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Abstract 13 

Masonry panels consisting of piers and spandrels in buildings are vulnerable to in-plane actions caused 14 

by seismicity and soil subsidence. Tectonic seismicity can be hazardous for the safety of masonry 15 

structures, whereas low-magnitude induced seismicity can be detrimental to their durability due to the 16 

accumulation of light damage. This is particularly true in the case of unreinforced masonry. Therefore, the 17 

development of models for the accurate prediction of both damage initiation and force capacity for 18 

masonry elements and structures is necessary. 19 

In this paper a method based on analytical modelling for the prediction of the damage initiation mode 20 

and capacity of stand-alone masonry piers is presented, followed by the expansion of the model through a 21 

modular approach to masonry walls with asymmetric openings. The models account for all potential 22 

damage and failure modes for in-plane loaded walls. 23 

The stand-alone piers model is applicable to all types of masonry construction. The wall with openings 24 

model can be applied as-is to simple buildings but can also be extended to more complex structures with 25 
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simple modifications. The model results are compared with numerous experimental cases and exhibit very 26 

good accuracy. 27 

Keywords 28 

masonry – earthquake engineering – analytical modelling – limit analysis – in-plane loading 29 

Notation 30 

ℎ  height 31 

ℎ0  effective height 32 

𝑙  length 33 

𝑡  thickness 34 

𝑚  width of compressive stress fan at centre-height 35 

𝑏  width of compression strut 36 

𝑓𝑐  compressive strength of masonry 37 

𝑓𝑡  tensile strength of masonry 38 

𝑓𝑣  initial shear strength (cohesion) 39 

μ  friction coefficient (tangent of friction angle) 40 

σ  vertical stress 41 

τ  shear stress 42 

𝑉  vertical force 43 

𝐻  horizontal force 44 

Highlights 45 

• Closed-form expressions predict the damage initiation mode and capacity of piers 46 

• Analytical modelling predicts the in-plane shear capacity of masonry walls with openings 47 

• The models are accurate against newly elaborated and existing experimental data 48 
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Introduction 49 

State of the art 50 

Masonry structures are vulnerable to seismic loading due to their low tensile and shear strength. While 51 

out-of-plane effects can be severely detrimental to the safety of masonry structures, these are often offset 52 

when adequate connections allow for the force distribution to the transversal walls via floor diaphragm 53 

action. Even if such measures are taken, in-plane failure remains a problem to be dealt with. 54 

Typically, four main failure modes may be clearly distinguished: a) rocking, b) sliding, c) biaxial failure 55 

and d) compressive failure. These failure modes, listed in order of appearance under increasing levels of 56 

applied vertical stress, define, in combination, a failure envelope for masonry piers under in-plane shear. 57 

Rocking mode failure arises due to the very low tensile strength of masonry perpendicularly to the bed 58 

joints, leading to a clear localisation of the bending crack. Models for the rocking capacity can be easily 59 

derived through simple equilibrium in bending (Magenes and Calvi, 1997; Roca et al., 2011). Other models 60 

have been proposed in design codes (Ministerio delle Infrastrutture e dei Trasporti, 2009). Sliding due to 61 

shear, typically localised in bed joints is often described using a Mohr-Coulomb failure criterion. 62 

Expressions to determine the capacity in shear at the scale of structural member have been proposed in 63 

the literature (Magenes and Calvi, 1997; Tomaževič, 2006) and used in design codes (CEN, 2005). Models 64 

for diagonal failure are generally more complex due to the interaction of compression and tension in an 65 

area of the pier that is not as clearly defined as in rocking or sliding. Several models for biaxial failure have 66 

been proposed in the literature (Turnšek and Cacovic, 1971; Turnšek and Sheppard, 1980; Mann and 67 

Muller, 1982), each with different considerations for the dimensions of the pier and the mechanical 68 

properties of the masonry composite. The accuracy of biaxial failure models is strongly dependent on the 69 

accuracy of the approach used for calculating the tensile strength of masonry, particularly in the horizontal 70 

direction. Apart from resorting to computational modelling or simple empirical expressions, there does not 71 

appear to be in the literature a demonstrably reliable analytical method for calculating the tensile strength 72 

of masonry. 73 
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The formulation of models for the prediction of the force capacity of masonry walls with openings is 74 

complicated by the frame action made possible by the spandrels, whose failure needs to be accounted for 75 

(Beyer, 2012). Simple analytical models accounting for the interaction of failure modes of piers and 76 

spandrels in walls with openings are currently lacking in the literature. 77 

The available experimental inventory on masonry stand-alone piers subjected to in-plane shear under 78 

vertical stress is extensive (Morandi et al., 2018), and continuously updated (Messali et al., 2020). It 79 

includes masonry composites made of different materials, with widely different dimensions and aspect 80 

ratios, different boundary conditions and in different bond types. Experimental tests on masonry walls with 81 

windows or openings, accompanied by a characterization of the mechanical properties of the masonry 82 

composite, are less frequent and feature a smaller variety of boundary conditions (Raijmaker and 83 

Vermeltfoort, 1992; Foraboschi, 2009; Parisi, Augenti and Prota, 2014; Drougkas, Roca and Molins, 2019; 84 

Korswagen et al., 2019). The relatively small number of experimental tests on walls with openings 85 

compared to those performed on single piers has resulted in very limited effort at developing simple 86 

models for predicting the force capacity of these assemblages. The abundance of walls with openings in 87 

actual practice indicates the potential usefulness of such models for quick capacity checks. 88 

In addition to capacity calculation, the complications introduced by induced seismicity raise the issue 89 

of correctly identifying the mode of damage initiation in masonry structures. Combined soil subsidence and 90 

low-magnitude seismicity have been shown to impose mostly in-plane demands on masonry structures 91 

(Terwel and Schipper, 2018; Van Staalduinen, Terwel and Rots, 2018; Drougkas et al., 2020). These 92 

demands are the source of light damage, linked to damage initiation rather than collapse. 93 

Upper-bound approaches for the calculation of the capacity of masonry walls with openings have been 94 

proposed in the literature (Vanin and Foraboschi, 2012). Similarly, computational efforts based on finite 95 

element (Korswagen et al., 2019; Drougkas et al., 2020) and discrete element analysis (Sarhosis et al., 2019) 96 

are relatively abundant. However, a simple model with general applicability for the prediction of the force 97 

capacity of masonry walls with openings, one based on the material properties of the masonry composite, 98 

is still lacking. Such a model should allow a quick calculation of the capacity of a masonry structure, the 99 
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prediction of the critical failure mode and the evaluation of the influence of structural intervention on the 100 

behaviour without resorting to complex finite element or macro-element modelling. 101 

Furthermore, a simple model for the identification of the in-plane damage initiation mode of masonry 102 

piers has not been yet proposed. The need of such a model arises from the increase in low-magnitude 103 

induced seismicity near urban centres, which does not necessarily raise the risk of collapse but may be the 104 

cause of light damage in masonry structures (Korswagen et al., 2019). A-priori knowledge of the location 105 

of damage initiation using simple approaches allows the application of targeted intervention at vulnerable 106 

areas. Further, such a model can prove useful as a structural inspection tool, assisting in focusing damage 107 

mapping efforts in existing masonry buildings on the areas where damage is expected to arise. 108 

Objectives 109 

The primary objective of the present paper is the presentation of a simple model for the calculation of 110 

the in-plane shear capacity of masonry structures. In the context of the paper, the term masonry structure 111 

refers to walls with door- or window-openings, in essence masonry portal frames with or without a base 112 

spandrel. The model should account for frame action afforded by the spandrel, whose contribution is itself 113 

limited by potential damage. Through a modular approach, this model is applicable to masonry elements 114 

with multiple openings. 115 

The secondary objective of the paper is the development of a simple model for the prediction of the 116 

damage initiation mode in masonry piers subjected to in-plane shear. Essentially, this model should be able 117 

to predict the failure mode that arises first in masonry piers under shear. Such a model can be used in 118 

stand-alone piers or can be alternatively plugged-in to the proposed model for masonry structures. 119 

The development of the masonry structure model is based on the assembly and evaluation of simple 120 

models predicting the capacity of piers in well-defined failure modes. A new model for the biaxial failure of 121 

masonry is here proposed which takes into account the effect of the masonry bonding pattern on the tensile 122 

strength of masonry in a simple manner. These models are used to define a capacity envelope. The results 123 

of the failure models are compared to numerous experimental results from the literature on stand-alone 124 

piers. 125 
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Moving beyond the application of these models in stand-alone piers, the paper presents a method of 126 

application to complex walls with openings, dealing with issues of force distribution and the development 127 

of admissible failure modes depending on boundary conditions. This model is validated against case studies 128 

from the literature, limiting the investigation to cases where a comprehensive determination of the 129 

mechanical properties of the masonry composite is available. 130 

The damage initiation model is developed along the lines of a proposed envelope, similarly to the model 131 

for the capacity of piers. A comparison with the corresponding capacity envelope is provided. 132 

Analytical force capacity models for piers 133 

Overview 134 

The dimensions of the pier are 𝑙 × ℎ × 𝑡 (length × height × thickness). For a given masonry 135 

compressive strength 𝑓𝑐 and a vertical applied stress σ (negative for compression), the length of the 136 

compressed toe 𝑏𝑟, assuming a constant rectangular distribution of vertical stress, or 𝑏𝑡, assuming a 137 

triangular distribution, is: 138 

𝑏𝑟 = −
σ

𝑓𝑐
𝑙

𝑏𝑡 = −2
σ

𝑓𝑐
𝑙
 

(1) 

For a given set of geometric and material parameters of a stand-alone pier, the applied vertical force 𝑉 139 

and the horizontal force capacity 𝐻 are calculated as: 140 

𝑉 = 𝑙 ∙ 𝑡 ∙ σ 

𝐻 = 𝑙 ∙ 𝑡 ∙ τ 
(2) 

The shear stress capacity τ is calculated for each of the considered failure modes below. An envelope 141 

curve of the capacity can be drawn by varying σ in the range [0, 𝑓𝑐] and considering the minimum value of 142 

τ obtained between the considered failure modes. The considered failure modes are illustrated in Figure 1. 143 

The pier is always considered clamped at the base and may be in a cantilever or double-clamped 144 

configuration when rotational restraint is provided. The boundary condition at the top determines the 145 
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effective height ℎ0 of the pier, with ℎ0 = 1.0 for a cantilever and ℎ0 = 0.50 for a double-clamped 146 

configuration. 147 

Rocking mode capacity 148 

In a cantilever configuration, the vertical force 𝑉 is applied at the centre of the top of the pier, while in 149 

a clamped top configuration it is applied at a distance of 𝑏𝑟 2⁄  from the edge. The compression strut extends 150 

from the point of application of 𝑉 to the centre of the compressed toe.  Through equilibrium of forces and 151 

moments, the capacity of a cantilever pier in rocking is: 152 

τ = −σ (
𝑙

2
−

𝑏𝑟

2
) ℎ⁄  (3) 

while for a clamped top the capacity is: 153 

τ = −σ (𝑙 − 𝑏𝑟) ℎ⁄  (4) 

In a more general formulation, the horizontal force capacity 𝐻 can be expressed as the horizontal 154 

component of a force acting between two points at a horizontal distance of 𝑙 and a vertical distance of ℎ 155 

whose vertical component is equal to 𝑉: 156 

𝐻 = 𝑉
𝑙

ℎ
 (5) 

Shear mode capacity 157 

For the shear capacity of the pier, the model proposed by Magenes and Calvi is used (Magenes and Calvi, 158 

1997). In the notation of the present paper, the shear capacity is equal to: 159 

τ =
𝑓𝑣 − μ ∙ σ

1 + ℎ0 𝑙⁄
 (6) 

where 𝑓𝑣 is the initial shear strength (cohesion) and μ is the friction coefficient (tangent of friction angle). 160 

As noted in the cited work, these parameters are meant to be understood as globally representing the shear 161 

characteristics of the masonry composite rather than that of the bed joints. 162 
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Biaxial mode capacity 163 

A new approach based on principal stresses is proposed for calculating the capacity of the pier against 164 

biaxial failure. For the interaction of tension and compression, a simple linear failure criterion in planar 165 

stress is adopted: 166 

𝑓 =
σ1

𝑓𝑡
−

σ2

𝑓𝑐
− 1 (7) 

where σ1 is the maximum principal stress (tensile), σ2 is the minimum principal stress (compressive) and 167 

𝑓𝑡 is the tensile strength of the masonry composite. This failure criterion clearly describes the interaction 168 

of tensile and compressive stresses in quasi-brittle materials with a shape approximating very closely a 169 

linear Mohr-Coulomb criterion. 170 

The compressive stress distribution in a cantilever pier is considered to assume a fan shape, extending 171 

along the entire length 𝑙 of the wall at the top and contracting to the width of the compressive strut 𝑏𝑡 at 172 

the base. A depiction of this fan shape is illustrated in Figure 2a. The width of the fan 𝑚 at centre height, 173 

where diagonal cracking typically originates, is: 174 

𝑚 =
𝑙 + 𝑏𝑡

2
 (8) 

In double-clamped piers, the stress fan assumes the shape shown in Figure 2b, with a laterally 175 

expanding branch from top to mid-height and a contracting branch from mid-height to base. The angle 𝜃𝑒 176 

of the right external line of the fan with respect to the vertical is limited by the shear strength characteristics 177 

of the masonry composite (Roca et al., 2011). Considering that the vertical stress at the edge of the fan is 178 

zero, the limit values for the tangent of this angle is: 179 

tan(𝜃𝑒 − 𝜃𝑐) ≤ μ (9) 

where  𝜃𝑐 in the angle of the line connecting the centres of the strut edges with respect to the vertical. In 180 

this context, the friction coefficient of masonry does not coincide with the friction coefficient of the unit-181 

mortar interface. It is a parameter related to the masonry geometric bond and the resulting interlocking of 182 

units, with a minimum value equal to the friction coefficient of the unit-mortar interface. As such, for 183 
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running bond masonry this coefficient is equal to μ = (𝑙𝑢 2⁄ ) (ℎ𝑢 + ℎ𝑚)⁄ , for Flemish bond it is equal to μ =184 

(3 𝑙𝑢 4⁄ ) (ℎ𝑢 + ℎ𝑚)⁄  and for English bond it is μ = (𝑙𝑢 2⁄ ) (2ℎ𝑢 + 2ℎ𝑚)⁄  with 𝑙𝑢, ℎ𝑢 and ℎ𝑚 being the length 185 

of the unit, height of the unit and height of the mortar bed joint respectively. Therefore, the importance of 186 

the masonry bonding pattern on both the shear and tensile strength of the masonry becomes apparent. The 187 

accuracy of this calculation of the friction coefficient is increased with the increase of the size of the 188 

masonry member, due to the clearer formation of diagonal cracks following the masonry bond. The 189 

maximum length for 𝑚 is only limited by the length of the pier. 190 

Based on these conditions, the width 𝑚 of the fan at centre height of a double-clamped pier is: 191 

𝑚 = 𝑏𝑡 + min [𝑙 − 𝑏𝑡 ,
ℎ

2
μ] (10) 

For the orthogonal stress state at the mid-height, it is assumed that the horizontal σ𝑥 stress is zero and 192 

that the vertical stress σ𝑦 is evenly distributed. Therefore, it follows that: 193 

σ𝑥 = 0 

σ𝑦 = σ
𝑙

𝑚
 

 

(11) 

According to Mohr’s circle (Beer et al., 2012), the average stress σ𝑚 is: 194 

σ𝑚 =
σ𝑥 + σ𝑦

2
 (12) 

and, in combination with the adopted failure criterion according to eq. (7), the principal stresses are: 195 

σ1 =
2𝑓𝑡σ𝑚 + 𝑓𝑐𝑓𝑡

𝑓𝑡 + 𝑓𝑐
 

σ2 =
2𝑓𝑐σ𝑚 − 𝑓𝑐𝑓𝑡

𝑓𝑡 + 𝑓𝑐
 

(13) 

The radius of Mohr’s circle 𝑅 is: 196 

𝑅 =
σ1 − σ2

2
 (14) 

 197 
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and the resulting shear stress τ𝑚 is: 198 

τ𝑚 = √𝑅2 − σ𝑚
2 (15) 

This shear stress τ𝑚 acts along the length 𝑚 of the fan at the evaluated position. Therefore, the 199 

equivalent stress τ along the length 𝑙 of the pier is: 200 

τ = τ𝑚

𝑚

𝑙
 (16) 

The determination of the uniaxial horizontal tensile strength of masonry 𝑓𝑡 is a complicated issue. It is 201 

a function of the tensile strength 𝑓𝑡,𝑢 of the units,  the tensile strength 𝑓𝑡,𝑚 of the mortar, the tensile strength 202 

𝑓𝑡,𝑖 of the unit-mortar interface and the shear strength 𝑓𝑣,𝑏 of the bed joints. Further, it is strongly affected 203 

by the masonry bonding pattern, which governs the length at which shear stresses develop. While for 204 

masonry in regular bond pattern the vertical tensile strength may be taken as the tensile strength of the 205 

unit-mortar interface, the staggered arrangement of the units in, for example, running bond, complicates 206 

the failure mechanism. A simple model for the horizontal tensile strength of masonry is therefore 207 

introduced. It is based on the identification of three failure modes for the masonry composite in horizontal 208 

tension: a) tensile failure of the upper head joint unit-mortar interface together with  shearing of the bed 209 

joint along the length of half a unit and tensile failure of the lower head joint unit-mortar interface, b) tensile 210 

failure of the upper head joint unit-mortar interface together with tensile failure of the bed joint and tensile 211 

failure of the lower unit, c) tensile failure of the upper unit together with tensile failure of the bed joint and 212 

tensile failure of the lower unit. These modes are illustrated in Figure 3 and are expressed analytically as: 213 

𝑓𝑡,𝑎 =
𝑓𝑡,𝑖

ℎ𝑢

2
+ 𝑓𝑣,𝑏𝑙𝑜 + 𝑓𝑡,𝑖

ℎ𝑢

2

ℎ𝑢 + ℎ𝑚
 

𝑓𝑡,𝑏 =
𝑓𝑡,𝑖

ℎ𝑢

2
+ 𝑓𝑡,𝑚ℎ𝑚 + 𝑓𝑡,𝑢

ℎ𝑢

2

ℎ𝑢 + ℎ𝑚
 

𝑓𝑡,𝑐 =
𝑓𝑡,𝑢

ℎ𝑢

2
+ 𝑓𝑡,𝑚ℎ𝑚 + 𝑓𝑡,𝑢

ℎ𝑢

2

ℎ𝑢 + ℎ𝑚
 

𝑓𝑡 = 𝑚𝑖𝑛[𝑓𝑡,𝑎 , 𝑓𝑡,𝑏 , 𝑓𝑡,𝑐] 

(17) 
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where 𝑙𝑜 is the overlap length between the beds of the units which contributes to the shear mechanism. 214 

This length can be easily determined for the most common masonry bonds. For running bond it is equal to 215 

𝑙𝑢 2⁄ , for Flemish and English bond it is equal to 𝑙𝑢 4⁄  and in stack bond it is equal to 0. In addition to regular 216 

masonry with mortared joints, eq. (17) can account for dry masonry through the contribution of 𝑓𝑣,𝑏 and 217 

for masonry with unfilled head joints by considering 𝑓𝑡,𝑖 = 0. 218 

Compression mode capacity 219 

The capacity of the pier in compression is calculated through a simple superposition of the normal 220 

stresses at the base of the pier due to the applied vertical stress σ and the bending moment caused by τ 221 

applied at the top of the pier. Limiting the minimum stress to the compressive strength −𝑓𝑐, the shear 222 

capacity is equal to: 223 

τ =
(𝑙 − 𝑏𝑟)

6ℎ
𝑓𝑐 (18) 

Model results and validation 224 

All failure models yield non-negative results for σ ∈ [0, 𝑓𝑐] and produce a capacity envelope as 225 

qualitatively shown in Figure 4 for a cantilever pier, defined by the minimum value among the models for 226 

a given value of σ. In the case of a clamped pier, the τ envelope is altered only in the region of low vertical 227 

stress σ, as both rocking and shear capacity increase. This results in an increase in the range of biaxial 228 

failure towards the range of lower vertical stress σ. This shift is critical given that most masonry piers, due 229 

to their large dimensions, function at a relatively low level of average vertical stress from self-weight and 230 

service loads in buildings. 231 

The results of the model combination are tested against the dataset of experimental results assembled 232 

by Morandi et al (Morandi et al., 2018). The dataset includes 188 experimental results of masonry piers 233 

subjected to in-plane shear under vertical stress. Material properties are included in the dataset. However, 234 

this data is not always fully reported. In the absence of a reported tensile strength 𝑓𝑡 this was calculated 235 

according to eq. (17). A conservative value of 0.100 N mm2⁄  was assumed for 𝑓𝑡,𝑖 in masonry with mortared 236 

head joints, and the tensile strength of the mortar and units was taken as 10% of their respective 237 
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compressive strengths (Drougkas, Roca and Molins, 2015). Rather than assigning nominal values, the cases 238 

where 𝑓𝑣 or μ where not reported were disregarded. This filtering resulted in 36 cases with reported 𝑓𝑡 and 239 

27 cases with no reported 𝑓𝑡 to be considered for analysis, for a total of 63 cases, that is 33% of all reported 240 

cases in the cited dataset. 241 

The results of the comparison are plotted in Figure 5. When relying on the reported 𝑓𝑡 (Figure 5a) the 242 

obtained coefficient of determination 𝑅2 is 0.955 and the mean percentage error MPE is −9.55%, indicating 243 

excellent global agreement between the experimental data and analysis results and a tendency of the model 244 

to underestimate the capacity. The proposed envelope rarely overestimates the capacity of the piers by 245 

more than 15%. The accuracy of the model is noticeably increased when not relying on the reported 𝑓𝑡 246 

(Figure 5b) but rather by relying only on the 𝑓𝑡 as calculated using eq. (17). The obtained 𝑅2 is slightly 247 

increased to 0.962 and the MPE is increased to −5.42%, indicating an enhancement of the model’s accuracy, 248 

especially in the cases with higher capacity. This improvement validates the accuracy of the proposed 249 

model for the tensile strength of masonry and the calculated biaxial failure envelope. Due to the accuracy 250 

of the obtained results, the envelope described by these failure models is considered appropriate for 251 

application in the analysis of more complex wall structures. 252 

Analytical damage initiation models for piers 253 

Overview 254 

The proposed damage initiation model for stand-alone piers functions similarly to the capacity model. 255 

However, instead of calculating the peak shear force for a specific failure type, it calculates the shear force 256 

activating a specific failure type. It may, therefore, be used for identifying the sequence of damage mode 257 

initiation and propagation in stand-alone piers loaded in-plane. 258 

Under the assumption that the pier is uncracked before damage initiation, the normal stresses can be 259 

easily computed through superposition of the stresses due to σ and τ applied at the top of the pier. Similarly, 260 

the distribution of shear stress along the length of the pier assumes a parabolic shape, with the maximum 261 

shear stress being 1.5 times the average (Timoshenko, 1940). 262 



13 

Rocking mode initiation 263 

Damage initiation in rocking occurs under the following conditions: a) a constant vertical stress 264 

distribution at the top and a triangular vertical stress distribution at the base are assumed, b) for the 265 

maximum stress at the least compressed toe: σmax = 𝑓𝑡,𝑖, c) for the minimum stress at the compressed toe: 266 

σmin ≥ −𝑓𝑐. 267 

According to moment and force equilibrium, and based on the above conditions, the resulting value for 268 

the minimum stress is: 269 

σmin = 2σ − 𝑓𝑡,𝑖 (19) 

while the damage initiation shear stress is: 270 

τ = (𝑓𝑡,𝑖 − σ)
𝑙

6ℎ
 (20) 

Shear mode initiation 271 

The conditions for shear mode initiation are: a) a trapezoidal vertical stress distribution is assumed at 272 

the base, b) for the maximum stress at the least compressed toe: σmax ≤ 𝑓𝑡,𝑖, c) for the minimum stress at 273 

the compressed toe: σmin ≥ −𝑓𝑐, d) the maximum shear stress due to the trapezoidal distribution needs to 274 

reach the shear strength. Therefore, τ = (𝑓𝑣 − μ ∙ σmax) 1.5⁄ . 275 

Based on these assumptions and applying moment equilibrium, the values for the minimum and 276 

maximum stress are: 277 

σmax =
𝑓𝑣 ∙ ℎ − (2 ∙ μ ∙ ℎ + 𝑙)σ

ℎ ∙ μ + 𝑙
 

 

(21) 

σmin = −
𝑙 ∙ σ + 4 ∙ 𝑓𝑣 ∙ ℎ

4 ∙ ℎ ∙ μ + 𝑙
 278 

while the value for the damage initiation shear stress is: 279 

τ = 2
𝑓𝑣 − σ ∙ μ

12 ∙ ℎ ∙ μ + 3 ∙ 𝑙
𝑙 (22) 
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Biaxial mode initiation 280 

The biaxial mode initiation stress is calculated similarly to the capacity according to eq. (8) through eq. 281 

(16). Due to the assumption that no other damage initiation mode has arisen, the pier remains uncracked 282 

and the stress fan is vertical, the horizontal force being resisted by friction. Therefore, the width of the fan 283 

𝑚 is equal to the length of the pier 𝑙. Due to the parabolic shear stress distribution along the length of the 284 

pier, the damage initiation shear stress is equal to: 285 

τ =
τ𝑚

1.5
 (23) 

Model results and validation 286 

The three mode initiation models can be combined to produce a damage initiation envelope. This 287 

envelope is additionally delimited by the compressive failure model as defined in eq. (18). The brittleness 288 

of the compressive failure mode results in the coincidence of damage initiation and force capacity. Plotting 289 

the damage initiation envelope for a masonry pier results in a typical curve shown in Figure 6, where a 290 

comparison with the capacity envelope is shown. The damage initiation envelope is always below the 291 

capacity envelope. 292 

The range of normalised vertical stresses for which damage initiates through pure rocking is greater 293 

than the range where rocking determines the capacity. This is true for the shear mode as well. Conversely, 294 

the range of biaxial mode initiation is limited compared to the capacity envelope. Due to the usually low 295 

level of global vertical stress under which masonry piers typically operate in buildings (Heyman, 1966), it 296 

is expected that the majority of piers will feature rocking or shearing damage initiation, followed by 297 

rocking, shearing or, less commonly, biaxial failure. 298 

The damage initiation model is validated against a series of experiments carried out on piers at Delft 299 

University of Technology (Esposito and Ravenshorst, 2017; Korswagen et al., 2017), coupled with extensive 300 

material characterisation (Jafari and Esposito, 2016, 2017). The geometric and material parameters are 301 

reported in Table 1. The experiments include two different sets of materials, different masonry bonds, 302 

different boundary conditions and varying vertical pre-compression levels.  303 



15 

The damage initiation and final failure mode was reported in three of the cases (TUD_COMP_20, 304 

TUD_COMP_21, TUD_COMP_22), while for one of the cases (TUD_COMP_47/48) the crack pattern was 305 

objectively registered using digital image correlation (DIC). Systematic documentation and objective 306 

interpretation of damage initiation in experimental reports is often problematic without the use of DIC or 307 

other optical methods for crack tracking. Damage initiation is typically reported in terms of visible diagonal 308 

cracking, which cannot arise without prior initiation of some degree of rocking damage. Localised toe 309 

crushing may also be reported, but this phenomenon is associated with practically all damage initiation 310 

and capacity models and is, therefore, not indicative of the overall failure mode by itself. Nevertheless, even 311 

damage reported in simple terms can assist in interpreting damage initiation modes in masonry piers. 312 

Overall, the model exhibits very good accuracy in both capacity calculation and in predicting the 313 

damage initiation and failure mode. In cases TUD_COMP_21, TUD_COMP_22 and TUD_COMP_47/48 the 314 

model was able to predict the shift from a damage initiation mode based on rocking/sliding to a failure 315 

mode based on diagonal cracking. The number of suitable experimental cases suitable for validation of the 316 

proposed model, which need to include comprehensive material characterisation and unambiguous 317 

reporting of the damage initiation force and mode, is currently small, especially compared to the number 318 

of cases suitable for validation of the capacity model. Further experimental investigation focusing on 319 

damage initiation is thus motivated. 320 

Strut & fan model for walls with openings 321 

General model description 322 

In the context of the proposed approach, modelling of masonry walls with openings under in-plane 323 

loads requires: 1) the discretisation of the frame into individual components, 2) the distribution of forces 324 

and stresses in these components, 3) the identification of potential failure modes according to the 325 

arrangement of the components and the boundary conditions. 326 

The discretisation of a masonry wall with a single opening is shown in Figure 7, along with the notation 327 

used hereafter for dimensions and loads. The wall consists of 8 components arranged in a regular 3 × 3 328 

grid. Three components for the spandrel (𝑆1, 𝑆2 and 𝑆3), two components for the piers (𝑃1 and 𝑃3) and three 329 
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components for the base (𝐵1, 𝐵2 and 𝐵3) are considered. The piers can have different lengths, thus allowing 330 

the analysis of asymmetric structures. Each component can be assigned its own thickness  𝑡 and set of 331 

material properties. Additionally, the vertical load at the top of each pier and of the spandrel can be 332 

different. A height of ℎ1 = 0 reduces the model to a portal frame, while all the other dimensions can only 333 

be greater than 0. The horizontal loading direction is towards the positive of the 𝑥 axis. Vertical 334 

compression is applied towards the negative of the 𝑦 axis. 335 

In the modular approach proposed, the wall 𝑊 is composed of a pair of sub-systems: 𝐿 (left) and 𝑅 336 

(right), connected with a central spandrel. Each sub-system consists of a single base, pier and spandrel. The 337 

capacity of the wall is dependent on the capacity of the individual sub-systems and the effect of their 338 

interaction through spandrel action. 339 

Boundary conditions and spandrel function 340 

As in the case of stand-alone piers, the wall is considered clamped at the base. For the boundary 341 

condition at the top, the wall may be in a) cantilever, b) clamped or c) clamped with vertical translational 342 

restraint configuration. 343 

The boundary conditions and construction details at the top of the wall affect the function of the 344 

spandrel in providing frame action. In particular, for a cantilever configuration, two cases are distinguished: 345 

a) a “weak” connection with the piers, due to the absence of structural elements above the spandrel, and b) 346 

a “strong” connection with the piers, provided by steel or reinforced concrete capping beams or a strong 347 

lintel. In the former, the 𝑆2 spandrel component responds to horizontal loading by “rocking” between the 348 

two piers: a hinge is formed at the top right corner of 𝑆1 and another at the left bottom corner of 𝑆3. In the 349 

latter case, the spandrel elements respond jointly. For the clamped and clamped with vertical restraint 350 

configurations, it is always considered that the spandrel provides a “strong” connection. The two types of 351 

spandrel function are illustrated in Figure 8. 352 

The combined effect of boundary conditions, spandrel action and assumption on load transfer from the 353 

top to the spandrel blocks during flexure (Beyer, 2012) control the static determinacy of the wall system, 354 

which may be treated as a portal frame with internal hinges. The “weak” spandrel provides two internal 355 
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hinges, while the “strong” spandrel provides one. Therefore, the static indeterminacy of the wall in the first 356 

case is 1 while for the second case it is 2. The added rotational restraint from a double-clamped condition 357 

adds an additional degree of indeterminacy. 358 

Modelling assumptions 359 

The stress distribution in the components is represented through a system of compressive struts and 360 

fans. The compressive struts develop between two formed plastic hinges. Fans develop between two 361 

continuous lines of applied vertical displacement or between one such line and a plastic hinge. 362 

Concerning the distribution of the compressive stresses, it is assumed that the vertical stress σ1 is 363 

distributed to pier 𝑃1, while both vertical stresses σ2 and σ3 are borne by pier 𝑃3, due to the loading 364 

direction (Roca, 2006). The transfer of vertical load from the spandrel 𝑆2 above the opening constitutes the 365 

frame action of the wall. 366 

Plastic hinges are formed due to yielding in compression and have a width of 𝑏 calculated as per the 367 

pier model through eq. (1). 368 

Sub-system failure shapes 369 

Eight arrangements of plastic hinges are possible for a sub-system, illustrated in Figure 9. Stress fans 370 

are depicted in light blue, with the direction of the stress flow indicated by arrows. Compressive struts are 371 

indicated in deeper blue colour. The expansion of the stress fan between hinges as expressed in eq. (10) 372 

and illustrated in Figure 2 is not shown for clarity of the illustrations. The plastic hinges are formed at the 373 

edges of the struts or at the convergence locus between a laterally contracting and an expanding stress fan. 374 

The locations of the plastic hinges coincide with the points of contact between blocks, i.e. the points where 375 

the piers meet the base or the spandrel, where stresses due to in-plane shear tend to concentrate. The 376 

resulting mechanisms are representative of those found in experimental practice and used to interpret the 377 

failure mode of walls with openings (Vanin and Foraboschi, 2012). 378 

The disposition of the struts and fans determines where the failure checks are performed. This point is 379 

illustrated by commenting on the difference between shapes 1, 2 and 3. In shape 1, the spandrel, pier and 380 
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base are checked individually. In shape 2 all three components are checked as one. In shape 3 the base is 381 

checked individually while the spandrel and pier are checked as one component. 382 

Individual failure checks are executed according to the model for stand-alone piers: a) all components 383 

are checked against biaxial failure according to eq. (16), b) all components are checked in compression 384 

according to eq. (18), c) piers are checked in shear according to eq. (6), c) rocking failure is checked 385 

according to eq. (5) by calculating the horizontal force component between plastic hinges or, in the absence 386 

of a second plastic hinge, by assuming a resultant force at the centre of a fan extending towards the 387 

direction of loading (positive 𝑥 direction). 388 

The failure checks in sub-system 𝐿 are straightforward due to the sub-system only bearing the vertical 389 

and horizontal forces applied on 𝑆1. Sub-system 𝐵 bears the vertical and horizontal forces applied on both 390 

𝑆2 and 𝑆3. For a “weak” spandrel, 𝑉2 is transferred to the lower right corner of 𝑆3, while for a “strong” 391 

spandrel it is applied at the centre of 𝑆2, providing an increased lever-arm and increased rocking capacity. 392 

In the case of a “strong” spandrel, an additional biaxial strength check is performed for 𝑆2, considering a 393 

stress fan from the top of 𝑆2 to the top of 𝑃2, where it assumes a width as defined in Figure 9. 394 

Based on these calculations, the capacity τ𝐴,𝑖 and τ𝐵,𝑖 of each sub-system 𝐿 or 𝑅 for the failure shapes 395 

𝑖 ∈ [1,8] is calculated. 396 

Combination of sub-system failure shapes 397 

The sub-system failure shapes are combined in pairs. Each pair defines a potential failure mode and 398 

total capacity for the wall. These capacity sums can be expressed as: 399 

𝑪(𝑖, 𝑗) = (τ𝐿,𝑖 + τ𝑅,𝑗),   𝑖, 𝑗 ∈ [1,8] (24) 

The capacity of the wall τ𝑊 is defined as the minimum element in 𝑪. However, due to their interaction 400 

in the wall and due to boundary conditions, not all sub-system failure shapes are allowed in the complete 401 

wall structure. The boundary conditions and geometry of the wall affect the stress distribution and 402 

potential failure modes as follows: a) cantilever walls with “weak” spandrels require the formation of 2 403 

hinges, b) cantilever walls with “strong” spandrels require 3 hinges, c) hinges cannot form at the top of 404 
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cantilever walls with “strong” spandrels for maintaining continuity of the applied vertical stress, d) double-405 

clamped walls require 4 hinges, e) double-clamped walls with vertical restraint require 4 hinges, but the 406 

bending failure mode is inactivated, f) the central part 𝐵2 of the base restricts the rotation of components 407 

𝐵1 and 𝐵3 (Caliò, Marletta and Pantò, 2012), therefore, no plastic hinge can form at the base of 𝐵1 or 𝐵3, 408 

unless a sufficient gap is provided between the base components. 409 

Based on the above conditions, and assuming that no gaps are provided between the base components, 410 

the allowable failure shape combinations are: a) 𝑪(3,3), 𝑪(3,7),  𝑪(3,8),  𝑪(7,3),  𝑪(7,7),  𝑪(7,8),  𝑪(8,7), 411 

and 𝑪(8,8) for a cantilever wall with a “weak” spandrel, b) 𝑪(1,3), 𝑪(3,1), 𝑪(1,7) and 𝑪(7,1) for a cantilever 412 

wall with a “strong” spandrel, c) 𝑪(1,1), 𝑪(1,6) and 𝑪(6,1) for the double-clamped, with or without vertical 413 

restraint. 414 

Model results and validation 415 

The proposed model for the masonry wall capacity is validated against experimental cases from the 416 

literature (Raijmaker and Vermeltfoort, 1992; Foraboschi, 2009; Lobato Paz, 2009; Vanin and Foraboschi, 417 

2012; Parisi, Augenti and Prota, 2014; Esposito and Ravenshorst, 2017; Korswagen et al., 2017). Among 418 

the findings in the literature, the list of cases used was confined to those in which material parameters were 419 

reported. It includes both walls with window openings and portal frames, i.e. where ℎ1 = 0. Due to the 420 

small number of such available campaigns, nominal shear characteristics were assumed where they were 421 

missing in order to not overly limit the application cases (Van der Pluijm, 1992). The tensile strength as 422 

calculated according to eq. (17) and the friction angle of the masonry as calculated in subsection 0 are also 423 

reported. Concerning boundary conditions, walls were tested in cantilever with “strong” spandrel (‘𝐶’) and 424 

double-clamped with vertical restraint (‘𝑉’) configuration. The vertical load was only applied on the piers 425 

in a few instances. All parameters used and results obtained are presented in Table 2 426 

The case studies involve different types of loading regimes. Three cases involve monotonic loading 427 

(Raijmaker and Vermeltfoort, 1992; Lobato Paz, 2009; Parisi, Augenti and Prota, 2014), three cases involve 428 

loading-unloading cycles in one direction (Foraboschi, 2009; Vanin and Foraboschi, 2012; Korswagen et 429 

al., 2017) and one case involves cyclic loading in two directions (Esposito and Ravenshorst, 2017). Since 430 
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the proposed model does not account for degradation due to repeated or cyclic loading, the modelling 431 

approach is not altered to accommodate this fact. Simulation of cyclic response in the context of this model 432 

would involve the degradation of the shear strength in the bed joints, the opening of the head joints in 433 

tension, which would reduce the horizontal tensile strength of masonry, and the adjustment of the strut 434 

disposition due to diagonal cracking. 435 

 436 

The difference in wall capacity due to uneven piers, accompanied by a shift in failure mode, is captured 437 

in the simulation of the experiments by Esposito & Ravenshorst (Esposito and Ravenshorst, 2017). The 438 

quarter-scale experiments by Lobato (Lobato Paz, 2009)  and full-scale experiments by Foraboschi & Vanin 439 

(Foraboschi, 2009; Vanin and Foraboschi, 2012) illustrate the shift in capacity due to an increasing vertical 440 

load, an increase indicative of the global friction angle of the masonry. The accuracy of the model in 441 

simulating large piers connected by a spandrel, namely portal frames without the base, is shown in the 442 

simulation of the experiments by Parisi et al (Parisi, Augenti and Prota, 2014). Finally, the model captures 443 

the significant effect of boundary conditions on the response, as illustrated in the high capacity obtained in 444 

the experiments by Raijmaker, which was vertically restrained, resulting in a force capacity nearly double 445 

that of a double-clamped model (Raijmaker and Vermeltfoort, 1992). 446 

Overall, the model exhibits good accuracy, with no marked tendency to under- or overestimate the force 447 

capacity. A slight divergence from the linear trend obtained in the experiments by Lobato is obtained, 448 

pointing towards a possible discrepancy between the actual friction angle of masonry and the value 449 

obtained in the model. The capacity obtained by Parisi et al is well approximated, potentially due to the 450 

simple failure mode registered in the piers. The differences between the analysis results and the 451 

experimental results in the related experimental cases by Foraboschi and Vanin & Foraboschi are not easy 452 

to explain. Despite the repeated nature of the loading in the experiments, the model underestimates the 453 

force capacity nearly throughout. It is possible that this systematic error is due to the unit-mortar interface 454 

tensile strength or shear strength being higher than assumed. This is also potentially true in the 455 

experiments by Korswagen and Esposito & Ravenshorst. The large overestimation obtained in one of the 456 
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experiments by Foraboschi (under 0.09 N/mm2 vertical stress), due to the very low level of applied vertical 457 

stress, can only be accounted for in the model by a change in the spandrel action. A “weak” spandrel 458 

assumption results in a calculated peak force of 11.7 kN versus the experimental value of 18.2 kN. It is 459 

possible, therefore, that the actual conditions during the experiment were an intermediate between a 460 

“strong” and a “weak” spandrel. 461 

A comparison of the experimentally obtained failure modes, where these were reported, with the 462 

numerically calculated results is presented in Table 3. Overall, there is very good agreement between the 463 

experimental and numerical results, especially regarding the prediction of the failure mode of the left sub-464 

system. This sub-system appears to be susceptible to bending failure due to the lower overall vertical load 465 

borne by it, validating the assumption of the transfer of vertical load to the right sub-system by the 466 

spandrel. Regarding the failure of the right sub-system, the model is able to predict the failure mode for 467 

nearly all cases. Reports on the experimental results through photos and text descriptions reveal a more 468 

mixed failure mode, with cracking being shown in both the spandrel and the bases, such as in the 469 

experiments by Vanin & Foraboschi. In this sense the model is capable of predicting the failure mode at 470 

least in part. Finally, regarding the discrepancy in the prediction for the Esposito and Ravenshorst case, 471 

where the sub-system failed at the base, with the spandrel failing in subsequent loading cycles, the model 472 

predicts a capacity of the spandrel roughly 1 kN or 6% higher than for the base. The discrepancy is therefore 473 

considered minor as a very slight change in material properties would produce the recorded failure type. 474 

Sensitivity study 475 

The influence of a number of geometric and material parameters on the predicted force capacity is 476 

investigated through a sensitivity study. The Esposito & Ravenshorst case study is elected for this task due 477 

to the extensive material characterisation campaign that accompanies it. The parameters include the 478 

compressive strength of masonry 𝑓𝑐, the tensile strength of the unit-mortar interface 𝑓𝑡,𝑖 and the initial 479 

shear strength of the unit-mortar interface 𝑓𝑣. Additionally, the influence of the length of units 𝑙𝑢, the height 480 

of units ℎ𝑢 and the thickness of the mortar joints 𝑡𝑚 is similarly investigated. The results are presented in 481 

Figure 10. For ease of presentation in a single graph, the parameters have been normalised by division with 482 



22 

their reference values as listed in Table 2. The normalised parameters are presented using a hat operator, 483 

meaning that the normalised compressive strength of masonry is shown as 𝑓𝑐 and the force capacity is 484 

shown as �̂�𝑚𝑜𝑑. 485 

The force capacity is not particularly sensitive to the compressive strength of masonry 𝑓𝑐. This is 486 

consistent with the rocking of the piers being governed primarily by the geometry of the structure. 487 

Conversely, the tensile strength of the unit-mortar interface 𝑓𝑡,𝑖 plays a more important role, being directly 488 

involved in the calculation of the tensile strength of the masonry. Similarly, the shear strength 𝑓𝑣 exerts the 489 

greatest influence on the peak force due to it being involved in both the horizontal tensile strength and 490 

shear strength of the masonry. 491 

The geometric properties of the units and mortar appear to play a very significant role in the force 492 

capacity. Firstly, it is found that increasing the length of units 𝑙𝑢 increases the force capacity due to an 493 

increase in the horizontal tensile strength of masonry. Secondly, the thickness of the mortar joints �̂�𝑚 does 494 

not strongly affect the force capacity, although it is noted that an increase in the mortar joint in reality 495 

would lead to a slight decrease in the compressive strength of masonry. Finally, increasing the height of the 496 

units ℎ̂𝑢 leads to a reduction of the force capacity due to a decrease in the horizontal tensile strength of 497 

masonry. 498 

In addition to the study of numerical parameters, the bonding pattern and boundary conditions are 499 

included in the study. These results are presented in Table 4, the reference case being the one with an 500 

English bond pattern and a cantilever with “strong” spandrel boundary condition. 501 

While the stack bond results in a marginal reduction of the calculated force capacity, switching to a 502 

Flemish or running bond leads to a roughly 23% increase. In all three cases (stack, Flemish, running bond) 503 

the failure of the wall was due to bending of the left sub-system and biaxial failure of the spandrel in the 504 

right sub-system. In the first case the change in tensile strength of masonry was not enough for making a 505 

substantial change in the result. However, in the latter two cases, the increase in the tensile strength was 506 

enough to make a difference in the capacity of the spandrel. The boundary conditions, as expected, have a 507 

strong effect on the calculated force capacity. Double clamped and vertically restrained conditions result 508 
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in an increase of 14.3% and 45.5% of the force capacity respectively. Conversely, the “weak” spandrel 509 

cantilever results in a 15.4% decrease in the force capacity, illustrating the effect of a rigid top beam or 510 

lintel. 511 

The sensitivity study illustrates the delicate interaction of all parameters involved in the prediction of 512 

the in-plane shear force capacity of masonry walls. The dimensions of the units, the bonding pattern, 513 

boundary conditions and properties of the unit-mortar interface all play a significant role in the load 514 

bearing mechanism and should, therefore, always be the subject of careful investigation. 515 

Conclusions 516 

An analytical model for the prediction of the in-plane capacity of masonry piers and walls with openings 517 

is presented. The model considers all major geometric and material parameters, including the bond type, 518 

for the calculation of the capacity. Additionally, an analytical model is proposed for the prediction of the 519 

damage initiation mode in masonry piers under in-plane shear. Apart from geometric and material 520 

properties, no further numerical parameters or major empirical assumptions are needed for analysis. 521 

The model accounts for all potential failure modes normally encountered in masonry walls subjected 522 

to a combination of in-plane vertical and horizontal loading. Unequal vertical loading, asymmetric piers 523 

and local variations in material properties can be easily introduced in the analysis. 524 

The basis of the model is validated against numerous standalone pier experimental tests, while the 525 

model for walls with openings is similarly validated against several case studies with different material 526 

properties, dimensions, bonding patterns and boundary conditions. 527 

The model provides a very efficient and accurate method for the capacity assessment of simple 528 

structures subjected to in-plane shear loading under vertical stress. The damage initiation model provides 529 

a simple means of highlighting weaknesses in masonry piers, thus allowing efficient intervention design 530 

for the strengthening of masonry structures against damage initiation. The advantages of the model include 531 

the calculation of the damage initiation and capacity forces with simple analytical expressions and no 532 

computational resources nor reliance on empirical simplifications. This facilitates the quick completion of 533 
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sensitivity studies, which, given the large number of material and geometric parameters involved in the 534 

problem, have been demonstrated to be crucial in understanding the behaviour of masonry walls with 535 

openings. Further, the resulting failure mechanisms can be unambiguously evaluated by the user, whether 536 

the model is used for research or in engineering practice. Disadvantages of the model include the lack of 537 

capabilities for generating force-displacement data, a reliance on numerous material parameters and an 538 

inability to account for cyclic loading or load reversal. It is noted that the first disadvantage is shared with 539 

all methods based on limit-analysis, the second is shared with most other computational approaches 540 

currently available and the third can be addressed in a future effort involving more detailed constitutive 541 

modelling. 542 

The proposed model presents opportunities for future work pertaining to the simulation of structural 543 

reinforcement, such as in the form of embedded bars. The contribution of horizontal bars can be introduced 544 

in the tensile strength for the biaxial failure check. Vertical bars can increase the rocking mode capacity 545 

when anchored at the base of cantilever walls, or at the base and top of double-clamped piers. Finally, 546 

diagonal bars can restore or increase the cohesion in damaged zones. 547 

Data availability statement 548 

All data, models, or code that support the findings of this study are available from the corresponding 549 

author upon reasonable request. 550 
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Table 1 Experimental case studies for pier model validation: geometric and material 

parameters. Force capacity prediction error in parentheses. 

Parameter Symbol Unit Case study 

Specimen name - - TUD_COMP_20 TUD_COMP_21 TUD_COMP_22 TUD_COMP_47/48 

Reference - - 

(Esposito and 
Ravenshorst, 

2017) 

(Esposito and 
Ravenshorst, 

2017) 

(Esposito and 
Ravenshorst, 

2017) 

(Esposito and 
Ravenshorst, 

2017) 

Pier length 𝑙 mm 1100 3070 3070 3070 

Pier height ℎ mm 2778 2710 2710 2710 

Pier thickness 𝑡 mm 102 100 210 100 

Unit length 𝑙𝑢 mm 214 210 210 210 

Unit height ℎ𝑢 mm 72 50 50 50 

Mortar bed joint height ℎ𝑚 mm 10 10 10 10 

Unit compressive strength 𝑓𝑐𝑢 N mm2⁄  13.26 28.30 28.30 28.30 

Mortar compressive strength 𝑓𝑐𝑚 N mm2⁄  7.57 3.81 3.81 3.81 

Masonry compressive strength 𝑓𝑐 N mm2⁄  6.35 14.02 10.67 11.35 

Unit-mortar interface tensile strength 𝑓𝑡𝑖 N mm2⁄  0.12 0.15 0.15 0.09 

Initial shear strength 𝑓𝑣 N mm2⁄  0.13 0.12 0.12 0.14 

Masonry bond - - Running Running English Running 

Vertical stress −𝜎 N mm2⁄  0.63 0.36 0.36 0.46 

Boundary condition - - Cantilever 
Double-
clamped 

Cantilever Cantilever 

Damage initiation - experimental - - Rocking Shear/rocking Rocking Rocking 

Failure mode – experimental - - Rocking Biaxial Rocking Biaxial 

Shear force capacity – experimental 𝐻𝑒𝑥𝑝 kN 15.1 98.1 117.2 112.5 

Damage initiation – model - - Rocking Rocking Rocking Rocking 

Failure mode – model - - Rocking Biaxial Rocking Biaxial 

Shear force capacity – model 𝐻𝑚𝑜𝑑 kN 13.5 (-10.6%) 100.6 (2.5%) 120.2 (2.6%) 106.2 (-5.6%) 
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Table 2 Comparison of wall with opening capacity model with experimental results from the literature. Predicted force error in parentheses. 

Ref. ℎ1 ℎ2 ℎ3 𝑙1 𝑙2 𝑙3 𝑡 𝑓𝑐 𝑓𝑣 μ 𝑓𝑡  −σ Boundary conditions Masonry bond 𝐻𝑒𝑥𝑝
+  𝐻𝑚𝑜𝑑

+  𝐻𝑒𝑥𝑝
−  𝐻𝑚𝑜𝑑

−  

− mm mm mm mm mm mm mm N mm2⁄  N mm2⁄  − N mm2⁄  N mm2⁄  − − kN kN kN kN 

(Lobato Paz, 
2009) 

90 90 90 150 75 112.5 35 18.9 0.46 2.42 1.70 0.645 𝐶 Running 4.9 5.7 (16.3%) - - 

 
           1.132   7.7 9.6 (24.7%) - - 

 
           1.858   13.1 12.5 (-4.6%) - - 

 
           2.540   13.2 14.5 (9.8%) - - 

 
           3.236   15.9 16.3 (2.5%) - - 

 
           4.036   17.7 17.9 (1.1%) - - 

(Parisi, 
Augenti and 
Prota, 2014) 

0 2300 1000 1700 1700 1700 310 3.73 0.15 1.36 0.26 0.373b 𝐶 Running 184 171.5 (-6.8%) - - 

(Vanin and 
Foraboschi, 

2012) 

325 1170 845 930 880 930 240 1.21 0.15a 2.36 0.16 0.300b 𝐶 Flemish 63 51.7 (-17.9%) - - 

 
           0.179b   48 37.8 (-21.3%) - - 

 
           0.090b   18 19.4 (7.7%) - - 

(Foraboschi, 
2009) 

380 1210 1180 1025 1070 1025 250 1.21 0.15a 2.64 0.16 0.270b 𝐶 Flemish 64.2 60.4 (-5.9%) - - 

 
           0.179b   59.8 43.2 (-27.8%) - - 

 
           0.090b   18.2 24.4 (34.1%) - - 

(Korswagen 
et al., 2017) 

530 1510 650 870 780 1420 100 11.35 0.13 1.75 0.37 0.120 𝐶 Running 22.2 19.3 (-13.1%) - - 

(Esposito and 
Ravenshorst, 

2017) 

540 1680 490 870 1000 1200 210 10.67 0.2 0.88 0.32 0.340 𝐶 English 85.4 84.2 (-1.4%) 94.1 90.4 (-3.9%) 

(Raijmaker 
and 

Vermeltfoort, 
1992) 

350 350 350 430 210 325 100 10.5 0.35 1.75 0.66 0.300 𝑉 Running 41.5 45.6 (9.9%) - - 

a assumed value 

b vertical load applied over pillars only 

 



Table 3 Comparison of experimentally obtained and numerically derived failure modes for walls with openings. 

Reference 
−σ 

Load 
direction Experimental results Numerical results 

 N mm2⁄   Left sub-system Right sub-system Left sub-system Right sub-system 

(Lobato Paz, 2009) 0.645 + Bending Bending Bending Bending 
 

1.132 + - - Bending Bending 
 

1.858 + Bending/spandrel Base/Pier Bending Base 
 

2.540 + - - Bending Base 
 

3.236 + - - Bending Pier 
 

4.036 + Bending/spandrel Pier/Base Bending Pier 

(Parisi, Augenti and Prota, 2014) 0.373 + Bending Spandrel Bending Spandrel 

(Vanin and Foraboschi, 2012) 0.300 + Bending Spandrel/base Bending Base 
 

0.179 + Bending Spandrel/base Bending Base 
 

0.090 + Bending Spandrel/bending Bending Bending 

(Foraboschi, 2009) 0.270 + - - Bending Bending 
 

0.179 + - - Bending Bending 
 

0.090 + - - Bending Bending 

(Korswagen et al., 2017) 0.120 + Bending Bending/base Bending Bending 

(Esposito and Ravenshorst, 2017) 0.340 + Bending Base Bending Spandrel 
 

0.340 - Bending Base Bending Spandrel 

(Raijmaker and Vermeltfoort, 1992) 0.300 + Spandrel Base Spandrel Base 

 



Table 4 Sensitivity study: effect of masonry bonding pattern and boundary conditions on force capacity. 

Parameter Variation �̂�𝑚𝑜𝑑 
Masonry Bond Stack 0.964 

 English 1.000 
 Flemish 1.232 
 Running 1.240 

Boundary conditions Cantilever with “weak” spandrel 0.846 
 Cantilever with “strong” spandrel 1.000 
 Double-clamped 1.143 
 Vertically restrained 1.455 

 



a) b) c) d)



x

y

b

h/2m

b

b

h/2m

θe

θc

a) b)



x

y

ft,aft,bft,c

huhm

lu lo



0.00 0.25 0.50 0.75 1.00
−σ/ fc

τ

Rocking
Shear
Biaxial
Compression



0 150 300 450 600
H Experimental (kN)

0

150

300

450

600
H

M
od

el
(k

N
)

a)
ft reported
ft not reported

0 150 300 450 600
H Experimental (kN)

0

150

300

450

600

H
M

od
el
(k

N
)

b)
ft calculated



0.00 0.25 0.50 0.75 1.00
−σ/ fc

τ

Rocking
Shear
Biaxial
Compression



x

y B1 B2 B3

P1 P3

S1 S2 S3

H

V1

V2

V3

l1 l2 l3

h1

h2

h3



S2 S3

P1

S1

P2

S2
S3

P1

S1

P2

a) b)



Shape 1 Shape 2 Shape 3 Shape 4

Shape 5 Shape 6 Shape 7 Shape 8



0.50 0.75 1.00 1.25 1.50
Normalised Material Properties

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20
Ĥ
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