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Executive Summary

Metro networks serve an important societal purpose. However, operational challenges due to increased
ridership and the growth of metro systems have surfaced. One of these challenges is the impact of
primary delays, which, while local at first, could spread to other parts of the network. Network operators
aim to prevent these delay propagations and minimize their impact when they occur, to ensure that
they do not negatively affect travelers’ experiences. Researchers have not yet identified any causal
relationships between network structure, topological analysis, and delay propagation in the scientific
literature. Consequently, the concept of vulnerability has been introduced in the scientific literature,
which in this study is defined as the exposure of a public transport (PT) network to disruptions and the
ability of the PT network to cope with these disruptions. Nonetheless, most of these studies do not
consider delay propagation or take metro stations as their focus point when researching vulnerability.
Moreover, the network operator’s point of view has been neglected, while they are responsible for delay
recovery strategies and prevention measures. Through epidemic models, delays and their impact have
been studied successfully for air and public transportation and, thus, is a promising approach. However,
when epidemic models have been applied to metro networks, congestion is always the focus point and,
therefore, the passenger perspective. Therefore, the research objective is to see if the Susceptible-
Infectious-Susceptible (SIS) model is suitable to model delay propagation in a metro network through
its ability to reproduce the vulnerability of metro stations for specific instances.

Using the SIS model and scientific literature a model is composed. From the data, instances of delay
propagations were identified and grouped based on the station and direction. Only two groups could
be formed. These groups of instances were randomly split into 80% training and 20 % testing. The
mean squared error (MSE) was used as a training performance indicator. Then, a differential evolution
algorithm used data from the Washington Metro Network to train and test the model. For the testing,
the MSE was used in combination with a comparison of the average vulnerability of the considered
stations determined from the data and by the model. The vulnerability values as determined from the
data for group 1 are presented in Figure 1.
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Figure 1: Vulnerability of each station per instance from group 1 in order of stations reached by the trains.



Vi Executive Summary

The analysis shows that train delay vulnerabilities generally decrease with distance from the primary
delay station, but this trend is inconsistent across instances. Factors such as randomly delayed trains,
arrival times near delay thresholds, and differing numbers of trains considered at each station affect
the calculations. Additionally, similar primary delays, such as in instances 3 and 8, show differing
vulnerability trends, suggesting other factors also play a role in how the delay propagates.

A training MSE of 0.022 was obtained for the first group of instances and the testing MSE for both
testing instances was 0.004. While the testing results for group 1 reveal that the model was able to
produce values close to the ones from the data (an error of less than one train), the model consistently
underestimated station vulnerabilities, with data averages higher than model averages. Differences
between predicted and actual vulnerabilities varied by station, with most stations underestimated. This
underestimation likely stems from the training process, where the algorithm compensated for low recov-
ery rates rather than low infection rates, resulting in higher recovery rates and lower overall vulnerability
predictions. This trend persisted because the testing instances had similar vulnerability values to the
training instances.

For group 2 the vulnerability values as determined from the data are presented in Figure 2.
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Figure 2: Vulnerability of each station per instance from group 2 in order of stations reached by the trains.

Group 2 stations exhibit a wider range of vulnerability values and greater fluctuations compared
to group 1. The high traffic density in this part of the network hinders delayed trains from recovering,
contributing to a delayed downward trend in vulnerabilities. Unexpected upward trends in vulnerability,
such as for instances 11, 13, 14, and 17, highlight inconsistencies. Unlike group 1, where similar
instances behaved differently, group 2 shows similar behavior across instances despite differing delay
characteristics. The higher traffic density also increases the likelihood of random or minor delays,
emphasizing that additional factors influence vulnerability trends.

The second group showed a MSE training performance of 0.043, and the testing instances have a
MSE of 0.018 and 0.027. The testing MSE values translate to an error of around one train on average.
In addition, the model overestimated the vulnerabilities compared to the data. This overestimation is
likely due to the wider range of vulnerability values in group 2 ([0.25, 0.55]), which makes it harder for
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the model to find a single parameter that fits all values effectively. Stations with higher vulnerabilities in
the training data influenced the model, leading it to overestimate vulnerabilities for stations with lower-
than-average values in the testing instances. The sensitivity of the model to the choice of training and
testing instances requires further investigation to improve performance.

While the model initially shows promising results for the two groups, the values trained for the
parameters indicate the training algorithm is slightly overfitting the model. One of the reasons for this
overfitting is the mismatch in the order of magnitude of important model components. Also, the model
is sensitive to the instances used for training and testing, which means the model’s robustness could
be improved. Furthermore, the model has one sensitive parameter, which causes the model to either
overestimate or underestimate station vulnerabilities.

This research gives a starting point for developing a model inspired by epidemic models to study
delay propagations in a metro network. Network operators can use this model to be proactive by
targeting those stations that are the most vulnerable for certain delay propagation instances. The
model also allows for a reactive response when the delay propagation has happened, through an
investigation of the recovery of certain stations. Also, even if not enough data is available to train the
model, information about stations can be obtained using the model components. Furthermore, using
a SIS-inspired model to study delay propagations and the role of the vulnerability of stations helped
fill in a gap in the literature. The model showed it can reproduce the vulnerability values with some
limitations kept in mind. In the future, the research focus should be on improving the model through
the introduction of more factors such as time of day. Also, the relationships between the different
model components should be improved such that the problem of the order of magnitudes of the model
equations is solved. Moreover, the model should be applied to a different network to get a better
understanding of its performance. However, enough data, more than could be used in this research, is
important to evolve this model.
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Introduction

The problem is described first in section 1.1. Hereafter, the research objectives and questions are
presented in section 1.2. The approach to answering the research questions is explained in section 1.3.
Lastly, the structure of this thesis is presented in section 1.4.

1.1. Problem description

The metro has been and will continue to be an important mode of transport due to its social and en-
vironmental benefits (Redman et al., 2013). Over the years, the metro has faced several challenges
such as the growth of cities due to urbanization, leading to increased ridership. At the same time, many
metro systems have grown in distance (km of infrastructure) and number of stops (UITP, 2022). As
a result, the pressure has intensified on metro systems generating more operational challenges. One
of these operational challenges that needs attention is delays. Passengers possibly will not return if
they experience delays too often while they are important to make public transportation (PT) networks
financially feasible. Delays initially have a local impact but could spread to other parts of the network.
Therefore, network operators are interested in limiting the effects of a delay and preventing the delay
from happening in the first place. A concept that is tied to both aspects is delay propagation. Prevent-
ing the propagation of a delay from one vehicle to another means limiting the impact of the first delay
and preventing a knock-on delay from happening. To take measures to prevent and respond to delay
propagation, how and why delays propagate in metro networks must be studied.

Network structure and topological analysis have been used to study delay propagation. However,
studies that have only looked into the influence of the network topology and structure failed to find any
causal relations (Cats & Hijner, 2021; Wang et al., 2020; Yap & Cats, 2020). Therefore, the concept of
vulnerability was introduced to be able to take more factors into account when studying delay impact
and propagation. Some common keywords to describe vulnerability are susceptibility and serviceability
(Berdica, 2002; Hong et al., 2022; Pan et al., 2021). Combining these keywords, vulnerability is the
exposure of a public transport network to disruptions (susceptibility) and at the same time the ability
of the PT network to handle these disruptions (serviceability) (Yap & Cats, 2020). Examples of the
factors studied with the introduction of vulnerability are passenger flow distribution (Eltved et al., 2021;
Szymula & BeSinovi¢, 2020; Yap & Cats, 2022) as well as factors such as station-level characteristics
(Zhang et al., 2021) and line operations (Malandri et al., 2018). Using these factors it has been found,
for example, that the most vulnerable links/lines are those often crowded due to high passenger flows
(Shi et al., 2019a; Sun & Guan, 2016; Yap & Cats, 2020; Yap et al., 2018b), with mainly the outflows
at stations influencing the vulnerability (Zhang et al., 2020).

While advancements have been made in public transportation research with the introduction of
vulnerability, this type of research does not always include delay propagation. Moreover, there has
not been much attention to the vulnerability of metro stations and their role in delay propagation, even
though stations play a central role in delay recovery strategies, such as holding trains, short-turning
services, or adjusting schedules. Also, effective use of station infrastructure and staff, and knowing
which stations to prioritize to devise prevention measures is crucial in mitigating delay propagation.
Therefore, this study aims to fill in the knowledge gap of how to model delay propagation in a metro
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2 1. Introduction

network and the role the vulnerability of a metro station plays in this propagation.

For other transport modes, epidemic models have been used to fill in this knowledge gap as the
spreading of diseases and propagation of delays show similarities. This method has proven to be
a promising method in the railways (Dekker et al., 2022; Gurin et al., 2020; Monechi et al., 2018),
air transportation (Baspinar & Koyuncu, 2016; Ceria et al., 2021; Wu et al., 2019) and metro (Jia et
al.,, 2022; Shi et al., 2019b; Wang et al., 2019; Zeng & Li, 2018). Nonetheless, the studies for the
metro have been solely focused on congestion propagation, the passenger perspective, neglecting the
operator perspective. Therefore, the extent to which epidemic models can be used to model delay
propagation from the operator’s perspective is an interesting research direction.

1.2. Research objective and questions

The main goal of this research is to see if the Susceptible-Infectious-Susceptible (SIS) model is suitable
to model delay propagation in a metro network through its ability to reproduce the vulnerability of metro
stations for specific instances. It is also important to be critical under which conditions SIS is a suitable
model and the limitations of this method. This goal is achieved by answering the following research
question:

How can the SIS model effectively be utilized to produce the effects of delay propagation in metro
networks, particularly through the models’ ability to capture the vulnerabilities of metro stations for
specific instances?

The main research question is jointly answered by the following sub-questions:

1. How can the traditional SIS model be adapted to accurately represent the characteristics and
dynamics of delay propagations within a metro network?

2. Which model configuration produces the best results given performance metrics and keeping
computational efficiency in mind?

3. Which combination of parameter values results in the model reproducing the vulnerabilities the
best given a specific group of instances?

4. How sensitive is the model to changes in parameter values and data input?

1.3. Approach

The heterogeneous SIS model is adapted to a metro network context to answer the main research
question and the sub-questions. All the subquestions focus on the heterogeneous SIS model adap-
tation and its implementation. The adaptation makes it possible to model the station vulnerability for
specific delay propagation instances. These instances are based on the historical data of an existing
network. To see which model configuration yields the best results, they are tested and compared based
on performance metrics such as Mean Squared Error (MSE). To test the chosen model configuration its
vulnerability results are compared to the vulnerabilities calculated using the historical data of a network
for two cases using MSE as well as other metrics. Finally, experiments are done with the parameter
values to test the model sensitivity.

1.4. Thesis structure

The structure of this thesis is as follows: Chapter 2 goes into more detail about the existing scientific
literature on the topic of delay propagation and vulnerability. Then, Chapter 3 explains the methodology.
The application of the model to the network case study and data processing are discussed in Chapter
4 as well as the experiments done to choose a model configuration. The results and an analysis of the
results based on the chosen model configuration follow in Chapter 5. The thesis concludes in Chapter
6 with a conclusion, a discussion of this study, and recommendations for the future.



Literature review

This chapter discusses how this research fits into the scientific literature. First in section 2.1 the liter-
ature on network topology and vulnerability regarding delay propagation is discussed. Then, in sec-
tion 2.2 previous applications of epidemic models in the field of transportation are highlighted.

2.1. Influence of network topology and vulnerability on delay prop-

agation

Researchers have tried to find a relation between the structure of a public transportation network and
its topological characteristics, and how a delay propagates. It is said that stations’ locations within the
network, connectivity, and criticality all play crucial roles in determining the extent and distribution of
delays (Wang et al., 2020; Yap & Cats, 2020). One study found using the Bayesian Network method
that while a delay caused by a disruption has the most impact on passenger delays at metro stations
nearby on the same line direction, a correlation of delays between stations that are further apart exists
(Cats & Hijner, 2021). The researchers argue that the constrained infrastructure as well as passengers
changing their behavior is the cause of this correlation. They also suggest using epidemic models to
capture both the spatial and temporal propagation of disruption, which their Bayesian method could
not do. Thus, correlations were found, but no clear causation. Other studies tried to find more clear
relations. Still, they only concluded that centrality measures are not indicative of the impact of dis-
ruptions on network performance (Malandri et al., 2018) and that transfer stations do not play a role
in the disruption impact (Wang et al., 2020). Therefore, the causal relationship between topological
features and the disruption impact is unknown, and topological features alone cannot lead to a good
interpretation of the disruption impact.

Another perspective in the literature that has been adopted is assessing the role of vulnerability of
nodes and links in propagating delays. This other way of looking at disruption impact and its propaga-
tion goes beyond conventional topological analysis and there are a few reasons for doing so. One of
the reasons is that some of the studies using conventional topology analysis neglect passenger flow
distribution, which could lead to underestimation or overestimation of the vulnerability of the network
(Lu & Lin, 2019; Xu & Chopra, 2022). Secondly, depending on the day and traveler type (e.g. leisure
versus work) the passenger flows are affected differently during and after a disruption, meaning the
vulnerability can also differ throughout time (Eltved et al., 2021; Yap & Cats, 2022). This fluctuation
in vulnerability was confirmed by another study (Xiao et al., 2018). Also, the effects of unplanned dis-
ruptions on passenger behavior can deviate from planned scenarios (Yap et al., 2018a), which is not
something topology analysis can take into account. Furthermore, the effects of disruption were found
to be heterogeneous across metro stations and dependent on its location in the network as well as
other station-level characteristics, meaning that only using topology analysis would fail to acknowledge
other factors planning a role (Zhang et al., 2021). The last reason to study vulnerability in tandem
with topology is that initial failure propagates faster at the functional level (flow distribution) than at the
structural level (network topology) (Chen et al., 2023), and, hence, only considering the structural level
would give a limited picture of the problem. Moreover, both levels have different sources of vulnerabil-
ities (Chopra et al., 2016). Therefore, only using topology analysis paints an incomplete picture of the
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4 2. Literature review

disruption and its impact, and research should go beyond using the concept of vulnerability.

Stations, the links between them, and the whole network have been considered in studies about
delay propagation due to vulnerability. Studies have found that the most vulnerable links or lines are the
ones that are often crowded due to the combination of relatively high passenger flows (as compared to
other modes such as the bus and tram) and high disruption exposure (Shi et al., 2019a; Sun & Guan,
2016; Yap et al., 2018b). The influence of demand on the vulnerability of links was also confirmed
by Szymula and BeSinovic (2020) as they found that which links are considered the most critical is
highly demand dependent. In their work, critical links are those links that cause the most unfavorable
consequences in terms of network performance, which was defined as dependent on physical topology
and service characteristics (e.g. timetables, passenger demand). Similar results were obtained by a
different study where stations were clustered according to their expected criticality into five categories
(Yap & Cats, 2020). Criticality in their research meant: "The degree of disruption exposure for an
individual stop or link and the impact of a disruption occurring at that stop or link” (Cats et al., 2016).
They found using machine learning that high train frequencies and passenger volumes were indicators
of the most critical stations as well as whether the station was also a terminal/transfer station. This result
is different from the previously mentioned research by Wang et al. (2020). However, that research only
considered the network topology and not the criticality of stations. When only the network topology
is considered transfer stations do not seem to play a role in delay propagation, but if the criticality of
stations is considered transfer stations are important.

Some studies have tried to introduce more nuance into vulnerability research. In one study, the
influence of passenger flows has been researched by separating the effects of the inflows and outflows
on the vulnerability of a node. According to this study, passenger in-flows have a negligible impact
on the vulnerability of an Urban Rail Transit (URT) station, while the vulnerability of the station will
decrease as the out-flows increase (Zhang et al., 2020). This study, however, does not consider delay
propagation explicitly except that neighboring stations might suffer from increased inflow. Also, the
definition of vulnerability has been researched with more nuance. For example, Cats and Jenelius
(2018) examined the effect of partial capacity degradation on PT network vulnerability, highlighting
the importance of considering varying levels of disruption severity in vulnerability assessments as it
could affect the vulnerability value. Also, most of the studies have defined vulnerability as a single
value. However, a different approach was taken by Ermagun et al. (2023) in their study by defining
vulnerability as a range of values for a complete metro network. Their results show that with a 1%
increase in the ratio of links to nodes, the vulnerability increases by 0.50%. Similarly, a 1% increase in
the ratio of the number of links to the maximum possible number of links decreases the vulnerability by
0.03%. These studies show a wide range of more nuanced vulnerability research has been done.

2.2. Epidemic models in transportation literature

There is already a foundation in the literature for other transport modes using the method of epidemic
models. While epidemic models have mostly been used in the fields of epidemiology and communica-
tion, researchers in the transportation field have also slowly taken an interest in its potential applicability.
There are three reasons for this interest. Firstly, there are similarities between the spread of diseases
and the propagation of delays. Where individuals can infect others with disease, delays from one station
can also "infect” other stations. Secondly, factors playing a role in the delay propagation can be taken
into account by an epidemic model. Thirdly, using epidemic models allows for a proactive response
to the vulnerabilities in the network instead of reactive. These three reasons highlight the potential of
using epidemic models as a method of modeling delay propagation and, as a result, vulnerability.

For metro, railway, and airline/air route networks research has already been done on the delay
propagation using an epidemic model. First, the research in the context of railways is discussed,
followed by the airline and airspace networks. Finally, how epidemic models have been used in metro
research is examined.

2.2.1. Railway

A few papers discuss delay propagation in railways using epidemic models. The paper by Dekker et al.
(2022) explores the phenomenon of delay propagation in railway networks using a diffusion-like spread-
ing model, considering factors such as train schedules, infrastructure capacity, and network topology.
The paper investigates how delays in one part of the railway network can spread and affect other parts.
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This type of model, just like the SIS model, also describes the spreading of a delay throughout a system.
However, a shortcoming of the diffusion model is that it is much more difficult to capture heterogeneity,
while the SIS model used in this research can do so. The stations were modeled as homogeneous
nodes in the mentioned study, which the authors also discussed as a shortcoming. Another study used
a modified Susceptible-Infectious-Recovered (SIR) model to help quantify the propagation of delays of
five cargo and four passenger trains in Ukraine (Gurin et al., 2020). In this study, 'susceptible’ refers to
trains prone to delays, ’infectious’ entities represent the spread of these delays to neighboring trains,
and "recovered” entities denote the delays being resolved. Even though Ukraine railways operate on
a periodic schedule, it is common for cargo trains to leave their station of origin when they are ready
instead of at the designated time (Gurin et al., 2020), increasing the complexity of the modeling, but
this situation is not common. One last example of epidemic models used to model delay propagation
in the railways is a study done by Monechi et al. (2018). They analyzed German and Italian railways
by designing laws about the spreading of delays. The SIS model inspired this approach but it did not
consider the recovery of the station or the station’s ability to handle a delay. Also, the propagation
probability was assumed to be uniform throughout the network neglecting any operational conditions.
By using the SIS model in this research station’s abilities to handle a delay and operational conditions
can be taken into account.

2.2.2. Air transportation

In the field of air transportation epidemic models have been used to model delay propagation between
airports as well as between flights. An example of such a study is the one by Baspinar and Koyuncu
(2016). They defined a model for flights and airports, which used the SIS model characteristics to
approximate the system dynamics under disrupted conditions. In the flight-based model, the SIS model
was used to look at individual flights and how these flights could infect each other with delays. They
then tried to define the collective behavior of airports using the flight-to-flight interactions in the airport-
based model, which was modeled as a metapopulation. In a similar study, flight delays were also
researched with the SIS model (Wu et al., 2019). A difference with the previously presented study is
that the study by Wu et al. (2019) was done from an airline network perspective. The study by Baspinar
and Koyuncu, on the other hand, was done with flight movements, disregarding the different airlines
the flights belong to. They showed in their study that the propagation probability is network-related
and varies across routes. Factors playing a role in this variation are flight frequencies at airports, route
distances, and the propagated delay time. Smaller airports are largely affected by buffer times, while
larger airports are mostly affected by flight movements. Also, lower network connectivity means more
flights/airports are protected from delays, but aircraft utilization is also lower in comparison to better
connected airports. In another study, the vulnerability of airports was modeled using a heterogeneous
SIS model, which is very similar to the aim of this study (Ceria et al., 2021). They found that the
vulnerability is the largest at airports whose strength in the airline network is neither too small nor
too small. Airports with a low strength are often not as well connected to the other airports and so
have to deal less with delays. Stronger airports, on the other hand, have many resources to minimize
delays from propagating. Airports that are not as strong, but better connected than the weak airports
are, therefore, less prepared to handle unexpected large disruptions. However, what has been done
for airports is not directly applicable to metro networks, because the dynamics of the networks are
different.

2.2.3. Metro

Epidemic models have also been used in metro research to study the propagation of delays due to
crowding and congestion. For example, in the study by Jia et al. (2022) they adapted the SIS model
to estimate the risk probability of crowding. They modeled the recovery and infection rate with the
incoming and outgoing passenger flows at nodes and, thus, heterogeneous. Their research studied
the changing risk probability of crowding over two hours. Some of their findings are that the majority
of the network will be affected by crowding within half an hour as it starts to happen at some stations.
Afterwards, the propagation speed will slow down. Also, the propagation strength diminishes with
distance and the transfer nodes are impacted most significantly (Jia et al., 2022). However, the focus
is on crowding propagation and not delay propagation specifically. A different study also looked into
passenger flow congestion (Shi et al., 2019b). The study aimed to see if two control strategies could
relieve the congestion pressure by reducing the infection rate and increasing the recovery rate. The
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sensitivity of the propagation as a reaction to the control measures was also tested. They found that
demand control measures helped deal with serious congestion. They used the SIR model, which
does not allow infected stations to become infected again later with congestion after they recovered.
However, in the context of this research, it should be possible for a station to be infected multiple
times by different trains. A third study also looked into congestion propagation with intervention under
emergency-caused delays specifically and, therefore, neglecting other types of delays (Wang et al.,
2019). They based their passenger flows on the regret minimization theory for which they collected
data through a state preference study. A difference was found in the congestion propagation for peak
and non-peak hours. During peak hours a secondary propagation of congestion might be possible,
while during non-peak hours there is only one propagation that has a short duration and influences
a smaller range of nodes (Wang et al., 2019). A fourth study looked into congestion propagation for
oversaturated conditions using the SIR model (Zeng & Li, 2018). Similar to the other studies Zeng
and Li tried to quantify the rate at which the congestion propagates between different metro lines. Six
influential factor groups were identified including passenger flow, train headway, and station capacity.
All studies discussed for the metro used a type of epidemic model to model congestion propagation and,
therefore, mainly focused on passenger flows, while this study will take the metro trains and their delay
propagation as the perspective. Even though it is important to look at passenger flows, the network
operator perspective should not be neglected to understand the challenges in daily operations and the
influence of decisions on the network system.

2.3. Contribution

Previously the literature on delay propagation and vulnerability as well as the use of epidemic models
in transportation studies have been presented. It is important to indicate what the position of this study
is in the literature and its scientific contribution.

All the literature presented in section 2.1 is summarized in Table 2.1, including the articles that do
not consider vulnerability. Table 2.1 also shows where this research categorizes within the literature.

Table 2.1: Overview of articles published on vulnerability in public transportation, as presented in this literature review.

Network

Method DP component Real case

Reference Focus PM ML AMDM S O EM

Cats & Hijner (2021) Metro network v Y Nodes v
Cats & Jenelius (2018) Multi-modal network v N  Links v
Chen et al. (2023) Multi-modal network N N Y  Network

Chopra et al. (2016) Metro network v N {;‘negork’ nodes, v
Eltved et al. (2021) Railway line v N Line v
Ermagun et al. (2023) Metro network v N Nodes, links v
Lu & Lin (2019) Multi-modal network v N  Nodes v
Malandri et al. (2018) Multi-modal network Vv v Y  Network v
Shi et al. (2019a) URT network v N Nodes v
Sun & Guan (2016) Metro network v Vv N  Line N
Szymula & Besinovi¢ (2020)  Railway system v v N  Links v
Wang et al. (2020) Metro network v N  Network, nodes v
Xiao et al. (2018) Metro network v N Network, links v
Xu & Chopra (2022) Metro network Vv N  Network v
Yap & Cats (2020) Metro network v Y  Nodes v
Yap & Cats (2022) Multi-modal network N N Network N
Yap et al. (2018a) Multi-modal network v N  Network N
Yap et al. (2018b) Metro/light-rail network v v N  Links v
Zhang et al. (2020) URT network v N  Nodes v
Zhang et al. (2021) Metro network v N Nodes v
This work Metro network v Y  Nodes v

PM = probabilistic model; ML = machine learning; AM/DM = assignment/demand model; S = simulation;
O = optimization; DP = delay propagation considered; Y = Yes; N = No

Research on delay propagation in public transportation networks has advanced significantly, with
studies emphasizing passenger perspectives, network structure, and vulnerability assessments. While
there is agreement in the literature that the network structure does influence delay propagation (Cats &
Hijner, 2021; Wang et al., 2020; Yap & Cats, 2020), clear causal relations are yet to be found. There-
fore, research on disruptions and their impact should go beyond conventional topology analysis. By
considering factors such as passenger flow distribution (Eltved et al., 2021; Yap & Cats, 2022), studies
have looked into the complex interplay between network structure, passenger behavior, and vulner-
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ability. Exploring the vulnerability of network nodes and links also offers a nuanced understanding
of disruption impact and delay propagation within public transportation networks, supplementing con-
ventional topological analysis. Even so, the role vulnerability of individual nodes plays when looking
specifically at delay propagation has been neglected in metro network research. Two papers in this
literature review also considered the combination of delay propagation and stations. Nevertheless, the
study done by Cats and Hijner (2021) and Yap and Cats (2020) focused on passenger delays, while
this study will look at metro train delays. The focus on delays from the operational perspective helps
to understand why and how delays happened, identify network components that need improvement to
maintain reliability, and implement mitigation strategies effectively.

Research directions that have been advised are epidemic models to capture the delay propagation
of disruptions, which is a method that focuses on nodes (Cats & Hijner, 2021). How epidemic models
have been used before to research delay propagation was explored in section 2.2. First studies using
epidemic models to model railway delay propagations were discussed. The problems of these studies
are that they do not take the heterogeneity of stations into account, research uncommon situations,
or fail to take operational conditions into account. The use of epidemic models in these studies can,
therefore, not be applied to metro networks. While epidemic models in air transportation have been
used to model delay propagation between airports and flights, the network dynamics are too different
and their approach does not apply to metro networks. Lastly, epidemic models have been used to study
metro networks. Nonetheless, the passenger perspective dominates these studies as congestion has
been the main research topic.

This literature review showed which research gaps need to be filled. More insight is desired into how
to model delay propagation in a metro network from the operator perspective using epidemic models
and the role of vulnerability of metro stations in this propagation.






Methodology

This chapter explains how the previously defined research goals and questions are answered. As
mentioned before, the main goal of this research is to see if the SIS model is a suitable method to
model delay propagation in a metro network through its ability to reproduce the vulnerability of metro
stations in a specific instance.

The definition of vulnerability from Yap and Cats (2020) is used in this research. Their definition
combined definitions from Rodriguez-Nunez and Garcia-Palomares (2014) and Oliveira et al. (2016).
Vulnerability is defined in their paper as the exposure of a PT network to disruptions and the ability of
the PT network to cope with these disruptions. Therefore, the definition consists of two components,
which are highlighted in this research through the model.

To achieve this goal several steps have to be taken, which are shown in Figure 3.1. Firstthe instance
selection criteria are explained in section 3.1, which will help understand how and why the instances
were chosen for training and testing. Then in section 3.2 it is demonstrated how the vulnerability
calculations using the data are done. That section is followed by an introduction to the SIS model
and the adaption of it for this research in section 3.3. Finally, section 3.4 discusses how the model is
trained and tested using metrics that compare the results from the vulnerability calculations using the
data (3.2) and the training results of the model (3.3).

Define vulnerability Calculate vulnerability

calculation (3.2) given instances (3.2) \

Test model using
testing instances (3.4)

Find and divide
instances into

groups (3.1) Trai del i
. rain model given /
SInIElTERsl ——» fraining instances
model {3.3) (3.4)

Figure 3.1: The methodology steps. Blue boxes indicate steps that have to do with the input and the yellow boxes indicate
processes with this input. The numbers in the boxes correspond to the section in which the step is discussed.

3.1. Instance selection criteria

This research focuses only on the delays that lead to delay propagation and whose effects can be
seen across multiple stations. Hence, not every delay found in the data fits the needs of this research.
Therefore, selection criteria are needed to select instances from the data. An instance refers to a
moment in the data when a delay propagation happened.

For a delay to be considered primary and propagated five conditions have to be met:

1. The primary train is delayed;

2. The train behind the primary train is delayed;

9
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3. The train in front of the primary delayed train is not delayed;
4. The primary train was not delayed at the previous station;

5. The train behind was not delayed at the previous station.

The first two conditions are needed to ensure that propagation of the delay from the primary to the
train behind could be happening. The third condition helps ensure that the primary delayed train is the
first to be delayed and that the propagated delays come from this primary delayed train. Also, both
trains cannot be delayed at the previous station (conditions four and five) to ensure propagation did
happen. Sometimes the train behind is already delayed for a few stations and then when the train in
front of it delays as well, it may seem like delay propagation, while it is not. To illustrate the conditions
Figure 3.2 show examples of how the conditions are met or not met.

5 minutes
Train t+1 Train 1-1
5 minutes

Train t Train t-2

Train t-4

=y

Normal operations g Q& [=] ng =] Qg =] Qg
8 minutes ~
Train t+1 Traint-1 g minutes 5 minutes
Train t Train t-2 Train t-4
Delay propagation TESY =y Y EISY EIEY
& minutes
Train t+1 Train t-1 & minut 10 minut
minutes
Train t minutes Train 1-2
Train in front nng nng nng @_
already delayed
@ i (-1 i+2 @
8 minutes _
Train t+1 Train t-1 5 minut
minutes
Train t Train t-2
Train behind

previous station

i-1

i+1

®;

@

Figure 3.2: Examples showing whether the delay propagation conditions are fulfilled. The colored lines show trains belonging
to the Blue or Red line and the arrow with the time represents the headway between the two trains. Note that the stations have
changed in the last example.

The first example shows normal operations, so the conditions are not met. In the second example,
trains t and t — 1 are delayed which can be inferred from the increased headway. Also, they were both
not delayed at the previous station and the train in front of train t was not delayed either because the
headway was still five minutes per normal operations. In the third example train t — 2, which is the train
behind train t — 4, is already delayed. Train t can, therefore, not be the primary delayed train anymore,
because it could have been influenced by the delay of train t — 2. The last example shows that train
t — 1 was already delayed at station i — 2 and so even though train t might become delayed at station
i, no delay propagation officially could happen, because train t — 1 did not become initially delayed
because of train t.

For each chosen instance of delay propagation, the following elements are collected from the data:

* The primary delay station
» The trains directly and indirectly affected by the primary delay
» The scheduled headway of the delayed trains

» The delay duration of the primary delay

@
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» The direction of the primary delay

» The line of the primary delayed train

» The arrival time of the train in front of the primary delayed train at the primary delay station
» The arrival time of the last affected train at the last considered station

The last two points help set the boundaries on the time window w of an instance. The time window
w of each instance is defined as the arrival time of the previous train at the primary station till the last
train affected by the delay at the primary delay station reaches the station that all affected trains across
all instances reach with a delay. To help understand Figure 3.3 shows an example of the determination
of the end time.

@ Primary delay station
' Stations reached by
P)Shady Grove Instance 1 affected trains of
different instances

------ me&C| P Rockville

P Twinbrook
Direction of delay

P) North Bethesda Instance 2

P|Grosvenor-Strathmore

b Medical Center S
23 & F
- K
XS Bethesda Instance 3 3© c,'o
b@ ) & &
S Py \3
e““ Friendship Heights \\:§‘
O
&
Q & D Cleveland Park |
N Qf\'/ Woodley Park
o :
4 A\O“ oo 11..~|f¥v.g,w
~
6}0\\ 9&" Dupont Circle
& & .
; c\ \»\\ Farragut North

Figure 3.3: Example of how the end of the time window of each instance is determined. The yellow dot represents the primary
delay station and the green dots are the stations affected trains of different instances have reached.

In Figure 3.3, the primary delay originates at the Dupont Circle station, but the affected trains of each
instance are still delayed at different stations. However, they all cross the same station with a delay:
Friendship Heights. This station is the last one to be considered for this instance. Consequently, the
arrival time of the final affected train at that station is set as the end time for that instance rounded up to
the nearest minute. The rationale for focusing on a selection of affected stations rather than the entire
line is that some stations experience delays only for certain instances. This results in significant vari-
ability in the delay impact at those stations, posing challenges in effectively capturing these variations
and training the model to produce accurate results. Further details can be found in subsection 4.3.1.

The aim is to find several groups of similar instances to train the model. Instances are alike when
the primary delay starts at the same station and travels in the same direction. They must start at the
same station and in the same direction to investigate properly the consequences of a specific delay.
Delays starting at different stations or in other directions could have different effects and are, therefore,
not comparable. The instances in a group are similar, while the instances in different groups must differ
in primary delay station, affected lines, and delay direction so that the model can be tested on multiple
parts of the case study network. The model configuration is the same for each group, but the training
on different parts of the network will result in different trained values for the parameters. These trained
values are, thus, tailored to the specific characteristics of each group.

3.2. Calculation of station vulnerabilities using the data

The vulnerabilities of the stations using the data are calculated by looking at the train movements at
each station. These train movements are all the trains passing through a station during the time window
w in the direction of the primary delay.

The vulnerability of each metro station is determined by looking at the number of delayed trains at a
station i using the same infrastructure k in the direction of the primary delayed train in this time window
w. The line on which the primary delay originates and the lines sharing infrastructure section k with
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the primary delay line are considered. Consequently, depending on the station and the instance, the
vulnerability is only determined by a selection of the lines running through the station. The vulnerability
of a station is determined per infrastructure section k at a station because it is assumed that only trains
that use the same infrastructure can propagate delays to each other. Trains using other infrastructure
at the same station should not affect the vulnerability calculations. An example of multiple independent
infrastructure sections is when stations have multiple levels with tracks and platforms.

Also, only the trains in the direction of the primary delay are considered, because it is assumed that
delays only propagate to the trains behind the primary delayed train as delays have the most impact
on metro stations nearby on the same line direction (Cats & Hijner, 2021). In other words, no cross-
platform delay propagation is considered in this research. It was chosen to look at the arrival delay
and not the departure delay because if a train arrives delayed at the next station the train is either the
primary delayed train or a delay was propagated to this train. When a train departs with a delay, it does
not mean it will propagate the delay if it can make up its delay.

Therefore, to determine if a train t is delayed, the time difference in arrival at station i between two
consecutive trains of the same line, t and t — 1, is calculated and represented as b, ;. Typically,
for trains traveling directly behind one another on the same line and in the same direction, this time
difference should be approximately equal to the scheduled headway m,,_; between trains t and t —
1. However, due to potential variability in service, deviations in headway between two trains could
occur without impacting overall network performance. A delay threshold parameter, denoted as §, is
introduced to account for these variations. This parameter is predetermined based on the specific
characteristics of the case study network. If the time difference between the arrival of trains t and t — 1
exceeds the sum of the scheduled headway m,,_; and the delay threshold §, the train t is considered
delayed. In such cases, the variable a;;,,, which indicates whether train ¢t was delayed during time
window w at station i, is set to 1. The accompanying equation to determine if a train is delayed is
shown in Equation 3.1.

= 3.1
0 otherwise (3.1)

Atiw

The vulnerability of station i is the ratio of delayed trains to all observed trains T;;,, stopping at a
station i using infrastructure k in the time window w of the instance in the direction of the primary delay.
Mathematically, the vulnerability of station i translates to Equation 3.2.

Tikw

t=1 QAtiw
vik,data = |Tk | (32)
ikw

The definition of each set, variable, and parameter is summarized in Table 3.1.

Table 3.1: This table shows the mathematical notation of sets, parameters, and variables used in the vulnerability calculations
from the data.

Sets and indices

N set of stations i€EN,jJEN

Tirew set of observed trains in the direction of the delay iE€EN,t €Ty Tyw EW
w set of observed train movements during time window w wew

Variables

Viraata  VUINerability of infrastructure k at station i calculated from the data 0 < Vikgara <1

Aiw whether train t arrives at station i with delay or not in time windoww  a;, € {0,1}

ber_s difference between the arrival times of trains t and t — 1 [seconds]

Parameters

Myp_q scheduled headway between trains t and t — 1 [seconds]

6 delay threshold [seconds]
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3.3. Susceptible-infectious-susceptible model of delay propagations

This section explains the standard SIS model in more detail in subsection 3.3.1. Knowing the basics,
how the traditional SIS model is transformed into a model that can be applied to estimate the vulnera-
bilities of stations in metro networks is explained in subsection 3.3.2.

3.3.1. SIS model basics

The Susceptible-Infected-Recover (SIR) model was the first epidemiological model of its kind (Ker-
mack & Mckendrick, 1927). The Susceptible-Infected-Susceptible (SIS) model was developed at the
same time as the SIR model and is used to study epidemics of diseases to which individuals could not
become immune. While the applicability of these models has mostly been in the fields of epidemiol-
ogy and communication, section 2.2 has shown that the applications of these models now also serve
transportation.

The basics of the SIS model define that each individual in a system is either in the susceptible
to a disease state or infected by the disease state. When an individual comes into contact with an
infected individual, it can transfer from the susceptible to the infected state. If this contact happens, the
infection rate governs whether an individual becomes infected. After an individual becomes infected
it has a recovery rate and will eventually transfer back to the susceptible state. The infection and
recovery processes are independent of each other. This process continues until one of two conditions
are met: 1. the system reaches an equilibrium, meaning the amount of individuals in each state stays
the same or 2. each individual is in the susceptible state as the disease has disappeared. If the model
is called heterogeneous, it means that the individuals are not the same and, therefore, have varying
characteristics that different model components take into account.

There are more versions of the SIR and SIS model. For example, the Susceptible-Exposed-Infected-
Recover (SEIR) model is an example where individuals also have an exposed state, meaning they first
go to the exposed state and then the infected state. Another example is that individuals can enter
(birth) or leave (death) the system. The standard heterogeneous SIS model is used in this research
because the model versions mentioned earlier do not apply. Furthermore, as stated in chapter 2, the
effects of disruption were found to be heterogeneous across metro stations (Zhang et al., 2021) and
so creating a heterogeneous SIS model as compared to a homogeneous SIS model is more realistic.
The translation of the heterogeneous SIS model to a metro network is explained in subsection 3.3.2.

3.3.2. SIS mathematical model for a metro network

As mentioned before, the SIS model is used in this research to create the model. The stations are
the individuals who are susceptible or infected. Stations can become infected by trains arriving with a
delay. In this research the model is heterogeneous, meaning each station recovers at a different rate
from the delay.

Table 3.2 shows all the different sets and variables used in the mathematical model in this research.
How this notation is used in the formulation of the model can be found in equations 3.3 through 3.9 with
the reasoning behind the formulations of each model component.

Network graph A network graph is created to resemble the stations and their connections. There are
a few options to choose from for the metro network representation. One of these options is the L-space.
The L-space is a network graph where the nodes are stations and all stations directly adjacent to each
other and connected by a service are connected by an edge (Derrible & Kennedy, 2011; Von Ferber
et al., 2009). This representation resembles the physical network but makes no distinction between
different lines. Another option is the P-space, which also represents the stations as nodes. However,
each station is connected to the stations that can be reached without a transfer (Derrible & Kennedy,
2011; Von Ferber et al., 2009). The P-space has been called the "space-of-service” (Luo et al., 2020)
and simplifies the network by focusing only on the relationships between stations. An example of both
representations is shown in Figure 3.4.
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Table 3.2: This table shows the mathematical notation of sets, parameters, and variables used in the model.

Sets and indices

N set of stations iEN,jJEN
K; set of independent sections of infrastructure for station i k€K, ieN
L set of lines in network lel

E set of edges that fulfill one of three conditions described in paragraph Link weight e € E

P set of primary delay stations PEP,PSN
S set of stations indirectly connected to a station i through a transfer station SES,SCN
Variables

wi; weight of link between stations j and i [minutes]
h(p,j) number of stations between primary delay station p and station j in real network [stations]

lik infection rate of section k at station i []

T; recovery rate of section k at station i [

Viemoder  VUINerability of section k at station i based on the model [-]
Parameters

gj indicates whether a station j is a transfer station or not g; €{0,1}
Ui number of tracks in section k at station i [tracks]

dyi traffic density of section k at station i [%]

ki scheduled headway of line [ running on section k at station i [minutes]

0 heterogeneity of recovery rate [-]

a primary delay duration of instance [minutes]

y delay propagation scalar [-]

a, number of lines allocated to an edge e [lines]

Zig to be trained constant for the infection rate of station i []

Cik to be trained constant for the recovery rate of station i [

Example
network

L-space P-space

Figure 3.4: Possible representations of a PT network. For the example network the colors resemble the lines. In the L-space
network, lines are not considered separately. In the P-space network, the colors do represent the lines, with in some cases an
overlap if multiple lines run over the same track (Von Ferber et al., 2009).

In Figure 3.4, the blue line seems to disappear, but the P-space makes no distinction between lines.
For that reason, the blue line was 'absorbed’ into the red and white edges. The P-space representation
allows for a more elaborate analysis of specific routes and the influence of transfer stations on the
network. In other words, the P-space offers a more service-relevant network representation. Also, the
P-space highlights the relationships between stations in terms of their connectedness, which works
well with the exposure part of the vulnerability definition used in this research. As the perspective of
this research is from the operational point of view, it was decided to use a non-directional P-space
network representation. However, the L-space network representation is used once for the link weight
adjustment calculations, described in the paragraph Link Weight.

Link weight A weight is assigned to each link in the network. The mathematical definition of this link
weight is shown in Equation 3.3, where j and i represent two connected nodes in the P-space. The
infection rate is partially defined by the link weight, which is explained in more detail in the paragraph
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Infection rate below.

Wij = T (33)
ij

The link weight is the inverse of the travel time t;; between nodes i and j. The idea behind this
definition is that the propagation strength of a delay diminishes with increasing distance (Jia et al.,
2022). Hence, the further away two stations are from each other, the less chance a delay starting at
station j has to reach station i.

Every link is initially defined as shown in Equation 3.3, but depending on the instance used for model
training w;; is adjusted for specific edges. Three types of edges are adjusted by increasing their weight,
with an example to clarify the different types shown in Figure 3.5:

1. Edges between the primary delay node and all other nodes in the direction of the delay on the
same line (P-space);

2. Edges between the nodes that are in the direction of the delay and affected by the primary delay
(L-space) ;

3. Edges that are part of the L-space path between two nodes and the path between the two nodes
includes the primary delay node.

Direction

delay
—_—

{ b Example
network

P-space

Figure 3.5: Example network and P-space showing which edge types weight would be adjusted with the numbers representing
the described edge types. The yellow node is the infected node in the example.

The delay affects those edges and their edge weights must be adjusted to reflect the increased
chance of infection given the instance. Type 1 and 2 edges are affected directly. Type 3 edges are
affected when the train reaches the primary delay station and are, thus, only partially affected by the
primary delay. The edge weights that are adjusted are part of set E. First, the weights of the type 1
and 2 edges in the P-space are changed using the formula shown in Equation 3.4.

Wij*(X*ae

Y (3.4)

Wij = Wij +

The top part of the fraction represents the factors influencing the impact, while the lower part rep-
resents the effect of the delay diminishing with distance. The higher the duration of the primary delay
a the more the weights are increased as a more severe delay causes more trouble (Cats & Jenelius,
2018; Marra & Corman, 2020). a, represents the number of lines passing through a station. The com-
plexity of operations increases with multiple train operation routes (Lu et al., 2021). Hence, if several
lines go through a station, the link weights of the edges connected to the station should increase. Also,
the further away a station is from the primary delay station, the less impact the delay will have (Jia
et al., 2022). This is reflected by the h(p, j), which defines how many nodes are between the primary
delay node p and the currently considered node j in the L-space, capturing the space component of the
delay propagation. The parameter y is a scalar and helps capture the delay propagation characteristic
of how quickly the propagation effect diminishes with time. This scalar is needed because it has been
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found that the delay impact differs depending on the time of the day among other factors (Wang et al.,
2019). This parameter is trained.

Finally, the edge weights in the P-space of type 3 are adjusted. The L-space path between, which
includes the primary delay node, is determined. It is then calculated which percentage of the edges
in the L-space path is before the primary delayed station and which after. The initial link weight is
then multiplied by the two percentages. The link weight portion reflecting the edges after the primary
delayed station is adjusted using Equation 3.4. That value is then added to the unaffected portion of the
link weight. The consequence of Equation 3.4 is that where previously all link weights were between
0 and 1, links that are part of types 1-3 could now have a weight > 1. Therefore, all the edge weights
are normalized to keep the infection and recovery rate within the approximately same range of values
using Equation 3.5.

Wij

S — (3.5)
ZIiV=1 Zyﬂ Wij

Wij =

This normalization formulation helps ensure the relative importance of the different edges is pre-
served. Other normalization techniques such as the max-min method would force edges to be 0, which
is not desired in this research.

Infection rate The infection rate is the exposure of a station to disturbances and, hence, represents
the first part of the vulnerability definition given in section 1.1. All trains arriving at station i can carry
a delay and infect the station. However, the further away a delay started, the more distance the delay
had to travel to infect the station. As mentioned earlier, the propagation strength diminishes with in-
creasing distance; hence, the chance of infection decreases with increasing travel time. At the same
time, transfer stations receive many more trains than non-transfer stations as they serve multiple lines
increasing the chance of infection (Lu et al., 2021). Moreover, stations connected to a transfer station
can also be infected by delays from stations on other lines connected to the transfer station. This delay
propagation between lines can only happen for trains using the same infrastructure, which is in line
with the vulnerability calculation described earlier in Equation 3.2. Thus, while a station allows pas-
sengers to transfer to other lines, that does not make it a transfer station in this model if the other lines
run on another infrastructure section k. There is no delay propagation between trains using different
infrastructure at the same station. As a result, each section k of station i has an infection rate. This
reasoning leads to the infection rate equation shown in Equation 3.6.

]
b = Z(Wji + (wj; * Z wgj * g;)) + Zix (3.6)
j SES,S*J,I

In Equation 3.6 three types of stations are considered. The infection rate i;;, is determined for
section k at station i. The stations j are the stations station i is directly connected to in the P-space,
so no transfer is needed. The stations s are not directly connected to station i but can be reached by
traveling through a transfer (g; = 1) station j that uses the same infrastructure for both lines.

For each station i the directly connected stations j, which have a direct propagation route, are
considered first. This direct propagation is represented with the first w;; in the equation. Then, there is
the possibility station i is connected to a transfer station j. The propagation through transfer stations is
represented in the inner set of brackets. For each transfer station (g; = 1) the link weights of stations s
are summed, which are the stations that station i has no direct link with. The sum is then multiplied by
the link connecting the transfer station to station i. g; has to be 1 for a delay on another line to affect
the infection rate of station i. After all the summations, a constant z;;, is added to the infection rate,
which is a trained parameter, to account for any unobservable factors for that section k.

An example network showing how Equation 3.6 works is displayed in Figure 3.6. In this example,
the station only has one section for simplicity.
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Figure 3.6: Example P-space network with a red and green line showing the difference between the nodes i, j; and j,, and s.
Nodes j; and j, can be reached directly from node i, while to reach node s, a transfer is required at node j;.

In Figure 3.6 the infection rate is calculated for station i. From station i stations j; and j, can be
reached without transfers as they are on the same green line, so these link weights are added directly.
For station j; g; = 1, because that station is also connected to the red line, which uses the same
infrastructure. For that station j; the station s it is connected to is considered as a possible indirect
source of delays. Hence, those link weights are also included in the infection rate of station i.

Recovery rate The recovery rate highlights the second part of the vulnerability definition given in
section 1.1 and, therefore, is the ability of a station to cope with a disturbance. No instances are
considered where rescheduling strategies such as short-turning or reordering were used. Therefore,
how well a station i recovers after being infected is dependent in this model on two factors: 1. number
of tracks and 2. the traffic density. The assumption is that more tracks result in a better recovery rate
as operators have more flexibility in appointing trains to a track. Also, it has been found that the service
frequency of a line influences the impact (Marra & Corman, 2020; Yap & Cats, 2020). A disturbance
affects lines with higher service frequency more than lines with lower service frequency. There is less
flexibility to use recovery strategies for stations with a higher traffic density. Accordingly, a higher
traffic density leads to a lower recovery rate. The recovery rate is calculated for each independently
operating section of infrastructure k at station i. The number of tracks u;; and the traffic density dy;
might differ per section due to different serviced lines. Therefore, the traffic density and the flexibility of
the infrastructure are considered per section at a station. All these considerations lead to the equation
for the recovery rate presented in Equation 3.7.

0
Ui

Tik = Cix + (d_kl) (37)

In Equation 3.7 dy;, the traffic density, is calculated using Equation 3.8. This equation calculates
the number of trains stopping at a station per hour per infrastructure section k.

dii =

3.8
— Mg (38)

In Equation 3.8 hy;; is the scheduled headway of the line I running on the set of tracks k at station
i and, hence, the formula calculates the number of trains stopping at station i using infrastructure
segment k per line [ and sums those values. The scheduled headway is used instead of the actual
headway because the actual headway might differ among trains, while they are expected to be the
same. These headway differences are due to traffic operators changing the headways in response to
the disturbance (Cadarso et al., 2013). The actual headways, therefore, do not necessarily paint an
accurate picture of the situation at the time.

Combining Equation 3.7 and Equation 3.8, it is calculated per independent set of tracks k at a
station i how much traffic passes, dy; and divided by the number of tracks u,;. Stations with more
tracks are less vulnerable as the traffic can spread out more. Stations with a high traffic density are
more vulnerable as they have to deal with more traffic and, hence, are less flexible.

6 is introduced in Equation 3.7 for the heterogeneity in the recovery rate of stations. A high value
for this parameter leads to more heterogeneous recovery rates, while a low value makes the recovery
rates more homogeneous across stations. This parameter is trained to see how heterogeneous the
recovery rates of the stations are. Another parameter that is trained is c;;. This constant should capture
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any unobservable factors influencing the recovery rate, just like z;, does for the infection rate. Both 8
and c;;, are 20.

Vulnerability equation Equation 3.9 shows how the vulnerability of station i is calculated for a spe-
cific section k. This equation reflects the definition of vulnerability given earlier in section 1.1, where
vulnerability is the difference between exposure to a disturbance (infection) and the ability to cope
with the disturbance (recovery). To that end, the vulnerability equation of the model is also written in
a way where the vulnerability is determined by the difference in infection and recovery, as shown in
Equation 3.9.

0 = =Tk * Vigmoder + (1 — Vikmodet) * lik (3.9)

This formulation of the vulnerability works because a high recovery rate value would lead to a vul-
nerability value close to 0. Similarly, a high infection rate value would lead to a vulnerability value closer
to 1. As a result of a vulnerability value per k, a station could have multiple vulnerability values if it has
several infrastructure sections that are all part of the training.

3.4. Model training and testing metrics
The model also needs to be trained and tested. The parameters that are trained are summarized below:

« y: parameter in the link weight equation capturing the diminishing effect of the delay propagation;
* z;,. parameter in the infection rate equation correcting for any factors currently not considered;

» 0: parameter representing how heterogeneous the recovery rate of stations are in the recovery
rate equation;

* c;i. parameter in the recovery rate equation correcting for any currently not considered factors.

The training is done over a group of similar instances, previously explained in section 3.1. The
instances are randomly split into two groups: 1. training instances and 2. testing instances. The first
group is used to train the model and contains 80% of the instances. The second group tests the trained
model and has the remaining 20% instances. The mean squared error is computed for each instance
used in the training. This calculation is done based on the vulnerabilities calculated from the data and
determined by the model, using the formula shown in Equation 3.10, where N is the number of all
stations of all affected lines. The objective function used in the training is to minimize the sum of the
MSE of all instances F, which is shown in Equation 3.11.

N
mse = Zi=1(vik,dataN_ vik,model)z (310)

F
minz MSE = stef (3.11)
=1

After the training, the trained parameters are used as input for a testing instance to see if the trained
parameter values lead to vulnerability values similar to the data values of the testing instance. Again the
MSE is used to see how close the vulnerabilities from the model are to the vulnerabilities based on the
data. This MSE, however, is calculated using only the considered stations. Additionally, the average
vulnerabilities of the model and data are compared and the differences in vulnerability between the
data and model are determined for each station. All of this is done per k if a station i has multiple
infrastructure sections and they are part of the training, which follows Equation 3.9.




Application and case study description

This chapter sheds light on how the model will be applied to an existing metro network, the case study.
First, the data itself and its processing as well as how the search for instances was conducted is intro-
duced in section 4.1. Then, how the model was implemented and trained is described in section 4.2.
Lastly, the experiments to make certain modeling decisions are discussed in section 4.3. The experi-
ment results motivate the chosen model configuration.

4.1. Case study

This section discusses the case study data used and its processing. The Washington Metropolitan
Area Transit Authority (WMATA) provided the data, which is about the Washington DC metro network
displayed in Figure 4.1.
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Figure 4.1: Map of the Washington Metropolitan Area metro network (Washington Metropolitan Area Transit Authority, 2022).
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The Washington DC network currently consists of 98 stations, with the last 7 stations opened at the
end of 2022. These stations are served by six different lines of which the Gray, Blue, and Orange share
a portion of the infrastructure as do the yellow and green lines.

The available data ranges from 2019 to 2022. The year 2019 was chosen to exclude any influence
of COVID-19 on the network and its operations. The headway was increased during COVID-19 as the
number of passengers decreased. Larger headways also meant it was less likely for trains to propagate
any delays leading to potentially not enough instances to consider in this research. Which data files
were used and how is explained in subsection 4.1.1. Afterwards, it is explained in subsection 4.1.2
how the groups of instances were selected.

4.1.1. Data description
Two data files from WMATA were used to perform this research. These files are the Automatic Ve-
hicle Location (AVL) data from 2019 and the station information data. The station information data
was supplemented with information from the WMATA website. The upcoming paragraphs explain the
processing of each data file.

Station information From the station information file, the station names and their station code are
used in this research. While the station information includes all stations open right now, six stations on
the Silver Line were not open yetin 2019. Therefore, these six stations were not considered in the study
and were deleted from the station information file. Furthermore, some stations in the network have an
upper and lower level, resulting in two station codes for those stations. These stations serve multiple
lines, which are split between the levels. The WMATA website was used to see what the infrastructure
looks like at those stations.

Automatic Vehicle Location data The Automatic Vehicle location data file contains information
about when each train reached the stations on its route and at what time. This data file only con-
tained information about August through December. However, a part of the Blue and Yellow lines were
under maintenance in August, so this data was excluded. Also, there are data points for the station
Potomac Yard in the Automatic Vehicle Location (AVL) data. This station was not open yet and so these
data points were deleted. Moreover, the station codes in the AVL data for stations that previously had
two station codes were changed to the one station code from the station information file. Then, the
AVL data was used to determine the scheduled headway of each line at the time of the primary delay
instances. Lastly, to make the vulnerability calculations easier all the train movements were sorted
based on station, line, and direction.

4.1.2. Instance selection from the data

The data was searched for instances with a similar primary delay to train and test the model. The aim
was to collect at least 10 similar instances that showed that delay propagation happened between the
metro vehicles running on the same infrastructure, irrespective of their lines. The 2019 AVL dataset was
divided into weeks. Then it was determined for each train of each day of each week if it propagated
its delay to another train to make searching for instances easier using the conditions described in
section 3.1. The primary delay had to be at least five minutes. A delay smaller than five minutes has a
limited delay propagation effect. Itis more interesting to consider the cases where the delay propagates
and the affected trains stay delayed for a few stations. The delay could also not be a very high value,
because a too-high delay duration would cause the traffic controllers to intervene with measures not
modeled at the moment such as short-turning.

Also, maintenance work is done all the time on the network with station closures as a possible
consequence. Hence, an important criterion for the instance selection was that all stations were open
on the lines considered in the case to ensure a complete picture of the effects of the delay propagation
on the considered lines.

Ultimately, two groups of instances were used to train and test the model. The first group has 10
instances with a primary delay starting at the King St-Old Town station. This group of instances contains
both Yellow and Blue trains delayed in the direction of Greenbelt and Downtown Largo respectively. The
stations considered are between King St-Old Town and Rosslyn, and King St-Old Town, and L'Enfant
Plaza as shown in Figure 4.2.
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Figure 4.2: Map showing which stations are considered for group 1. The arrows indicate the traveling direction of the considered
train movements.

The second group also has 10 instances with the primary delay starting at Stadium-Armory station.
Blue, Silver, and Orange trains are delayed in the direction of Franconia-Springfield, Wiehle-Reston
East, and Vienna respectively. The stations between Stadium-Armory and Rosslyn are considered
and shown in Figure 4.3.
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Figure 4.3: Map showing which stations are considered for group 2. The arrow indicates the traveling direction of the considered
train movements.

An overview of all groups with more information about the specific instances used in this research
and how the groups were split can be found in Appendix B. The vulnerabilities were calculated using the
data for each of the instances used in each group. Those values were used in the training or testing of
the model through the MSE calculations. For the vulnerability calculations, the delay threshold was set
to two minutes. Any delay smaller than two minutes is attributed to service variability. The vulnerabilities
of the not-considered stations were forced to be 0. The stations cannot be removed from the model
as they are needed to construct the graph, because the edge weights and infection rate values are
calculated from the graph links. The groups chosen to test the model contain instances that only
influence one section k at stations with the currently considered stations. Subsequently, the stations,
which could have multiple vulnerability values due to several infrastructure sections, only have one
vulnerability value.
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4.2. Model implementation

A few steps were taken to train the model. The Washington network had to be created to calculate the
infection and recovery rate of each station, which is explained in more detail in subsection 4.2.1. The
settings of the model will be outlined in subsection 4.2.2.

4.2.1. Network creation

A P-space and L-space network graph had to be created to train the model parameters. This was done
using the NetworkX library in Python. In previously done research, the needed P-space and L-space
graphs were created using NetworkX and made available to any user (Cats et al., 2019). These P-
space and L-space files were used to create the necessary network graphs. The labeling of the nodes
in the L-space and P-space was not in the same order, so adjustments were made to make them the
same. Each of the edges in the L-space and the P-space graph got the travel time between two nodes
as an attribute. These travel times were obtained from the same source. The L-space travel times
were directly obtained from the same dataset and the P-space travel times were calculated based on
the L-space. Other attributes given to the nodes were whether they are transfer stations, meaning here
passengers can transfer to a train from another line that runs on the same set of tracks and comes from
the same direction but when leaving the station will travel to another station than the trains of the other
lines. Example stations are Stadium-Armory (all lines use the same infrastructure, but the Orange line
goes in another direction in the east direction) and Pentagon (the Blue and Yellow trains use the same
infrastructure at the station, but split when they go north).

4.2.2. Training settings

After all the data was prepared and the vulnerabilities were calculated for each instance, the model
was trained on each group of instances. In a group of instances, 80% were used to train the model
and 20% to test it.

To train the model differential evolution from the Python package SciPy was used. SciPy is a global
optimization algorithm designed to solve non-linear and non-convex problems (SciPy, n.d.). As the
problem is non-linear and non-convex a traditional gradient-based method would struggle. The idea of
the algorithm is that it maintains a population of candidate solutions that evolve over iterations. These
candidate solutions are vectors of parameters. Each iteration the algorithm will mutate a randomly
chosen candidate vector and recombine it with the current candidate vector to create a new vector.
These two vectors will then compete and the vector with a better objection function value will enter the
population. The algorithm will stop when a maximum number of iterations is reached or the desired
precision is achieved.

To recap the following parameters were trained and they have the following bounds:

 y: parameter in the link weight equation capturing the diminishing effect of the delay propagation.
The bounds are [0, 2];

* z;. parameter in the infection rate equation correcting for any factors currently not considered.
The bounds are [0, 0.5];

» 0: parameter representing how heterogeneous the recovery rate of stations are in the recovery
rate equation. The bounds are [0.5, 2];

* c;: parameter in the recovery rate equation correcting for any factors currently not considered.
The bounds are [0, 0.5].

The parameters y and 8 cannot be negative, because in the case of y a delay always travels forward
and 6 is an exponent that should enlarge or decrease an effect. c;, can also never be smaller than
zero, because it is meant as a variable that captures any additional measures taken to improve the
situation in the network. z;, needs to be a positive value to capture the effects of a train having more
effects on the operations than the infection rate would otherwise capture.

The range of the ¢;; and z;;, was chosen because much larger values would lead to model over-
fitting. Instead of capturing the underlying patterns in the data, the training algorithm would try to find
a combination of parameters making the model 0.0001 more accurate for the vulnerability values. A
low value for these two parameters would mean the model has to barely adjust to get close to the
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vulnerability values from the data. High values would mean that one or multiple factors are not taken
into account yet by the model and the parameters have to adjust for this. The range for y and 6 was
determined through experimentation. A low y means the edge weights are barely adjusted and this pa-
rameter would have limited influence on the infection rate. A high value for y means the edge weights
are adjusted and the infection rate of stations with adjusted edges will increase. Similarly, & must be
at least 0.5 to force the model to use the parameter. Otherwise, the model makes the parameter 8 0
and tries to compensate everything with the constants c;; and z;;,. If a high value is trained for 6 the
recovery rates of all the stations in the network are not similar at all and the model tries to increase
these differences. A low value, on the other hand, would mean the recovery rates are forced to be
similar and the difference between the stations is negligible.

4.3. Model configuration

The experiments described in this section were conducted to make model configuration decisions us-
ing the case study network. Each experiment involved modifying one specific aspect of the model
while keeping others consistent with the basic model configuration. The basic model configuration,
introduced in subsection 3.3.2, is summarized as follows:

» Only stations reached by all affected trains are considered during training;
» The network is represented as an undirected graph in the P-space.

An overview of all experiments and the corresponding model configurations is provided in Table 4.1.
Each experiment tested variations of one model element to analyze its impact while retaining the shared
characteristics of the basic model configuration. In other words, for experiment 1 and 2 the first model
configuration corresponds with the basis model.

Table 4.1: An overview of all the experiments to make the model configuration choices. The basis model configuration is the
same across experiments and corresponds with configuration 1 for experiments 1 and 2.

Model configuration 1 Model configuration 2
Experiment 1 Stations reached by all affected Al stations of all affected lines
(subsection 4.3.1)  trains considered in the training considered in the training
Experiment 2 Undirected graph of the .
(subsection 4.3.2) P-space Directed graph of the P-space

4.3.1. Station configuration

As briefly explained in section 3.2, a choice about which stations to include in the model training had to
be made. The options were to either include the stations that each affected train passed with a delay
or all the stations of the affected lines. In the first case, only a small selection of the stations would
be included. The advantage of this smaller selection is that the vulnerability values range for these
stations is small. Consequently, it will be easier for the training algorithm to find parameter values that
fit these vulnerability values. A disadvantage of this approach is that a part of the delay propagation
picture disappears. If a network operator uses this model in the future, they will not have the full picture
of the delay propagation situation. However, the model might not be able to handle the situation where
all stations are considered. As not every station is passed by delayed trains in each instance the range
of vulnerability values is much larger. Hence, the trained parameter values must work for a wider range
of values, which is much harder to do as the model parameters are designed to increase or decrease
the infection rate and recovery rate values the same for each station across all instances.

This trade-off of both model versions was experimented with. For both models the same training
settings were used, such that the only difference is the number of stations included in the training. The
training results of this experiment can be found in Table 4.2. Again, the MSE values in Table 4.2 were
calculated by Equation 3.11.

Table 4.2: Training results for experiment 1 using group 1: King St - Old Town.

Stations reached by affected trains with delay  All stations of affected lines
MSE 0.022 0.141
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The model performance with the configuration where only the stations reached by an affected train
with delay is better. Its MSE value is over 0.100 lower than for the model configuration where all stations
of all affected lines are included. To gain more insights into where this difference in performance comes
from the trained values for the parameters are investigated. These values are presented in Table 4.3.

Table 4.3: Trained parameters for group 1: King St - Old Town when either a limited set of stations is considered or all stations
of all affected lines.

Stations reached by affected trains with delay All stations of affected lines

14 0.449 0.324

0 0.500 0.500

Stations Zik Cik Zik Cik

Arlington Cemetery 0.254 0.451 0.500 0.170
Braddock Road 0.390 0.007 0.093 0.240
Crystal City 0.264 0.248 0.254 0.398

King St-Old Town 0.303 0.495 0.125 0.344
L'Enfant Plaza 0.222 0.127 0.039 0.105
Pentagon 0.269 0.417 0.248 0.227
Pentagon City 0.412 0.457 0.115 0.158
Reagan National Airport  0.217 0.378 0.235 0.213
Rosslyn 0.150 0.358 0.243 0.433

The y value is lower for the second configuration, which means the second configuration has lower
infection rates. Also, for some stations where for the first model configuration the z;, was much higher
than the c¢;;, value, meaning during training it was decided to compensate the infection rate values more
than the recovery rate values, for the second model configuration it is the opposite. An example of this
is the Arlington Cemetry station. Therefore, the model makes other decisions depending on the model
configuration.

While the model version where all stations are included gives a more complete picture of the situa-
tion, that model configuration does not perform well. For now, the model version with fewer stations is
chosen, but the limitations of this approach are recognized.

4.3.2. Network graph configuration

Another model configuration consideration experimented with was whether the graph used in the cal-
culations should be undirected or directed. To help the explanation, let us define two nodes, u and v,
and two directed edges and an undirected edge between nodes u and v. Also, the delayed train travels
from node u to node v.

With an undirected graph, stations u and v would add the edge weight of edge [u,v] to their infection
rate. However, a delay is directional and the u station should not feel the same infection chance from
that edge as station v. Node u should possibly not even feel the delay effects from that edge as the
trains have already passed station u. With a directed graph node u would add the weight of the edge
[v,u] to its infection rate, while node v would add the weight of the edge [u,v]. As the delay travels from
node u to node v, the edge weight of edge [u,v] would be increased, while the edge weight of edge
[v,u] would stay the same. Then node v would feel the effects of the delayed train traveling from u to
v, while node u does not.

The same training settings were used for both model configurations, such that the only difference
would be the undirected and directed graph. The training results are presented in Table 4.4 and deter-
mined by Equation 3.11.

Table 4.4: Training results for experiment 2.

Undirected P-space graph  Directed P-space graph
MSE 0.022 0.019

The performance difference between the two model configurations is small. The model configuration
with the directed P-space graph performs a bit better. Where the performance difference is coming from
will be better understood by looking at the trained parameter values.
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Table 4.5: Trained parameters for group 1: King St - Old Town when the graph is undirected and directed.

Undirected graph Directed graph

y 0.449 0.324

0 0.500 0.500

Stations Zik Cik Zik Cik

Arlington Cemetery 0.254 0.451 0438 0.071
Braddock Road 0.390 0.007 0.281 0.100
Crystal City 0.264 0.248 0.250 0.179

King St-Old Town 0.303 0.495 0.184 0.368
L'Enfant Plaza 0.222 0.127 0.303 0.435
Pentagon 0.269 0.417 0.373 0.249
Pentagon City 0.412 0.457 0.266 0.301
Reagan National Airport  0.217 0.378 0.358 0.207
Rosslyn  0.150 0.358 0.218 0.345

The y value for the model configuration with the directed graph is lower than when the graph is
undirected. Also, there is a clear change in trained values for both z;, and c;;, while the value 6 has
stayed the same, implying that any difference in model performance can be attributed to the other
parameters. For example, when the graph is undirected the c;;, value for the station Arlington cemetery
is very high. When the graph is directed, however, the value is almost 0. The opposite can be seen for
the LEnfant Plaza station, where the c;;, value is much higher for the directed graph model configuration
than for the undirected. The training algorithm makes different choices when the graph is undirected
versus directed. Whether the graph is undirected or directed will influence the infection rate of each
station, leading to different trained values that fit the data the best.

The largest disadvantage of the directed graph approach can be explained by considering the King
St-Old town station. At this station, the primary delay started for group 1. It would have, therefore, no
incoming edges with the edge weight adjusted if the graph is directed. As a result, its infection rate will
be too low to reflect that it also receives trains with a delayed arrival. The model will then use z;;, to
increase its vulnerability. In the future, the model will be improved and the boundaries on the constants
will be tightened. The structural disadvantage of the directed model version will persist. Therefore, the
undirected graph model version was used for the remainder of this study.






Results

This chapter discusses the study results based on the chosen model configuration. First, an analysis
of the data and the model itself is presented in section 5.1. Afterwards, the testing results of group 1
are discussed in section 5.2 followed by the training and testing results of group 2 in section 5.3. The
results of both groups are compared in section 5.4. The sensitivity analysis is presented in section 5.5.
Then, the benchmarking results are shown in section 5.6. The chapter ends with a summary of the
findings in section 5.7. All instances belonging to group 1 have a unique number between 1 and 10,
making it easier to refer to specific instances. Similarly, all group 2 instances have a unique number
between 11 and 21.

5.1. Exploratory data and model analysis

The available data and the individual model component’s results are explored in this section. Insights
from the data are discussed in subsection 5.1.1. An exploratory analysis of the individual model com-
ponents is given in subsection 5.1.2.

5.1.1. Insights from data

The months September through December were searched for suitable instances. After all the possible
instances were collected, stations with a minimum of 10 primary delays resulting in delay propagations
in one direction were searched for. A minimum of 10 delay propagations was required to have sufficient
data to train and test with. How many instances were found per station is presented in Figure 5.1.
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Figure 5.1: Graph showing the number of delay propagations per station and direction.
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Stations with less than three delay propagations were not included in the graph for readability, mostly
stations serving only the Red line. These stations are included in the statistics in the graphs presented
later. Figure 5.1 shows very few stations have more than ten instances of delay propagation in one
direction. While this low number could suggest that the Washington Metro network handles delay and
possible propagations well, it also limits the data availability for this research. The only stations with
more than 10 instances in one direction are the King St-Old Town station in the north direction (which
is group 1), the East Falls Church station in the east direction, the Stadium-Armory station in the west
direction (which is group 2) and the Rosslyn station in the east direction. Consequently, only four options
were available to use in this research. The group of instances for Stadium-Armory is the only group in
the west/south direction, so it was important to use this group of instances for direction diversity. The
King St-Old town instances were chosen to diversify the lines considered in model training. The East
Falls Church and Rosslyn station cover the same lines as the Stadium-Armory station.

It is interesting to note that the stations with the highest number of delay propagations are transfer
stations, which matches the findings of the studies done by Cats et al (2016) and Lu et al. (2021).
Figure 5.2 sums up all the delay propagations per line per direction.
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Figure 5.2: Graph showing the number of delay propagations per line and direction.

Figure 5.2 shows that the most delay propagations for the Green line happen in the northern di-
rection. However, the Green line has much fewer delay propagations compared to the Yellow line.
The Yellow line has to merge with/split from another line at three separate stations. Its operations are
more complicated. The number of delay propagations in both directions for the Yellow line is almost
the same. The number of delay propagations is higher in the south and west direction for the Blue line.
The Blue line has to merge with another line at two stations in that direction, making operations more
difficult as traffic density increases. The east direction dominates the Silver line delay propagations. In
that direction, the Silver line becomes part of ever increasing traffic density. The Silver line first merges
with the Orange line at East falls church station and the Blue line is added at Rosslyn, further increasing
the traffic density that the Silver line is part of. The Orange line has a bit more delay propagations in the
west direction. It does have to merge with the Blue and Silver lines all at once at the Stadium-Armory
station, while in other parts of the network, it is just the Silver line it shares the infrastructure with.
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Figure 5.3: Graph showing the total number of delay propagations per line.

Figure 5.3 shows all the delay propagations summed up per line. It can be seen from Figure 5.3 that
the Blue, Silver, and Orange lines have the most delay propagations. These lines also share most of
their infrastructure. The Blue line, which shares most of its line with other lines, has the highest number
of delay propagations, followed by the Silver and Orange lines. The Yellow line also shares most of its
infrastructure but with fewer other lines compared to the Blue, Orange, and Silver lines. The Green line
shares around half of its infrastructure and, thus, is second to last in the number of delay propagations.
Having to share infrastructure with other lines, thus, means delays propagate more easily. This insight
follows the findings from the research done by Lu et al. (2021) that multiple train routes make daily
operations more complex. The Red line, which shares none of its infrastructure, has by far the least
number of delay propagations. At the same time, this low number also means that the model could
not be tested on this part of the network. A minimum of 10 instances was required to ensure enough
instances could be used for training and testing. For none of the stations serving the Red line even
close to 10 instances were found.

5.1.2. Analysis model components

It is also interesting to look at some model components. The infection and recovery rates of the case
study network stations are analyzed in more detail below.

Infection rates The infection rates of all the stations in the Washington metro network are shown in
Figure 5.4. The z;, values are not added to the infection rate values yet and no edge weights were
adjusted. As a result, the infection rates presented here represent the baseline values, calculated
solely based on the initial edge weights of the undirected P-space graph, without incorporating any
adjustments from parameters or specific instances. Additionally, for stations with multiple infrastructure
sections only the highest infection rate value is displayed for readability.
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Figure 5.4: Graph showing baseline infection rates of each station in the case study network. For stations with multiple infras-
tructure layers, only one value is shown. The colored circles indicate the stations belonging to one of the two groups.

The transfer stations exhibit higher infection rates because the formulation of the infection rate
amplifies how well stations are connected. Also, stations close to the transfer stations will have a
higher infection rate because of their close connection to the transfer station. The central stations are
well connected to most other stations and the travel times are low because of the central station location.
The edge weights of these stations are among the highest in the graph. Stations on the outskirts of
the network are less connected to the other stations and the travel times are higher resulting in lower
edge weights. As a result, central stations have higher baseline infection rates compared to non-central
stations. The further the station is from the center, the lower the infection rate.

A downside of the infection rate equation (Equation 3.6) is that when a primary delay starts near a
terminal station a high z;; is needed to increase the infection rate for that station above the terminal
stations’ infection rate. Another downside is that the stations near the end of lines often have a high
recovery rate because fewer lines run through those stations. The z;;, might need to compensate for
the infection rate of those stations with a high value to overcome this higher recovery rate and have a
high vulnerability value. Depending on the boundary set for the parameters and the factors included
in the model, the z;;, might or might not be able to compensate for the infection rate of those stations
enough.

Recovery rates The stations in the middle of the network are expected to have a low baseline re-
covery rate because they have a high traffic density due to more lines serving those stations. Stations
near the end of lines, on the other hand, are expected to have a high baseline recovery rate as they
often serve only one line. These expectations are based on the recovery rate equation (Equation 3.7)
without the parameters 6 and c;,. The baseline recovery rates of the Washington metro network for
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instance 3 are presented in Figure 5.5. Also, for the stations with multiple recovery rate values, one
value was chosen to show on the map for readability.

Washington Metro Network - Recovery Rates Instance 3
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Figure 5.5: Graph showing recovery rates of each station for instance 3.

Stations serving the same lines have the same recovery rate, except for Reagan National Airport,
which has three instead of two tracks. Also interesting to note is that the stations serving the Red line
and the Green and Yellow lines have the same recovery rate, which are light blue nodes in the top half of
the figure. The Red line operates independently on its tracks with a short headway (6 minutes), leading
to a traffic density comparable to that of the Green and Yellow lines, which achieve together a similar
traffic density despite having longer headways (12 minutes both). Traffic density is a very influential
variable of the recovery rate. The scheduled headways at the time determine the traffic density, which
means it can differ from instance to instance. To show how the headway influences the recovery rate,
Figure 5.6 shows the recovery rates for instance 6.
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Washington Metro Network - Recovery Rates Instance 6
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Figure 5.6: Graph showing recovery rates of each station for instance 6.

Figure 5.5 and Figure 5.6 show for most stations a very similar recovery rate. However, the influence
of traffic density can be seen in some parts of the network. For example, in Figure 5.6 the stations from
L'Enfant Plaza to Greenbelt have a lower recovery rate than in Figure 5.5. This difference is because
the headway at the time of instance 6 was lower for the Yellow and Green lines. Therefore, the traffic
density was higher at the time of instance 6 than at instance 3. The graph will then also be different for
instances with completely different headways from instances 3 and 6. This difference in recovery rates
will also influence the model training. The model might have to compensate more for one instance
than for another, but the model needs to find a parameter fitting both instances. The recovery rates
are, therefore, almost completely dependent on the traffic density at a station.

5.2. Results group 1: King street-Old Town station

In the two subsections coming up the results for group 1 will be presented, first the vulnerability calcu-
lation results from the data followed by the model.

5.2.1. Vulnerability results from the data for group 1

This group contains 10 instances. The vulnerability based on the data for each considered station was
calculated for each instance. On average 9 trains are within the time window at each station and, hence,
considered in the vulnerability calculations. These calculated vulnerabilities are shown in Table 5.1 and
visualized in Figure 5.7.



5.2. Results group 1: King street-Old Town station 33

Table 5.1: Vulnerability of each station calculated from the data per instance from group 1 based on the data.

Instances
Stations 1 2 3 4 5 6 7 8 9 10
King St-Old Town 0.625 0.292 0.333 0.333 0.417 0.292 0.292 0417 0.333 0.292
Braddock Road 0.666 0.292 0.333 0.417 0.500 0.375 0.292 0.417 0.417 0.333
Reagan National Airport  0.625 0.333 0.333 0.333 0.417 0.333 0.292 0.417 0.500 0.333
Crystal City 0.625 0.292 0.333 0.333 0.500 0.333 0.333 0.167 0.417 0.292
Pentagon City 0.583 0.292 0.333 0.333 0417 0.333 0.292 0.167 0.500 0.292
Pentagon 0.583 0.292 0.333 0.333 0.417 0.333 0.333 0.417 0417 0.292
Arlington Cemetery 0.333 0.500 0.333 0.500 0.500 0.333 0.250 0.500 0.500 0.333
Rosslyn 0.000 0.278 0.167 0.389 0.611 0.278 0.194 0.278 0.167 0.111
L'Enfant Plaza 0.333 0.583 0.375 0.250 0.250 0.417 0.125 0.167 0.500 0.167
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Figure 5.7: Vulnerability of each station per instance from group 1 in order of stations reached by the trains. The graph does not
include L’Enfant Plaza station for visualization reasons.

The vulnerabilities were expected to decrease with increasing distance from the primary delay sta-
tion. A delayed train is expected to catch up on its delay as it uses its buffer time. Most instances
have a lower vulnerability for the Rosslyn station, the last considered station. Nevertheless, for some
instances, the vulnerabilities fluctuate while for other instances the vulnerabilities stay similar. The
only instance that follows the expected trend is the first instance. The reason why the instances do
not follow the expected trend could be that randomly delayed trains are also included in the vulnera-
bility calculations. As it takes some time for the primary delayed train and the other affected trains to
reach the further stations, other trains will already have reached those stations in the time window. If
those other trains are randomly delayed, they would influence the vulnerability calculations. Another
explanation is that the arrival time of trains is just above or under the two-minute threshold, making it
delayed at one station, but not at the other. An example showing both points can be found in the train
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movement data of instance 2. This instance has a train arriving at L'Enfant Plaza station before the af-
fected trains and is delayed by only 15 seconds. This train was not considered delayed at the previous
station. As a consequence, this train will increase the vulnerability of the L'Enfant Plaza station, while
it was unaffected by the primary delay train. One last explanation is that the number of trains used in
the vulnerability calculations is not the same for each station. A train might arrive at a station a minute
before or after the time window cutoff time.

Furthermore, more factors seem to influence the primary delay and its propagation effects. For
instances 3 and 8, the primary delay is a Blue line train, which is five minutes delayed at around 11:20
am on a weekday and travels with a headway of 12 minutes. At first sight, these instances would
be deemed very similar and, as a result, the influence of these primary delays would be expected
to be similar. However, Figure 5.7 shows that the vulnerability trend for these two instances across
stations is very different. While the vulnerabilities of the stations for instance 8 heavily fluctuate, the
vulnerabilities of instance 3 stay relatively stable. Hence, other factors must explain this difference in
delay propagation effects.

5.2.2. Model testing results group 1

In this subsection, only the testing results of group 1 are presented. The training results were presented
in section 4.3 and are not repeated here. After the model was trained on eight out of 10 instances from
group 1, it was tested on instances 3 and 6. The metrics for a first idea of how the model performed dur-
ing testing are outlined in Table 5.2. The MSE values presented in the table are based on Equation 3.10
only.

Table 5.2: Testing metrics for group 1.

Metric Testing instance 1  Testing instance 2

MSE 0.004 0.004
Average vulnerability data 0.319 0.336
Average vulnerability model 0.295 0.299

The MSE value for both testing instances is 0.004, indicating that the model’s predicted vulnerability
values for the stations deviate, on average, by no more than 0.07 (+/0.004) from the actual data values.
For this group 0.07 means the model was off by less than one train. The data and model averages
differ for both instances, but the difference between them is small. For both instances, the average
vulnerability of the data was higher than the model; hence, the model underestimated the vulnerabilities
for these instances. To gain more insights as to why the model might have underestimated the values,
the differences in vulnerability between the data and the model of each station must be examined.
The difference between the model estimation and the vulnerability calculation based on the data are
calculated using Equation 5.1.

8ik = Vikdata — Vikmodel (5.1)

A negative value for §; means the model overestimated the vulnerability of station i and a positive
one means the model underestimated the vulnerability. A value close to 0 is desired, because then
the model found a value very similar to the vulnerability calculated from the data. The vulnerability
differences are shown in Table 5.3.
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Table 5.3: Comparison of vulnerabilities as determined from the data and by the model for group 1.

Testing instance 1 Testing instance 2
Stations Data Model Difference Data Model Difference
Arlington Cemetery 0.333  0.399 -0.066 0.333 0.397 -0.064
Braddock Road 0.333 0.265 0.068 0.375 0.277 0.098
Crystal City 0.333 0.288 0.045 0.333 0.294 0.039
King St-Old Town 0.333 0.235 0.098 0.292 0.240 0.052
L'Enfant Plaza 0.375 0.330 0.045 0.417 0.328 0.089
Pentagon 0.333 0.317 0.016 0.333 0.324 0.009
Pentagon City 0.333 0.275 0.058 0.333 0.281 0.052
Reagan National Airport 0.333  0.279 0.054 0.333 0.290 0.043
Rosslyn 0.167 0.266 -0.099 0.278 0.264 0.014

If one looks at Table 5.3 it makes sense why the average vulnerability from the model is lower than
the average vulnerability based on the data for both testing instances. The model underestimates the
vulnerabilities of almost all stations. Only the stations Arlington Cemetery and Rosslyn were slightly
overestimated. Looking back at the training results presented in section 4.3, the algorithm chose during
training to compensate the stations with a too-low recovery rate instead of the stations with a too-low
infection rate as indicated by the higher values of the recovery rate parameters. This decision of the
training algorithm means that the recovery rates were increased, leading to higher recovery rate values
compared to the infection rate values, meaning lower vulnerability values. Hence, the testing instances
results will also show underestimation if the vulnerability values of those instances are similar to the
vulnerability values of the training instances, which they are in this case.

5.3. Results group 2: Stadium-Armory station

This section presents the results for the second group of instances. First, the results of the vulnerability
calculations based on the data are discussed, followed by the training and testing results.

5.3.1. Vulnerability results from the data for group 2
This group also contains 10 instances. For group 2 the vulnerability calculations were based on 14
trains on average. The calculated vulnerabilities are shown in Table 5.4 and visualized in Figure 5.8.

Table 5.4: Vulnerability of each station calculated from the data per instance from group 2 based on the data.

Instances

Stations 11

12

13

14

15

16

17

18

19

20

Stadium-Armory  0.278
Potomac Ave 0.278
Eastern Market 0.306
Capitol South  0.306
Federal Center SW 0.306
L’Enfant Plaza 0.306
Smithsonian 0.333
Federal Triangle 0.333
Metro Center 0.389
Mcpherson Square 0.444
Farragut West 0.500
Foggy Bottom-GWU 0.556
Rosslyn  0.500

0.547
0.735
0.698
0.698
0.676
0.676
0.700
0.767
0.722
0.611
0.476
0.448
0.572

0.389
0.417
0.306
0.306
0.361
0.328
0.361
0.344
0.317
0.283
0.233
0.489
0.633

0.333
0.333
0.389
0.389
0.333
0.333
0.333
0.333
0.444
0.500
0.611
0.611
0.667

0.289
0.283
0.328
0.278
0.283
0.311
0.283
0.311
0.283
0.311
0.317
0.378
0.350

0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.333
0.500
0.444
0.278
0.278
0.278

0.250
0.233
0.217
0.233
0.250
0.250
0.306
0.361
0.444
0.361
0.417
0.528
0.611

0.389
0.389
0.417
0.361
0.361
0.333
0.361
0.417
0.417
0.306
0.306
0.306
0.250

0.306
0.278
0.306
0.300
0.328
0.217
0.278
0.356
0.267
0.333
0.278
0.222
0.167

0.444
0.533
0.617
0.600

0.65
0.567
0.583
0.583
0.617
0.593
0.593
0.510
0.533

The range of vulnerability values is larger for group 2 than for group 1. Furthermore, the vulnera-

bilities of stations of group 2 also tend to fluctuate and not show a smooth trend. The middle part of
the network, which the stations considered in group 2 are part of, has a high traffic density. Even if the
trains would want to catch up on their delay, the high traffic density makes it hard to do so. The high
traffic density would explain why it takes some time for most instances to show a downward trend of
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Figure 5.8: Vulnerability of each station per instance from group 2 in order of stations reached by the trains.

the station vulnerabilities. However, also for this group, some instances show an unexpected trend in
station vulnerabilities. For example, instances 11, 13, 14, and 17 show an upward trend in vulnerability
as the distance from the primary delay station increases. Two instances for group 1 showed different
behavior while being very similar. Here four instances show similar behavior, but the primary delay
does not start on the same line, around the same time, or pertain to trains with similar headways. Also,
as the traffic density is higher in this part of the network, the chance of randomly or just delayed trains
is higher than for group 1. Therefore, the group 2 results reiterate that more factors must be at play to
explain the vulnerability trends.

5.3.2. Model training and testing results group 2

For group 2 no results have been presented yet as group 2 was not used for the experiments presented
in section 4.3. Therefore, the training results are presented first, followed by the testing results.

The MSE value of the trained model is 0.043, which was calculated using Equation 3.11. Thus,
0.043 is the summed MSE for all 8 training instances. On average, the MSE per training instance is
0.005. Table 5.5 shows the trained parameter values for group 2.
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Table 5.5: Trained parameters for group 2: Stadium-Armory in the west direction till Rosslyn.

y 0.342
0 0.500
Stations Zik Cik

Stadium-Armory 0.219 0.453
Potomac Ave 0.151 0.305
Eastern Market 0.118 0.220
Capitol South  0.151 0.162
Federal Center SW 0.320 0.305
LEnfant Plaza 0.258 0.212
Smithsonian 0.306 0.195
Federal Triangle 0.348 0.256
Metro Center 0.436 0.242
Mcpherson Square 0.302 0.128
Farragut West 0.320 0.179
Foggy Bottom - GWU 0.440 0.247
Rosslyn 0.379 0.100

The trained value for y is low, which means that the edge weights did not change much. The model
again uses the lower bound for the 6 parameter. Interestingly, the stations in group 2 have the highest
baseline infection rates due to their central network location. Even so, the z;; values for each station
are quite high, which means that the algorithm still compensates quite a bit for the infection rate values.
The baseline recovery rates of these stations are low due to the high traffic density. Still, the model
does not need the upper bound set on c;;, to get closer to the vulnerabilities as calculated from the data.
Therefore, the training algorithm chose to compensate for the infection rate more than the recovery rate
values.

The trained parameters were tested on instances 15 and 19 from group 2. The performance of the
model on these unseen instances is displayed in Table 5.6. The MSE values presented in Table 5.6
are based on Equation 3.10 only.

Table 5.6: Testing metrics for group 2.

Metric Testing instance 1  Testing instance 2

MSE 0.018 0.027
Average vulnerability data 0.308 0.279
Average vulnerability model 0.424 0.414

The MSE values 0.018 for testing instance 1 and 0.027 for testing instance 2 show that the model
performed worse for group 2 than group 1. Also, the MSE values indicate the predictions of the model
are off on average by approximately two (out of 14) trains. Furthermore, while for group 1 the average
vulnerability based on the model and data were close to each other, for group 2 there is more distance
between the values for both instances. The worse performance of the model for group 2 could be
explained by the larger range of vulnerability values for group 2. For group 1 most vulnerability values
are in the range [0.30, 0.50]. For group 2, on the other hand, the range is [0.25, 0.55]. This larger
range of vulnerability values makes it harder for the model to find a parameter that fits all those values.
Consequently, the model will also perform worse than for a group of instances where the vulnerabil-
ity values are more similar. Table 5.7 gives more insights into how the model performed for specific
stations. These differences were calculated using Equation 5.1.
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Table 5.7: Comparison of vulnerabilities as determined from the data and by the model for group 2.

Testing instance 1 Testing instance 2
Stations Data Model Difference Data Model Difference
Stadium-Armory 0.289 0.319 -0.030 0.389 0.413 -0.024
Potomac Ave 0.283 0.321 -0.038 0.389 0.457 -0.068
Eastern Market 0.328 0.383 -0.055 0.417 0.456 -0.039
Capitol South 0.278 0.279 -0.001 0.361 0.424 -0.063
Federal Center SW 0.283 0.293 -0.010 0.361 0.435 -0.074
LEnfant Plaza 0.311 0.450 -0.139 0.333 0.540 -0.207
Smithsonian 0.283 0.428 -0.145 0.361 0.505 -0.144
Federal Triangle 0.311 0.388 -0.077 0.417 0.482 -0.065
Metro Center 0.283 0.502 -0.219 0.417 0.649 -0.232
Mcpherson Square 0.311  0.441 -0.130 0.306 0.413 -0.107
Farragut West 0.317  0.464 -0.147 0.306 0.453 -0.147
Foggy Bottom - GWU 0.378 0.564 -0.186 0.306 0.548 -0.242
Rosslyn 0.350 0.587 -0.237 0.250 0.592 -0.342

Where the model tends to underestimate the vulnerability for the instances in group 1, the model
overestimates the vulnerability values for the testing instances of group 2. This overestimation makes
sense because the vulnerabilities based on the data for all stations for these testing instances are
low compared to the other instances. While the model does not work towards average vulnerabilities, it
does try to find one parameter value that fits all. If the data vulnerabilities of the other training instances
at a specific station are higher than those in testing instances 1 and 2, the model will favor fitting those
stations. As a result, the trained parameter values fit instances with higher vulnerabilities better. The
model will then overestimate the vulnerabilities of instances with lower-than-average vulnerabilities. It
must be explored how sensitive the model is to which instances are used for training and which for
testing.

5.4. Comparison group 1 and group 2

This section compares the training and testing results of groups 1 and 2. The trained parameters for
both groups show similar trends. Both groups have a low y value and 8 = 0.500. As a result, the edge
weights for both groups were minimally adjusted, and the recovery rates across all stations were made
more uniform. Group 1 exhibited a y value that was 0.017 higher, leading to a larger adjustment in edge
weights for group 1 compared to group 2. The stations in group 1 require more significant adjustments
to become more vulnerable because group 1 stations are located farther from the network’s center and
have a lower baseline infection rate than those in group 2. Consequently, the model needs greater
adjustments to achieve high vulnerability values as observed from the data for group 1 stations.

Even though the groups are about different parts of the network, the model shows similar perfor-
mance. The largest difference between the two groups of instances is that where the vulnerabilities of
the testing instances of group 1 were underestimated, in group 2 the model overestimates the vulnera-
bilities. The similar model training on both groups, even though they are different in many ways, begs
the question of how this could be. One of the reasons for the similar behavior is the order of magnitude
of the infection and recovery rates. The training algorithm used high values for the z;, parameter to
compensate because the values for the infection rate are so much smaller than for the recovery rate
due to the normalization of the edge weights. Using the z;;, parameter, the infection rate values could
come close to the recovery rate values. Even so, why the model performed the way it did has to be
further investigated. Therefore, a sensitivity analysis was performed on different parts of the model,
which is discussed in section 5.5.

5.5. Sensitivity analysis

While the model shows promising results, it is important to be critical of the conditions under which
the model has this performance. The model sensitivity was tested in two ways: 1. its sensitivity to the
parameter values and 2. its sensitivity to the instances used for training and testing. The first sensitivity
analysis is discussed in subsection 5.5.1 and the second in subsection 5.5.2.
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5.5.1. Sensitivity parameters
The model sensitivity was tested for the parameters y and 8. First, the sensitivity to y is presented,
followed by 6. The sensitivity of both parameters was tested using the training results of group 1.

Sensitivity to y The y parameter is part of the equation used to adjust the weights of some of the
edges in the P-space graph. A high sensitivity means the model could increase the infection rates
too much and then overestimate the vulnerabilities, while a low sensitivity would mean that the z;,
parameter would have to make all the difference in the infection rate equation. The sensitivity analysis
results are presented in Table 5.8 and Table 5.9.

Table 5.8: Testing metrics for sensitivity analysis of the y parameter.

y=0 y =0.45 y =1
Metric Testing Testing Testing Testing Testing Testing
instance 1 instance 2 instance 1 instance 2 instance 1 instance 2
MSE 0.005 0.004 0.004 0.004 0.005 0.004
Average vulnerability data 0.319 0.336 0.319 0.336 0.319 0.336
Average vulnerability model 0.292 0.299 0.295 0.299 0.290 0.294

Table 5.9: Differences in vulnerability for the testing instances of group 1 for different y values.

-0.065
0.097
0.052
0.055
0.090
0.018
0.066
0.058

y=0 y =0.45 y=1

Testing Testing Testing Testing Testing Testing

instance 1 instance 2 | instance 1 instance 2 | instance 1 instance 2

Stations  Difference  Difference | Difference  Difference | Difference  Difference
Arlington Cemetery -0.067 -0.058 -0.066 -0.064 -0.065
Braddock Road 0.101 0.124 0.068 0.098 0.065
Crystal City 0.051 0.034 0.045 0.039 0.056
King St-Old Town 0.105 0.054 0.098 0.052 0.100
L'Enfant Plaza 0.030 0.082 0.045 0.089 0.050
Pentagon 0.011 -0.010 0.016 0.009 0.024
Pentagon City 0.052 0.030 0.058 0.052 0.071
Reagan National Airport 0.071 0.050 0.054 0.043 0.066
Rosslyn -0.104 0.025 -0.099 0.014 -0.099

0.012

Based on Table 5.8, it can be concluded that the model’'s performance is largely insensitive to the y
parameter, with only slight decreases in performance observed when y = 0 ory = 1. These differences
are small and primarily visible in the average vulnerability differences between the data and the model,
which are higher for y = 0 and y = 1. A similar conclusion can be drawn from Table 5.9, where the
vulnerability differences across y values remain comparable. However, as shown in the third column
of Table 5.15 and Table 5.5, the z;; values are consistently high. These high z;, values allow the
model to compensate for the low infection rates resulting from the normalization of edge weights. This
compensation mechanism makes z;;, the dominant factor in increasing infection rates, reducing the
role of y. Consequently, the model may overfit using z;;, rather than capturing unobserved factors.
This overfitting is not very significant as evidenced by the low MSE values.

Sensitivity to 6 Like y, the 6 parameter influences model performance. A high 8 value means the
stations’ recovery rates are very heterogeneous, while a low value means stations have a similar re-
covery rate. The sensitivity of 6 was tested by setting it to 0 and 1 and comparing those results with
each other and the value from the training. The sensitivity analysis results are displayed in Table 5.10
and Table 5.11.

Table 5.10 shows how a low value for 8 leads to underestimation of the vulnerabilities, while a
high value leads to overestimation as indicated by the difference between the average vulnerability
from the data and the model. When 6 approaches 0, the second part of the recovery rate equation
(Equation 3.7) becomes 1. Hence, the recovery rates of the stations will be ¢;, + 1. The model will then
underestimate the vulnerabilities because the infection rates can never be that high. Similarly, when 6
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Table 5.10: Testing metrics for sensitivity analysis of the 6 parameter.

6=0 6 =0.50 6=1
. Testing Testing Testing Testing Testing Testing
Metric . . . . . .
instance 1 instance 2 instance 1 instance 2 instance 1 instance 2
MSE 0.019 0.022 0.004 0.004 0.008 0.005
Average vulnerability data 0.319 0.336 0.319 0.336 0.319 0.336
Average vulnerability model 0.197 0.197 0.295 0.299 0.378 0.384
Table 5.11: Differences in vulnerability for the testing instances of group 1 for different 6 values.
6=0 6 =0.50 6=1
Testing Testing Testing Testing Testing Testing
instance 1 instance 2 | instance 1 instance 2 | instance 1 instance 2
Stations  Difference  Difference | Difference  Difference | Difference  Difference
Arlington Cemetery 0.030 0.030 -0.066 -0.064 -0.166 -0.166
Braddock Road 0.157 0.198 0.068 0.098 -0.009 0.026
Crystal City 0.131 0.131 0.045 0.039 -0.023 -0.029
King St-Old Town 0.177 0.135 0.098 0.052 0.029 -0.019
L'Enfant Plaza 0.188 0.229 0.045 0.089 -0.045 -0.005
Pentagon 0.129 0.129 0.016 0.009 -0.088 -0.098
Pentagon City 0.146 0.146 0.058 0.052 -0.015 -0.022
Reagan National Airport 0.143 0.143 0.054 0.043 -0.043 -0.058
Rosslyn -0.003 0.109 -0.099 0.014 -0.169 -0.058

approaches 1, the differences in recovery rates are enlarged. Most of the stations in group 1 have a
fairly good recovery rate as they are located near the end of the Yellow and Blue lines. They are also all
very similar and, consequently, enlarging these differences only leads to a similar decrease in recovery
rate values with an overestimation of the vulnerability values as a consequence. This analysis is also
reflected by Table 5.11. When 6 = 0 the model underestimates the vulnerabilities and when 6 = 1 the
model overestimates the vulnerabilities. Therefore, the model is sensitive to the 6 parameter.

5.5.2. Sensitivity training and testing instances

To test how sensitive the model performance is to which instances are used in the model training and
testing, the instances from group 1 were used again. This time instead of having instances 3 and 6
used for testing, instances 1 and 9 were randomly chosen. Tabels 5.12 and 5.13 show the results of

this sensitivity analysis.

Table 5.12: Testing metrics for sensitivity analysis of instance division for training and testing.

Metric Instance 2 Instance 9

MSE 0.010 0.028

Average vulnerability data 0.350 0.417
Average vulnerability model 0.304 0.280
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Table 5.13: Comparison of vulnerabilities as determined from the data and by the model for the testing instances used in the
experiment.

Instance 2 Instance 9
Stations Data Model Difference Data Model Difference
Arlington Cemetery 0.500 0.403 0.097 0.500 0.362 0.138
Braddock Road 0.292 0.286 0.006 0417 0.265 0.152
Crystal City 0.292 0.286 0.006 0.417 0.263 0.154
King St-Old Town 0.292 0.232 0.060 0.333 0.211 0.122
LEnfant Plaza 0.583 0.310 0.273 0.500 0.293 0.207
Pentagon 0.292 0.350 -0.058 0.417 0.327 0.090
Pentagon City 0.292 0.284 0.008 0.500 0.265 0.235
Reagan National Airport 0.333  0.297 0.036 0.500 0.269 0.231
Rosslyn 0.278 0.287 -0.009 0.167 0.267 -0.100

The model performance is sensitive to the instances used for training and testing. Comparing
Table 5.12 and Table 5.2 shows that the model performed better when instances 3 and 6 were used for
testing and the rest for training. The MSE values and the distance between the average vulnerabilities
of the data and model, when instances 3 and 6 are used for testing, are smaller. When considering
the metrics, the model is able to predict on average the vulnerability values of instances 2 and 9 with
an error of about one train. Even so, for instance 2 the model performs much worse for L'Enfant Plaza
station because its vulnerability based on the data is much higher than the other instances. Similarly,
the station vulnerabilities for instance 9 are also higher than average, leading to underestimation by
the model. Therefore, the model is sensitive to which instances are used for training and testing, which
mainly shows itself in the results of individual station vulnerabilities.

The model has a few key limitations. Firstly, the model sensitivity means that the model reacts
badly to instances that are different from the other instances. Case in point are L'Enfant plaza for
instance 2 and all stations of instance 9. Therefore, the model lacks robustness. Secondly, there is a
dependence on the input data, which means that more factors need to be considered to decrease this
dependence and improve how the model reacts to 'odd’ instances. All the instances have a very similar
primary delay, but the vulnerabilities of stations differ greatly. While some variations can be attributed to
randomly delayed trains or trains barely being delayed, the rest is not modeled yet. Lastly, the model is
currently overfitting, which is the result of its sensitivity and the equations. Solving the other limitations
will help reduce the overfitting of the model.

5.6. Benchmarking
Itis also important to benchmark the created model to see how well it performs compared to other similar
models. As this modelis the first of its kind, these other models do not exist. However, the model can be
compared to another version of itself. Hence, the model presented in this study is compared to a model
version where the constants z;;, and c;;, in the infection rate and recovery rate equations respectively
are changed, which is explained in more detail below.

The infection rate and recovery rate equations currently have a station-specific constant to capture
any factors currently not considered in the model. The model is benchmarked by creating two additional
models:

* a model where the constants are not included;

» a model where the constants are made non-station-specific.

The advantage of (station-specific) constants is that any factors currently not included can be cap-
tured more accurately, especially as the effects of these factors might differ greatly across stations. The
disadvantage, however, is that introducing constants means additional parameters have to be trained.
Having to train all these additional parameters increases the running time of the model training.

To see how accurate the model would be with no constants and non-station-specific constants,
these two model versions were trained using the instances of group 1. For all models, the same training
settings were used. The only difference is if and how the constants were defined. Table 5.14 shows
the model performance for all three model configurations, so including the model version used in this
study for easier comparison. The MSE values in Table 5.14 are based on Equation 3.11.
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Table 5.14: Training results for benchmarking.

No z;, and c¢;;;,  Non station-specific z;, and c;;, ~ Station-specific z;;, and c;,
MSE 0.074 0.072 0.022

The model performs very similarly for the model configuration with no constants at all and non-
station-specific constants. While the MSE value does go down, the difference is negligible. The model
configuration where the parameters z;;, and c;;, are station-specific performs better with a MSE de-
crease of 0.05. To better understand how the model configurations performed, one also has to look at
Table 5.15.

Table 5.15: Trained parameters for all three model configurations. For the constants ¢ and z, a range of values obtained for the
station-specific constants is presented.

No constants Non-station specific Station specific

y 0.358 0.355 0.449
0 0.500 0.674 0.500
c - 0.201 0.1-0.5
z - 0.001 0.1-0.5

The y parameter values shown in Table 5.15 indicate that y was low for all three model configura-
tions, which means that the edge weights were barely adjusted. In the case of the non-station-specific
constants, the infection rate constant z was also low. Hence, during training with these model config-
urations and parameter bounds, higher values for y and z, which would lead to higher infection rates,
resulted in worse results. Instead, the compensation of stations with a too low recovery rate leads to
the best training result.

The model configuration where the constants are station-specific outperforms the other configura-
tions because the compensation happens on a station level instead of one value for all the stations.
Therefore, there must be a station-specific factor that the model can only capture by making the con-
stants station-specific. How much needs to be corrected to get to the right vulnerability value differs
per station. Having the station-specific parameters means more tailored values can be used, as shown
by the fact that almost the full range of the boundaries is used in the station-specific parameter case.

5.7. Policy implications

The results and findings of this study have several implications for WMATA and other metro network
operators. While the model requires further refinement, it offers actionable insights into delay propaga-
tion and response strategies. Insights were obtained from the results about the Washington DC metro
network and the model. These insights are listed below and briefly explained:

» Delay propagations at transfer stations: Most stations in the Washington network have only
a few delay propagations in the studied time period. Only four stations have > 10, all transfer
stations. Overall it seems that WMATA needs to focus on the transfer stations, especially those
where lines merge and split;

» Shared infrastructure increases delay propagations: Lines that share most of their infrastruc-
ture tend to have more delay propagations than lines that do not share any of their infrastructure.
This insight also helps WMATA target specific lines and stations;

* Fluctuating vulnerability: With the traffic density fluctuating throughout the day, the vulnera-
bility of the station will also fluctuate. WMATA, and other network operators, have to take these
fluctuations into account when designing prevention and mitigation strategies;

* Variation in delay propagation effects: Although some of the primary delays across instances
of group 1 are similar, station vulnerabilities differ significantly, and the model does not yet ac-
count for these differences adequately. Similarly, group 2 showed different instances with the
same effects resulting in comparable vulnerabilities. More research is needed to uncover which
additional factors need to be included to explain these differences;



5.7. Policy implications 43

 Information from the baseline infection and recovery rates: Even if little data is available and
the model cannot be trained, the baseline infection and recovery rates still give information about
the stations and how they relate to each other based on the factors that are included.

* Model performance: The MSE values for both training and testing for both groups of instances
show promising results. While the trained values of the parameters indicate some problems that
need to be resolved, the testing MSE values indicate that the model can predict the vulnerability
values with an error of <1 train out of 10 for group 1 and approximately 2 out of 14 for group
2. These predictions showcase a promising future of using epidemic models in transportation
research.

* Model sensitivity: The model was found to be sensitive to y and which instances are used
for training and testing. y influences the heterogeneity of the recovery rates; hence, its value
and sensitivity give information about the recovery rate of the stations and their relationship to
each other. With regards to the instance sensitivity, mostly station vulnerabilities that could be
considered outliers within their instance itself and/or across all instances, are not captured well
by the model. Therefore, the model lacks robustness.

* Model overfitting: The model sensitivity, the order of magnitude of the infection and recovery
rate, and the resulting dynamics between parameters y and z;;, causes the model to overfit
slightly. Fixing the mentioned issues in the future will greatly help improve the model.






Conclusion and Discussion

This chapter consists of two parts: 1. the conclusion of the research where the main research question
is answered and 2. a discussion of the results through the identification of implications, limitations, and
future research directions.

6.1. Conclusion

This study aimed to fill the research gap of how delay propagation in a metro network could be mod-
eled using the SIS model to reproduce the vulnerability of a metro station for specific instances. A
model based on the SIS model was constructed and trained for several parameters using data about
the Washington Metro network. First experiments were done to decide on the best model configura-
tion. Then, the model was trained and tested on two parts of the Washington metro network. The first
part is the stations between King St - Old Town, Rosslyn, and L’Enfant Plaza station in the direction of
Rosslyn and L'Enfant Plaza station. The second part of the network studied is the stations between
Stadium-Armory and Rosslyn station in the west direction. The model training and testing results for
both groups were analyzed and the conditions under which the model produced the results were re-
flected upon through a sensitivity analysis. This was all done to answer the following main research
question:

How can the SIS model effectively be utilized to produce the effects of delay propagation in metro
networks, particularly through the models’ ability to capture the vulnerabilities of metro stations for spe-
cific instances?

This research question is supported by several subquestions. First, the answers to these subques-
tions are given. Then, using those answers, the main research question is answered.

How can the traditional SIS model be adapted to accurately represent the characteristics and dynamics
of delay propagations within a metro network?

The traditional SIS model was adapted through a literature study of factors contributing to station vul-
nerability and into the SIS model itself. A definition of vulnerability was followed that highlights the
exposure to and how well stations cope with disruptions. The main elements of the SIS model were
kept the same as they can be attributed to the two components of the vulnerability definition but trans-
formed to a metro context. Therefore, the model used in this research consisted of stations, which
have a chance of being infected and recovering again at a certain rate. Multiple factors were included
to resemble the characteristics and dynamics of delay propagation in a metro network. The infection
rate of metro stations is dependent on their network connectivity and the severity of the delay propaga-
tion and its effects. Moreover, the further the delayed train travels the less chance of infection it should
have. The recovery rate is dependent on station and line characteristics. Stations with a high traffic
density have a harder time recovering compared to stations with low traffic density. Also, stations with
more tracks are more flexible and, hence, increase the recovery rate. The traditional SIS model can
be adapted through the modeling of station and line characteristics in the infection rate and recovery
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rate of stations.

Which model configuration produces the best results given performance metrics and keeping com-
putational efficiency in mind?

Experiments were done to see which model configuration produced the best training results. These
experiments were about the model itself and the context in which the model is used. One of these
experiments is about whether constants z;;, and ¢;;, should be included in the infection and recovery
rate definition respectively to capture any factors currently not modeled. If the constants are included,
whether they would be station-specific or not also would have to be decided. Ultimately, it was decided
to use the model configuration with the station-specific constants. Especially with how the delay prop-
agation effects across different instances differ widely, it is too difficult for the model to capture these
varying situations well without station-specific constants. The second experiment was about which
stations to consider in the training and testing. There were two options: 1. the stations reached by all
affected trains or 2. all the stations of the affected lines. The first option proved to be a better model
configuration though it has its limitations. The last model configuration experimented with was whether
the P-space graph should be directed or undirected. The two versions performed similarly, but there
are problems with both. The directed graph has a structural issue due to the infection rate formula-
tion, but the undirected graph is less realistic. Ultimately, the model configuration with station-specific
constants, stations reached by all affected trains, and an undirected graph was chosen. However, the
experiments revealed model problems that should be solved in the future.

Which combination of parameter values results in the model reproducing the vulnerabilities the best
given a specific group of instances?

Two groups of instances were used to train and test the model. For both groups, the 8 parameter got
a value of 0.500, with the y parameter having a value around 0.45. For z;;, and c;, the training algo-
rithm used almost the full range of the bounds. These values led for both groups to a MSE < 0.030.
The model does perform better for group 1 than group 2. One of the reasons for this difference in
performance is that the range of station vulnerabilities is larger for group 2 than for group 1. When
the algorithm is training the parameter values of group 2, it needs to find values that fit a larger range,
which is harder to do. The relatively low values for 8 and y in combination with the training algorithm
using the full range of the boundaries for z;;, and c;;, suggest overfitting.

How sensitive is the model to changes in parameter values and input?

The sensitivity of the model was tested in three ways. The values of the parameters y and 6 were
varied and which instances were used for training and testing of group 1 was changed. For y = 0 and
y = 1, the performance barely changes from the trained value. Therefore, the model seems insensitive
to y. The model underestimates the vulnerabilities for 8 = 0 and overestimates the vulnerabilities for
6 = 1. The model is, therefore, sensitive to y. Lastly, instead of instances 3 and 6, 2 and 9 were used
to test the model. The model performs worse when instances 2 and 9 are used for testing. Thus, the
model is sensitive to the input. This means that the model lacks robustness.

Now the main research question can be answered. The SIS model has proven that it can be utilized to
produce the effect of delay propagation in metro networks through its ability to capture the vulnerabili-
ties of metro stations for specific instances. Vulnerability definitions from the literature have shown that
vulnerability contains two components: exposure to and the ability to cope with disturbances, which
are highlighted through the infection and recovery rate respectively. The flexibility of the model allows
the introduction of new factors easily. The balance between the infection rate and recovery rate gave
way to a vulnerability equation that managed to come close to the values from the data. The SIS model
adaptation and its utilization led to some promising results, also compared to other model configura-
tions. However, the conditions under which these results were obtained leaves room for discussion.

6.2. Discussion

This discussion section starts with describing the limitations of this study in subsection 6.2.1. The
future research directions are proposed in subsection 6.2.2, followed by possible applications in sub-
section 6.2.3.
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6.2.1. Limitations
In this subsection, the limitations of this research are described. First, the limitations of the data and
the calculations based on it are analyzed. The limitations of the model are discussed afterwards.

As discussed in subsection 5.1.1 the data caused some restrictions on this research. While the
available data seemed large enough at first (four months), the actual number of delay propagations in
this period was small. Enough delay propagations of a station in one direction especially to form a group
of instances was hard. The small set of found delay propagations meant the level of diversity for the
groups desired at the beginning of the research was not possible. For example, in the literature study,
several factors were described that influence vulnerability, delay propagation, or both. An example is
leisure versus work trips and the time of day (Eltved et al., 2021; Yap & Cats, 2022). Time was not
included in this study as a factor, because the limited number of instances did not allow for the creation
of groups covering different times of day while also having enough instances in a group. To find more
delay propagations from the data more data is needed. Then, with enough instances, more factors can
be included and their influence measured.

Furthermore, the current vulnerability calculation based on the data does not exclude delayed trains
that were not affected by the primary delay. As a consequence, the vulnerabilities of stations might be
higher than they would be if only affected trains were considered. If those randomly delayed trains are
excluded somehow, the vulnerabilities of stations might show the expected trend. Then the question
becomes how to exclude those trains, completely from the train movements at all stations or just the
stations where the train is randomly delayed. With the first option, there is a problem. This randomly
delayed train could also be the train in front of the primary delayed train. If that train is deleted, the
primary delay train will not be seen as delayed anymore at every station. However, the second option
also causes problems. Excluding trains at a few stations would change the number of trains considered
per station. The number of trains could already be uneven, but excluding trains at some stations might
only worsen this problem. The current calculation method is not great, but the other two options also
have issues. More thought into this calculation is needed to tackle these problems.

Also, the amount of data needed to train the model is not necessarily large, but finding instances
of delay propagation has proven to be difficult. Moreover, whenever the infrastructure of the network
changes, new data has to be acquired, because the stations might react differently. The model is,
therefore, very dependent on the quality and quantity of the available data. Obtaining the data to test
the model on the changed/new parts of the network might take months or even years.

A limitation of the model is that the graph of the Washington Metro network is undirected. As the
experiment described in subsection 4.3.2 showed, using a directed graph could improve the model.
Nevertheless, with the current definition of the infection rate the model would structurally underestimate
the vulnerability of the primary delay station. A directed graph, however, might improve the model as
it represents the dynamics and direction of delay propagations better. Therefore, a limitation is the
undirected graph, but to use a directed graph an improved definition of the infection rate would be
needed.

The next limitation is the stations considered in the current model. subsection 4.3.1 outlines how
considering all the stations of the line would give a more complete picture of the delay propagation, but
as not every primary delay influences the whole line the vulnerability values range would be too large.
Consequently, the current model only shows a partial picture of the influence of delay propagations on
network operations. This limitation should be solvable, at least partially, by including more factors in
the model, such that the model can overcome the differences between instances better.

Additionally, the order of magnitude of the recovery and infection rate values differs. Due to the
normalization of the edge weights, the order of magnitude for the infection rate is smaller than the
recovery rate. Without the normalization, the infection rate values would be disproportionally large
after the edge weight adjustments. How the variables relate to each other and are quantified should
be rethought to get the infection and recovery rate values in the same order of magnitude.

Lastly, because the instances in the groups did not necessarily behave similarly, the z; and c;;
parameters failed to capture any factors currently not part of the model. Instead, these parameters had
to overcome the differences in vulnerability values of the instances.

6.2.2. Future research
Based on the presented results and limitations some directions for further research are proposed.
Improvements can be made for both the approach to the data and the model.
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The model needs improvement and several ways can be explored how to do this improvement.
Given that more data is available in the future and more groups of instances can be created, other
factors should be explored to include in the model. An example is the time of the day, found in other
studies as an influential factor (Eltved et al., 2021; Xiao et al., 2018). Time is a factor that could influence
vulnerability as headways and, thus, traffic density change throughout the day in reaction to fluctuating
passenger flows. An experiment comparing two groups of instances where the only difference is peak
and off-peak or weekday versus weekend days would be interesting to get a first idea of how it influences
the current model. Then, ways of including time as a factor should be investigated. Including more
factors should also help explain the different trends in propagation effects in the data.

Another reason to look for data spanning a longer time is that the model can also be tested on those
parts of the network that only concern one line. In the Washington Metro network, this is the Red line.
Due to a low number of delay propagations the Red line could not be studied at all. While it is a less
complicated case compared to the studied parts, to get a complete picture of the model performance
those parts should also be investigated.

Furthermore, with the availability of additional data, more groups of instances can be identified. This
will allow deeper insights into how different parts of the network respond to delay propagation and how
these groups differ in their behavior. For example, two groups with a primary delay station close to the
other can be compared. This will give insights into if any generalizations are possible.

All the proposed future research directions will contribute to a deeper understanding of the sensi-
tivity of the 6 parameter. As the model is studied more extensively, with a focus on different parts of
the network, the inclusion of additional factors, and the comparison of groups of instances, the true
sensitivity of 8 will become clearer. With an enhanced model, a broader range of 6 values can be
analyzed, revealing that the parameter may not be as sensitive as initially believed. Additionally, it may
show that 8 tends to assume similar values across various groups, suggesting that its sensitivity does
not have much impact.

Another future research direction is applying the model to a different network. The station character-
istics in the Washington Metro network are very similar. All stations have two tracks per infrastructure
section except for the Reagan National Airport. Therefore, the influence of the number of tracks could
barely be explored in this study. Using another network as a case study, which has more diversity in
station characteristics, could help improve the model by uncovering which factors do make a difference
and which do not. More diverse stations will also give more insights into the sensitivity of the 8 param-
eter. As the stations used in the two groups are very similar, the value of 6 now only homogeneously
increases or decreases the recovery rate values of all stations. There is currently no conclusion on
whether the differences in recovery rates between the stations should indeed be heterogeneous.

6.2.3. Applications

There are several recommendations for WMATA and other network operators on how to apply this study
in the future. First, stations that are prone to significant delay propagations for a variety of disturbances
can be identified and prioritized with the needed mitigation measures. It does not make sense for
WMATA to have a proactive and reactive response for each station because that is expensive and
probably unnecessary. Additionally, if factors such as peak and off-peak influence how the delays
propagate and, thus, the vulnerability of stations, WMATA could incorporate these variations in their
response. For instance, they might allocate more staff and resources to specific stations during peak
hours. Also, since the model accounts for the station characteristics, it is easier for WMATA to see which
characteristics are particularly sensitive and target those accordingly. This could include adding an
extra track or reconsideration of which stations are serviced by which lines to reduce their susceptibility
to delays.

With the insights provided by the model, WMATA can create adaptive response plans that vary
based on the delay propagation instance. For example, instead of applying uniform strategies across
all stations, operators can implement differentiated approaches tailored to specific stations’ roles in
delay propagation. Also, the WMATA staff can be trained using the model ensuring they are prepared
and have the appropriate response when delay propagations occur in the network.

Besides the response of WMATA on an operational level, the findings can be integrated into the
passenger information systems. As it is predicted how delays will propagate, passengers can be in-
formed proactively which will help them to make more informed travel decisions and improve overall
satisfaction.
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The model applications are not limited to the Washington Metro network, let alone metro networks.
In section 2.2 the use of epidemic models for transport modes such as the train was already described.
Those studies used models that do not capture the heterogeneity of the stations or only considered a
few trains. This model, which does consider heterogeneity and a time window-dependent number of
trains, could be transferable to the train. A condition would be that the translation due to a different
network dynamic is done well.
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ABSTRACT

Metro networks face operational challenges due to increasing ridership and system
growth, particularly in managing delay propagation. Epidemiology models have recently
been an interesting method in transportation research for studying delays. This study,
therefore, aims to see if the Susceptible-infectious-susceptible (SIS) model is suitable to
help model delay propagation in a metro network through its ability to reproduce the
vulnerability of metro stations for specific instances. Using data from the Washington
Metro Network, delay propagation instances were grouped, and the model was trained
and tested using a differential evolution algorithm. The results indicate that the vul-
nerability values as calculated from the data do not follow the expected trend. Also,
the model can predict the vulnerability values for the first group more accurately than
the second group. However, limitations such as underestimation and overestimation of
station vulnerabilities, and sensitivity to training data and parameters were observed.
These challenges stemmed from the dynamics between specific parameters, the mismatch
in the order of magnitude of model components, and the lack of additional factors.

Keywords: Delay propagation, Vulnerability, SIS model, Metro stations

1 Introduction

The growth of cities due to urbanization has led to increased ridership and the growth of metro systems
in distance (km of infrastructure) and number of stops (UITP, 2022). As a result, the challenge of
delays and their propagation to other network parts has become more crucial. Network operators aim
to prevent these delay propagations and minimize their impact when they occur, to ensure they do not
negatively affect travelers’ experiences. Therefore, how and why delays propagate in metro networks
must be studied, so that network operators can take the appropriate measures to prevent and mitigate
them.

Some studies have used network structure and topological analysis to study delay propagation. How-
ever, these studies failed to find any causal relations (Cats & Hijner, 2021; Wang et al., 2020; Yap & Cats,
2020). Another perspective in the literature that has been adopted is assessing the role of vulnerability
of nodes and links in propagating delays. Vulnerability is often described in the literature with the words
susceptibility and serviceability (Berdica, 2002; Hong et al., 2022; Pan et al., 2021). Combining these
keywords, vulnerability is the exposure of a public transport network to disruptions (susceptibility) and
at the same time the ability of the PT network to cope with these disruptions (serviceability) (Yap &
Cats, 2020).

One of the reasons for considering vulnerability in addition to network topology is that passenger flow
distribution has been neglected by most studies, which could lead to underestimation or overestimation
of the vulnerability of the network (Eltved et al., 2021; Szymula & Besinovi¢, 2020; Yap & Cats, 2022).
Furthermore, the passenger flows are affected differently during and after a disruption, because they
depend on the day and traveler type (e.g. leisure versus work) (Eltved et al., 2021; Xiao et al., 2018;
Yap & Cats, 2022). As a result, the vulnerability value can also fluctuate. In addition, the topology
analysis does not consider that the disruption effects on passenger behavior differ depending on whether



the disruption was planned or unplanned (Yap et al., 2018a). Furthermore, the effects of disruption were
found to be heterogeneous across metro stations and dependent on its location in the network as well as
other station-level characteristics, meaning that only using topology analysis would fail to acknowledge
other factors planning a role (Zhang et al., 2021). Lastly, at the functional level (flow distribution) initial
failure propagates faster than at the structural level (network topology) (Chen et al., 2023), and, hence,
only considering the structural level would give a limited picture of the problem. Moreover, both levels
have different sources of vulnerabilities (Chopra et al., 2016). Other introduced factors are station-level
characteristics (Zhang et al., 2021) and line operations (Malandri et al., 2018). Using these factors it
has been found, for example, that the most vulnerable links/lines are those often crowded due to high
passenger flows (Shi et al., 2019a; Sun & Guan, 2016; Yap & Cats, 2020; Yap et al., 2018b), with mainly
the outflows at stations influencing the vulnerability (Zhang et al., 2020).

Although advancements have been made in public transportation research with the introduction of
vulnerability, those studies do not always include delay propagation and the role vulnerability of metro
stations plays in delay propagation. Therefore, this study aims to fill the knowledge gap of how to model
delay propagation in a metro network through the model’s ability to reproduce the vulnerability of metro
stations for specific instances.

For several transport modes, epidemic models have been used to study delay propagation as the
spreading of diseases and propagation of delays show similarities. This method has proven to be a
promising method in the railways (Dekker et al., 2022; Gurin et al., 2020; Monechi et al., 2018). However,
these studies use either an epidemic model that does not allow to take heterogeneity into account or failed
to consider operational conditions. Also, for air transportation interesting studies have been done, but
the translation to metro systems is difficult due to different network dynamics (Baspinar & Koyuncu,
2016; Ceria et al., 2021; Wu et al., 2019). Lastly, the studies for the metro have been solely focused
on congestion propagation, the passenger perspective, neglecting the operator perspective (Jia et al.,
2022; Shi et al., 2019b; Wang et al., 2019; Zeng & Li, 2018). Therefore, the extent to which epidemic
models can be used to model delay propagation from the operator’s perspective is an interesting research
direction.

2 Methodology

This section explains how this study was performed. subsection 2.1 explains how the instances used
in the study were selected. Then, in subsection 2.2 the equations to calculate the vulnerability values
from the data are presented. Afterwards, the model itself is explained in subsection 2.3 followed by the
training and testing metrics in subsection 2.4.

2.1 Instance selection criteria

Instances from the data must be found that show delay propagation happened and its effects are felt at
multiple stations. Therefore, selection criteria are needed. The following five conditions had to be met
for an instance to be included in the research:

1. The primary train is delayed;

2. The train behind the primary train is delayed;

3. The train in front of the primary delayed train is not delayed;
4. The primary train was not delayed at the previous station;

5. The train behind was not delayed at the previous station.

The first two conditions clarify if a delay propagation could have happened. Condition three helps
ensure that the primary delay train is the first to be delayed. Conditions four and five ensure that
the primary train became delayed at the primary delay station and the delay of the train behind was
caused by the primary delay. The time window w of the instance determines which train movements
are included. The time window w of each instance is defined as the arrival time of the previous train
at the primary station till the last train affected by the delay at the primary delay station reaches the
station that all affected trains across all instances reach with a delay. This definition means that not all
stations on the affected lines are considered. The rationale for focusing on a selection of affected stations
rather than the entire line is that some stations experience delays only for certain instances. This results



in significant variability in the delay impact at those stations, posing challenges in effectively capturing
these variations and training the model to produce accurate results.

The found instances are grouped based on the primary delay station and direction. They must start
at the same station and in the same direction to investigate the consequences of a specific delay. These
groups then differ in primary delay station, affected lines, and delay direction so that the model could
be tested on multiple parts of the case study network.

2.2 Calculation of station vulnerabilities using the data

The vulnerability of a station is calculated using the train movements during the time window w in the
direction of the primary delay. These train movements all use the same infrastructure section k at the
station in the direction of the primary delay, because delays have the most impact on metro stations
nearby on the same line direction (Cats & Hijner, 2021). An example of multiple infrastructure sections
is when a station has multiple levels with tracks and platforms. The infrastructure section k also limits
the considered lines to the ones running on that infrastructure. Because only train movements in the
direction of the primary delay are considered, no cross-platform delay propagation was considered.

To determine if a train ¢ is delayed, the arrival time difference at station ¢ between two consecutive
trains of the same line, ¢t and ¢ — 1, is calculated and represented as b;;—;. Normally, this difference is
equal to the scheduled headway m; ;1 between trains ¢t and ¢t — 1. However, due to potential variability
in service, deviations in headway between two trains could occur without impacting overall network
performance. A delay threshold parameter, denoted as ¢, is introduced to account for these variations.
Its value is dependent on the case study network. If b;;_; exceeds the sum of the scheduled headway
my 1—1 and the delay threshold §, the train ¢ is considered delayed. In such cases, the variable ay;,,, which
indicates whether train ¢ was delayed during time window w at station i, is set to 1. The accompanying
equation to determine if a train is delayed is shown in Equation 1.

(1)

Loif by > mys—1+9,
Atiw = .
0 otherwise.

The vulnerability of station ¢ is then the ratio of delayed trains to all observed trains T;x,, stopping
at a station ¢ using infrastructure k& in the time window w of the instance in the direction of the primary
delay. Mathematically, the vulnerability of station ¢ translates to Equation 2.

Tikw
_1 Q¢4
Vik,data = z:tlerlw (2)
TRW

2.3 SIS mathematical model for a metro network

The Susceptible-infectious-susceptible (SIS) model is used in this research. Furthermore, as stated in
section 1, the effects of disruption were found to be heterogeneous across metro stations (Zhang et al.,
2021) and so creating a heterogeneous SIS model as compared to a homogeneous SIS model is more
realistic. The translation of the heterogeneous SIS model to a metro network is explained in sections
2.3.1 through 2.3.4.

2.3.1 Network Graph

An undirected P-space graph was created to represent the stations and the links between them. This
type of graph has often been called the ”space-of-service” (Luo et al., 2020). A weight is assigned to
each link in the network. The propagation strength of a delay diminishes with increasing distance (Jia
et al., 2022). Hence, the further away two stations are from each other, the less chance a delay starting
at station j has to reach station ¢. Therefore, The link weight is the inverse of the travel time #;; between
nodes 7 and j. These considerations translate to Equation 3.

1
Wi = — 3
i=g Q)
After the initial link weights are set, some of the edge weights are adjusted depending on the instance.
For the following three types of edges, the weight is increased to reflect the temporarily increased chance
of infection due to the primary delay of the instance, which is visualized in Figure 1:



1. Edges between the primary delay node and all other nodes in the direction of the delay on the
same line (P-space);

2. Edges between the nodes that are in the direction of the delay and affected by the primary delay
(L-space) ;

3. Edges that are part of the L-space path between two nodes and the path between the two nodes
includes the primary delay node.

Direction
delay

{ o Example
network

P-space

Figure 1: Example network and P-space showing which edge types weight would be adjusted with the
numbers representing the described edge types. The yellow node is the infected node in the example.

The edges of types 1, 2, and 3 are part of set E. First, the type 1 and 2 edges were changed in the
P-space using Equation 4.

Wij * Q* Qe
eh(Pﬁj)*'Y (4)

The top part of the equation includes factors that influence the delay impact and the lower part
reflects the delay effects diminishing with distance. The higher the primary delay duration «, the more
the weights are increased as a more severe delay causes more trouble (Cats & Jenelius, 2018; Marra &
Corman, 2020). a,. represents the number of lines passing through a station. More lines increase the
delay impact because the complexity of operations increases with multiple train operation routes (Lu
et al., 2021). h(p,j) defines how many nodes are between the primary delay node p and the currently
considered node j in the L-space and, hence, captures the space component of delay propagations. = is
a to-be-trained parameter that captures how quickly the propagation effect diminishes with time.

Finally, the type 3 edge weights are adjusted in the P-space. First, the L-space path, which includes
the primary delay node, is determined. Then, it is calculated which percentage of the edges in the path is
before the primary delayed station and which after. The initial link weight is then multiplied by the two
percentages. The link weight portion reflecting the edges after the primary delayed station is adjusted
using Equation 4. That value is then added to the unaffected portion of the link weight. When all the
necessary edge weights are changed, all the edge weights are normalized using Equation 5.

wij = wij +

Wi

S (5)
S S wi

Wi; =

2.3.2 Infection Rate

The infection rate of the model represents the susceptibility part of the vulnerability definition. All trains
arriving at station ¢ can infect the station if they are delayed, but the more distance the delayed train
has to travel, the less infection chance it should have. Also, transfer stations receive many more trains
because they serve multiple lines, increasing their chance of infection (Lu et al., 2021). Furthermore,
stations linked to transfer stations could be infected by delays from trains on other lines, as long as the
trains use the same infrastructure section k. The infection rate equation is presented in Equation 6.

J
ik = Z(wji + (wji * Z Wsj * g5)) + Zik (6)
J seS,s#£7,i



The infection rate ;5 for section k at station ¢ is determined by summing the edge weights between
station ¢ and stations j, which are the station’s station 7 is directly connected to. If station j is a transfer
station (g;), stations s also have to be considered given that the line connecting stations s and station j
uses the same infrastructure as the line connecting station i to j.

2.3.3 Recovery Rate

The recovery rate of the stations in the model highlights the ability of a station to cope with a disturbance.
The recovery rate of a station i is dependent on the number of tracks and the traffic density at the station
because no instances where rescheduling strategies were used are considered. More tracks increase the
station’s flexibility because traffic operators can appoint the trains to more tracks. Also, the service
frequency of a line influences the impact (Marra & Corman, 2020; Yap & Cats, 2020), where lines with
higher service frequency are affected more than lines with lower service frequency. Stations with a higher
traffic density are less flexible because more traffic has to be considered and, hence, have a lower recovery
rate. The recovery rate is calculated for each infrastructure & at station i. The number of tracks ug;
and the traffic density di; might differ per section k due to different serviced lines. The recovery rate
equation is presented in Equation 7.

0
Tik = Cik + (%) (7)
i

In Equation 7 dg; is calculated using Equation 8. This equation calculates the number of trains
stopping at a station per hour per infrastructure section k using the scheduled headway h;x; of line [
running on infrastructure section k at station 4.

L

60
dyi = e (3)

l

0 is introduced in Equation 7 to see how heterogeneous the recovery rates of stations are. Also, the
parameter c;; captures any unobservable factors influencing the recovery rate, just like z;; does for the
infection rate. Both 6 and c¢; are trained and > 0.

2.3.4 Vulnerability equation

Equation 9 shows how the vulnerability of station i is calculated for a specific section k. This equation
reflects the definition of vulnerability given earlier in section 1, where vulnerability is the difference
between exposure to a disturbance (infection) and the ability to cope with the disturbance (recovery).
As a result of a vulnerability value per k, a station could have multiple vulnerability values if it has
several infrastructure sections that are all part of the training.

0 = —7ik * Vik,model + (1 — Vikmodel) * ik (9)

2.4 Model training and testing metrics

In total four model parameters are trained:
e ~v: parameter in the link weight equation capturing the diminishing effect of the delay propagation;
e z;;: parameter in the infection rate equation correcting for any factors currently not considered;

e (: parameter representing how heterogeneous the recovery rate of stations are in the recovery rate
equation;

e ¢;;.: parameter in the recovery rate equation correcting for any currently not considered factors.

The training is done over a group of similar instances, which are randomly split into two groups: 1.
training instances and 2. testing instances. The first group is used for the model training and contains
80% of the instances. The second group tests the trained model and has the remaining 20% instances.
The mean squared error is computed for each instance used in the training. This calculation is done
based on the vulnerabilities calculated from the data and determined by the model, using the formula
shown in Equation 10, where N is the number of all stations of all affected lines. The objective function
used in the training is to minimize the sum of the MSE of all instances F', which is shown in Equation 11.
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Additionally, the average vulnerabilities of the model and data are compared and the differences in
vulnerability between the data and model are determined for each station. All of this is done per k if a
station ¢ has multiple infrastructure sections and they are part of the training.

3 Application

3.1 Case Study: Washington Metro network

This section discusses the case study data used and its processing. The Washington Metropolitan Area
Transit Authority (WMATA) provided the data, which is about the Washington DC metro network
displayed in Figure 2 and is about the year 2019. From this data two files were used: 1. station
information and 2. the Automatic Vehicle Location data.
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Figure 2: Map of the Washington Metropolitan Area metro network (Washington Metropolitan Area
Transit Authority, 2022).

The Washington DC network currently consists of 98 stations, with the last 7 stations opened at the
end of 2022. These stations are served by six different lines of which the Gray, Blue, and Orange share a
portion of the infrastructure as do the Yellow and Green lines. From the data, instances were collected
to train and test the model. At least 10 similar instances had to be found to form a group to ensure
enough data to train with. Also, instances where the primary delay led to recovery strategies such as
short-turning were not considered. Moreover, all the stations of the considered lines had to be open to
ensure a complete picture of the effects of the delay propagation. Two groups of instances were formed.
The first group contains instances where the primary delay starts at the King St-Old Town station.
Both Yellow and Blue trains are delayed in the direction of Greenbelt and Downtown Largo respectively.
The considered stations are those between King St-Old Town and Rosslyn, and King St-Old Town and
L’Enfant Plaza as shown in Figure 3.
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Figure 3: This figure shows the stations considered for group 1.

The second group concerns primary delays of Blue, Silver, and Orange trains in the direction of
Franconia-Springfield, Wiehle-Reston East, and Vienna respectively. The considered stations are those
between Stadium-Armory and Rosslyn and displayed in Figure 4.
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Figure 4: This figure shows the stations considered for group 2.

For each of the instances, the vulnerability was calculated using the data. The delay threshold to
determine whether a train was delayed was set to two minutes. The vulnerabilities of the not-considered
stations were forced to be 0.

3.2 Implementation

A few steps were taken to implement the model. First, a P-space and L-space graph of the Washington
DC metro network had to be created, which was done using the NetworkX library in Python. P-space
and L-space files from previously done research were used to create the necessary graphs (Cats et al.,
2019). From these data files, the traveltimes were also obtained and set as edge attributes. After the
preparation of the data and the implementation of the model in Python, the groups of instances were
used to train the model. For this training, the differential evolution algorithm of the SciPy Python
package was used (SciPy, n.d.). The bounds on the parameters were as follows:

e ~: parameter in the link weight equation capturing the diminishing effect of the delay propagation.
The bounds are [0, 2];

e z;: parameter in the infection rate equation correcting for any factors currently not considered.
The bounds are [0, 0.5];

e 0: parameter representing how heterogeneous the recovery rate of stations are in the recovery rate
equation. The bounds are [0.5, 2];

e ¢;;.: parameter in the recovery rate equation correcting for any factors currently not considered.
The bounds are [0, 0.5].



4 Results

This section will analyze the training and testing results for the two formed groups in sections 4.1 and
4.2. Then, the sensitivity analysis results are presented in subsection 4.3.

4.1 Results Group 1: King St-Old Town station

This group contains 10 instances. For more information about the instances of group 1, see Appendix
A. For each of these instances, the vulnerability was calculated using the data. On average 9 trains are
within the time window at each station and, hence, considered in the vulnerability calculations. The
vulnerability values are displayed in Figure 5.
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Figure 5: Vulnerability of each station per instance from group 1 in order of stations reached by the
trains.

The vulnerabilities were expected to decrease with increasing distance from the primary delay station.
A delayed train should catch up on its delay as it uses buffer time. The vulnerabilities for some instances
fluctuate and in other cases, the vulnerabilities stay similar across stations. There are a few reasons
for this behavior. Firstly, randomly delayed trains are also included in the vulnerability calculations.
Trains in front of the primary delay could arrive at a station delayed in the time window, influencing the
vulnerability calculations. Another explanation is that the arrival time of trains is around the two-minute
threshold, making it delayed at one station, but not at the next. Lastly, the number of trains used in
the vulnerability calculations is not the same for each station. A train might arrive at a station a minute
before or after the time window cutoff time.

Furthermore, more factors seem to influence the primary delay and its propagation effects. For
instances 3 and 8, the primary delay is a Blue line train, which is five minutes delayed at around 11:20
am on a weekday and travels with a headway of 12 minutes. At first sight, these instances are very similar,
and the influence of these primary delays is expected to be similar. However, Figure 5 shows that the
vulnerability trend for these two instances across stations is very different. While the vulnerabilities
of the stations for instance 8 heavily fluctuate, the vulnerabilities of instance 3 stay relatively stable.
Hence, other factors must explain this difference in delay propagation effects.

The model was then trained using eight out of 10 instances. The MSE value for the training is 0.022.
The trained parameters are presented in Table 1.



Table 1: Trained parameters for group 1: King St

¥ 0.455
0 0.500
Stations Zik Cik

Arlington Cemetery 0.254 0.451
Braddock Road  0.390  0.007

Crystal City 0.264 0.248

King St-Old Town 0.303 0.495
L’Enfant Plaza 0.222 0.127
Pentagon 0.269 0.417

Pentagon City 0.412 0.457

Reagan National Airport 0.217 0.378
Rosslyn  0.150 0.358

The low ~ value indicates that the edge weights were barely adjusted. For 6 the lower bound was
found as the best value, meaning the stations were made homogeneous. The large range of values used for
the z;; and c;; suggest that the training algorithm chose to compensate with those parameters mostly,
instead of using v and 6. The trained parameters were then tested on instances 3 and 6 from group 1,
whose results are shown in Table 2.

Table 2: Testing metrics for group 1.
Metric  Testing instance 1 Testing instance 2

MSE 0.004 0.004
Average vulnerability data 0.319 0.336
Average vulnerability model 0.295 0.299

The MSE values of 0.004 for both testing instances mean the model was able to predict the vul-
nerability values of these stations with a margin of less than one train. The difference between the
average vulnerability determined from the data and the model is also small for both testing instances.
However, for both instances the average vulnerability as determined from the model is higher suggesting
underestimation by the model. To better understand this underestimation the difference per station was
determined using Equation 12.

dik = Vik,data — Vik,model (12)

Using Equation 12 the difference was calculated for each k, if applicable, and each station i. These
results are displayed in Table 3.

Table 3: Comparison of vulnerabilities as determined from the data and by the model for group 1.

Testing instance 1 Testing instance 2
Stations Data Model Difference Data  Model  Difference
Arlington Cemetery 0.333  0.399 -0.066  0.333  0.397 -0.064
Braddock Road 0.333  0.265 0.068 0.375  0.277 0.098
Crystal City 0.333  0.288 0.045 0.333 0.294 0.039
King St-Old Town 0.333  0.235 0.098 0.292  0.240 0.052
L’Enfant Plaza 0.375  0.330 0.045 0.417  0.328 0.089
Pentagon 0.333  0.317 0.016 0.333  0.324 0.009
Pentagon City 0.333  0.275 0.058 0.333  0.281 0.052
Reagan National Airport 0.333  0.279 0.054 0.333  0.290 0.043
Rosslyn 0.167  0.266 -0.099 0.278  0.264 0.014

For almost every station the vulnerability is underestimated. Only the stations Arlington Cemetery
and Rosslyn were slightly overestimated. Looking back at Table 1, the underestimation is caused by the
training algorithm that chose to mostly compensate the stations with a too low recovery rate instead of
stations with a too low infection rate. The recovery rate values are then higher than the infection rates,
leading to lower vulnerability values. As the vulnerability values of the testing instances are similar to the
average vulnerability values of the training instances, the testing instances will also be underestimated.



4.2 Results group 2: Stadium-Armory station

Group 2 contains 10 instances. Approximately 14 trains are within the time window at each station
and, hence, are considered in the vulnerability calculations. For more information about the instances
of group 2, see Appendix A. The calculated vulnerabilities are visualized in Figure 6.
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Figure 6: Vulnerability of each station per instance from group 2 in order of stations reached by the
trains.

The vulnerability values of the stations in group 2 have a larger range than group 1. Furthermore,
these instances also fluctuate instead of showing the expected decreasing trend. The stations considered
for group 2 are in the busiest part of the network. If the traffic density is high, it is more difficult for
the trains to catch up on their delay. Also, instances 11, 13, 14, and 17 show almost identical behavior
but are very different from each other. For these four instances the line, time of primary delay, and
scheduled headways are different. Therefore, the group 2 results reiterate that more factors must be
at play to explain the vulnerability trends. The MSE value of the trained model for group 2 is 0.043.
Table 4 shows the trained parameter values for group 2.

Table 4: Trained parameters for group 2: Stadium-Armory in the west direction till Rosslyn.

~y 0.342
0 0.500
Stations Zik Cik

Stadium-Armory  0.219  0.453
Potomac Ave 0.151  0.305
Eastern Market 0.118  0.220
Capitol South  0.151 0.162
Federal Center SW  0.320 0.305
L’Enfant Plaza 0.258 0.212
Smithsonian 0.306 0.195
Federal Triangle 0.348 0.256
Metro Center 0.436  0.242
Mcpherson Square 0.302 0.128
Farragut West  0.320 0.179
Foggy Bottom - GWU  0.440 0.247
Rosslyn  0.379  0.100
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Also for group 2, the trained value for v is low and for 6 is the lower bound. Due to the central
location of the group 2 stations in the network, they have high baseline infection rate values (so without
considering z;;), but the training algorithm still chose to use high values for z; for most stations.
Similarly, while the recovery rates are low for the stations in this part of the network due to the high
traffic density, the training algorithm does not use the upper bound.

These trained parameters were tested on instances 15 and 19. Table 5 indicates how well the model
performed on these unseen instances.

Table 5: Testing metrics for group 2.
Metric  Testing instance 1 Testing instance 2

MSE 0.018 0.027
Average vulnerability data 0.308 0.279
Average vulnerability model 0.424 0.414

The model performed worse for the second testing instance than for the first. Also, the MSE values
are higher than the values of group 1. The testing MSE values indicate the model was off on average
by approximately one train. Furthermore, the distance between the averages as determined by the data
and the model is larger than group 1. Group 2 does have a larger range of vulnerability values, which
means it is more difficult to find parameter values that fit this range, which could partially explain the
worse performance compared to group 1. Table 6 gives more insights into how the model performed for
specific stations. These differences were calculated using Equation 12.

Table 6: Comparison of vulnerabilities as determined from the data and by the model for group 2.

Testing instance 1 Testing instance 2
Stations Data Model Difference  Data  Model  Difference
Stadium-Armory  0.289  0.319 -0.030 0.389  0.413 -0.024
Potomac Ave 0.283  0.321 -0.038 0.389  0.457 -0.068
Eastern Market  0.328 0.383 -0.055 0.417 0.456 -0.039
Capitol South 0.278  0.279 -0.001  0.361 0.424 -0.063
Federal Center SW  0.283  0.293 -0.010 0.361 0.435 -0.074
L’Enfant Plaza 0.311  0.450 -0.139 0.333  0.540 -0.207
Smithsonian 0.283  0.428 -0.145 0.361 0.505 -0.144
Federal Triangle 0.311 0.388 -0.077  0.417  0.482 -0.065
Metro Center 0.283  0.502 -0.219 0.417  0.649 -0.232
Mcpherson Square  0.311 0.441 -0.130  0.306 0.413 -0.107
Farragut West 0.317  0.464 -0.147 0.306  0.453 -0.147
Foggy Bottom - GWU  0.378  0.564 -0.186  0.306  0.548 -0.242
Rosslyn  0.350  0.587 -0.237  0.250  0.592 -0.342

The vulnerability values of the group 2 testing instances are overestimated. This overestimation is
not unexpected, because the vulnerability values as calculated from the data are low for these testing
instances compared to the training instances. The training algorithm will favor fitting the largest group
of similar instances. If those instances have higher vulnerability values, the training algorithm will try
to find parameter values that fit those instances. Instances with lower vulnerability values will then be
overestimated, highlighting the need for more factors to be included in the model.

4.3 Sensitivity analysis

The results of groups 1 and 2 show similar results even though they are about different parts of the
network. Both groups have a low v and 6 value, meaning edge weights were minimally adjusted and
the recovery rates were made more homogeneous. The largest difference between the two groups is that
the vulnerabilities of the group 1 testing instances were underestimated, while for group 2 they were
overestimated. The similar model performance of these two very different groups of instances begs the
question of how this could be. One of the reasons for the model behavior is that the order of magnitude
of the infection and recovery rate are too different. The baseline infection rate values are much smaller
than the baseline recovery rates. Therefore, the infection rate values have to be more compensated to
get close to the recovery rate values.
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A sensitivity analysis was performed to investigate the model behavior in more detail. The sensitivity
of the parameters v and € (subsubsection 4.3.1), and which instances are used for training and testing
(subsubsection 4.3.2) was explored.

4.3.1 Sensitivity parameters

The model sensitivity was tested for the parameters v and 8. First, the sensitivity to - is presented,
followed by 6. The sensitivity of both parameters was tested using the training results of group 1.

Sensitivity to v The v parameter adjusts the weights of some of the edges in the P-space graph. A
high sensitivity means the model could increase the infection rates too much and then overestimate the
vulnerabilities, while a low sensitivity would mean that the z;; parameter would have to make all the
difference in the infection rate equation. The sensitivity analysis results are presented in Table 7 and
Table 8.

Table 7: Testing metrics for sensitivity analysis of the v parameter.

1=0 v = 0.45 v =1
Metric Testing Testing Testing Testing Testing Testing
instance 1 instance 2 instance 1 instance 2 instance 1  instance 2
MSE 0.005 0.004 0.004 0.004 0.005 0.004
Average vulnerability data 0.319 0.336 0.319 0.336 0.319 0.336
Average vulnerability model 0.292 0.299 0.295 0.299 0.290 0.294

Table 8: Differences in vulnerability for the testing instances of group 1 for different ~ values.

v=0 v =045 vy=1
Testing Testing Testing Testing Testing Testing
instance 1 instance 2 | instance 1 instance 2 | instance 1 instance 2
Stations Difference Difference Difference Difference Difference Difference
Arlington Cemetery -0.067 -0.058 -0.066 -0.064 -0.065 -0.065
Braddock Road 0.101 0.124 0.068 0.098 0.065 0.097
Crystal City 0.051 0.034 0.045 0.039 0.056 0.052
King St-Old Town 0.105 0.054 0.098 0.052 0.100 0.055
L’Enfant Plaza 0.030 0.082 0.045 0.089 0.050 0.090
Pentagon 0.011 -0.010 0.016 0.009 0.024 0.018
Pentagon City 0.052 0.030 0.058 0.052 0.071 0.066
Reagan National Airport 0.071 0.050 0.054 0.043 0.066 0.058
Rosslyn -0.104 0.025 -0.099 0.014 -0.099 0.012

Based on Table 7, when v = 0 or v = 1 the model performs worse, but the difference is negligible.
Therefore, the model appears to be insensitive to . Also, from Table 8 it can be seen that the vulner-
ability differences are similar across different values for «. Moreover, from the third column of Table 1
and Table 4 it can be seen that the values for z;; are all quite high. The z;; parameter can compensate
for the low infection rate of stations much more easily and accurately than the v parameter can. These
compensations are needed because the infection rate values are very small due to the normalization of
the edge weights. The fact that the model uses z;; for this compensation instead of mostly ~, suggests
overfitting and that the parameter fails to capture unobserved factors. Therefore, while the model seems
insensitive to 7, the training algorithm uses z;;, to overfit, because z;; can more accurately help approach
the values from the data than ~.

Sensitivity to 8 A high 6 value means the stations’ recovery rates are very heterogeneous, while a low
value means stations have a similar recovery rate. The sensitivity of 6 was tested by setting it to 0 and
1 and comparing those results with each other and the value from the training. The sensitivity analysis
results are displayed in Table 9 and Table 10.

Table 9 shows how a low value for 8 leads to underestimation of the vulnerabilities as the average
vulnerability for the data is higher. Similarly, a high 6 value leads to overestimation. When 6 approaches
0, the second part of the recovery rate equation (Equation 7) becomes 1. Hence, the recovery rates of the
stations will be ¢;; +1. The model will then underestimate the vulnerabilities because the infection rates
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Table 9: Testing metrics for sensitivity analysis of the 6 parameter.

0=0 0 = 0.50 0=1
Metric Testing Testing Testing Testing Testing Testing
instance 1 instance 2 instance 1 instance 2 instance 1  instance 2
MSE 0.019 0.022 0.004 0.004 0.008 0.005
Average vulnerability data 0.319 0.336 0.319 0.336 0.319 0.336
Average vulnerability model 0.197 0.197 0.295 0.299 0.378 0.384

Table 10: Differences in vulnerability for the testing instances of group 1 for different 6 values.

0=0 0 = 0.50 0=1

Testing Testing Testing Testing Testing Testing
instance 1 instance 2 | instance 1 instance 2 | instance 1 instance 2
Stations Difference Difference Difference Difference Difference Difference
Arlington Cemetery 0.030 0.030 -0.066 -0.064 -0.166 -0.166
Braddock Road 0.157 0.198 0.068 0.098 -0.009 0.026
Crystal City 0.131 0.131 0.045 0.039 -0.023 -0.029
King St-Old Town 0.177 0.135 0.098 0.052 0.029 -0.019
L’Enfant Plaza 0.188 0.229 0.045 0.089 -0.045 -0.005
Pentagon 0.129 0.129 0.016 0.009 -0.088 -0.098
Pentagon City 0.146 0.146 0.058 0.052 -0.015 -0.022
Reagan National Airport 0.143 0.143 0.054 0.043 -0.043 -0.058
Rosslyn -0.003 0.109 -0.099 0.014 -0.169 -0.058

can never be that high. Similarly, when 6 approaches 1, the differences in recovery rates are enlarged.
Most of the stations in group 1 have very similar recovery rates. Thus, enlarging these differences only
leads to a similar decrease in recovery rate values with an overestimation of the vulnerability values
as a consequence. This analysis is also reflected by Table 10. When # = 0 the model underestimates
the vulnerabilities and when 6 = 1 the model overestimates the vulnerabilities. Therefore, the model is
sensitive to the # parameter.

4.3.2 Sensitivity training and testing instances

To test how sensitive the model performance is to which instances are used in the model training and
testing, the division of training and testing instances was changed for group 1. This time instead of
having instances 3 and 6 used for testing, instances 1 and 9 were randomly chosen. Tabels 11 and 12
show the results of this sensitivity analysis.

Table 11: Testing metrics for sensitivity analysis of instance division for training and testing.

Metric Instance 2 Instance 9

MSE 0.010 0.028

Average vulnerability data 0.350 0.417
Average vulnerability model 0.304 0.280

Table 12: Comparison of vulnerabilities as determined from the data and by the model for the testing
instances used in the experiment.

Instance 2

Instance 9

Stations Data Model Difference  Data  Model  Difference

Arlington Cemetery 0.500  0.403 0.097 0.500 0.362 0.138
Braddock Road 0.292  0.286 0.006 0.417  0.265 0.152

Crystal City  0.292  0.286 0.006 0.417  0.263 0.154

King St-Old Town 0.292 0.232 0.060 0.333 0.211 0.122
L’Enfant Plaza 0.583  0.310 0.273 0.500  0.293 0.207
Pentagon 0.292  0.350 -0.058 0.417  0.327 0.090

Pentagon City 0.292  0.284 0.008 0.500 0.265 0.235

Reagan National Airport 0.333 0.297 0.036  0.500  0.269 0.231
Rosslyn 0.278  0.287 -0.009 0.167  0.267 -0.100
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Comparing tables 2 and 3 to 11 and 12 show that when instances 3 and 6 were used for testing instead
of 2 and 9, the model performed better. The MSE was lower and the difference between the averages
was smaller. Also, the vulnerability value of I’Enfant Plaza for instance 2 is much higher than for the
other instances, causing the model to underestimate heavily. Similarly, the station vulnerabilities for
instance 9 are also higher than average, leading to underestimation by the model. Therefore, the model
is sensitive to which instances are used for training and testing.

The sensitivity analysis uncovered a few key limitations. Firstly, the model reacts poorly to testing
instances that are different from the instances used in training. Hence, the model struggles to generalize
to atypical instances. Secondly, the model heavily depends on specific information from the data. For
example, the vulnerabilities of the group 1 instances show that while they are similar, the calculated
vulnerabilities vary. Therefore, these variations are under-modeled. Lastly, the model sensitivity, the
order of magnitude of the infection and recovery rate, and the resulting dynamics between parameters
and z;, causes the model to overfit slightly. Addressing these issues, the overfitting will be reduced and
the model will be able to generalize better to unseen instances.

4.4 Benchmarking

As this model is the first of its kind, it is not possible to benchmark this model using literature. However,
the model can be compared to another version of itself. Hence, the model presented in this study is
compared to a model version where the constants z;; and c¢;; in the infection rate and recovery rate
equations respectively are changed. Therefore, the model is benchmarked by creating two additional
models:

e a model where the constants are not included;
e a model where the constants are made non-station-specific.

The advantage of (station-specific) constants is that any factors currently not included can be cap-
tured more accurately, especially as the effects of these factors might differ greatly across stations. The
disadvantage, however, is that introducing constants means additional parameters have to be trained,
which increases the running time of the model training.

The two additional model configurations were trained using the instances of group 1. For all models,
the same training settings were used. Table 13 shows the model performance for all model configurations,
including the model version used in this study for easier comparison. The MSE values in Table 13 are
based on Equation 11.

Table 13: Training results for benchmarking.
No zji and c;;;  Non station-specific z;, and ¢, Station-specific z;, and ¢y,
MSE 0.074 0.072 0.022

The model performs similarly for the model configuration with no constants at all and non-station-
specific constants. While the MSE value does go down, the difference is negligible. The model config-
uration where the parameters z;; and c¢;; are station-specific performs better with a MSE decrease of
0.05. To better understand how the model configurations performed, one also has to look at Table 14.

Table 14: Trained parameters for all three model configurations. For the constants ¢ and z, a range of
values obtained for the station-specific constants is presented.
No constants Non-station specific Station specific

¥ 0.358 0.355 0.449
0 0.500 0.674 0.500
c - 0.201 0.1-0.5
z - 0.001 0.1-0.5

The  values in Table 14 indicate minimal adjustment of edge weights across all model configurations.
For non-station-specific constants, the infection rate constant z was also low. Higher v and z values,
leading to increased infection rates, produced worse results. Instead, the best training outcomes arose
from compensating for stations with low recovery rates.
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Station-specific constants outperform other configurations by enabling station-level compensation
instead of a single value for all stations. This suggests a station-specific factor that can only be captured
with tailored parameters. The model benefits from this flexibility, as evidenced by the broader use of
parameter boundaries in the station-specific case.

5 Conclusion

This study aimed to fill the research gap of how delay propagation in a metro network could be modeled
using the SIS model as inspiration to reproduce the vulnerability of a metro station for specific instances.
A model based on the SIS model was constructed and trained for several parameters using data about
the Washington Metro network. The model training and testing results for both groups were analyzed
and the conditions under which the model produced the results were reflected upon through a sensitivity
analysis. The results indicate that the model can reproduce the vulnerabilities of instances for two
different groups with an accuracy of less than one train for the first and one train for the second. Also,
the benchmarking showed that the current model performs well compared to other model configurations.
At the same time, the sensitivity analysis showed the model’s sensitivity to outliers. Therefore, the
model lacks robustness. Furthermore, there is a dependence on the input data, which means that more
factors need to be considered to decrease this dependence and improve how the model reacts to 'odd’
instances. Lastly, the model is currently overfitting, which is the result of its sensitivity and the model
dynamics. Solving the other limitations will help reduce the overfitting of the model.

Even so, this first model allows network operators to identify the vulnerable stations in the network,
under which circumstances they are vulnerable, and which factors play a role in this vulnerability. This
information allows them to have a more targeted approach when delay propagations do happen. Instead
of uniform strategies across all stations, WMATA can create adaptive response plans that vary depending
on the delay propagation instance. Also, to prevent delay propagations the network operator can be more
proactive with targeted maintenance and infrastructure upgrades.

For future research, it is important to tackle the issues mentioned in the sensitivity analysis. The
inclusion of additional factors should help decrease the variation now seen across similar instances. Also,
reconsidering some of the model equations and the vulnerability calculation of the data will help limit
the overfitting. Another direction could be the application of the model to additional parts of the
WMATA network or a completely different network to further investigate how the model should be
developed. Application to another network will also help uncover the sensitivity of factors that could
not be explored in this study due to how the Washington network was built. For example, all stations
in the WMATA network have two tracks, except for the Reagan National Airport station, which means
it was not possible to test the added value of this factor.
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Appendix A
Table 15 and Table 16 show the instances used for the training and testing of the model belonging to

each group. The bold instances are the ones used in the testing, while the non-bold instances are used
for the training.

Table 15: Data first group, end station = last station train delayed, Y = Yellow, B = Blue.

Instance Line of primary delay Delay duration primary delay Time window Headway [s]

Y: 480

1 Yellow 6 14:07-14:47 B: 720
2 Blue 5 16:24-17:00 480
3 Blue 5 11:10-11:53 720
4 Blue 6 20:12-20:56 720
5 Blue 7 10:07-10:52 900
Y: 480

6 Yellow 5 13:48-14:30 B: 700
7 Blue 5 15:36-16:10 480
8 Blue 5 11:04-11:48 720
9 Yellow 7 11:01-11:41 720
10 Yellow 5 16:20-16:55 480

Table 16: Data second group, B = Blue, O = Orange, S = Silver.

Instance Line of primary delay Delay duration primary delay Time window Headway [s]

11 Blue 13 13:33-14:27 720
12 Blue 7 17:30-18:49 480

B: 720
13 Silver 15 08:58-09:53 O: 600

S: 660
14 Orange 7 11:02-11:51 720

B: 480
15 Orange 10 19:11-20:01 O: 360

S: 540
16 Blue 8 22:53-00:03 1200
17 Blue 5 15:02-15:44 480
18 Orange 7 12:33-13:45 900
19 Blue 8 16:52-17:33 480
20 Orange 6 18:33-19:40 480
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Instances

Group 1 Table B.1 shows the instances used for the training and testing of the model belonging to
group 1. The bold instances are the ones used in the testing, while the non-bold instances are used
for the training.

Table B.1: Data first group, end station = last station train delayed, Y = Yellow, B = Blue.

Instance Line of primary delay Delay duration primary delay Time window Headway [s]

Y: 480

1 Yellow 6 14:07-14:47 B: 720
2 Blue 5 16:24-17:00 480
3 Blue 5 11:10-11:53 720
4 Blue 6 20:12-20:56 720
5 Blue 7 10:07-10:52 900
Y: 480

6 Yellow 5 13:48-14:30 B: 700
7 Blue 5 15:36-16:10 480
8 Blue 5 11:04-11:48 720
9 Yellow 7 11:01-11:41 720
10 Yellow 5 16:20-16:55 480

Group 2 Table B.2 displays all the instances part of group 2. Again the bold instances were used in
the testing and the non-bold instances for the model’s training.

Table B.2: Data second group, B = Blue, O = Orange, S = Silver.

Instance Line of primary delay Delay duration primary delay Time window Headway [s]

11 Blue 13 13:33-14:27 720
12 Blue 7 17:30-18:49 480

B: 720
13 Silver 15 08:58-09:53 0: 600

S: 660
14 Orange 7 11:02-11:51 720

B: 480
15 Orange 10 19:11-20:01 0O: 360

S: 540
16 Blue 8 22:53-00:03 1200
17 Blue 5 15:02-15:44 480
18 Orange 7 12:33-13:45 900
19 Blue 8 16:52-17:33 480
20 Orange 6 18:33-19:40 480
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