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Generalized Variant Support Vector Machine

Majid Mohammadi

Abstract—With the advancement in information technology,
datasets with an enormous amount of data are available. The
classification task on these datasets is more time- and memory-
consuming as the number of data increases. The support vector
machine (SVM), which is arguably the most popular classification
technique, has disappointing performance in dealing with large
datasets due to its constrained optimization problem. To deal with
this challenge, the variant SVM (VSVM) has been utilized which
has the fraction (1 /2)b2 in its primal objective function, where
b is the bias of the desired hyperplane. The VSVM has been
solved with different optimization techniques in more time- and
memory-efficient fashion. However, there is no guarantee that
its optimal solution is the same as the standard SVM. In this
paper, we introduce the generalized VSVM (GVSVM) which has
the fraction (1 /?.t)b2 in its primal objective function, for a fixed
positive scalar f. Further, we present the thorough theoretical
insights that indicate the optimal solution of the GVSVM tends
to the optimal solution of the standard SVM as £ — 00. One vital
corollary is to derive a closed-form formula to obtain the bias
term in the standard SVM. Such a formula obviates the need of
approximating it, which is the modus operandi to date. An effi-
cient neural network is then proposed to solve the GVSVM dual
problem, which is asymptotically stable in the sense of Lyapunov
and converges globally exponentially to the exact solution of the
GVSVM. The proposed neural network has less complexity in
architecture and needs fewer computations in each iteration in
comparison to the existing neural solutions. Experiments confirm
the efficacy of the proposed recurrent neural network and the
proximity of the GVSVM and the standard SVM solutions with
more significant values of .

Index Terms—Convex programming, exponential convergence,
generalized VSVM (GVSVM), recurrent neural network (RNN),
support vector machine (SVM).

I. INTRODUCTION

HE SUPPORT vector machine (SVM) is arguably the
most popular classification approach in the realm of pat-
tern recognition and machine learning. It has proved promising
performance in various fields, including but not limited to
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image processing [1]-[3], geoscience [4], [S], bioinformat-
ics [6]-[8], and biomedical [9]-[11].

Let {x; € ]RL"}£=l be a set of data points and y; € {—1, 1} be
the corresponding label for x;. The SVM goal is to divide these
data points into two disjoint groups by a hyperplane such that
it has the maximum margin of both classes. In addition, this
hyperplane must separate data of a similar class in the same
group. When data are linearly separable, the desired hyper-
plane w’x 4+ b = 0 can be obtained by solving the following
convex optimization problem:

!
.14
mip ek
st. yiwlxi+b)>1-§&,

& >0,

i=1,...,1
i=1,...,1 (1)

where w is an n x 1 vector, b € R is the bias term, ¢ > 0
is a regularization parameter for the tradeoff between model
complexity and training error, and & measures the difference
between w!x; + b and Yi-

When data are not linearly separable, they are trans-
formed to another high-dimensional space ¢(.), where they
can be linearly separable, and then the constraints of the
minimization (1) can be rewritten as

i=1,...,1
i=1,...,L (2)

yiwT () +b) > 1 — &,
>0,

Since the desired space ¢(.) is unknown, solving the
problem (1) subject to the constraints (2) becomes more com-
plicated. To address this problem, the dual of the SVM is

presented as follows:

1

!
max Z uj — % Z Z uiy;y;iK (xi, x;)
i=1

i=1 j=1

1
s.t. Z Uiy = 0
i=1

O<wuj<ec, i=1,...,1 3)
where u = (uy, ..., u) is the Lagrangian multiplier and KX is
a kernel function satisfying K (x;, xj) = ¢(x,-)T¢(xj).

Salient features of the standard SVM, including the con-
vexity and the robustness against noises, have caused it to
be more popular among other classifiers. However, finding
its either primal or dual solution becomes challenging when
large datasets are available. Hence, a high number of meth-
ods have been proposed to find the SVM solution more
efficiently [12]-[16].



Chapelle [12] considered the primal problem and proposed a
method for the linear and nonlinear SVM. LibLinear is also the
library for the linear classifiers which contain a fast solver for
the linear classification using SVM [15]. Similarly, a
Laplacian-based method was developed for the primal SVM
which also suits in the semisupervised case [13]. A fur-ther
semisupervised version of the SVM has been developed
recently [17], [18].

Along with these algorithms, which solve the minimization
(1) or (3), several methods find the desired hyperplane by
utilizing the variant SVM (VSVM), which has the square of
the bias term in its objective function, i.e.,

1
|
min 5 (ww+57) +ed b
st. yiw () +b) > 1 —&,
£ >0,

i=1,...,1

i=1,...,1 4

and its dual form is

! [
1
max E uj — 22 E uiuy;y;iK (xi, x;)
i=1

i=1 j=1
1 ] ]
) Z Z Wil;yiyj
i=1 j=1
st. 0<wu;j<e, i=1,...,L 5)

In contrast to the standard SVM in which the bias term
is not acquirable directly from solving the dual problem, this
term can be obtained directly after solving the dual problem
of the VSVM.

Another advantage of the VSVM is that its dual problem (5)
does not have the equality constraint. This property enables us
to apply effective matrix splitting methods in a straightforward
manner. Mangasaria and Musicant [19] proposed a method
based on the successive over-relaxation (SOR) to find the solu-
tion of the VSVM. As the SOR handles one point at a time,
it can be applied to large datasets because only one sample
resides in memory at a time. The Lagrangian SVM (LSVM) is
yet another effort to accelerate the speed of convergence [20].
In this algorithm, the solution of the VSVM is obtained via
applying a simple iterative method on the fixed point problem
derived from the VSVM. More methods utilizing the VSVM
can be found in [21]-[26].

Recently the same approach as the VSVM has applied to
the Laplacian SVM [27]. The squared bias term is added to
the objective function of the primal Laplacian SVM, and its
solution is obtained using SOR.

However, the solution of the VSVM is not necessarily equiv-
alent to the solution of the standard SVM since their objective
functions are distinct. Hence, there is no guarantee for uti-
lizing the VSVM to obtain the maximum-margin separating
hyperplane and to achieve the desired bias term in the stan-
dard SVM (the same statement is correct for the Laplacian
SVM). In this paper, the generalized VSVM (GVSVM) is
introduced, in which the fraction (1/2¢) of the squared bias

is added to the objective function of the primal SVM in lieu
of the square bias itself, where 7 is a fixed positive scalar. The
primary motivation of this paper is to prove that the solution
of the GVSVM converges to the solution of the standard SVM
as t — 00. Further, the bias term, which is obtained directly
by the GVSVM, is assured to tend to the bias term of the
standard SVM. By using the GVSVM, as a result, the distin-
guishing feature of the VSVM is inherited while the identity of
its solution with the standard SVM is guaranteed. The exper-
iments confirm assigning the biggest possible value for ¢ to
acquire the exactness of the solutions of the standard SVM
and GVSVM.

One avenue to solve the optimization problems is to use the
recurrent neural network (RNN) [28]-[30]. The use of neu-
ral networks for solving optimization problems has several
salient advantages. First, the structure of the neural network
can be implemented using VLSI technology so that they can
be used in real-time data processing. Second, the differential
equation of the continuous neural network can be efficiently
solved using numerical methods on digital computers. In this
regard, we show that the GVSVM can be solved in a more
efficient way than the standard SVM by first developing a neu-
ral solution and then juxtaposing it with the existing neural
networks for the standard SVM. The proposed neural network
is proved to be asymptotically stable in the sense of Lyapunov
and is globally exponentially convergent to the solution of
GVSVM. In contrast to the existing neural solution whose con-
vergence is reliant on the given dataset, the proposed neural
network is convergent to the optimal solution of the GVSVM
regardless of the given dataset. Finally, the proposed neural
network theoretically and empirically compared with the exist-
ing neural networks for the standard SVM in terms of their
complexity and convergence rate, during which its superiority
is demonstrated.

In a nutshell, the contributions of this paper can be summa-
rized as follows.

1) The GVSVM is introduced and it is demonstrated that its
solution is identical to the standard SVM under certain
circumstances.

2) We derive a formula to directly compute the bias term
of the desired hyperplane and will demonstrate that it is
identical to that in minimization (1).

3) An efficient RNN is proposed to solve the GVSVM
dual problem. The proposed neural network is assured
to converge globally exponentially to its equilibrium.

4) This neural network is shown to have less complex-
ity in architecture and computations in each iteration
and also converges exponentially to the solution of
the GVSVM.

This paper is structured as follows. In Section II, the
GVSVM is introduced, and its optimal solution is demon-
strated to converge to the solution of the standard SVM
for the significant values of ¢ in Section III. An effi-
cient neural network is proposed in Section IV and its
convergence is meticulously analyzed. The experimental
results are presented in Section V, and the main points
and conclusion are presented in Sections VI and VII,
respectively.



II. GENERALIZED VARIANT SVM

In this section, the GVSVM problem is introduced, and its
dual form is obtained accordingly. Further, it is proved that
the solution of GVSVM tends to the solution of the standard
SVM under certain circumstances.

A. Formulation

As mentioned above, the term (1/21)b? is added to the
objective function of the standard SVM to derive the GVSVM
problem. Thus, let z = (w!,b)T, the matrix form of the
GVSVM primal is presented as

s _ 17 T
P;: min Pi(z,§) = 2Z Oiz+C' &
sit. 11 —Az—£E <0
§>0 (6)
where C is a vector with elements ¢, 1;»; denotes an [ x 1

vector with elements 1, and Q; and A are the matrices with
definitions

yiy 0 ... O xlT 1

T
I 0 0O y» ... 0 X 1
Qt=|:ngn ljl, A= . . . X 2 .
1 : : P : :

T
0O 0 ... y x 1

and x; = (Xj1, X2, - . ., Xin) .

The GVSVM (6) is equivalent to the standard SVM and
VSVM for (1/f) being 0 and 1, respectively. In addition, the
objective function of the GVSVM (and also VSVM) is strictly
convex since the matrix Q; is positive definite, while the objec-
tive function of the standard SVM is just convex because of
Q; being positive semidefinite.

In addition, note that the GVSVM with b = (b/+/7) is iden-
tical to the VSVM problem and hence there is a one-to-one
relationship between these problems. However, the GVSVM
with bigger values for ¢ will be proved to have more proximity
to the standard SVM rather than the VSVM, in which r = 1.
In further sections, the complete theoretical insights for this
claim are discussed.

B. GVSVM Dual Problem

Considering the non-negative Lagrangian multipliers u =
(u1,...,u)) and v = (vq,...,vy), the augmented objective
function for the GVSVM can be written as

1
L(w,b, &, u,v) = —zTsz +CTe+u Uyu) —Az— ) — Ve

1 T 2
2 w+ b+cZ$,

ui(yi(w'xi +b) — 1+ &) — Z vi&i.

1 i=1

l l
=

(N

According to the necessary and sufficient Karush—-Kuhn—
Tucker (KKT) optimality conditions [31], (w*, b*, &*, u*, v*)

are optimal for primal and dual GVSVM problems if and
only if

1
w* _Zz 1 lyl-xl

_tlel

c—u —v =0, i=1,...,1

ul*(l y,(w x,—i—b*)—f):O, i=1,...,1
viEr =0, i=1,...,1

Substituting above equalities in (7), the dual to GVSVM
problem is presented as

t . max Z u — — Z Z UiUjyiyjXiXj

11]1

t
-3 > s,
i=1 j=1
st. 0<uy; <c,

i=1,...,1L (8)

Note that in the nonlinear case, the data will be transformed
into a higher-dimensional space, and ¢ (x;) will replace x;. In
this case, kernel trick K(x;, x;) = ()T (x7) will be applied.

Solving the minimization (8), one can obtain u* directly,
and compute w* and b*, respectively, by

I
Z uiyixi b —tZuyl ©

The following self-evident proposition will clarify the optimal
value of &.

Proposition 1: Let (z*, £*) and u* be the optimal solutions
to (6) and (8), respectively. Then for any i =1, ...,/

0 uf =0

* 10
5 1— yi(w*Txi + b*) ul #0. (19)

III. THEORETICAL STUDY OF THE GVSVM SOLUTION

This section aims to study the properties of the solution
of the GVSVM and discuss its different features. Note that
different values of t > 0 in the GVSVM results in different
problems. Therefore, an infinite number of problems are avail-
able based on the value of 7. Although the objective functions
of the GVSVM and the standard SVM are similar for a large
value of ¢, there is no guarantee that their solutions tend to
each other since even a subtle change in the objective func-
tion and its corresponding gradient can lead to totally distinct
solutions. On top of that the bias term b is obtained by the
GVSVM, which needs to be proved that it is the same bias as
the standard SVM. A by-product of the forthcoming proofs is
a closed-form solution for the bias term b.

We will first show that there exists an optimal solution
for all these problems. To do so, let the standard SVM be
reformulated as

. 1, T
Py : min Py (z, &) = EZ Osoz+C'&
sit. 1 —Az—£6<0
£§>0 (1D



Fig. 1. Descent direction of the optimal solution.

where Qo is the matrix Q; in which the term (1/7) is replaced
by zero.

Theorem 1: Let Q2 be the set of all feasible solutions (z, &).
For any ¢t > 0, there exists a unique solution for GVSVM.
Moreover, the optimal solutions to the problems (6) and (11)
are achieved on the boundaries.

Proof: According to [32], minimization (11) has a unique
answer on the €. Now, let (z*7, £*7)T be the optimal solution
of the problem (11), then for any (z, §) € 2 we have

1 1
0< Ez*TQooz* +cTe* < EZTQOOZ + e
1
< EzTQ,z + CTe.

It shows that the objective value of the problem (6) is bounded
from below for any ¢ € R. Hence, the optimal value is finite,
and there exists an optimal solution for such an optimization.
On the other hand, since Q; is positive definite for any ¢ €
R, the objective function of the minimization (6) is strictly
convex. Therefore, the optimal solution is unique.

Moreover, we have (Qx0z, C) # 0 and (Q;z, C) # 0 for
any arbitrary (z, £) € int(2). Thus, there exist descend direc-
tions —(Qooz, C) and —(Q;z, C). Moving in these directions,
the objective values of problems (11) and (6) will decrease
until they take their optimal solutions on the boundaries
(see Fig. 1). |

This theorem not only guarantees the optimal solution of the
GVSVM but also indicates its uniqueness. Taking advantage
of this theorem, we construct a convergent net with respect to
the solutions of the problem (6) for different values of ¢ > 0.
Then, it will be demonstrated that these nets tend to the solu-
tion of the minimization (1) as t —> oo. First, several basic
definitions about nets are required.

Definition 1 (Directed Set [33]): A directed set is a set D
ordered by a preorder relation < (a reflexive, transitive binary
relation), such that every two elements in D have an upper
bound in D. That is,

Ya,be D,3k e D; a<k, b<k.

For instance, the set R = (R>0, <) is a directed set on which
our desired nets are built.

Definition 2 (Net [33]): A net in a set X is a function
f : D —> X, where D is a directed set. We write x; = f(d)

for all d € D and denote the net as (x;)4ep. Furthermore, the
net (x7)q4ep is said to be convergent to a point a € D, and is
written (xg)gep —> a, if

Ve >0,3s € D Ve > s —=— x, € Bc(a)

where B¢ (a) is the open e-ball of a.

Theorem 2 (Monotone Convergence [34]): Every increas-
ing net in R which is bounded from above is convergent to
its supremum. Moreover, the limit of a net is unique.

As it can be readily seen, the concepts of nets are more
general than sequences, where sequences are defined on a
countable set N while nets are defined on a directed set which
can be uncountable. Indeed, every sequence can be consid-
ered as a net and most of their properties can be expanded
for nets. Now, we may proceed to build the convergent nets
corresponding to the solutions of the GVSVM for different
values of t.

Lemma 1: Let (wl', b, &)T be the optimal solutions to
problems (6) and (11) for any + € R and (w*T,b*, £*T)T,
respectively. Then, (W;);er, (bs)ier, and (&);er are conver-
gent nets such that:

D (b)er —> b

2) Wer —> W

3) (Eier — &*.

Proof: Suppose t1,1, € R and t; < . Let (z, &) and
(21,, &,) be the optimal solutions to problems P; and P;,,
respectively. Since (2, &) is optimal for P; and (z;,, &,) is
a feasible solution, then

1 1 1
5 0nan + Cléy = 5 (WZ W+ ;bi> +C%,

A

1
EZ[Z; Qt1 th + CTgtz

1 1
= 5( Lwi, + ;b[22> + g, (12)
Similarly, for the problem P;,, we have
1 1 1
EZZ;QQZQ + CTétz = E(WITzwlZ + Ebé) + CTétz

A

1
EZZ; leztl + CT&I}

1 1
= §<W,lell + gbfl> +C',. (13)

The following inequality can be obtained by adding above

inequalities:
1 1\ » 1 1Y ,»
N a2
1 b h B

From this inequality, it can be deduced that b,zl < b,zz, which
implies (btz),GR to be a nonmonotonous increasing net. It is
obvious that 5* is an upper bound for this net because oth-
erwise assume that there exists #; € R which b*? < bzz,-- Since

(1/2w*Tw* + CTe* < (1/2wlw;, + CT&, then
1 1 1 1
—(wTw* + —p? )+ CTe* < —(wlw, + b2 ) + CTg,
2 ti 2 i t ti i i

and it contradicts with the optimality of (z;, &;) for P;. As
(btz),eR is nonmonotonous increasing and is bounded from



above, it is convergent to its supremum b> according to
Lemma 2. Next, we will prove that b = b*.

For b, there are w and 5 such that (zT,éT)T € Q is
the optimal solution of the problem (6) as t —> oo. Since

7, E*T)T € Q, according to [31, Th. 3.4.3], we have

07\ (-7
(%) (525) =0

or equivalently

T, &« -
w wh—w
| | p*=b | =0. (14)
C E¥—¢&
Similarly, (z*, £*) is optimal for the minimization (11), then
w*\ 7 v'l/—w*
0 b—0b* | >0. (15)
c) \&§-¢&
By adding (14) and (15), it is obtainable that
1- -
— | =] = b —b"). (16)
By t — o0, we get
1- -
7b(b— b)) — 0, = |w* —w|—0 (17
= w'=w. (18)
Further, substitute w* = w in (14) and (15), then
1- - _ _
cb(b*=b)+CT(E" =€) =0, CT(E-¢£")=0 (19
hence
1- - _
~b(b" —b) = CT'(E—¢*)=>0. (20)

As a result, we get £* = £ by t —> oo.

Now, by contradiction, suppose b # b*, since |w|> =
[w*||>. Then (z*,&*) and (z,£) are both optimal for
problem (11) which contradicts with the uniqueness of
the standard SVM solution. Therefore, b = b* and
(b7)er — b*.

Now, we prove that (b;),cg —> b*. Since for every t € R,
(z1, &) satisfies (16), we get (1/1)b> < bb*. It shows that the
sign of all b, t € R, and b* are the same. Hence, (blz)zeR —
b*? implies (b;);er —> b* as t —> oo.

2), 3) From (12) and (13), it is obtainable that (1/2)||w;, 1%+
CTE,l > (1/2)[|wy, ||2+CT§t2, which implies a nonmonotonous
decreasing net ((1/2)[wi[|* + CT&)cr-

The non-negativity of (1/2)|lw]I?> and CTg, caused the
net ((1/2)|w;)|> + CT&),er to be separated into two non-
monotonous decreasing nets (||w¢|);er and (&)seR.

Since (16) and (20) are valid for (z;, &) as t —> oo, then
lw; — w*|| —> 0 and ||& — &*|| —> 0. It indicates that
W)er —> w* and (&);er —> &%, which completes the
proof. |

Although this lemma proves the convergence of the vari-
ables of the GVSVM solution to the optimum of the stan-
dard SVM, the rates of convergence might be different.
Furthermore, the convergence of net (z, &), is still needed

to be generalized. Next theorem guarantees that the solution of
the minimization (6) tends to the solution of the problem (11)
as t —> oo.

Theorem 3: Let (z!,&1)T for any t € R and (z*7, &*T)T
be the optimal solutions to problems (6) and (11), respec-
tively. Then, (z;, &)er —> (%, &*) as t —> oo. Moreover,
lim;, o inf P(z,§) = infq Poo(z, §).

Proof: According to Lemma 1, solutions (z;, &);er are con-
vergent nets in R™ ! x R”. We prove that (z;, &);er —>
(z*,&%). Let € > 0 be arbitrary, since (b;);,crg —> b*, then
b — b*| < <.

N, € R VYt > Ny, 3

Similarly, by (w;);,er —> w* and (&);,er —> &%, we have

Wy eR Vi=Ny  |w—w <§

and
€
N3 € R Vi>N3, |&—&"| < 3
Now let N = max{Ny, N2, N3}, then for any r > N

|G =" & =€) < [we—w*] + |br = 07| + & — &7
€ €
< 3 + 3 + 3= €
which indicates (z;, &)er —> (2%, £*). Note that the first
inequality is valid because v/a% + b2 < |a|+|b|, for any a, b €
R. Moreover

1
lim inf(Ps(z,&)) = lim —Z,TQtZz+CTEt
t—00 Q t—>00 2
. 1 L,
= lim wiwe+ 37+ Clé

1
— EW*TW* +CTe* = inf(Poo (2, £))-

|

Corollary 1: Based on the  foregoing  theorem,
(@ E)ier —> (£5,8%) as t+ —> oo. Hence, the larger
t would result in more proximity of the GVSVM solution to
the standard SVM.

Taking 7 to be sufficiently large will guarantee the analogy of
the GVSVM and the standard SVM solutions. To discuss this
property, the performance of the GVSVM for different values
of ¢ is examined in the forthcoming sections. The empirical
results also illustrate the same outcome as what the theoretical
studies suggest.

IV. EFFICIENT NEURAL NETWORK AND ITS
CONVERGENCE

In this section, an efficient RNN is proposed to solve the
GVSVM dual problem, and is proved to be asymptotically
stable in the sense of Lyapunov and is globally exponentially
convergent to the solution of GVSVM. We further juxta-
pose the proposed neural network with the existing ones and
demonstrate that it is more efficient in terms of architecture
and complexity.
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Fig. 2. Block diagram of the proposed RNN (23).

A. Neural Network With One-Layer Architecture

Consider the GVSVM dual problem with a kernel
function (., .)
1 T

min —u'Ku —e"u
u

st. 0<u<ce 21

where ¢ € R! is a vector whose elements are 1, and Kis a
matrix with elements IA(,:/ = vy (K(x;, x;) + t/2). It is evident
that matrix K is positive definite since the kernel function is
positive semidefinite and ¢ > 0. Based on this formulation, the
following theorem is obtained.

Theorem 4: u* is the optimal solution of the
minimization (21) if and only if
Pg(bt—(f(u—e)> =u 22)

where Pgq is an element-wise operator defined as

C, Yi > ¢
(Pa(y))i = vis 0<yi=c
0 yi < 0.

Proof: Equation (22) is easily obtained from the KKT
conditions of the minimization (21). ]

Based on this theorem, an RNN is proposed whose
dynamical equation is

% = o —u+Po(u—(Ru-c)))

where o > 0 is a scaling parameter. The RNN can be restated
in the element form as

du; A

o —ou; —l—ozPQ(u,- - (Ku - 1))
where K' is the ith row of the matrix K. This dynamical
system can be easily recognized as a single-layer RNN
depicted in Fig. 2.

We first guarantee the convergence and stability of the

dynamical system (23), and then it is contrasted with other
RNNs for the standard SVM.

(23)

B. Convergence Analysis

In this section, the proposed RNN is first proved to be
asymptotically stable in the sense of Lyapunov. It is further
investigated that it is globally exponentially convergent to the
solution of the GVSVM, and the rate of convergence is reliant

on the scaling parameter «. We first begin with several basic
definitions, which are the building blocks of the upcoming
proofs.

Definition 3: A continuous-time neural network is globally
convergent if its trajectory tends to an equilibrium point for
any given arbitrary initial point. A dynamic system du/dt is
globally exponentially convergent to a point u*, if for any
initial point

|u) —u*|| < Bre? 0 Vi =19 (24)

Lemma 2 [35]: For the closed convex set Q € RV, we have

i) (v—Po) (Pa() —x) >0,
(ii) Po@) — P < llu— v,

Lemma 3: There exists a unique continuous solution for the
neural network (23) for an arbitrary initial point. Further, its
equilibrium point solves the GVSVM dual problem (21).

Proof: According to Lemma 2, Pg, is Lipschitz continuous,
so is the right-hand side of the system (23). Hence, there is
a unique continuous solution u(f) according to the Peano’s
theorem [36]. Moreover, the equilibrium point of the neural
network (23) solves the problem (21), thanks to Lemma 4. &

Theorem 5: The proposed neural network (23) with the
arbitrary initial point ug is asymptotically stable in the sense of
Lyapunov and globally converges to the solution of GVSVM.

Proof: Consider the following Lyapunov function:

weRN,er

u,veRN.

1 1
V) = G Fu) = SIF@IP + 3 [u— |
where u* is the equilibrium of the dynamical system (23), and
G(u) = Qu+1, Fu) = —u+ Po(u— (Qu + 1)).

We first investigate essential inequalities for the projection
operator Pq(.). In the first inequality of Lemma 2, let w =
u— G(u) and x = u*, then
(—F@w) — Gu)" (Fw) —u—u*) = 0
= —Gw) (u—u*) = IFw|* = Fw)" (Gu) + u — u*).
(25)
Having this inequality under the belt, the derivation of the
Lyapunov function with respect to u is obtained as [37]
dv N
= Gu) — (VG(u) — DF(u) + (u— u*)
where I denotes the identity matrix and VG (1) = K. Tt follows:
AV  (dV)\" du
d — \ du ) dt
=a(Gw) — (VGu) — DF(u) + (u— u*))TF(u)
< &(Gw) +u— u) Fu) + || F ()]
— aF(u)'VGu)F(u)
<O —aGw) (u — u*) — aF W) VGW)F (1)
<@

(26)

where (1) is deduced by (25) and (2) is correct since VG = K
is positive definite and G(u)” (u — u*) > 0. Therefore, the



dynamical system (23) is asymptotically stable in the sense of
Lyapunov.

For the global convergence, consider again the first inequal-
ity of Lemma 2 with w = u — @G(u) and x = u. Then

Gw)Fu) < —|Fw)|?
which follows:
V) > 2u— i[>+ SIF@IP > 5fu—ut] @7
=2 2 =2 '

Thus, the trajectory of solution is bounded for any given initial
point. According to the invariant set theorem [38], all trajec-
tories of the system (23) converge to a largest invariant set W

where dV(u)/dt = 0. We need to show that dV(u)/dt = 0 if
and only if du/dt = 0. If du/dt = 0, then
d dv\" du
a (du) dr (28)
For &t € ¥, dV /dt = 0 implies
G(i)" (u—u*) + F(2)"VG(a)F (@) = 0. (29)

Both terms in this equation are non-negative, hence the
equality holds if and only if both are zero. Thus

F(i) VG (a)F(a) =
du

T =u—Pg(u—(Qu+l))

02 F(a) =0

F(@) = 0.
(30)

Therefore, the dynamical system (23) converges globally to
the solution of the GVSVM dual problem. |
Theorem 6: The proposed neural network (23) is expo-
nentially convergent to the optimal solution of the GVSVM.
Further, the rate of convergence is commensurate with «.
Proof: Considering the same Lyapunov function in
Theorem 5, the following inequality is obtainable:

IF@IIII + Qll = 1Ol ||u — u*|| @31)

where u* is the equilibrium point of the system (23). Based
on the proof of Theorem 5, we have

dv dV\' du T
i (E) 7= < —aFu)' VG(u)F(u)

mtegmtlon

E(u()) < E(u(t)) —«a / F(u(s))" QF (u(s))ds

< E(u(to)) — |IK| / IF (u(s)) || *ds

L& /
< E(u(to)) — [|ze
° ||1+i<”||2||
IR
< o) — / e — w2
e K
2F p(—1) _ ki L
< 2E(u(to))e TR

where the last inequality is obtained from the Gronwall
inequality [38]. It follows that:

Ju@) — u*|| < 2E@() < 4E@)e ). (32)

Thus, the proposed RNN is exponentially convergent to
the solution of the GVSVM. The convergence rate can be
increased merely by increasing « since it is commensurate
with p. [ |

C. Comparison With Other Neural Networks

The proposed RNN is now compared with the existing neu-
ral solutions for the standard SVM. The first model considered
here is proposed in [39] and [40], and is a two-layer RNN for
the standard SVM with the dynamical system being given by

%(z) _ a( eeTit 4 (I + K)(Px (it — (Ku+ en —y)) — u))

—e" Px (it — (Kii + e — )
where K is a matrix with elements Kj;
auxiliary variable, u;
with the definition

(33)

= yiyjK (xi, x;), p is an
= y;u;j, and Px(.) is a projection function

di, a < d,'
Px(a) ={a, di<ai<h
hi, a > h,'

where d; = —c(sign(1 — y;)), hi = c(sign(1 + y;)), and X =
{a € R!|d < a < h}. The dynamical system (33) is recognized
by a neural network with a two-layer structure.

Nazemi and Dehghan [41] proposed another neural network
for the training of the SVM. The dynamic equation of their
proposed network is

af* Ku+1+H ' (v+Hu—g)* +1p
Z1v =« v+Hu—g)t —v (34)
n eTu
where (x)* = max(0,x), H= (I — D7 € R?*! g = (0lc) e

R% and v € R?. This neural solution is guaranteed to converge
globally to its equilibrium.

A simpler one-layer neural solution is proposed in [42] with
the dynamical equation

d(uy_, Px(u— (Ku+ep—y) —u
d\pn) elu ’

This is a simple one-layer network which is proved to converge
globally exponentially to the optimal solution provided that K
is positive definite.

Yang et al. [43] developed another neural solution whose
convergence is not reliant on the positive definiteness of the
kernel function. The dynamic system describing their neural

(35)

network is
d(u) _ 1 — Ku — py + D(Px(u) — u)
& (u) N a( e'u o

where D is a positive diagonal matrix.

The above neural networks are now compared with the
proposed neural network (23) concerning their structures, their
convergence, and the number of operations in each iteration.
The proposed neural network needs /> multiplications and
2 + 2] additions/subtractions in each iteration. The neu-
ral networks (33) and (34) require 3/ + 2/ and 57 +
2] multiplications, and 32 + 4l and 72 + 2] — | addi-
tions/subtractions, respectively. Similarly, the neural networks



TABLE I
NUMBER OF OPERATIONS REQUIRED IN EACH ITERATION OF THE
PROPOSED NEURAL NETWORK ALONG WITH FOUR OTHER
NETWORKS IN THE LITERATURE

Method ‘ Multiplication ~ Additions/Subtractions
Tan et al. [40] 317 + 21 3012 + 41
Xia et al. [42] 12+ 21 12 4+ 4l
Nazemi et al. [41] 512 + 21 7124311
Yang et al. [43] 212 4+ 21 202 +21—1
Proposed network 12 1?2 +2
TABLE II

NUMBER OF COMPONENTS REQUIRED FOR THE CIRCUIT
IMPLEMENTATION OF THE PROPOSED NEURAL NETWORK
ALONG WITH FOUR OTHER NETWORKS
IN THE LITERATURE

Method | Summers Integerators  Activation  Weight connections
Tan et al. [40] 4+1 21 21 17+ 51
Xia et al. [42] 20+ 1 I+1 l I(1+2)
Nazemi et al. [41] 5041 3l+1 31 412
Yang et al. [43] 20+ 1 I+1 l I(1+3)
Proposed network 2l l l 12

with the dynamic systems (35) and (36) need 22 + 4] and
217 421 — 1 additions, and I* +2/ and 2/> + 2/ multiplications,
respectively.

The structure of the proposed neural solution can be imple-
mented by 2/ summers, [ integrator, [ piecewise activation
functions, and /> weight connections. In contrast, the model
in (33) needs 2L integrator, 2/ piecewise activation function,
and [(I+3) 4+ 1(21+ 1) summers and connection weights. The
neural network in (34) can be implemented by 5/4-1 summers,
3/+ 1 integrators, 3/ activation functions, and 42 weight con-
nections. By the same token, the neurodynamic model in (35)
requires /41 integrator, / piecewise activation function, /(/43)
summers, and /(/42) weight connections. The network in (36)
has the same requirement with having required / more sum-
mers. Therefore, the proposed neural network is superior to
those in (33) and (35) from the structural complexity and the
computations in each iteration.

Tables I and II tabulate the number of operations in each
iteration and the components required for circuit implementa-
tion, respectively. According to this table, the proposed neural
network has a simpler architecture and is more time efficient
since it needs fewer operations in each iteration.

Regarding the convergence rate, the proposed system
in (23) is globally exponentially convergent while the mod-
els in (33), (34), and (36) are globally convergent but not
exponentially. The system (35) is also promised to converge
exponentially provided that the kernel function is positive
definite. However, the conjecture could be violated if the
kernel function is positive semidefinite, or there exist repetitive
data points in the dataset. Hence, the exponential conver-
gence of the neural network is not guaranteed. The proposed
system (23) is globally exponentially convergent, regardless of
what kernel function is utilized.

Last but not least, the bias term can be obtained directly
from the solution of our neural network while other models
would need to approximate it.

V. EXPERIMENTS

The experiments regarding the proposed neural network are
investigated in this section. First, the convergence of the neural
network in (23) is empirically examined, and it is followed by
a toy example scrutinizing the closeness of the standard SVM
and the GVSVM solutions for various values of ¢. Then, the
classification of real datasets is performed by different standard
SVM solvers, and the related results are reported.

A. Empirical Convergence Analysis

As a complement to the theoretical study in Section IV-B,
we inspect the convergence of the neural network in practice.
To this end, the wine benchmark is used which consists of 178
samples in three different classes. The samples corresponding
to two classes are selected, and the classification using the
proposed model is performed.

The convergence must be probed into by different initial-
izations. This is done by taking the initial point as a vector
of zero, one, and a randomly generated vector. Fig. 3 displays
the transient behavior of the proposed neural network with
different initial points and o = 10. The x-axis of this figure
represents the iterations and y-axis is the value of elements
in the vector u. It is evident that the trajectory of the neural
network converges to the same values regardless of the initial
point. This corroborates the global convergence of the neural
network in that the initial point is of no matter.

The convergence rate of the system (23) is further investi-
gated via the energy error. The energy error of the proposed
neural network with respect to the state u is defined as

R 2
ER (1) = Hu — Po(u— (Ru— 1))” .

According to the discussions in Section IV-B, ER(u*) = 0 if
and only if u* is an optimal solution. We repeat the experiment
over the wine benchmark in which the values of « are set to
be 10, 15, and 20. Fig. 4 displays the transient behavior of
the energy error with three values of «. It is trivial that the
bigger values of o will increase the convergence rate of the
neural network. Thus, the energy error swiftly tends to zero for
larger o which reinforces the dependency of the convergence
rate to «.

B. Toy Example

In this section, the proximity of solutions of the standard
SVM and GVSVM is empirically explored. To do so, the
Fisher’s Iris dataset is selected, and the standard SVM and
GVSVM are applied to this classification task. The Fisher’s
Iris dataset includes 150 data points of three different classes.
To better visualize the results, we take two linearly separable
features with the data points of two classes. Figs. 5 and 6
plot the desired hyperplanes obtained by the standard SVM
and GVSVM with different values of ¢. It is readily seen
that the solution of GVSVM tends to the solution of stan-
dard SVM as the value of ¢ increases. For r = 1000 in Fig. 5
and ¢ = 10 in Fig. 6, the solutions of GVSVM and the stan-
dard SVM are precisely the same, and their corresponding
separating hyperplanes lie on each other.
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@ Fig. 5. Separating hyperplane of the standard SVM and GVSVM over the
Fisher’s Iris dataset (features 1, 3) for ¢t = 1, 10, 50, and 1000. For ¢ = 1000,
. . . . . . the separating hyperplane of the standard SVM and GVSVM lie on each
other.
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Fig. 6. Separating hyperplane of the standard SVM and GVSVM over the
Fisher’s Iris dataset (features 3, 4) for t = 1,5, 10, and 50. For ¢ = 50, the
separating hyperplane of the standard SVM and GVSVM lie on each other.
TABLE IIT
7 AMOUNT OF ||w¢|| AND |b;| FOR DIFFERENT VALUES OF f ON THE IRIS AND
| FISHER’S IRIS DATASETS FOR DIFFERENT FEATURES
A 1be)
dataset F. Iris Iris F. Iris Iris
0; 0:5 0_'6 0_'7 ofa ofs 4 t=1 22890 0.2345 | 0.3560  0.0038
time t=5 2.1275  0.2342 | 1.4573  0.0188
(c) t=10 2.0101  0.2339 | 23671  0.0375
t=50 1.8182  0.2316 | 4.4545 0.1830
Fig. 3. Empirical convergence of the neural network in (23) with distinct t_= 11&% ig}g; 8;3?(9) 11212 2332(9)
initializations and o = 10. (a) With the initialization u = 1. (b) With the t—_lOOOO 1.8182 0.1818 4‘4560 4.4546
initialization © = 0. (c) With the random initialization. The x-axis is the t= i . 5 : 4' 7 4' 757
number of iteration and y-axis is the value of an element of u. Stand. SVM | 1.818 0.1818 4566 4546

35| T T T T T T T T T

-~ alpha =10
30~ —*—alpha = 15|
! alpha = 20

Energy Error

1 1 1 1 1 1 1 1 .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

Fig. 4. Behavior of the proposed network in (23) in terms of the energy
error on the wine benchmark for three different values of o.

On important point in these figures is the magnitude of ¢
in each figure. The value 10 is seemingly big for the first
case while the quantity 1000 is viewed as large enough for

the second case. These experiments confirm the fact that the
optimal value of ¢ is highly related to the dataset under study.
The safer way of selection ¢ is to use the biggest value possible
for the machine.

Further, the standard SVM and the GVSVM are applied to
the data points of classes 1 and 2 of Fisher’s Iris, and the con-
vergence of the GVSVM is investigated. The data points are
linearly separable so that the primal SVM is used for train-
ing. As a result, the optimal value of the bias term is also in
hand, which makes the comparison possible. Fig. 7 shows the
difference between the optimal solutions to the standard SVM
and the GVSVM by various values of 7. It is plain to see that
the difference between their solutions is imperceptible when
the value of ¢ increases.

Moreover, Tables III presents a comparison between the
optimal solutions to the standard SVM and the GVSVM. In



TABLE IV
COMPARISON OF THE PROPOSED RNN, LSVM [20], TAN RNN [40], X1A RNN [42], NAZEMI RNN [41], AND YANG RNN [43] IN TERMS OF THE
ACCURACY, THE AVERAGE NUMBER OF ITERATION IN TENFOLD CROSS-VALIDATION, AND THE AVERAGE EXECUTION TIME OF PERFORMING
TENFOLD CROSS-VALIDATION ON EACH BENCHMARK. THE DATASETS ARE OBTAINED FROM THE UCI REPOSITORY

Method . LSVM [20] Tan RNN [40] Xia Rnn [42] Proposed RNN Nazemi RNN [41] Yang RNN [43]
Dataset size Acc. Iter.  Time Acc. Iter.  Time Acc. Iter. Time Acc. Iter. Time Acc. Iter. Time Acc. Iter.  Time
scene 2407 x 204 9324 13 256 9087 70 807 9264 85 512 9512 9 263 9l24 99 1930 9264 93 562
sick euthyriod | 3163 x 42 9073 24 310 8833 69 833 9073 68 530 9073 12 458 8833 88 3025 9073 121 830
tyroid sick 3772 x 52 9387 21 330 9387 69 823 9387 75 629 9387 13 404 9027 35 4306 9387 72 604
ozone level 2536 x 72 97.12 25 412 9712 66 970 9712 71 736 982 20 530 9712 82 2830 97.12 51 630
solar flare 1389 x 32 9510 10 125 9560 149 502 9510 108 271 9690 11 76 9510 290 1152 9510 77 106
german numer | 1000 x 25 7420 12 107 7000 62 480 70.00 168 234 7420 7 132 7000 93 925 7000 206 286
svmguide 3089 x5 8588 33 77 6863 73 172 6474 142 112 8588 13 93 6453 66 368 6474 253 286
Adult 48842 x 14 845 78 410 - - - 844 232 1112 845 73 355 - - - - - -
MNIST 70000 x 784 993 430 4850 993 232 4400 993 1415 8320
07' I . . . . .
identical for all algorithms of the SVM training. Further, the
! —o- lIb*bl H . .
oer : scaling parameter « is set to 10 for all neural networks.
O'SIF 1 For seven datasets, we use the tenfold cross-validation and
04l | gauge the test accuracy of six foregoing algorithms. The first
seven rows of Table IV tabulates the accuracy of each algo-
0.3 7 . . .

' rithm over seven datasets obtained for the UCI repository, and
o2y 1 their average number of iterations to converge to the optima
o1l 4 over different folds.

. s, A e SN - ‘ We also consider two big datasets: 1) Adult and 2) MNIST.

0 0 20 % o B ® 7 & % 1 For MNIST, we considered the classification of the digit 1

with other digits. Since the training and test partitions of
Fig. 7. Behavior of [w* — w|| and [b* — b;| on the Fisher’s Iris dataset  (hose datasets are determined, we do not conduct tenfold

(features 3, 4).

this table, the amount of ||wy| and |b;| appear for different
values of ¢. For larger values of ¢, the solution of the GVSVM
tends to the solution of the standard SVM, as our theoretical
study suggested.

Figs. 5-7 and Table III imply the fact that the solution of the
VSVM, in which t = 1, is significantly different from the stan-
dard SVM. Therefore, the utilization of the GVSVM is crucial
in order to obtain a solution identical to the standard SVM.

C. Real Datasets

As the final experiment, the proposed neural network is
applied to several classification tasks and its performance
is compared with the LSVM [20] and neural networks
in [40]-[43]. LSVM solves the VSVM with the least square
loss function; thus, the resulting problem is more straightfor-
ward since it entails finding the solution of a linear system.
Other neural networks are modeled based on the standard
SVM. Another important point for the real problems is the
selection of the kernel function. The type of kernel is reliant on
the type of data we have. However, if there is no prior knowl-
edge on the features of the given datasets, then the selection of
the kernel function is not straightforward. Since the selected
datasets for this experiment are well known to be nonlinearly
separable, we use the radial basis function for all solvers. The
RBF kernel function is defined as

_ _ 2
Kr.y) = p<M)
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where o is the width of the function. The optimal parameters
for o and ¢ are obtained by the techniques in [45], and are

cross-validation for these datasets. The RBF parameters for
all classifiers are set to 0.05 and 0.02 for Adult and MNIST
classifier, respectively. Except for LSVM, Xia RNN, and the
proposed neural network, other neural solutions failed to pro-
duce acceptable results in a reasonable time (<24 h). The
neural network and LSVM have similar results in terms of
the accuracy, but the proposed neural network is more time
efficient with respect to LSVM.

It is plain to grasp that the proposed neural network sig-
nificantly outperforms other neural solutions from both the
accuracy and the average number of iteration views. The result
of the neural network is also competitive with LSVM from
both perspectives. This table illustrates that the GVSVM bears
a reasonable result in real-world scenarios, and the proposed
neural network is an efficient solver for it.

VI. DISCUSSION

The GVSVM has shown acceptable performance in the
classification. In comparison to the standard SVM, it has
a fraction of the square bias term in the objective func-
tion of the primal minimization. However, this small change
can significantly impact on the procedure for solving the
optimization problem. Using the GVSVM needs the adjust-
ing a fixed parameter ¢, which needs to be large enough to
guarantee the closeness of the GVSVM to the standard SVM.
We recommend setting ¢ as the largest number a machine can
address. The consequence of using the GVSVM is that it can
directly compute the bias term after solving the minimization,
and the corresponding neural network has simple architec-
ture and is timewise efficient due to the fewer operations
in each iteration and the exponential convergence of the
neural model.



VII. CONCLUSION

This paper introduced the GVSVM and elaborated the
equivalence of its solution to the standard SVM. The dif-
ference between the GVSVM and the standard SVM is that
the GVSVM has the term (1/21)b* in its objective func-
tion, where ¢ is a positive scalar. In the GVSVM, the bias
term is directly obtained and is suitable when large datasets
are available. As the GVSVM is different from the standard
SVM, there is no guarantee that its solution is equivalent to
the standard SVM. This paper illustrated that as ¢t — oo,
the optimal solution of GVSVM tends to the optimal solu-
tion of the standard SVM. The GVSVM solution implies a
closed-from formula for the bias term of the standard SVM
which obviates the need of an approximation for it. We fur-
ther proposed an efficient neural network to solve the GVSVM
dual problem. It is demonstrated that the neural network is
asymptotically stable and is globally exponentially conver-
gent to the solution of the GVSVM. The experimental results
illustrated the efficacy of the proposed neural network and
confirmed that separating hyperplane found by the GVSVM
with a larger ¢ is analogous to the separating hyperplane of the
standard SVM.
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