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Abstract. The aim of this paper is to study one class of nonlinear differential equations, which model the Antarctic circum-
polar current. We prove the existence results for such equations related to the geophysical relevant boundary conditions.
First, based on the weighted eigenvalues and the theory of topological degree, we study the semilinear case. Secondly, the
existence results for the sublinear and superlinear cases are proved by fixed point theorems.
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1. Introduction

The combined forces of gravity and Coriolis (due to Earth’s rotation), triggered by the wind stress, drive
circulating ocean currents, called gyres, in which the ocean flow adjusts to these two major forces acting
on them so that those forces balance one another (see the discussions in [12,13]). Since the Coriolis effect
deflects winds, the deflection of gyres is clockwise in the Northern Hemisphere and counter-clockwise in
the Southern Hemisphere. These geophysical flows are dominantly horizontal, with horizontal velocities
being about a factor 104 larger than the vertical velocities [26]. At the same time, friction also plays a
role in the generation of the currents (see the discussion in [7]). However, these currents persist after the
wind stress has ceased, and in this regime one can neglect frictional effects.

Recently, in [9] a model of the general motion of a gyre in spherical coordinates as a shallow-water flow
on a rotating sphere was obtained, in which the gyre motion is described in terms of a stream function
by the solution of an elliptic boundary value problem, which can be transfomed into a second-order
differential equation by neglecting azimuthal variation. In recent works [2–6], the first author used this
equation to model the arctic gyres as a boundary value problem on semi-infinite interval. Such an equation
with suitable boundary conditions was also used to model the Antarctic gyres in [8,15,16,18–25]. The
presence of a non-uniform current in the Southern Ocean is of great physical relevance, since this region
features the largest known waves (see discussions in [10,27]). Moreover, new flow phenomena appear in
wave-current interactions due to non-uniformity in currents (see [11]).

Now let us recall the model of the general motion of a gyre in spherical coordinates. Let θ ∈ [0, π) be
the polar angle (with θ = 0 corresponding to the North Pole) and ϕ ∈ [0, 2π) be the angle of longitude
(or azimuthal angle) as shown at Fig. 1.

Let ψ(θ, ϕ) be the stream function and

Ψ(θ, ϕ) = ψ(θ, ϕ) + ω cos θ , (1)

where ω > 0 is the non-dimensional form of the Coriolis parameter. The governing equation for the gyre
flow (see the discussion in [9]) is

1
sin2 θ

Ψϕϕ + Ψθ cot θ + Ψθθ = F (Ψ − ω cos θ) , (2)

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-021-00618-7&domain=pdf
http://orcid.org/0000-0002-0043-6336


   92 Page 2 of 9 J. Chu and K. Marynets JMFM

O

θ

N

W E

S

P

ϕ

Fig. 1. The azimuthal and polar spherical coordinates ϕ and θ of a point P on the spherical surface of the Earth: θ = 0
and θ = π correspond to the North and South Pole, respectively, while θ = π/2 corresponds to the Equator
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Fig. 2. The stereographic projection P �→ P ′ from the North Pole to the equatorial plane: for any point P in the
Southern Hemisphere, the straight line connecting it to the North Pole intersects the equatorial plane in a point P ′
belonging to the interior of the circular region delimited by the Equator. The depicted thick band, delimited by two

parallels of latitude, represents one of the jets of the Antarctic Circumpolar Current and is mapped bijectively into an
annular planar region concentric with the Equator

where F (Ψ − ω cos θ) is the oceanic vorticity, which is typically one order of magnitude larger than the
planetary vorticity 2ω cos θ, generated by the Earth’s rotation. The total vorticity of the gyre flow is the
sum of the oceanic vorticity F (Ψ − ω cos θ), and of the planetary vorticity 2ω cos θ.

Using the stereographic projection of the unit sphere (centred at the origin) from the North Pole to
the equatorial plane (see Fig. 2), Eq. (2) in spherical coordinates

(x, y) = r ei φ with r = cot
(θ

2

)
=

sin θ

1 − cos θ
, (3)

where (r, φ) are the polar coordinates in the equatorial plane, can be transformed into the semilinear
elliptic partial differential equation

Δψ + 8ω
1 − (x2 + y2)
(1 + x2 + y2)3

− 4F (ψ)
(1 + x2 + y2)2

= 0 , (4)

where Δ = ∂2
x + ∂2

y denotes the Laplace operator.
Since the ACC presents a considerable uniformity in the azimuthal direction it corresponds to radially

symmetric solutions ψ = ψ(r) of the problem (4). The change of variables

ψ(r) = U(s) , s1 < s < s2 , (5)

with r = e−s/2 for

0 < s1 = −2 ln(r+) < s2 = −2 ln(r−) , (6)
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and 0 < r− < r+ < 1, Eq. (4) is transformed to the second-order ordinary differential equation

U ′′(s) − es

(1 + es)2
F (U(s)) +

2ωes(1 − es)
(1 + es)3

= 0 (7)

for s1 < s < s2.
The flow in a jet component of the ACC, between the parallels of latitude defined by an appropriate

choice of r± ∈ (0, 1) with r+/r− ∈ (1, 2), is modeled by coupling (7) with the boundary conditions

U(s1) = U(s2) = 0, (8)

which expresses the fact that the boundary of the jet is a streamline—since the flow is steady, this means
that a particle there will be confined to the boundary at all times.

Given 0 < s1 < s2, the change of variables

u(t) = U(s) with t =
s − s1

s2 − s1
, (9)

transforms (7) and (8) into the equivalent two-point boundary-value problem{
u′′ = a(t)F (u) + b(t), 0 < t < 1,
u(0) = u(1) = 0, (10)

where

a(t) =
(s2 − s1)2 e(s2−s1)t+s1

(1 + e(s2−s1)t+s1)2
> 0, (11)

and

b(t) = − 2ω(s2 − s1)2e(s2−s1)t+s1(1 − e(s2−s1)t+s1)
(1 + e(s2−s1)t+s1)3

.

2. Semilinear Cases

In this section, we will establish the existence results for (10) in the semilinear case, that is, the function
F is L1-Caratheodory and there exist two positive constants α, β such that

α ≤ lim inf
|u|→∞

F (u)
u

≤ lim sup
|u|→∞

F (u)
u

≤ β. (12)

To prove the results, we shall apply the method of topological degree together with some facts on the
weighted eigenvalue of the corresponding linear problems. For more details on semilinear differential
equations with and without a singularity we refer to [28–30] and the references therein.

Let us first consider the following weighted eigenvalue problem

u′′(t) + λa(t)u(t) = 0, 0 < t < 1, (13)
u(0) = u(1) = 0, (14)

where a(t) is given by (11).
It is easy to show that all eigenvalues λ of (13) are positive. Indeed, multiplication (13) by u and

integration by parts leads to the inequality

0 > −
∫ 1

0

u′2(s)ds = −λ

∫ 1

0

a(s)u2(s)ds,

from which we conclude that for λ �= 0 the Dirichlet spectrum of (13) consists of a sequence of strictly
positive numbers, which accumulate at ∞.

Additional analysis can be done regarding the Eq. in (13). The Liouville transformation

w(s) = 4
√

a(t)u(t)
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with

s = π

∫ t

0

√
a(τ)dτ∫ 1

0

√
a(τ)dτ

transforms (13) into the Dirichlet boundary value problem for the Hill’s equation:{
w′′(t) + [μ + Q(s)]w(s) = 0, 0 < s < π,
w(0) = w(π) = 0, (15)

where

μ =
λ

π2
, Q(s) =

5a′2(t)
16a3(t)

− a′′(t)
4a2(t)

.

It is a proven fact that the Dirichlet eigenvalues in (15) are simple and can be ordered in an increasing
sequence going to infinity (see [17]).

The following result follows essentially from [29, Theorem 2.1].

Theorem 1. The eigenvalue problem (13) has a sequence of eigenvalues:

0 < λ1(a) < λ2(a) < · · · < λk−1(a) < λk(a) < · · · < ∞.

Theorem 2. Assume that the function F (u) satisfies the inequality

lim sup
|u|→∞

F (u)
u

≤ β, (16)

for some constant β > 0 and

λ1(β) > 1. (17)

Then the problem (10) has at least one solution.

Proof. Let us deform the Eq. (10) to the following one

u′′(t) + βu(t) = 0

and write a homotopic equation in the form:{
u′′(t) + G(t, u, τ), τ ∈ [0, 1],
u(0) = u(1) = 0, (18)

where G(t, u, τ) = τ(−a(t)F (u) − b(t)) + (1 − τ)βu.
The problem (18) is equivalent to a fixed point equation

u = Mτ (u), u ∈ X, (19)

in the space

X := {u : [0, T ] → R is C1[0, 1] and u(0) = u(1) = 0}
with the C1–norm.

By assumption (17), when τ = 0, the problem (18) has only a trivial solution. As the operator M0 is
odd in u ∈ X,

deg(M0,X.0) = odd �= 0,

which means that the theorem will be proved, if we find a priori bounds for all solutions of (18).
By (16), there exists a constant 0 ≤ ψ < +∞ such that

uF (u) ≤ (β + ε0)|u|2 + ψ,

for all u ∈ R for a.e. t ∈ [0, 1]. Thus

u(τ(−a(t)F (u) − b(t)) + (1 − τ)βu) ≤ (β + ε0)|u|2 + ψ,

for all u ∈ R for a.e. t ∈ [0, 1] and τ ∈ [0, 1].
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Let u(·) be the solution of (18) for some τ ∈ [0, 1]. On the one hand, we have
∫ 1

0

uu′′dt = −
∫ 1

0

u′2dt = −||u′||22,

and on the other hand, λ1(a) has the following property:

λ1(a) = inf
u∈W2/{0}

∫ 1

0
|u′|2dt∫ 1

0
a(t)|u|2dt

. (20)

Thus an estimate holds ∫ 1

0

u(τ(−a(t)F (u) − b(t)) + (1 − τ)βu)dt

≤
∫ 1

0

(β + ε0)|u|2 + ψ

≤
(

1
λ1(β)

+
ε0

λ1(1)

)
||u′||22 + ψ.

Let us take ε0 < λ1(1)(1 − 1
λ1(a) ), then

||u′||22 ≤ ψ

1 − 1
λ1(β) + ε0

λ1(1)

:= M0. (21)

Since u(0) = u(1) = 0, there exists some constant c1 > 0 such that

||u||∞ ≤ M1. (22)

By assumption, the function F (u) is L1–Caratheodory function, and it implies that there is some
Ψ ∈ L1(0, 1), Ψ ≥ 0 such that

|τ(−a(t)F (u) − b(t)) + (1 − τ)βu)| ≤ Ψ(t), (23)

for all t, τ and all solutions u(·) of (18).
Due to the Dirichlet boundary conditions in (18), there exists some t1 ∈ (0, 1), for which u′(t1) = 0

and

|u′(t)|=
∣∣∣∣
∫ t

t1

(τ(−a(s)F (u) − b(s)) + (1 − τ)βu(s)))ds

∣∣∣∣
≤||Ψ ||1 := M2.

Hence all solutions of the boundary value problem (18) are bounded and the theorem is proved. �

Note that condition (17) can be also explicitated variationally (see the considerations in [1]).

Theorem 3. Assume that the function F (u) satisfies condition (12) and there exists an integer k ≥ 2 such
that

λk(α) < 1, λk−1(β) > 1, (24)

then problem (10) has at least one solution.

Proof. Note, that the sequence of eigenvalues {λn(a)} satisfies Theorem 2. Under our assumption, β ≥ α.
Therefore, λ(β) ≤ λ(α).

Let us take

α < γ < β

and consider a differential equation

u′′ − λγu = 0, (25)

subjected to the boundary constraints (14).



   92 Page 6 of 9 J. Chu and K. Marynets JMFM

Since γ > α, we can conclude that

λk−1(γ) < λk−1(α) < 1.

On the other hand, since γ < β it follows that

λk(γ) > λk(β) > 1.

Thus, for any n ∈ N λn(γ) �= 1. Hence, the problem (25), (14) has only a trivial solution, and therefore
the nonlinear problem (10) has at least one solution.

�

Remark 1. Moreover, if in Theorems 2 and Theorem 3 function F (u) is assumed to be nondecreasing,
it is easy to prove that the solution of the semilinear boundary value problem (10), (14) is unique (see
Theorem 5.1 in [25]).

3. Superlinear Cases

In this section, we prove one existence result for (10) in the superlinear case at u = ∞, which means that

lim
u→∞ F (u)/u = ∞.

For example, both

F (u) = uα + μuβ , 0 < α < 1 < β, μ > 0, (26)

and

F (u) = eαu, α > 0,

are typical superlinear functions. It is easy to see that looking for a solution of (10) is equivalent to
looking for a fixed point of the following operator equation

u = Fu, (27)

where

F(u)(t) =
∫ 1

0

G(t, s)a(s)F (u(s))ds + γ(t), (28)

where G(t, s) is the Green function given by

G(t, s) =
{

s(1 − t), if 0 < s < t < 1,
(1 − s)t, if 0 < t < s < 1,

and

γ(t) =
∫ 1

0

G(t, s)b(s)ds.

To present the main result, we will use the notations

A(t) =
∫ 1

0

G(t, s)α(s)ds,

and

A∗ = max
t

A(t), γ∗ = max
t

γ(t).

Obviously, the functions A(t) and γ(t) are nonnegative, and A∗ > 0, γ∗ > 0.
The proof is based on the following nonlinear alternative of Leray-Schauder, which can be found in

[14, page 120–130].

Lemma 1. Assume that Ω is an open subset of a convex set K in a normed linear space X and p ∈ Ω.
Let T : Ω → K be a compact and continuous map. Then one of the following two conclusions holds:
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(I) T has at least one fixed point in Ω.
(II) There exists x ∈ ∂Ω and 0 < λ < 1 such that

x = λTx + (1 − λ)p.

Theorem 4. Assume that F : R → R is continuous and there exists a nondecreasing continuous function
g : [0,∞) → [0,∞) such that

|F (u)| ≤ g(|u|), u ∈ R. (29)

Suppose further that there exists a positive number r > γ∗ such that

g(r)A∗ + γ∗ < r. (30)

Then Eq. (10) has at least one solution u with 0 < ‖u‖ < r.

Proof. Let us first consider the family of problems
{

u′′ = λa(t)F (u) + b(t), 0 < t < 1,
u(0) = u(1) = 0, (31)

where λ ∈ [0, 1]. Note that a solution of (31) is just a fixed point of the operator equation

u = λFu + (1 − λ)γ(t), (32)

where F is given as (28).
We claim that for any λ ∈ [0, 1], Eq. (32) has no fixed point x with x ∈ ∂Ω, where

Ω = {u ∈ X : ‖u‖ < r},

and X = C[0, 1] is a Banach space by taking the norm ‖u‖ = maxt∈[0,1] |u(t)| for x ∈ X. Obviously, Ω is
an open subset in X with 0 ∈ Ω.

Otherwise, assume that there exists λ0 ∈ [0, 1] such that Eq. (32) with λ = λ0 has a fixed point u0

with ‖u0‖ = r. Note that

u0(t) = λ0

∫ 1

0

G(t, s)a(s)F (u(s))ds + γ(t)

≤ λ0

∫ 1

0

G(t, s)a(s)g(|u(s)|)ds + γ(t)

≤ g(r)
∫ 1

0

G(t, s)a(s)ds + γ∗

≤ g(r)A∗ + γ∗.

Hence

r ≤ g(r)A∗ + γ∗,

which is a contradiction to the condition (30).
Obviously Ω is an open subset in X with γ(t) ∈ Ω since γ∗ < r. Now using Lemma 1, we know that

u = Tu has a fixed point u in Ω, i.e., Eq. (10) has a solution u with ‖u‖ < r. Finally, one may readily
see that u is a nontrivial solution since u(t) ≥ γ(t). �

Example 1. Let F be given as (26). Then

(i) If β < 1, then Eq. (10) has at least one nontrivial solution for each μ > 0.
(ii) If β ≥ 1, then Eq. (10) has at least one nontrivial solution for each 0 < μ < μ̃, where μ̃ is some

positive constant.
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Proof. We will apply Theorem 4. To this end, we take

g(x) = xα + μxβ , x > 0,

which is non-decreasing in x ∈ (0,∞). Now the existence condition (30) becomes

μ <
r − A∗rα − γ∗

A∗rβ

for some r > 0. So Eq. (10) has at least one nontrivial solution for

0 < μ < μ̃ := sup
r>0

r − A∗rα − γ∗

A∗rβ
.

Note that μ̃ = ∞ if β < 1 and μ̃ < ∞ if β ≥ 1. We have (i) and (ii). �
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