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Abstract

Counter-acting image quality degradation caused by phase aberrations through physical correction
requires the phase field to be known. As imaging hardware captures real-valued intensity, defined as
the wave amplitude squared, obtaining this lost phase information is known as the phase retrieval
problem and is a non-linear and non-convex optimisation problem.

Literature treats this problem from two points of view: reconstruction using indirect phase sampling,
and reconstruction using Fourier amplitude sampling. The former employs wavefront sensors such as
the Shack-Hartmann sensor, which encodes phase gradient information in the form of the displacement
of imaged spots. These methods, while fast, discard information such as interference and are limited
to low-order reconstruction. The latter, also called wavefront sensorless phase retrieval, uses the
full point-spread function (PSF) to obtain high-accuracy reconstruction at the cost of computational
speed, number of intensity images required, or limited aberration magnitude. These two points of
view have remained largely separated, but can be made compatible through a modelling technique
called Shack-Hartmann diversity. This thesis explores the merging of wavefront sensorless methods
with Shack-Hartmann intensity patterns to leverage more information from a single captured image
frame.

Firstly, a low-order modal reconstruction technique is presented applied to phase gradient fields ob-
tained from Fourier demodulation of a Shack-Hartmann intensity pattern. A method of minimising
the amount of redundant data-points used for reconstruction is illustrated through the removal of
Fourier-interpolated data to speed up performance.

Secondly, a novel extension of the Fourier demodulation technique to hexagonal Shack-Hartmann
arrays is presented, allowing phase gradient extraction and modal reconstruction of hexagonal array
intensity images using Fourier demodulation.

Thirdly, Shack-Hartmann diversity is used to extend intensity-based modal phase retrieval using Taylor
approximation of the intensity function to Shack-Hartmann intensity patterns. This bridges the gap
between wavefront sensorless methods and Shack-Hartmann intensity patterns.

Lastly, a novel hybrid method is presented for high-accuracy phase reconstruction based on applying
the above intensity-based method to a single Shack-Hartmann intensity pattern with low-order pre-
conditioning obtained from Fourier demodulation. The method is demonstrated to obtain highly accu-
rate reconstruction on low-order aberrations, and better reconstruction accuracy on small-magnitude
high-order aberrations with dominating large-magnitude low-order terms than traditional methods.
Potential use cases are discussed, such as open-loop turbulence reconstruction for use in turbulence
modelling.
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Chapter 1

Introduction

Astronomy, microscopy, laser-based telecommunication, earth-observation, ophthalmology, crystallog-
raphy, bio-medicine, and countless others. While these fields appear to have very little in common
with one another, they all rely on the capturing and analysis of images, and have a vested interest in
improving the quality of these images[2].
When light is modelled by a wave, degradation in the quality of such captured images can be explained
by local delays introduced to the wave, variations in the wave phase field. These delays, called
aberrations, influence the propagation of the light and thereby the wave field at the time of capturing
its intensity. Misalignment, the shape of reflective surfaces, lenses (in the eye or in the optical path),
even differences in density of the medium through which the light travels are all potential sources of
delay. This last source is often called turbulence, the major source of inaccuracy in astronomy already
identified by Newton as being the main limiting factor to achievable resolution with telescopes[3].
Should these delays be known, correction of the light could be performed using adaptive optics through
phase conjugation, the local introduction of delays that cancel out the original aberration[2, 4], before
it is ever captured. Correction prior to capture avoids the detrimental effects of pixel discretisation to
numerical image improvement algorithms, and as such is the best path to improving image quality.
However, as image intensity is wholly defined by wave amplitude at the detector plane, all phase
information is lost at moment of capture. Retrieving this lost phase information from intensity is
called the phase retrieval problem, it is non-linear and non-convex, has no analytical solution, and has
a long and challenging history with new discoveries being made all the time[5–7].
Broadly, the field of phase retrieval is divided into two categories. The first are algorithms using
additional optical components to extract phase information from the intensity image. These methods
are called wavefront sensor phase retrieval methods, with a popular sensor being the Shack-Hartmann
wavefront sensor[8] which will also be used in this thesis, and a popular algorithm being centroiding[9].
These algorithms are often based on simple concepts such as the displacement of imaged spots, and
therefore discard a lot of information encoded in the sensor point-spread function (PSF) in favour
of obtaining a fast low-accuracy approximation of the aberration. The second category contains the
wavefront sensorless methods utilising only the camera module image, a single-lens ideal system which
can be modelled using a single Fourier transform. Due to the lack of readily encoded phase infor-
mation, these methods use the full PSF and as such can obtain high-accuracy phase reconstruction.
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2 1. Introduction

However, this comes at the cost of convergence guarantees[10], regions of applicability[11], or curse of
dimensionality[12].

This thesis proposes the merging of these two categories using a Shack-Hartmann sensor modelling
technique called Shack-Hartmann diversity[13]. Using this diversity, the Shack-Hartmann intensity
pattern can be seen as the image captured by an augmented single-lens ideal system. This allows the
use of wavefront sensorless methods on Shack-Hartmann intensity patterns.

The resulting novel method is a hybrid method, using wavefont sensor phase retrieval to obtain an
initial phase estimate as a pre-conditioner to a wavefront sensorless method. However, additional
novelties are such as the application of Fourier demodulation to hexagonal Shack-Hartmann intensity
patterns, and the use of modal reconstruction on multi-directional shrunken derivative fields will also
be presented.

The structure of this thesis is as follows. Theoretical background information required for this thesis
will be provided in Chapter 2, with Section 2-1 discussing optical propagation methods as well as
introducing the phase retrieval problem, Section 2-2 discussing the modal representation of phase
fields, and Section 2-3 introducing the design and reconstruction principles behind the Shack-Hartmann
wavefront sensor.

Subsequently, a brief overview of the state-of-the-art in phase retrieval will be provided in Chap-
ter 3. This chapter will discusses both methods for phase retrieval with wavefront sensors, as well as
phase retrieval for single-lens ideal systems (with)out phase diversities in Section 3-1 and Section 3-2
respectively. The research question will also be introduced in Section 3-3.

The contents of Chapter 4 will detail the classical model of a Shack-Hartmann sensor in Section 4-1,
followed by an alternative phase diversity model in Section 4-2 known as the Shack-Hartmann diversity
model.

Afterwards, Chapter 5 will focus on the explanation and derivation of a low-order modal phase retrieval
method based on the fitting of subsampled derivative fields obtained from Fourier demodulation. The
concept of Fourier demodulation will be explained, its numerical implementation discussed, and the
reduction of redundant data through trimming of the spectral domain will be treated. Additionally,
a novel extension of Fourier demodulation to hexagonal Shack-Hartmann intensity patterns will be
discussed.

The contents of Chapter 6 will detail the concept of Taylor intensity approximation for high-accuracy
and high-order modal phase retrieval for small-magnitude phases. This will also be extended to Shack-
Hartmann patterns through the use of Shack-Hartmann diversity, forming a novel application of Taylor
intensity approximation.

Lastly, a novel hybrid method combining the low-order retrieval of Chapter 5 with the high-order
Taylor Shack-Hartmann intensity approximation method using pre-conditioning will be discussed in
Chapter 7. Potential use-cases will be provided in Section 7-2 and results discussed in Section 7-3.

An overall conclusion and outlook will be provided in Chapter 8.
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Chapter 2

Theoretical Fundamentals

The aim of this chapter is to provide the reader with the fundamental basics required to understand
the field of optical phase retrieval in the context of this thesis. Firstly, optical propagation methods
and the phase retrieval problem will be introduced in Section 2-1. Secondly, Section 2-2 will discuss
the representation of wavefront phase using basis functions. Lastly, Section 2-3 will detail the base
operating principle of the Shack-Hartmann wavefront sensor and related wavefront reconstruction
methodology.

2-1 Optical Propagation and the Phase Retrieval Problem

When considering the propagation of light through an optical system, two interpretations are tradi-
tionally considered: modelling light as a ray whose direction is altered by optical components, and
modelling light as a wave function.

The former, known as geometrical optics, is suited for use-cases such as the creation of lenses, or
the general analysis of where images are expected to be positioned after propagation. However, it
fails to capture real-world observed phenomena such as light interference patterns, diffraction, or light
coherence. The latter is called wave optics or Fourier optics [14] and provides a framework to capture
these phenomena mathematically.

The purpose of this section is to provide a fundamental basis in Fourier optics propagation equations as
used in phase retrieval, for more in-depth information the reader is referred to relevant literature[14].

While light is a three-dimensional wavefield, an immediate simplification will be made: the wave field
will be considered at two-dimensional slices along the assumed axis of propagation. The wavefront is
expressed at each slice along this propagation axis using Equation 2-1 where A(x, y) contains the wave
amplitude at each point and ϕ(x, y) is the phase field. Explicit time dependence, whose presence would
be expected due to the oscillatory nature of wave functions, has also been removed. The rationale
behind this removal is the capture rate of optical detectors. Visible light, made up of wavelengths in
the 600nm range, oscillates at frequencies around c

λ ≈ 3·108

6·10210−9 ∝ 1014 times per second where c is

Master of Science Thesis Liam Cools



4 2. Theoretical Fundamentals

the speed of light. As no detector is capable of capturing this, multiple oscillations are averaged and
time dependence is ignored[15].

W (x, y) = A(x, y)eiϕ(x,y) (2-1)

Wavefront propagation is performed using propagation equations, making use of the Fourier domain
to simplify calculations[14]. The most general propagation method is the Angular Spectrum method,
based on Rayleigh-Sommerfeld diffraction. Its working principle is the the decomposition of the
wavefront into differently oriented plane waves, followed by propagation and re-combination at the
requested distance z. The propagation equation for this method is given inEquation 2-2[14]. It is the
most computationally expensive as well as the most analytically complex propagation method, and as
such many simplifications can be applied to it.

{
W (x, y, z) = F−1 {F {W (x, y, 0)}H(fx, fy, z)}

H(fx, fy, z) = e
i2πz

√
1

λ2 −f2
x−f2

y
(2-2)

The Fresnel propagation method is the first of such simplifications[14]. By making the approximation
1
λ

√
1 − (λfx)2 − (λfy)2 ≈ 1

λ

(
1 − (λfx)2

2 − (λfy)2

2

)
, Equation 2-2 is simplified to Equation 2-3. This

simplification makes use of the paraxial approximation, meaning light travelling nearly parallel to
the optical propagation axis is assumed. As light emitted from a point-source does so in a spherical
manner, this means the point-source is either considered to be further away to obtain a small curvature,
or the wave is analysed close to the propagation axis. As can be seen from the equation, this method is
computationally slightly cheaper and analytically simpler to understand, but it too requires a double
Fourier transformation. Further simplification is desirable. For this purpose, the Fresnel diffraction
integral is given in Equation 2-4 where (xo, yo) are the coordinates in the object plane, and (xi, yi)
are the coordinates in the image plane.

{
W (x, y, z) = F−1 {F {W (x, y, 0)}H(fx, fy, z)}
H(fx, fy, z) = eikze−iπλz(f2

x+f2
y ) (2-3)

W (xi, yi, z) = eikz

iλz

∫
W (xo, yo, 0)ei k

2z [(xi−xo)2+(yi−yo)2)]dxodyo (2-4)

If the propagation distance z is assumed to significantly exceed the wavelength such that z >> λ,
the approximation ei k

2z (x2
o+y2

o) ≈ 1 can be made. This simplifies Equation 2-4 to Equation 2-5. This
simplified propagation equation is known as Fraunhofer propagation, and is usually employed when
considering far-field propagation[14]. As Equation 2-5 shows, propagation is performed using a single
Fourier transform and a multiplication with a pre-factor. The field obtained through Fraunhofer
propagation is also closely related to an ideal single-lens system imaging from the front to the back
focal plane[14]. If pre-factors are ignored, a common practice, this results in a perfect Fourier transform
relation for both far-field diffraction and single-lens system imaging. This method is computationally
very cheap due to efficient Fourier transform implementations such as the fast Fourier transform (FFT)
algorithm, and is analytically highly interesting.
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2. Theoretical Fundamentals 5


W (xi, yi, z) = eikz

iλz e
−i k

2z (x2
i +y2

i )
∫
W (xo, yo, 0)e−i 2π

λz (xixo+yiyo)dxodyo︸ ︷︷ ︸
F{W (x,y,0)}

xi = λzfx

yi = λzfy

(2-5)

The direct Fourier transform relation obtained for propagation through an ideal single-lens system
is also used to obtain the wavefront at the detector plane of a camera module, assumed to consist
of a detector chip placed in the focal plane of a single-lens system. These detector chips measure
light intensity, i.e. the number of photons hitting individual pixels over a given period of time,
modelled mathematically as I(x, y) = W ∗(x, y)W (x, y) =| A(x, y) |2 using the wave description given
in Equation 2-1. Due to the single-lens model of a camera, this means the incoming wavefront intensity
is captured by a camera module with focal length f as I(x, y, z = f) (F {W (x, y, 0)})∗ F {W (x, y, 0)}.

Unfortunately, this real-valued intensity does not explicitly capture the phase field ϕ(x, y), which is
present in the complex wavefront. This is problematic as degradation of the captured image quality
can mostly be attributed to phase delays incurred along the optical path, also called aberrations.
These aberrations are included in the phase field ϕ(x, y), where a perfect plane wave has ϕ(x, y) = 0
and generates the highest quality image. If the aberrated phase ϕ(x, y) is known, the principle of
optical conjugation can be used to correct the aberration. This is the base principle on which the field
of adaptive optics is founded[2]. Through a corrective element, for example a deformable mirror, the
phase ϕcorrector(x, y) = −ϕ(x, y) can be introduced to the optical path of the wavefront which cancels
out the original aberration.

The retrieval of this lost phase information from an intensity image is a non-convex and highly non-
linear problem called the phase-retrieval (PR) problem. The optimisation problem given in Equation 2-
6 describes PR mathematically, where the general optimisation parameter x then contains the complex
wavefront from which the phase can be calculated. Due to the non-linear and non-convex nature of
this problem, it is still a highly active area of research[2, 5–7].


| F {x} |= A

| x |= a

x ∈ CN

(2-6)

Solving the PR problem directly from intensity images registered with single-lens ideal systems is
called wavefront sensorless phase retrieval. These methods are often iterative, require multiple images
of the wavefront with introduced phase diversities, or attempt to reduce or eliminate non-linearity or
non-convexity at the cost of aberration magnitude and problem dimensionality[5]. A brief overview of
these methods in literature will be given in Section 3-2.

Phase information can be captured in the intensity image if alternative optical setups are used. An
example would be the use of holography, which registers a complete phase profile in the form of inter-
ference patterns but requires a specialised setup[5]. Instead, so called wavefront sensors are employed
which capture phase information indirectly and can be incorporated more easily within an optical
setup. A well-known wavefront sensor in the field of adaptive optics is the Shack-Hartmann sensor[8],
designed to capture average phase gradient information in the form of spot displacements. More in-
formation on the operating principle of the Shack-Hartmann sensor will be provided in Section 2-3,
and phase retrieval based on Shack-Hartmann intensity patterns will be discussed in Section 3-1.
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6 2. Theoretical Fundamentals

2-2 Modal Basis Decomposition

The representation of a wavefront phase for use in phase retrieval methods can be done zonally or
modally. As the name suggests, zonal representation defines the wavefront over a set of zones as being
either piece-wise constant or piece-wise linear. The size of such a zone can range from the full aperture
to a single pixel, where the latter is the most common in numerical zonal phase retrieval algorithms
such as alternating projections[10]. The higher the zone count or pixel grid becomes, the more data
is required to represent the wavefront phase making zonal representation the least efficient in terms
of storage if retrieved phases are to be saved. Each zone is treated independently meaning a smooth
phase is not guaranteed, but conditions on continuity can be applied between neighbouring zones if
desired.

Modal representation, on the other hand, expresses the phase field globally as a weighted sum of
basis functions as shown in Equation 2-7 where K refers to the number of basis functions used in the
reconstruction. An advantage of modal representation is that, given a smooth set of basis functions,
the resulting modal wavefront will also be smooth. As common naturally ocurring aberrations such
as defocus, astigmatism and tip-tilt are smooth functions, modal representation is especially suited.
Additionally, saving the phase for later use only requires saving a set of coefficients which is much
more efficient in terms of consumed memory.

ϕ(x, y) =
K∑

k=1
αkfk(x, y) (2-7)

A highly popular basis for phase representation and the basis used in this thesis is the Zernike basis
which is complete as well as orthonormal on the unit circle and as such used for circular apertures[16].
In polar coordinates, each basis function is defined by Equation 2-8 where n is the radial order and m
the azimuthal order, n,m ≥ 0, and m ≤ n. The basis functions are usually referred to by their (n,m)
denomination, but other orderings are also used in practice such as Noll’s ordering using a single index
associated to each (n,±m) pair[17].


Z±m

n (ρ, θ) = Rm
n


cos(mθ), ±m > 0
sin(mθ), ±m < 0
1, m = 0

Rm
n (ρ) =

∑n−m
2

s=0
(−1)s(n−s)!

s!( n+m
2 −s)!( n−m

2 −s)!
ρn−2s

(2-8)

The Zernike basis has a number of desirable properties. Firstly, the complexity of the basis functions
increases with their order. As the Zernike functions are real-valued, complexity in this context refers
to the amount of variation or frequency of the function over the studied domain and as such allows the
modelling of more complex aberrations with higher orders. Secondly, as mentioned above, the basis is
orthonormal on the unit circle and complete which means any aberration on a circular aperture can
theoretically be expressed using a weighted sum of Zernike polynomials. It is worth noting, however,
that orthogonality is a mathematical concept applicable in continuous space and on the full infinite
basis, i.e. with K = ∞ in Equation 2-7.

If a truncated (K < ∞) basis is used, which is unavoidable when implemented numerically, orthogo-
nality is not guaranteed to hold[18]. In fact, it is known not to hold for the Zernike basis. However,
aberrations can often be assumed to be below a particular order of complexity meaning truncation of
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the Zernike basis beyond this order is expected to minimise the effects of loss of orthogonality. An ad-
ditional problem presents itself in the form of gradient orthogonality. Methods such as centroiding[4]
or the method which will be discussed in Section 5-4, attempt to find a set of coefficients α⃗ such that
∇ϕ =

∑K
k=1 αk∇fk. However, if the gradient fields are not orthogonal to one another, this does not

necessarily mean ϕ =
∑K

k=1 αkfk. A good example of this is the Zernike basis discussed above, whose
gradient fields are not orthogonal.

There are bases in literature whose gradient fields are orthogonal, or are designed to be used for fitting
gradients prior to translation to a basis such as Zernike. An example of this would be the vector
polynomial basis derived by Zhao and Burge[19, 20]. This basis, however also loses orthogonality
when truncated.

If orthogonality under truncation and orthogonality in gradient is desired, an additional criterion must
be met which was derived by Soloviev[18]. According to this criterion, given in Equation 2-9, each
basis function fn in the basis must be a solution to the 2D Helmholtz equation in the aperture with
homogeneous boundary conditions. For circular apertures, an example of such a basis would be the
set of circular Bessel functions[18].

∆fn + k2
nfn = 0 , kn ∈ R (2-9)

Many other bases for use in phase retrieval exist in literature such as the complex-valued Extended
Nijboer-Zernike basis[21], the set of Gaussian radial basis functions, B-splines et cetera which are
implemented for specific use-cases. The method developed in this thesis, however, uses the classic
Zernike basis due to its popularity in optics.

Computation of the Zernike basis can be performed using Equation 2-8 if desired. However, Cartesian
defintions of the polynomials exist and recurrence relations between the polynomials as well as their
gradients have been exploited to speed up calculations significantly. The work in this thesis uses such
an algorithm, developed originally by Andersen and translated to Python for use in this thesis[22].

2-3 Shack-Hartmann Sensor Principles

The aim of this section is to briefly introduce the Shack-Hartmann wavefront sensor and how it is
traditionally used in phase retrieval. The sensor was designed in its current form in the year 1971,
when Shack proposed to build an optical component comprised of an array of lenslets, called a micro-
lens array (MLA), and a detector chip placed in the focal plane[8]. This design was a variation of the
Hartmann screen, an opaque surface with pinholes spaced at regular intervals, proposed by Hartmann
in 1904[23].

Each lenslet in the MLA images the incoming wavefront as a spot on the detector plane, but with a
shift which was observed to be proportional to the average tip/tilt over each individual sub-aperture.
As the average tip/tilt equals the average phase gradient over the sub-aperture, the registered intensity
indirectly contains phase gradient information in the form of these spot shifts. An illustration of this
principle is provided in Figure 2-1.

Calculating these spot displacements is done through a procedure called centroiding, resulting in two
displacements sx,i and sy,i per sub-aperture. As can be seen in Figure 2-1 the average tip/tilt would
then be −sx,i

f and −sy,i

f per sub-aperture. It is worth noting that the displacements are assumed to be
in physical dimensions, meaning the physical pixel size must be known. The most common algorithm
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CCD

sub-aperture centroid

Average local wavefront
slope in x

Figure 2-1: Operating principles of a Shack-Hartmann wavefront sensor. The observed shifting of the
spot imaged by a lenslet is shown to be proportional to the wavefront gradient over the sub-aperture

for centroiding is based on the calculation of the first image moment per sub-aperture, but alternative
methods will be briefly discussed later in Section 3-1.
If the wavefront phase is reconstructed zonally, meaning pixel-wise or region-wise, the average tip/tilts
in each sub-aperture can simply be stitched together to form a piece-wise linear approximation of the
wavefront[4]. This reconstruction technique often lacks a smooth phase, which may not be desirable
due to the smoothness of common aberrations such as defocus, tip/tilt and astigmatism.
More commonly, however, the phase is reconstructed modally, which results in a smooth phase if
smooth basis functions are used. By calculating the x and y gradients of the known basis functions in
each sub-aperture centre, a gradient matrix Z can be obtained. Stacking the calculated displacements
sx and sy into a vector s⃗ and multiplying by 1

f then provides a vector of phase gradient estimates. As
this estimated gradient should correspond to a weighted combination of the basis gradients, a problem
of the form given in Equation 2-10 is obtained, where the Zernike basis is used as an illustration. The
best fit solution for this problem can be calculated with the least-squares solution α⃗ = 1

f (ZTZ)−1ZT s⃗.



∂Z−1
1

∂x (x0, y0) . . .
∂Zm

n

∂x (x0, y0)
...

...
∂Z−1

1
∂x (xN , yN ) . . .

∂Zm
n

∂x (xN , yN )
∂Z−1

1
∂y (x0, y0) . . .

∂Zm
n

∂y (x0, y0)
...

...
∂Z−1

1
∂y (xN , yN ) . . .

∂Zm
n

∂y (xN , yN )



 α1
...

αm,n

 = 1
f



sx,1
...

sx,NMLA

sy,1
...

sy,NMLA


(2-10)

As centroiding provides two displacement values per sub-aperture, the maximum number of modes
that can be retrieved using this least-squares solution is equal to 2NMLA where NMLA is equal to the
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number of spots present in the intensity image. As large lenslet arrays are expensive to manufacture,
this number is traditionally rather limited and as such centroiding-based reconstruction results in
low-order approximations of the wavefront phase.

From the discussion above it becomes clear that the classic use of the Shack-Hartmann sensor disre-
gards a lot of information encoded in the form of interference and spot shape, i.e. the point-spread
function (PSF) nature of a Shack-Hartmann intensity pattern is ignored. As will become clear from
the discussions in Section 6-2 and Chapter 7, however, exploiting this information results in much
higher accuracy in wavefront phase reconstruction.
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Chapter 3

Current State-of-the-art in Phase
Retrieval

This chapter will discuss current state-of-the-art phase retrieval methods with and without the use of
Shack-Hartmann wavefront sensors. Firstly, phase retrieval using wavefront sensors will be discussed
in Section 3-1. Secondly, phase retrieval for single-lens ideal systems (with)out phase diversities will
be discussed in Section 3-2. Lastly, the thesis research question will be formulated in Section 3-3.

3-1 Wavefront Reconstruction through Phase Sampling

As mentioned earlier in Section 2-1, the phase retrieval problem is both non-convex and non-linear
as intensity patterns captured by traditional image registration only consider wavefront amplitude
information at the detector plane, losing any explicit information of the phase. However, by altering
the optical setup, direct or indirect registration of phase information is possible which substantially
simplifies the phase retrieval problem.

One possible alteration is the use of holography, which captures the phase directly in the form of
interference patterns between a reference beam and the aberrated beam[5, 24]. This, however, is
a highly specific use-case and requires significant alterations to an existing optical setup. Instead,
indirect phase registration can be performed using so called wavefront sensors. One common wavefront
sensor is the Shack-Harmann sensor[8], consisting of a micro-lens array (MLA) where each lenslet
images the wavefront as a spot on the focal plane with a spatial displacement proportional to the
average phase gradient over the lenslet sub-aperture. As such, an approximation of the wavefront
can be obtained which, depending on the wavefront aberration being low-order and thus changing
minimally over a sub-aperture, can be used to correct aberration arbitrarily well. As the accuracy
of the average gradient information is tied directly to the accuracy of the calculated displacements,
literature focuses on this aspect.

The calculation of displacements is traditionally done via the procedure of centroiding, i.e. finding the
spot centroid in each sub-aperture will yield the displacement with respect to the sub-aperture centre
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12 3. Current State-of-the-art in Phase Retrieval

where an unaberrated wavefront spot centroid would be located. If the intensity in a sub-aperture is
denoted Isub(x, y), its corresponding centroid can then be obtained via calculation of the first image
moment as given in Equation 3-1[4, 9]. After performing this for every sub-aperture, the procedure in
Section 2-3 can be used to reconstruct the wavefront.


xc,sub =

∫ ∫
Isub(x,y)xdxdy∫ ∫
Isub(x,y)dxdy

yc,sub =
∫ ∫

Isub(x,y)ydxdy∫ ∫
Isub(x,y)dxdy

(3-1)

As the main source of error in these centroid calculations come from the effects of noise and spatial
discretisation to pixels, methods discussed in literature aim to improve upon the classic first-moment
calculation. An example of this would be the work of Nightingale and Gordeyev, in which both pre-
processing methods and alternative centroid calculation methods are discussed[9]. In this paper, three
pre-processing methods were discussed for the removal of noise: intensity thresholding, windowing
around the brightest pixel, and gamma correction. An illustration of their effects is shown in Figure 3-
1. Additionally, the paper discussed three alternative centroid calculation methods. The first was
first-moment calculation of the sub-aperture intensity convolved with a 2D Gaussian function. The
second, fitting of a 2D Gaussian to the sub-aperture profile. The third being an iterative weighted
first-moment calculation with a Gaussian weighting function. More details can be found in the original
paper, but simulations showed the best results for iterative weighted first-moment calculation and the
regular first-moment centroiding when paired with fourth-order gamma correction.

Besides low-order limitations of centroiding-based reconstruction, the aberrations that can be recon-
structed are also limited in magnitude. The culprit for this limitation is the independence assumption
between sub-apertures, i.e. each sub-aperture is assumed to contain only its own spot. The reason for
this is the non-determinism that would arise if multiple spots share a single sub-aperture: it would
be uncertain which spot corresponds to which sub-aperture and as such displacement calculation is
non-deterministic. Methods have been proposed in literature for associating identified spots with
their sub-aperture through, a process called spot indexing. One method is the iterative Zernike re-
construction of the phase based on a set of known and associated spots, followed by virtually projecting
the centroids to their estimated positions according and associating unmatched spots within a given
radius of the projected centroids to their corresponding sub-apertures[1]. A diagram of this method is
provided in Figure 3-2. A second method is based on the observation that the rectangular or hexagonal
spot lattice structure is locally preserved under aberrations, meaning neighbouring matched spots can
be used to associate unmatched spots with the correct sub-aperture, or even approximate the location
of missing spots[25].

Create Zernike
approximation using

matched spots

Project all sub-
aperture centroids to

CCD plane using
estimate

Match found image
spot centroids to
closest predicted

within range d pixels

Unmatched
spots left?

Yes

Sub-aperture centroids
for wavefront reconstruction
(f.e. Zernike approximation)

No

Intermediate
wavefront estimate

Predicted spot centroids

Spot centroids
found in image

Figure 3-2: Diagram the of iterative Zernike reconstruction spot indexing[1]
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Spot

(a) Sub-aperture
with a noisy spot

Spot with thresholding

(b) Application of
intensity threshold-
ing (25%)

Spot with windowing

(c) Application of
windowing around
brightest pixel

Spot with gamma correction

(d) Application of
gamma correction
(γ = 4)

Figure 3-1: Illustration of pre-processing techniques on a noisy spot to limit influence on centroid
calculation

It is worth noting that centroiding-based methods have also been used in literature to obtain curvature
estimates. An example of this would be the work of Zou et al. in which three Shack-Hartmann sensors
with two being offset in x and y respectively were used to obtain a curvature estimate through finite
differences[26]. Additionally, centroiding-based reconstruction has been generalised to extended scenes
by calculation of the displacement using optical flow[27, 28].

A powerful alternative to centroiding treated in literature for phase gradient extraction from Shack-
Hartmann patterns is the method of Fourier demodulation[29–33]. This method, based in the theo-
retical model of a Shack-Hartmann sensor as a grating interferometer derived by Primot, treats the
spot displacements as a modulation of the bi-periodic grid structure caused by the MLA geometry and
will be discussed in more detail in Chapter 5. It is worth noting that centroid calculation is in fact
related to Fourier demodulation, meaning the two methods are not dissimilar in terms of information
extracted[29, 34]. However, the Fourier demodulation method supports higher-magnitude aberrations
by design, meaning spots moving outside of their sub-apertures is no longer a limiting factor and mak-
ing it more versatile. Additionally, non-orthogonal gradients can be extracted, providing information
redundancy[29].

As all above methods only extract average phase gradient information through the displacement of
spots, a significant amount of data in the form of inter-spot interference or spot shape in the point-
spread function (PSF) is discarded. As such, the achievable reconstruction accuracy is limited, more
specifically it is limited to 2NMLA modes where NMLA refers to the number of spots within the
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14 3. Current State-of-the-art in Phase Retrieval

aperture whose displacements have been calculated[4]. Any aberrations with phases whose change
over a sub-aperture cannot be accurately approximated by a tip/tilt will also be aliased to lower-order
modes. Finally, spot displacement techniques are also blind to aberrations with zero average phase
over a sub-aperture such as perfect sinusoidal aberrations with a period equal to a multiple of the
lenslet pitch. A higher reconstruction accuracy could be obtained by using an MLA with a higher
lenslet count, but these are expensive to manufacture and will fundamentally limit the aberration
magnitude due to spots having less room for movement.

Though lacking in reconstruction accuracy, computational speed for these methods is high if a feasible
number of lenslets is used and expensive spot indexing algorithms can be largely avoided. Additionally,
an approximation of the wavefront is readily obtained from a single intensity image. As will be shown
in Chapter 7, this makes for an excellent pre-conditioning method for high-accuracy phase retrieval
through PSF fitting.

3-2 Wavefront Reconstruction through Fourier Amplitude Sam-
pling

Fourier amplitude sampling refers to the use of the full discretised intensity pattern, or PSF, generated
by the aberration. As these methods are applied to wavefront sensorless systems, i.e. single-lens ideal
systems, the generated intensity pattern is therefore the square of the Fourier amplitude.

Wavefront reconstruction methods for wavefront sensorless systems aim to solve the phase retrieval
problem discussed in Section 2-1 either directly in its original form, or following some relaxation or
re-casting of the problem. As such a large number of differing approaches have been worked out in
literature.

The first of the discussed approaches is the method of alternating projections, aiming to solve the
original problem without simplification or alteration. In this iterative method, two complex fields S
and T are solved for knowing the mapping F {S} = T and having absolute amplitude information on
both fields[5–7]. As such it is a projection between the sub-spaces on which S and T are defined by
substituting the amplitude information at every step until the mapping is satisfied. The most popular
implementation of alternating projections is the Gerchberg-Saxton algorithm[10], whose base principle
of operation is shown in Figure 3-3. As the absolute amplitude of a complex field is not a one-to-one
mapping even if the Fourier transform F is, convergence to the correct solution is not guaranteed
unless additional intensity images using phase diversities are provided as has been done for the phase
diversity phase retrieval algorithm[35]. This latter algorithm can be cast to the Gerchberg-Saxton
framework through the use of three-dimensional Fourier transformation. Alternatives of the phase
diversity phase retrieval algorithm have been proposed to be applied to Shack-Hartmann intensity
patterns in the past, employing the full Shack-Hartmann transmission function model of Section 4-
1[36]. However, more recently the Shack-Hartmann diversity model presented in Section 4-2 has also
been proposed as a candidate for use in the original phase diversity phase retrieval algorithm[13].
The main issue with alternating projections algorithms is the lack of convergence guarantees or the
need for multiple observations with diversities, as well as the fact that it is fundamentally a zonal
reconstruction algorithm.
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Random phase ,
measured amplitude 

Figure 3-3: Diagram showing the operating principle of the Gerchberg-Saxton phase retrieval algorithm

A second method is known as dimensionality lifting, recasting the phase retrieval problem to a higher
dimension to obtain convexity in the form of a semidefinite programming problem at the cost of squared
computational complexity and storage requirements[5, 12, 37]. Implementations of this method ex-
press the intensity measurements in an intensity image as y⃗ = |⟨⃗a, x⃗⟩|2[5]. This notation allows the
notation given in Equation 3-2 to be used where multiple images k = 1, . . . ,M are assumed, which is
linear in a higher dimension. Obtaining the wavefront would then amount to solving the semidefinite
programming optimisation problem in Equation 3-3. Alternatives to rank minimisation with other
heuristics have also been proposed in literature[37].

y⃗k = x⃗∗a⃗ka⃗k
∗x⃗ = x⃗∗Akx⃗ = Tr(AkX) k = 1, . . . ,M

X ⪰ 0
rank(X) = 1

(3-2)

min
X

(rank(X)) ≈ min
X

Tr(X)

s.t. y⃗k = Tr(AkX) k = 1, . . . ,M
X ⪰ 0

(3-3)

As this method scales quadratically in computational complexity with increasing image size, practical
implementation is challenging. However, alternative semidefinite problem definitions have been pro-
posed whose problem dimension does not scale quadratically with image size through the use of convex
relaxations[38]. Overall, however, this method remains computationally demanding and challenging
to implement.
The last of the discussed methods is approximation of the intensity function. In intensity approxima-
tion, the non-linear and non-convex intensity function is locally approximated using Taylor approxima-
tion, usually around zero aberration as closed-loop conditions or small aberrations are assumed[11, 39].
One example of approximation are the methods by Silva et al., de Visser and Verhaegen, and Viegers
et al., which is applied to a (Shack-)Hartmann intensity pattern and uses first-order Taylor approx-
imation with a B-spline basis[39–41]. While these methods retrieve high-order aberrations, an inde-
pendence of sub-apertures is assumed making its applicability to aberrations with a larger magnitude
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limited even if Taylor approximation around a previous wavefront estimate is used. Similarly, the
method by Marinica et al. also employs Taylor approximation, but applies it to the usual wavefront
sensorless optical setup, showing reconstruction for both a first-order and second-order Taylor approx-
imation with an arbitrary modal basis[11] and use of phase diversities to circumvent ambiguity in the
solution. This approximation method is highly promising as it is numerically fast to solve, requiring a
single least-squares solution for the first-order approximation, and is built to support phase diversities
as well as initial estimates. As such, it will be further discussed in Chapter 6.

It is worth noting that alternative methods also exist based on physical reconstruction of the wavefront
in actuator space. These methods do not retrieve the phase numerically from intensity patterns, but
instead aim to directly correct for aberrations using image metrics. Two examples are correction based
on minimisation of the second image moment, which is related to the average square phase gradient
over the aperture[21, 42], and correction based on minimisation of the spot radius[43]. As these
methods require physical iteration with multiple images and a phase corrector such as a deformable
mirror, they do not qualify as numerical phase retrieval algorithms, nor as candidates for single-frame
phase retrieval unless aberration dynamics are assumed, and are not studied further.

3-3 Research Question

As can be deduced from Section 3-1 and Section 3-2, reconstruction methods employing Shack-
Hartmann wavefront sensors and wavefront sensorless reconstruction methods are complementary to
one another.

While methods such as centroiding or Fourier demodulation are limited in reconstruction accuracy and
as such are meant for low-order aberrations, they can provide a phase estimate from a singular image
frame. In addition, they discard a large portion of information in the form of PSF characteristics such
as spot shape or interference.

Conversely, wavefront sensorless methods can retrieve high-order aberrations as all available informa-
tion in the form of interference is used. However, these methods suffer from ambiguity of the solution
unless multiple images with phase diversities are used and/or are limited to small deviations around
an approximation point.

The question then arises whether wavefront sensorless methods can be applied to Shack-Hartmann
intensity patterns to reconstruct high-order aberrations while also including any phase information
encoded within these patterns extracted by phase sampling methods like centroiding or Fourier de-
modulation. Additionally, could this be achieved using only a single image frame as would be the case
for phase sampling methods. Using the hybrid Shack-Hartmann sensor model discussed in Chapter 4
consisting of a single-lens and phase diversity, known as the Shack-Hartmann diversity, this becomes
a possibility which is explored in this thesis. Formally, the research question can therefore be phrased
as follows:

How can we obtain higher-accuracy reconstructions of high-order aberrations from a single frame
by considering the full Shack-Hartmann pattern as a point-spread function through Shack-Hartmann
diversity?
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Chapter 4

Modelling of a Shack-Hartmann
Wavefront Sensor

This chapter will discuss two modelling techniques for a Shack-Hartmann wavefront sensor. First, the
classic model viewing the Shack-Hartmann sensor as an array of lenses will be discussed in Section 4-1.
Subsequently, an alternative view of the Shack-Hartmann sensor as a single-lens ideal system with a
phase diversity will be discussed in Section 4-2 and a brief conclusion will be provided in Section 4-3.

4-1 Optical Transmission Function of a Micro-lens array

The influence of an optical component on the light wave passing through it is captured in the optical
transfer function (OTF) of the optical component. The wavefield after passing is then given by
multiplication of the incoming wave with the OTF[15].

For an ideal rectangular lens with focal length f and size d× d this transmission function is given by
Equation 4-1[36]. Insertion of this formula in the Rayleigh-Sommerfeld propagation integral ultimately
results in the emergence of a direct Fourier transform relation to obtain the wavefront in the focal
plane of a single-lens ideal system[15].

t0(x, y) = Π
(x
d
,
y

d

)
e−i k

2f (x2+y2) (4-1)

As a micro-lens array (MLA) is an array of micro-lenses, Equation 4-1 must be cloned to all centroid
positions. For a rectangular MLA, this means they must be placed at a distance p from one another
in both x and y direction with p being the lenslet pitch. Additionally, the lenslet sub-aperture will
have size p × p. This results in Equation 4-2[36] where combp,p is a 2D comb function consisting of
Dirac delta functions spaced at intervals of p.

t(x, y) = t0(x, y) ∗ combp,p(x, y) = Π
(

x
p ,

y
p

)
e−i k

2f (x2+y2) ∗ combp,p(x, y) (4-2)
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18 4. Modelling of a Shack-Hartmann Wavefront Sensor

While the above equation only shows the transmission function of a rectangular array, a hexagonal
array is straightforwardly obtained as a hexagonal lens cloned on a hexagonal grid, which can be
decomposed as a sum of two comb functions.

Applying Equation 4-2 to the incoming wavefront does not yet result in the wavefront at the detector
plane of a Shack-Hartmann sensor. To obtain the wavefront at the detector, explicit propagation must
be performed over a distance f with, for example, the angular spectrum propagation method[36].

Unlike for a single-lens system, propagation to the focal plane can no longer be achieved with a
singular Fourier transform. This is undesirable for two reasons. Firstly, it increases the computational
effort for simulation of Shack-Hartmann patterns. Secondly, as will be discussed in Chapter 6, most
wavefront sensor-less methods solving the phase retrieval problem introduced in Section 2-1 rely on
direct Fourier relations between the incoming wavefront and the captured wavefront and as such are
not directly compatible with Shack-Hartmann sensors.

Clever modelling of an MLA, however, can be used to circumvent this apparent incompatibility. This
will be further discussed in Section 4-2.

4-2 Shack-Hartmann Wavefront Sensor as a Phase Diversity

This section will discuss an alternative method of modelling a Shack-Hartmann sensor, namely as a
phase diversity. This method, developed in parallel by Soloviev et al. and Hénault and Pannetier,
proposes to split the Shack-Hartmann sensor micro-lens array into a single-lens ideal system and a
piece-wise linear phase diversity dubbed the Shack-Hartmann diversity[13, 44]. As it is an extension
of a single-lens system, this interpretation allows the use of direct Fourier transformation of the
original wavefront with the additional phase term to obtain the wavefront at the Shack-Hartmann
sensor detector plane, a numerically fast method of performing forward simulation of Shack-Hartmann
patterns. Additionally, it allows the application of wavefront sensorless phase retrieval methods to
Shack-Hartmann sensor intensity patterns. An example of such an application given by Soloviev et al.
is the use of Shack-Hartmann diversity as a diversity in phase diversity phase retrieval, an alternating
projections method[13, 35]. However, as will be shown in Section 6-2 and Chapter 7, it can be used
to apply intensity approximation phase retrieval methods to Shack-Hartmann patterns as well.

As both Soloviev et al. and Hénault and Pannetier developed a Shack-Hartmann diversity separately,
both will be briefly discussed. It is worth noting that the diversity obtained by Soloviev et al. will be
used in this thesis, the rationale for which will become clear later in this section.

Observing the transmission functions of a lens and a micro-lens array, shown before in Equation 4-1
and Equation 4-2 respectively, the transmission function phase fields are given by Equation 4-3 and
Equation 4-4. In these equations the full pupil and sub-aperture pupil functions have been replaced
by domains S and Si respectively, where Si and centroid x⃗c,i refer to the sub-aperture and centroid
position of the i’th lenslet. Additionally, inner-product notation is used to simplify notation.

ϕL(x, y) = − k

2f
(
x2 + y2) = − π

λf
⟨x⃗, x⃗⟩ , x⃗ ∈ S (4-3)

ϕMLA,i(x, y) = − π

λf
⟨x⃗− x⃗c,i, x⃗− x⃗c,i⟩ , x⃗ ∈ Si ∈ S (4-4)

The difference between these phase fields can then be used to obtain the piece-wise linear Shack-
Hartmann diversity in Equation 4-5 whose formulation depends on the MLA focal length f , the used
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wavelength λ, and the MLA geometry. As shown in Equation 4-6, adding this diversity term to the
phase of the incoming wavefrontW (x, y) prior to ideal lens propagation through Fourier transformation
will result in the wavefront at the detector plane.


ϕL(x, y) = − π

λf ⟨x⃗, x⃗⟩ , x⃗ ∈ S

ϕMLA,i(x, y) = − π
λf ⟨x⃗− x⃗c,i, x⃗− x⃗c,i⟩ , x⃗ ∈ Si ∈ S

ϕSH(x, y) = ϕMLA(x, y) − ϕL(x, y)

⇐⇒ ϕSH = π

λf
⟨x⃗c,i, 2x⃗− x⃗c,i⟩ , x⃗ ∈ Si (4-5)

Wdetector(x, y) = F
{
W (x, y)eiϕSH (x,y)

}
(4-6)

It is worth noting that the notation of Equation 4-5 applies for both rectangular as well as hexagonal
Shack-Hartmann sensors micro-lens arrays.
This Shack-Hartmann diversity concept was implemented in a Python framework for this thesis for
both rectangular and hexagonal arrays and used for forward Shack-Hartmann sensor simulation as well
as phase retrieval. The framework was designed for use as an optical component within the HCIpy[45]
Python optical propagation framework and as such is straightforward to re-use for later projects. An
illustration of the obtained diversities for both geometries is given in Figure 4-1.

(a) Wrapped Shack-Hartmann diversity for a
rectangular micro-lens array in radians

(b) Wrapped Shack-Hartmann diversity for a
hexagonal micro-lens array in radians

Figure 4-1: Illustratory wrapped Shack-Hartmann diversities for rectangular and hexagonal micro-lens
arrays

To illustrate forward simulation Figure 4-2 shows the obtained intensity patterns for a rectangular
and hexagonal Shack-Hartmann sensor under zero-aberration conditions.

4-3 Conclusion

The main purpose of this chapter was to introduce an alternative method of modelling a Shack-
Hartmann sensor as a single-lens ideal system with an added piece-wise linear phase diversity.
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(a) Obtained intensity pattern for rectangular
Shack-Hartmann configuration

(b) Obtained intensity pattern for hexagonal
Shack-Hartmann configuration

Figure 4-2: Intensity pattern obtained for zero-aberration on Shack-Hartmann sensors with focal length
10mm, a circular pupil, and aperture diameter 1.2mm

First, the classic model of a Shack-Hartmann sensor as a singular optical component with a micro-lens
array was discussed in Section 4-1. While this model is the best mathematical expression of the real
physical system, the description in Equation 4-2 does not allow simplification of the optical propagation
equations. As such, explicit propagation is required using, for example, the angular spectrum method
which incurs a higher computational cost instead of the computationally cheaper direct Fourier relation
obtained with single-lens system as is the case for a wavefront sensorless system. More importantly,
however, the lack of a direct Fourier relation makes wavefront sensorless phase retrieval methods
incompatible with Shack-Hartmann intensity patterns in this model.

The theory in Section 4-2 described an alternative view of a Shack-Hartmann sensor, namely as
a single-lens ideal system with an additional piece-wise linear phase diversity dubbed the Shack-
Hartmann diversity. The model is applicable to both rectangular and hexagonal Shack-Hartmann
sensor MLA geometries and as such is versatile. As a single-lens ideal system does employ a direct
Fourier transform relation for propagation through the system, it has two interesting consequences.
Firstly, the use of direct Fourier transformation results in a computationally cheap method to perform
forward simulation wavefronts through Shack-Hartmann sensors. Secondly, it bridges the gap between
wavefront sensorless phase retrieval methods and Shack-Hartmann intensity patterns. This latter
consequence will be illustrated in Section 6-2 where the application of Taylor approximation to the
intensity function is shown to be compatible with Shack-Hartmann patterns, and Chapter 7 where a
method for high-accuracy phase retrieval from a single Shack-Hartmann image frame is shown.
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Chapter 5

Modal Phase Retrieval on Augmented
Fourier Demodulation Gradient Fields

for Rectangular and Hexagonal
Shack-Hartmann Wavefront Sensors

This chapter will discuss phase gradient extraction using an augmented Fourier demodulation method
and subsequent modal wavefront reconstruction. Firstly, a brief overview of the shearing interferom-
eter model of a Shack-Hartmann wavefront sensor will be provided in Section 5-1. This is followed
by the theoretical explanation, details of numerical implementation, and augmentation of Fourier de-
modulation to rectangular spot grids in Section 5-2. Section 5-3 will then discuss the extension of
this methodology to hexagonal spot grids. Furthermore, the modal phase reconstruction methodology
and basis considerations will be discussed in Section 5-4. Lastly, reconstruction results and a brief
conclusion will be provided in Section 5-5.

5-1 Shack-Hartmann Wavefront Sensor as a Shearing Interfer-
ometer

The principle behind the Fourier demodulation technique relies on a specific model of the Shack-
Hartmann derived by Primot, that of the Shack-Hartmann sensor as a shearing interferometer. This
model allows the displacements of the spots generated by each lenslet caused by the average phase
gradient over each sub-aperture to be interpreted as a modulation of the underlying lattice structure
of the spots in a regular rectangular Shack-Hartmann configuration [34]. It is worth noting that the
procedures from paper of Primot will be used throughout this section, but the original work should
be consulted for a more in-depth analysis[34].
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The derivation of this model starts from the transmission function, or grating equation, of a micro-
lens array (MLA) in Equation 5-1 where fµL and pµL are the MLA focal length and lenslet pitch
respectively. The rect function Π

(
x

pµL
, y

pµL

)
defines the rectangular sub-aperture and has the value 1

inside a pµL × pµL window around the origin and 0 outside of it. The ∗ operator denotes convolution,
and the combpµL,pµL

function is a comb function consisting of a 2D grid of Dirac delta functions spaced
at a distance pµL apart from one another in both x and y. As such, due to the sifting property of
Dirac delta functions this convolution results in an ideal lens transmission function with a pµL × pµL

sub-aperture being cloned at pµL intervals, keeping true to its definition as a micro-lens array.

G(x, y) =
[
e

iπ x2+y2
λfµL Π

(
x

pµL
,
y

pµL

)]
∗ combpµL,pµL

(x, y) (5-1)

An assumption is made that the MLA is of infinite extension in both x and y direction, making the
grating equation bi-periodic. As such, the grating equation can be represented by an infinite 2D
Fourier series as illustrated in Equation 5-2 where the coefficients cn,m need to be found.

G(x, y) = 1
p2

µL

+∞∑
n=−∞

+∞∑
m=−∞

cn,me
i2π

pµL
(nx+my) (5-2)

These coefficients cn,m are given by Equation 5-3 where ΨµL is defined by Equation 5-4.

cn,m =
∫ +∞

−∞

∫ +∞

−∞
e

iπ x2+y2
λfµL Π

(
x

pµL
,
y

pµL

)
e

−i2π
pµL

(nx+my)
dxdy

= F
{
e

iπ x2+y2
λfµL Π

(
x

pµL
,
y

pµL

)}(
n

pµL
,
m

pµL

)
= ΨµL

(
n

p
,
m

p

) (5-3)

ΨµL = (sinc(pu) sinc(pv)) ∗ eiπλfµL(u2+v2) (5-4)

The shearing interferometer model owes its name to the behaviour captured in these equations, as
Primot observed that upon illumination with a monochromatic near-plane wave this results in copies
of the wavefront being sent along different wave-vectors kn,m given by Equation 5-5 after leaving the
MLA and interfering at the Shack-Hartmann detector plane. An observation is also made by Primot
that Equation 5-4 can also be seen as the focal plane amplitude of the point (nλ,mλ) for a F/1 square
lens with aperture size pµL imaging a point source at fµL. This observation will be used later to
simplify the expression in Equation 5-3.


kn,m = 2π

λ

 nα

mα√
1 − (n2 +m2)α2


α = λ

p

(5-5)

Assuming a sensor with a large number of sub-apertures, a simplified wavefront amplitude at the
detector plane is given by Equation 5-6 where H is given by Equation 5-7 and HNG ≥ H is dependent
on H with more details available in the original paper[34].
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Adetector(x, y) =
HNG∑

n=−HNG

HNG∑
m=−HNG

cn,me
−iπ
2H (n2+m2)eiϕ(x+

npµL
2H ,y+

mpµL
2H )e

i2π
pµL

(nx+my) (5-6)

H =
⌊
p2

µL

2λfµL

⌋
(5-7)

Depending on the relative rates of variation of the convolved functions in Equation 5-4, the paper by
Primot derives the generated intensity image in one of two domains: independence domain in which
lenslets are assumed independent of one another, and cross-talk domain.

In the independence domain a small F number system is assumed and the earlier mentioned analogy
between Equation 5-4 and an F/1 lens system can be used to simplify Equation 5-3 through geometrical

optics. In this simplification, cn,m = e
iπ

λfµL

p2
µL for all −H < n,m < H and 0 otherwise, simplifying

the intensity equation obtained from the amplitude in Equation 5-6 to Equation 5-9. In this last
simplification, an additional assumption is made that the wavefront phase varies little at the scale of
a sub-aperture, meaning the approximation in Equation 5-8 holds.

ϕ(x+ npµL

2H , y + mpµL

2H ) = ϕ(x, y) + np

2H
∂ϕ

∂x
(x, y) + mp

2H
∂ϕ

∂y
(x, y) (5-8)


IG(x, y) =

∑H
n,m,n′,m′=−H e

i

(
ϕ(x+

npµL
2H ,y+

mpµL
2H )−ϕ(x+

n′pµL
2H ,y+

m′pµL
2H )

)
e

i2π
pµL

((n−n′)x+(m−m′)y)

=
∑2H

k=−2H

∑2H
l=−2H Harmk,l(x, y)ei 2π

pµL
(kx+ly)

, k = n− n′, l = m−m′

Harmk,l(x, y) = (2H + 1 − |k|)(2H + 1 − |l|)ei
pµL
2H (k ∂ϕ

∂x (x,y)+l ∂ϕ
∂y (x,y))

(5-9)

The intensity pattern in Equation 5-9 is built up of a sum of harmonics filtered each depending on
the phase gradient along a particular direction. Upon close inspection, however, taking the Fourier
transform of the intensity pattern will separate the spectra of the harmonics at intervals of 1

pµL
apart in

the frequency domain, allowing straightforward extraction if the assumption is made that the spectra
have minimal overlap. This is the definition of the intensity function upon which gradient extraction
through Fourier demodulation in Section 5-2 will be based, though Primot warns of the limited region
of validity for which this intensity function truly resembles the actual one. However, as will become
apparent later this does not pose a significant issue during simulation.

If a high F number system is assumed instead, the geometrical simplification of cn,m is no longer
possible and, after a number of intermediate steps and assumptions which will not be listed here as
well as the assumed small phase variation over a sub-aperture, a much more complex definition of the
intensity function ING(x, y) is obtained. This more complex definition is provided in Equation 5-10.
Extraction of gradients is no longer straightforward as harmonics contain a weighted sum of gradient
components. However, the observation is made by Primot that the weighting is small. Therefore, it is
assumed that systems in the region of applicability of Equation 5-10 may be processed using gradient
extraction techniques which will be discussed for Equation 5-9.
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ING(x, y) =

∑HNG

k=−HNG

∑HNG

l=−HNG
HarmNG

k,l (x, y)ei 2π
pµL

(kx+ly)

HarmNG
k,l (x, y) = ΓµL

(
k

pµL
, l

pµL

)
ei

pµL
2H (k ∂ϕ

∂x (x,y)+l ∂ϕ
∂y (x,y))

ΓµL(u, v) = autocorrelation
(
ψµL(u, v)e−iπ

2H (u2+v2)
) (5-10)

One final important observation is made by Primot. As the Shack-Hartmann intensity pattern is
undersampled, aliasing occurs between the highest and lowest harmonics in the intensity spectrum.
However, the harmonics rapidly, making the observable effect of the aliasing minimal.

With the theoretical foundation provided in this section, the extraction of phase gradient information
from harmonics can be discussed as will be done in Section 5-2 for rectangular arrays. While the work
of Primot only considered rectangular Shack-Hartmann arrays[34], Section 5-3 will illustrate that a
similar procedure can be applied to hexagonal arrays as well.

5-2 Phase Gradient Extraction on Rectangular Spot Grids using
Fourier Demodulation on a Trimmed Spectral Domain

For the extraction of gradients, the work of Rouzé et al. can be used[29]. This work is based largely
on the theoretical model described above in Section 5-1, but presents the theory in a much more
condensed manner.

A change of parameters and notation is performed in this section to stay close with the notation in
the work of Rouzé et al.. The parameter H defined in Equation 5-7 will be included in an alternative
coefficient K given by Equation 5-11. Furthermore, Harmk,l will be shortened to the briefer notation
Hk,l with an identical meaning.

K = 2H + 1 = 2
⌊
p2

µL

2λfµL

⌋
+ 1 (5-11)

As previously defined in Equation 5-9, the (k, l) harmonic is related to the gradient along the (kx, ly)
direction by Equation 5-12 where the notation of Rouzé et al. is used. The parameter ∂p in this
equation is given by Equation 5-13.

Hk,l(x, y) = (K− | k |)(K− | l |)e−iλ
√

k2+l2∂p ∂ϕ
∂ ⃗xk,l (5-12)

∂p = fµL

pµL
(5-13)

As mentioned previously in Section 5-1, the harmonic spectra are spaced at intervals of 1
pµL

apart from
one another in the spectrum of the Shack-Hartmann intensity pattern. This means that obtaining the
harmonic is achieved by inverse Fourier transformation of the extracted harmonic spectrum, obtained
by defining a 1

pµL
× 1

pµL
window around the harmonic spectrum and moving it to the centre of the

frequency space. Mathematically, this can be written as given in Equation 5-14.
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Hk,l(x, y) = F−1
{

shift
(

rect
(

fx − k/pµL

1/pµL
,

fy − l/pµL

1/pµL

)
F {ISH(x, y)}

)}
(5-14)

Rearrangement of Equation 5-12 leads to the formula used for extraction of the phase gradient along the
xk,l direction in Equation 5-15. If the gradient is assumed normalised and small, the angle calculation
can be substituted by taking the imaginary component of the harmonic by virtue of the small angle
approximation, an approach used in other works employing Fourier demodulation [32]. However, this
simplification will not be employed in the work of this thesis.

∂ϕ

∂xk,l
= 1

−iλ
√
k2 + l2∂p

log
(

Hk,l(x, y)
(K− | k |)(K− | l |)

)
= − 1

λ
√
k2 + l2∂p

angle
(

Hk,l(x, y)
(K− | k |)(K− | l |)

)
= − 1

λ
angle

((
Hk,l(x, y)

(K− | k |)(K− | l |)

) 1√
k2+l2∂p

) (5-15)

The methodology by Rouzé et al. presented above was derived for continuous Fourier transforms, and as
such does not fully consider the specifics and challenges that come with implementing this for discrete
Fourier transforms as one would use in practice on computing hardware. Therefore, the continuation
of this subsection will discuss the numerical implementation of the above gradient extraction method
as was performed for the thesis project.

The first observation that must be made is the difference in interpretation between a discrete and
continuous Fourier transform. While continuous Fourier transformation assumes the period of repeti-
tion to be infinite, discrete Fourier transformation instead assumes the function under consideration
to repeat with a period equal to the studied domain, i.e. if the function to be Fourier transformed
consists of 20 × 20 data-points or pixels, the assumed period of repetition is 20 pixels and a spectrum
is provided with 20 × 20 discrete frequency bins. An illustration is provided in Figure 5-1 for clarity.

This means that patterns with asymmetry at the edges give rise to high-frequency components in
the resulting frequency spectrum to account for the abrupt change when the function is tiled. To
remedy this, functions are either apodized near the edges prior to discrete Fourier transformation,
thereby destroying data, or, more commonly, zero-padded. The amount of zero-padding used is not
fixed, for example [33] suggests zero-padding such that the padded domain is twice that of the original
function. The work considered in this MSc thesis will instead assume padding to three times the
original dimensions, resulting in a padded intensity image Ipadded of size 3N × 3N obtained from
Equation 5-16. This choice of padding is mostly for ease of implementation as it employs a Kronecker
product and can easily be reversed. Overall, a padding factor cpad will be defined such that the padded
size Nzp = cpadN .

Ipadded =

0 0 0
0 1 0
0 0 0

⊗ I (5-16)

Master of Science Thesis Liam Cools



26
5. Modal Phase Retrieval on Augmented Fourier Demodulation Gradient Fields for Rectangular and Hexagonal

Shack-Hartmann Wavefront Sensors

Figure 5-1: Illustration of the perceived pattern of repetition by discrete Fourier transformation

After the padded discrete Fourier spectrum DFT {Ipadded} is obtained, extraction of the relevant
harmonic must be considered. The continuous-time equations discussed above refer to an extraction
window of size 1

pµL
× 1

pµL
in 2D frequency space centred at the (k, l)’th multiple of pitch frequency

1
pµL

, which must be converted to pixels to adhere to the discrete frequencies used in the discrete 2D
Fourier transform. For a discrete Fourier spectrum of Nzp × Nzp pixels, where Nzp = cpadN = 3N
is the zero-padded size, the discrete approximation of 1

pµL
in pixels wf,pix can be obtained using

Equation 5-17 in which d is the physical pixel size in meters. The extraction window for the Fourier
transform of the (k, l)’th harmonic can then be centred at an offset of (kwf,pix, lwf,pix) pixels from
the DC component of the full Nzp × Nzp padded intensity image frequency spectrum. It is worth
noting that, for rectangular arrays, wf,pix will be the same as the number of lenslets in each row
of the Shack-Hartmann array multiplied by the padding factor, meaning an 8 × 8 array will have
wf,pix = cpad8 = 24 for a padding factor cpad = 3.
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wf,pix =
⌊ 1

pµL

1
Nzpd

⌋
=
⌊
Nzpd

pµL

⌋
(5-17)

The size of the window to be extracted would then also be wf,pix × wf,pix pixels. However, there is
an important implementation detail that must be taken into account: potential energy leaks in the
extracted spectrum depending on the even- or oddness of wf,pix.

The centre pixel of the extraction window represents the DC component of the extracted harmonic’s
spectrum, meaning the remaining wf,pix − 1 pixels in each direction correspond to the symmetric
non-DC frequency bins. To illustrate the energy leak, one can consider the zero-aberration case. If
the harmonic relation of Equation 5-12 is assumed to hold, then a plane wavefront should result in
zero phase gradient and as such a fully real harmonic, requiring a fully symmetric spectrum and as
such each non-zero negative frequency bin must have a corresponding and equal non-zero positive
frequency bin. For an odd wf,pix this holds as one pixel corresponds to the DC component and the
remaining number of pixels is even in each direction, corresponding to the symmetric positive and
negative frequency bins. For an even wf,pix, however, this is not necessarily true as one frequency
bin in each direction will not have a symmetric counter-part. Per the numerical algorithm used for
the discrete Fourier transform, namely the fast Fourier transform (FFT) algorithm, these will be
the negative frequencies. If these uncompensated frequency bins are non-zero, the spectrum is no
longer symmetric and the resulting harmonic will not be real, violating the relation in Equation 5-12.
This energy leak influences non-zero aberrations as well, though these will by definition not have real
harmonics when their gradients are non-zero and instead will simply be corrupted by the energy leak.

This can be mitigated in one of two ways. One possibility is to set the values of the uncompensated
frequency bins to zero, i.e. the first row and column of the extracted discrete 2D spectrum. Another
option, and the option chosen for this MSc thesis, is to increase the extraction window size by one if
wf,pix is even, always resulting in an odd-sized extraction window. The rationale behind this approach
is the preservation of data as the uncompensated frequency bins do still contain harmonic information
and thereby gradient information. As mentioned in Section 5-1 the spectra of the harmonics do suffer
from aliasing, meaning the frequency bin will not be perfectly compensated if an extra row and column
is taken. However, the corruption caused by this overlap from aliasing is assumed to be small enough
not to have a significantly more impactful effect than it has on the rest of the extracted spectrum.

The use of discrete spectra rather than continuous spectra brings with it one more issue. As mentioned
before the harmonics are spaced at 1

pµL
from one another in the intensity image frequency spectrum,

which does not necessarily correspond to the centre of a discrete Fourier frequency bin. In fact,
Equation 5-17 shows that wf,pix is rounded down to the centre of the nearest frequency bin to 1

pµL

unless Nzpd
pµL

is already an integer. A discrepancy in this assumed centre will lead to the emergence of
a non-zero gradient even when no aberration is present and an ideal system with no static aberration
is assumed, an erroneous virtual tip/tilt not present in the actual aberration. Literature deals with
this in different ways, for example the work of Ribak et al. limits the application of the method to
Shack-Hartmann setups for which the integer assumption holds thereby circumventing the problem,
meanwhile Rouzé et al. chooses not to mention this problem explicitly [29, 33]. The method that is
used in the work presented in this MSc thesis is to instead include a reference pattern, i.e. the Shack-
Hartmann pattern for zero outside aberration, undergoing the same harmonic extraction procedure as
the aberrated pattern. The added benefit of employing a reference pattern is the immediate elimination
of static aberrations within the system, i.e. those caused by mirror misalignment, mirror sag, and lens
defoci, in addition to the elimination of the virtual tip/tilt caused by discretisation. In practice this
means the phase seen by the discrete Fourier demodulation method is ϕobs = ϕ+ ϕstatic + ϕvirtual =
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ϕ + ϕref where ϕref would be captured by the reference pattern. To avoid wrapping issues with the
angle() operator, the static and virtual aberrations should be eliminated before the angle is calculated,
thereby leading to Equation 5-18.

Hobsk,l
(xi, yi) = (K− | k |)(K− | l |)e−i

√
k2+l2∂pλ

∂ϕobs
∂xk,l

= (K− | k |)(K− | l |)e
−i

√
k2+l2∂pλ

(
∂ϕ

∂xk,l
+ ∂ϕstatic

∂xk,l
+ ∂ϕvirtual

∂xk,l

)
= Hk,l(xi, yi)Hrefk,l

(xi, yi)

⇐⇒ Hk,l(xi, yi) =
Hobsk,l

(xi, yi)
Hrefk,l

(xi, yi)

⇐⇒ ∂ϕ

∂xk,l
(xi, yi) = − 1

λ
angle

((Hobsk,l(xi, yi)
Hrefk,l(xi, yi)

) 1√
k2+l2∂p

)
(5-18)

One last point of discussion remains, namely the zero-padding of the discrete extracted harmonic
spectrum prior to inverse Fourier transformation. In the continuous-time relation shown in Equation 5-
14 it is shown that the extracted spectrum of the harmonic is to be shifted to the centre of the frequency
spectrum and inverse Fourier transformed. In discrete Fourier transformation this would mean placing
the extracted discrete spectrum in the centre of an Nzp ×Nzp empty spectrum. Doing this and then
employing Equation 5-18 results in an Nzp × Nzp padded gradient field, for which the padding can
be easily reversed to obtain the N × N gradient field which can be multiplied with the aperture to
remove artefacts at the edges. An example of gradients extracted from the (1, 0) and (1, 1) harmonics
is given in Figure 5-2 for a spherical aberration whose gradient field is known to be a coma oriented
along the gradient direction.

(a) Extracted gradient along the y direction (b) Extracted gradient along the x + y direc-
tion

Figure 5-2: Example of extracted gradients using Fourier demodulation of a spherical aberration, ana-
lytically known to be comas

It is important to realise, however, that zero-padding the spectrum does not create additional data,
but merely expands the reconstructed function in x and y direction through interpolation using sinc
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functions. Reconstruction methods performing zonal reconstruction such as Fourier or numerical
integration require a gradient field of equal size to the original phase to be reconstructed, necessitating
the padding procedure described above. However, this is not necessarily true for other reconstruction
techniques and a reduced padding may be beneficial for these. For example in the modal reconstruction
technique discussed in Section 5-4, the computational cost reduces drastically if a lower padding is
used. A similar observation of lack of additional data is used by Glazer et al. to speed up adaptive
optical control by building a controller calibration matrix directly from the extracted harmonic, but
this work does not perform explicit reconstruction of the phase [32].

The padded harmonic spectrum is defined to be the original extracted harmonic spectrum zero-padded
to a size Nzph ×Nzph with Nzph ≥ wf,pix +wf,pix mod 2 where the modulo results from the spectrum
energy leak mitigation strategy discussed above.

The value of Nzph is subject to a few conditions:

1. Nzph ≥ wf,pix + wf,pix mod 2

2. Nzph ≥ Nzph,lower

3. Nzph mod cpad = 0

4. Nzph ≤ Nzp = cpadN

5. Nzp mod Nzph = 0

Conditions 1 and 2 set a lower bound for Nzph where the first follows from the definition of Nzph

and the second allows for an artificial lower bound if desired. Condition 3 ensures that the padding
procedure used to mitigate the emergence of high-frequency components in the original intensity
image spectrum due to discrete Fourier transformation can be reversed for the reduced gradient field
dimension. Condition 4 sets an upper bound equal to the original problem dimension. Condition 5,
however, requires further explanation which is provided below.

The spatial discretisation caused by the physical imaging hardware results in an evenly spaced spatial
grid G1 defined by the set of coordinates S×S with S = {− Dpupil

2 +nd,∀n = 0, . . . , N} and d = Dpupil

N
being the physical pixel size. One would prefer the reconstructed phase, the used basis functions, and
the extracted gradients to be defined on the same grid G1 or a sub-region thereof. This not only for
the sake of consistency in terms of applied theory, but also numerical implementation as other grids
can result in re-computation of the aforementioned functions.

If the full non-zero frequency spectrum of a sampled function is assumed to be captured within
a window, then the zero-padding or removing of padding on this window prior to inverse discrete
Fourier transformation would be equivalent to expanding or shrinking the continuous function in the
spatial domain respectively before sampling it again. This will be referred to as trimming the spectral
domain. The amount of shrinking or expanding of the function is proportional to Nzp

Nzph
where Nzp

will be related to the sampling grid, so if this ratio is an integer, the sampled version of the shrunk
or expanded function consists of a sub-sampling of the original sample function with no interpolation
required. As such, choosing Nzp mod Nzph = 0 means a sub-set of values on the original sampling grid
G1 will be used, keeping the used grid consistent. It is worth noting that in numerical implementation
special care must be taken that the resulting function is scaled correctly according to the new spectrum
size.

An example of the behaviour explained above is given in Figure 5-3 where a sinusoid in Figure 5-3a,
whose frequency spectrum is known to be containable within a window, is subjected to the Fourier
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spectral trimming procedure above and the resulting reconstructed function is compared to a sub-
sampled version of the original sinusoid. As can be seen, the results are identical.
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(a) Densely sampled sinusoidal function (b) Spectrum of the sinusoidal function in
(a)

(c) An extracted version of the spectrum in
(b) with an integer ratio of the size

(d) Inverse Fourier transform of the extracted
spectrum in (c) showing a reconstructed sinu-
soid clearly containing sub-sampled values of
(a)

(e) A sub-sampled version of (a) with sub-
sampling step corresponding to the size ratio
of (b) and (c)

Figure 5-3: Illustration of the Fourier spectrum trimming procedure applied to a sinusoidal function
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Removing the unnecessary padding reduces computational cost for both gradient calculation, as well
as phase reconstruction and was found to have only a small effect on accuracy. As an illustration,
Figure 5-4 shows the root-mean-square error (RMSE) of a low-order aberration reconstructed using
all valid Nzph values between 8 and 220 for a 220 × 220 pixel detector and an 8 × 8 rectangular
Shack-Hartmann sensor. The reconstruction procedure used is discussed in Section 5-4.

Figure 5-4: Effect of Nzph on reconstruction accuracy. Note: the higher Nzph is, the more computa-
tionally expensive gradient extraction and modal phase retrieval become

5-3 Phase Gradient Extraction on Hexagonal Spot Grids using
Fourier Demodulation on a Trimmed Spectral Domain

The theory discussed in Section 5-1 and Section 5-2 considers only a rectangular MLA[29, 34], but
hexagonal arrays are interesting for phase retrieval due to their higher spot density. A question that
can be posed, therefore, is whether a similar procedure can be defined for hexagonal arrays. This
question was found to be unanswered as no prior literature was found that attempted to perform
Fourier demodulation, based on the shearing interferometer model of Primot, on hexagonal arrays.

The basic properties of the Shack-Hartmann pattern leading to the derivation of the shearing inter-
ferometer model also apply to hexagonal arrays. In fact, when observing the grating equation of a
hexagonal array given in Equation 5-19 the similarity to Equation 5-1 is difficult to ignore. As can be
observed from this equation, a hexagonal grid too is a bi-periodic lattice that can be expressed as a
simple combination of 2D comb functions, be it scaled and shifted comb functions. Similarly to how a
Fourier transform of a rectangular lattice with pitch p is again a rectangular lattice with pitch 1

p , the
Fourier transform of a hexagonal lattice becomes a hexagonal lattice with inverse spacing. To illus-
trate this, the spectrum of a hexagonal Shack-Hartmann intensity pattern is provided in Figure 5-6.
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Figure 5-5: Hexagonal Shack-Hartmann pattern obtained from a spherical aberration

A Shack-Hartmann intensity pattern obtained for a hexagonal array is provided in Figure 5-5 for a
spherical aberration.

G(x, y) =
[
e

iπ x2+y2
λfµL HexDh,o

(x, y)
]
∗
(

combDh,i, 3
2 Dh,o

(x, y)) + combDh,i, 3
2 Dh,o

(
x− Dh,o

2 , y − 3Dh,o

4

))
(5-19)

Looking at Figure 5-6, what could be interpreted as harmonic spectra are present at each hexagonal
lattice point. To prove that these are indeed harmonics, a proof by induction can be performed. For
this purpose, a Shack-Hartmann pattern generated by a spherical aberration will be considered whose
spectrum will be a variation of the one given in Figure 5-6.
If the Fourier demodulation method is extendable to hexagonal arrays, the phase relation in Equa-
tion 5-12 must also be applicable.
However, as this equation was derived for a rectangular grid, some alterations are required before
it can be used. Firstly, a new set of indices is proposed: (k, l,m) where k and l are along the
horizontal and vertical axis respectively, and m is used to traverse diagonally between the two shifted
rectangular lattices. This means the spectrum of harmonic Hk,l,m is located k and l spots horizontally
and vertically along the non-shifted rectangular lattice, and m spots shifted diagonally along the lines
connecting the two rectangular lattices.
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Figure 5-6: Zoomed spectrum of a hexagonal Shack-Hartmann intensity pattern showing a hexagonal
lattice structure with inverse spacing

In a hexagon, the relation between the inner and outer diameter is given by Dh,i =
√

3
2 Dh,0. For

a hexagonal array consisting of hexagons with their corners pointed upwards, the horizontal spac-
ing between hexagons on the same row is Dh,i, the vertical spacing between hexagons on the same
rectangular lattice is given by 3

2Dh,o. Upon Fourier transformation, it was found that the resulting
hexagonal lattice has a horizontal spacing of 2

Dh,i
and a vertical spacing of 2

3
2 Dh,o

. It is worth noting
that flipping the hexagonal grid on its side would result in swapping of these horizontal and vertical
spacings everywhere in the following equations.

Using this knowledge and the proposed indices, and expressing all terms with respect to a common
length Dh,o, the centre of the (k, l,m) harmonic spectrum can be found to be located at frequency(

4√
3

(
k + 1

2m
)
, 4

3
(
l + 1

2m
)) 1

Dh,o
= (khex, lhex) 1

Dh,o
. As this coordinate system has its unit length

expressed as frequency step 1
Dh,o

, it can be made analogous to the 1
pµL

frequency step used in Section 5-
2. Recalling the definition of ∂p in Equation 5-13, being fµL

pµL
, this can also be replaced by fµL

Dh,o
.

Performing these substitutions turns the relation between the harmonic and the phase gradient into
the one provided in Equation 5-20. Or, for discrete Fourier transform implementation, Equation 5-21
to account for virtual tip/tilt caused by discretisation.
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∂ϕ

∂xkhex,lhex

= − 1
λ
√
k2

hex + l2hex
fµL

Douter

angle
(

Hk,l,m(x, y)
(K− | k |)(K− | l |)

)

= − 1
λ

angle
((

Hk,l,m(x, y)
(K− | k |)(K− | l |)

) 1√
k2

hex
+l2

hex

fµL
Douter

) (5-20)

Hobsk,l,m
(xi, yi) = (K− | k |)(K− | l |)e

−i
√

k2
hex

+l2
hex

fµL
Douter

λ
∂ϕobs

∂xkhex,lhex

= (K− | k |)(K− | l |)e
−i

√
k2

hex
+l2

hex

fµL
Douter

λ

(
∂ϕ

∂xkhex,lhex
+ ∂ϕstatic

∂xkhex,lhex
+ ∂ϕvirtual

∂xkhex,lhex

)
= Hk,l,m(xi, yi)Hrefk,l,m

(xi, yi)

⇐⇒ Hk,l,m(xi, yi) =
Hobsk,l,m

(xi, yi)
Hrefk,l,m

(xi, yi)

⇐⇒ ∂ϕ

∂xkhex,lhex

(xi, yi) = − 1
λ

angle
((Hobsk,l,m(xi, yi)

Hrefk,l,m(xi, yi)

) 1√
k2

hex+l2hex
fµL

Douter

)
(5-21)

The extraction of the gradient itself is also slight different from the one provided in Section 5-2. As
the harmonics are no longer spaced apart in a rectangular grid, a rectangular extraction window
would not be desirable. The main reason for this is the potential overlap between harmonic spectra.
As such, the optimal extraction window shape in a hexagonal grid is, of course, a hexagon. Due to
the inverse spacing in frequency domain, the hexagonal mask used is always the flipped sub-aperture
shape, meaning a sub-aperture with pointy top has an extraction mask with a flat top.

It is important to note that the same extraction procedure is used as discussed in Section 5-2 before
a hexagonal mask is applied. This ensures energy leaks are avoided. Similarly, the same observations
about zero-padding harmonic spectra to Nzph ×Nzph also apply to hexagonal harmonics.

An example of an extracted harmonic spectrum is provided in Figure 5-7a where the (0, 0, 1) harmonic
was extracted. Applying Equation 5-21 results in Figure 5-7b. For comparison, Figure 5-7c shows the
analytical gradient corresponding to the (0, 0, 1) harmonic. As can be seen, these functions are highly
similar and as such Fourier demodulation for hexagonal arrays has hereby been proven by induction.
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(a) Extracted and padded
(0, 0, 1) harmonic with
Nzph = 20

(b) Extracted gradient from
(0, 0, 1) harmonic of spher-
ical aberration resulting in
coma shape

(c) Analytical gradient of a
spherical aberration oriented
along the (0, 0, 1) harmonic
direction

Figure 5-7: Extracted hexagonal harmonic with corresponding gradient and analytical definition. The
similarity serves as a proof by induction. Simulation performed on a hexagonal Shack-Hartmann sensor
with 3 lenslet rings, Dpupil = 1.2mm and focal length 10mm

One important observation must be made about the retrieved gradient fields: as a hexagonal mask is
used on a small pixel grid, it is likely that some relevant high frequency components will be accidentally
eliminated and the gradient will be smoothed out. As such, the gradients obtained using hexagonal
Fourier demodulation may cause slight inaccuracies during phase retrieval.

5-4 Modal Phase Retrieval from Phase Gradient Fields

This section will treat modal phase retrieval using phase gradient fields. Firstly, the reconstruction
procedure will be discussed in Section 5-4-1, followed by a brief discussion on reconstruction bases in
Section 5-4-2.

5-4-1 Reconstruction Procedure

The procedures discussed in Section 5-2 and Section 5-3 result in approximative phase gradient fields
along both orthogonal and non-orthogonal directions. The approximative nature follows from the base
principle upon which the Fourier demodulation is built: modulation of the lenslet centroid lattice[29]
by the gradient field. This principle ties the Fourier demodulation method to centroiding and as
such, the extracted gradient can only be assumed to be close to the real gradient for aberrations
whose change over a lenslet sub-aperture is small[29, 34]. This would result in the average gradient
over the sub-aperture, which is interpreted as a tip/tilt causing the spot shifts, being close to the
actual gradient. Any aberrations of higher order will have their gradient field aliased to lower orders
upon gradient extraction and therefore only approximate the real one. Therefore, reconstruction using
gradients provided by the Fourier demodulation method does not reconstruct more modes than classic
centroiding, it can simply deal with higher magnitude aberrations.

Assuming a set of (non-)orthogonal phase gradient fields is given, the procedure for reconstructing the
phase itself can be performed in one of two ways: zonally or modally.
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In zonal reconstruction, the wavefront is reconstructed region- or pixel-wise. An example of the
former would be stitching piece-wise linear phases together from average tip/tilt over sub-apertures
obtained from centroiding. An example of the latter is point-wise integration of the phase gradient
fields as this considers individual gradient values per pixel. If the full gradient field is present, one
possible integration method would be Fourier integration. Fourier integration makes use of the Fourier
derivative property, shown for an arbitrary derivative in Equation 5-22 where v⃗ is a unit vector, which
can be written as a projection problem for multiple gradient fields as illustrated in Equation 5-23
where γ is a regularisation term to deal with zero-division at the DC component. Alternatively, γ = 0
can be used and this DC component can be set to zero manually. This method is used in various pieces
of literature dealing with integration of phase gradients in literature such as the work of Carmon and
Ribak and Velghe et al.[30, 46].

F


∂f

∂

(
v⃗ ·
[
x
y

])
 = i

(
v⃗ ·
[
ω
ξ

])
F {f} (5-22)

F {ϕ(x, y)} =

∑N
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(i(v⃗n ·
[
ω
ξ

]))∗
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 ∂ϕ(x,y)

∂v⃗·

[
x
y

]



∑N
n=1

∣∣∣∣i(v⃗n ·
[
ω
ξ

])∣∣∣∣2 + γ

, γ ≥ 0 (5-23)

Inverse Fourier transformation would then yield the phase ϕ(x, y). Fourier integration has a problem,
however, in that it is easily corrupted by gradient field inconsistencies. In addition, application to
non-rectangular apertures requires the definition of boundary conditions[33], adding complexity. Nu-
merical integration, for example through finite difference approximation as has been used in literature
by Legarda-Sáenz et al. who used a quadratic optimisation problem to obtain a robust numerical in-
tegration algorithm[47], suffers from similar gradient inconsistency and boundary condition problems.
Zonally reconstructed phases also lack guaranteed continuity and/or smoothness, while common aber-
rations such as tip/tilt or defocus do possess these properties.
It is for these reasons that zonal reconstruction was cast side, and modal reconstruction was studied
instead, an approach rarely treated for Fourier demodulation. As mentioned before in Section 2-2,
modal phase representation expresses the phase as a sum of weighted basis functions fk(x, y) as shown
in Equation 5-24. While this basis usually contains infinite functions in theory, numerical limitations
require a truncation of the basis to K terms, a problem which was previously discussed in Section 2-2.

ϕ(x, y) =
K∑

k=0
αkfk(x, y) (5-24)

If the basis functions used are smooth and continuous, the represented phase will be as well, which
is a desirable quality for representing common aberrations. In addition, the phase can be represented
by a single set of coefficients, which will be much smaller in memory consumption than a numerical
pixel-wise representation of the phase obtained in zonal reconstruction.
Reconstruction using centroid displacement and the Zernike basis was discussed before in Section 3-1.
This came down to solving Equation 5-25 for the coefficient vector α⃗ using a total of NMLA lenslet
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centroids within the aperture where sx,ci and sy,ci are the displacements of the centroids from their
reference positions in x and y direction respectively. As each centroid has 2 displacements, this results
in a total of 2NMLA modes that can theoretically be retrieved before the least-squares problem becomes
under-determined.
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∂x (xc0 , yc0) . . .
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(5-25)

However, the Fourier demodulation method discussed in this chapter provides gradient fields, not
centroid displacements. Additionally, it can provide non-orthogonal gradients. Re-writing Equation 5-
25 to take into account all Npix pixels within the aperture, as well as all nderiv provided gradient fields
instead of centroid displacements, results in Equation 5-26. It is worth noting that this only requires
the x and y gradient fields of the Zernike functions to be analytically computed before-hand, as all
other gradients can be expressed as a linear combination of these computed fields. Solving for the
coefficient vector α⃗ would again yield the modal coefficients of the phase.
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⇐⇒ Aα⃗ = b⃗

⇐⇒ (ATA)α⃗ = AT b⃗

(5-26)

An important observation must be made about this equation, however. As the amount of data is much
larger than with centroiding one could expect the number of retrievable modes to be much larger as
well: for nderiv derivatives and Npix gradient values within the aperture one would expect nderivNpix

modes to be retrievable.
This, however, is incorrect. One must remember that the gradient fields can be expressed as a linear
combination of the x and y gradient fields, meaning any provided gradient fields other than the x and
y gradient does not provide additional mode insights, just more observations of the same gradients.
This would already decrease the number of retrievable modes to a maximum of 2 ·Npix. Additionally,
the theory on which Fourier demodulation is based in modulation of the spot grid, which contains
only NMLA spots. As such, the number retrievable modes is actually 2NMLA, similar to centroiding.
In practice, the value of Npix will allow a slightly larger number of modes to retrieved if chosen such
that the system is over-determined even with two gradients.
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5-4-2 Reconstruction Bases

After discussing the reconstruction procedure in Section 5-4-1, a brief note will be given on recon-
struction bases. As mentioned in Section 5-4-1 the used basis for reconstruction is the Zernike basis.
While this choice is fixed in this thesis, alternatives will be briefly discussed.

The Zernike basis, while common in literature for centroiding-based reconstruction[4, 15], is flawed.
It is orthonormal on the unit circle and therefore well-suited for the representation of wavefronts, but
its gradients are not orthogonal. This non-orthogonality leads to mode cross-talk when the gradients
are fitted to an extracted gradient field or centroid displacements. Mathematically, this means that
coefficients α⃗ making up the actual wavefront ϕ =

∑K
k=1 αkfk will not correspond to the retrieved

coefficients ˆ⃗α obtained from fitting the gradient to the basis gradients ∇ϕ =
∑K

k=1 αk∇fk while for
a basis with orthogonality in the basis and its gradient this would be the case. This effect is usually
especially noticeable around the edges of the reconstructed phase.

There is an additional source of error: truncation. As discussed earlier in Section 2-2, the Zernike
basis is only orthogonal when the full basis is considered, upon truncation to a finite number of terms
this orthogonality is no longer guaranteed.

In an effort to mitigate the lack of gradient orthogonality, the vector polynomial basis by Zhao and
Burge[19, 20] was implemented in code. This basis was derived specifically for orthogalisation of the
Zernike gradients. The polynomials in this set are defined by Equation 5-27 and are dependent on the
Zernike gradients, which themselves are related to the actual Zernike polynomials. It is worth noting
that the j indices in this equation follow a different ordering from Noll’s ordering[17], meaning careful
book-keeping is required.


S⃗j = 1√

2n(n+1)
∇ZANSI,j , n = m

S⃗j = 1√
4n(n+1)

(
∇ZANSI,j −

√
n+1
n−1 ∇ZANSI,j(n′=n−2,m′=m)

)
, n ̸= m

j − j′ even when m ̸= 0
(5-27)

Upon fitting the vector polynomial to the extracted gradient fields, resulting in a set of coefficients
γ⃗, the corresponding Zernike coefficients α⃗ of the phase could be calculated using Equation 5-28. A
problem becomes immediately apparent in this equation: a future-relation in the coefficients. In fact,
this basis also loses full orthogonality upon truncation and as such the cross-talk issue persists. An
example of an S polynomial is given in Figure 5-8a.

{
αj = γj(n,m)√

2n(n+1)
, n = mαj = γj(n,m)√

4n(n+1)
− γj′(n+2,m)√

4(n+1)(n+2) (5-28)

An additional source of error could be the fact that the gradient fields obtained from Fourier demod-
ulation consist of average gradient values extracted from the spot displacement caused by the average
tip/tilt over each sub-aperture. To obtain a closer resemblance between the basis gradients and these
averaged gradients, the analytical gradients defined on a N × N pixel grid were averaged down to a
Nzph × Nzph grid. An example of a coma which has undergone this averaging procedure is given in
Figure 5-8b. The effect of this operation on mode cross-talk was negligible. Similarly, a re-sizing of the
gradients via the spectrum trimming method discussed in Section 5-2 was implemented, an example
of which can be seen in Figure 5-8c. This alteration, however, had unintended side-effects such as the
re-sized piston function in Figure 5-8e and as such had a detrimental impact on mode cross-talk.
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Ultimately, it was decided to simply use the sub-sampled Zernike gradient basis as shown in Figure 5-
8d. Part of the rationale for this decision was the fact that the low-order method discussed in this
chapter is meant as a pre-conditioner for the hybrid method which will be presented in Chapter 7.
As this hybrid method performs a secondary phase-fitting using intensity approximation, it uses the
Zernike functions themselves instead of their non-orthogonal gradients which is expected to partially
alleviate cross-talk.
In future implementations of the algorithm, the use of a basis with orthogonal gradient fields as well
as conservation of orthogonality under truncation would be suggested. One such basis would be the
set of circular Bessel functions, discussed previously in Section 2-2[18].

(a) Example of a vector
polynomial basis function
for gradient fitting

(b) Coma function aver-
aged from N = 220 to
Nzph = 20

(c) Resized coma func-
tion obtained using trim-
ming of the image spec-
trum

(d) Sub-sampled coma
function

(e) Resized piston func-
tion obtained using trim-
ming of the image spec-
trum

Figure 5-8: Attempted Zernike basis alterations for gradient fitting

5-5 Reconstruction Results and Conclusion

The purpose of this chapter was to present a modal gradient-based phase retrieval method with an
augmented practical implementation of Fourier demodulation for approximative gradient field extrac-
tion.

Liam Cools Master of Science Thesis



5. Modal Phase Retrieval on Augmented Fourier Demodulation Gradient Fields for Rectangular and Hexagonal
Shack-Hartmann Wavefront Sensors 41

After a brief presentation of the shearing interferometer model in Section 5-1, the classic rectangular
Fourier demodulation method was explained in Section 5-2, followed by implementation specifics for
use with discrete Fourier transformation, and lastly an augmentation to obtain shrunken derivative
fields for modal reconstruction. It was found that shrinking the retrieved derivative has little influence
on reconstruction accuracy as demonstrated in Figure 5-4 while helping speed up reconstruction.

Subsequently, a novel application of Fourier demodulation to hexagonal Shack-Hartmann wavefront
sensors was presented in Section 5-3 while also implementing the same shrunken derivative field aug-
mentation.

Modal phase reconstruction was discussed in Section 5-4-1 where first the disadvantages of using zonal
reconstruction techniques such as Fourier integration were discussed, followed by the discussion of
modal reconstruction using gradient fields. In addition, it was found that the number of retrievable
modes is similar between Fourier demodulation and centroiding. Lastly, reconstruction bases were
treated in Section 5-4-2 where it was found that subsampling of the regular Zernike gradient basis
provided sufficiently accurate results, while alternative implemented bases either had negligible effect
or suffered from truncation issues. A suggestion was made to attempt the implementation of circular
Bessel functions as a basis for future work.

With the methodology treated in this chapter, the retrieval of low-order phase from both rectangular
and hexagonal arrays can be performed. While Fourier demodulation is a previously existing method,
its application to hexagonal arrays is novel and the use of modal reconstruction is uncommon for
gradient field methods. As such, a comparison to literature will be performed by using a centroiding
algorithm with modal reconstruction. The centroiding methodology used is classic first-moment cen-
troid calculation per sub-aperture with gamma correction applied for noise reduction which was found
to have highly accurate displacement calculations in literature[9].

All methodology discussed in this chapter have been implemented into a custom Python simulation
and phase reconstruction framework, optical propagation is performed using the HCIpy library[45].

All simulations will be performed for a wavelength of 632.8nm, a MLA focal length of 10mm, a circular
pupil with diameter 1.2mm, and a 220×220 detector pixel grid. Rectangular Shack-Hartmann patterns
will be obtained for an 8 × 8 MLA with a circular pupil, while hexagonal patterns will be obtained
for an MLA with three lenslet rings. Performance will be measured using RMSE with respect to the
ground truth over the full aperture as well as over only 95% of the aperture to reduce the effect of
mode cross-talk error on the fringes.

To obtain a fair comparison and limit the influence of mode cross-talk due to basis truncation, the
reconstruction will be performed using a small number of modes, namely 40, for all methods. It is
worth noting, however, that the gradient field method is capable of reaching higher accuracy when more
modes are allowed while centroiding suffers significantly from mode cross-talk. All reconstructions will
be performed for a spherical aberration of quarter-wavelength magnitude. The magnitude was chosen
to be small in order to ensure spot containment within each sub-aperture as additional spot indexing
methods would introduce additional uncertainty.

The second harmonics (2, 0) and (0, 2) and the equivalent hexagonal harmonics will be used for Fourier
demodulation based reconstruction due to their proven higher excitability in literature[29].

Firstly, the Shack-Hartmann patterns together with identified spot and reference centroid locations
are given in Figure 5-9.
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(a) Obtained intensity pattern for rectangular
Shack-Hartmann configuration with obtained
centroid locations indicated

(b) Obtained intensity pattern for hexagonal
Shack-Hartmann configuration with obtained
centroid locations indicated

Figure 5-9: Intensity pattern obtained for spherical aberration of quarter wavelength magnitude on
Shack-Hartmann sensors with focal length 10mm, a circular pupil, and aperture diameter 1.2mm

Reconstruction results for the rectangular pattern are provided in Figure 5-10. As can be seen, the
Fourier demodulation gradient field modal reconstruction method is capable of retrieving the phase
with a lower error than centroiding. Due to this, the former will be used as a benchmark for later
chapters. The main source of error in the centroiding algorithm appears to be caused by mode cross-
talk due to the limited number of data-points available, this was also noticed during simulation when
the number of retrieved modes was increased. The Fourier demodulation-based method, however,
fared much better with increasing mode count due to the slight data-point redundancy caused by the
padding to Nzph ×Nzph values.

Reconstruction results for the hexagonal pattern are provided in Figure 5-11. As can be seen, cen-
troiding outperforms the Fourier demodulation gradient field modal reconstruction. The cause is likely
to be the elimination of high-frequency components of the gradient field as previously discussed in
Section 5-3 on one hand, and the clearer spot centroids for hexagonal spot patterns on the other. As
will become apparent in Chapter 7, hexagonal Fourier demodulation still forms a promising method
for pre-conditioning. In addition, Fourier demodulation is not bound by sub-aperture independence,
giving it a wider range of applicability than centroiding.

In terms of speed, centroiding is difficult to beat. While no computational complexity analysis was
performed, reconstruction times were recorded. For the simulation parameters above and values
Nzph = 20 and cpad = 3, the average combined double gradient extraction and modal reconstruction
with 110 coefficients took 0.6s on an Intel Core I7-7700HQ CPU at 2.81 GHz (110 coefficients were
chosen for consistency with later chapters). Conversely, centroiding took only between 0.15-0.2s for
110 coefficients. This, however, is unsurprising for multiple reasons: centroiding does not require
multiple Fourier transform operations nor a lot of array manipulation, in addition the code is at this
time unoptimised. However, it is unlikely to exceed computational efficiency of centroiding unless a
very large number of sub-apertures is used.
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(a) Obtained modal reconstruction using
Fourier demodulation gradients, 40 modes
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(b) Obtained modal reconstruction using
centroiding, 40 modes

Figure 5-10: Reconstruction results for a rectangular Shack-Hartmann sensor using 40 modes

(a) Obtained modal reconstruction using
Fourier demodulation gradients, 40 modes

0 50 100 150 200
0

25

50

75

100

125

150

175

200

Reconstructed Zernike from 40 coefficients [rad]

0.5

0.0

0.5

1.0

1.5

Centroiding RMSE95 0.1057 rad, full RMSE 0.1261 rad

(b) Obtained modal reconstruction using
centroiding, 40 modes

Figure 5-11: Reconstruction results for a hexagonal Shack-Hartmann sensor using 40 modes
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Chapter 6

Modal Phase Retrieval on Full
Point-Spread Functions using Taylor

Approximated Intensity Function
Fitting and Inclusion of

Shack-Hartmann Diversity

This chapter will discuss the use of Taylor approximation of the intensity function for modal wavefront
reconstruction. Firstly, the base principles and work-out of Taylor intensity approximation will be
provided in Section 6-1, followed by the inclusion of diversity and the application to Shack-Hartmann
patterns in Section 6-2. The retrieval of modal coefficients will then be discussed in Section 6-3, and
a brief conclusion will be provided in Section 6-4.

6-1 Intensity Function Taylor Approximation

The intensity image generated at the detector plane of a single-lens system by a complex wavefront
W = A(x, y)eiϕ(x,y) is given by Equation 6-1 where the direct Fourier relation is a direct consequence
of the ideal single-lens assumption [15].

h(x, y) =| F {W} |2= F {W} F {W}∗ (6-1)

Retrieval of the phase ϕ(x, y) from intensity measurements h(x, y) has been previously stated to
be a highly non-linear, non-convex and ill-posed problem, with methods in Section 3-2 solving this
iteratively with multiple phase diversities, or using a casting to a much higher dimensional problem
to obtain convexity.
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Conversely, the work of Marinica et al. proposes to solve this problem using first or second order
Taylor approximation [11]. If the phase is assumed to be modally represented as a set of weighted
basis functions with weights vector α⃗ then Equation 6-1 can be approximated by Equation 6-2. If a
small aberration is assumed, the linearisation point α⃗L can be set to α⃗L = 0.

h(x, y) ≈ h(x, y) |α⃗=α⃗L
+
(

∂

∂α⃗
h(x, y)

∣∣∣∣
α⃗=α⃗L

)T

α⃗+ O(α⃗2) (6-2)

This requires the linearisation point intensity h(x, y) |α⃗=α⃗L
and the Jacobian ∂

∂α⃗h(x, y)
∣∣
α⃗=α⃗L

to be
worked out. For complex intensity function definitions, automatic differentiation could be used as
discussed in the work of Jurling and Fienup, Wong et al.[48, 49]. While this approach was considered
and investigated during the development of the code written for this thesis, compatibility issues and
the relative simplicity of the intensity function lead to a preference for analytical derivation.

The modally represented wavefront will be written as Equation 6-3, where the wave amplitude of
the incoming wave A(x, y) is assumed to be constant, and the wavefront is considered at the time of
passing the pupil with pupil function P (x, y). In addition, a truncated Zernike basis with K−1 terms
and a circular pupil function are assumed, but other bases and pupil functions can be substituted if
desired without affecting further theory.

W (x, y) = P (x, y)ei
∑K

k=1
αkZk(x,y) (6-3)

The notation of Equation 6-3 can then be used to re-write Equation 6-1 to Equation 6-4, where the
coordinates x and y will henceforth be dropped for conciseness.

h =
∣∣∣∣F {Pei

∑K

k=1
αkZk

}∣∣∣∣2 = F
{
Pei

∑K

k=1
αkZk

}(
F
{
Pei

∑K

k=1
αkZk

})∗

(6-4)

This notation allows the linearisation point intensity to be directly calculated using Equation 6-5.

h(x, y)(α⃗ = α⃗L) =
∣∣∣∣F {Pei

∑K

k=1
αL,kZk

}∣∣∣∣2 α⃗L=0= |F {P}|2 (6-5)

As Equation 6-4 must be derived with respect to the coefficients α⃗ instead of spatial coordinates x and
y, the Fourier operators can be treated as parentheses. This heavily simplifies the apparent complexity
of the intensity function for differentiation.

For the Jacobian, ∂
∂α⃗h(x, y)

∣∣
α⃗=α⃗L

can be calculated for each α coefficient separately. Employing the

standard differentiation rule ∂
∂αj

ei
∑K

k=1
αkZk = iZje

i
∑K

k=1
αkZk , this results in Equation 6-6. As can

be seen, the linearisation point α⃗L is set to zero, this convention will be used for consistency with both
the original paper by Marinica et al., and an alternative notation for re-linearisation which will be
discussed later in Section 6-2 as well as Chapter 7. It is worth noting that the use of the Re operator
not only mathematically simplifies the equation, it also noticeably affects both computational speed
as well as digital storage requirements as complex arrays require approximately double the memory
capacity of regular floating point arrays.
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∂h

∂αj
(α⃗ = α⃗L) =F

{
iPZje

i
∑K

k=1
αL,kZk

}(
F
{
Pei

∑K

k=1
αL,kZk

})∗

+ F
{
Pei

∑K

k=1
αL,kZk

}(
F
{
iPZje

i
∑K

k=1
αL,kZk

})∗

=2Re

{(
F
{
Pei

∑K

k=1
αL,kZk

})∗

F
{
iPZje

i
∑K

k=1
αL,kZk

}}
α⃗L=0= 2Re

{
(F {P})∗ F {iPZj}

}
(6-6)

Upon closer inspection of Equation 6-5 and Equation 6-6 and Equation B-2, similarities can be seen
which can be used to reduce re-computations and thereby speed up the generation of the Jacobian.
These are shown in Equation 6-7.



h(x, y)(α⃗ = 0) =

∣∣∣∣∣∣F {P}︸ ︷︷ ︸
a

∣∣∣∣∣∣
2

∂h
∂αj

(α⃗ = 0) = 2Re

(F {P})∗︸ ︷︷ ︸
a∗

F

iPZj︸ ︷︷ ︸
b




(6-7)

The solving of Equation 6-2 for coefficient vector α⃗ will be discussed in Section 6-3 for the first-order
approximation. Readers interested in the solution of the second-order approximation can find more
information in Chapter B. However, an important observation must already be made: ambiguity in
the solution. While the Fourier transform is a one-to-one mapping by virtue of the Fourier duality
principle and as such is unique for each function, the power spectrum obtained from this Fourier
transform is not a one-to-one mapping. As the power spectrum is the same as the intensity image,
multiple aberrations can generate the same intensity image. For example, aberrations with symmetric
phase fields ϕsymm(x, y) will generate an identical intensity image to aberrations with phase fields
−ϕsymm(x, y). For this reason methods developed in literature, including the work of Marinica et al.
used to construct the equations above, use phase diversities to differentiate between these aberrations,
an approach discussed further in Section 6-2.

It is also important to note that the use of Taylor approximation as presented in this section fun-
damentally limits the accuracy of the method to aberrations in close proximity to the linearisation
point. As no prior information about the wavefront is assumed, this limits the method to aberrations
close to zero and as such closed-loop conditions. However, if more prior information can be obtained
about the incoming wavefront, the linearisation point can be set accordingly and broaden the range
of retrievable aberrations. An example discussed in the work of [11] is the use of previous phase
estimates as linearisation points. This, however, simply moves the problem back in time and still
requires closed-loop conditions. Instead, an open-loop single-frame retrieval method will be discussed
in Chapter 7 based on Taylor intensity approximation with phase diversity discussed in Section 6-2,
which allows open-loop retrieval under common operational conditions.
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6-2 Intensity Function Taylor Approximation with (Shack-Hartmann)
Diversity

As discussed at the end of Section 6-1 the power spectrum obtained from Fourier transformation, which
is equivalent to the intensity image generated by a single-lens ideal system, is not a one-to-one mapping.
In practice this means that multiple functions, or aberrations in the context of optics, can generate
the same intensity image. A given example was the set of symmetric aberrations with symmetric
phase fields ϕsymm(x, y) generating the same intensity image as those with phase fields −ϕsymm(x, y).
Many common aberrations suffer from this ambiguity, for example spherical, astigmatism and defocus
aberrations all generate identical spectra to their negatives, which negatively impacts any wavefront
correction. An example of this ambiguity is shown in Figure 6-1.

(a) Phase field of a defocus aberration (b) Phase field of a negative defocus aberra-
tion

(c) Intensity pattern of defocus aberration (d) Intensity pattern of negative defocus
aberration

Figure 6-1: Illustration of phase ambiguity in intensity pattern for a defocus aberration and its negative
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This ambiguity can be remedied through the use of a phase diversity, i.e. an additional phase delay
ϕd(x, y) which is introduced to the incoming wavefront prior to capture of the intensity pattern by the
camera module. As phase delays are additive, the incoming wavefront becomes of the form given in
Equation 6-8 where the amplitude is assumed constant and the wavefront at the time of passing the
diversity element and the pupil with pupil function P (x, y) is considered.

Wdiversity(x, y) = P (x, y)eiϕnew(x,y) = P (x, y)ei(ϕ(x,y)+ϕd(x,y)) (6-8)

As can be seen from this equation, the negative of the original phase field −ϕ(x, y) will not lead to
−ϕnew(x, y) as −ϕ(x, y) + ϕd(x, y) ̸= −ϕnew(x, y) = −ϕ(x, y) − ϕd(x, y) for any non-zero ϕd(x, y).
As such, the intensity patterns captured will not be the same and the ambiguity is avoided. This
method is also employed in the work of Marinica et al. where multiple diversities are used to generate
multiple intensity images for phase retrieval[11]. The diversities ϕd,i(x, y) can be represented by modal
coefficients β⃗i. In this way, each diversity can be interpreted as changing the linearisation point in
Equation 6-2 and further equations of Section 6-1 to α⃗L = β⃗i. This is the approach followed by
Marinica et al..

However, this creates confusion for diversities expressed in different modal bases or arbitrary diversities
as these would first need to be cast to the modal basis used for coefficients α⃗ in the equations of
Section 6-1. Therefore, a different notation is proposed instead. As the diversity phase ϕd(x, y) is
independent of the incoming wavefront and as such the phase modal coefficients α⃗, a slight abuse of
wavefront notation can be used to express the diversity wavefront as Equation 6-9 and the linearisation
point α⃗L can be kept at zero.

Wdiversity(x, y) = P (x, y)ei(ϕ(x,y)+ϕd(x,y)) = P (x, y)eiϕd(x,y))eiϕ(x,y) = Pd(x, y)eiϕ(x,y) (6-9)

If the phase is again assumed to be modally represented by a Zernike basis as in Equation 6-3 and
Pd(x, y) is substituted for P (x, y), the calculus of Section 6-1 can be repeated which results in ex-
pressions for the linearisation point intensity, Jacobian and Hessian given in Equation 6-10 where the
coordinates x and y have been dropped for conciseness and the similaries have again been highlighted.
As can be seen, the only difference between Equation 6-10 and Equation 6-7 is the substitution of
P with Pd = Peiϕd . This makes introducing arbitrary diversities straightforward and also allows the
inclusion of arbitrary phase pre-conditioning as will be discussed in Chapter 7.



h(x, y)(α⃗ = 0) =

∣∣∣∣∣∣F {Pd}︸ ︷︷ ︸
a

∣∣∣∣∣∣
2

∂h
∂αj

(α⃗ = 0) = 2Re

(F {Pd})∗︸ ︷︷ ︸
a∗

F

iPdZj︸ ︷︷ ︸
b




(6-10)

Commonly used diversities for this phase diversity Taylor approximation method are defocus aber-
rations by introducing lenses with known characteristics into the optical path[11], though arbitrary
diversities are supported.

This support for arbitrary diversities opens up a highly interesting possibility when recalling the Shack-
Hartmann diversity model of Chapter 4. As discussed in Chapter 4, the Shack-Hartmann sensor can
be modelled as an ideal single-lens system with a piece-wise linear phase diversity ϕSH(x, y) known as
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the Shack-Hartmann diversity. As such, this interpretation allows the direct application of the Taylor
intensity approximation method with phase diversity discussed in this section to Shack-Hartmann
intensity patterns by setting Pd(x, y) = P (x, y)eiϕSH (x,y).

The use of Shack-Hartmann diversity as a phase diversity in this method is interesting for a number
of reasons. Firstly, Shack-Hartmann sensor patterns contain information redundancy in the form
of filtered copies of the original wavefrontpoint-spread function (PSF) generated by each micro-lens.
These copies are spread out spatially, reducing the effect of localised distortions in the optical path or
electrical noise of the camera on the retrieved modal coefficients. Secondly, the spreading of information
in practice raises the signal-to-noise ratio of the captured image. Lastly, a change in wavefront not
only has a clear influence on the interference pattern between Shack-Hartmann spots and the spots
themselves, but also a spatial influence as the location of the generated spots will move noticeably
with different aberrations.

Perhaps more importantly, however, is the fact that low-order phase retrieval methods like those
discussed in Chapter 5 can be used to obtain an initial estimate of the phase ϕ from the Shack-
Hartmann pattern which can be used to pre-condition the Taylor intensity approximation method.
This can be performed on a single image frame and does not require previous estimates, opening the
path to open-loop retrieval. This two-step method will be discussed in Chapter 7 and forms the main
contribution of this thesis to the field of phase retrieval.

The solution of the first-order Taylor intensity approximation optimisation problem for coefficients α⃗
is discussed in Section 6-3. For more information on second-order Taylor approximation, the reader is
referred to Chapter B.

6-3 Solving Intensity Approximation for Modal Coefficients

As shown in Section 6-1 and Section 6-2, the non-linear and non-convex intensity function generated
by a (modally represented) wavefront can be approximated through the use of Taylor approximation
in each point of the generated intensity pattern. This section will demonstrate how this approximation
can be solved for the modal coefficients α⃗ if a captured intensity pattern is given. Only the solution to
first-order Taylor intensity approximation will be discussed in this section, information on second-order
approximation can be found in Chapter B.

Assuming an intensity image with a total of N2 pixels, the captured image can be related to the
first-order Taylor approximation through Equation 6-11 where ηi is a noise term in the i’th pixel.
As this equation is linear in coefficients α⃗, the minimum variance unbiased estimator is given by the
least-squares solution[50].

I(xi, ji) = h(xi, yj) + ηi,j ≈ h(xi, ji, α⃗ = 0) +
(
∂h

∂α⃗

)T

(xi, ji, α⃗ = 0)α⃗+ ηi i = 1, . . . N2 (6-11)

To simplify notation, the measurement vector y⃗ can be defined as the vectorised representation of the
intensity image I as given in Equation 6-12. As can be seen in this equation, the vector is normalised
with respect to the total measured image intensity, resulting in vector ¯⃗y. This normalisation is done to
match the theoretical intensity levels and the numerically stored intensity which is usually expressed
in eight-bit integer values in the 0-255 range.
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y⃗ = vec (I) =


I(x1, y1)

...
I(xN , yN )


¯⃗y = 1∑

Ii,j
y⃗

(6-12)

Similarly, the predicted zero-aberration intensity in each pixel can be stacked into vector b⃗fo and nor-
malised with respect to the predicted total intensity to ¯⃗

bfo. The assumption is made that aberrations
only re-distribute intensity and as such do not change the total intensity, making the normalisation of
measurement and prediction compatible. Like the measurement vector and predicted zero-aberration
intensity, the pixel-wise Jacobians can also be stacked and normalised as has been done in Equation 6-
14.


b⃗fo =


h(x1, y1, α⃗ = 0)

...
h(xN , yN , α⃗ = 0)


¯⃗
bfo = 1∑

bfo,i
b⃗fo

(6-13)


Afo =


(

∂h
∂α⃗ (x1, y1, α⃗ = 0)

)T

...(
∂h
∂α⃗ (xN , yN , α⃗ = 0)

)T

 =


∂h

∂α1
(x1, y1, α⃗ = 0) . . . ∂h

∂αN
(x1, y1, α⃗ = 0)

...
. . .

...
∂h

∂α1
(xN , yN , α⃗ = 0) . . . ∂h

∂αN
(xN , yN , α⃗ = 0)


Āfo = 1∑

bfo,i
Afo

(6-14)

With the normalised vectors ¯⃗y and ¯⃗
bfo and the normalised stacked Jacobian matrix Āfo defined, the

best estimate for the modal coefficients ˆ⃗α is given by the normal equation in Equation 6-15. As the
full intensity image is used in this method, the number of retrievable modes is much higher than
low-order methods such as centroiding or phase extraction through Fourier demodulation of Shack-
Hartmann patterns. While technically the number of modes could be as high as N2 before the system
of equations becomes under-determined, this also includes pixels outside of the aperture or pixels with
little information and a lower number of modes should be used. The exact amount is not discussed in
literature[11], but was set to around 400-1000 in this thesis for N = 220.

ˆ⃗α = (ĀT
foĀfo)−1ĀT

fo

(
¯⃗y − ¯⃗

bfo

)
(6-15)

If multiple measurements would be taken, the vectors and matrices can simply be stacked vertically
before applying the normal equation. It is worth noting that this solution method applies to intensity
patterns with and without diversities, with the former suffering from possible ambiguity.
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6-4 Conclusion

This chapter discussed the method of modal phase reconstruction through local first-order Taylor
approximation of the intensity function. After providing the general framework for Taylor approxi-
mation with and without a diversity for resolving phase ambiguity caused by the non-uniqueness of
Fourier power spectra, the introduction of Shack-Hartmann diversity was discussed. By introducing
Shack-Hartmann diversity, the PSF is spread out spatially over the detector, reducing local effects of
noise. In addition, information redundancy is obtained as the wavefront is copied and filtered to each
Shack-Hartmann centroid location.

In its current form, the aberration magnitude is still limited to small aberrations unless iterative re-
linearisation is performed[11], however this is an long and computationally expensive procedure to
perform if the aberration is large in magnitude. Instead, this form serves a stepping-stone for the
hybrid method presented in Chapter 7.

While reconstruction accuracy could already be discussed and compared to Chapter 5 in this section,
a larger comparison between all three methods will instead be performed in Section 7-3.
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Chapter 7

Novel Hybrid Modal Phase Retrieval
Method using Low-Order

Pre-Conditioning of Taylor
Approximated Intensity Function

Fitting on Rectangular and Hexagonal
Shack-Hartmann Intensity Patterns

This chapter will discuss a novel hybrid phase retrieval method combining gradient-based low-order
phase approximation from Shack-Hartmann patterns with Taylor intensity approximation for a high-
accuracy reconstruction on a single Shack-Hartmann frame. Firstly, the method will be discussed
in Section 7-1, followed by potential use-cases in Section 7-2. Phase retrieval results will then be
provided in Section 7-3 and compared to the individual performance of the low-order and intensity-
based methods.

7-1 Introducing Pre-conditioning to Taylor Intensity Approxima-
tion

The potential use of pre-conditioning for Taylor intensity approximation as derived in Chapter 6
was a notion already hinted at in the original paper of Marinica et al. on which the method in
this thesis is partly based[11]. In this paper, the pre-conditioning would be obtained from previous
estimates of the wavefront thereby requiring a re-computation of the intensity function Jacobian (and
Hessian if applicable) at every iteration step. However, Taylor approximation is only valid near the
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approximation point, and the lack of assumed prior information requires the first iteration to have
a zero aberration approximation point. As such, convergence to aberrations with high magnitude
components would require a large number of steps, incur a large computational cost for retrieving a
single phase, and could get even get stuck in local minima.
The aim of this chapter, on the other hand, is to show that merging the low-order reconstruction
methodology of Chapter 5 with the Taylor intensity approximation using Shack-Hartmann diversity
of Chapter 6 results in a novel hybrid method capable of reconstructing aberrations comprised of
high-magnitude low-order components and low-magnitude high-order components with high-accuracy
using only two consecutive reconstruction steps on a single Shack-Hartmann intensity pattern.
As mentioned above, the hybrid method is a combination of the low-order reconstruction method
discussed in Chapter 5 and the Taylor intensity approximation methodology of Chapter 6. The way
in which these are combined is discussed below.
In the interest of reducing computational complexity, a first-order Taylor approximation of the intensity
function is used given in Equation 7-1.

h(x, y) ≈ h(x, y) |α⃗=0 +
(
∂

∂α⃗
h(x, y)

∣∣∣∣
α⃗=0

)T

α⃗+ O(α⃗2) (7-1)

The assumption will now be made that the phase seen by the detector, ϕobs, can be written as
ϕobs = ϕ + ϕSH = ϕtaylor + ϕLO + ϕSH where ϕSH is the Shack-Hartmann diversity of Section 4-2
and ϕLO is a low-order estimate of the phase. If ϕLO and ϕSH are known and ϕtaylor is assumed to
be modally represented, this means the wavefront can be modelled using Equation 7-2. This results
in the intensity function being defined by Equation 7-3 where the term Pnc(x, y) encompasses all
information which is independent of the unknown modal coefficients. The phase estimate ϕLO can
theoretically come from any low-order wavefront sensor phase gradient sampling method, but the work
in this thesis will assume the modal reconstruction technique based on gradient fields from augmented
Fourier demodulation is used discussed in Chapter 5.

Wts(x, y) = P (x, y)eiϕSH (x,y)eiϕLO(x,y)︸ ︷︷ ︸
Pnc(x,y)

ei
∑K

k=1
αkZk(x,y) = Pnc(x, y)ei

∑K

k=1
αkZk(x,y) (7-2)

h(x, y) = F {Wts} (F {Wts})∗

= F
{
Pnc(x, y)ei

∑K

k=1
αkZk(x,y)

}(
F
{
Pnc(x, y)ei

∑K

k=1
αkZk(x,y)

})∗ (7-3)

Similarly to the inclusion of phase diversity to Taylor approximation in Section 6-2, the Jacobian and
approximation point intensity for Taylor approximation with pre-conditioning and phase diversity
can be obtained by straightforward substitution of Pnc(x, y) in place of P (x, y) in the procedure of
Section 6-1. This results in Equation 7-4.



h(x, y)(α⃗ = 0) =

∣∣∣∣∣∣F {Pnc}︸ ︷︷ ︸
a

∣∣∣∣∣∣
2

∂h
∂αj

(α⃗ = 0) = 2Re

(F {Pnc})∗︸ ︷︷ ︸
a∗

F

iPncZj︸ ︷︷ ︸
b




(7-4)
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Following an identical procedure for solving the resulting least-squares problem as previously discussed
in Section 6-3 with the definitions in Equation 7-4 results in an estimate of the modal coefficients
ˆ⃗αtaylor. It is important to note, however, that these coefficients capture the phase deviation from the
linearisation point. As such, the true full phase coefficients of the two-step method, denoted ˆ⃗αts, is
given by Equation 7-5. In this equation, the low-order estimate of the phase ϕLO is assumed to be
modally decomposed in the same basis used for the Taylor approximation in order for summation of
coefficients to be valid. In the context of this thesis these would both be expressed in the Zernike
basis, but this is not necessarily required and instead a mixed-basis expression of the wavefront phase
or a zonal representation of the final retrieved phase could be used.


ˆ⃗αts =

[
ˆ⃗αLO

0⃗

]
+ ˆ⃗αtaylor ,dim(ˆ⃗αLO) < dim(ˆ⃗αtaylor)

ˆ⃗αts = ˆ⃗αLO + ˆ⃗αtaylor ,dim(ˆ⃗αLO) = dim(ˆ⃗αtaylor)
(7-5)

An additional remark can be made: while the method described above is a two-step method, it was
found during testing that an initial refinement of the low-order estimate could yield slightly better
results at the cost of a single extra reconstruction step. What this means in practice is that two
Taylor approximation steps are done, the first of which estimates the same number of coefficients as
the low-order method, while the second estimates a larger number of coefficients with the updated
pre-conditioning phase. The observed accuracy gain from this additional pre-refinement is small, in
the order of 10−2 rad, and as such may not be worth the extra computational cost. However, for
illustration purposes this extra refinement will be the method used in Section 7-3.

It is important to note that, while powerful, this hybrid method is blind to specific aberrations. As the
low-order estimate is constructed using the average phase gradient over each sub-aperture, aberrations
with zero average gradient such as sinusoids with periods equal to multiples of the lenslet pitch or
waffle modes are invisible to average gradient-based modal reconstruction while they are visible to
intensity methods. As such, if these components have a large magnitude the hybrid method will not
perform well.

7-2 Proposed Use-cases

The hybrid method discussed in Section 7-1 is primarily designed for aberrations outside of the mag-
nitude range of Taylor intensity approximation, and out of the modal of classic Shack-Hartmann
wavefront sensor reconstruction methods, i.e. high order aberrations with dominating low-order com-
ponents. This aberration description is readily applicable to real-world aberrations, namely in the
form of turbulence[21].

As real-time reconstruction for use in turbulence correction is a challenging endeavour, many meth-
ods employ the use of turbulence modelling to reduce the computational cost and speed up the
controller[51]. A common model for capturing the behaviour of turbulence is a vector auto-regressive
model as given in Equation 7-6, where the capture of a single turbulence layer is done with an order
r = 1 model. These models are based on the Taylor frozen-flow assumption stating that turbulence
shape varies slow over the captured field of view and as such can be assumed to have a constant profile,
but shifts spatially due to wind[51]. The system matrix A and movement noise co-variance matrix Q
are defined by Equation 7-7 and Equation 7-8 respectively where Cϕ,1 is given by Equation 7-9.
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ϕ⃗(k + 1) =
r−1∑
i=0

Aiϕ⃗(k − i) + w⃗(k), w⃗ ∼ N (0, Q) (7-6)

A = Cϕ,1C
−1
ϕ (7-7)

Q = Cϕ −ACϕA
T (7-8)

Cϕ,1 = E
[
ϕ⃗(k)ϕ⃗T (k − 1)

]
(7-9)

As can be seen from these equations, there is a dependence on the turbulence wavefront covariance
matrix Cϕ. This matrix is often obtained using using data-driven system identification, for which a
naive equation is provided in Equation 7-10[21]. This data-driven approach requires accurate phase
retrieval on open-loop phase data, for which the hybrid method discussed in this chapter is uniquely
suited.

Cϕ = 1
K

K∑
i=1

ϕ⃗(i)ϕ⃗T (i)

Cϕ,1 = 1
K − 1

K∑
i=1

ϕ⃗(i+ 1)ϕ⃗T (i)

(7-10)

However, turbulence is not the only use-case of this hybrid method. Any system suffering from low-
order dominated aberrations with small high-order components can benefit from the application of
this method.

7-3 Reconstruction Results and Comparison

This chapter introduced a novel hybrid phase retrieval method based on low-order pre-conditioning of
Taylor intensity approximation applied to a Shack-Hartmann intensity pattern.

The base idea behind the approach was circumventing the small aberration limitation of the basic
Taylor intensity approximation method as well as the steep computational cost if that method were to
be applied iteratively. By applying the Taylor approximation method to Shack-Hartmann patterns,
both ambiguity of the retrieved phase is avoided, and access to phase gradient information is provided.
As such, the small aberration limitation can be circumvented by using the phase gradient information
to construct a low-order estimate to re-linearise the Taylor approximation around and reconstruct
aberrations in the vicinity of this estimate.

Because of this, the method is meant to be used with aberrations whose high-order components are
small while low-order components can be large in magnitude. However, its general applicability will
be studied.

For the simulations in this section, both a rectangular and hexagonal Shack-Hartmann wavefront
sensor were simulated. Each has a circular aperture, a pupil diameter of 1.2mm, a focal length of
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10mm, a detector pixel grid of 220 × 220 pixels and assumes incoming light with wavelength 632.8nm.
The rectangular array consists of 8 × 8 lenslets and the hexagonal of a central lenslet and 3 rings.
The padding factor cpad = 3 and Nzph = 20. These configurations were chosen as the generated
spot patterns remained relatively free of artefacts. The low-order algorithm will be configured to fit
110 coefficients using the multi-gradient modal reconstruction algorithm discussed in Chapter 5, the
intensity approximation method 400 coefficients, and an additional refinement step will be performed
on the low-order estimate prior to estimation of the 400 coefficients. The low-order method will make
use of the (0, 2) and (2, 0) harmonics and its hexagonal equivalent. This is done as these are said to
be highly excitable according to Rouzé et al.[29].
The simulation is implemented in the Python programming language as a custom simulation frame-
work, but it makes use of the HCIpy optical library for wavefront propagation[45].
Four different aberrations will be studied:

1. A low-order and relatively low-magnitude aberration consisting of Zernike orders (2, 3, 14) with
magnitudes (0.1, 0.15, 0.2)λ

2. A high-order but low-amplitude aberration consisting of an order 320 Zernike term with magni-
tude 0.1λ

3. A high-order and high-amplitude aberration consisting of an order 320 Zernike term with mag-
nitude 0.6λ

4. An aberration with dominating low-order components (orders (2, 11), magnitudes (0.35, 0.4)λ)
and low-amplitude high-order components (orders (260, 320), magnitudes (0.1, 0.15)λ)

Each of these are meant to represent a possible environment of operation where the largest impact
of the hybrid method is expected to occur for the first and last environment. The third type is not
expected to be common as high-order aberrations are usually found in sources such as turbulence,
which is known to be decomposed more like the fourth aberration[21].
As can be seen in Figure 7-1 and Figure 7-2, the hybrid method outperforms both the low-order
approximation and the Taylor approximation method without pre-conditioning with a root-mean-
square error (RMSE) which is an order of magnitude smaller. The reason behind this result can
be explained as follows. While the aberration is not as large as some other aberrations given, it is
near the edge of where Taylor approximation around zero aberration is still valid. Therefore, while
the Taylor approximation gives an estimate close to reality, linearisation error will cause inaccuracy.
The low-order estimate, on the other hand, is interesting because the aberration is supposed to be
fully within the reconstructable regime for the low-order method. However, this is where the effects
of cross-talk surface. As mentioned before, the used reconstruction basis is the Zernike basis, which
while orthonormal in its basis functions (ignoring the effects of truncation for a moment), is far
from orthogonal in its gradients. As such, mode cross-talk is unavoidable when this basis used for
reconstruction using gradient fields. Because mode cross-talk surfaces mostly around the fringes, its
effects were deemed inconsequential in Chapter 5. The main reason for this decision was the fact that
the method was meant to be used in pre-conditioning of the Taylor intensity approximation method,
which does in fact use the orthogonal basis functions themselves instead of their gradients and could be
expected to undo some of the damage done by cross-talk. This behaviour is exactly what is observed
in Figure 7-1d and Figure 7-2d where the low-order estimate now places the Taylor approximation
region of validity right around the already accurate phase estimate.
The reconstruction results for the second aberration can be seen in Figure 7-3 and Figure 7-4. In
these figures, the high-order aberration is clearly outside the modal range of the Shack-Hartmann
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wavefront sensor and is aliased to lower modes for the low-order retrieval algorithm. While the RMSE
is low, visually the phase can be considered to be largely inaccurate, though it may still be suited
for control purposes. As the aberration is small, it is entirely within the range of applicability of the
Taylor intensity approximation without pre-conditioning. As such, the difference between the two-step
hybrid method and the intensity-only method is negligible and the low-order pre-conditioning can even
be detrimental to the accuracy. This behaviour was expected.

The third aberration is predicted to have the worst results. These can be observed in Figure 7-5
and Figure 7-6. As the aberration is high-order, it is aliased to low-order modes in the low-order
reconstruction. In addition, the high amplitude means it is outside the region of validity of the
intensity-only method meaning this too has low reconstruction accuracy. The hybrid method is able
to obtain a better estimate in the inner 95% of the aperture but otherwise also has a large RMSE
error of between 0.64 and 0.72 radians which can be considered bad with the hexagonal results faring
even worse.

The last aberration is the closest to the operational environments of interest such as turbulence.
As expected, the low-order retrieval algorithm is capable of capturing the overall behaviour of the
aberration as it is low-order dominated. However, the fine detail is lost. As the low-order terms
are such high amplitude, the aberration falls outside of the range of validity of the intensity-only
method and as such the reconstruction is not faithful to the ground truth with RMSE values over 1.2
radians. But the hybrid method is capable of restoring the high-order details lost during low-order
approximation quite accurately. Most of the inaccuracy is located at the fringes as becomes clear from
the RMSE values, but this may be a consequence of the RMSE calculations being performed on the
wrapped output as the aberration looks visually nearly identical to the ground truth and the RMSE
value in the inner 95% of the aperture is 1-2 order of magnitude smaller than the two individual
reconstruction methods for both the rectangular and hexagonal arrays.

As has evident from this section, the hybrid method is able to outperform both or perform equally
well as one of its constituent low-order and intensity-only reconstruction algorithms in all but the
most unlikely operational environment: high-order high-amplitude aberrations. Its main downside is
computational time. On an Intel Core I7-7700HQ CPU at 2.81 GHz, low-order reconstruction took on
average 0.6s, intensity-only 1.65s, and the hybrid method including refinement of the pre-conditioning
phase on average 2.6s. While the code is largely unoptimised for speed and faster reconstruction
can definitely be achieved, the general ratio should remain the same making the hybrid method,
understandably, the slowest method.

In addition, these results show the effectiveness of the novel hexagonal Fourier demodulation method
when combined with Taylor approximation, undoing the inaccuracy caused by gradient smoothing
discussed in Chapter 5.

While further simulation studies are recommended and alternative hybrid implementations can be
considered using Shack-Hartmann diversity, the hybrid method developed in this chapter has been
shown to perform admirably.
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(a) Wrapped phase profile of a Low-order
phase aberration to be re-constructed

(b) Retrieved phase using only low-order es-
timation

(c) Retrieved phase using only Tay-
lor intensity approximation applied to the
Shack-Hartmann intensity pattern, no pre-
conditioning

(d) Retrieved phase using the novel hybrid
phase retrieval method with an additional pre-
conditioning phase refinement step

Figure 7-1: Phase retrieval performed on a low-order phase aberration consisting of Zernike orders
(2, 3, 14) with magnitudes (0.1, 0.15, 0.2)λ captured by an 8 × 8 rectangular Shack-Hartmann wavefront
sensor
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(a) Wrapped phase profile of a Low-order
phase aberration to be re-constructed

(b) Retrieved phase using only low-order es-
timation

(c) Retrieved phase using only Tay-
lor intensity approximation applied to the
Shack-Hartmann intensity pattern, no pre-
conditioning

(d) Retrieved phase using the novel hybrid
phase retrieval method with an additional pre-
conditioning phase refinement step

Figure 7-2: Phase retrieval performed on a low-order phase aberration consisting of Zernike orders
(2, 3, 14) with magnitudes (0.1, 0.15, 0.2)λ captured by a hexagonal Shack-Hartmann wavefront sensor
with 3 lenslet rings
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(a) Wrapped phase profile of a High-order
low-amplitude phase aberration to be re-
constructed

(b) Retrieved phase using only low-order es-
timation

(c) Retrieved phase using only Tay-
lor intensity approximation applied to the
Shack-Hartmann intensity pattern, no pre-
conditioning

(d) Retrieved phase using the novel hybrid
phase retrieval method with an additional pre-
conditioning phase refinement step

Figure 7-3: Phase retrieval performed on a high-order (Zernike order 320) low-amplitude (0.1λ) phase
aberration captured by an 8 × 8 rectangular Shack-Hartmann wavefront sensor
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(a) Wrapped phase profile of a High-order
low-amplitude phase aberration to be re-
constructed

(b) Retrieved phase using only low-order es-
timation

(c) Retrieved phase using only Tay-
lor intensity approximation applied to the
Shack-Hartmann intensity pattern, no pre-
conditioning

(d) Retrieved phase using the novel hybrid
phase retrieval method with an additional pre-
conditioning phase refinement step

Figure 7-4: Phase retrieval performed on a high-order (Zernike order 320) low-amplitude (0.6λ) phase
aberration captured by a hexagonal Shack-Hartmann wavefront sensor with 3 lenslet rings
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(a) Wrapped phase profile of a High-order
high-amplitude phase aberration to be re-
constructed

(b) Retrieved phase using only low-order es-
timation

(c) Retrieved phase using only Tay-
lor intensity approximation applied to the
Shack-Hartmann intensity pattern, no pre-
conditioning

(d) Retrieved phase using the novel hybrid
phase retrieval method with an additional pre-
conditioning phase refinement step

Figure 7-5: Phase retrieval performed on a high-order (Zernike order 320) high-amplitude (0.6λ) phase
aberration captured by an 8 × 8 rectangular Shack-Hartmann wavefront sensor
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(a) Wrapped phase profile of a High-order
high-amplitude phase aberration to be re-
constructed

(b) Retrieved phase using only low-order es-
timation

(c) Retrieved phase using only Tay-
lor intensity approximation applied to the
Shack-Hartmann intensity pattern, no pre-
conditioning

(d) Retrieved phase using the novel hybrid
phase retrieval method with an additional pre-
conditioning phase refinement step

Figure 7-6: Phase retrieval performed on a high-order (Zernike order 320) high-amplitude (0.6λ) phase
aberration captured by a hexagonal Shack-Hartmann wavefront sensor with 3 lenslet rings

Liam Cools Master of Science Thesis



7. Novel Hybrid Modal Phase Retrieval Method using Low-Order Pre-Conditioning of Taylor Approximated Intensity
Function Fitting on Rectangular and Hexagonal Shack-Hartmann Intensity Patterns 65

(a) Wrapped phase profile of a High-order
high-amplitude phase aberration to be re-
constructed

(b) Retrieved phase using only low-order es-
timation

(c) Retrieved phase using only Tay-
lor intensity approximation applied to the
Shack-Hartmann intensity pattern, no pre-
conditioning

(d) Retrieved phase using the novel hybrid
phase retrieval method with an additional pre-
conditioning phase refinement step

Figure 7-7: Phase retrieval performed on a phase aberration consisting of dominating low-order com-
ponents (orders (2, 11), magnitudes (0.35, 0.4)λ) and low-amplitude high-order components (orders
(260, 320), magnitudes (0.1, 0.15)λ) captured by an 8 × 8 rectangular Shack-Hartmann wavefront sensor
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(a) Wrapped phase profile of a High-order
high-amplitude phase aberration to be re-
constructed

(b) Retrieved phase using only low-order es-
timation

(c) Retrieved phase using only Tay-
lor intensity approximation applied to the
Shack-Hartmann intensity pattern, no pre-
conditioning

(d) Retrieved phase using the novel hybrid
phase retrieval method with an additional pre-
conditioning phase refinement step

Figure 7-8: Phase retrieval performed on a phase aberration consisting of dominating low-order com-
ponents (orders (2, 11), magnitudes (0.35, 0.4)λ) and low-amplitude high-order components (orders
(260, 320), magnitudes (0.1, 0.15)λ) captured by a hexagonal Shack-Hartmann wavefront sensor with
3 lenslet rings
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Chapter 8

Conclusion and Outlook

This chapter will present the general conclusions drawn from the thesis in Section 8-1. Additionally,
avenues of exploration for future research will be provided in Section 8-2.

8-1 Conclusion

The work in this thesis was focused on the derivation of high-accuracy phase retrieval algorithms
applied to Shack-Hartmann intensity patterns. To achieve this, novel additions to low-order phase
retrieval methods were made, the application of wavefront sensorless phase retrieval methods to Shack-
Hartmann intensity patterns was achieved for intensity approximation methods, and a novel hybrid
method was presented for high-accuracy phase retrieval using a single open-loop Shack-Hartmann
intensity frame.

For low-order phase retrieval, the Fourier demodulation gradient extraction method was extended to
intensity patterns generated using hexagonal Shack-Hartmann wavefront sensors. In addition, modal
reconstruction was achieved based on multi-directional derivative fields obtained from trimmed spectral
harmonics. This reconstruction algorithm was shown to outperform centroiding accuracy in the case
of rectangular arrays, or perform similarly to centroiding in the case of hexagonal arrays. However, a
larger aberration magnitude is supported than centroiding.

For modal phase retrieval of small-magnitude aberrations of low- and high-order, first-order Taylor
intensity approximation was adapted to be applicable to Shack-Hartmann intensity patterns through
the use of Shack-Hartmann diversity. Through this diversity, unambiguous phase reconstruction was
achieved on single Shack-Hartmann image frames.

Lastly, the Taylor approximation method was combined with low-order phase retrieval to obtain a
novel hybrid method capable of retrieving aberrations consisting of dominating low-order components
and smaller high-order components with high accuracy from a single Shack-Hartmann intensity frame.
This method extracts not only phase gradient information encoded in Shack-Hartmann patterns, but
also the interference information embedded in the point-spread function (PSF). A suggested use-case
was the identification of turbulence models in open-loop conditions, high order aberrations dominated
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by low-order components. Simulation experiments showed the hybrid method capable of outperforming
both of its constituent parts. The main down-side of this hybrid method is the higher computational
time as its execution time is tied to the sum of its two constituent methods.

All the above mentioned methods were implemented in a custom Python simulation and phase retrieval
framework, making use of the HCIpy library for optical propagation[45].

8-2 Outlook

For future research, the prime candidate for improvement is the methodology presented in Chapter 5.
Firstly, the hexagonal Fourier demodulation suffers from cancelled high-frequency components in the
extracted harmonics. Because of this, some gradient information is smoothed out, and lost. Identifying
ways to avoid this destruction of data this would increase the accuracy of the gradients that can be
obtained using this method. Secondly, the trimming of the spectrum brings with it a risk of under-
sampling when wrapping of the phase gradient occurs in-between sub-sampling points, after which
phase unwrapping algorithms will alias the resulting gradient. As multiple harmonics can be extracted,
each containing information about the way the gradient evolves, a multi-grid method could potentially
be developed to avoid this issue. Thirdly, the use of reconstruction bases with orthogonal gradients and
conservation of orthogonality under truncation would benefit the accuracy of the reconstructed phase.
As this low-order method was meant to pre-condition an intensity-based method which does not suffer
from non-orthogonality of the gradient, the need for such a basis was less prevalent. However, it could
improve overall reconstruction accuracy should it be implemented.

For the intensity approximation method, the implementation of second-order Taylor approximation is
an interesting avenue for exploration. Its implementation is briefly discussed in Chapter B.

Lastly, the hybrid method could be refined by performing multiple iterations after the initial recon-
struction. While this would no longer result in a two-step algorithm, a trade-off should be made with
the potential accuracy improvement.

An overall improvement would be the optimisation of the code base for better phase retrieval perfor-
mance.
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Appendix A

Shack-Hartmann Diversity by Hénault

As mentioned before in Section 4-2, Hénault and Pannetier derived a similar concept for Shack-
Hartmann diversity which will be called Hénault diversity in this appendix[44]. While the original
work only considered rectangular micro-lens arrays, the approach can be generalised to hexagonal
arrays as was done in Equation A-1. To differentiate this Hénault diversity with the Shack-Hartmann
diversity used in the continuation of this thesis and to keep with the notation of the original paper,
Γ(x, y) will be used to denote the phase field.

Γ(x, y) = 2π
λf

M∑
m=−M

M∑
n=−M

Πp,p(x−mp, y − np)︸ ︷︷ ︸
x⃗∈Si

mp︸︷︷︸
xc,i

(x−mp) + np︸︷︷︸
yc,i

(y − np)


⇐⇒ Γi(x, y) = 2π

λf
(xc,i(x− xc,i) + yc,i(y − yc,i)) , x⃗ ∈ Si

= π

λf
⟨x⃗c,i, 2x⃗− 2x⃗c,i⟩

= ϕSH − ⟨x⃗c,i, x⃗c,i⟩

(A-1)

As can be observed in Equation A-1, the two diversities differ by a constant piston phase per sub-
aperture depending on the centroid position. Due to this difference, adding the Hénault diversity to the
ideal lens transmission function phase of Equation 4-3 does not result in the micro-lens array (MLA)
transmission function phase given in Equation 4-4 and as such gives a physically incorrect point-
spread function. Due to the constant phase delay per sub-aperture, spot positions will not be largely
affected and as such the Hénault diversity could be used in centroiding-based phase retrieval methods
where interference patterns are unused. However, any method employing interference information in
the captured intensity pattern, i.e. the actual point-spread function (PSF) as a whole, will not give
correct results when the Hénault diversity is used. As such it cannot be used with any intensity-based
phase retrieval method discussed in Chapter 6 and as a result also not the hybrid method developed
in this thesis presented in Chapter 7.
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Instead, the earlier given Shack-Hartmann diversity presented in Equation 4-5 derived by Soloviev
et al. is used for both forward simulation of Shack-Hartmann patterns as well as phase retrieval[13].
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Appendix B

Second-order Taylor Intensity
Approximation and Solution

The intensity approximation discussed in Chapter 6 only treated first-order Taylor approximation.
However, the work of Marinica et al. discusses the use of second-order approximation as well[11].
Continuing on the contents of Section 6-1, the approximation can also be written as Equation B-1.

h(x, y) ≈ h(x, y) |α⃗=α⃗L
+
(

∂

∂α⃗
h(x, y)

∣∣∣∣
α⃗=α⃗L

)T

α⃗+ α⃗T

(
∂2

∂α⃗∂α⃗T
h(x, y)

∣∣∣∣
α⃗=α⃗L

)
α⃗+ O(α⃗3) (B-1)

As can be observed, Equation 6-2 also shows a second order derivative, a Hessian matrix, with respect
to α coefficients. Each element in the Hessian is readily obtained by deriving Equation 6-6 with respect
to coefficient αk where αj may equal αk. As the Hessian is symmetric, this operation only has to
be performed for half the coefficient pairs, i.e. elements (i, j) ∀i = 1, . . . ,K and ∀j = 1, . . . i. Using
standard differentiation rules and setting α⃗L = 0, the elements of the Hessian can be obtained from
Equation B-2.

∂2h

∂αj∂αk
(α⃗ = α⃗L = 0) = F {iiPZjZk} (F {P})∗ + F {iPZj} (F {iPZk})

+ F {iPZk} (F {iPZj})∗ + F {P} (F {iiPZjZk})∗

= 2Re
{

(F {P})∗ F {iiPZjZk}
}

+ 2Re
{

(F {iPZj})∗ F {iPZk}
}

= 2Re
{

(F {P})∗ F {iiPZjZk} + (F {iPZj})∗ F {iPZk}
}

(B-2)

Combining this with the Jacobian of Equation 6-6 and the linearisation point intensity in Equation 6-5
gives Equation B-3 where again similarities are indicated which can be used to reduce the number of
computations. As with Section 6-2 and Section 7-1, P can simply substituted with Pd or Pnc without
further alterations.
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h(x, y)(α⃗ = 0) =

∣∣∣∣∣∣F {P}︸ ︷︷ ︸
a

∣∣∣∣∣∣
2

∂h
∂αj

(α⃗ = 0) = 2Re

(F {P})∗︸ ︷︷ ︸
a∗

F

iPZj︸ ︷︷ ︸
b




∂2h
∂αj∂αk

(α⃗ = 0) = 2Re

(F {P})∗︸ ︷︷ ︸
a∗

F

iiPZjZk︸ ︷︷ ︸
ibZk

+ (F {iPZj})∗︸ ︷︷ ︸
b

F {iPZk}



(B-3)

This problem can then be re-written as presented in Equation B-4 which can be used to cast the
problem into a semidefinite programming problem as given in Equation B-5. It is worth noting that,
while it is not shown in these equations, normalisation similar to that performed in Section 6-3 must
be applied.

h(x, y) =
[
1 α⃗T

] [ h(x, y, α⃗ = 0) 1
2
(

∂h
∂α⃗ (x, y, α⃗ = 0)

)T

1
2

∂h
∂α⃗ (x, y, α⃗ = 0) ∂2h

∂α⃗∂α⃗T (x, y, α⃗ = 0)

]
︸ ︷︷ ︸

AH (x,y)

[
1
α⃗

]

= Tr

AH(x, y)
[

1
α⃗

] [
1 α⃗T

]
︸ ︷︷ ︸

X


(B-4)

min
X

(Tr(X))

s.t. yi = Tr(AH,iX)
X1,1 = 1
X ⪰ 0

(B-5)

Due to the lifting of dimensionality, this optimisation problem is computationally very demanding. In
fact, using the full image N ×N image will result in N2(K2 +K + 1) elements that need to be stored
in computer memory where K is the number of coefficients to retrieve. This quickly takes up more
than the entire RAM capacity of conventional computer hardware. For this reason, Marinica et al.
instead suggests to only apply the second-order approximation to a subset of the brightest pixels as
these are more likely to contain usable data.

While the second-order constraint generation as well as the optimisation problem were implemented
in Python code for this thesis project, it was ultimately abandoned due to convergence issues with
the used numerical solver as well as concerns about the computational and memory cost versus the
gained accuracy. However, future research is recommended.
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Glossary

List of Acronyms

PSF point-spread function
PR phase-retrieval
FFT fast Fourier transform
MLA micro-lens array
OTF optical transfer function
RMSE root-mean-square error
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List of Symbols

λ Wavelength

A Wave amplitude function

ω Frequency coordinate in the x direction

ϕ Phase

α⃗ Modal coefficient vector

ξ Frequency coordinate in the y direction

cpad Padding factor

d Physical pixel size

Dh,i Hexagon inscribed circle diameter

Dh,o Hexagon circumscribed circle diameter

Dpupil Pupil diameter

f Focal length

fµL Lenslet focal length

h Intensity function

Hk,l,m (k, l,m)’th harmonic in the spectrum of a hexagonal Shack-Hartmann intensity pattern

Hk,l (k, l)’th harmonic in the spectrum of a rectangular Shack-Hartmann intensity pattern

I Intensity image

N Pixel count in a row for an unpadded image

NMLA Number of micro-lens array centroids within the aperture

Npix Number of gradient field values within the aperture

Nzph Pixel count in a row for a padded harmonic in Fourier demodulation
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80 List of Symbols

Nzp Pixel count in a row for a padded image

P Pupil function

p, pµL Lenslet pitch

Pd Pupil function including a phase diversity term

Pnc Pupil function including a phase diversity and pre-conditioning phase

W Wavefront

wf,pix Lenslet pitch frequency in pixels

x Spatial coordinate in the horizontal direction

y Spatial coordinate in the vertical direction

Zj , Zn
m Zernike basis function of Noll’s order j or radial-azimuthal order (n,m)
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