search-based crash reproduction approaches (Sec-

tion 4.3).



4.7 Conclusion And Future Work

4

107

3. An analysis of the benefits of multi-objectivization with helper objectives in terms
of reproduction ratio and efficiency (Section 4.4).

4. The identification of the special situations inwhichMO-HO can be counter-productive
(Section 4.4.4).

5. The identification of a strong correlation between the ability ofMO-HO in improving
the efficiency and effectiveness of crash reproduction for combinations of exception
types and the number of frames in the stack trace of the target crash (Section 4.5.2).

In our future work, we will investigate additional helper-objectives for crash repro-
duction. For instance, the current helper-objectives in MO-HO concern the test length
and method sequence diversity. However, further objectives can be added, such as test
input/data diversity. Increasing the number of objectives will require to evaluate their
performance using different many-objective evolutionary algorithms. We will also ana-
lyze the evolution of the fitness values of existing and new objective to further investigate
the root causes of good and bad performances ofMO-HO and other objectives for different
crashes and different MOEAs.

Moreover, the search objectives introduced by De-MO is only optimized by NSGA-II
MOEA. As future work, we will investigate the impact of utilizing other MOEAs for opti-
mizing De-MO objectives.





5

109

5
Basic Block Coverage for

Search-Based Crash Reproduction
Various search-based techniques have been introduced to automate different white-box
test generation activities (e.g., unit testing [6, 41], system-level testing [190], etc.). De-
pending on the testing level, each of these approaches utilizes dedicated fitness functions
to guide the search process and produce a test suite satisfying given criteria (e.g., line
coverage, branch coverage, etc.).

Fitness functions typically rely on control flow graphs (CFGs) to represent the source
code of the software under test [4]. Each node in a CFG is a basic block of code (i.e.,maximal
linear sequence of statements with a single entry and exit point without any internal
branch), and each edge represents a possible execution flow between two blocks. Two well-
known heuristics are usually combined to achieve high line and branch coverages: the
approach level and the branch distance [4]. The former measures the distance between the
execution path of the generated test and a target basic block (i.e., a basic block containing
a statement to cover) in the CFG. The latter measures, using a set of rules, the distance
between an execution and the coverage of a true or false branch of a particular predicate
in a branching basic block of the CFG.

Both approach level and branch distance assume that only a limited number of basic
blocks (i.e., control dependent basic blocks [39]) can change the execution path away from
a target statement (e.g., if a target basic block is the true branch of an conditional state-
ment). However, basic blocks are not atomic due to the presence of implicit branches
[191] (i.e., branches occurring due to the exceptional behavior of instructions). As a con-
sequence, any basic block between the entry point of the CFG and the target basic block
can impact the execution of the target basic block. For instance, a generated test case may
stop its execution in the middle of a basic block with a runtime exception thrown by one
of the statements of that basic block. In these cases, the search process does not benefit
from any further guidance from the approach level and branch distance.

Fraser and Arcuri [192] introduced testability transformation, which instruments the
code to guide the unit test generation search to cover implicit exceptions happening in
the class under test. However, this approach does not guide the search process in scenar-



5

110 5 Basic Block Coverage for Search-Based Crash Reproduction

ios where an implicit branch happens in the other classes called by the class under test.
This is because of the extra cost added to the process stemming from the calculation and
monitoring of the implicit branches in all of the classes, coupled with the class under test.
For instance, the class under test may be heavily coupled with other classes in the project,
thereby finding implicit branches in all of these classes can be expensive.

However, for some test case generation scenarios, like crash reproduction, we aim
to cover a limited number of paths, and thereby we only need to analyse a limited num-
ber of basic blocks [28, 30, 32, 33, 134]. Current crash reproduction approaches rely on
information about a reported crash (e.g., stack trace, core dump etc.) to generate a crash
reproducing test case (CRT)

Among these approaches, search-based crash reproduction [28, 32] takes as input a
stack trace to guide the generation process. More specifically, the statements pointed by
the stack trace act as target statements for the approach level and branch distance. Hence,
current search-based crash reproduction techniques suffer from the lack of guidance in
cases where the involved basic blocks contain implicit branches (which is common when
trying to reproduce a crash).

This chapter introduces a novel secondary objective called Basic Block Coverage
(BBC) to address this guidance problem in crash reproduction. BBC helps the search pro-
cess to compare two generated test cases with the same distance (according to approach
level and branch distance) to determine which one is closer to the target statement. In this
comparison, BBC analyzes the coverage level, achieved by each of these test cases, of the
basic blocks in between the closest covered control dependent basic block and the target
statement.

We assessed the impact of BBC secondary objective on two fitness functions in search-
based crash reproduction: Crash Distance and STDistance. The former guides the search
process in EvoCrash [28]. The latter was introduced as one of the heuristics in the fitness
function, which guides the search process in ReCore [32] to reproduce a crash using the
stack trace and core dump produced during the crash occurring. STDistance is the only
heuristic in ReCore that measures the distance of the generated solution from the given
stack trace and relies on approach level and branch distance more compared to Crash
Distance. We empirically compared these two fitness functions’ performance with and
without using BBC (4 configurations in total). We applied these four crash reproduction
configurations to 124 hard-to-reproduce crashes introduced as JCrashPack (Chapter 2).
We compare the performances in terms of effectiveness in crash reproduction ratio (i.e., per-
centage of times that an approach can reproduce a crash) and efficiency (i.e., time required
by for reproducing a crash).

Our results show that BBC significantly improves the crash reproduction ratio over
the 30 runs in our experiment for respectively 5 and 1 crashes when compared to using
STDistance and Crash Distance without any secondary objective. Also, BBC helps these
two fitness functions to reproduce 6 (for STDistance) and 1 (for Crash Distance) crashes
that they could not be reproduced without secondary objective. Besides, on average, BBC
increases the crash reproduction ratio of STDistance by 4%. Applying BBC also signifi-
cantly reduces the time consumed for crash reproduction guided by STDistance and Crash
Distance in 33 (26.6% of cases) and 14 (13.7% of cases) crashes, respectively, while it was
significantly counter productive in only one case. In cases where BBC has a significant im-



5.1 Background

5

111

pact on efficiency, this secondary objective improves the average efficiency of STDistance
and Crash Distance by 40.6% and 44.3%, respectively.

5.1 Background
5.1.1 Coverage Distance Heuristics
Many structural-based search-based test generation approaches mix the branch distance
and approach level heuristics to achieve a high line and branch coverage [4]. These heuris-
tics measure the distance between a test execution path and a specific statement or a spe-
cific branch in the software under test. For that, they rely on the coverage information of
control dependent basic blocks, i.e., basic blocks that have at least one outgoing edge lead-
ing the execution path toward the target basic block (containing the targeted statement)
and at least another outgoing edge leading the execution path away from the target basic
block. As an example, Listing 5.1 shows the source code of method fromMap in XWIKI¹,
and Figure 5.1 contains the corresponding CFG. In this graph, the basic block 409 is control
dependent on the basic block 407-408 because the execution of line 409 is dependent on
the satisfaction of the predicate at line 408 (i.e., line 409 will be executed only if elements
of array formvalues are String).

The approach level is the number of uncovered control dependent basic blocks for the
target basic block between the closest covered control dependent basic block and the target
basic block. The branch distance is calculated from the predicate of the closest covered
control dependent basic block, based on a set of predefined rules. Assuming that the test 𝑡
covers only line 403 and 417, and our target line is 409, the approach level is 2 because two
control dependent basic blocks (404-406 and 407-408) are not covered by 𝑡 . The branch
distance the predicate in line 403 (the closest covered control dependency of node 409) is
measured based on the rules from the established technique [4].

To the best of our knowledge, there is no related work studying the extra heuristics
helping the combination of approach level and branch distance to improve the coverage.
Most related to our work, Panichella et al. [42] and Rojas et al. [193] introduced two
heuristics called infection distance and propagation distance, to improve the weakmutation
score of two generated test cases. However, these heuristics do not help the search process
to improve the general statement coverage (i.e., they are effective only after covering a
mutated statement).

In this chapter, we introduce a new secondary objective to improve the statement
coverage achieved by fitness functions based on the approach level and branch distance,
and analyze the impact of this secondary objective on search-based crash reproduction.

Example 5.2: XWIKI-13377 crash stack trace (collected in Chapter 2)
0 java.lang.ClassCastException: [...]
1 at [...]. BaseStringProperty.setValue(BaseStringProperty.java :45)
2 at [...]. PropertyClass.fromValue(PropertyClass.java :615)
3 at [...]. BaseClass.fromMap(BaseClass.java :413)
4 [...] (@@)

¹https://github.com/xwiki



5

112 5 Basic Block Coverage for Search-Based Crash Reproduction

Example 5.1: Method fromMap from XWIKI version 8.1 (collected in Chapter 2)
402 public Ba s eCo l l e c t i o n fromMap (Map < [ . . . ] > map , B a s eCo l l e c t i o n o b j e c t ) {
403 for ( P r o p e r t yC l a s s p rope r t y : ( C o l l e c t i o n < [ . . . ] > ) g e t F i e l d L i s t ( ) ) {
404 S t r i n g name = p rope r t y . getName ( ) ;
405 Ob j e c t f o rmva lue s = map . g e t ( name ) ;
406 i f ( f o rmva lue s != null ) {
407 Ba s eP rope r t y ob jp rop ;
408 i f ( f o rmva lue s instanceof S t r i n g [ ] ) {
409 [ . . . ]
410 } e l se i f ( f o rmva lue s instanceof S t r i n g ) {
411 ob jp rop = p rope r t y . f r omS t r i ng ( f o rmva lue s . t o S t r i n g ( ) ) ;
412 } e l se {
413 ob jp rop = p rope r t y . f romValue ( f o rmva lue s ) ;
414 }
415 [ . . . ]
416 } }
417 return o b j e c t ; }

Entry

403

417 404-406

407-408

409
410

411 413

415

Exit

Figure 5.1: CFG for method fromMap

5.1.2 Search-based Crash Reproduction
After a crash is reported, one of the essential steps of software debugging is to write a
Crash Reproducing Test case (CRT) to make the crash observable to the developer and
help them in identifying the root cause of the failure [57]. Later, this CRT can be inte-
grated into the existing test suite to prevent future regressions. Despite the usefulness of
a CRT, the process of writing this test can be labor-intensive and time-taking [28]. Vari-
ous techniques have been introduced to automate the reproduction of a crash [28, 30, 32,
33, 134], and search-based approaches (EvoCrash [28] and ReCore [32]) yielded the best
results [28].

EvoCrash. This approach utilizes a single-objective genetic algorithm to generate a
CRT from a given stack trace and a target frame (i.e., a frame in the stack trace that its
class will be used as the class under test). The CRT generated by EvoCrash throws the
same stack trace as the given one up to the target frame. For example, by passing the stack
trace in Listing 5.2 and target frame 3 to EvoCrash, it generates a test case reproducing
the first three frames of this stack trace (i.e., thrown stack trace is identical from line 0 to
3).

EvoCrash uses a fitness function, called Crash Distance, to evaluate the candidate
test cases. Crash Distance is the sum scalarization of three components: (i) the target



5.1 Background

5

113

line coverage (𝑑𝑠), which measures the distance between the execution trace and the
target line (i.e., the line number pointed to by the target frame) using approach level and
branch distance; (ii) the exception type coverage (𝑑𝑒), determining whether the type of
the triggered exception is the same as the given one; and (iii) the stack trace similarity
(𝑑𝑡𝑟 ), which indicates whether the stack trace triggered by the generated test contains all
frames (from the most in-depth frame up to the target frame) in the given stack trace.

Definition 5.1.1 (Crash Distance [28]) For a given test case execution 𝑡 , the Crash Dis-
tance (𝑤𝑠) is defined as follows:

𝑤𝑠(𝑡) = {
3×𝑑𝑠(𝑡) + 2×𝑚𝑎𝑥(𝑑𝑒) +𝑚𝑎𝑥(𝑑𝑡𝑟 ) if line not reached
3×𝑚𝑖𝑛(𝑑𝑠) + 2×𝑑𝑒(𝑡) +𝑚𝑎𝑥(𝑑𝑡𝑟 ) if line reached
3×𝑚𝑖𝑛(𝑑𝑠) + 2×𝑚𝑖𝑛(𝑑𝑒) +𝑑𝑡𝑟 (𝑡) if exception thrown

(5.1)

Where 𝑑𝑠(𝑡) ∈ [0,1] indicates how far 𝑡 is from reaching the target line and is computed
using the normalized approach level and branch distance: 𝑑𝑠(𝑡) = ‖𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝐿𝑒𝑣𝑒𝑙𝑠(𝑡) +
‖𝑏𝑟𝑎𝑛𝑐ℎ𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑡)‖‖. Also, 𝑑𝑒(𝑡) ∈ {0,1} shows if the type of the exception thrown by 𝑡
is the same as the given stack trace (0) or not (1). Finally, 𝑑𝑡𝑟 (𝑡) ∈ [0,1]measures the stack
trace similarity between the given stack trace and the one thrown by 𝑡 . 𝑚𝑎𝑥(𝑓 ) and𝑚𝑖𝑛(𝑓 )
denote the maximum and minimum possible values for a function 𝑓 , respectively. In this
fitness function, 𝑑𝑒(𝑡) and 𝑑𝑡𝑟 (𝑡) are only considered in the satisfaction of two constraints:
(i) exception type coverage is relevant only when we reach the target line and (ii) stack trace
similarity is important only when we both reach the target line and throw the same type
of exception.

As an example, when applying EvoCrash on the stack trace from Listing 5.2 with
the target frame 3, Crash Distance first checks if the test cases generated by the search
process reach the statement pointed to by the target frame (line 413 in class BaseClass in
this case). Then, it checks if the generated test can throw a ClassCastException or not.
Finally, after fulfilling the first two constraints, it checks the similarity of frames in the
stack trace thrown by the generated test case against the given stack trace in Listing 5.2.

EvoCrash uses guided initialization, mutation and single-point crossover operators
to ensure that the target method (i.e., the method appeared in the target frame) is always
called by the different tests during the evolution process.

According to a recent study, EvoCrash outperforms other non-search-based crash re-
production approaches in terms of effectiveness in crash reproduction and efficiency [28].
This study also shows the helpfulness of tests generated by EvoCrash for developers dur-
ing debugging.

In this chapter, we assess the impact of BBC as the secondary objective in the Evo-
Crash search process.

ReCore. This approach utilizes a genetic algorithm guided by a single fitness func-
tion, which has been defined according to the core dump and the stack trace produced
by the system when the crash happened. To be more precise, this fitness function is a
sum scalarization of three sub-functions: (i) TestStackTraceDistance, which guides the
search process according to the given stack trace; (ii) ExceptionPenalty, which indicates
whether the same type of exception as the given one is thrown or not (identical to Ex-
ceptionCoverage in EvoCrash); and (iii) StackDumpDistance, which guides the search
process by the given core dump.



5

114 5 Basic Block Coverage for Search-Based Crash Reproduction

Definition 5.1.2 (TestStackTraceDistance [32]) For a given test case execution 𝑡 , the Test-
StackTraceDistance (𝑆𝑇𝐷) is defined as follows:

𝑆𝑇𝐷(𝑅, 𝑡) = |𝑅| − 𝑙𝑐𝑝 − (1−𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠)) (5.2)

Where |𝑅| is the number of frames in the given stack trace. And 𝑙𝑐𝑝 is the longest common
prefix frames between the given stack trace and the stack trace thrown by 𝑡 . Concretely,
|𝑅| − 𝑙𝑐𝑝 is the number of frames not covered by 𝑡 . Moreover, 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠) is
calculated using the sum of the approach level and the normalized branch distance to
reach the statement 𝑠, which is pointed to by the first (the utmost) uncovered frame by 𝑡 :
𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠) = 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝐿𝑒𝑣𝑒𝑙𝑠(𝑡) + ‖𝑏𝑟𝑎𝑛𝑐ℎ𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑡)‖.

Since using runtime data (such as core dumps) can cause significant overhead [30] and
leads to privacy issues [134], the performance of ReCore in crash reproduction was not
compared with EvoCrash in prior studies [28]. Although, two out of three fitness func-
tions in ReCore use only the given stack trace to guide the search process. Hence, this
study only considers TestStackTraceDistance + ExceptionPenalty (called STDistance here-
after).

As an example, when applying ReCorewith STDistance on the stack trace in Listing 5.2
with target frame 3, first, STDistance determines if the generated test covers the statement
at frame 3 (line 413 in class BaseClass). Then, it checks the coverage of frame 2 (line 615
in class PropertyClass). After covering the first two frames by the generated test case,
it checks the coverage of the statement pointed to by the deepest frame (line 45 in class
BaseStringProperty). For measuring the coverage of each of these statements, STDistance
uses the approach level and branch distance. After covering all of the frames, this fitness
function checks if the the generated test throws ClassCastException in the deepest frame.

In this study, we perform an empirical evaluation to assess the performance of crash
reproduction using STDistance with and without BBC as the secondary objective in terms
of effectiveness in crash reproduction and efficiency.

5.2 Basic Block Coverage
5.2.1 Motivating Example
During the search process, the fitness of a test case is evaluated using a fitness function, ei-
ther Crash Distance or STDistance. Since the search-based crash reproduction techniques
model this task to a minimization problem, the generated test cases with lower fitness
values have a higher chance of being selected and evolved to generate the next genera-
tion. One of the main components of these fitness functions is the coverage of specific
statements pointed by the given stack trace. The distance of the test case from the target
statement is calculated using the approach level and branch distance heuristics. As we
have discussed in Section 5.1.1, the approach level and branch distance cannot guide the
search process if the execution stops because of implicit branches in the middle of basic
blocks (e.g., a thrown NullPointerException during the execution of a basic block). As a
consequence, these fitness functions may return the same fitness value for two tests, al-
though the tests do not cover the same statements in the block of code where the implicit
branching happens.

For instance, assume that the search process for reproducing the crash in Figure 5.2
generates two test cases T1 and T2. The first step for these test cases is to cover frame



5.2 Basic Block Coverage

5

115

3 in the stack trace (line 413 in BaseClass). However, T1 stops the execution at line 404
due to a NullPointerException thrown in method getName, and T2 throws a NullPoint-
erException at line 405 because it passes a null value input argument to map. Even though
T2 covers more lines, the combination of approach level and branch distance returns the
same fitness value for both of these test cases: approach level is 2 (nodes 407-408 and 410)
and branch distance is measured according to the last predicate. This is because these two
heuristics assume that each basic block is atomic, and by covering line 404, it means that
lines 405 and 406 are covered, as well.

5.2.2 Secondary Objective
The goal of the Basic Block Coverage (BBC) secondary objective is to prioritize the test
cases with the same fitness value according to their coverage within the basic blocks be-
tween the closest covered control dependency and the target statement. At each iteration
of the search algorithm, test cases with the same fitness value are compared with each
other using BBC. Algorithm 1 presents the pseudo-code of the BBC calculation. Inputs
of this algorithm are two test cases T1 and T2, which both have the same fitness value
(calculated either using Crash Distance or STDistance), as well as line number and method
name of the target statement. This algorithm compares the coverage of basic blocks on
the path between the entry point of the CFG of the given method and the basic block that
contains the target statement (called effective blocks hereafter) achieved by T1 and T2. If
BBC determines there is no preference between these two test cases, it returns 0. Also, it
returns a value < 0 if T1 has higher coverage compared to T2, and vice versa. A higher abso-
lute value of the returned integer indicates a bigger distance between the given test cases.
Algorithm 1: BBC secondary objective computation algorithm
Input: test T1, test T2, String method, int line
Output: int

1 FCB1 ← fullyCoveredBlocks(T1,method,line);
2 FCB2 ← fullyCoveredBlocks(T2,method,line);
3 SCB1 ← semiCoveredBlocks(T1,method,line);
4 SCB2 ← semiCoveredBlocks(T2,method,line);
5 if FCB1 ⊂ FCB2 ∧ SCB1 ⊂ SCB2) ∨ (FCB2 ⊂ FCB1 ∧ SCB2 ⊂ SCB1n then
6 return size(FCB2 ∪ SCB2) - size(FCB1 ∪ SCB1);
7 else if FCB1 = FCB2 ∧ SCB1 = SCB2 then
8 closestBlock ← closestSemiCoveredBlocks(SCB1, method, line);
9 coveredLines1 ← getCoveredLines(T1,closestBlock);

10 coveredLines2 ← getCoveredLines(T2,closestBlock);
11 return size(coveredLines2) - size(coveredLines1);
12 else
13 return 0;
14 end

In the first step, BBC detects the effective blocks fully covered by each given test case
(i.e., the test covers all of the statements in the block) and saves them in two sets called
FCB1 and FCB2 (lines 1 and 2 in Algorithm 1). Then, it detects the effective blocks semi-
covered by each test case (i.e., blocks where the test covers the first line but not the last



5

116 5 Basic Block Coverage for Search-Based Crash Reproduction

line) and stores them in SCB1 and SCB2 (lines 3 and 4). The semi-covered blocks indicate the
presence of implicit branches. Next, BBC checks if both fully and semi-covered blocks of
one of the tests are subsets of the blocks covered by the other test (line 5). In this case, the
test case that covers the most basic blocks is the winner. Hence, BBC returns the number
of blocks only covered by the winner test case (line 6). If BBC determines T2 wins over
T1, the returned value will be positive, and vice versa.

If none of the test cases subsumes the coverage of the other one, BBC checks if the
blocks covered by T1 and T2 are identical (line 7). If this is the case, BBC checks if one
of the tests has a higher line coverage for the semi-covered blocks closest to the target
statement (lines 8 to 11). If this is the case, BBC will return the number of lines in this
block covered only by the winning test case. If the lines covered are the same for T1 and T2
(i.e., coveredLines1 and coveredLines2 have the same size), there is no difference between
these two test cases and BBC returns value 0 (line 11). Finally, if each of the given tests
has a unique covered block in the given method (i.e., the tests cover different paths in the
method), BBC cannot determine the winner and returns 0 (lines 12 and 13) because we do
not know which path leads to the crash reproduction.

Example. When giving two tests with the same fitness value (calculated by the
primary objective) T1 and T2 from our motivation example to BBC with target method
fromMap and line number 413 (according to the frame 3 of Figure 5.2), this algorithm
compares their fully and semi-covered blocks with each other. In this example both T1
and T2 cover the same basic blocks: the fully covered block is 403 and the semi-covered
block is 404-406. So, BBC checks the number of lines covered by T1 and T2 in block
404-406. Since T1 stopped its execution at line 404, the number of lines covered by this
test is 1. In contrast, T2 managed to execute two lines (404 and 405). Hence, BBC returns
𝑠𝑖𝑧𝑒(𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐿𝑖𝑛𝑒𝑠2)−𝑠𝑖𝑧𝑒(𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐿𝑖𝑛𝑒𝑠1) = 1. The positive return value indicates that T2
is closer to the target statement and therefore, it should have higher chance to be selected
for the next generation.

Branchless Methods. BBC can also be helpful for branchless methods. Since there
are no control dependent nodes in branchlessmethods, approach level and branch distance
cannot guide the search process in these cases. For instance, methods from frames 1 and
2 in Figure 5.2 are branchless. So, we expect that BBC can help the current heuristics to
guide the search process toward covering the most in-depth statement.

5.3 Empirical Evaluation
To assess the impact of BBC on search-based crash reproduction, we perform an empirical
evaluation to answer the following research questions:

RQ1: What is the impact of BBC on crash reproduction in terms of effectiveness in crash
reproduction ratio?

RQ2: What is the impact of BBC on the efficiency of crash reproduction?

In these two RQs we want to evaluate the effect of BBC on the existing fitness func-
tions, namely STDistance and Crash Distance, from two perspectives: effectiveness on
crash reproduction ratio and efficiency.



5.3 Empirical Evaluation

5

117

5.3.1 Setup
Implementation. Since ReCore and EvoCrash are not openly available, we implement
BBC in Botsing, an extensible, well-tested, and open-source search-based crash reproduc-
tion framework already implementing the Crash Distance fitness function and the guided
initialization, mutation, and crossover operators. We also implement STDistance (ReCore
fitness function) in this tool. Botsing relies on EvoSuite [6], an open-source search-based
tool for unit test generation, for code instrumentation and test case generation by using
evosuite-client as a dependency. We also implement the STDistance fitness function
used as baseline in this chapter.

Crash selection. We select crashes from JCrashPack (Chapter 2), a benchmark
containing hard-to-reproduce Java crashes. We apply the two fitness functions with and
without using BBC as a secondary objective to 124 crashes, which have also been used
in Chapter 3. These crashes stem from six open-source projects: JFreeChart, Commons-
lang, Commons-math, Mockito, Joda-time, and XWiki. For each crash, we apply each
configuration on each frame of the crash stack traces. We repeat each execution 30 times
to take randomness into account, for a total number of 114,120 independent executions.
We run the evaluation on two servers with 40 CPU-cores, 128 GB memory, and 6 TB hard
drive.

Parameter settings. We run each search process with five minutes budget and set
the population size to 50 individuals, as suggested by previous studies on search-based
test generation [42]. Moreover, as recommended in prior studies on search-based crash
reproduction [28], we use the guided mutation with a probability 𝑝𝑚 = 1/𝑛 (𝑛 = length
of the generated test case), and the guided crossover with a probability 𝑝𝑐 = 0.8 to evolve
test cases. We do note that prior studies do not investigate the sensitivity of the crash
reproduction to these probabilities. Tuning these parameters should be undertaken as
future works.

5.3.2 Data Analysis
To evaluate the crash reproduction ratio (i.e., the ratio of success in crash reproduction in
30 rounds of runs) of different assessed configurations (RQ1), we follow the same proce-
dure as Chapter 3: for each crash 𝐶 , we detect the highest frame that can be reproduced
by at least one of the configurations (𝑟𝑚𝑎𝑥 ). We examine the crash reproduction ratio of
each configuration for crash 𝐶 targeting frame 𝑟𝑚𝑎𝑥 . Since crash reproduction data has a
dichotomic distribution (i.e., an algorithm reproduces a crash 𝐶 from its 𝑟𝑚𝑎𝑥 or not), we
use the Odds Ratio (𝑂𝑅) to measure the impact of each algorithm in crash reproduction
ratio. A value 𝑂𝑅 > 0 in a comparison between a pair of factors (𝐴,𝐵) indicates that the
application of factor A increases the crash reproduction ratio, while 𝑂𝑅 < 0 indicates the
opposite. Also, a value of 𝑂𝑅 = 0 indicates that both of the factors have the same per-
formance. We apply Fisher’s exact test, with 𝛼 = 0.01 for the Type I error, to assess the
significance of results.

To evaluate the efficiency of different configurations (RQ2), we analyze the time spent
by each configuration on generating a crash reproducing test case. We do note that the
extra pre-analysis and basic block coverage in BBC is considered in the spent time. Since
measuring efficiency is only possible for the reproduced crashes, we compare the efficiency
of algorithms on the crashes that are reproduced at least once by one of the algorithms.



5

118 5 Basic Block Coverage for Search-Based Crash Reproduction

0.00

0.25

0.50

0.75

1.00

RecoreSTDistance RecoreSTDistance+BBC

Configurations

R
ep

ro
du

ct
io

n 
R

at
io

 (
pe

rc
)

(a) STDistance

0.00

0.25

0.50

0.75

1.00

WeightedSum WeightedSum+BBC

Configurations

R
ep

ro
du

ct
io

n 
R

at
io

 (
pe

rc
)

(b) Crash Distance

Figure 5.2: Crash reproduction ratio (out of 30 executions) of fitness functions with and without BBC. (□) denotes
the arithmetic mean and the bold line (—) is the median.

0

5

RecoreSTDistance RecoreSTDistance+BBC
Winner configuration

# 
of

 c
ra

sh
es

(a) STDistance

0

1

WeightedSum WeightedSum+BBC
Winner configuration

# 
of

 c
ra

sh
es

(b) Crash Distance

Figure 5.3: Pairwise comparison of impact of BBC on each fitness function in terms of crash reproduction ratio
with a statistical significance < 0.01.

In executions that an algorithm failed to reproduce a crash, we assume that it reached the
maximum allowed budget (5 minutes).

In this study, we use the Vargha-Delaney Â12 statistic [165] to examine the effect size
of differences between using and not using BBC for efficiency. For a pair of factors (𝐴,𝐵)
a value of Â12 > 0.5 indicates that 𝐴 reproduces the target crash in a longer time, while a
value of Â12 < 0.5 shows the opposite. Also, Â12 = 0.5 means that there is no difference
between the factors. In addition, to assess the significance of effect sizes (Â12), we utilize
the non-parametric Wilcoxon Rank Sum test, with 𝛼 = 0.01 for the Type I error.

A replication package of this study has been uploaded to Zenodo [65].

5.4 Results
Crash reproduction effectiveness (RQ1)
Figure 5.2 presents the crash reproduction ratio of the search processes guided by STDis-
tance (Figure 5.2a) and Crash Distance (Figure 5.2b), with and without BBC as a secondary
objective. This figure shows that the crash reproduction ratio of Crash Distance improves
slightly when using BBC. However, on average, the crash reproduction ratio achieved by
STDistance + BBC is 4% better than STDistance without BBC. Also, the lower quartile of



5.4 Results

5

119

00
1 1

1616

RecoreSTDistance RecoreSTDistance+BBC
Configurations

# 
of

 c
ra

sh
es

VD_magnitude large medium small

(a) STDistance

0
1

3

14

WeightedSum WeightedSum+BBC
Configurations

# 
of

 c
ra

sh
es

(b) Crash Distance

Figure 5.4: Pairwise comparison of impact of BBC on each fitness function in terms of efficiency with a small,
medium, and large effect size Â12 < 0.5 and a statistical significance < 0.01.

crash reproduction ratio using STDistance has been improved by about 30% by utilizing
BBC.

Figure 5.3 depicts the number of crashes, for which BBC has a significant impact on
the effectiveness of crash reproduction guided by STDistance (Figure 5.3a) and Crash Dis-
tance (Figure 5.3b). BBC significantly improves the crash reproduction ratio in 5 and 1
crashes for fitness functions STDistance and Crash Distance, respectively. Importantly, the
application of this secondary objective does not have any significant negative effect on
crash reproduction. Also, BBC helps STDistance and Crash Distance to reproduce 6 and
1 new crashes, respectively (in at least one out of 30 runs), that could not be reproduced
without BBC.

Summary. BBC slightly improves the crash reproduction ratio when using the Crash
Distance fitness function. However, on average, BBC achieves a higher improvement when
used as a secondary objective with the STDistance function.

Crash reproduction efficiency (RQ2)
Figure 5.4 illustrates the number of crashes, in which BBC significantly affects the time
consumed by the crash reproduction search process. As Figure 5.4b shows, BBC signifi-
cantly improves the speed of crash reproduction guided by Crash Distance in 17 crashes
(13.7% of cases), while it lost efficiency in the reproduction of only one crash. In cases that
BBC significantly improves the efficiency of Crash Distance, on average, the efficiency is
improved for about 40%. Moreover, Figure 5.4a shows that BBC has a higher positive im-
pact on the efficiency of the search process guided by STDistance. It significantly reduces
the time consumed by the search process in 33 crashes (26.6% of cases), while it had an
adverse impact on the reproduction efficiency of only one crash. In cases that BBC signif-
icantly improves the efficiency of STDistance, on average, the efficiency is improved for
about 53%.

Figure 5.5 depicts the average improvements in the efficiency and effect sizes for
crashes where the difference in the consumed budget when using BBC or not was sig-
nificant. According to the right-side plot in Figure 5.5a, BBC reduces the time consumed
by the search process guided by STDistance up to 98% (being 40.6% on average). Also, the



5

120 5 Basic Block Coverage for Search-Based Crash Reproduction

●

●

0.2

0.4

0.6

0.8

RecoreSTDistance+BBC

ef
fe

ct
 s

iz
e

●

●
−0.5

0.0

0.5

1.0

RecoreSTDistance+BBC

Im
pr

ov
em

en
t (

pe
rc

)

(a) STDistance

●

0.0

0.2

0.4

0.6

WeightedSum+BBC

ef
fe

ct
 s

iz
e

●

−1.0

−0.5

0.0

0.5

1.0

WeightedSum+BBC

Im
pr

ov
em

en
t (

pe
rc

)

(b) Crash Distance

Figure 5.5: The effect size and the average improvement achieved by BBC on each of the fitness functions in
cases that BBC makes a significant difference in terms of efficiency.

left-side plot indicates that the average effect size of differences between STDistance and
STDistance +BBC (calculated by Vargha-Delaney) is 0.26 (lower than 0.5 indicates that BBC
improved the efficiency). Figure 5.5b shows that the average improvement (right-side plot)
achieved by using BBC as the second objective of Crash Distance is 44.3%, and the average
effect size (left-side plot), in terms of the crash reproduction efficiency, is 20.5.

Summary. BBC improves the efficiency of the search process with both of the crash
reproduction fitness functions.

5.5 Discussion
Generally, using BBC as secondary objective leads to a better crash reproduction ratio
and higher efficiency in search-based crash reproduction. This improvement is achieved
thanks to the additional ability to guide the search process when facing implicit branches
during the search. Combining BBC with STDistance shows an important improvement
compared to the combination of BBC with Crash Distance. This result was expected, since
only one (out of three) component in Crash Distance is allocated to line coverage, and
thereby most parts of the fitness function do not use the approach level and branch dis-
tance heuristics. In contrast, STDistance uses the approach level and branch distance to
cover each of the frames in the given stack trace incrementally.

Our results show that BBC helps the crash reproduction process to reproduce new
crashes. For instance, the crash that we used in this study (XWIKI-13377) can be repro-
duced only by STDistance + BBC. Considering our results, we believe that the usage of
approach level and branch distance can be improved in other areas of search-based test
generation (e.g., unit testing) by taking the implicit branches into account. However, it can
be expensive to apply this secondary objective in cases where the search process tries to
cover multiple paths. Assessing the impact of BBC on other search-based test generation
techniques is part of our future research agenda.



5.6 Threats to validity.

5

121

5.6 Threats to validity.
We cannot guarantee that our implementation of Botsing is bug-free. However, we miti-
gated this threat by testing our tool and manually examining some samples of the results.
We cannot ensure that our results are generalizable to all crashes. However, we used an
earlier established benchmark for crash reproduction containing 124 hard-to-reproduce
crashes provoked by real bugs in a variety of open-source applications. Moreover, by
following the guidelines of the related literature [110], we executed each configuration
30 times to take the randomness of the search process into account. Finally, we provide
Botsing as an open-source tool. Also, the data and the processing scripts used to present
the results are available as a replication package on Zenodo[65].

5.7 Conclusion and Future Work
Approach level and branch distance are two well-known heuristics, widely used by search-
based test generation approaches to guide the search process towards covering target state-
ments and branches. These heuristics measure the distance of a generated tests from cover-
ing the target using the coverage of control dependencies. However, these two heuristics
do not consider implicit branches. For instance, if a test throws an exception during the
execution of a non-branch statement, approach level and branch distance cannot guide
the search process to tackle this exception. In this chapter, we introduced a secondary ob-
jective called BBC to address this issue. To assess BBC, we used it for search-based crash
reproduction due to the high chance of implicit branch occurrence and the limited number
of basic blocks that should be covered. Our results show that BBC helps STDistance and
Crash Distance to reproduce 6 and 1 new crashes, respectively. Also, BBC significantly
improves the efficiency in 26.6% and 13.7% of the crashes using STDistance and Crash Dis-
tance, respectively.

In our future work, we will investigate the application of BBC for other search-based
test generation techniques (such as unit and integration).





6

123

6
Generating Class-Level Integration
Tests Using Call Site Information

Search-based approaches have been applied to a variety ofwhite-box testing activities [135],
among which test case and data generation [4]. In white-box testing, most of the existing
work has focused on the unit level, where the goal is to generate tests that achieve high
structural (e.g., branch) coverage. Prior work has shown that search-based unit test gen-
eration can achieve high code coverage [20, 25, 194], detect real-bugs [22, 192], and help
developers during debugging activities [23, 37].

Despite these undeniable results, researchers have identified various limitations of the
generated unit tests [22, 26, 195]. Prior studies have questioned the effectiveness of the
generated unit tests with high code coverage in terms of their capability to detect real
faults or to kill mutants when using mutation coverage. For example, Gay et al. [26] have
highlighted how traditional code coverage could be a poor indicator of test effectiveness
(in terms of fault detection rate and mutation score). Shamshiri et al. [22] have reported
that around 50% of faults remain undetected when relying on generated tests with high
coverage. Similar results have also been observed for large industrial systems [25].

Gay et al. [26] have observed that traditional unit-level adequacy criteria only mea-
sure whether certain code elements are reached, but not how each element is covered.
The quality of the test data and the paths from the covered element to the assertion play
an essential role in better test effectiveness. As such, they have advocated the need for
more reliable adequacy criteria for test case generation tools. While these results hold for
generated unit tests, other studies on hand-written unit tests have further highlighted the
limitation of unit-level code coverage criteria [195, 196].

In this chapter, we explore the usage of the integration code between coupled classes
as guidance for the test generation process. The idea is that, by exercising the behavior of
a class under test E (the calleE) through another class R (the calleR) calling its methods,
R will handle the creation of complex parameter values and exercise valid usages of E. In
other words, the caller R contains integration code that (1) enables the creation of better
test data for the callee 𝐸, and (2) allows to better validate the data returned by E.



6

124 6 Generating Class-Level Integration Tests Using Call Site Information

Integration testing can be approached from many different angles [197, 198]. Among
others, dataflow analysis seeks to identify possible interactions between the definition
and usage (def-use) of a variable. Various coverage criteria based on intra- (for class unit
testing) and inter-class (for class integration testing) def-uses have been defined over the
years [199–204]. Dataflow analysis faces several challenges, including the scalability of
the algorithms to identify def-use pairs [205] and the number of test objectives that is
much larger for dataflow criteria compared to control flow ones like branch and branch
pair coverage [199, 204].

In our case, we focus on class integration testing between a caller and a callee [206].
Class integration testing aims to assess whether two or more classes work together prop-
erly by thoroughly testing their interactions [206]. Our idea is to complement unit test
generation for a class under test by looking at its integration with other classes using con-
trol flow analysis. To that end, we define a novel structural adequacy criterion that we
call Coupled Branches Coverage (CBC), targeting specific integration points between
two classes. Coupled branches are pairs of branches ⟨𝑟 , 𝑒⟩, with 𝑟 a branch of the caller,
and 𝑒 a branch of the callee, such that an integration test that exercises branch 𝑟 also
exercises branch 𝑒.

Furthermore, we implement a search-based approach that generates integration-level
test suites leveraging the CBC criterion. We coin our approach Cling (for class integration
testing). Cling uses a state-of-the-art many-objective solver that generates test suites
maximizing the number of covered coupled branches. For the guidance, Cling uses novel
search heuristics defined for each pair of coupled branches (the search objectives).

We conducted an empirical study on 140 well-distributed (in terms of complexity and
coupling) pairs of caller and callee classes extracted from five open-source Java projects.
Our results show that Cling can achieve up to 99% CBC scores, with an average CBC
coverage of 49% across all classes. We analyzed the benefits of the integration-level test
cases generated by Cling compared to unit-level tests generated by EvoSuite [6], the
state-of-the-art generator of unit-level tests, and Randoop [207], a random-based unit
test case generator. In particular, we assess whether integration-level tests generated by
Cling can kill mutants and detect faults that would remain uncovered when relying on
generated unit tests.

According to our results, on average, Cling kills 7.7% (resp. 13.5%) of mutants per
class that remain undetected by unit tests generated using EvoSuite (resp. Randoop)
for both the caller and the callee. The improvements in mutation score are up to 50% for
certain classes. Our analysis indicates that many of the most frequently killed mutants are
produced by integration-level mutation operators. Finally, we have found 27 integration
faults (i.e., faults due to wrong assumptions about the usage of the callee class) that were
detected only by the integration tests generated with Cling (and not through unit testing
with EvoSuite or Randoop).

The remainder of the chapter is organized as follows. Section 6.1 summarizes the back-
ground and related work in the area. Section 6.2 defines the Coupled Branches Criteria
and introduces Cling, our integration-level test case generator. Section 6.3 describes our
empirical study, while Section 6.4 reports the empirical results. Section 6.5 discusses the
practical implication of our results. Section 6.6 discusses the threats to validity. Finally,
Section 6.7 concludes the chapter.



6.1 Background And Related Work

6

125

6.1 Background And Related Work
McMinn [4] defined search-based software testing (SBST) as “using a meta-heuristic opti-
mizing search technique, such as a genetic algorithm, to automate or partially automate a
testing task”. Within this realm, test data generation at different testing levels (such as unit
testing, integration testing, etc.) has been actively investigated [4]. This section provides
an overview of earlier work in this area.

6.1.1 Search-based Approaches For Unit Testing
In Section 1.1.1we have explained how the general structural-based unit testing approaches
work. We also showed an example with Listing 1.1 to demonstrate how these techniques
produce CFGs of the class under test and use two heuristics (called approach level and
branch distance) to achieve a high line and branch coverage.

In search-based unit testing, each generated test case is a sequence of method calls to
a target class. This call sequence can be generated randomly, or it can be generated using
existing resources. Goffi et al. [208] leverage existing documentation in this process, but
for various reasons it does not allow to detect all bugs [209–211].

Rojas et al. [124] collect the usages of classes in the existing test cases to generate the
call sequences. To reach that goal, they need to execute each of the existing tests to find
the call sequences; this may be a time taking process.

In this chapter, we analyze how a class is used/invoked by the other classes within the
same system. For this purpose, we merge the Class-level Control Flow Graph (CCFG) of
target callee and caller classes.

6.1.2 Search-Based Approaches For Integration Testing
Integration testing aims at finding faults that are related to the interaction between com-
ponents. We discuss existing integration testing criteria and explain the search-based ap-
proaches that use these criteria to define fitness functions for automating integration-level
testing tasks.

Integration testing criteria
Jin et al. [197] categorize the connections between two procedures into four types: call
couplings (type 1) occur when one procedure calls another procedure; parameter couplings
(type 2) happen when a procedure passes a parameter to another procedure; shared data
couplings (type 3) occur when two procedures refer to the same data objects; external de-
vice coupling (type 4) happens when two procedures access the same storage device. They
introduce integration testing criteria according to the data flow graph (containing the def-
initions and usages of variables at the integration points) of procedure-based software.
Their criteria, called coupling-based testing criteria, require that the tests’ execution paths
cover the last definition of a parameter’s value in the CFG of a procedure (the caller pro-
cedure), a node (the call site) calling another procedure with that parameter, and the first
use of the parameter in the callee (and in the caller after the call if the parameter is a
call-by-reference).

Harrold et al. [200] introduced data flow testing for a single class focusing on method-
integration testing. They define three levels of testing: intra-method testing, which tests
an individual method (i.e., the smallest possible unit to test); inter-method testing, in which



6

126 6 Generating Class-Level Integration Tests Using Call Site Information

Entry

13

14 16

Exit

Entry

5

8

Exit

6c

6r

Person

addEnergy() driveToHome()

Figure 6.1: Class-level CFG for class Person

a public method is tested that (in)directly calls other methods of the same class, and intra-
class testing, in which the various sequences of public methods in a class are tested. For
data flow testing of inter-method and intra-class testing, they defined a Class-level Control
Flow Graph (CCFG). The CCFG of class C is a directed graph 𝐶𝐶𝐹𝐺𝐶 = (𝑁𝐶𝑚 ,𝐸𝐶𝑚) which
is a composition of the control flow graphs of methods in 𝐶 ; the CFGs are connected
through their call sites to methods in the same class [200]. This graph demonstrates all
paths that might be crossed within the class by calling its methods or constructors.

Let us consider again the class 𝑃𝑒𝑟𝑠𝑜𝑛 in Listing 1.1. The CCFG of class 𝑃𝑒𝑟𝑠𝑜𝑛 is cre-
ated bymerging the CFGs of its method, as demonstrated in Figure 6.3. For example, in the
CFG of themethod Person.driveToHome(), the node 6c is a call site to Person.addEnergy().
In the approach introduced by Harrold et al. [200], they detect the def-use paths in the
constructed CCFGs and try to cover those paths.

Denaro et al. [205] revisited previous work on data flow analysis for object-oriented
programs [200, 201] to define an efficient approach to compute contextual def-use coverage
[201] for class integration testing. The approach relies on contextual data flow analysis to
take state-dependent behavior of classes that aggregate other classes into account. Com-
pared to def-use paths, contextual def-use include the chain of method calls leading to the
definition or the use.

A special case is represented by the polymorphic interactions that need to be tested.
Alexander et al. [202, 203] used the data flow graph to define testing criteria for integra-
tions between classes in the same hierarchy tree.

All of the mentioned approaches are using data-flow analysis to define integration
testing criteria. However, generating data-flow graphs covering the def-uses involved



6.2 Class Integration Testing

6

127

Application
bytecode

Detect covering
methods

Detect coupled
branches

Caller
class (R)

Genetic algorithm
Initialization

Fitness
evaluation

Selection

Crossover

Repair
chromosomes

Mutation

Repair
chromosomes

Reinsertion

Callee
class (E)

1

2

3

Figure 6.2: General overview of Cling

in between classes is expensive and not scalable in complex cases [199]. Vivanti et al.
[204] shows that the average number of def-use paths in a single class in isolation is three
times more than the number of branches. By adding def-use paths between the non-trivial
classes, this number grows exponentially.

In search-based approaches, the number of search objectives matters as too many ob-
jectives leads to the search process misguidance. Compared to previous work, our ap-
proach does not try to cover def-use paths. Instead, we use a control flow analysis to
identify from a CCFG a restricted number of pairs of branches (in a caller and a callee)
that are not trivially executed together. For instance, the couple of branches ⟨13,16⟩ and
⟨𝑏8,𝑏9⟩ in Figure 6.3. Those pairs of branches are then used to define the search objec-
tives of our test case generator. Section 6.2 details the analysis of the CCFG to identify
such pairs of branches, including for special cases of interaction (namely inheritance and
polymorphism), and the definition of the objectives and search algorithm.

CCFGs have been used previously for other usages. For instance, Wang et al. [212]
merge the CFGs ofmethods of classes in the dependencies of software under test to identify
the dependency conflicts.

6.2 Class Integration Testing
The main idea of our class integration testing (hereinafter referred to as Cling) is to test
the integration of two classes by leveraging the usage of one class by another class. More
specifically, we focus on the calls between the former, the callee (𝐸), and the latter, the
caller (𝑅). By doing so, we benefit from the additional context setup by 𝑅 before calling 𝐸



6

128 6 Generating Class-Level Integration Tests Using Call Site Information

Entry

13

14 16

Exit

Entry

5

8

Exit

6c

6r

Person (Caller)

addEnergy() driveToHome()
Entry

b8

b10 b9

Entry

Car (Callee)

refuel()

otherMethod()

Figure 6.3: Merging CCFGs of two classes: Person (caller) and Car (callee)

(e.g., initializing a complex input parameter), and the additional post-processing after 𝐸
returns (e.g., using the return value later on in 𝑅), thus (implicitly) making assumptions
on the behavior of 𝐸.

Figure 6.2 presents the general overview of Cling. Cling takes as input a pair of
caller-callee ⟨𝑅,𝐸⟩ classes with at least one call (denoted call site hereafter) from 𝑅 to 𝐸.
Since the goal of Cling is to generate test cases covering 𝐸 by calling methods in 𝑅, the
first step ( 1⃝) statically collects the list of covering methods in 𝑅 that, when called, may
directly or indirectly cover statements in 𝐸. This list is later used during the generation
process to ensure that test cases contain calls to covering methods. The second step ( 2⃝)
statically analyzes the CCFGs of 𝑅 and 𝐸 to identify the coupled branches between 𝑅 and
𝐸 used later on to guide the search. The CCFGs are statically built from the CFGs of the
methods (including inherited ones) in 𝑅 and 𝐸. Finally, the generation of the test cases ( 3⃝)
uses a genetic algorithm with two additional repair steps, ensuring that the crossover and
mutation only produce test cases able to cover lines in 𝐸. The result is a test suite for 𝐸,
whose test cases invokes methods in 𝑅 that cover the interactions between 𝑅 and 𝐸.

The remainder of this section describes our novel underlying Coupled Branches Crite-
rion, the corresponding search-heuristics, and test case generation in Cling.



6.2 Class Integration Testing

6

129

6.2.1 Coupled Branch Testing Criterion
To test the integration between two classes 𝐸 and 𝑅, we need to define a coverage criterion
that helps us to measure how thoroughly a test suite 𝑇 exercises the interaction calls
between the two classes (𝐸 and 𝑅). One possible coverage criterionwould consist of testing
all possible paths (inter-class path coverage) that start from the entry node of the caller 𝑅,
execute the integration calls to 𝐸 and terminate in one of the exit points of 𝑅. However,
such a criterion will be affected by the path explosion problem [213]: the number of paths
increases exponentially with the cyclomatic complexity of 𝐸 and 𝑅, and thus the number
of interaction calls between the two classes.

To avoid the path explosion problem, we define an integration-level coverage criterion,
namely the Coupled Branch Criterion (CBC), where the number of coverage targets re-
mains polynomial to the cyclomatic complexity of 𝐸 and 𝑅. More precisely, CBC focuses
on call coupling between caller and callee classes. Intuitively, let 𝑠 ∈ 𝑅 be a call site, i.e.,
a call statement to a method of the class 𝐸. Our criterion requires to cover all pairs of
branches (𝑏𝑟 , 𝑏𝑒), where 𝑏𝑟 is a branch in 𝑅 that leads to 𝑠 (the method call), and 𝑏𝑒 is a
branch of the callee 𝐸 that is not trivially covered by every execution of 𝐸. So, in the worst
case, the number of coverage targets is quadratic in number of branches in the caller and
callee classes.

Target caller branches
Among all branches in the caller class, we are interested in covering the branches that are
not trivially (always) executed, and they always lead to the integration call site (i.e., calling
the callee class) when covered. We refer to these branches as target branches for the caller.

Definition 6.2.1 (Target branches for the caller) For a call site 𝑠 in 𝑅, the set of target
branches 𝐵𝑅(𝑠) for the caller 𝑅 contains the branches having the following characteristics:
(i) the branches are outgoing edges for the node on which 𝑠 is control dependent (i.e., nodes
for which 𝑠 post-dominates one of its outgoing branches but does not post-dominate the node
itself); and (ii) the branches are post-dominated by 𝑠, i.e., branches for which all the paths
through the branch to the exit point pass through 𝑠.

To understand how we determine the target branches in the caller, let us consider the
example of the caller and the callee in Figure 6.3. The code for the class Person is reported
in Listing 1.1. The class Person contains two methods, addEnergy() and driveToHome(),
with the latter invoking the former (line 6 in Listing 1.1). Themethod Person.addEnergy()
invokes themethod refuel() of the class Car (line 16 in Listing 1.1). Themethod Person.d-
riveToHome() invokes the method Car.drive() (line 8 in Listing 1.1). Therefore, the class
Person is the caller, while Car is the callee.

Figure 6.3 shows an excerpt of the Class-level Control Flow Graphs (CCFGs) for the
two classes. In the figure, the names of the nodes are labelled with the line number of
the corresponding statements in the code of Listing 1.1. Node 16 in Person.addEnergy()
is a call site to Car.refuel(); it is also control dependent on nodes 5 (Person.driveTo-
Home()) and 13 (Person.addEnergy()). Furthermore, node 16 only post-dominates branch
⟨13,16⟩. Instead, the branch ⟨5,6𝑐⟩ is not post-dominated by node 16 as covering ⟨5,6𝑐⟩
does not always imply covering node 16 as well. Therefore, the branches in the caller
Person.addEnergy() that always lead to the callee are 𝐵𝙿𝚎𝚛𝚜𝚘𝚗(𝙲𝚊𝚛.𝚛𝚎𝚏𝚞𝚎𝚕()) = {⟨13,16⟩}.



6

130 6 Generating Class-Level Integration Tests Using Call Site Information

Hence, among all branches in the caller class (Person in our example), we are interested
in covering the branches that, when executed, always lead to the integration call site (i.e.,
calling the callee class). We refer to these branches as target branches for the caller.

Target callee branches
Like the target branches of the caller, the target branches of the callee are branches that
are not trivially (always) executed each time the method is called.

Definition 6.2.2 (Target branches for the callee) The set of target branches 𝐵𝐸(𝑠) for
the callee 𝐸 contains branches satisfying the following properties: (i) the branches are among
the outgoing branches of branching nodes (i.e., the nodes havingmore than one outgoing edge);
and (ii) the branches are accessible from the entry node of the method called in 𝑠.

Let us consider the example of Figure 6.3 again. This time, let us look at the branches
in the callee (Car) that are directly related to the integration call. In the example, executing
the method call Car.refuel() (node 16 of the method Person.addEnergy()) leads to the
execution of the branching node 𝑏8 of the class Car. Hence, the set of branches affected
by the interaction calls is 𝐵𝙲𝚊𝚛(𝙲𝚊𝚛.𝚛𝚎𝚏𝚞-𝚎𝚕()) = {⟨𝑏8,𝑏9⟩; ⟨𝑏8,𝑏10⟩}. In the following, we
refer to these branches as target branches for the callee. Note that, for a call site 𝑠 in 𝑅
calling 𝐸, the set of target branches for the callee also includes branches that are trivially
executed by any execution of 𝑠.

Coupled branches
Given the sets of target branches for both the caller and callee, an integration test case
should exercise at least one target branch for the caller (branch affecting the integration
call) and one target branch for the callee (i.e., the integration call should lead to covering
branches in the callee). In the following, we define pairs of target branches (𝑏𝑟 ∈ 𝐵𝑅(𝑠),𝑏𝑒 ∈
𝐵𝐸(𝑠)) as coupled branches because covering 𝑏𝑟 can lead to covering 𝑏𝑒 as well.

Definition 6.2.3 (Coupled branches) Let 𝐵𝑅(𝑠) be the set of target branches in the caller
class 𝑅; let 𝐵𝐸(𝑠) be the set of target branches in the callee class 𝐸; and let 𝑠 be the call site in
𝑅 to the methods of 𝐸. The set of coupled branches 𝐶𝐵𝑅,𝐸(𝑠) is the cartesian product of 𝐵𝑅(𝑠)
and 𝐵𝐸(𝑠):

𝐶𝐵𝑅,𝐸(𝑠) = 𝐶𝐵𝑅,𝐸(𝑠) = 𝐵𝑅(𝑠) ×𝐵𝐸(𝑠) (6.1)

In our example of Figure 6.3, we have two coupled branches: the branches (⟨13,16⟩, ⟨𝑏8,𝑏9⟩)
and the branches (⟨13,16⟩, ⟨𝑏8,𝑏10⟩).

Definition 6.2.4 (Set of coupled branches) Let 𝑆 = (𝑠1,… , 𝑠𝑘) be the list of call sites from
a caller 𝑅 to a callee 𝐸, the set of coupled branches for 𝑅 and 𝐸 is the union of the coupled
branches for the different call sites 𝑆:

𝐶𝐵𝑅,𝐸 = ∪𝑠∈𝑆𝐶𝐵𝑅,𝐸(𝑠)



6.2 Class Integration Testing

6

131

Example 6.1: Class GreenPerson
1 Class GreenPerson extends Person{
2 private HybridCar car = new HybridCar ();
3 @override
4 public void addEnergy (){
5 if(this.lazy){
6 takeBus ();
7 }else if (chargerAvailable ()){
8 car.recharge ()
9 }else{

10 car.refuel ();
11 }
12 }
13
14 private void chargerAvailable (){
15 if(ChargingStation.takeavailableStations ().size > 0){
16 return true;
17 }
18 return false;
19 }
20 }

Coupled Branches Criterion (CBC)
Based on the definition above, the CBC criterion requires that for all the call sites 𝑆 from
a caller 𝑅 to a callee 𝐸, a given test suite 𝑇 covers all the coupled branches:

𝐶𝐵𝐶𝑅,𝐸 = |{(𝑟𝑖 , 𝑒𝑖) ∈ 𝐶𝐵𝑅,𝐸 |∃𝑡 ∈ 𝑇 ∶ 𝑡 𝑐𝑜𝑣𝑒𝑟𝑠 𝑟𝑖 𝑎𝑛𝑑 𝑒𝑖}|
|𝐶𝐵𝑅,𝐸 |

We do note that this formula is only relevant if there are indeed call interactions between
caller and callee. As for classical branch and branch-pair coverage, 𝐶𝐵𝑅,𝐸 may contain
unreachable branch-pairs. However, detecting and filtering those incompatible pairs is an
undecidable problem. Hence, in this study, we target all coupled branches.

Inheritance and polymorphism
In the special case where the caller and callee classes are in the same inheritance tree, we
use a different procedure to build the CCFG of the super-class and find the call sites 𝑆.
The CCFG of the super-class is built by merging the CFGs of the methods that are not
overridden by the sub-class. As previously, the CCFG of the sub-class is built by merging
the CFGs of the methods defined in this class, including the inherited methods overridden
by the sub-class (other non-overridden inherited methods are not part of the CCFG of the
sub-class).

For instance, the class GreenPerson in Listing 6.1, representing owners of hybrid cars,
extends class Person from Listing 1.1. For adding energy, a green person can either refuel
or recharge her car (lines 7 to 11). GreenPerson overrides the method Person.addEnergy()
and defines an additional method GreenPerson.chargerAvailable() indicating whether
the charging station is available. Only those twomethods are used in the CCFG of the class
GreenPerson presented in Figure 6.4, inherited methods are not included in the CCFG;
the CCFG of the super-class Person does not contain the method Person.addEnergy(),
redefined by the sub-class GreenPerson.

The call sites 𝑆 are identified according to the CCFGs, depending on the caller and the
callee. If the caller 𝑅 is the super-class, 𝑆 will contain all the calls in 𝑅 to methods that have



6

132 6 Generating Class-Level Integration Tests Using Call Site Information

Figure 6.4: CCFG of 𝐺𝑟𝑒𝑒𝑛𝑃𝑒𝑟𝑠𝑜𝑛 as subclass

been redefined by the sub-class. For instance, nodes 6 and 13 in Figure 6.3 with Person as
caller. If the caller 𝑅 is the sub-class, 𝑆 will contain all the calls in 𝑅 to methods that have
been inherited but not redefined by 𝑅. For instance, node 6 in Figure 6.4 with GreenPerson
as caller.

6.2.2 Cling
Cling is the tool that we have developed to generate integration-level test suites that max-
imize the proposed CBC adequacy criterion. The inputs of Cling are the (1) application’s
bytecode, (2) a caller class 𝑅, and (3) callee class 𝐸. As presented in Figure 6.2, Cling first
detects the covering methods (step 1⃝) and identifies the coupled branches 𝐶𝐵𝑅,𝐸(𝑠) for the
different call sites (step 2⃝), before starting the search-based test case generation process
(detailed in the following subsections). Cling produces a test suite that maximizes the
CBC criterion for 𝑅 and 𝐸.

Satisfying the CBC criterion is essentially amany-objective problemwhere integration-
level test cases have to cover pairs of coupled branches separately. In other words, each
pair of coupled branches corresponds to a search objective to optimize. The next subsec-
tion describes our search objectives.

Search objectives
In our approach, each objective function measures the distance of a generated test from
covering one of the coupled branch pairs. The value ranges between [0,+∞) (zero denoting



6.2 Class Integration Testing

6

133

that the objective is satisfied). Assuming that 𝐶𝐵𝑅,𝐸 = {𝑐1, 𝑐2,… ,𝑐𝑛} is the set of coupled
branches ⟨𝑟𝑖 , 𝑒𝑖⟩ between 𝑅 and 𝐸. Then, the fitness for a test case 𝑡 is defined as follows:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 = {
𝑑(𝑐1, 𝑡) = 𝐷(𝑟1, 𝑡) ⊕𝐷(𝑒1, 𝑡)
…
𝑑(𝑐𝑛 , 𝑡) = 𝐷(𝑟𝑛 , 𝑡) ⊕𝐷(𝑒𝑛 , 𝑡)

(6.2)

where 𝐷(𝑏, 𝑡) = 𝑎𝑙(𝑏, 𝑡) + 𝑏𝑑(𝑏, 𝑡) computes the distance between the test 𝑡 to the branch
𝑏 using the classical approach level 𝑎𝑙(𝑏, 𝑡) (i.e., the minimum number of control depen-
dencies between 𝑏 and the execution path of 𝑡) and normalized branch distance 𝑏𝑑(𝑏, 𝑡)
(i.e., the distance, computed based on a set of rules, to the branch leading to 𝑏 in the
closest node on the execution path of 𝑡) [4]; and 𝐷(𝑟𝑖 , 𝑡) ⊕𝐷(𝑒𝑖 , 𝑡) is defined as 𝐷(𝑟𝑖 , 𝑡) + 1
if 𝐷(𝑟𝑖 , 𝑡) > 0 (i.e., the caller branch is not covered) and 𝐷(𝑒𝑖 , 𝑡) otherwise (i.e., the caller
branch is covered).

Search algorithm
To solve such a many-objective problem, we tailored the Many-Objective Sorting Algo-
rithm (MOSA) [214] to generate test cases through class integration. MOSA has been in-
troduced and assessed in the context of unit test generation [214] and security testing [215].
Besides, previous studies [35, 214] showed that MOSA is very competitive compared with
alternative algorithms when handling hundreds and thousands of testing objectives. In-
terested readers can find more details about the original MOSA algorithm in Panichella
et al. [214]. Although a more efficient variant of MOSA has been recently proposed [42],
such a variant (DynaMOSA) requires to have a hierarchy of dependencies between cover-
age targets that exists only at the unit level. Since targets in unit testing are all available
in the same control flow graph, the dependencies between objectives can be calculated
(i.e., control dependencies). In contrast, Cling’s objective is covering combinations of tar-
gets in different control flow graphs. Since covering one combination does not depend on
the coverage of another combination, DynaMOSA is not applicable to this problem.

Therefore, in Cling, we tailored MOSA to work at integration level, targeting pairs of
coupled branches rather than unit-level coverage targets (e.g., statements). In the follow-
ing, we describe the main modifications we applied to MOSA to generate integration-level
test cases.

Initial population
The search process starts by generating an initial population of test cases. A random test
case is a sequence of statements (object instantiations, primitive statements, method calls,
and constructor calls to the class under test) of variable lengths. More precisely, the random
test cases includemethod calls and constructors for the caller 𝑅, which directly or indirectly
invoke methods of the callee 𝐸 (covering methods). Although Cling generates these test
cases randomly, it extends the initialization procedure used for search-based crash repro-
duction [36]. In particular, the initialization procedure in Cling gives a higher priority to
methods in the caller class 𝑅 that invoke methods of the callee class 𝐸. While calls to other
methods of 𝑅 are also inserted, their insertion has a lower probability. This prioritization
ensures to generate tests covering call sites to the callee class. In the original MOSA al-
gorithm, all methods of the class under test are inserted in each random test case with



6

134 6 Generating Class-Level Integration Tests Using Call Site Information

the same probability without any prioritization. The execution time of the initialisation
procedure is part of the search budget.

Mutation and crossover
Cling uses the traditional single-point crossover and mutation operators (adding, chang-
ing and removing statements) [6] with an additional procedure to repair broken chromo-
somes. The initial test cases are guaranteed to contain at least one covering method (a
method of 𝑅 that directly or indirectly invokes methods of 𝐸). However, mutation and
crossover can lead to generating offspring tests that do not include any covering method.
We refer to these chromosomes as broken chromosomes. To fix the broken chromosomes,
the repair procedure works in two different ways, depending on whether the broken chro-
mosome is created by the crossover or by the mutation.

If the broken chromosome is the result of the mutation operator, then the repair pro-
cedure works as follows: let 𝑡 be the broken chromosome and let𝑀 be the list of covering
methods; then, Cling applies the mutation operator to 𝑡 in an attempt to insert one of
the covering methods in 𝑀 . If the insertion is not successful, then the mutation operator
is invoked again within a loop. The loop terminates when either a covering method is
successfully injected in 𝑡 or when the number of unsuccessful attempts is greater than a
threshold (50 by default). In the latter case, 𝑡 is not inserted in the new population for the
next generation.

If the broken chromosome is generated by the crossover operator, then the broken
child is replaced by one of its parents.

Polymorphism
If the caller and callee are in the same hierarchy and the caller is the super-class, Cling
cannot generate tests for the caller class that will cover the callee class (since the methods
to cover are not defined in the super-class). This is the case for instance if the super-
class (caller) calls abstract methods defined in the sub-class (callee). In this particular
case, Cling generates tests for the callee class. However, it selects the covering methods
only from the inherited methods which are not overridden by the callee (sub-class). A
covering method should be able to cover calls to the methods that have been redefined by
the sub-class. With this slight change, Cling can improve the CBC coverage, as described
in Section 6.2.1.

6.3 Empirical Evaluation
Our evaluation aims to answer three research questions. The first research question ana-
lyzes the levels of CBC coverage achieved by Cling. For this research question, we first
analyze the coupled branches covered by Cling in each of the cases:

RQ1.1 What is the CBC coverage achieved by Cling?

As explained in Section 6.1.2, to the best of our knowledge, there is no class-integration test
case generator available for comparison. We thus compare Cling to the state-of-the-art
unit test generators in terms of CBC coverage:

RQ1.2 How does the CBC coverage achieved by Cling compares to automatically generated
unit-level tests?



6.3 Empirical Evaluation

6

135

Since the test cases generated by Cling aim to cover coupled branches between two
classes, we need to determine the effectiveness of this kind of coverage compared to test
suites generated for high branch coverage in unit testing:

RQ2 What is the effectiveness of the integration-level tests compared to unit-level tests?

Finally, we want to see whether the tests generated by Cling can make any difference in
practice. Hence, we analyzed the integration faults captured by these tests:

RQ3 What integration faults does Cling detect?

6.3.1 Implementation
We implemented Cling as an open-source tool written in Java.¹ The tool relies on the Evo-
Suite [6] library as an external dependency. It implements the code instrumentation for
pairs of classes, builds the CCFGs at the byte-code level, and derives the coverage targets
(pairs of branches) according to the CBC criterion introduced in Section 6.2.1. The tool
also implements the search heuristics, which are applied to compute the objective scores
as described in Section 6.2. Besides, Cling implements the repair procedure described in
Section 6.2.2, which extends the interface of the genetic operators in EvoSuite. More-
over, we customized the many-objective MOSA algorithm [42], which is implemented in
EvoSuite, for our test case generation problem in Cling.

Baseline Selection
The goal of this evaluation is to explore the impact of the tests generated by Cling on the
results of the search-based unit testing in various aspects. To achieve this purpose, we run
our tool against EvoSuite, which is currently the best tool in terms of achieving branch
coverage [216–220], and Randoop [207], a random-based unit test case generator. We con-
figured EvoSuite to useDynaMOSA (-Dalgorithm=DynaMOSA), which has the best outcome
in structural and mutation coverage [42] and branch coverage (-Dcriterion=BRANCH). For
Randoop, we used the default parameter values.

6.3.2 Study Setup
Subjects Selection
Thesubjects of our studies are five Java projects, namelyClosure compiler,Apache commons-
lang, Apache commons-math, Mockito, and Joda-Time. These projects have been used in
prior studies to assess the coverage and the effectiveness of unit-level test case genera-
tion [22, 42, 70, 71], program repair [72, 73], fault localization [74, 75], and regression
testing [76, 77].

To sample the classes under test, we first extract pairs of caller and callee classes
(i.e., pairs with interaction calls) in each project. Then, we remove pairs that contain trivial
classes, i.e., classes where the caller and callee methods have no decision point (i.e., with
cyclomatic complexity equal to one). This is because methods with no decision points can
be covered with single method calls at the unit testing level. Note that similar filtering
based on code complexity has been used and recommended in the related literature [42,
194, 218]. From the remaining pairs, we sampled 140 distinct pairs of classes from the five

¹Available at https://github.com/STAMP-project/botsing/tree/master/cling

https://github.com/STAMP-project/botsing/tree/master/cling


6

136 6 Generating Class-Level Integration Tests Using Call Site Information

Table 6.1: Projects in our empirical study. # indicates the number of caller-callee pairs. CC indicates the cyclomatic
complexity of the caller and callee classes. Calls indicates the number of calls from the caller to the callee.
Coupled branches indicates the number of coupled branches.

Project # Caller Callee Calls Coupled branches
𝑐𝑐 𝜎 𝑐𝑐 𝜎 𝑐𝑜𝑢𝑛𝑡 𝜎 min 𝑐𝑜𝑢𝑛𝑡 𝜎 max

closure 26 1,221.3 1,723.0 377.2 472.5 70.3 101.0 4 10,542 17,080 60,754
mockito 20 115.3 114.4 127.8 113.2 39.5 64.9 0 1,185 1,974 6,929
time 51 68.7 84.0 87.2 92.3 23.9 50.5 0 494 1,093 5,457
lang 18 145.0 177.8 235.3 242.7 12.4 14.6 2 409 598 1,826
math 25 79.2 88.4 57.5 64.4 18.8 34.5 2 294 613 2,682
All 140 301.1 859.5 160.6 257.7 32.4 62.8 0 2,412 8,294 60,754

projects in total, which offers a good balance between generalization (i.e., the number of
pairs to consider) and statistical power (i.e., the number of executions of each tool against
each class or pair of classes). We performed the sampling to have classes with a broad
range of complexity and coupling. In our sampling procedure, each selected class pair
includes either the classes with the highest cyclomatic complexity or the mosts coupled
classes. The numbers of pairs selected from each project are reported in Table 6.1. The
least and most complex classes in the selected class pairs have one and 5,034 branching
nodes, respectively. Also, the caller class of the least and most coupled class pairs contain
one and 453 call sites to the callee class, respectively. Each pair of caller and callee classes
represents a target for Cling.

Our replication package² contains the list of class pairs sampled for our study, their
detailed statistics (i.e., cyclomatic complexity and the number of interaction calls), and the
project versions.

Evaluation Procedure
To answer the research questions, we run Cling on each of the selected class pairs. For
each class pair targeted with Cling, we run Randoop and EvoSuite with the caller and
the callee classes as target classes under test to compare the class integration test suite
with unit level test suites for the individual classes. This results in having five test suites:

1. 𝑇Cling, the integration-level test suite generated by Cling;
2. 𝑇𝑅𝑎𝑛𝑅 , the unit-level test suite generated by Randoop for the caller;
3. 𝑇𝑅𝑎𝑛𝐸 , the unit-level test suite generated by Randoop for the callee;
4. 𝑇𝐸𝑣𝑜𝑅 , the unit-level test suite generated by EvoSuite for the caller;
5. 𝑇𝐸𝑣𝑜𝐸 , the unit-level test suite generated by EvoSuite for the callee.
To address the random nature of the three tools, we repeat each run 20 times (140

pairs of classes × 5 executions × 20 repetitions = 140,000 executions). Moreover, each
Cling run is configured with a search budget of five minutes, including two minutes of
search initialization timeout. To allow a fair comparison, we run Randoop and EvoSuite
for five minutes on each caller/callee class, including default initialization timeout (14,000
× 5 minutes ≃ 48.6 days execution time for test case generation).

²https://github.com/STAMP-project/Cling-application

https://github.com/STAMP-project/Cling-application


6.3 Empirical Evaluation

6

137

For RQ1, we analyzed the average (median) CBC coverage scores achieved by 𝑇𝐶𝑙𝑖𝑛𝑔
and compared themwith the CBC coverages of 𝑇𝑅𝑎𝑛𝑅 and 𝑇𝐸𝑣𝑜𝑅 across the 20 independent
runs.

For RQ2, we measure the effectiveness of the generated test suite using both line cov-
erage and mutation analysis on the callee classes 𝐸 (considered as the class under test in
our approach). Mutation analysis is a high-end coverage criterion, and mutants are often
used as substitutes for real faults since previous studies highlighted its significant correla-
tion with fault-detection capability [221, 222]. Besides, mutation analysis provides a bet-
ter measure of the test effectiveness compared to more traditional coverage criteria [196]
(e.g., branch coverage).

We compute the line coverage and mutation scores achieved by 𝑇Cling for the callee
class in each target class pair. Then, we compare them to the line coverage and mutation
scores achieved by the unit-level test suites (𝑇𝑅𝑎𝑛𝑅 , 𝑇𝑅𝑎𝑛𝐸 , 𝑇𝐸𝑣𝑜𝑅 , and 𝑇𝐸𝑣𝑜𝐸) for the callee
class. Moreover, we analyze the orthogonality of the sets of mutants in the callee that
are strongly killed by 𝑇Cling, and those killed by the unit-level tests individually. In other
words, we look at whether 𝑇Cling allows killing mutants that are not killed at unit-level
(strong mutation). Also, we analyze the type of the mutants which are only killed by
𝑇Cling.

For line coverage and mutation analysis, we use Pit [223], which is a state-of-the-art
mutation testing tool for Java code, to mutate the callee classes. Pit also collects and
reports the line coverage of the test suite on the original class before mutation. Pit has
been used in literature to assess the effectiveness of test case generation tools [70, 217–
220, 224], and it has also been applied in industry³. In our study, we use Pit v.1.4.9 with
all mutation operators activated (i.e., the ALL mutators group).

For RQ3, we analyze the exceptions triggered by both integration and unit-level test
suites. In particular, we extract unexpected exceptions causing crashes, i.e., exceptions that
are triggered by the test suites but that are (i) not declared in the signature of the caller
and callee methods using throws clauses, (ii) not caught by a try-catch blocks, and (iii)
not documented in the Javadoc of the caller or callee classes. Then, we manually analyze
unexpected exceptions that are triggered by the integration-level test cases (i.e., by Cling),
but not by the unit-level tests.

The test suites generated by Cling and EvoSuite may contain flaky tests, i.e., test
cases that exhibit intermittent failures if executed with the same configuration. To detect
and remove flaky tests, we ran each generated test suite five times. Then, we removed
tests that fail in at least one of the independent runs. Hence, the test suites used to answer
our three research questions likely do not contain flaky tests.

To keep the execution time (which includes test generation, flaky test detection, and
mutation and coverage analysis) manageable, we used a cluster (with 20 CPU-cores, 384
GB memory, and 482 GB hard drive) to parallelize the execution for our evaluation (50
simultaneous executions). With this parallelization, the automated execution of the whole
evaluation took about three days (one day for test generation and two days for flaky test
detection and mutation and line coverage measurement).

³http://pitest.org/sky_experience/



6

138 6 Generating Class-Level Integration Tests Using Call Site Information

15 (58%) 3 (12%)2 (8%) 6 (24%)

7 (37%) 5 (27%)3 (16%) 4 (22%)

2 (5%) 31 (64%)8 (17%) 8 (17%)

7 (39%) 7 (39%)1 (6%) 3 (17%)

4 (16%) 14 (57%)1 (4%) 6 (24%)

35 (26%) 60 (44%)15 (11%) 27 (20%)

closure

mockito

time

lang

math

all

0.00 0.25 0.50 0.75 1.00
Frequency

P
ro

je
ct

s
CBC: >75% 50%< & <75% 25%< & <50% <25%

Figure 6.5: Distribution of Cling’s CBC coverage for the different class pairs.

●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●

●
●●●
●
●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●●

●

●

●

●

●

●
●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●

●

●

●

●●●●●

●

●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

closure mockito time lang math (all)

E
vo

R

R
an

R

C

E
vo

R

R
an

R

C

E
vo

R

R
an

R

C

E
vo

R

R
an

R

C

E
vo

R

R
an

R

C

E
vo

R

R
an

R

C
0.00

0.25

0.50

0.75

1.00

Test Suites

C
ou

pl
ed

 B
ra

nc
he

s 
C

ov
er

ag
e

Figure 6.6: Total coupled-branches coverage achieved by 𝑇Cling (C), 𝑇𝑅𝑎𝑛𝑅 (RanR) and 𝑇𝐸𝑣𝑜𝑅 (EvoR). ( ) denotes
the arithmetic mean and (—) is the median.

6.4 Evaluation Results
This section presents the results of the evaluation and answers the research questions.

6.4.1 CBC achieved by Cling (RQ1.1)
As reported in Table 6.1, Cling did not identify any coupled-branches for three pairs of
classes (one in mockito and two in time). This is due to the absence of target branches
in either the caller or the callee, resulting in no couple of branches to cover. Those three
pairs have been excluded from the results presented in this section. Figure 6.5 gives the
distribution of the CBC coverage achieved by Cling for the remaining 137 pairs of classes.
In total, Cling could generate at least one test suite achieving a coupled-branches coverage
of at least 50% for 87 out of 137 class pairs. Figure 6.6 presents the coupled-branches
coverage of 𝑇Cling in all of the projects. On average (the diamonds in Figure 6.6) the test



6.4 Evaluation Results

6

139

Friedman: 0.000 (Ha: Different) 
 Critical distance: 0.283

Mean ranks

●

●

●

C − 1.48

EvoR − 1.89

RanR − 2.63

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

● ●

● ●

● ●

●

Figure 6.7: Non-parametric multiple comparisons in terms of CBC score for 𝑇Cling (C), 𝑇𝐸𝑣𝑜𝑅 (EvoR), and 𝑇𝑅𝑎𝑛𝑅
(RanR) using Friedman’s test with Nemenyi’s post-hoc procedure.

suites generated by Cling cover 48.7% of coupled-branches.
The most covered couples are in the math project (61.9% on average), followed by time

(61.8% on average) and lang (46.5% on average). The least covered couples are in the clo-
sure (24% on average) and mockito projects (33.6% on average), which are also the projects
with the highest number of coupled-branches in Table 6.1 (10,542 coupled-branches on av-
erage for all the class pairs in closure and 1,185 coupled-branches on average in mockito).

For 9 caller-callee pairs, Cling could not generate a test suite able to cover at least
one coupled branch out of 20 executions: 3 pairs from math, 3 pairs from mockito, 2 pairs
from closure, and 1 from lang. In the class pair from lang, Cling could not cover any
coupled branch because the callee class (StringUtils) misleads the search process (we
detail the explanation in Section 6.4.2). The remaining 8 pairs cannot be explained solely
by the complexities of the caller (with a cyclomatic complexity ranging from 8 to 5,034
for those classes) and the callee (with a cyclomatic complexity ranging from 1 to 2,186)
or the number of call sites (ranging from 1 to 177). This calls for a deeper understanding
of the interactions between caller and callee around the call sites. In our future work, we
plan to refine the caller-callee pair selection (for which we currently looked at the global
complexity of the classes) to investigate the local complexity of the classes around the call
sites.
Summary (RQ1.1). On average, the generated tests by Cling cover 48.7% of coupled-
branches. In 87 out of 140 (59.2%) of the pairs, these test suites achieve a CBC higher
than 50%.

6.4.2 CBC achieved by Cling vs. unit tests (RQ1.2)
Since 𝑇𝑅𝑎𝑛𝐸 and 𝑇𝐸𝑣𝑜𝐸 cover only branches in the callee class (i.e., it does not call any
methods in the caller class), the coupled-branches coverages achieved by these tests are
always zero. Hence, for this research question, we compare the tests generated by Cling
(𝑇Cling) against the tests generated by Randoop and EvoSuite applied to the caller class
(𝑇𝑅𝑎𝑛𝑅 and 𝑇𝐸𝑣𝑜𝑅) w.r.t. coupled-branches coverage.

Figure 6.6 presents the coupled-branches coverage of 𝑇Cling, 𝑇𝑅𝑎𝑛𝑅 , and 𝑇𝐸𝑣𝑜𝑅 for



6

140 6 Generating Class-Level Integration Tests Using Call Site Information

all the projects. The number of covered coupled-branches by 𝑇Cling is higher in total
(all in Figure 6.6). On average (the diamonds in Figure 6.6), the test suites generated by
Cling (48.7%) cover more coupled-branches compared to 37% for 𝑇𝐸𝑣𝑜𝑅 , and 15.7% for
𝑇𝑅𝑎𝑛𝑅 . On average, the coupled-branches coverage achieved by unit tests is lower than the
one achieved by Cling in all of the projects except lang. The average coupled-branches
coverage of EvoSuite in this project is 55.6%, compared to 48.9% for Cling. We also
observe a wider distribution of the CBC coverage for 𝑇Cling (with a median of 51.0% and
an IQR of 78.2%) compared to 𝑇𝐸𝑣𝑜𝑅 (with a median of 30.7% and an IQR of 59.0%) and
𝑇𝑅𝑎𝑛𝑅 (with a median < 1.0% and an IQR of 25.0%).

We further compare the different test suites using Friedman’s non-parametric test for
repeated measurements with a significance level 𝛼 = 0.05 [225] . This test is used to test the
significance of the differences between groups (treatments) over the dependent variable
(CBC coverage in our case). We further complement the test for significance with Ne-
menyi’s post-hoc procedure [226, 227]. Figure 6.7 provides a graphical representation of
the ranking (i.e., mean ranks with confidence interval) of the different test suites. Accord-
ing to the Friedman test, the different treatments (i.e., Cling, EvoSuite, and Randoop)
achieve significantly different CBC coverage (p-values < 0.001). According to Figure 6.7,
the average rank of Cling is much smaller than the average ranks of the two baselines.
Furthermore, the differences between the average rank of 𝑇Cling and the average rank of
the two baselines are larger than the critical distance 𝐶𝐷 = 0.283 determined by Nemenyi’s
post-hoc procedure. This indicates that 𝑇Cling achieves a significantly higher CBC cover-
age than 𝑇𝐸𝑣𝑜𝑅 and 𝑇𝑅𝑎𝑛𝑅 .

Finally, we have manually analyzed the search progress of Cling for pairs of classes
where the number of covered coupled-branches is low (i.e., lower than 10). We noticed that
Cling is counter-productive for specific class pairs where the callee class is StringUtils.
In those cases, the test cases generated during the search initialization throw a NoSuchFiel-
dError in the callee class (StringUtils here). Since these test cases achieve small approach
levels and branch distances from the callee branches, they are fitter (i.e., their fitness value
is lower) than other test cases. Therefore, these test cases are selected for the next gener-
ation and drive the search process in local optima.
Summary (RQ1.2). On average, the generated test suites by Cling cover 11.7% more
coupled-branches compared to EvoSuite and 33% more coupled-branches compared to
Randoop.

6.4.3 Line Coverage and Mutation Scores (RQ2)
Figure 6.8a shows line coverage of the callee classes (𝐸) for the test suites generated by
the different approaches. On average, Cling covers 39.5% of the lines of the callee classes.
While this is lower compared to unit-level tests generated using EvoSuite (58.2% for 𝑇𝐸𝑣𝑜𝐸
and 59.4% for 𝑇𝐸𝑣𝑜𝑅), Cling still achieves a better line coverage than Randoop (38.2% for
𝑇𝑅𝑎𝑛𝐸 and 22% for 𝑇𝑅𝑎𝑛𝑅).

To understand the fault revealing capabilities of Cling compared to unit-level test
suites, we first show in Figure 6.8b the overall mutation scores when mutating class 𝐸,
and apply the test suite 𝑇𝐸𝑣𝑜𝐸 , 𝑇𝐸𝑣𝑜𝑅 , 𝑇𝑅𝑎𝑛𝐸 , 𝑇𝑅𝑎𝑛𝑅 , and 𝑇Cling. Similar to line coverage,
test suites optimized for overall branch coverage achieve a total higher mutation score
(35.4% for 𝑇𝐸𝑣𝑜𝐸 and 34.2% for 𝑇𝐸𝑣𝑜𝑅 on average), simply because a mutant that is on a



6.4 Evaluation Results

6

141

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

closure mockito time lang math (all)

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

0.00

0.25

0.50

0.75

1.00

lin
e 

co
ve

ra
ge

(a) Line coverage of the callee (E)

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●
●

●●

●●

●

●
●
●●●

●
●

●●

●●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●
●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●
●

●
●●
●

●
●
●
●

●

●
●●

●
●●
●
●
●●

●

●
●
●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●

●

●

●
●

●●●

●

●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●
●

●●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●
●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●

●

●

●
●

●●●

●

●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●
●
●

●●●●●

●●

●●●
●●

●●

closure mockito time lang math (all)

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

E
vo

E
E

vo
R

R
an

E
R

an
R

C

0.00

0.25

0.50

0.75

1.00

M
ut

at
io

n 
sc

or
e

(b) Mutation score of the callee (E)

Figure 6.8: Effectiveness of 𝑇Cling (C), 𝑇𝐸𝑣𝑜𝐸 (EvoE), 𝑇𝐸𝑣𝑜𝑅 (EvoR), 𝑇𝑅𝑎𝑛𝐸 (RanE), and 𝑇𝑅𝑎𝑛𝑅 (RanR). ( ) denotes
the arithmetic mean and (—) indicates the median.

line that is never executed cannot be killed. Randoop achieves on average a mutation
score of 25.9% for 𝑇𝑅𝑎𝑛𝐸 and 11.4% for 𝑇𝑅𝑎𝑛𝑅 . 𝑇Cling scores lower (20.0% on average),
since Cling searches for dedicated interaction pairs, but does not try to optimize overall
line coverage. Note that 𝑇Cling achieves the highest average mutation score for classes in
math, while it achieves the lowest mutation score for classes in the mockito project.

Our results are consistent with the design and objectives of the three tools: EvoSuite
seeks to cover all the branches of the class under test; Cling targets specific pairs of
branches between the caller and callee classes; and Randoop performs (feedback-directed)
random testing. Our results also confirm previous observations that EvoSuite achieves a
better structural coverage and mutation score than Randoop [216–220].



6

142 6 Generating Class-Level Integration Tests Using Call Site Information

closure mockito time lang math (all)

E
v
o

E
E

v
o

R
E

v
o

E
+

R
R

a
n

E
R

a
n

R
R

a
n

E
+

R

E
v
o

E
E

v
o

R
E

v
o

E
+

R
R

a
n

E
R

a
n

R
R

a
n

E
+

R

E
v
o

E
E

v
o

R
E

v
o

E
+

R
R

a
n

E
R

a
n

R
R

a
n

E
+

R

E
v
o

E
E

v
o

R
E

v
o

E
+

R
R

a
n

E
R

a
n

R
R

a
n

E
+

R

E
v
o

E
E

v
o

R
E

v
o

E
+

R
R

a
n

E
R

a
n

R
R

a
n

E
+

R

E
v
o

E
E

v
o

R
E

v
o

E
+

R
R

a
n

E
R

a
n

R
R

a
n

E
+

R

0.00

0.25

0.50

0.75

1.00

Δ
(s

c
o

re
(x

),
 s

c
o

re
(C

 +
 x

))

Figure 6.9: Increases (Δ) of the mutation score when combining 𝑇Cling with unit test suites 𝑇𝐸𝑣𝑜𝐸 , 𝑇𝐸𝑣𝑜𝑅 , 𝑇𝑅𝑎𝑛𝐸 ,
𝑇𝑅𝑎𝑛𝑅 and their unions 𝑇𝐸𝑣𝑜𝐸+𝐸𝑣𝑜𝑅 , and 𝑇𝑅𝑎𝑛𝐸+𝑅𝑎𝑛𝑅 . ( ) denotes the arithmetic mean and (—) is the median.

Combined Mutation Analysis

Figure 6.8b shows that unit test suites do not kill almost half of the mutants. Cling targets
more mutants, including those that remain alive with unit tests. In Figure 6.9, we report
the improvement (Δ) in the mutation score when executing 𝑇Cling in addition to unit test
suites (𝑇𝐸𝑣𝑜𝐸 , 𝑇𝐸𝑣𝑜𝑅 , 𝑇𝑅𝑎𝑛𝐸 , and 𝑇𝑅𝑎𝑛𝐸), and their unions (𝑇𝐸𝑣𝑜𝐸+𝐸𝑣𝑜𝑅 , 𝑇𝑅𝑎𝑛𝐸+𝑅𝑎𝑛𝑅).

On average, 13%, resp. 19.5%, of the mutants are killed only by 𝑇Cling, compared
to 𝑇𝐸𝑣𝑜𝐸 , resp. 𝑇𝑅𝑎𝑛𝐸 , the unit test suites optimized for the class under test (𝐸). This
difference decreases to 10.3%, resp. 17.8%, if we use 𝑇𝐸𝑣𝑜𝑅 , resp. 𝑇𝑅𝑎𝑛𝑅 , the unit test suites
exercising 𝐸 via the caller class 𝑅 (as more class interactions are executed). The difference
with traditional unit testing is still 7.7%, resp. 13.5%, when comparing Cling with the
combined unit test suites 𝑇𝐸𝑣𝑜𝐸+𝐸𝑣𝑜𝑅 , resp. 𝑇𝑅𝑎𝑛𝐸+𝑅𝑎𝑛𝑅 , exercising 𝐸 directly as much as
possible as well as indirectly via call sites in 𝑅.

The outliers in Figure 6.9 are also of interest: for 20, resp. 18, classes (out of 140), Cling
was able to generate a test suite where more than half of the mutants were killed only by
𝑇Cling, compared to 𝑇𝐸𝑣𝑜𝐸 , resp. 𝑇𝑅𝑎𝑛𝐸 , (i.e., +50% of mutation score). When compared to
𝑇𝐸𝑣𝑜𝐸+𝐸𝑣𝑜𝑅 , resp. 𝑇𝑅𝑎𝑛𝐸+𝑅𝑎𝑛𝑅 , there are 4, resp. 9, classes for which 𝑇Cling kills more than
half of the mutants that are killed by neither 𝑇𝐸𝑣𝑜𝐸 , resp. 𝑇𝑅𝑎𝑛𝐸 , nor 𝑇𝐸𝑣𝑜𝑅 , resp. 𝑇𝑅𝑎𝑛𝐸 .
This further emphasizes the complementarity between the unit and integration testing.

Table 6.2 presents the status of the mutants that are killed by 𝑇Cling but not by unit-
level test cases. What stands out is that many mutants are in fact covered, but not killed
by unit-level test suites. Here, Cling leverages the context of caller, not only to reach a
mutant, but also to propagate the (modified) values inside the caller’s context, so that the
mutants can be eventually killed.



6.4 Evaluation Results

6

143

Table 6.2: Status (for 𝑇𝐸𝑣𝑜𝑅, 𝑇𝐸𝑣𝑜𝐸, 𝑇𝑅𝑎𝑛𝑅, and 𝑇𝑅𝑎𝑛𝐸) of the mutants killed only by 𝑇Cling. Not-covered
denotes the number of mutants killed by 𝑇Cling, which are not covered by EvoSuite (or Randoop) test suites,
and survived denotes the number of mutants killed by 𝑇Cling, which are covered by EvoSuite (or Randoop)
tests but not killed. The numbers between parentheses denote the percentage of mutants.

Test Suite closure lang math mockito time
not-covered survived not-covered survived not-covered survived not-covered survived not-covered survived

𝑇𝐸𝑣𝑜𝐸 1,988 ( <1% ) 881 ( <1% ) 3,247 ( 1% ) 403 ( <1% ) 6,178 ( 5% ) 1,747 ( 1% ) 5,604 ( 4% ) 2,414 ( 2% ) 10,905 ( 3% ) 5,920 ( 1% )
𝑇𝐸𝑣𝑜𝑅 2,480 ( <1% ) 780 ( <1% ) 2,797 ( <1% ) 851 ( <1% ) 5,310 ( 4% ) 2,558 ( 2% ) 4,867 ( 4% ) 3,144 ( 2% ) 7,431 ( 2% ) 9,150 ( 2% )
𝑇𝑅𝑎𝑛𝐸 11,256 ( 1% ) 1,002 ( <1% ) 1,862 ( 1% ) 348 ( <1% ) 8,483 ( 7% ) 1,117 ( 1% ) 6,278 ( 5% ) 2,387 ( 2% ) 42,503 ( 10% ) 7,124 ( 2% )
𝑇𝑅𝑎𝑛𝑅 11,034 ( 1% ) 1,172 ( <1% ) 1,384 ( 1% ) 829 ( <1% ) 8,367 ( 7% ) 1,238 ( 1% ) 5,313 ( 4% ) 3,352 ( 2% ) 44,192 ( 10% ) 5,545 ( 1% )

Mutation Operators
We analyzed the mutation operators that generate mutants that are exclusively killed by
𝑇Cling. We categorize the mutation operators implemented in Pit into integration-level
and non-integration-level. For this categorization, we rely on the definition of mutation
operators for integration testing provided by Delamaro et al. [228]. We observed that
ten of the mutation operators implemented in Pit inject integration-level faults. These
operators can be mapped to two integration-level operators defined by Delamaro et al.
[228]: RetStaRep, which replaces the return value of the called method, and FunCalDel,
which removes the calls to void method calls and replaces the non-void method calls by a
proper value.

Table 6.3 lists the number of mutants killed exclusively by 𝑇Cling and grouped by
mutation operators. Integration-level operators are indicated in bold with the mapping
to either RetStaRep or FunCalDel between parenthesis. As we can see in this table, the
most frequently killed mutants are produced by an integration-level operator, and other
integration-level operators also produce frequently killed mutants. We can see that all
of the ten integration-level mutation operators generate mutants that can be killed using
Cling.

Furthermore, some of the most frequently killed mutants are not produced by integrat-
ion-level operators. For instance, operator NegateConditionalsMutator, which mutates the
conditions in the target class, produces the second most frequently killed mutants. These
mutants are not killed but also not covered by tests generated by EvoSuite.

Lets look at an example of a mutant killed only by 𝑇Cling. Figure 6.11 illustrates one of
the mutants in method evaluateStep in class SwitchState (callee class) from the Apache
commons-math project. This mutant is produced by an integration-level mutation oper-
ator (RetStaRep) that replaces a boolean return value by true. Method evaluateStep is
called from the method evaluateStepC (Figure 6.10) declared in SwitchingFunctionsHan-
dler (caller class). Method evaluateStepC must return false if it calls the callee class in a
certain situation: (i) the variable first in the caller class is null, and (ii) the callee method
returns false because of the execution of line 12 in Figure 6.11.

The unit test suites generated by EvoSuite targeting SwitchState (𝑇𝐸𝑣𝑜𝐸) or class
SwitchingFunctionsHandler (𝑇𝐸𝑣𝑜𝑅) both cover the mutant but do not kill it. 𝑇𝐸𝑣𝑜𝐸 easily
cover the mutant statement, but it does not have any assertion to check the return value.
𝑇𝐸𝑣𝑜𝑅 also covers this statement by calling the right method in SwitchingFunctionsHandl-
er. However, as it depicted by Figure 6.11, both methods in caller and callee class have
multiple branches. So, 𝑇𝐸𝑣𝑜𝑅 covers the mutant from another path, which does not reveal



6

144 6 Generating Class-Level Integration Tests Using Call Site Information

Table 6.3: Number of mutants killed only by 𝑇Cling and grouped by mutation operators. Integration-level opera-
tors are highlighted in bold face and the corresponding integration-level mutation operator defined by Delamaro
et al. [228] is indicated between parenthesis.

Against EvoSuite Randoop
Mutation operator Rank #kills Rank #kills
NonVoidMethodCallMutator (RetStaRep) 1 1,983 1 1,809
NegateConditionalsMutator 2 1,638 2 1,505
InlineConstantMutator 3 1,201 4 971
ReturnValsMutator (RetStaRep) 4 1,195 6 944
RemoveConditionalMutator_EQUAL_IF 5 1,110 3 1,063
RemoveConditionalMutator_EQUAL_ELSE 6 1,015 5 962
NullReturnValsMutator (RetStaRep) 7 578 8 428
ArgumentPropagationMutator (FunCalDel) 8 518 7 432
MathMutator 9 513 10 377
MemberVariableMutator 10 458 9 379
ConstructorCallMutator (FunCalDel) 11 379 11 344
RemoveConditionalMutator_ORDER_IF 12 375 13 278
VoidMethodCallMutator (FunCalDel) 13 374 12 321
RemoveConditionalMutator_ORDER_ELSE 14 348 14 248
ConditionalsBoundaryMutator 15 322 15 227
PrimitiveReturnsMutator (RetStaRep) 16 309 16 217
NakedReceiverMutator 17 264 18 174
IncrementsMutator 18 143 19 119
BooleanTrueReturnValsMutator (RetStaRep) 19 142 21 102
RemoveIncrementsMutator 20 106 22 82
RemoveSwitchMutator 21 89 17 198
EmptyObjectReturnValsMutator (RetStaRep) 22 71 20 108
BooleanFalseReturnValsMutator (RetStaRep) 23 63 23 49
InvertNegsMutator 24 38 24 31
SwitchMutator 25 16 25 28

Example 6.2: Cling test case killing mutant in Figure 6.11.
1 public void test07 () throws Throwable {
2 [...]
3 boolean boolean1 = switchingFunctionsHandler0.evaluateStepC(stepInterpolator0);
4 assertTrue(boolean1 == boolean0);
5 assertFalse(boolean1);
6 }

the change in the boolean return value.

In contrast, this mutant is killed by 𝑇Cling, targeting SwitchingFunctionsHandler and
SwitchState as the caller and callee classes, respectively (Listing 6.2). According to the
assertion in line 5 of this test case, switchingFunctionsHandler0.evaluateStep must re-
turn false. However, the mutant changes the returned value in line 7 of the caller class
(Figure 6.10), and thereby the true branch of the condition in line 7 is executed. This true
branch changes the value of variable first from null to a non-null value. Hence, the eval-
uateStepmethod in the caller class returns true in line 12. So, the assertion in the last line
of the method in Listing 6.2 kills this mutant.



6.4 Evaluation Results

6

145

1 boolean evaluateStepC(StepInterpolator interpolator){
2 if (functions.isEmpty ()){[...]}
3 if (! initialized) {[...]}
4 for ([...]) {
5 [...];
6 // calling the callee class in the next line.
7 if (state.evaluateStep(interpolator)){
8 // Changing variable first
9 [...]

10 }
11 }
12 return first != null;
13 }

Figure 6.10: Method evaluateStep in caller class SwitchingFunctionsHandler.

1 boolean evaluateStep(final StepInterpolator interpolator){
2 [...]
3 for ([...]){
4 if ([...]){
5 [...];
6 }
7 if ([...]){
8 [...];
9 }

10 }
11 [...];
12 return false; return true; // mutant
13 }

Figure 6.11: Method evaluateStep in callee class SwitchsState.

Example 6.3: Exception captured only by Cling in Closure
1 java.lang.NullPointerException
2 com.google.javascript.rhino.head.Decompiler.appendString(Decompiler.java :226)
3 com.google.javascript.rhino.head.Decompiler.addName(Decompiler.java :156)
4 com.google.javascript.rhino.head.IRFactory.transformName(IRFactory.java :833)
5 com.google.javascript.rhino.head.IRFactory.transform(IRFactory.java :157)

Summary (RQ2). The test suite generated by Cling for a caller 𝑅 and callee 𝐸, can kill
different mutants than unit test suites for 𝐸, 𝑅 or their union, increasing the mutation
score on average by 13.0%, 10.4%, and 7.7%, respectively, for EvoSuite, and 19.5%, 17.8%,
and 13.5%, respectively, for Randoop, with outliers well above 50%. Our analysis indi-
cates that many of the most frequently killed mutants are produced by integration-level
mutation operators.

6.4.4 Integration Faults Exposed by Cling (RQ3)
In our experiments, Cling generates 50 test cases that triggered an unexpected exception
in one of the subject systems. None of those unexpected exceptions were observed during
the execution of the unit test cases generated by EvoSuite and Randoop.

The first and second authors independently performed a manual root cause analysis
for all 50 unexpected exceptions to check if they are stemming from a real integration-
level fault. For this analysis, we check the API documentation to see if the generated test
cases break any precondition. We indicated a test case as a fault revealing test if it does



6

146 6 Generating Class-Level Integration Tests Using Call Site Information

Example 6.4: Cling test case triggering the crash in Listing 6.3
1 public void testFraction () {
2 IRFactory iRFactory0 = new IRFactory ();
3 Name name0 = new Name (65536 , 65536);
4
5 // Undeclared exception!
6 iRFactory0.transform(name0);
7 }

not violate any precondition according to the documentation, and it truly exposes an issue
about the interaction between the caller and callee class. We found that out of the 50 test
cases generated by Cling, 27 are fault revealing. The detailed description of the analysis
is available in our replication package [59].⁴

To illustrate the type of problem detected by Cling, consider the test case it has gener-
ated in Figure 6.4 and the induced stack trace (for a NullPointerException) in Figure 6.3.
This test invokes the method transform, in class IRFactory from the Closure Compiler.
This method requires an object from another class, called Name, as an input parameter.
This class has various constructors, in which multiple local variables are set. One of these
local variables is a String named identifier. Most of the constructors in the class Name
set a value for this String. However, one of the specific constructors (Name(int pos, int
len)) keeps the value of identifier to null. The test generated by Cling uses this specific
constructor to instantiate an object from Name and passes this object to method transform.
This method gets identifier by calling the getter method in Name and passes it to another
class (Decompiler) without checking it. Finally a method in Decompiler, called append-
String, uses this passed null String without checking it and this leads to a NullPoint-
erException. We do note that the documentation available in the involved classes does
not limit the occurrence of this scenario.

In this particular example, a constructor in class Name assumes that having a null value
for identifier is not a problem. In contrast, class IRFactory assumes that this variable
can never be null and passes it as a proper String to another class to use it. The Cling
integration testing approach brought these conflicting assumptions together, triggering
the stack trace of Figure 6.3.

As is typical for integration faults, this problem can be fixed in multiple ways. The
most consistent would be to adjust the transformmethod in class IRFactory, to check the
value of identifier in the passed Name object. This then would ensure that it does not use
a null value for calling methods in Decompiler.

Summary (RQ3). Cling-based automated testing of ⟨caller, callee⟩ class pairs exposes
actual problems that are not found by unit testing either the caller or callee class indi-
vidually. These problems relate to conflicting assumptions on the safe use of methods
across classes (e.g., due to undocumented exception throws, implicit assumptions on
parameter values, etc.).

⁴Also available online at https://github.com/STAMP-project/Cling-application/blob/master/data_
analysis/manual-analysis/failure-explanation.md.

https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md


6.5 Discussion

6

147

6.5 Discussion
6.5.1 Applicability
Cling considers pairs of classes and exercises the integration between them. We did not
propose any procedure for selecting pairs of classes to give in input to Cling. Since the
technique requires pairs of classes to test, it would be time-consuming and tedious for
developers to manually collect and provide the class pairs. Hence, we suggest using an
automated process for class pair selection, as well. In this study, we implemented a tool
that automatically analyzes each class pair to find the ones with high cyclomatic complex-
ity and coupled branches (according to the CBC criterion defined in this chapter). This
procedure is explained in Section 6.3.2.

Besides, our approach can be further extended by incorporating automated integration
test prioritization approaches and selecting classes to integrate according to a predefined
ordering [43, 45–48, 50–54]. So, the end-to-end process of generating test for class inte-
grations can be automated to require a minimal manual effort from the developer.

6.5.2 Test generation cost
One of the challenges in automated class integration testing is detecting the integration
points between classes in a SUT. The number of code elements (e.g., branches) that are
related to the integration points increases with the complexity of the involved classes.
Finding and testing a high number of integration code targets increases the time budget
that we need for generating integration-level tests.

With CBC, the number of coupled branches to exercise is upper bounded to the carte-
sian product between the branches in the caller 𝑅 and the callee 𝐸. Let 𝐵𝑅 be the set of
branches in 𝑅 and 𝐵𝐸 the set of branches in 𝐸, the maximum number of coupled branches
𝐶𝐵𝑅,𝐸 is 𝐵𝑅 ×𝐵𝐸 . In practice, the size of 𝐶𝐵𝑅,𝐸 is much smaller than the upper bound as
the target branches in the caller and callee are subsets of 𝑅 and 𝐸, respectively. Besides,
CBC is defined for pairs of classes and not for multiple classes together. This substantially
reduces the number of targets we would incur when considering more than two classes at
the same time.

While a fair amount of the test generation process can be automated, multiple in-
stances of this approach can be executed simultaneously, and thereby, this approach can
be used to generate test suites for a complete project at once in a reasonable amount of
time. For instance, in this study, we managed to test each of the 140 class pairs with Cling
for 20 times in less than a day thanks to a parallelization of the executions.

Finally, we have used a five minutes time budget to test each class pair’s interactions.
Since Cling considers each coupled branch as an objective for the search process, we could
have defined a different search budget per pair, depending on the number of objectives.
Same as for EvoSuite and Randoop, the outcome of Cling may differ depending on the
given time budget. Defining the best trade-off between the search-budget and effective-
ness of the tests generated using Cling is part of our future work.

6.5.3 Effectiveness
To answer RQ2, we analyzed the set of mutants that are killed by Cling (integration
tests), but not by the unit-test suites for the caller and callee separately (boxes labeled



6

148 6 Generating Class-Level Integration Tests Using Call Site Information

with 𝑇𝐸𝑣𝑜𝐸+𝑅 and 𝑇𝑅𝑎𝑛𝐸+𝑅 in Figure 6.9). The test suite 𝑇Cling was generated using a search
budget of fiveminutes. Similarly, the unit-level suites were generatedwith a search budget
of fiveminutes for each caller and callee class separately. Therefore, the total search budget
for unit test generation (𝑇𝐸𝑣𝑜𝐸+𝑅 and 𝑇𝑅𝑎𝑛𝐸+𝑅) is twice as large (10 minutes for each tool).
Despite the larger search budget spent on unit testing, there are still mutants and faults
detected only by Cling and in less time.

Cling is not an alternative to unit testing. In fact, integration test suites do not
subsume unit-level suites as the two types of suites focus on different aspects of the system
under test. Our results (RQ2) confirm that integration and unit testing are complemen-
tary. Indeed, some mutants can be killed exclusively by unit-test suites: e.g., the overall
mutation scores for the unit tests 𝑇𝐸𝑣𝑜𝐸, and 𝑇𝐸𝑣𝑜𝑅 are larger than the overall mutation
scores of Cling. This higher mutation score is expected due to the larger unit-level branch
coverage achieved by the unit tests (coverage is a necessity but not a sufficient condition
to kill mutant).

Instead, Cling focuses on a subset of the branches in the units (caller and callee), but
exercises the integration between them more extensively. In other words, the search is
less broad (fewer branches), but more in-depth (the same branches are covered multiple
times within different pairs of coupled branches). This more in-depth search allows killing
mutants that could not be detected by satisfying unit-level criteria. Our results further
indicate that it also allows us finding bugs that are not detectable by unit tests.

6.6 Threats to Validity
Internal validity. Our implementation of Cling may contain bugs. We mitigated this
threat by reusing standard algorithms implemented in EvoSuite, a widely used state-of-
the-art unit test generation tool. And by unit testing the different extensions (described
in Section 6.3.1) we have developed.

To take the randomness of the search process into account, we followed the guide-
lines of the related literature [110] and executed Cling, EvoSuite, and Randoop 20 times
to generate the different test suites (𝑇Cling, 𝑇𝐸𝑣𝑜𝐸 , 𝑇𝐸𝑣𝑜𝑅 , 𝑇𝑅𝑎𝑛𝐸 , and 𝑇𝑅𝑎𝑛𝑅) for the 140
caller-callee classes pairs. We have described how we parametrize Cling, EvoSuite, and
Randoop in Sections 6.2.2 and 4.3. We left all other parameters to their default value, as
suggested by related literature [166, 214, 229].

External validity. We acknowledge that we report our results for only five open-
source projects. However, we recall here their diversity and broad adoption by the soft-
ware engineering community. The identification and categorization of the integration
faults done in RQ3 have been performed by the first and second authors independently.

Reproducibility. We provide Cling as an open-source publicly available tool as the
data and the processing scrips used to present the results of this chapter.⁵ Including the
subjects of our evaluation (inputs) and the produced test cases (outputs). The full replica-
tion package has been uploaded on Zenodo for long-term storage [59].

⁵https://github.com/STAMP-project/Cling-application

https://github.com/STAMP-project/Cling-application


6.7 Conclusion And Future Work

6

149

6.7 Conclusion And Future Work
In this chapter we have introduce a testing criterion for integration testing, called the
Coupled Branches Coverage (CBC) criterion. Unlike previous previous work on class inte-
gration testing focusing on (costly) data-flow analysis, CBC relies on a (lighter) control
flow analysis to identify couples of branches between a caller and a callee class that are
not trivially executed together, resulting in a lower number of test objectives.

Previous studies have introduced many automated unit and system-level testing ap-
proaches for helping developers to test their software projects. However, there is no ap-
proach to automate the process of testing the integration between classes, even though this
type of testing is one of the fundamental and labor-intensive tasks in testing. To automate
the generation of test cases satisfying the CBC criterion, we defined an evolutionary-based
class integration testing approach called Cling.

In our investigation of 140 branch pairs, collected from 5 open source Java projects, we
found that Cling has reached an average CBC score of 48.7% across all classes, while for
some classes we reached 90% coverage. More tangibly, if we consider mutation coverage
and compare automatically generated unit tests with automatically generated integration
tests using the Cling approach, we find that our approach allows to kill 7.7% (resp. 13.5%)
of mutants per class that cannot be killed (despite a larger search budget) by unit tests
generated with EvoSuite (resp. Randoop). Finally, we identified 27 faults causing system
crashes that could be evidenced only by the generated class-integration tests.

The results indicate a clear potential application perspective, more so because our ap-
proach can be incorporated into any integration testing practice. Additionally, Cling can
be applied in conjunction with with other automated unit and system-level test generation
approaches in a complementary way.

From a research perspective, our study shows that Cling is not an alternative for unit
testing. However, it can be used for complementing unit testing for reaching higher muta-
tion coverage and capturing additional crashes which materialize during the integration
of classes. These improvements of Cling are achieved by the key idea of using existing
usages of classes in calling classes in the test generation process.

For now, Cling only tests the call-coupling between classes. In our future work, we
will extend our approach to explore how other types of coupling between classes (e.g., pa-
rameter coupling, shared data coupling, and external device coupling) can be used to refine
the couples of branches to target. Indeed, our study indicates that despite the effectiveness
of Cling in complementing unit tests, lots of objectives (coupled branches) remain uncov-
ered during our search process. Hence, in future studies, we will enhance the detection
of infeasible branches to remove them from the search objectives and perform a fitness
landscape analysis of the search process to identify potential bottlenecks.

Finally, this chapter mostly focuses on examining the results of this approach on cou-
pled branches coverage, mutation coverage, and detected faults. In our future work, we
will explore how Cling can be effectively integrated with a development lifecycle (for
instance, in a continuous integration process) and how automatically generated class in-
tegration tests can help developers to detect potential faults and debug their software.





7

151

7
Commonality-Driven Unit Test

Generation
Despite several advances, search-based unit test generation still faces many challenges.
Among those are (i) the crafting of complex objects and values used during test genera-
tion [25], and (ii) the indirect coverage of encapsulated elements (e.g., private methods and
class attributes) through the invocation of specific paths in public methods [27]. Various
approaches address those challenges by relying on dynamic symbolic execution to gen-
erate complex objects and values using constraint solvers [230–233]; seeding to identify
objects and values from the application source and test code that are later reused during
the search [124]; or class usages, learned from static analysis of the source code [156]
and dynamic execution of the existing tests (like behavioral model seeding introduced in
Chapter 3), and used to generate realistic objects.

However, if complex objects and values can indeed lead to an improvement in the
coverage, it does not always succeed in covering all the elements of a class under test. For
instance, if the indirect coverage of a privatemethod requires specific executions paths in a
public method, the current fitness functions will not be able to provide sufficient guidance
to the search process [27].

In this chapter, we hypothesize that common and uncommon execution paths, ob-
served during the actual operation of the system, can lead to better guidance of the search
process, and hence, better coverage. Complementing previous work on seeding [124],
which is aimed at triggering different execution paths in the methods under test, we con-
sider the commonality of those execution paths. For that, we approximate commonality
using weights for the different code blocks, and define a secondary objective called the
commonality score, denoting how close an execution path is from common or uncommon
executions of the software.

We implemented the commonality score in EvoSuite [6] and evaluated it on 150
classes from JabRef, an open-source bibliography reference manager, for common and

The author of this thesis partially contributed to this chapter as one of the supervisors, writers (reviewing the
first draft of the thesis and one of the paper’s main writers), and the resources provider (e.g., experiment runner
infrastructure).



7

152 7 Commonality-Driven Unit Test Generation

uncommon behaviors. We compare the commonality score (RQ.1), the structural cover-
age (RQ.2), and the fault-finding capabilities (RQ.3) of the thus generated tests to tests
generated by the standard EvoSuite implementation. Our results are mixed but show
that this secondary objective significantly improves the number of covered common paths
in 32.6% of the classes. Although the average structural coverage remains stable, the
commonality score significantly improves the line (resp. branch) coverage in three (resp.
four) classes, but also negatively impacts the coverage for eight (resp. nine) classes. Fi-
nally, the commonality score impacts the number of killed mutants for 22 classes (11 pos-
itively and 11 negatively). Our implementation is openly available at https://github.
com/STAMP-project/evosuite-ramp, and the replication package of our evaluation and
data analysis have been uploaded to Zenodo [67, 234].

7.1 Background And Related Work
7.1.1 Search-Based Unit Test Generation
Search-based unit test generation has been extensively investigated by prior studies [6,
21, 42]. These studies have confirmed that it achieves a high level of coverage [21, 42],
detects faults in real-world applications [25, 235], and reduces the debugging costs [37].
Most search-based unit test generation approaches abstract the source code of a method
to a control flow graph:

Definition 7.1.1 (Control Flow Graph (CFG) [39]) A control flow graph for amethod𝑚
is a directed graph 𝐺 = (𝐵,𝐸), where 𝐵 is the set of basic blocks (i.e., sequences of statements
that do not have any branch before the last statement), 𝐸 is the set of control flow edges
connecting the basic blocks.

For instance, for the method with the pseudo-code presented in Figure 7.1a, the corre-
sponding CFG for this method is depicted in Figure 7.1b.

Search-based software unit test generation approaches use meta-heuristics to evolve a
set of test cases. These techniques start with generating an initial population of randomly
produced test cases. The fitness of each individual in the population is evaluated using a
fitness function, which is usually defined according to the coverage in the CFGs of the tar-
get class. Next, a subset of the fittest individuals is selected for evolution and leads to the
generation of a new population. The evolving process contains three steps: (i) crossover,
which randomly mixes two selected individuals to generate new offspring; (ii) mutation,
which randomly changes, adds, or removes a statement in an individual; and (iii) insertion,
which reinserts the modified individuals into the population for the next iteration of the
algorithm. This process continues until either satisfactory individuals are found, or the
time budget allocated for the search is consumed. Among the different approaches, Evo-
Suite [6] uses genetic algorithms to evolve Java test suites in order to cover a class under
test.

MOSA [214] and DynaMOSA [42] are two new many-objectives genetic algorithms
proposed for unit test generation. These algorithms consider test cases as individuals
and incorporate separate fitness functions for separate coverage goals (e.g., covering each
branch in the CFGs will be an independent search objective). They use non-dominated
fronts to generate test cases in the direction of multiple coverage goals in parallel, and

https://github.com/STAMP-project/evosuite-ramp
https://github.com/STAMP-project/evosuite-ramp


7.2 Test Generation For Common And Uncommon Behaviors

7

153

thereby generate tests aiming to cover specific goals, while not letting the test generation
be trapped for covering a single goal. Panichella et al. [214] show that MOSA outperforms
the original EvoSuite approach in terms of structural coverage and mutation score.

In this chapter, we use MOSA to automatically generate test cases according to the
collected logs during the production phase. Future work includes the evaluation of our
approach with other multi and many-objectives algorithms, like DynaMOSA.

7.1.2 Usage-based Test Generation
The majority of search-based test generation techniques aim to achieve high coverage for
various metrics (e.g., line coverage, branch coverage, or more recently mutation coverage).
Despite their considerable achievements, they do not consider the execution patterns ob-
served in production use for automatic generation of unit tests. Hence, Wang et al. [236]
investigated how developer-written tests and automatically generated tests represent typi-
cal execution patterns in production. Their study confirms that these tests are not a proper
representation of real-world execution patterns.

The behavior of actual users may reveal faults, which are not detected by the existing
test cases. For instance, a piece of code in the software under test that is not often used
in practice may be left relatively untested because it is rarely exercised in production. A
recent method fromWang et al. [237], based on symbolic execution, recreates users behav-
iors using log data from a system run in production, which has allowed to find the same
faults in a system encountered by a user. This chapter aims to expand upon generating
tests based on the actual usage of a system at the unit level. In contrast to Wang et al.
[237], where the aim is to replicate a full behavior executed by a user by using symbolic
execution, we aim to guide the search process in a genetic algorithm towards executing
common or uncommon behaviors. In the same vein as Wang et al. [237], log data is used
to determine the execution counts of code branches.

Other approaches consider user feedback [238], or usage models of the application
and statistical testing [144, 151, 239, 240] to generate and prioritize test cases at the system
level. A usage model consists in a state machine where transitions have been labelled with
a probability of being executed. Unlike those approaches, we consider test case generation
at the unit level.

7.2 Test Generation For Common And Uncommon Be-
haviors

Intuitively, commonality describes to what extent a test exercises code branches that are
executed often during the normal operation of the system under test. If a test executes
branches that are often (respectively rarely) executed in practice, it will have a high (re-
spectively low) commonality score. The commonality score has a value between 0 and 1
and is computed based on an annotated control flow graph [39]:

Definition 7.2.1 (Annotated Control Flow Graph) An annotated control flow graph is
a directed graph 𝐺 = (𝐵,𝐸,𝛾 ), where 𝐺 = (𝐵,𝐸) is a control flow graph, and 𝛾 ∶ 𝐵 → ℝ is a
labelling function giving for the basic blocks in 𝐵 an execution weight denoting how often the
block is executed during operations.



7

154 7 Commonality-Driven Unit Test Generation

/* Branch 1 */
1 if condition1 then

/* Branch 2 */
2 ...;
3 else

/* Branch 3 */
4 ...;
5 if condition2 then

/* Branch 4
*/

6 ...;
/* Branch 5 */

7 ...;
/* Branch 6 */

8 ...;

(a) Pseudo-code.

𝑏1

𝑏2 𝑏3

𝑏4

𝑏5

𝑏6
(b) CFG.

𝑏1
𝛾1: 10

𝑏2
𝛾2: 3

𝑏3
𝛾3: 7

𝑏4
𝛾4: 1

𝑏5
𝛾5: 7

𝑏6
𝛾6: 10

(c) ACFG.

Figure 7.1: Example of pseudo-code and its corresponding annotated control flow graph. The 𝛾𝑖 indicate to the
execution weight of the node.

The execution weights can be derived from the operation logs of the system, an instru-
mented version of the system (like in our evaluation), or assigned manually.

Let us define the commonality score. For a test case, its commonality score depends
only on the branches it covers and on the highest and lowest execution weights in the
class under test. Branches without execution weights are ignored and branches covered
multiple times (e.g., in a loop) are counted only once.

Definition 7.2.2 (Commonality score) For a test case 𝑡 executing 𝑛 basic blocks 𝑏𝑖 la-
belled by a function 𝛾 , the highest execution weight in the class under test ℎ, the lowest
execution weight in the class under test 𝑙, the commonality score of 𝑡 , denoted 𝑐(𝑡) is defined
as:

𝑐(𝑡) = ∑𝑛
𝑖=1 (𝛾𝑏𝑖 − 𝑙)
𝑛 × (ℎ− 𝑙)

The commonality score for a test suite 𝑠 is defined as the average of the commonality
scores of its test cases: 𝑐(𝑠) = (∑𝑡𝑖∈𝑠 𝑐(𝑡𝑖)) /|𝑠|.

For instance, considering a class containing a single method with the pseudo-code
presented in Figure 7.1a, the corresponding annotated control flow graph in Figure 7.1c,
and a test suite containing three test cases 𝑡1 covering (𝑏1, 𝑏2, 𝑏6), 𝑡2 covering (𝑏1, 𝑏3, 𝑏5,
𝑏6), and 𝑡3 covering (𝑏1, 𝑏3, 𝑏4, 𝑏5, 𝑏6). The commonality scores are:

𝑐(𝑡1) = ((10−1))+ (3−1)+ (10−1)) / (3× (10−1)) = 20/27 ≈ 0.741, 𝑐(𝑡2) = 5/6 ≈ 0.833, and
𝑐(𝑡3) = 2/3 ≈ 0.667.



7.3 Empirical Evaluation

7

155

7.2.1 Commonality As A Secondary Objective
Secondary objectives are used to choose between different test cases in case of a tie in
the main objectives. For instance, the default secondary objective used by MOSA [214]
minimizes the test case length (i.e., the number of statements) when two test cases satisfy
the same main objectives (e.g., cover the same branches). Using test case length minimiza-
tion as a secondary objective addresses the bloating effect [241] by preventing the search
process from always generating longer test cases. Since this is a desirable property, we
combine the test case length minimization with the commonality of the test case using a
weighted sum when comparing two test cases.

Definition 7.2.3 (Commonality secondary objective) For two test cases 𝑡1, 𝑡2 with lengths
𝑙1, 𝑙2, the comparison between the two test cases is done using the following formula:

common(𝑡1, 𝑡2) =
(𝛼 ( 𝑙1𝑙2 )+𝛽 (

1−𝑐(𝑡1)
1−𝑐(𝑡2)))

(𝛼 +𝛽)
If common(𝑡1, 𝑡2) ≤ 1, then 𝑡1 is kept, otherwise 𝑡2 is kept.

Similarly, for the uncommonality between two test cases, we will have the following defi-
nition.

Definition 7.2.4 (Uncommonality secondary objective) For two test cases 𝑡1, 𝑡2 with
lengths 𝑙1, 𝑙2, the comparison between the two test cases is done using the following formula:

uncommon(𝑡1, 𝑡2) =
(𝛼 ( 𝑙1𝑙2 )+𝛽 (

𝑐(𝑡1)
𝑐(𝑡2)))

(𝛼 +𝛽)
If uncommon(𝑡1, 𝑡2) ≤ 1, then 𝑡1 is kept, otherwise 𝑡2 is kept.

In our evaluation, we use commonality and uncommonality with MOSA to answer our
different research questions.

7.3 Empirical Evaluation
To assess the usage of commonality as a secondary objective for test case generation, we
performed an empirical evaluation using 150 classes from JabRef¹, an open source bibli-
ography reference manager, to answer the following research questions:

RQ.1 How does the commonality score of the generated tests compare when using the
common, uncommon, and default secondary objectives?

RQ.2 How does the line and branch coverage of the generated tests compare when using
the common, uncommon, and default secondary objectives?

RQ.3 How does the mutation score of the generated tests compare when using the com-
mon, uncommon, and default secondary objectives?

¹https://www.jabref.org

https://www.jabref.org


7

156 7 Commonality-Driven Unit Test Generation

We implemented the secondary objectives from Section 7.2 in EvoSuite [6], a state-of-
the-art white-box unit test generator tool for Java. Our implementation is openly available
at https://github.com/STAMP-project/evosuite-ramp, and the replication package of
our evaluation and data analysis have been uploaded to Zenodo [67, 234].

7.3.1 Subject And Execution Weights
Collecting execution weights For our evaluation, we choose JabRef (46 KLOC), an
open-source Java bibliography reference manager with a graphical user interface work-
ing with BibTex files. To determine the execution weights of the different branches, we
instrumented JabRef using Spoon [78] and added log statements producing a message
with a unique identifier each time a branch is executed. These identifiers are then mapped
to a source code location, identified by the class name, the method name, and the line
number. Furthermore, the number of occurrences of the identifier in the log messages
is established. We then asked five people (including the first author) to use our modified
JabRef implementation to perform various tasks (adding a reference, updating a reference,
removing a reference, etc.) and collected the produced logs. In an industrial context, op-
erations logs can be analyses and traced back to the source code to identify the execution
weights [242].

Classes under test We sampled 150 classes. We excluded classes from the org.jab-
ref.gui and org.jabref.logic.importer.fileformat packages as they respectivelywork
with JavaFX and perform input-output operations. From the remaining classes and follow-
ing the best practices of the search-based unit testing community [243], we selected 75
classes with the highest cyclomatic complexity, as classes with a higher cyclomatic com-
plexity are harder to process for unit test generation tools and 38 classes with the largest
number of lines of code. Additionally, we selected 37 classes that were executed the most
by our modified JabRef implementation.

Configuration parameters We ran EvoSuite with the default coverage criteria (line,
branch, exception, weakmutation, input, output, method, methodwithout exceptions, and
context branch) and three different secondary objectives: (i) default, minimizing the test
case length, (ii) commonality, as described in Definition 7.2.3, and (iii) uncommonality, as
described in Definition 7.2.4. We executed EvoSuite on each class under test 30 times
with the MOSA algorithm [214] and a search budget of three minutes, offering a good
compromise between runtime and coverage [20, 21]. All other configuration parameters
were left to their default value.

7.3.2 Data Analysis
For each of the 13,500 execution (150 classes × 30 repetitions × 3 configurations), we col-
lected the commonality score and structural coverage information from EvoSuite. Ad-
ditionally, we performed a mutation analysis of the generated test suites using Pit [244].
For 46 classes (out of 150), EvoSuite could not complete 30 executions using our different
configurations. We excluded those classes to keep the comparison fair and performed our
analysis on the 104 remaining classes.

https://github.com/STAMP-project/evosuite-ramp


7.4 Results

7

157

To compare the commonality score, the structural coverage, and the mutation score,
we used the non-parametric Wilcoxon Rank Sum test, with 𝛼 = 0.05 for Type I error, and
the Vargha-Delaney statistic 𝐴12 [245] to evaluate the effect size between two configu-
rations. An 𝐴12 value lower than 0.5 for a pair of configurations (A,B) indicates that A
increases the score or coverage compared to B, and a value higher than 0.5 indicates the
opposite. TheVargha-Delaneymagnitudemeasure also allows partitioning the results into
three categories having large, medium, and small impact [245].

7.4 Results
7.4.1 Commonality Score (RQ1)
In this section we answer the question: How does the commonality score of the generated
tests compare when using the common, uncommon, and default secondary objectives?

Figure 7.2 illustrates the impact of using commonality and uncommonality, as the sec-
ondary objective, on the commonality score of the generated test cases. Figure 7.2a shows
that the average and median of the commonality score is improved by 8% and 12%, respec-
tively, compared to default when using commonality as secondary objective. In parallel,
using uncommonality as secondary objective reduces the commonality score by, on aver-
age, 5% (2.5% for median) compared to default. Moreover, Figure 7.2c presents the number
of cases (i.e., classes used as the target class for unit testing), in which the application of
commonality and uncommonality significantly (p-value < 0.05) changes the commonality
score with effect size magnitude of large, medium, or small. As we can see in this figure,
utilizing commonality always leads to a significant improvement in the commonality score
(blue bars), and in contrast, using uncommonality always reduces this score (red bars). In
total, commonality significantly improves the commonality score in 34 cases (32.6% of
classes), and uncommonality significantly reduces this score in 21 classes (20.1% of cases).
Figure 7.2b depicts the effect sizes of differences observed in these cases. Consistent with
the previous figures, the average effect size (𝐴12) achieved by commonality is higher than
0.5 (i.e., commonality score has been improved). However, this value is lower than 0.5 for
uncommonality.

Summary Using commonality as secondary objective in the EvoSuite search-based test
case generation process leads to test cases that exhibit an improved commonality score.
In parallel, the application of uncommonality leads to the reduction of the commonality
score.

7.4.2 Structural Coverage (RQ2)
In this section we provide an answer to the following research question: How does the line
and branch coverage of the generated tests compare when using the common, uncommon,
and default secondary objectives?

Figure 7.3 shows the line and branch coverage achieved by using commonality and
uncommonality as secondary objectives compared to default. Figure 7.3a indicates that
the average coverage is the same for all of the assessed configurations.

Looking at the comparison of the structural coverage values achieved by each sec-
ondary objective in each class, we can see that the line and branch coverage is signifi-



7

158 7 Commonality-Driven Unit Test Generation

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●
●

●●

●
●
●●●
●
●●
●
●●●
●●

●●●

●●
●
●●
●
●●

●

●
●
●
●

●

●

●

●●
●●●●
●
●

●

●●●
●
●
●

●

●●●●
●
●

●●
●
●

●

●
●
●●
●
●

●

●●
●

●●

●●
●
●

●●

●
●

●

●
●
●●
●

●

●●

●●

●
●
●●
●
●●●●

●

●●
●
●●
●

●●

●

●●

●●●●
●
●

●

●●

●
●
●
●

●

●

●

●●●
●
●
●
●
●

●

●
●●
●
●●
●●
●

●

●

●●
●
●

●

●●
●

●●

●●
●
●●
●

●●

●●
●
●●
●

●
●
●

●●●●
●

●

●●

●

●●
●
●●●
●

●

●

●

●●
●
●●●
●

●●●

●●
●
●
●

●

●●
●
●●●●
●●
●●

●●
●
●
●

●

●
●●●●
●
●●

●
●
●●
●

●

●●

●

●●●
●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●●●

●

●●●●

●

●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●●●●

●●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●●

●●●●●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●●
●
●
●
●
●
●●●
●
●
●
●

●
●

●●

●
●
●●

●

●
●
●●
●
●●●

●

●
●
●
●
●
●
●

●

●●
●
●●●
●
●

●
●
●●●●●●

●
●
●●●●
●
●
●●●●
●
●
●
●
●
●
●●
●
●●●
●●
●●●●
●
●
●
●
●●●
●
●●●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●●

●

●●●

●

●●●●●●

●●

●●●●●●●

●

●●●

●

●●●

●●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

default common uncommon
Configuration

C
om

m
on

al
ity

 s
co

re

(a) Test cases commonality scores.

●

●

●●

●●

●

●●
0.25

0.50

0.75

common uncommon
Configuration

V
D

(b) Effect sizes 𝐴12 .

7

5

22

5

1

15

common large

common medium

common small

uncommon small

uncommon medium

uncommon large

20 10 0 10 20
# of cases

V
D

 m
ag

ni
tu

de
 p

er
 c

on
fig

.

status

Lose
Win

(c) Effect sizes 𝐴12 magnitudes.

Figure 7.2: Test cases commonality values and comparison to default. Diamonds indicate mean values and
horizontal bars (–) indicate median values.

cantly impacted by commonality and uncommonality in some cases. Figure 7.3c presents
the number of cases that these secondary objectives significantly (p-value < 0.05) reduce
(𝐴12 < 0.5) or increase (𝐴12 > 0.5) the line and branch coverage with effect size magnitude
small, medium, or large. According to this figure, in general, utilizing commonality leads
to a significant improvement for line and branch coverage in three and four classes, re-
spectively. Nevertheless, this secondary objective reduced the line and branch coverage
in eight and nine classes, respectively.

Also, we can see a similar result for uncommonality: significant improvements in three
and five classes and significant reductions in seven and nine cases for line and branch cov-
erage. Since the number of cases in which commonality and uncommonality lead to a
significantly lower structural coverage is higher than the the number of cases in which
we see a significant improvement in coverage, the average effect size of differences (Fig-
ure 7.3b) is slightly less than 0.5 for both line (0.47 for both secondary objectives) and



7.4 Results

7

159

Branch coverage Line coverage Mutation score

default common uncommon default common uncommon default common uncommon

0.00

0.25

0.50

0.75

1.00

Configuration

V
al

ue

(a) Test suites coverage and mutation score.

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

Branch coverage Line coverage Mutation score

common uncommon common uncommon common uncommon

0.25

0.50

0.75

1.00

Configuration

V
D

(b) Effect sizes 𝐴12.

4 1
5

3

4 1
5 1

3

3 1
5

2

3 1
4

2

3 2
3 1

5 8

8
4 1

7

Branch coverage Line coverage Mutation score

5 0 5 5 0 5 5 0 5

common large

common medium

common small

uncommon small

uncommon medium

uncommon large

# of cases

V
D

 m
ag

ni
tu

de
 p

er
 c

on
fig

.

status

Lose
Win

(c) Effect sizes 𝐴12 magnitudes.

Figure 7.3: Test suites coverage and mutation score, and comparison to default. Diamonds indicate mean values
and horizontal bars (–) indicate median values.

branch coverage (0.46 for both).

Summary On average, using commonality or uncommonality does not impact the line
and branch coverage. However, these two secondary objectives can significantly impact
the structural coverage in specific cases.

7.4.3 Mutation Analysis (RQ3)
In the final research question we reflect on How does the mutation score of the generated
tests compare when using the common, uncommon, and default secondary objectives?

Figure 7.3a depicts the mutation score achieved by using commonality and uncommon-
ality compared to default. Like line and branch coverage, the average mutation scores
achieved by these secondary objectives is similar to the one achieved by default. How-
ever, Figure 7.3c shows that commonality and uncommonality can significantly (p-value
< 0.05) impact the mutation score achieved by unit test generation. The commonality sec-
ondary objective significantly increases the number of mutants killed for 11 classes but,
at the same time, also decreases the mutation score in another 11 cases. Moreover, uncom-
monality significantly changes the mutation score in 20 cases (8 wins against 12 losses).
Figure 7.3b shows the effect size of differences in these cases for both commonality and
uncommonality secondary objectives. According to this Figure, the average 𝐴12 estima-
tions are 0.49 and 0.47. Since these values are lower than 0.5, on average, the difference
achieved by these two secondary objectives is negative. However, the outliers in this fig-
ure show us that the effect sizes of commonality above 0.75 in some specific cases. Hence,



7

160 7 Commonality-Driven Unit Test Generation

the graphs in Figure 7.3c indicate that using commonality and uncommonality can improve
the mutation score in specific cases.

Summary On average, using commonality or uncommonality does not have any effect
on themutation score achieved by the generated test suites. However, these two secondary
objectives can significantly change the killed mutants in some cases.

7.5 Discussion
7.5.1 Execution Weights
In our evaluation, we collected executionweights using an instrumented version of JabRef
distributed to five different users. As a result, a large number of log messages allowed us
to have execution weights for many different classes. Such data collection is not realistic
in an industrial setting as the collection and analysis of log data is challenging for large
applications [246]. It is likely that the collected data will not cover the complete system
but only a subset of its classes.

However, we believe that the development of scalable software analytics practices
[247] represents an opportunity to include information from the software operations en-
vironment in various development activities, including testing [246, 248]. For instance,
Winter et al. [242] recently brought information about the number of times a log state-
ment is executed to the developer’s IDE to raise awareness about the load it represented
during the operations of the system. Similar information can be collected for seeding (like
Chapter 3) or annotating a control flow graph, like in our approach, and allow developers
to generate new tests from their IDE.

Finally, our current approach considers execution weights individually to approximate
usages, which allows us to compute a commonality score quickly. Different definitions
of the commonality score based, for instance, on full and partial execution paths identi-
fied from the operations logs are possible. Those finer grained definitions of commonality
would allow to take multiple executions of the same code blocks (like loops) into account,
at the expense of a higher computational cost. Exploration and evaluation of such defini-
tions are left for future work.

7.5.2 Impact On Mutation Analysis
After manual investigation of the generated tests², we saw that the classes on which
commonality performs relatively well are often executed. The class on which the per-
formance was especially good compared to default was an enum class (org.jabref.lo-
gic.util.StandardFileType). In a large majority of the cases (25 out of 30), the tests
generated using the commonality secondary objective contain a method sequence that is
not present in the tests generated by default. We inspected the execution counts of indi-
vidual branches stemming from the operational use of the system. From this inspection,
we found a single branch in the code of method getExtensions that has been executed as
part of the usage scenarios from all participants.

This method is consistently involved in the test cases that kill the mutants that the
tests generated by default fail to kill most of the time. This supports our initial assumption

²The results and complete manual analysis are available online [67, 234, 249].



7.6 Threats To The Validity

7

161

that using commonality can drive the search process to cover the code in a different way,
possibly finding different kinds of faults.

7.5.3 Usefulness For Debugging
The end-goal of any test suite is to identify faults in source code and help the developer
during her debugging activities. Our evaluation measured the fault-finding capabilities
of the generated test suites, but did not investigate their usefulness for debugging. Pre-
vious research has confirmed that automatically generated tests can find faults in real
software [25] and are useful for debugging [23].

However, there remain several challenges, like the understandability of the generated
tests [25, 109]. Since the commonality and uncommonality secondary objectives aim to in-
fluence how the lines in amethod are covered, we expect that it will also have an impact on
the understandability of the generated tests. Future research will include the assessment
of the debugging capabilities of the generated tests (e.g., understandability, performance,
readability, etc.).

7.6 Threats To The Validity
Internal validity We repeated each execution of EvoSuite 30 times to take the ran-
domness of the generation process into account in our data analysis. We have tested our
implementation of the commonality and uncommonality secondary objectives to reduce
bugs’ chance of influencing our results.

External validity We gathered execution data needed from a small number of people
in a relatively structured manner. We cannot guarantee that those executions are repre-
sentative of all the usages of JabRef. However, we believe that the diversity of the tasks
performed by our users is enough for this evaluation. Also, the evaluation was performed
using only one case study. Future research includes the repetition of the assessment on
other Java applications.

Construct validity We relied on the reports produced by EvoSuite for structural cov-
erage and the reports produced by Pit for mutation analysis to compare our different
secondary objectives. The usage of those standard metrics allows the comparison of our
results with other search-based unit test generation approaches.

Conclusion validity Our conclusionswere only drawn based on statistically significant
results with 𝛼 = 0.05. We used the standard non-parametric Wilcoxon Rank Sum test for
significance and the Vargha-Delaney statistic for the effect size.

7.7 Conclusion And Future Work
In this chapter, we introduced the commonality score, denoting how close an execution
path is from common or uncommon executions of the software in production, and the com-
monality and uncommonality secondary objectives for search-based unit test generation.
We implemented our approach in EvoSuite and evaluated it on JabRef using execution



7

162 7 Commonality-Driven Unit Test Generation

data from real usages of the application. Our results are mixed. The commonality sec-
ondary objective leads to an increase of the commonality score, and the uncommonality
secondary objective leads to a decrease of the score, compared to the default secondary
objective (RQ.1). However, results also show that if the commonality score can have
a positive impact on the structural coverage (RQ.2) and mutation score (RQ.3) of the
generated test suites, it can also be detrimental in some cases. Future research includes
a replication of our evaluation on different applications and using different algorithms
(e.g., DynaMOSA) to gain a deeper understanding of when to apply commonality and un-
commonality secondary objectives; the exploration and assessment of different definitions
of commonality; and an assessment of the generated tests regarding their usefulness for
debugging.



8

163

8
Conclusion

8.1 Research Questions Revisited
This section revisits the three research questions defined in Chapter 1.

Research Question 1: What are the challenges in search-based crash reproduction?
With this research question, we tried to detect and categorize the challenges in search-

based crash reproduction. We could not provide a thorough answer only based on existing
results since previous evaluations of these techniques contained a limited number of sub-
jects (at most 50 cases). Hence, to take the first step towards answering this research
question, we have designed a benchmark, called JCrashPack, which includes 200 real-
world Java crashes come from seven open-source projects. We have also proposed a new
tool, called ExRunner, to conduct extensive experiments on these crashes.

We have made both JCrashPack and ExRunner publicly available for two purposes:
(i) ease the comparison of the existing crash reproduction techniques; and (ii) help re-
searchers in analyzing and identifying the impacting factors in search-based crash repro-
duction techniques.

We have utilized ExRunner to apply the state-of-the-art automated crash reproduc-
tion tool (EvoCrash) on all crashes in JCrashPack. The outcome of this experiment shows
that EvoCrash is not successful in reproducing more than 50% of the crashes in JCrash-
Pack. Hence, we have performed an extensive manual analysis to identify the challenges
leading to unsuccessful crash reproduction in this search-based approach. We have char-
acterized the identified challenges into 13 categories. Some of the identified challenges
(e.g., complex input generation, complex code, etc.) are related to general search-based
test generation issues, and the others are specific to crash reproduction (e.g., exceptions
are captured by try/catch, and nested private calls in the given stack trace).

This research question confirms that there is still space for improvements in search-
based crash reproduction and test generation techniques. Despite the undeniable achieve-
ments by search-based crash reproduction, it cannot reproduce about 50% of crashes in
JCrashPack. We have categorized the challenges this technique has encountered in un-
successful cases. This categorization indicates that two of the most common search-based
crash reproduction issues stem from the general search-based crash reproduction difficul-
ties: Input Data Generation and Complex Code. These challenges indicate the complexity



8

164 8 Conclusion

of the problem in search-based crash reproduction and test generation. Hence, establish-
ing that using pure randomness, without using any other sources of information, is not
enough for the search process to generate solutions for complex scenarios (crashes and
object states).

Research Question 2: Based on the identified challenges, how can we leverage the
existing knowledge, carved from information sources, to steer the crash reproduction search
process?

With this research question, we sought to address two of the most common challenges
in search-based crash reproduction, identified in Research Question 1: Input Data Gener-
ation and Complex Code. For this purpose, this thesis has introduced new techniques,
which utilize the pieces of knowledge carved from different information sources such as
source code and hand-written tests. Chapters 3 and 4 address the first challenge by in-
troducing a novel seeding strategy (behavioral model seeding) and designing two search
helper-objectives (MO-HO), respectively. Chapter 5 considers the second challenge by
providing a new secondary objective (BBC) to complement the guidance provided by ap-
proach level and branch distance, which are the most well-known heuristics for guiding
a test generation test process to cover all of the statements in a target class. The results,
delivered from this research question, confirm the relevance of these two challenges.

In Chapter 3, we have introduced a new seeding technique for search-based crash
reproduction, called behavioral model seeding, to address complex input data generation
challenge. This seeding strategy monitors and abstracts the usages of objects in source
code and existing test suites. Then, it uses these models to generate test cases during the
search process. We have assessed the relevance of using this seeding strategy in search-
based crash reproduction. We have also compared the behavioral model seeding with
the state-of-the-art seeding strategy (called test seeding), which only seeds the existing
test cases to the search process. We have witnessed that the behavioral model seeding
outperforms search-based crash reproduction without seeding and with test seeding in
terms of effectiveness and efficiency. According to the results, model seeding increases
the reproduced crashes by a minimum of 6% compared to test seeding and no seeding.

Chapter 4 introduces a novel technique, called MO-HO, which combines pieces of in-
formation from sequences of method calls in the generated test cases and their length to
improve the exploration ability of the search process in crash reproduction. Improving
the exploration in this search-based technique leads to more diverse test cases during the
search process. By generating more diverse test cases, the search process can generate
more complex solutions with more complex input data [168]. Hence, MO-HO can help the
search process to address the complex input generation challenge, as we have identified
in Chapter 2. The results presented in this chapter show that using multiple informa-
tion sources to define new helper objectives for crash reproduction improves the single-
objective crash reproduction’s effectiveness and efficiency in 10% and 34.6% of crashes,
respectively.

Finally, Chapter 5 addresses the complex code challenge, which we have identified
in Research Question 1, by introducing a novel secondary objective called Basic Block
Coverage (BBC). This objective carves additional information about the coverage of basic
blocks by test cases generated in the search process, and thereby it brings more guidance
to the search process when the existing primary objective cannot guide. Our results show



8.2 Implications

8

165

that BBC reduces the chance of getting trapped in local optima during the search process,
and consequently, aids the search-based crash reproduction to reach higher effectiveness
and efficiency. This secondary objective improves the efficiency of the state-of-the-art
techniques in at least 13.7% of crashes. It also improves the crash reproduction ability of
the state-of-the-art in 6 crashes.

Research Question 3: How can we leverage the existing knowledge, carved from infor-
mation sources, to design search-based test generation approaches for unit and class integra-
tion testing?

As we observed in Research Question 1, some of the search-based crash reproduc-
tion challenges are connected to the limitations in general search-based test generation.
Since we have addressed two of these challenges in Research Question 2 by leveraging the
knowledge carved from different information sources, in this research question, we try
to extend our study to investigate if using additional knowledge from other sources can
help the search-based test generation in fulfilling other criteria such as class integration
testing (Chapter 6) and unit testing (Chapter 7).

Chapter 6 introduces a new approach called Cling, which uses the call-site informa-
tion to generate test cases for covering different interactions between two classes. Since
Cling is the first white-box search-based technique for testing class integration, we have
evaluated it against the state-of-the-art unit test generation approach. The results, pre-
sented in this chapter, confirm that the tests generated by Cling complement automati-
cally generated unit tests for highermutation scores (on average, 7.7%more killedmutants)
and detects class-integration faults not detected by EvoSuite. This research question also
shows that Cling can detect integration-level faults that remained unrevealed in unit test-
ing, thanks to the call-site information.

Chapter 7 introduces a new metric for the generated tests during the search process
called commonality score. Thismetric measures how close the execution path of a test case
is from the common or uncommon execution patterns observed in production. We have
also introduced commonality and uncommonality as secondary objectives for search-based
unit test generation according to the commonality score. The former helps the search
process to generate tests with the highest similarity to the common execution paths. In
contrast, the latter aids the search process to generate unit tests, which are covering the
most uncommon execution paths. The results of the evaluation of these two secondary
objectives are mixed. We have observed that using these two helper objectives can help
the search process to achieve a higher mutation score in some cases, while we see the
opposite in some other cases.

8.2 Implications
This section, first, discusses the implications for research. Then, it presents an outline of
how developers have used or could use our implemented tools for search-based crash re-
production (Botsing), class integration test generation (Cling), and commonality-driven
unit test generation (using commonality score secondary objectives).



8

166 8 Conclusion

8.2.1 Implications for research
All of the studies presented in this thesis are fully reproducible thanks to the provided
replication packages (see Section 1.7). Any independent group can repeat the same exe-
cutions easily using each of these artifacts. Also, ExRunner, which is implemented for
assessing the crash reproduction (answering research questions 1 and 2), enables usability
by providing a documented and well-structured infrastructure, facilitating the reuse and
repurposing.

8.2.2 Implications for developers
Botsing
Writing a test case reproducing a crash reported to developers aids them in understanding
the scenario in which the crash happened and thereby helps them in bug fixing and debug-
ging practices [57]. However, as indicated by one of our industrial partners in STAMP¹,
reproducing a reported crash manually needs a knowledgable developer. Since crash re-
production is a time-consuming and labor-intensive task, an automated crash reproduc-
tion technique reduces companies’ debugging costs.

This thesis introduces Botsing, an open-source automated crash reproduction frame-
work using search-based test generation techniques. Initially, we implemented the best-
performing automated crash reproduction approach [28] in Botsing. A previous study
confirmed that this approach helped developers in debugging practices.

Chapter 2 of this thesis shows that this approach still has some limitations in repro-
ducing complex and non-trivial crashes. Hence, we implemented novel techniques (in-
troduced in Chapters 3 to 5) to improve this algorithm’s effectiveness and efficiency. So,
Botsing is currently the best automated crash reproduction tool, openly available.

Botsing is useful in any issue tracking system in which the reproted crashes contain
a stack trace.

Botsing in Continuous Integration Pipelines
Botsing is useful in any issue tracking system in which the reported issues contain a stack
trace. Developers can integrate Botsing in their continuous integration systems to get a
test case, which reproduces the scenario in which the reported crash happened.

Botsing Jira Plugin²: In STAMP, our industrial partner implemented the Botsing
Jira plugin³. With this plugin, any software project using the Jira issue tracking system
can automatically generate crash reproducing test cases for their reported crashes. The
plugin automatically detects any issue with an attached stack trace (1 in Figure 8.1), doing-
reproduction label and STAMP label (2 and 3 in Figure 8.1) and initiates a Botsing instance
in a remote server, linked in the configurations (Figure 8.2), for reproducing the attached
crash.

The remote server attaches the crash reproducing test case to the issue after finishing
the Botsing execution (Figure 8.3). By clicking on the attachment, developers can see the
crash reproducing test case (Figure 8.4).
¹STAMP: Software testing amplification for DevOps, an H2020 European project containing multiple industrial
and academic partners (including Delft University).
²This section uses the figures from STAMP’s final deliverable: https://github.com/STAMP-project/docs-forum/
blob/master/docs/d44_final_api_public_version_services_courseware.pdf
³https://github.com/STAMP-project/botsing-jira-plugin

https://github.com/STAMP-project/docs-forum/blob/master/docs/d44_final_api_public_version_services_courseware.pdf
https://github.com/STAMP-project/docs-forum/blob/master/docs/d44_final_api_public_version_services_courseware.pdf
https://github.com/STAMP-project/botsing-jira-plugin


8.2 Implications

8

167

Figure 8.1: Triggering automatic crash reproduction with the Botsing Jira plugin.

Figure 8.2: Botsing remote server configuration in Jira

Figure 8.3: Crash reproducing test attached to the issue.



8

168 8 Conclusion

Figure 8.4: A crash reproducing test case by Botsing Jira plugin.

Cling
Cling is an open-source class-integration test generation tool for Java. It gets two classes,
which are calling each other, and tries to generate tests covering different interactions
between these two given classes. Section 6.4 of this thesis has shown that this approach
actually managed to detect the integration-level faults.

In the same way as EvoSuite, which has been used widely on industry [25] for gen-
erating unit-level tests, Cling has the potential to be used by software projects for gen-
erating integration-level tests complementing the tests generated by EvoSuite. For this
reason, we intend to implement different plugins for Maven, IntelliJ, and Jenkins to ease
the application of Cling on different projects.

Commonality Score For Unit Test Generation
As mentioned in Section 7.5, we still need to perform a more in-depth investigation about
the usefulness of commonality score in finding faults. However, since the introduced sec-
ondary objectives based on this metric aim to change how the statements are covered, we
believe they can impact the test cases’ understandability generated by the search process

All tools unitedly
The growths of the techniques introduced in this thesis will lead to a set of tools, allevi-
ating developers from doing much groundwork in software testing. A developer can use
each of these tools to generate a set of test cases/suites as a starting point for testing unit
classes, class integrations, or for debugging reported crashes. Since these approaches are
automated, they take machine time, meaning that precious developer time can be spent on
other tasks. Moreover, by new implementations and executions of the system under test,
these approaches will have more data to improve their test generation and search guid-
ance. Thereby, the benefits stemming from these approaches will increase as the software
grows.

8.3 Recommendations For Future Work
This thesis shows that there are still many ways to improve the search-based test genera-
tion techniques for various criteria. Hence, this section gives some recommendations for
future work.



8.3 Recommendations For Future Work

8

169

8.3.1 Search-based Crash Reproduction
R1: Crash Distance improvements
As described in section 2.1.2, the Crash Distance fitness function is used in search-based
crash reproduction to measure the distance of each generated test from throwing the same
crash as the given one. The three elements in this fitness function may lead to flat land-
scapes in the search space, which is undesirable since it provides no guidance to the search.
For instance, the exception coverage heuristic is a binary value, which indicates whether
the same type of exception (as the given one) is thrown or not. Devising fitness functions
that leverage all values between 0 and 1 instead, would offer more guidance.

R2: Other secondary and helper objectives
Chapters 4 and 5 show how adding secondary objectives and conflicting helper-objectives
help the existing Crash Distance fitness function in reproducing more crashes. However,
there are still many possibilities to improve search objectives. First of all, the Crash Dis-
tance fitness function itself can be modified to make sure that we have less flat landscapes
in the search space. Also, more helper objectives can be combined with this fitness func-
tion to improve the exploration of the search process.

8.3.2 Search-based Integration Testing
R3: Multiple class integration
In Chapter 6, we introduced a new search-based technique for testing interactions between
two coupled classes. In the next step, this approach can be extended to handlemore classes.
It might even be beneficial to design an approach to test the integration of two modules
that contain multiple classes.

8.3.3 Carving Knowledge For Search-based Test Generation
This thesis showed the benefits of using knowledge collected from different sources in
search-based test generation. Hence, this section describes how the novel techniques in-
troduced in this thesis can be extended.

R4: Using more resources
This thesis introduced various strategies to utilize the carved information from source
code (e.g., Chapter 6), existing test cases (e.g., Chapter 3), and execution logs (Chapter 7)
in search-based test generation. However, other resources such as commits addressing
previously detected faults can be used to generate more realistic test cases during the
search process. Moreover, other useful information can be carved from the application’s
documentation.

R5: Carving more information
This thesis has used carved information from method call sequences (e.g., Chapters 3 and
4), call-sites (Chapter 6), and test execution patterns (Chapter 7). Other data, such as
information regarding the input parameters, can be carved from the existing sources for
white-box search-based test generation to continue this research path. For example, some
applications need strings, following a specific grammar and pattern (e.g., XML, JSON), to
be used in their testing. These kinds of information can be carved from source code and
documentation.





171

Bibliography

References
[1] Boris Cherry, Xavier Devroey, and Pouria Derakhshanfar. Crash reproduction

difficulty, an initial assessment. In Mike Papadakis and Maxime Cordy, edi-
tors, Proceedings of the 19th Belgium-Netherlands Software Evolution Workshop
(BENEVOL ’20), Luxembourg, Luxembourg, dec 2020.

[2] Pouria Derakhshanfar. Well-informed test case generation and crash reproduction.
In 2020 IEEE 13th International Conference on Software Testing, Validation and
Verification (ICST), pages 424–426. IEEE, 2020.

[3] Antonia Bertolino. Software testing research: Achievements, challenges, dreams.
In Future of Software Engineering (FOSE’07), pages 85–103. IEEE, 2007.

[4] Phil McMinn. Search-based software test data generation: A survey. Software
Testing Verification and Reliability, 14(2):105–156, 2004.

[5] M. Harman and B. Jones. Seminal software engineering using metaheuristic inno-
vative algorithms. In Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001. IEEE Comput. Soc.

[6] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACMSIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, ESEC/FSE
’11, pages 416–419, New York, NY, USA, 2011. ACM.

[7] Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè. Combin-
ing symbolic execution and search-based testing for programs with complex heap
inputs. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2017, pages 90–101, New York, NY, USA, 2017.
ACM.

[8] Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè. Sushi: a test
generator for programs with complex structured inputs. In 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-Companion),
pages 21–24. IEEE, 2018.

[9] IS Wishnu B Prasetya. T3, a combinator-based random testing tool for java: bench-
marking. In International Workshop on Future Internet Testing, pages 101–110.
Springer, 2013.

[10] Andrea Arcuri. RESTful API automated test case generation with Evomaster. ACM
Transactions on Software Engineering and Methodology, 28(1):1–37, 2019.



172 Bibliography

[11] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code fragments. In
Presented as part of the 21st USENIX Security Symposium (USENIX Security 12),
pages 445–458, Bellevue, WA, 2012. USENIX.

[12] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon.
Semantic fuzzing with zest. pages 329–340, 2019.

[13] Michael Beyene and James H Andrews. Generating string test data for code cover-
age. In 2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation, pages 270–279. IEEE, 2012.

[14] David Coppit and Jiexin Lian. Yagg: an easy-to-use generator for structured test in-
puts. In Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, pages 356–359. ACM, 2005.

[15] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based whitebox
fuzzing. In ACM Sigplan Notices, volume 43, pages 206–215. ACM, 2008.

[16] Salah Ghamizi, Maxime Cordy, Martin Gubri, Mike Papadakis, Andrey Boystov,
Yves Le Traon, and Anne Goujon. Search-based adversarial testing and improve-
ment of constrained credit scoring systems. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, November 2020.

[17] Raveendra Kumar Medicherla, Raghavan Komondoor, and Abhik Roychoudhury.
Fitness guided vulnerability detection with greybox fuzzing. In Proceedings of
the IEEE/ACM 42nd International Conference on Software EngineeringWorkshops,
pages 513–520, 2020.

[18] Bogdan Korel and Ali M Al-Yami. Assertion-oriented automated test data gen-
eration. In Proceedings of IEEE 18th International Conference on Software
Engineering, pages 71–80. IEEE, 1996.

[19] Nigel Tracey, John Clark, Keith Mander, and John McDermid. Automated test-data
generation for exception conditions. Software: Practice and Experience, 30(1):61–
79, 2000.

[20] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. A large
scale empirical comparison of state-of-the-art search-based test case generators.
Information and Software Technology, 104(June):236–256, 2018.

[21] Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated unit
test generation using evosuite. ACM Transactions on Software Engineering and
Methodology, 24(2):1–42, dec 2014.

[22] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. Do automatically generated unit tests find real faults? An em-
pirical study of effectiveness and challenges. Proceedings - 2015 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, pages
201–211, 2016.



References 173

[23] Mariano Ceccato, Alessandro Marchetto, Leonardo Mariani, Cu D. Nguyen, and
Paolo Tonella. Do automatically generated test cases make debugging easier? an
experimental assessment of debugging effectiveness and efficiency. ACM Trans.
Softw. Eng. Methodol., 25(1):5:1–5:38, December 2015.

[24] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols, Tai-
jin Tei, and Ilya Zorin. Deploying Search Based Software Engineering with Sapienz
at Facebook. In Search-Based Software Engineering. SSBSE 2018., volume 11036 of
LNCS. Springer, 2018.

[25] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-
felds. An industrial evaluation of unit test generation: Finding real faults in a fi-
nancial application. In 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP), pages 263–272.
IEEE, may 2017.

[26] Gregory Gay, Matt Staats, Michael Whalen, and Mats PE Heimdahl. The risks of
coverage-directed test case generation. IEEE Transactions on Software Engineering,
41(8):803–819, 2015.

[27] Alireza Salahirad, Hussein Almulla, and Gregory Gay. Choosing the fitness function
for the job: Automated generation of test suites that detect real faults. STVR, 29(4-
5):e1701, jun 2019.

[28] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. Search-Based Crash
Reproduction and Its Impact on Debugging. IEEE Transactions on Software
Engineering, 2018.

[29] Francesco A. Bianchi, Mauro Pezzè, and Valerio Terragni. Reproducing concur-
rency failures from crash stacks. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering - ESEC/FSE 2017, pages 705–716. ACM
Press, 2017.

[30] Ning Chen and Sunghun Kim. STAR: Stack trace based automatic crash reproduc-
tion via symbolic execution. IEEE Trans. on Software Engineering, 41(2):198–220,
2015.

[31] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiène Tahar, and Alf Larsson. A
bug reproduction approach based on directed model checking and crash traces.
Journal of Software: Evolution and Process, 29(3):e1789, mar 2017.

[32] Jeremias Rößler, Andreas Zeller, Gordon Fraser, Cristian Zamfir, andGeorge Candea.
Reconstructing core dumps. In Proc. International Conference on Software Testing,
Verification and Validation (ICST), pages 114–123. IEEE, 2013.

[33] Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. Crash reproduction via test
case mutation: Let existing test cases help. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2015, pages 910–913,
New York, New York, USA, 2015. ACM Press.



174 Bibliography

[34] Phil McMinn. Search-based software testing: Past, present and future. In
Proceedings of the 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, ICSTW ’11, pages 153–163, Washington,
DC, USA, 2011. IEEE Computer Society.

[35] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. An empirical evaluation of evolutionary algorithms for unit test suite gen-
eration. Information and Software Technology, 104(August):207–235, 2018.

[36] Mozhan Soltani, Annibale Panichella, and Arie van Deursen. A guided genetic al-
gorithm for automated crash reproduction. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 209–220, Buenos Aires, Ar-
gentina, may 2017. IEEE.

[37] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and Har-
ald C. Gall. The impact of test case summaries on bug fixing performance: An empir-
ical investigation. Proceedings - International Conference on Software Engineering,
14-22-May-2016:547–558, 2016.

[38] A. Panichella, Sebastiano Panichella, Gordon Fraser, Anand Ashok Sawant, and Vin-
cent J. Hellendoorn. Revisiting test smells in automatically generated tests: Limi-
tations, pitfalls, and opportunities. In 36th IEEE The International Conference on
Software Maintenance and Evolution (ICSME 2020). IEEE, August 2020.

[39] Frances E. Allen. Control flow analysis. ACM SIGPLAN Notices, 5(7):1–19, jul 1970.

[40] Annibale Panichella, José Campos, and Gordon Fraser. Evosuite at the sbst 2020
tool competition. In Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, pages 549–552, 2020.

[41] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions
on Software Engineering, 39(2):276–291, feb 2013.

[42] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test
case generation as a many-objective optimisation problem with dynamic selection
of the targets. IEEE Transactions on Software Engineering, 44(2):122–158, 2018.

[43] Zhengshan Wang, Bixin Li, Lulu Wang, Meng Wang, and Xufang Gong. Using
Coupling Measure Technique and Random Iterative Algorithm for Inter-Class In-
tegration Test Order Problem. In 2010 IEEE 34th Annual Computer Software and
Applications Conference Workshops, volume 1, pages 329–334. IEEE, jul 2010.

[44] Michael Steindl and Juergen Mottok. Optimizing Software Integration by Con-
sidering Integration Test Complexity and Test Effort. In Proceedings of the 10th
International Workshop on Intelligent Solutions in Embedded Systems, pages 63–
68. IEEE, 2012.

[45] N.L. Hashim, H.W. Schmidt, and Sita Ramakrishnan. Test Order for Class-based In-
tegration Testing of Java Applications. In Fifth International Conference on Quality
Software (QSIC’05), volume 2005, pages 11–18. IEEE, 2005.



References 175

[46] Silvia Regina Vergilio, Aurora Pozo, João Carlos Garcia Árias, Rafael da Veiga Cabral,
and Tiago Nobre. Multi-objective optimization algorithms applied to the class
integration and test order problem. International Journal on Software Tools for
Technology Transfer, 14(4):461–475, aug 2012.

[47] Priti Bansal, Sangeeta Sabharwal, and Pameeta Sidhu. An investigation of strategies
for finding test order during Integration testing of object Oriented applications. In
2009 Proceeding of International Conference on Methods and Models in Computer
Science (ICM2CS), pages 1–8. IEEE, dec 2009.

[48] S. Jiang, Miao Zhang, Yanmei Zhang, Rongcun Wang, Qiao Yu, and Jacky Wai
Keung. An Integration Test Order Strategy to Consider Control Coupling. IEEE
Transactions on Software Engineering, 5589(c):1–1, 2019.

[49] Lars Borner and Barbara Paech. Integration Test Order Strategies to Consider Test
Focus and Simulation Effort. In 2009 First International Conference on Advances in
System Testing and Validation Lifecycle, pages 80–85. IEEE, sep 2009.

[50] Thainá Mariani, Giovani Guizzo, Silvia R Vergilio, and Aurora T.R. Pozo. Gram-
matical Evolution for the Multi-Objective Integration and Test Order Problem. In
Proceedings of the 2016 on Genetic and Evolutionary Computation Conference -
GECCO ’16, pages 1069–1076, Madrid, Spain, 2016. ACM Press.

[51] Giovani Guizzo, Gian Mauricio Fritsche, Silvia Regina Vergilio, and Aurora
Trinidad Ramirez Pozo. A Hyper-Heuristic for the Multi-Objective Integration
and Test Order Problem. In Proceedings of the 2015 on Genetic and Evolutionary
Computation Conference - GECCO ’15, pages 1343–1350, Madrid, Spain, 2015. ACM
Press.

[52] Aynur Abdurazik and Jeff Offutt. Using Coupling-Based Weights for the Class Inte-
gration and Test Order Problem. The Computer Journal, 52(5):557–570, aug 2009.

[53] Rafael da Veiga Cabral, Aurora Pozo, and Silvia Regina Vergilio. A Pareto Ant
Colony Algorithm Applied to the Class Integration and Test Order Problem. In
IFIP International Conference on Testing Software and Systems, volume 6435 LNCS
of ICTSS 2010, pages 16–29. Springer, 2010.

[54] L.C. Briand, Yvan Labiche, and Yihong Wang. An investigation of graph-based
class integration test order strategies. IEEE Transactions on Software Engineering,
29(7):594–607, jul 2003.

[55] Shaukat Ali Khan and Aamer Nadeem. Automated Test Data Generation for Cou-
pling Based Integration Testing of Object Oriented Programs Using Evolutionary
Approaches. In 2013 10th International Conference on Information Technology:
New Generations, pages 369–374. IEEE, apr 2013.

[56] Shaukat Ali Khan and Aamer Nadeem. Automated Test Data Generation for Cou-
pling Based Integration Testing of Object Oriented Programs Using Particle Swarm
Optimization (PSO). In Jeng-Shyang Pan, Pavel Krömer, and Václav Snášel, editors,



176 Bibliography

Proceedings of the Seventh International Conference on Genetic and Evolutionary
Computing, ICGEC 2013, volume 238 of Advances in Intelligent Systems and
Computing, pages 115–124, Cham, 2014. Springer International Publishing.

[57] Andreas Zeller. Why Programs Fail, Second Edition: A Guide to Systematic
Debugging. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edi-
tion, 2009.

[58] Daniele Gagliardi, Mael Audren De Kerdrel, Luca Andreatta, Nicola Bertazzo, Ciro
Formisano, Daniele Gagliardi, Jesús Gorroñogoitia Cruz, Caroline Landry, and Ri-
cardo Tejada. STAMP Deliverable D4.4: Final public version of API and implemen-
tation of services and courseware. Technical report, STAMP project, 2019.

[59] Pouria Derakhshanfar, Xavier Devroey, Gilles Perrouin, Andy Zaidman, and Arie
Deursen. Search-based crash reproduction using behavioural model seeding. STVR,
30(3):e1733, may 2020.

[60] Hevner, March, Park, and Ram. Design Science in Information Systems Research.
MIS Quarterly, 28(1):75, 2004.

[61] Wikipedia contributors. Open science — Wikipedia, the free encyclopedia, 2020.
[Online; accessed 21-September-2020].

[62] Pouria Derakhshanfar and Xavier Devroey. Jcrashpack: A java crash reproduction
benchmark, April 2020.

[63] Pouria Derakhshanfar, Xavier Devroey, Gilles Perrouin, Andy Zaidman, and Arie
van Deursen. Replication package of ”Search-based Crash Reproduction using Be-
havioral Model Seeding”, October 2019.

[64] Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, and An-
nibale Panichella. Replication package of ”GoodThings Come InThrees: Improving
Search-based Crash Reproduction With Helper Objectives”, August 2020.

[65] Pouria Derakhshanfar and Xavier Devroey. Replication package of Basic Block Cov-
erage for Search-Based Crash Reproduction.

[66] Pouria Derakhshanfar and Xavier Devroey. Replication package of generating class-
level integration tests using call site information, December 2020.

[67] Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman. Unit test
generation for common and uncommon behaviors: dataset, June 2020.

[68] Mozhan Soltani, Pouria Derakhshanfar, Annibale Panichella, Xavier Devroey, Andy
Zaidman, and Arie van Deursen. Single-objective Versus Multi-objectivized Opti-
mization for Evolutionary Crash Reproduction. In Thelma Elita Colanzi and Phil
McMinn, editors, Symposium on Search-Based Software Engineering. SSBSE 2018.,
volume 11036 of LNCS, pages 325–340, Montpellier, France, 2018. Springer.



References 177

[69] Mael Audren, Mohamed Boussaa, Lars Thomas Boye, Pierre-Yves Gibello, Jesús
Gorroñogoitia, Vincent Massol, Fernando Mendez, Assad Montasser, and Pedro
Velho. STAMP WP5 - D5.7 - Use Cases Validation Report V3. https://www.stamp-
project.eu/view/main/deliverables, 2019.

[70] Lei Ma, Cyrille Artho, Cheng Zhang, Hiroyuki Sato, Johannes Gmeiner, and Rudolf
Ramler. Grt: Program-analysis-guided random testing (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 212–
223. IEEE, 2015.

[71] René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A database of existing
faults to enable controlled testing studies for Java programs. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis - ISSTA 2014,
pages 437–440, San Jose, CA, USA, 2014. ACM Press.

[72] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. Is the cure worse
than the disease? overfitting in automated program repair. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, pages 532–543.
ACM, 2015.

[73] MatiasMartinez andMartinMonperrus. Astor: A program repair library for java. In
Proceedings of the 25th International Symposium on Software Testing and Analysis,
pages 441–444. ACM, 2016.

[74] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. Evaluating and improving fault localization.
In Proceedings of the 39th International Conference on Software Engineering, pages
609–620. IEEE Press, 2017.

[75] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-to-rank
based fault localization approach using likely invariants. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, pages 177–188. ACM,
2016.

[76] Tanzeem Bin Noor and Hadi Hemmati. A similarity-based approach for test case pri-
oritization using historical failure data. In 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE), pages 58–68. IEEE, 2015.

[77] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou,
and Lu Zhang. How does regression test prioritization perform in real-world soft-
ware evolution? In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 535–546. IEEE, 2016.

[78] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. Spoon: A library for implementing analyses and transformations of java
source code. Software: Practice and Experience, 46:1155–1179, 2015.

[79] Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan De Halleux. Precise identi-
fication of problems for structural test generation. In Software Engineering (ICSE),



178 Bibliography

2011 33rd International Conference on, pages 611–620, Waikiki, Honolulu , HI, USA,
2011. IEEE, ACM.

[80] Lionel Briand, Domenico Bianculli, Shiva Nejati, Fabrizio Pastore, and Mehrdad Sa-
betzadeh. The Case for Context-Driven Software Engineering Research: Generaliz-
ability Is Overrated. IEEE Software, 34(5):72–75, 2017.

[81] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. On the di-
chotomy of debugging behavior among programmers. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 572–583. ACM,
2018.

[82] Shay Artzi, Sunghun Kim, and Michael D. Ernst. Recrash: Making software failures
reproducible by preserving object states. In Proceedings of the 22Nd European
Conference on Object-Oriented Programming, ECOOP ’08, pages 542–565, Berlin,
Heidelberg, 2008. Springer-Verlag.

[83] James Clause and Alessandro Orso. A technique for enabling and supporting de-
bugging of field failures. In Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 261–270, Washington, DC, USA, 2007. IEEE
Computer Society.

[84] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continuously
recording program execution for deterministic replay debugging. In Proceedings
of the 32Nd Annual International Symposium on Computer Architecture, ISCA ’05,
pages 284–295, Washington, DC, USA, 2005. IEEE Computer Society.

[85] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jrapture: A cap-
ture/replay tool for observation-based testing. In Proceedings of the 2000 ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA ’00,
pages 158–167, New York, NY, USA, 2000. ACM.

[86] María Gómez, Romain Rouvoy, Bram Adams, and Lionel Seinturier. Reproduc-
ing context-sensitive crashes of mobile apps using crowdsourced monitoring. In
Proceedings of the International Conference on Mobile Software Engineering and
Systems, MOBILESoft ’16, pages 88–99, New York, NY, USA, 2016. ACM.

[87] Jonathan Bell, Nikhil Sarda, and Gail Kaiser. Chronicler: Lightweight recording to
reproduce field failures. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 362–371, Piscataway, NJ, USA, 2013. IEEE
Press.

[88] Yu Cao, Hongyu Zhang, and Sun Ding. Symcrash: Selective recording for repro-
ducing crashes. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages 791–802. ACM, 2014.

[89] Tingting Yu, Tarannum S Zaman, and Chao Wang. Descry: reproducing system-
level concurrency failures. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 694–704. ACM, 2017.



References 179

[90] Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagannathan. Analyzing mul-
ticore dumps to facilitate concurrency bug reproduction. In Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XV, pages 155–166, New York, NY, USA, 2010.
ACM.

[91] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and Arno Fiva.
Contract driven development = test driven development - writing test cases. In
Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC-FSE ’07, pages 425–434, New York, NY, USA, 2007. ACM.

[92] Andreas Leitner, Alexander Pretschner, Stefan Mori, Bertrand Meyer, and Manuel
Oriol. On the effectiveness of test extractionwithout overhead. In 2009 International
Conference on Software Testing Verification and Validation, pages 416–425. IEEE,
2009.

[93] Fitsum Meshesha Kifetew, Wei Jin, Roberto Tiella, Alessandro Orso, and Paolo
Tonella. Sbfr: A search based approach for reproducing failures of programs
with grammar based input. In Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE’13, pages 604–609, Piscat-
away, NJ, USA, 2013. IEEE Press.

[94] Fitsum Meshesha Kifetew, Wei Jin, Roberto Tiella, Alessandro Orso, and Paolo
Tonella. Reproducing field failures for programs with complex grammar-based in-
put. In Proceedings of the 2014 IEEE International Conference on Software Testing,
Verification, and Validation, ICST ’14, pages 163–172, Washington, DC, USA, 2014.
IEEE Computer Society.

[95] Apache. Ant. http://ant.apache.org/, 2017. [Online; accessed 25-January-2018].

[96] Cristian Zamfir and George Candea. Execution synthesis: A technique for auto-
mated software debugging. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys ’10, pages 321–334, New York, NY, USA, 2010. ACM.

[97] Wei Jin and Alessandro Orso. BugRedux: reproducing field failures for in-house
debugging. In 2012 34th International Conference on Software Engineering (ICSE),
pages 474–484. IEEE, jun 2012.

[98] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U. Jain, and Michael Stumm. Simple testing can prevent most criti-
cal failures: An analysis of production failures in distributed data-intensive systems.
In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 249–265, Berkeley, CA, USA, 2014. USENIX Asso-
ciation.

[99] Roberta Coelho, Lucas Almeida, Georgios Gousios, andArie vanDeursen. Unveiling
exception handling bug hazards in android based on github and google code issues.

http://ant.apache.org/


180 Bibliography

In Proceedings of the 12th Working Conference on Mining Software Repositories,
MSR ’15, pages 134–145, Piscataway, NJ, USA, 2015. IEEE Press.

[100] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search-based software en-
gineering: Trends, techniques and applications. ACM Computing Surveys (CSUR),
45(1):11, 2012.

[101] Susan Elliott Sim, Steve Easterbrook, and Richard C Holt. Using Benchmarking to
Advance Research: A Challenge to Software Engineering. In Proceedings of the 25th
International Conference on Software Engineering, ICSE ’03, pages 74–83, Portland,
Oregon, USA, 2003. IEEE Computer Society.

[102] Apache. Commons Collections. https://commons.apache.org/proper/
commons-collections/, 2017. [Online; accessed 25-January-2018].

[103] Apache. Log4j. https://logging.apache.org/log4j/2.x/, 2017. [Online; accessed
25-January-2018].

[104] XWiki. The Advanced Open Source Enterprise and Application Wiki. http://www.
xwiki.org/, 2018. [Online; accessed 25-January-2018].

[105] Elastic. Elasticsearch: RESTful, Distributed Search and Analytics. https://www.
elastic.co/products/elasticsearch, 2018. [Online; accessed 25-January-2018].

[106] Java Design Patterns. Design patterns implemented in Java. http://
java-design-patterns.com, 2018. [Online; accessed 25-January-2018].

[107] Dubbo. A high-performance, java based, open source RPC framework. http://
dubbo.io, 2018. [Online; accessed 25-January-2018].

[108] RxJava. Reactive Extensions for the JVM. https://github.com/ReactiveX/RxJava,
2018. [Online; accessed 25-January-2018].

[109] Gordon Fraser and Andrea Arcuri. Evosuite: On the challenges of test case genera-
tion in the real world. In Software Testing, Verification and Validation (ICST), 2013
IEEE Sixth International Conference on, pages 362–369, Luxembourg, Luxembourg,
2013. IEEE, IEEE Computer Society.

[110] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assess-
ing randomized algorithms in software engineering. Software Testing, Verification
and Reliability, 24(3):219–250, 2014.

[111] Andrea Arcuri and Gordon Fraser. On Parameter Tuning in Search Based Software
Engineering. In Population English Edition, pages 33–47. 2011.

[112] Barbara Liskov and JohnGuttag. Program development in JAVA: abstraction, specification, and object-oriented design.
Pearson Education, London, England, UK, 2000.

https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
https://logging.apache.org/log4j/2.x/
http://www.xwiki.org/
http://www.xwiki.org/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
http://java-design-patterns.com
http://java-design-patterns.com
http://dubbo.io
http://dubbo.io
https://github.com/ReactiveX/RxJava


References 181

[113] Andrea Arcuri, Gordon Fraser, and René Just. Private API access and functional
mocking in automated unit test generation. In Software Testing, Verification and
Validation (ICST), 2017 IEEE International Conference on, pages 126–137, Tokyo,
Japan, 2017. IEEE, IEEE Computer Society.

[114] Gordon Fraser and Andrea Arcuri. Automated test generation for java generics.
In International Conference on Software Quality, pages 185–198, Vienna, Austria,
2014. Springer, Springer.

[115] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer, André
Baresel, andMarc Roper. Testability transformation. IEEE Transactions on Software
Engineering, 30(1):3–16, 2004.

[116] Jan Malburg and Gordon Fraser. Combining search-based and constraint-based test-
ing. In Automated Software Engineering (ASE), 2011 26th IEEE/ACM International
Conference on, pages 436–439, Lawrence, KS, USA, 2011. IEEE, IEEE Computer So-
ciety.

[117] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. Automated unit test gen-
eration for classes with environment dependencies. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering - ASE ’14,
pages 79–90, Vasteras, Sweden, 2014. ACM Press.

[118] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical
analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering - FSE 2014, pages 643–653,
2014.

[119] Oracle. What’s New in JDK 8. https://www.oracle.com/technetwork/java/
javase/8-whats-new-2157071.html, 2019. Accessed: 2019-05-14.

[120] JDK. Stack trace has invalid line numbers. https://bugs.openjdk.java.net/
browse/JDK-7024096, 2016. [Online; accessed 25-January-2018].

[121] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2012.

[122] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. BUMPER: A Tool for Cop-
ing with Natural Language Searches of Millions of Bugs and Fixes. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 649–652, Suita, Osaka, Japan, mar 2016. IEEE.

[123] Andrea Arcuri. RESTful API Automated Test Case Generation. In 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS), pages
9–20. IEEE, jul 2017.

[124] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. Seeding strategies in search-
based unit test generation. Softw. Test. Verif. Reliab., 26(5):366–401, 2016.

https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://bugs.openjdk.java.net/browse/JDK-7024096
https://bugs.openjdk.java.net/browse/JDK-7024096


182 Bibliography

[125] James Roche. Adopting DevOps practices in quality assurance. Communications of
the ACM, 56(11):38–43, 2013.

[126] Bruno Cabral and Paulo Marques. Exception Handling: A Field Study in Java and
.NET. In ECOOP 2007 – Object-Oriented Programming, volume 4609, pages 151–
175. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[127] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie van Deursen, and
Christoph Treude. Exception handling bug hazards in Android. Empirical Software
Engineering, 22(3):1264–1304, jun 2017.

[128] Abdou Maiga, Abdelwahab Hamou-Lhadj, Mathieu Nayrolles, Korosh Koochekian
Sabor, and Alf Larsson. An empirical study on the handling of crash reports
in a large software company: An experience report. In 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 342–351, Bre-
men, Germany, sep 2015. IEEE.

[129] Yanchuan Li and Gordon Fraser. Bytecode testability transformation. In
International Symposium on Search Based Software Engineering, pages 237–251,
Szeged, Hungary, 2011. Springer, Springer.

[130] Mark Harman, Lin Hu, Robert Hierons, André Baresel, and Harmen Sthamer. Im-
proving evolutionary testing by flag removal. In Proceedings of the 4th Annual
Conference on Genetic and Evolutionary Computation, pages 1359–1366, New York,
USA, 2002. Morgan Kaufmann Publishers Inc., Morgan Kaufmann.

[131] André Baresel, David Binkley, Mark Harman, and Bogdan Korel. Evolutionary test-
ing in the presence of loop-assigned flags: A testability transformation approach.
In ACM SIGSOFT Software Engineering Notes, volume 29, pages 108–118, Boston,
Massachusetts, USA, 2004. ACM, ACM.

[132] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann, 2007.

[133] Martin White, Mario Linares Vásquez, Peter Johnson, Carlos Bernal-Cárdenas, and
Denys Poshyvanyk. Generating reproducible and replayable bug reports from an-
droid application crashes. In Andrea De Lucia, Christian Bird, and Rocco Oliveto,
editors, Proceedings of the 2015 IEEE 23rd International Conference on Program
Comprehension, ICPC 2015, Florence/Firenze, Italy, May 16-24, 2015, pages 48–59.
IEEE Computer Society, 2015.

[134] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiene Tahar, and Alf Larsson.
JCHARMING: A bug reproduction approach using crash traces and directed model
checking. In 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 101–110. IEEE, mar 2015.

[135] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search-based software
engineering. ACM Computing Surveys, 45(1):1–61, nov 2012.



References 183

[136] Gordon Fraser and Andrea Arcuri. The Seed is Strong: Seeding Strategies in Search-
Based Software Testing. In 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, pages 121–130. IEEE, apr 2012.

[137] Tao Chen, Miqing Li, and Xin Yao. On the Effects of Seeding Strategies: A Case for
Search-based Multi-Objective Service Composition. In Proceedings of the Genetic
and Evolutionary Computation Conference on - GECCO ’18, pages 1419–1426. ACM
Press, 2018.

[138] Roberto E Lopez-Herrejon, Javier Ferrer, Francisco Chicano, Alexander Egyed, and
Enrique Alba. Comparative analysis of classical multi-objective evolutionary algo-
rithms and seeding strategies for pairwise testing of Software Product Lines. In 2014
IEEE Congress on Evolutionary Computation (CEC), pages 387–396. IEEE, jul 2014.

[139] Phil McMinn, Muzammil Shahbaz, and Mark Stevenson. Search-Based Test Input
Generation for String Data Types Using the Results of Web Queries. In IEEE Fifth
International Conference on Software Testing, Verification and Validation (ICST
’12), pages 141–150. IEEE, apr 2012.

[140] Luca Della Toffola, Cristian-Alexandru Staicu, and Michael Pradel. Saying ‘Hi!’ is
not enough: Mining inputs for effective test generation. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 44–49.
IEEE, oct 2017.

[141] Nadia Alshahwan and Mark Harman. Automated web application testing us-
ing search based software engineering. In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), pages 3–12. IEEE, nov
2011.

[142] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2007.

[143] Jan Tretmans. Model based testingwith labelled transition systems. Formalmethods
and testing, pages 1–38, 2008.

[144] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Hamza Samih, Axel Legay, Pierre-
Yves Schobbens, and Patrick Heymans. Statistical prioritization for software prod-
uct line testing: an experience report. Software & Systems Modeling, 16(1):153–171,
feb 2017.

[145] Emanuela G Cartaxo, Patrícia D L Machado, and Francisco G Oliveira Neto. On
the use of a similarity function for test case selection in the context of model-based
testing. Software Testing, Verification and Reliability, 21(2):75–100, 2011.

[146] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Achieving scalable model-based
testing through test case diversity. ACM Transactions on Software Engineering and
Methodology, 22(1):1–42, feb 2013.



184 Bibliography

[147] Debajyoti Mondal, Hadi Hemmati, and Stephane Durocher. Exploring test suite
diversification and code coverage in multi-objective test case selection. In 2015
IEEE 8th International Conference on Software Testing, Verification and Validation
(ICST), ICST ’15, pages 1–10. IEEE, apr 2015.

[148] Paul Jaccard. Étude comparative de la distribution florale dans une portion des
Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–
579, 1901.

[149] Steffen Herbold, Patrick Harms, and Jens Grabowski. Combining usage-based and
model-based testing for service-oriented architectures in the industrial practice.
International Journal on Software Tools for Technology Transfer, 19(3):309–324, jun
2017.

[150] Maikel Leemans, Wil M. P. van der Aalst, and Mark G. J. van den Brand. The State-
chart Workbench: Enabling scalable software event log analysis using process min-
ing. In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 502–506. IEEE, mar 2018.

[151] Sara E Sprenkle, Lori L Pollock, and LucyM Simko. Configuring effective navigation
models and abstract test cases for web applications by analysing user behaviour.
Software Testing, Verification and Reliability, 23(6):439–464, 2013.

[152] Sara Sprenkle, Lori Pollock, and Lucy Simko. A Study of Usage-Based Nav-
igation Models and Generated Abstract Test Cases for Web Applications. In
Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth International
Conference on, pages 230–239. IEEE, mar 2011.

[153] Paolo Tonella, Roberto Tiella, and Cu Duy Nguyen. Interpolated n-grams for model
based testing. In Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014, pages 562–572. ACM Press, 2014.

[154] Sicco Verwer and Christian A Hammerschmidt. flexfringe: A Passive Automaton
Learning Package. In L O’Conner, editor, 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 638–642. IEEE, sep 2017.

[155] Paolo Tonella, Alessandro Marchetto, Cu Duy Nguyen, Yue Jia, Kiran Lakhotia, and
Mark Harman. Finding the optimal balance between over and under approximation
of models inferred from execution logs. In Proceedings of the 5th IEEE International
Conference on Software Testing, Verification and Validation, ICST 2012, pages 21–
30. IEEE, 2012.

[156] Gordon Fraser and Andreas Zeller. Exploiting Common Object Usage in Test Case
Generation. In 2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation, pages 80–89. IEEE, mar 2011.

[157] Ivo Krka, Yuriy Brun, Daniel Popescu, Joshua Garcia, and Nenad Medvidovic. Us-
ing dynamic execution traces and program invariants to enhance behavioral model
inference. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE ’10, pages 179–182. ACM, 2010.



References 185

[158] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic generation of
software behavioral models. In Proceedings of the 13th international conference on
Software engineering - ICSE ’08, page 501. ACM Press, 2008.

[159] Carlo Ghezzi, Mauro Pezzè, Michele Sama, and Giordano Tamburrelli. Mining Be-
havior Models from User-intensive Web Applications. In Proceedings of the 36th
International Conference on Software Engineering, ICSE ’14, pages 277–287, Hyder-
abad, India, 2014. ACM Press.

[160] S.J Prowell and J.H Poore. Computing system reliability using Markov chain usage
models. Journal of Systems and Software, 73(2):219–225, oct 2004.

[161] Yuanyuan Zhang, Mark Harman, Yue Jia, and Federica Sarro. Inferring Test Mod-
els from Kate’s Bug Reports Using Multi-objective Search. In Márcio Barros and
Yvan Labiche, editors, Search-Based Software Engineering, SSBSE ’15, pages 301–
307. Springer International Publishing, 2015.

[162] W. Dulz and Fenhua Zhen. MaTeLo - statistical usage testing by annotated se-
quence diagrams, Markov chains and TTCN-3. In Third International Conference
on Quality Software, 2003. Proceedings., pages 336–342. IEEE, 2003.

[163] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation
in evolutionary algorithms: A survey. ACM Comput. Surv., 45(3), 2013.

[164] Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. Search-based Similarity-driven Behavioural SPL Testing. In Proceedings
of the Tenth InternationalWorkshop on Variability Modelling of Software-intensive
Systems - VaMoS ’16, pages 89–96, Salvador, Brazil, jan 2016. ACM Press.

[165] András Vargha and Harold D Delaney. A critique and improvement of the CL com-
mon language effect size statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132, 2000.

[166] Andrea Arcuri and Gordon Fraser. Parameter tuning or default values? An em-
pirical investigation in search-based software engineering. Empirical Software
Engineering, 18(3):594–623, jun 2013.

[167] Annibale Panichella and Urko Rueda Molina. Java unit testing tool competition
- Fifth round. Proceedings - 2017 IEEE/ACM 10th International Workshop on
Search-Based Software Testing, SBST 2017, pages 32–38, 2017.

[168] Mikkel T Jensen. Helper-objectives: Using multi-objective evolutionary algo-
rithms for single-objective optimisation. Journal of Mathematical Modelling and
Algorithms, 3(4):323–347, 2004.

[169] Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, and An-
nibale Panichella. Crash Reproduction Using Helper Objectives. In Genetic and
Evolutionary Computation Conference Companion (GECCO ’20 Companion), Can-
cún, Mexico, 2020. ACM.



186 Bibliography

[170] Nasser M Albunian. Diversity in search-based unit test suite generation. In
International Symposium on Search Based Software Engineering, pages 183–189.
Springer, 2017.

[171] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

[172] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the strength
pareto evolutionary algorithm. TIK-report, 103, 2001.

[173] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731,
2007.

[174] David W. Corne, Nick R. Jerram, Joshua D. Knowles, and Martin J. Oates. Pesa-ii:
Region-based selection in evolutionary multiobjective optimization. In Proceedings
of the 3rd Annual Conference on Genetic and Evolutionary Computation, GECCO
01, pages 283–290, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[175] Marco Laumanns, Lothar Thiele, Eckart Zitzler, Emo Welzl, and Kalyanmoy Deb.
Running time analysis of multi-objective evolutionary algorithms on a simple
discrete optimization problem. In International Conference on Parallel Problem
Solving from Nature, pages 44–53. Springer, 2002.

[176] Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet Physics Doklady, volume 10, pages 707–710, 1966.

[177] R.W. Hamming. Error Detecting and Error Correcting Codes. Bell System Technical
Journal, 29(2):147–160, apr 1950.

[178] Kaisa Miettinen. Nonlinear Multiobjective Optimization: Kaisa Miettinen. Springer
US, 1st edition, 1999.

[179] Indraneel Das and J. E. Dennis. Normal-boundary intersection: A new method
for generating the pareto surface in nonlinear multicriteria optimization problems.
SIAM J. on Optimization, 8(3):631––657, March 1998.

[180] Achille Messac, Amir Ismail-Yahaya, and Christopher A Mattson. The normal-
ized normal constraint method for generating the pareto frontier. Structural and
multidisciplinary optimization, 25(2):86–98, 2003.

[181] Yan-Yan Tan, Yong-Chang Jiao, Hong Li, and Xin-Kuan Wang. A modification to
moea/d-de for multiobjective optimization problems with complicated pareto sets.
Information Sciences, 213:14–38, 2012.

[182] Juan J Durillo, Antonio J Nebro, and Enrique Alba. The jmetal framework for multi-
objective optimization: Design and architecture. In IEEE congress on evolutionary
computation, pages 1–8. IEEE, 2010.



References 187

[183] Salvador García, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study
on the use of non-parametric tests for analyzing the evolutionary algorithms’ be-
haviour: a case study on the cec’2005 special session on real parameter optimization.
Journal of Heuristics, 15(6):617, May 2008.

[184] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188, 1936.

[185] Sadeeq Jan, Annibale Panichella, Andrea Arcuri, and Lionel Briand. Automatic Gen-
eration of Tests to Exploit XML Injection Vulnerabilities in Web Applications. IEEE
Transactions on Software Engineering, (i):1–27, 2017.

[186] W. J. Conover and Ronald L. Iman. Rank transformations as a bridge between para-
metric and nonparametric statistics. The American Statistician, 35(3):124–129, 1981.

[187] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6:65–70, 1979.

[188] José Campos, Rui Abreu, Gordon Fraser, andMarcelo d’Amorim. Entropy-based test
generation for improved fault localization. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 257–267. IEEE, 2013.

[189] Fortunato Pesarin and Luigi Salmaso. Permutation tests for complex data: theory,
applications and software. John Wiley & Sons, 2010.

[190] Andrea Arcuri. RESTful API automated test case generation with evomaster. ACM
Transactions on Software Engineering andMethodology (TOSEM), 28(1):1–37, 2019.

[191] Paulo Borba, Ana Cavalcanti, Augusto Sampaio, and Jim Woodcook. Testing
techniques in software engineering: Second pernambuco summer school on
software engineering, PSSE 2007, Recife, Brazil, December 3-7, 2007, Revised
Lectures, volume 6153. Springer, 2010.

[192] Gordon Fraser andAndrea Arcuri. 1600 faults in 100 projects: Automatically finding
faults while achieving high coveragewith evosuite. Empirical Software Engineering,
20(3):611–639, 2015.

[193] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Ar-
curi. Combining multiple coverage criteria in search-based unit test generation.
In International Symposium on Search Based Software Engineering, pages 93–108.
Springer, 2015.

[194] José Campos, Yan Ge, Gordon Fraser, Marcelo Eler, and Andrea Arcuri. An empirical
evaluation of evolutionary algorithms for test suite generation. In TimMenzies and
Justyna Petke, editors, Symposium on Search Based Software Engineering (SSBSE
’17), volume 10452 of LNCS, pages 33–48, Cham, 2017. Springer International Pub-
lishing.



188 Bibliography

[195] Amanda Schwartz, Daniel Puckett, Ying Meng, and Gregory Gay. Investigating
faults missed by test suites achieving high code coverage. Journal of Systems and
Software, 144:106–120, 2018.

[196] Yi Wei, Bertrand Meyer, and Manuel Oriol. Is branch coverage a good measure of
testing effectiveness? In Empirical Software Engineering and Verification, pages
194–212. Springer, 2012.

[197] Zhenyi Jin and A. Jefferson Offutt. Coupling-based criteria for integration testing.
Software Testing, Verification and Reliability, 8(3):133–154, sep 1998.

[198] A.J. Offutt, Aynur Abdurazik, and R.T. Alexander. An analysis tool for coupling-
based integration testing. In Proceedings Sixth IEEE International Conference on
Engineering of Complex Computer Systems. ICECCS 2000, pages 172–178. IEEE
Comput. Soc, 2000.

[199] Ting Su, Ke Wu, Weikai Miao, Geguang Pu, Jifeng He, Yuting Chen, and Zhendong
Su. A Survey on Data-Flow Testing. ACM Computing Surveys, 50(1):1–35, apr 2017.

[200] Mary Jean Harrold and Gregg Rothermel. Performing data flow testing on classes.
SIGSOFT Softw. Eng. Notes, 19(5):154–163, December 1994.

[201] A.L. Souter and L.L. Pollock. The construction of contextual def-use associations for
object-oriented systems. IEEE Transactions on Software Engineering, 29(11):1005–
1018, nov 2003.

[202] R.T. Alexander and A.J. Offutt. Criteria for testing polymorphic relationships. In
Proceedings 11th International Symposium on Software Reliability Engineering.
ISSRE 2000, pages 15–23. IEEE Comput. Soc, 2000.

[203] Roger T Alexander, Jeff Offutt, and Andreas Stefik. Testing coupling relationships in
object-oriented programs. Software Testing, Verification and Reliability, 20(4):291–
327, dec 2010.

[204] Mattia Vivanti, Andre Mis, Alessandra Gorla, and Gordon Fraser. Search-based
data-flow test generation. In 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), pages 370–379. IEEE, 2013.

[205] Giovanni Denaro, Alessandra Gorla, and Mauro Pezzè. Contextual Integration Test-
ing of Classes. In Fundamental Approaches to Software Engineering (FASE ’08),
volume 4961 of LNCS, pages 246–260. Springer, 2008.

[206] Ambler Scott. Building object applications that work, your step-by-step handbook
for developing robust systems using object technology, 1997.

[207] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
Directed Random Test Generation. In 29th International Conference on Software
Engineering (ICSE’07), pages 75–84. IEEE, may 2007.



References 189

[208] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. Automatic
generation of oracles for exceptional behaviors. pages 213–224, 2016.

[209] Martin P Robillard and Robert Deline. A field study of api learning obstacles.
Empirical Software Engineering, 16(6):703–732, 2011.

[210] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. Translating code comments
to procedure specifications. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 242–253. ACM, 2018.

[211] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and Har-
ald Gall. Analyzing apis documentation and code to detect directive defects. In
Proceedings of the 39th International Conference on Software Engineering, pages
27–37. IEEE Press, 2017.

[212] Ying Wang, Ming Wen, Rongxin Wu, Zhenwei Liu, Shin Hwei Tan, Zhiliang Zhu,
Hai Yu, and Shing-Chi Cheung. Could i have a stack trace to examine the depen-
dency conflict issue? In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 572–583. IEEE, 2019.

[213] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[214] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating
Branch Coverage as a Many-Objective Optimization Problem. In ICST’15, pages
1–10. IEEE, apr 2015.

[215] Sadeeq Jan, Annibale Panichella, Andrea Arcuri, and Lionel Briand. Search-based
multi-vulnerability testing of xml injections inweb applications. Empirical Software
Engineering, pages 1–34, 2019.

[216] Urko Rueda, René Just, Juan P Galeotti, and Tanja EJ Vos. Unit testing tool
competition—round four. In 2016 IEEE/ACM 9th International Workshop on
Search-Based Software Testing (SBST), pages 19–28. IEEE, 2016.

[217] Annibale Panichella and Urko RuedaMolina. Java unit testing tool competition-fifth
round. In 2017 IEEE/ACM 10th International Workshop on Search-Based Software
Testing (SBST), pages 32–38. IEEE, 2017.

[218] Urko Rueda Molina, Fitsum Kifetew, and Annibale Panichella. Java unit testing
tool competition-sixth round. In 2018 IEEE/ACM 11th International Workshop on
Search-Based Software Testing (SBST), pages 22–29. IEEE, 2018.

[219] FitsumKifetew, Xavier Devroey, and Urko Rueda. Java unit testing tool competition:
seventh round. In Proceedings of the 12th International Workshop on Search-Based
Software Testing, pages 15–20. IEEE Press, 2019.



190 Bibliography

[220] Xavier Devroey, Sebastiano Panichella, and Alessio Gambi. Java Unit Testing Tool
Competition - Eighth Round. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, pages 545–548. ACM, jun 2020.

[221] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 654–665. ACM, 2014.

[222] James H Andrews, Lionel C Briand, and Yvan Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the 27th international conference
on Software engineering, pages 402–411. ACM, 2005.

[223] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony
Ventresque. PIT: a practical mutation testing tool for Java (demo). In Proceedings of
the 25th International Symposium on Software Testing and Analysis, pages 449–452.
ACM, jul 2016.

[224] Qianqian Zhu, Annibale Panichella, and Andy Zaidman. A systematic literature
review of how mutation testing supports quality assurance processes. Softw. Test.
Verification Reliab., 28(6), 2018.

[225] Salvador García, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study
on the use of non-parametric tests for analyzing the evolutionary algorithms’ be-
haviour: A case study on the CEC’2005 special session on real parameter optimiza-
tion. Journal of Heuristics, 15(6):617–644, December 2009.

[226] N. Japkowicz and M. Shah. Evaluating Learning Algorithms: A Classification
Perspective. Cambridge University Press, 2011.

[227] Annibale Panichella. A systematic comparison of search-based approaches for lda
hyperparameter tuning. Information and Software Technology, 130:106411, 2021.

[228] Marcio EduardoDelamaro, JCMaidonado, andAditya P.Mathur. Interfacemutation:
An approach for integration testing. IEEE transactions on software engineering,
27(3):228–247, 2001.

[229] Sina Shamshiri, José Miguel Rojas, Luca Gazzola, Gordon Fraser, Phil McMinn,
Leonardo Mariani, and Andrea Arcuri. Random or evolutionary search for object-
oriented test suite generation? Software Testing, Verification and Reliability,
28(4):e1660, jun 2018.

[230] Kobi Inkumsah and Tao Xie. Improving Structural Testing of Object-Oriented Pro-
grams via Integrating Evolutionary Testing and Symbolic Execution. In ASE’08,
pages 297–306. IEEE, sep 2008.

[231] Kiran Lakhotia, Nikolai Tillmann, Mark Harman, and Jonathan de Halleux. FloPSy -
Search-Based Floating Point Constraint Solving for Symbolic Execution. In Alexan-
dre Petrenko, A Simão, and J. C. Maldonado, editors, ICTSS’10, volume 6435 of
LNCS, pages 142–157. Springer, 2010.



References 191

[232] Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. Improving search-based
test suite generation with dynamic symbolic execution. In ISSRE’13, pages 360–369.
IEEE, nov 2013.

[233] S.-D. Gouraud, A Denise, M.-C. Gaudel, and B Marre. A new way of automating
statistical testing methods. In ASE ’01, pages 5–12. IEEE, nov 2001.

[234] Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman. Unit test
generation for common and uncommon behaviors: replication package, June 2020.

[235] Gordon Fraser and Andrea Arcuri. Achieving scalable mutation-based generation
of whole test suites. EMSE, 20(3):783–812, jun 2015.

[236] Qianqian Wang, Yuriy Brun, and Alessandro Orso. Behavioral execution compari-
son: Are tests representative of field behavior? In ICST ’17. IEEE, mar 2017.

[237] QianqianWang andAlessandroOrso. Mimicking user behavior to improve in-house
test suites. In ICSE ’19. IEEE, may 2019.

[238] Giovanni Grano, Adelina Ciurumelea, Sebastiano Panichella, Fabio Palomba, and
Harald C. Gall. Exploring the integration of user feedback in automated testing of
Android applications. In SANER ’18, pages 72–83. IEEE, mar 2018.

[239] Paolo Tonella and Filippo Ricca. Statistical testing of Web applications. Journal of
Software Maintenance and Evolution: Research and Practice, 16(1-2):103–127, jan
2004.

[240] Chaitanya Kallepalli and Jeff Tian. Measuring and modeling usage and reliability
for statistical Web testing. TSE, 27(11):1023–1036, nov 2001.

[241] Sara Silva, Stephen Dignum, and Leonardo Vanneschi. Operator equalisation for
bloat free genetic programming and a survey of bloat control methods. Genetic
Programming and Evolvable Machines, 13(2):197–238, jun 2012.

[242] JosWinter, Maurício Aniche, Jürgen Cito, and Arie van Deursen. Monitoring-aware
IDEs. In ESEC/FSE’19, pages 420–431. ACM, 2019.

[243] Urko Rueda Molina, Fitsum Kifetew, and Annibale Panichella. Java unit testing tool
competition - Sixth Round Urko. In SBST ’18, pages 22–29. ACM, 2018.

[244] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony
Ventresque. PIT: a practical mutation testing tool for Java. In ISSTA 2016, pages
449–452. ACM, 2016.

[245] András Vargha and Harold D. Delaney. A Critique and Improvement of the CL Com-
mon Language Effect Size Statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132, jun 2000.

[246] Jeanderson Candido, Maurício Aniche, and Arie van Deursen. Contemporary Soft-
ware Monitoring: A Systematic Literature Review. 2019.



192 Bibliography

[247] T. Menzies and T. Zimmermann. Software analytics: So what? IEEE Software,
30(4):31–37, 2013.

[248] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming (Jack) Jiang. An auto-
mated approach to estimating code coveragemeasures via execution logs. In ASE’18,
number 3, pages 305–316. ACM Press, 2018.

[249] Björn Evers. Unit test generation for common and uncommon behaviors. master
thesis, Delft University of Technology, 2020.



193

Glossary
AIOOBE ArrayIndexOutOfBoundException, a type of exception in Java.

API Application Program Interface, a computing interface which defines interactions be-
tween multiple software intermediaries.

BBC Basic Block Coverage, a proposed secondary-objective complementing the classical
line coverage fitness functions in search-based software testing. More details are
available in chapter 5.

CBC Coupled Branch Coverage, a testing criterion for class integration testing.

CCE ClassCastException, a type of exception in Java.

CCFG Class-level Control Flow Graph, a representation, using graph notation, of all
paths that might be traversed through a class during its execution.

CCN Cyclomatic Complexity Number, a metric indicating the complexity of a program.

CFG Control Flow Graph, a representation, using graph notation, of all paths that might
be traversed through a method during its execution.

CLING CLass INtegration test Generation, a proposed approach for generating test cases
for class integration. More details are available in chapter 6.

CRT Crash Reproducing Test, tests generated by automated crash reproducing test gen-
eration approaches that can throw the same crash as the reported one.

CSV Comma-Separated Values, a delimited text file that uses a comma to separate values.

DE-MO DEcomposition-based Multi-Objectivization in crash reproduction, a proposed
approach to enhance the diversity of test generation in crash reproduction. More
details can be found in chapter 4.

HTTP Hypertext Transfer Protocol, an application layer protocol for distributed, collab-
orative, hypermedia information systems.

IAE IllegalArgumentException, a type of exception in Java.

IDE Integrated development environment, a software application that provides compre-
hensive facilities to computer programmers for software development.

ISE IllegalStateException, a type of exception in Java.



194 Glossary

JAR Java ARchive, a file type for packaging Java class files.

JSON JavaScript Object Notation, a lightweight data-interchange format.

KNCSS Thousands of Non-Commenting Sources Statements.

MO-HO Multi-Objectivization usingHelper-Objectives in crash reproduction, a proposed
approach to enhance the diversity of test generation in crash reproduction. More
details can be found in chapter 4.

MOEA Multi-objective Evolutionary Algorithm, techniques that use evolutionary-based
techniques to solve a multi-objective optimization problem involves several conflict-
ing objectives. These algorithm have a set of Pareto optimal solutions.

NCSS Non-Commenting Source Statements , a metric that counts the number of all state-
ments excluding comments.

NPE NullPointerException, a type of exception in Java.

SBST Search-Based Software Testing, application of metaheuristic search techniques to
software testing problems.

SDK Software Development Kit, a collection of software development tools in one instal-
lable package.

SIOOBE StringIndexOutOfBoundException, a type of exception in Java.

SUT System Under Test, a system that is being tested for correct operation.



195

Curriculum Vitæ

Pouria Derakhshanfar

26/08/1992 Date of birth in Tehran, Iran

Education

8/2017-4/2021 Ph.D. Student, Software Engineering Research Group,
Delft University of Technology, The Netherlands,
Carving Information Sources to Drive Search-Based Crash Repro-
duction and Test Case Generation
Supervisor: Dr. A. Panichella, Dr. X. Devroey
Promotors: Prof. Dr. A. van Deursen, Prof. Dr. A.E. Zaidman

9/2014-9/2016 M.Sc. Computer Software Engineering, Sharif University of
Technology, Iran

9/2010-8/2014 B.Sc. Computer Software Engineering, Kharazmi University,
Iran

Academic Service

Reviewer Software Quality Journal, 2020

Transactions on Software Engineering and Methodology
(TOSEM), 2020

Empirical Software Engineering (EMSE), 2021
Program Commit-
tee Member

Tool Demo track of the 37th International Conference on Soft-
ware Maintenance and Evolution (ICSME 2021)



196 Curriculum Vitæ

Co-Supervisor Björn Evers’s Master Thesis ”Unit test generation for common
and uncommon behaviors”, Delft University of Technology,
2019-2020

Shang Xiang’s Master Thesis ”Fit2Crash: Specialising Fit-
ness Functions for Crash Reproduction”, Delft University of
Technology, 2019-2020

Sven Popping’s Master Thesis ”Automated crash fault lo-
calization”, Delft University of Technology, 2019-2020

Boris Cherry’s Master Thesis ”JCrashPack2.0: Search-based
crash reproduction hardness analysis”, University of Namur,
2020

B. Dikker, C. Paulsen, L. Leibbrandt, N. Nijkamp, S. Op den
Orth, S. Walboomers Bachelor’s Context Project ”Enhanced
guidance for C++ fuzzing”, Delft University of Technology,
2019

W. Tutuarima, P. van Egmond, M. Halvemaan, N. Alwani,
G. Vegelien Bachelor’s Context Project ”IntelliJ plugin for
enhanced stack trace visualisation”, Delft University of
Technology, 2020

Talks

Industry Talks Search-based Crash Reproduction at Tellu, Oslo, Norway, 2018

Botsing: A Search-based Crash Reproduction Tool at OW2con’19,
Paris, France, 2018

Search-based Crash Reproduction at AI for Fintech Research,
Amsterdam, The Netherlands, 2020



Curriculum Vitæ 197

Academic Talks Single-objective versus Multi-Objectivized Optimization for
Evolutionary Crash Reproduction at SSBSE18, Montpellier,
France, 2018

Botsing Tool Tutorial at SSBSE19, Tallinn, Estonia, 2019.

Crash Reproduction using helper objectives at GECCO2020,
online, 2020

A benchmark-based evaluation of search-based crash repro-
duction at ICSE2020, online, 2020

Good Things Come In Threes: Improving Search-based Crash
Reproduction With Helper Objectives at ASE2020, online, 2020

It is not Only About Control Dependent Nodes: Basic Block
Coverage for Search-Based Crash Reproduction at SSBSE2020,
online, 2020

Implemented Tools

2018-current Botsing⁴: An open-source search-based crash reproduction
framework.

2018-current ExRunner⁵: A bash-based infrastructure for running multiple
instances of crash reproduction tools on 200 hard-to-reproduce
crashes. ExRunner can be used to perform empirical evalua-
tions of different crash reproduction techniques.

2019-current Cling⁶: An open-source search-based test generation tool for
class integration testing.

Projects

2017-2019 Software Testing AMPlification (STAMP)⁷: A collaborative effort
between 10 organizations, from 6 European countries to ad-
vance the state of the art in DevOps and automatic software
testing

2021-current COSMOS: A European project between 12 organizations from
8 countries to study DevOps for Complex Cyber-physical Sys-
tems.

⁴https://github.com/STAMP-project/botsing
⁵https://github.com/STAMP-project/ExRunner-bash
⁶https://github.com/STAMP-project/botsing/tree/master/cling
⁷https://www.stamp-project.eu/view/main/

https://github.com/STAMP-project/botsing
https://github.com/STAMP-project/ExRunner-bash
https://github.com/STAMP-project/botsing/tree/master/cling
https://www.stamp-project.eu/view/main/




199

List of Publications
 1. Mozhan Soltani,Pouria Derakhshanfar, Xavier Devroey, andArie vanDeursen: A benchmark-

based evaluation of search-based crash reproduction. Empirical Software Engineering (EMSE),
2020. doi: 10.1007/978-3-319-99241-9_1. This paper was also presented at the 42nd Interna-
tional Conference on Software Engineering (ICSE) as Journal First Paper in 2020.

 2. Pouria Derakhshanfar, Xavier Devroey, Gilles Perrouin, AndyZaidman, andArie vanDeursen:
Search‐based crash reproduction using behavioural model seeding. Software Testing, Verifi-
cation and Reliability (STVR), 2020. doi: 10.1002/stvr.1733

 3. Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, and Annibale
Panichella: GoodThings Come InThrees: Improving Search-based Crash ReproductionWith
Helper Objectives. 35th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), 2020. doi: 10.1145/3324884.3416643

  4. Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman: It is not Only About Control
Dependent Nodes: Basic Block Coverage for Search-Based Crash Reproduction. 12th Inter-
national Symposium of Search-Based Software Engineering (SSBSE), 2020. doi: 10.1007/978-
3-030-59762-7_4

 5. Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman: Commonality-
Driven Unit Test Generation. 12th International Symposium of Search-Based Software Engi-
neering (SSBSE), 2020. doi: 10.1007/978-3-030-59762-7_9

6. Mozhan Soltani,Pouria Derakhshanfar, Annibale Panichella, Xavier Devroey, AndyZaidman,
andArie vanDeursen: Single-objective VersusMulti-objectivizedOptimization for Evolution-
ary Crash Reproduction. 10th International Symposium of Search-Based Software Engineer-
ing (SSBSE), 2018. doi: 10.1007/978-3-319-99241-9_18

7. Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, and Annibale
Panichella: Crash reproduction using helper objectives. Genetic and Evolutionary Computa-
tion Conference Companion (GECCO), Poster Paper, 2020. doi: 10.1145/3377929.3390077

 8. Pouria Derakhshanfar: Well-informed Test CaseGeneration andCrash Reproduction. 13th
IEEE International Conference on Software Testing, Validation and Verification (ICST), Doc-
toral Symposium, 2020. doi: 10.1109/ICST46399.2020.00054

9. Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and Arie van
Deursen: Botsing, a Search-based Crash Reproduction Framework for Java. 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Tool Demonstrations,
2020. doi: 10.1145/3324884.3415299

http://pure.tudelft.nl/ws/portalfiles/portal/66657023/Soltani2019_Article_ABenchmark_basedEvaluationOfSe.pdf
http://pure.tudelft.nl/ws/portalfiles/portal/66657023/Soltani2019_Article_ABenchmark_basedEvaluationOfSe.pdf
https://onlinelibrary.wiley.com/doi/epdf/10.1002/stvr.1733
https://research.tudelft.nl/en/publications/good-things-come-in-threes-improving-search-based-crash-reproduct
https://research.tudelft.nl/en/publications/good-things-come-in-threes-improving-search-based-crash-reproduct
https://research.tudelft.nl/en/publications/it-is-not-only-about-control-dependent-nodes-basic-block-coverage
https://research.tudelft.nl/en/publications/it-is-not-only-about-control-dependent-nodes-basic-block-coverage
https://research.tudelft.nl/en/publications/commonality-driven-unit-test-generation
https://research.tudelft.nl/en/publications/commonality-driven-unit-test-generation
https://research.tudelft.nl/en/publications/single-objective-versus-multi-objectivized-optimization-for-evolu
https://research.tudelft.nl/en/publications/single-objective-versus-multi-objectivized-optimization-for-evolu
https://research.tudelft.nl/en/publications/crash-reproduction-using-helper-objectives
https://research.tudelft.nl/en/publications/well-informed-test-case-generation-and-crash-reproduction
https://research.tudelft.nl/en/publications/botsing-a-search-based-crash-reproduction-framework-for-java


200 List of Publications

10. Mitchell Olsthoorn, Pouria Derakhshanfar, and Xavier Devroey: An Application of Model
Seeding to Search-Based Unit Test Generation for Gson. 12th International Symposium of
Search-Based Software Engineering (SSBSE), Challenge Paper, 2020. doi: 10.1007/978-3-030-
59762-7_17

11. Boris Cherry, Xavier Devroey, Pouria Derakhshanfar, and Benoît Vanderose: Crash re-
production difficulty, an initial assessment. 19TH Belgium-Netherlands Software Evolution
Workshop (BENEVOL), 2020.

 Included in this thesis.
 Won a best paper award.

https://research.tudelft.nl/en/publications/an-application-of-model-seeding-to-search-based-unit-test-generat
https://research.tudelft.nl/en/publications/an-application-of-model-seeding-to-search-based-unit-test-generat


Titles in the IPA Dissertation Series since 2018

A. Amighi. Specification and Verification
of Synchronisation Classes in Java: A
Practical Approach. Faculty of Electri-
cal Engineering, Mathematics &Computer
Science, UT. 2018-01
S. Darabi. Verification of Program
Parallelization. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2018-02
J.R. Salamanca Tellez. Coequations and
Eilenberg-type Correspondences. Faculty
of Science, Mathematics and Computer
Science, RU. 2018-03
P. Fiterău-Broştean. Active Model
Learning for the Analysis of Network
Protocols. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2018-04
D. Zhang. From Concurrent State
Machines to Reliable Multi-threaded Java
Code. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-05
H. Basold. Mixed Inductive-Coinductive
Reasoning Types, Programs and Logic.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2018-06
A. Lele. Response Modeling: Model
Refinements for Timing Analysis
of Runtime Scheduling in Real-time
Streaming Systems. Faculty of Mathemat-
ics and Computer Science, TU/e. 2018-07
N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and
programming. Faculty of Mathematics
and Natural Sciences, UL. 2018-08
M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2018-09
E.J.J. Ruijters. Zen and the art of
railway maintenance: Analysis and

optimization of maintenance via fault
trees and statistical model checking. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2018-10

F. Yang. A Theory of Executability: with
a Focus on the Expressivity of Process
Calculi. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-11

L. Swartjes. Model-based design of
baggage handling systems. Faculty of Me-
chanical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Similarity
Measures for Curves and Surfaces. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2018-13

M. Talebi. Scalable Performance Analysis
of Wireless Sensor Network. Faculty
of Mathematics and Computer Science,
TU/e. 2018-14

R. Kumar. Truth or Dare: Quantitative
security analysis using attack trees. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2018-15

M.M. Beller. An Empirical Evaluation of
Feedback-Driven Software Development.
Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2018-16

M. Mehr. Faster Algorithms for
Geometric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17

M. Alizadeh. Auditing of User
Behavior: Identification, Analysis and
Understanding of Deviations. Faculty
of Mathematics and Computer Science,
TU/e. 2018-18



P.A. Inostroza Valdera. Structuring
Languages as Object-Oriented Libraries.
Faculty of Science, UvA. 2018-19

M. Gerhold. Choice and Chance
- Model-Based Testing of Stochastic
Behaviour. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-20

A. Serrano Mena. Type Error
Customization for EmbeddedDomain-Specific
Languages. Faculty of Science,
UU. 2018-21

S.M.J. de Putter. Verification of
Concurrent Systems in a Model-Driven
Engineering Workflow. Faculty of
Mathematics and Computer Science,
TU/e. 2019-01

S.M. Thaler. Automation for Information
Security using Machine Learning. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2019-02

Ö. Babur. Model Analytics and
Management. Faculty of Mathematics and
Computer Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova.
Practical General Top-down Parsers. Fac-
ulty of Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algorithms
for Geometric Network Problems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2019-05

J. Moerman. Nominal Techniques and
Black Box Testing for Automata Learning.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2019-06

V. Bloemen. Strong Connectivity and
Shortest Paths for Checking Models. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2019-07

T.H.A. Castermans. Algorithms for
Visualization in Digital Humanities. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2019-08

W.M. Sonke. Algorithms for River
Network Analysis. Faculty of Mathemat-
ics and Computer Science, TU/e. 2019-09

J.J.G. Meijer. Efficient Learning and
Analysis of System Behavior. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2019-10

P.R. Griffioen. A Unit-Aware Matrix
Language and its Application in Control
and Auditing. Faculty of Science,
UvA. 2019-11

A.A. Sawant. The impact of API evolution
on API consumers and how this can be
affected by API producers and language
designers. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2019-12

W.H.M. Oortwijn. Deductive Techniques
forModel-Based Concurrency Verification.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2019-13

M.A. Cano Grijalba. Session-Based
Concurrency: Between Operational and
Declarative Views. Faculty of Science and
Engineering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid
Co-simulation Construction. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2020-02

R.A. van Rozen. Languages of Games
and Play: Automating Game Design &
Enabling Live Programming. Faculty of
Science, UvA. 2020-03

B. Changizi. Constraint-Based Analysis
of Business Process Models. Faculty
of Mathematics and Natural Sciences,
UL. 2020-04



N.Naus. Assisting End Users inWorkflow
Systems. Faculty of Science, UU. 2020-05
J.J.H.M. Wulms. Stability of Geometric
Algorithms. Faculty of Mathematics and
Computer Science, TU/e. 2020-06
T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2020-07
P. van den Bos. Coverage and Games in
Model-Based Testing. Faculty of Science,
RU. 2020-08
M.F.M. Sondag. Algorithms for Coherent
Rectangular Visualizations. Faculty of
Mathematics and Computer Science,
TU/e. 2020-09

D.Frumin. Concurrent Separation Logics
for Safety, Refinement, and Security. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2021-01

A. Bentkamp. Superposition for
Higher-Order Logic. Faculty of Sci-
ences, Department of Computer Science,
VUA. 2021-02

P. Derakhshanfar. Carving Information
Sources to Drive Search-Based Crash
Reproduction and Test Case Generation.
Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2021-03


