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Abstract. The problem of modeling vehicular traffic flows on city roads and freeways is 
considered. An original two-dimensional model of congestion traffic flows is developed based 
on the continuum approach and analogy with the KCFD (kinetically consistent finite-
difference) schemes. The character minimum in space and in time is presented. Additional 
fluxes in two directions are initiated in order to provide smoothing along the road and 
diffusion across the road. The model is verified by test problems. 

 
 

 
1 INTRODUCTION 

The aim of investigations is development of a new two-dimensional mathematical model 
and computer simulation methods for vehicular traffic flows. At present scientific research in 
this field is worldwide very actual due to the traffic situation closing to the critical point. 
During daylight hours traffic on city roads and freeways becomes strongly congested. The 
average vehicular speed is not much higher than the pedestrian speed and is far from the free-
flow velocity. In these conditions jams can take place. Expensive and not popular methods of 
overcoming this problem connected, for example, with construction of new roads frequently 
do not lead to a success. It is stipulated not only by permanent increase of the vehicle amount 
but also by the fact that objective regularities of traffic flows are not taken into account. These 
regularities can be analyzed using empirical as well as theoretical approaches. The theoretical 
approach consists in development of adequate mathematical models of traffic flows and 
numerical solution of corresponding equations.  

At present two basic concepts of traffic flow models exist: microscopic models, 
considering individual vehicles as interacting particles1-11, and macroscopic models, 
considering traffic as a compressible fluid-dynamical flow12-14. Note, that there are also 
kinetic (mesoscopic) models, based on Boltzmann type kinetic equations15-18. They present an 
intermediate step between the above two kinds of models.  

In spite of the large number of works on the traffic flow simulation and in spite of 
interesting results having the scientific and practical value the situation is far from the 
satisfactory completion. There is no model which can account for all aspects of vehicular 
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traffic. Further improvement of traffic flow models is urgently required in order to obtain by 
means of these models concrete results for optimization of traffic on roads.   

Traditionally traffic flow models are one-dimensional and describe flows only along one 
lane. In some cases influence of neighboring lanes (the multilane traffic) can be taken into 
account, for example, by using sources and sinks of the probability character in right-hand 
sides of equations17, 19. The present paper is devoted to development and verification of a two-
dimensional fluid-dynamical model allowing predictions for real geometry of multilane roads.  

The new model is constructed by analogy with the original kinetically-consistent finite 
difference (KCFD) schemes and the corresponding quasi gas dynamic system (QGDS) of 
equations20, using the information on the one-particle distribution function behavior. Formerly 
this approach was successfully applied for viscous compressible and incompressible gas 
modeling.  It draws a parallel with the Lattice Boltzmann schemes and the stabilization 
technique by E. Oñate21. Main properties of the new traffic flow model are the next: the 
accelerating force and some analogy of the pressure acting along the road and the shift 
viscosity characterizing transition to the lane with the lower density exist. The acceleration, 
the equilibrium velocity, the relaxation time and some kind of the velocity across the road (the 
so-called “lateral velocity”) are introduced.  

2 BASIC ASSUMPTIONS 
In the framework of the paper the case of congestion (synchronized) traffic is studied: the 

average vehicular speed is far from the free-flow velocity, jams can take place, therefore 
drivers’ strategies are similar: to choose a lane with the lower vehicular density and to move 
with a speed providing safe traffic. In these conditions and under the condition that distances 
to be considered are much more lengthy than vehicular sizes the continuum approach can be 
used. The authors hold the macroscopic theory in which individual vehicles do not appear 
explicitly. The traffic is viewed as a compressible fluid dynamic flow: the notions of the 
density ( ; )x tρ  as a quantity of vehicles per lane in a distance unit and of the flux ( ; )W x t  at 
an arbitrary location x  at an arbitrary instant of time t  are introduced. The initial model of 
this type belongs to M.H. Lighthill and G.B. Witham12. 

One of main assumptions in the basement of the KCFD schemes and the related QGDS of 
equations is the presence of some additional mass flux to guarantee solution smoothing at the 
character distance l. For example, in gas dynamics the free path length of a molecule is treated 
as such a character distance, in porous medium flows as such a size the distance of the order 
of magnitude equal hundred grains of the rock can be taken. 

Analogous to QGDS in the right-hand side of the continuity equation the additional flux 
Wρx  is introduced to provide smoothing along the road: 

( )2

2xW u P
xρ

τ ρ∂
= +

∂
 

(1)

where P  is the force connecting with acceleration or deceleration of vehicles: 
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xν  and xβ   are phenomenological constants. In the system of traffic equations this force 
fulfills functions of the gas-kinetic pressure in equations of gas dynamics.  

As in QGDS the character minimum scale in time is also introduced in order to justify the 
continuum approach. As such a character time interval the time of crossing the desired point 
by several vehicles can be used. By the order of magnitude τ equals: 

( )u
u

δτ ≈  
(3)

where ( )uδ  is the character distance between vehicles at the velocity u. It should be noted 
that τ is conservative enough and does not strongly vary at varying the velocity. Moreover, by 
the order of magnitude it is close to the character time of the lateral shift τ * : 

V
h−∆

=*τ  
(4)

where ∆  is the lane width, h is the character vehicle width, V is some lateral velocity (the 
mean velocity of transition from one to another lane). 

Development of the 2D traffic flow model is the question of the day. The problem of its 
construction consists in the fact that ordinary extension of a 1D model for the 2D case is not 
possible due to non-equivalence of flows along and across the road. If to compare with fluid 
dynamics one can conclude that in fluid dynamics the Knudsen number Kn ~ 0.001 but in 
traffic flows Kn ~ 0.1 what explains the difficulties. 

Let us introduce the diffusion flux Wρy connected with transition of vehicles to neighboring 
lanes: 

2

2
y

y y
VW
y y

β
ρ

τ ρ ρν ρ
 ∂ ∂

= + ∂ ∂ 
 

(5)

where V is the lateral velocity. 
Smoothing terms are also introduced in the momentum equation. These terms like in 

QGDS are connected with additional transportation of vehicles by fluxes (1), (5): 

( )3

2uW u Pu
x

τ ρ∂ = + ∂ 
 

(6)
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        (7)

Traffic flow equations differ from gas dynamic equations by presence of terms describing 
the human will. Drivers usually try to achieve the maximum or the optimal velocity in the 
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given conditions, i.e. vehicle can be accelerated or decelerated by desires of drivers. In 
literature there are different models of the acceleration based mainly on considering the 
situation “follow-the-leader”. After the paper13 the next expression for the acceleration can be 
written out: 

( )equ x u
a

T

 − =  
(8)

where ueq is the equilibrium velocity depending on the density and optimal in the given 
conditions, T is the relaxation time. These functions can be defined differently, for example,  
in the next manner:   

1eq f
jam

u u ρ
ρ

 
= × −  

 
 

(9)
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      (10)

Thus the acceleration, the equilibrium velocity and the relaxation time are determined 
traditionally. However the notion of the lateral velocity is perfectly new. In the current 
version of the traffic flow model the lateral velocity is considered as a constant by the 
absolute value but it changes the direction depending on the density gradient across the road. 
This reflects the tendency of transition to the lane with the lower density. 

3 THE SYSTEM OF TRAFFIC FLOW EQUATIONS 
Summarizing the aforesaid assumptions in the framework of the proposed model of 

multilane traffic one can write out the system of equations:  
2 2( )

2 2 2
y

y
u V u P uV V

t x y x x x y y y y y
βρ ρ ρ τ ρ ρ τ ρ τ ρτ ν ρ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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(12)

Here f = aρ , the acceleration a is calculated as (8) accounting for (9) and (10), the “pressure” 
P is defined as (2).  The following values of parameters are used: 

3 760, 60, 2, 0 , 10 , 10 ,x y x y tν ν β β τ − −= = = = = ∆ =  
(13)

0 50, 0.95, 120, 90jam ft r uρ= = = =         
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One of advantages of this model is simplicity of its numerical implementation basing on 
approximations by conservative finite-difference schemes. Dissipative terms in right-hand 
sides of the equations open additional computational opportunities. The authors have 
substantial background in development of algorithms (including parallel algorithms for 
multiprocessor systems with distributed memory) for implementation of such KCFD-like 
models22, 23. 

Note that the above advantage makes possible successful application of the 2D model for 
simulation of flows on roads consisting of a large number of lanes, while known 1D multilane 
traffic models are very difficult to apply in cases when, for example, the number of lanes is 
more than three due to complicity and high costs of their numerical implementations.    

4 TEST PREDICTIONS 
For the new model implementation computational algorithms and codes have been 

developed based on explicit and semi-implicit numerical methods. The model was verified by 
solving some test problems. First of all a number of quasi one dimensional flows was 
simulated in order to compare results obtained by using the new model with results obtained 
on the basis of currently existent one dimensional models. Note that in computations the unit 
of the velocity measurement is km/hour, consequently the length along the road is measured 
in km and the unit of the density is the number of vehicles on km of a lane.  

Fig .1 and 2 show profiles of the density and the velocity correspondently in the midsection 
along the road at different time moments. As the initial condition for the density the 
congestion flow density equal 100 was assigned before the point x = 3.5 km and the jam 
density equal 120 – after this point. One can see that in this case vehicles decelerate and stop 
and the jam moves back to the beginning of the road. 

Results depicted in Fig. 3 and 4 are more interesting. Fig. 3 shows the density profile when 
the initial density is rather a high step. First the compaction moves to the beginning of the 
road (to the origin). In the domain x < 2 km the flow becomes slower and the density 
increases. At the same time the density increases in the free flow domain (x > 4 km) 
decreasing the density of the step. When the step density is low enough this compaction shifts 
to the right and the flow density becomes even on this section of the road.  

Fig. 4 illustrates the analogous situation but the initial density is low. In this case the step 
moves forward from the outset.  

Results of the above quasi one dimensional tests were compared with results by D. Helbing 
and M. Treiber14 in a qualitative sense. A good agreement was achieved. 

In Fig. 5 results of 2D flow modeling are presented. The road consists of three lanes. For 
graphic interpretation of results the density is averaged over each lane at every time step. At 
the initial moment there is a jam on the second part of the right lane. During the movement 
vehicles begin gradually to transfer to left lanes. Consequently the second part of the whole 
road falls within the essentially congested phase. Then the domain of the high density shifts 
backward to the beginning of the road.  

Another example of 2D flow modeling is illustrated by Fig. 6.  It is supposed that from 
some time moment there is an opportunity for vehicles to move on the local widening left to 
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the road in the interval [ ]2.24, 4.78x∈ . Initially the flow density on the road is rather high 
and there are no vehicles in this widening. Then the flow shifts to the left occupying the 
widening, a high density wave appears across the road originating from x = 4.78 and moves 
back to the line x = 2.24. But after the line x = 4.78 the density decreases.  As a result the 
traffic capacity at the section x = 4.78 drops greatly in comparison with the initial state when 
the flow was synchronized and the movement over the local widening was not allowed. 
  

5 CONCLUSIONS 
- The model proposed in the paper is the first attempt to describe multilane traffic in 

the 2D statement using the continuum approach. 
- In the future the model will be specified and complicated by accounting for the 

variable lateral velocity, entrances/exits, real road geometry, statistical data and 
probability functions concerning the human will.  

- New efficient computational algorithms (including parallel algorithms) will be 
developed based on finite-difference schemes of a high order of approximation. 

- Usage of developed model, algorithms and codes will allow to predict congested 
traffic and jams and to elaborate recommendations on their avoiding and dissolving, 
to analyze the influence of geometric road conditions, road standards and handling 
regimes on the capacity of traffic networks and to solve many other problems of 
traffic flow dynamics. 
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Figure 1: Time evolution of the density profile in the jam spreading problem 

 

 

Figure2: Time evolution of the velocity profile in the jam spreading problem 
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Figure 3: Time evolution of the density profile in the high step spreading problem 

 

Figure 4: Time evolution of the density profile in the low step spreading problem 
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Figure 5: Time evolution of the density surface in the 2D problem 
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Figure 6: Time evolution of the density surface in the problem with the local widening 

 

 

 


