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II. GENERALIZED VARIANT SVM

In this section, the GVSVM problem is introduced, and its
dual form is obtained accordingly. Further, it is proved that
the solution of GVSVM tends to the solution of the standard
SVM under certain circumstances.

A. Formulation

As mentioned above, the term (1/2t)b2 is added to the
objective function of the standard SVM to derive the GVSVM
problem. Thus, let z = (wT , b)T , the matrix form of the
GVSVM primal is presented as

Pt : min Pt(z, ξ) = 1

2
zTQtz + CTξ

s.t. 1l×1 − Az − ξ ≤ 0

ξ ≥ 0 (6)

where C is a vector with elements c, 1l×1 denotes an l × 1
vector with elements 1, and Qt and A are the matrices with
definitions

Qt =
[

In×n 0
0 1

t

]
, A =

⎡

⎢⎢⎢⎣

y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...

0 0 . . . yl

⎤

⎥⎥⎥⎦ ×

⎡

⎢⎢⎢⎣

xT
1 1

xT
2 1
...

...

xT
l 1

⎤

⎥⎥⎥⎦

and xi = (xi1, xi2, . . . , xin)
T .

The GVSVM (6) is equivalent to the standard SVM and
VSVM for (1/t) being 0 and 1, respectively. In addition, the
objective function of the GVSVM (and also VSVM) is strictly
convex since the matrix Qt is positive definite, while the objec-
tive function of the standard SVM is just convex because of
Qt being positive semidefinite.

In addition, note that the GVSVM with b̄ = (b/
√

t) is iden-
tical to the VSVM problem and hence there is a one-to-one
relationship between these problems. However, the GVSVM
with bigger values for t will be proved to have more proximity
to the standard SVM rather than the VSVM, in which t = 1.
In further sections, the complete theoretical insights for this
claim are discussed.

B. GVSVM Dual Problem

Considering the non-negative Lagrangian multipliers u =
(u1, . . . , ul) and v = (v1, . . . , vl), the augmented objective
function for the GVSVM can be written as

L(w, b, ξ, u, v) = 1

2
zTQtz + CTξ + uT(1l×1 − Az − ξ)− vTξ

= 1

2
wTw + 1

2t
b2 + c

l∑

i=1

ξi

−
l∑

i=1

ui
(
yi

(
wTxi + b

) − 1 + ξi
) −

l∑

i=1

viξi.

(7)

According to the necessary and sufficient Karush–Kuhn–
Tucker (KKT) optimality conditions [31], (w∗, b∗, ξ∗, u∗, v∗)

are optimal for primal and dual GVSVM problems if and
only if

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w∗ = ∑l
i=1 u∗

i yixi

b∗ = t
∑l

i=1 u∗
i yi

c − u∗
i − v∗

i = 0, i = 1, . . . , l

u∗
i

(
1 − yi

(
w∗Txi + b∗) − ξ∗

i

) = 0, i = 1, . . . , l

v∗
i ξ

∗
i = 0, i = 1, . . . , l.

Substituting above equalities in (7), the dual to GVSVM
problem is presented as

Dt : max
u

l∑

i=1

ui − 1

2

l∑

i=1

l∑

j=1

uiujyiyjxixj

− t

2

l∑

i=1

l∑

j=1

uiujyiyj

s.t. 0 ≤ ui ≤ c, i = 1, . . . , l. (8)

Note that in the nonlinear case, the data will be transformed
into a higher-dimensional space, and φ(xi) will replace xi. In
this case, kernel trick K(xi, xj) = φ(xi)

Tφ(xj) will be applied.
Solving the minimization (8), one can obtain u∗ directly,

and compute w∗ and b∗, respectively, by

w∗ =
l∑

i=1

u∗
i yixi b∗ = t

l∑

i=1

u∗
i yi. (9)

The following self-evident proposition will clarify the optimal
value of ξ .

Proposition 1: Let (z∗, ξ∗) and u∗ be the optimal solutions
to (6) and (8), respectively. Then for any i = 1, . . . , l

ξ∗
i =

{
0 u∗

i = 0

1 − yi
(
w∗Txi + b∗) u∗

i 
= 0.
(10)

III. THEORETICAL STUDY OF THE GVSVM SOLUTION

This section aims to study the properties of the solution
of the GVSVM and discuss its different features. Note that
different values of t > 0 in the GVSVM results in different
problems. Therefore, an infinite number of problems are avail-
able based on the value of t. Although the objective functions
of the GVSVM and the standard SVM are similar for a large
value of t, there is no guarantee that their solutions tend to
each other since even a subtle change in the objective func-
tion and its corresponding gradient can lead to totally distinct
solutions. On top of that the bias term b is obtained by the
GVSVM, which needs to be proved that it is the same bias as
the standard SVM. A by-product of the forthcoming proofs is
a closed-form solution for the bias term b.

We will first show that there exists an optimal solution
for all these problems. To do so, let the standard SVM be
reformulated as

P∞ : min P∞(z, ξ) = 1

2
zTQ∞z + CTξ

s.t. 1l×1 − Az − ξ ≤ 0

ξ ≥ 0 (11)



Fig. 1. Descent direction of the optimal solution.

where Q∞ is the matrix Qt in which the term (1/t) is replaced
by zero.

Theorem 1: Let � be the set of all feasible solutions (z, ξ).
For any t > 0, there exists a unique solution for GVSVM.
Moreover, the optimal solutions to the problems (6) and (11)
are achieved on the boundaries.

Proof: According to [32], minimization (11) has a unique
answer on the �. Now, let (z∗T , ξ∗T)T be the optimal solution
of the problem (11), then for any (z, ξ) ∈ � we have

0 ≤ 1

2
z∗TQ∞z∗ + CTξ∗ ≤ 1

2
zTQ∞z + CTξ

≤ 1

2
zTQtz + CTξ.

It shows that the objective value of the problem (6) is bounded
from below for any t ∈ R. Hence, the optimal value is finite,
and there exists an optimal solution for such an optimization.
On the other hand, since Qt is positive definite for any t ∈
R, the objective function of the minimization (6) is strictly
convex. Therefore, the optimal solution is unique.

Moreover, we have (Q∞z,C) 
= 0 and (Qtz,C) 
= 0 for
any arbitrary (z, ξ) ∈ int(�). Thus, there exist descend direc-
tions −(Q∞z,C) and −(Qtz,C). Moving in these directions,
the objective values of problems (11) and (6) will decrease
until they take their optimal solutions on the boundaries
(see Fig. 1).

This theorem not only guarantees the optimal solution of the
GVSVM but also indicates its uniqueness. Taking advantage
of this theorem, we construct a convergent net with respect to
the solutions of the problem (6) for different values of t > 0.
Then, it will be demonstrated that these nets tend to the solu-
tion of the minimization (1) as t −→ ∞. First, several basic
definitions about nets are required.

Definition 1 (Directed Set [33]): A directed set is a set D
ordered by a preorder relation ≤ (a reflexive, transitive binary
relation), such that every two elements in D have an upper
bound in D. That is,

∀a, b ∈ D, ∃k ∈ D; a ≤ k, b ≤ k.

For instance, the set R = (R>0,≤) is a directed set on which
our desired nets are built.

Definition 2 (Net [33]): A net in a set X is a function
f : D −→ X, where D is a directed set. We write xd = f (d)

for all d ∈ D and denote the net as (xd)d∈D. Furthermore, the
net (xd)d∈D is said to be convergent to a point a ∈ D, and is
written (xd)d∈D −→ a, if

∀ε > 0, ∃s ∈ D ∀e ≥ s =⇒ xe ∈ Bε(a)

where Bε(a) is the open ε-ball of a.
Theorem 2 (Monotone Convergence [34]): Every increas-

ing net in R which is bounded from above is convergent to
its supremum. Moreover, the limit of a net is unique.

As it can be readily seen, the concepts of nets are more
general than sequences, where sequences are defined on a
countable set N while nets are defined on a directed set which
can be uncountable. Indeed, every sequence can be consid-
ered as a net and most of their properties can be expanded
for nets. Now, we may proceed to build the convergent nets
corresponding to the solutions of the GVSVM for different
values of t.

Lemma 1: Let (wT
t , bt, ξ

T
t )

T be the optimal solutions to
problems (6) and (11) for any t ∈ R and (w∗T , b∗, ξ∗T)T ,
respectively. Then, (wt)t∈R, (bt)t∈R, and (ξt)t∈R are conver-
gent nets such that:

1) (bt)t∈R −→ b∗;
2) (wt)t∈R −→ w∗;
3) (ξt)t∈R −→ ξ∗.
Proof: Suppose t1, t2 ∈ R and t1 < t2. Let (zt1, ξt1) and

(zt2, ξt2) be the optimal solutions to problems Pt1 and Pt2 ,
respectively. Since (zt1, ξt1) is optimal for Pt1 and (zt2, ξt2) is
a feasible solution, then

1

2
zT

t1 Qt1 zt1 + CTξt1 = 1

2

(
wT

t1 wt1 + 1

t1
b2

t1

)
+ CTξt1

<
1

2
zT

t2Qt1 zt2 + CTξt2

= 1

2

(
wT

t2 wt2 + 1

t1
b2

t2

)
+ CTξt2 . (12)

Similarly, for the problem Pt2 , we have

1

2
zT

t2 Qt2 zt2 + CTξt2 = 1

2

(
wT

t2 wt2 + 1

t2
b2

t2

)
+ CTξt2

<
1

2
zT

t1Qt2 zt1 + CTξt1

= 1

2

(
wT

t1 wt1 + 1

t2
b2

t1

)
+ CTξt1 . (13)

The following inequality can be obtained by adding above
inequalities:

(
1

t1
− 1

t2

)
b2

t1 <

(
1

t1
− 1

t2

)
b2

t2 .

From this inequality, it can be deduced that b2
t1 < b2

t2 , which
implies (b2

t )t∈R to be a nonmonotonous increasing net. It is
obvious that b∗2 is an upper bound for this net because oth-
erwise assume that there exists ti ∈ R which b∗2 < b2

ti . Since
(1/2)w∗Tw∗ + CTξ∗ < (1/2)wT

ti wti + CTξti then

1

2

(
w∗Tw∗ + 1

ti
b∗2

)
+ CTξ∗ < 1

2

(
wT

ti wti + 1

ti
b2

ti

)
+ CTξti

and it contradicts with the optimality of (zti , ξti) for Pti . As
(b2

t )t∈R is nonmonotonous increasing and is bounded from



above, it is convergent to its supremum b̄2 according to
Lemma 2. Next, we will prove that b̄ = b∗.

For b̄, there are w̄ and ξ̄ such that (z̄T , ξ̄T)T ∈ � is
the optimal solution of the problem (6) as t −→ ∞. Since
(z∗T , ξ∗T)T ∈ �, according to [31, Th. 3.4.3], we have

(
Qtz̄
C

)T(
z∗ − z̄
ξ∗ − ξ̄

)
≥ 0

or equivalently
⎛

⎝
w̄
1
t b̄
C

⎞

⎠
T⎛

⎝
w∗ − w̄
b∗ − b̄
ξ∗ − ξ̄

⎞

⎠ ≥ 0. (14)

Similarly, (z∗, ξ∗) is optimal for the minimization (11), then
⎛

⎝
w∗
0
C

⎞

⎠
T⎛

⎝
w̄ − w∗
b̄ − b∗
ξ̄ − ξ∗

⎞

⎠ ≥ 0. (15)

By adding (14) and (15), it is obtainable that

− ∥∥w∗ − w̄
∥∥2 ≥ 1

t
b̄
(
b̄ − b∗). (16)

By t −→ ∞, we get

1

t
b̄
(
b̄ − b∗) −→ 0, =⇒ ∥∥w∗ − w̄

∥∥ −→ 0 (17)

=⇒ w∗ = w̄. (18)

Further, substitute w∗ = w̄ in (14) and (15), then

1

t
b̄
(
b∗ − b̄

) + CT(
ξ∗ − ξ̄

) ≥ 0, CT(
ξ̄ − ξ∗) ≥ 0 (19)

hence
1

t
b̄
(
b∗ − b̄

) ≥ CT(
ξ̄ − ξ∗) ≥ 0. (20)

As a result, we get ξ∗ = ξ̄ by t −→ ∞.
Now, by contradiction, suppose b̄ 
= b∗, since ‖w̄‖2 =

‖w∗‖2. Then (z∗, ξ∗) and (z̄, ξ̄ ) are both optimal for
problem (11) which contradicts with the uniqueness of
the standard SVM solution. Therefore, b̄ = b∗ and
(b2

t )t∈R −→ b∗2.
Now, we prove that (bt)t∈R −→ b∗. Since for every t ∈ R,

(zt, ξt) satisfies (16), we get (1/t)b̄2 ≤ b̄b∗. It shows that the
sign of all bt, t ∈ R, and b∗ are the same. Hence, (b2

t )t∈R −→
b∗2 implies (bt)t∈R −→ b∗ as t −→ ∞.

2), 3) From (12) and (13), it is obtainable that (1/2)‖wt1‖2+
CTξt1 > (1/2)‖wt2‖2+CTξt2 , which implies a nonmonotonous
decreasing net ((1/2)‖wt‖2 + CTξt)t∈R.

The non-negativity of (1/2)‖wt‖2 and CTξt, caused the
net ((1/2)‖wt‖2 + CTξ)t∈R to be separated into two non-
monotonous decreasing nets (‖wt‖)t∈R and (ξt)t∈R.

Since (16) and (20) are valid for (zt, ξt) as t −→ ∞, then
‖wt − w∗‖ −→ 0 and ‖ξt − ξ∗‖ −→ 0. It indicates that
(wt)t∈R −→ w∗ and (ξt)t∈R −→ ξ∗, which completes the
proof.

Although this lemma proves the convergence of the vari-
ables of the GVSVM solution to the optimum of the stan-
dard SVM, the rates of convergence might be different.
Furthermore, the convergence of net (zt, ξt)t∈R is still needed

to be generalized. Next theorem guarantees that the solution of
the minimization (6) tends to the solution of the problem (11)
as t −→ ∞.

Theorem 3: Let (zT
t , ξ

T
t )

T for any t ∈ R and (z∗T , ξ∗T)T

be the optimal solutions to problems (6) and (11), respec-
tively. Then, (zt, ξt)t∈R −→ (z∗, ξ∗) as t −→ ∞. Moreover,
limt−→∞ inf� Pt(z, ξ) = inf� P∞(z, ξ).

Proof: According to Lemma 1, solutions (zt, ξt)t∈R are con-
vergent nets in R

n+1 × R
n. We prove that (zt, ξt)t∈R −→

(z∗, ξ∗). Let ε > 0 be arbitrary, since (bt)t∈R −→ b∗, then

∃N1 ∈ R ∀t ≥ N1,
∣∣bt − b∗∣∣ < ε

3
.

Similarly, by (wt)t∈R −→ w∗ and (ξt)t∈R −→ ξ∗, we have

∃N2 ∈ R ∀t ≥ N2,
∥∥wt − w∗∥∥ < ε

3

and

∃N3 ∈ R ∀t ≥ N3,
∥∥ξt − ξ∗∥∥ < ε

3
.

Now let N = max{N1,N2,N3}, then for any t ≥ N
∥∥(

zt − z∗, ξt − ξ∗)∥∥ ≤ ∥∥wt − w∗∥∥ + ∣∣bt − b∗∣∣ + ∥∥ξt − ξ∗∥∥

<
ε

3
+ ε

3
+ ε

3
= ε

which indicates (zt, ξt)t∈R −→ (z∗, ξ∗). Note that the first
inequality is valid because

√
a2 + b2 ≤ |a|+|b|, for any a, b ∈

R. Moreover

lim
t−→∞ inf

�
(Pt(z, ξ)) = lim

t−→∞
1

2
zT

t Qtzt + CTξt

= lim
t−→∞

1

2
wT

t wt + 1

2t
b2

t + CTξt

= 1

2
w∗Tw∗ + CTξ∗ = inf

�
(P∞(z, ξ)).

Corollary 1: Based on the foregoing theorem,
(zt, ξt)t∈R −→ (z∗, ξ∗) as t −→ ∞. Hence, the larger
t would result in more proximity of the GVSVM solution to
the standard SVM.

Taking t to be sufficiently large will guarantee the analogy of
the GVSVM and the standard SVM solutions. To discuss this
property, the performance of the GVSVM for different values
of t is examined in the forthcoming sections. The empirical
results also illustrate the same outcome as what the theoretical
studies suggest.

IV. EFFICIENT NEURAL NETWORK AND ITS

CONVERGENCE

In this section, an efficient RNN is proposed to solve the
GVSVM dual problem, and is proved to be asymptotically
stable in the sense of Lyapunov and is globally exponentially
convergent to the solution of GVSVM. We further juxta-
pose the proposed neural network with the existing ones and
demonstrate that it is more efficient in terms of architecture
and complexity.



Fig. 2. Block diagram of the proposed RNN (23).

A. Neural Network With One-Layer Architecture

Consider the GVSVM dual problem with a kernel
function k(., .)

min
u

1

2
uTK̂u − eTu

s.t. 0 ≤ u ≤ ce (21)

where e ∈ Rl is a vector whose elements are 1, and K̂ is a
matrix with elements K̂ij = yiyj(K(xi, xj) + t/2). It is evident
that matrix K̂ is positive definite since the kernel function is
positive semidefinite and t > 0. Based on this formulation, the
following theorem is obtained.

Theorem 4: u∗ is the optimal solution of the
minimization (21) if and only if

P�
(

u −
(

K̂u − e
))

= u (22)

where P� is an element-wise operator defined as

(P�(γ ))i =

⎧
⎪⎨

⎪⎩

c, γi > c

γi, 0 ≤ γi ≤ c

0 γi < 0.

Proof: Equation (22) is easily obtained from the KKT
conditions of the minimization (21).

Based on this theorem, an RNN is proposed whose
dynamical equation is

du

dt
= α

(
−u + P�

(
u −

(
K̂u − e

)))
(23)

where α > 0 is a scaling parameter. The RNN can be restated
in the element form as

dui

dt
= −αui + αP�

(
ui −

(
K̂iu − 1

))

where K̂i is the ith row of the matrix K̂. This dynamical
system can be easily recognized as a single-layer RNN
depicted in Fig. 2.

We first guarantee the convergence and stability of the
dynamical system (23), and then it is contrasted with other
RNNs for the standard SVM.

B. Convergence Analysis

In this section, the proposed RNN is first proved to be
asymptotically stable in the sense of Lyapunov. It is further
investigated that it is globally exponentially convergent to the
solution of the GVSVM, and the rate of convergence is reliant

on the scaling parameter α. We first begin with several basic
definitions, which are the building blocks of the upcoming
proofs.

Definition 3: A continuous-time neural network is globally
convergent if its trajectory tends to an equilibrium point for
any given arbitrary initial point. A dynamic system du/dt is
globally exponentially convergent to a point u∗, if for any
initial point

∥∥u(t)− u∗∥∥ ≤ β1eγ (t−t0) ∀t ≥ t0 (24)

Lemma 2 [35]: For the closed convex set � ∈ RN , we have

(i) (v − P�(v))
T(P�(v)− x) ≥ 0, w ∈ RN, x ∈ �

(ii) ‖P�(u)− P�(v)‖ ≤ ‖u − v‖, u, v ∈ RN .

Lemma 3: There exists a unique continuous solution for the
neural network (23) for an arbitrary initial point. Further, its
equilibrium point solves the GVSVM dual problem (21).

Proof: According to Lemma 2, P� is Lipschitz continuous,
so is the right-hand side of the system (23). Hence, there is
a unique continuous solution u(t) according to the Peano’s
theorem [36]. Moreover, the equilibrium point of the neural
network (23) solves the problem (21), thanks to Lemma 4.

Theorem 5: The proposed neural network (23) with the
arbitrary initial point u0 is asymptotically stable in the sense of
Lyapunov and globally converges to the solution of GVSVM.

Proof: Consider the following Lyapunov function:

V(u) = G(u)TF(u)− 1

2
‖F(u)‖2 + 1

2

∥∥u − u∗∥∥

where u∗ is the equilibrium of the dynamical system (23), and

G(u) = Qu + 1, F(u) = −u + P�(u − (Qu + 1)).

We first investigate essential inequalities for the projection
operator P�(.). In the first inequality of Lemma 2, let w =
u − G(u) and x = u∗, then

(−F(u)− G(u))T
(
F(u)− u − u∗) ≥ 0

⇒ −G(u)T
(
u − u∗) − ‖F(u)‖2 ≥ F(u)T

(
G(u)+ u − u∗).

(25)

Having this inequality under the belt, the derivation of the
Lyapunov function with respect to u is obtained as [37]

dV

du
= G(u)− (∇G(u)− I)F(u)+ (

u − u∗) (26)

where I denotes the identity matrix and ∇G(u) = K̂. It follows:

dV(u)

dt
=

(
dV(u)

du

)T du

dt

= α
(
G(u)− (∇G(u)− I)F(u)+ (

u − u∗))T
F(u)

≤ α
(
G(u)+ u − u∗)T

F(u)+ α‖F(u)‖2

− αF(u)T∇G(u)F(u)

≤(1) −αG(u)T
(
u − u∗) − αF(u)T∇G(u)F(u)

<(2) 0

where (1) is deduced by (25) and (2) is correct since ∇G = K̂
is positive definite and G(u)T(u − u∗) ≥ 0. Therefore, the





TABLE I
NUMBER OF OPERATIONS REQUIRED IN EACH ITERATION OF THE 

PROPOSED NEURAL NETWORK ALONG WITH FOUR OTHER 
NETWORKS IN THE LITERATURE

TABLE II
NUMBER OF COMPONENTS REQUIRED FOR THE CIRCUIT

IMPLEMENTATION OF THE PROPOSED NEURAL NETWORK

ALONG WITH FOUR OTHER NETWORKS

IN THE LITERATURE

with the dynamic systems (35) and (36) need 2l2 + 4l and
2l2 + 2l − 1 additions, and l2 + 2l and 2l2 + 2l multiplications,
respectively.

The structure of the proposed neural solution can be imple-
mented by 2l summers, l integrator, l piecewise activation
functions, and l2 weight connections. In contrast, the model
in (33) needs 2L integrator, 2l piecewise activation function,
and l(l + 3)+ l(2l + 1) summers and connection weights. The
neural network in (34) can be implemented by 5l+1 summers,
3l + 1 integrators, 3l activation functions, and 4l2 weight con-
nections. By the same token, the neurodynamic model in (35)
requires l+1 integrator, l piecewise activation function, l(l+3)
summers, and l(l+2) weight connections. The network in (36)
has the same requirement with having required l more sum-
mers. Therefore, the proposed neural network is superior to
those in (33) and (35) from the structural complexity and the
computations in each iteration.

Tables I and II tabulate the number of operations in each
iteration and the components required for circuit implementa-
tion, respectively. According to this table, the proposed neural
network has a simpler architecture and is more time efficient
since it needs fewer operations in each iteration.

Regarding the convergence rate, the proposed system
in (23) is globally exponentially convergent while the mod-
els in (33), (34), and (36) are globally convergent but not
exponentially. The system (35) is also promised to converge
exponentially provided that the kernel function is positive
definite. However, the conjecture could be violated if the
kernel function is positive semidefinite, or there exist repetitive
data points in the dataset. Hence, the exponential conver-
gence of the neural network is not guaranteed. The proposed
system (23) is globally exponentially convergent, regardless of
what kernel function is utilized.

Last but not least, the bias term can be obtained directly
from the solution of our neural network while other models
would need to approximate it.

V. EXPERIMENTS

The experiments regarding the proposed neural network are
investigated in this section. First, the convergence of the neural
network in (23) is empirically examined, and it is followed by
a toy example scrutinizing the closeness of the standard SVM
and the GVSVM solutions for various values of t. Then, the
classification of real datasets is performed by different standard
SVM solvers, and the related results are reported.

A. Empirical Convergence Analysis

As a complement to the theoretical study in Section IV-B,
we inspect the convergence of the neural network in practice.
To this end, the wine benchmark is used which consists of 178
samples in three different classes. The samples corresponding
to two classes are selected, and the classification using the
proposed model is performed.

The convergence must be probed into by different initial-
izations. This is done by taking the initial point as a vector
of zero, one, and a randomly generated vector. Fig. 3 displays
the transient behavior of the proposed neural network with
different initial points and α = 10. The x-axis of this figure
represents the iterations and y-axis is the value of elements
in the vector u. It is evident that the trajectory of the neural
network converges to the same values regardless of the initial
point. This corroborates the global convergence of the neural
network in that the initial point is of no matter.

The convergence rate of the system (23) is further investi-
gated via the energy error. The energy error of the proposed
neural network with respect to the state u is defined as

ER(u) =
∥∥∥u − P�(u − (K̂u − 1))

∥∥∥
2
.

According to the discussions in Section IV-B, ER(u∗) = 0 if
and only if u∗ is an optimal solution. We repeat the experiment
over the wine benchmark in which the values of α are set to
be 10, 15, and 20. Fig. 4 displays the transient behavior of
the energy error with three values of α. It is trivial that the
bigger values of α will increase the convergence rate of the
neural network. Thus, the energy error swiftly tends to zero for
larger α which reinforces the dependency of the convergence
rate to α.

B. Toy Example

In this section, the proximity of solutions of the standard
SVM and GVSVM is empirically explored. To do so, the
Fisher’s Iris dataset is selected, and the standard SVM and
GVSVM are applied to this classification task. The Fisher’s
Iris dataset includes 150 data points of three different classes.
To better visualize the results, we take two linearly separable
features with the data points of two classes. Figs. 5 and 6
plot the desired hyperplanes obtained by the standard SVM
and GVSVM with different values of t. It is readily seen
that the solution of GVSVM tends to the solution of stan-
dard SVM as the value of t increases. For t = 1000 in Fig. 5
and t = 10 in Fig. 6, the solutions of GVSVM and the stan-
dard SVM are precisely the same, and their corresponding
separating hyperplanes lie on each other.



(a)

(b)

(c)

Fig. 3. Empirical convergence of the neural network in (23) with distinct
initializations and α = 10. (a) With the initialization u = 1. (b) With the
initialization u = 0. (c) With the random initialization. The x-axis is the
number of iteration and y-axis is the value of an element of u.

Fig. 4. Behavior of the proposed network in (23) in terms of the energy
error on the wine benchmark for three different values of α.

On important point in these figures is the magnitude of t
in each figure. The value 10 is seemingly big for the first
case while the quantity 1000 is viewed as large enough for

Fig. 5. Separating hyperplane of the standard SVM and GVSVM over the
Fisher’s Iris dataset (features 1, 3) for t = 1, 10, 50, and 1000. For t = 1000,
the separating hyperplane of the standard SVM and GVSVM lie on each
other.

Fig. 6. Separating hyperplane of the standard SVM and GVSVM over the
Fisher’s Iris dataset (features 3, 4) for t = 1, 5, 10, and 50. For t = 50, the
separating hyperplane of the standard SVM and GVSVM lie on each other.

TABLE III
AMOUNT OF ‖wt‖ AND |bt| FOR DIFFERENT VALUES OF t ON THE IRIS AND

FISHER’S IRIS DATASETS FOR DIFFERENT FEATURES

the second case. These experiments confirm the fact that the
optimal value of t is highly related to the dataset under study.
The safer way of selection t is to use the biggest value possible
for the machine.

Further, the standard SVM and the GVSVM are applied to
the data points of classes 1 and 2 of Fisher’s Iris, and the con-
vergence of the GVSVM is investigated. The data points are
linearly separable so that the primal SVM is used for train-
ing. As a result, the optimal value of the bias term is also in
hand, which makes the comparison possible. Fig. 7 shows the
difference between the optimal solutions to the standard SVM
and the GVSVM by various values of t. It is plain to see that
the difference between their solutions is imperceptible when
the value of t increases.

Moreover, Tables III presents a comparison between the
optimal solutions to the standard SVM and the GVSVM. In



TABLE IV
COMPARISON OF THE PROPOSED RNN, LSVM [20], TAN RNN [40], XIA RNN [42], NAZEMI RNN [41], AND YANG RNN [43] IN TERMS OF THE

ACCURACY, THE AVERAGE NUMBER OF ITERATION IN TENFOLD CROSS-VALIDATION, AND THE AVERAGE EXECUTION TIME OF PERFORMING

TENFOLD CROSS-VALIDATION ON EACH BENCHMARK. THE DATASETS ARE OBTAINED FROM THE UCI REPOSITORY

Fig. 7. Behavior of ‖w∗ − wt‖ and |b∗ − bt| on the Fisher’s Iris dataset
(features 3, 4).

this table, the amount of ‖wt‖ and |bt| appear for different
values of t. For larger values of t, the solution of the GVSVM
tends to the solution of the standard SVM, as our theoretical
study suggested.

Figs. 5–7 and Table III imply the fact that the solution of the
VSVM, in which t = 1, is significantly different from the stan-
dard SVM. Therefore, the utilization of the GVSVM is crucial
in order to obtain a solution identical to the standard SVM.

C. Real Datasets

As the final experiment, the proposed neural network is
applied to several classification tasks and its performance
is compared with the LSVM [20] and neural networks
in [40]–[43]. LSVM solves the VSVM with the least square
loss function; thus, the resulting problem is more straightfor-
ward since it entails finding the solution of a linear system.
Other neural networks are modeled based on the standard
SVM. Another important point for the real problems is the
selection of the kernel function. The type of kernel is reliant on
the type of data we have. However, if there is no prior knowl-
edge on the features of the given datasets, then the selection of
the kernel function is not straightforward. Since the selected
datasets for this experiment are well known to be nonlinearly
separable, we use the radial basis function for all solvers. The
RBF kernel function is defined as

K(x, y) = exp

(−‖x − y‖2

2σ 2

)

where σ is the width of the function. The optimal parameters
for σ and c are obtained by the techniques in [45], and are

identical for all algorithms of the SVM training. Further, the
scaling parameter α is set to 10 for all neural networks.

For seven datasets, we use the tenfold cross-validation and
gauge the test accuracy of six foregoing algorithms. The first
seven rows of Table IV tabulates the accuracy of each algo-
rithm over seven datasets obtained for the UCI repository, and
their average number of iterations to converge to the optima
over different folds.

We also consider two big datasets: 1) Adult and 2) MNIST.
For MNIST, we considered the classification of the digit 1
with other digits. Since the training and test partitions of
these datasets are determined, we do not conduct tenfold
cross-validation for these datasets. The RBF parameters for
all classifiers are set to 0.05 and 0.02 for Adult and MNIST
classifier, respectively. Except for LSVM, Xia RNN, and the
proposed neural network, other neural solutions failed to pro-
duce acceptable results in a reasonable time (<24 h). The
neural network and LSVM have similar results in terms of
the accuracy, but the proposed neural network is more time
efficient with respect to LSVM.

It is plain to grasp that the proposed neural network sig-
nificantly outperforms other neural solutions from both the
accuracy and the average number of iteration views. The result
of the neural network is also competitive with LSVM from
both perspectives. This table illustrates that the GVSVM bears
a reasonable result in real-world scenarios, and the proposed
neural network is an efficient solver for it.

VI. DISCUSSION

The GVSVM has shown acceptable performance in the
classification. In comparison to the standard SVM, it has
a fraction of the square bias term in the objective func-
tion of the primal minimization. However, this small change
can significantly impact on the procedure for solving the
optimization problem. Using the GVSVM needs the adjust-
ing a fixed parameter t, which needs to be large enough to
guarantee the closeness of the GVSVM to the standard SVM.
We recommend setting t as the largest number a machine can
address. The consequence of using the GVSVM is that it can
directly compute the bias term after solving the minimization,
and the corresponding neural network has simple architec-
ture and is timewise efficient due to the fewer operations
in each iteration and the exponential convergence of the
neural model.



VII. CONCLUSION

This paper introduced the GVSVM and elaborated the
equivalence of its solution to the standard SVM. The dif-
ference between the GVSVM and the standard SVM is that
the GVSVM has the term (1/2t)b2 in its objective func-
tion, where t is a positive scalar. In the GVSVM, the bias
term is directly obtained and is suitable when large datasets
are available. As the GVSVM is different from the standard
SVM, there is no guarantee that its solution is equivalent to
the standard SVM. This paper illustrated that as t → ∞,
the optimal solution of GVSVM tends to the optimal solu-
tion of the standard SVM. The GVSVM solution implies a
closed-from formula for the bias term of the standard SVM
which obviates the need of an approximation for it. We fur-
ther proposed an efficient neural network to solve the GVSVM
dual problem. It is demonstrated that the neural network is
asymptotically stable and is globally exponentially conver-
gent to the solution of the GVSVM. The experimental results
illustrated the efficacy of the proposed neural network and
confirmed that separating hyperplane found by the GVSVM
with a larger t is analogous to the separating hyperplane of the
standard SVM.
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