

Delft University of Technology

Parameterized Verification under Release Acquire is PSPACE-complete

Krishna, Shankaranarayanan; Godbole, Adwait; Meyer, Roland; Chakraborty, Soham

DOI
10.1145/3519270.3538445
Publication date
2022
Document Version
Final published version
Published in
PODC 2022 - Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing

Citation (APA)
Krishna, S., Godbole, A., Meyer, R., & Chakraborty, S. (2022). Parameterized Verification under Release
Acquire is PSPACE-complete. In PODC 2022 - Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing (pp. 482-492). (Proceedings of the Annual ACM Symposium on Principles of
Distributed Computing). ACM. https://doi.org/10.1145/3519270.3538445
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3519270.3538445

Parameterized Verification under Release Acquire is
PSPACE-complete

Shankaranarayanan Krishna

krishnas@cse.iitb.ac.in

IIT Bombay

Mumbai, India

Adwait Godbole

adwait@berkeley.edu

UC Berkeley

Berkeley, USA

Roland Meyer

roland.meyer@tu-bs.de

TU Braunschweig

Braunschweig, Germany

Soham Chakraborty

s.s.chakraborty@tudelft.nl

TU Delft

Delft, Netherlands

ABSTRACT
We study the safety verification problem for parameterized systems

under the release-acquire (RA) semantics. In the non-parameterized

setting, access to atomic compare-and-swap (CAS) instructions ren-

ders the safety verification problem undecidable. In the light of

this result, we consider parameterized systems consisting of an

unbounded number of environment threads executing identical but

CAS-free programs combined with a fixed number of distinguished

threads that are unrestricted. Our first contribution is an effective

and simplified RA semantics for such systems. We leverage the sim-

plified semantics to show that safety verification becomes PSPACE
in the parameterized case, an optimistic result for algorithmic veri-

fication. Our proof uses an encoding to Datalog which, in addition

to the complexity upper bound, suggests a verification algorithm

based on Horn clause solvers. We also provide a matching lower

bound showing that safety verification is PSPACE-hard.

CCS CONCEPTS
•Theory of computation→ Program verification; • Software
and its engineering → Formal software verification;

KEYWORDS
Model-checking, Parameterized verification, Shared memory, Weak

memory models, Release-Acquire semantics

ACM Reference Format:
Shankaranarayanan Krishna, Adwait Godbole, Roland Meyer, and Soham

Chakraborty. 2022. Parameterized Verification under Release Acquire is

PSPACE-complete. In Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing (PODC ’22), July 25–29, 2022, Salerno, Italy. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3519270.3538445

1 INTRODUCTION
Release-acquire (RA) is a popular fragment of C++11 [12] (in which

reads are annotated by acquire and writes by release) that strikes a

good balance between programmability and performance and has

This work is licensed under a Creative Commons Attribution

International 4.0 License.

PODC ’22, July 25–29, 2022, Salerno, Italy.
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9262-4/22/07. . . $15.00

https://doi.org/10.1145/3519270.3538445

received considerable attention (see e.g., [7, 24, 26, 28, 32, 35, 39–

41]). The model is not limited to concurrent programs, though. RA

has tight links [33] with causal consistency (CC) [6], a prominent

consistency guarantee in distributed databases [36]. In partcular,

variants of RA, namely Weak Release-Acquire (WRA) and Strong

Release-Acquire (SRA) [32] have been observed to be equivalent to

the transactional models of CC and causal convergence (CCv) in

the single instruction transaction setting [13, 30, 31]. Our results

can be extended in a straightforward manner to these models.

We are interested in the decidability and complexity of safety ver-

ification for RA implementations. Common to RA implementations

and distributed databases is that they tend to offer functionality to

multi-threaded client programs, be it means of synchronization or

access to shared data. Clients to such RA implementations all call

and execute the same code, and their identity does not have an in-

fluence on the functionality they get, an assumption often referred

as “indistinguishability”. As pointed out by Attiya and Rajsbaum

[11], indistinguishability is one of the pillars of computer science

and has been the basis for abstraction techniques, lower bounds,

and impossibility results. When verifying the RA implementation,

the consequence of indistinguishability is that we can abstract the

client program to the invocations of the offered functionality [16].

The result is a so-called instance of the RA implementation in which

concurrent threads execute the code of interest. There is a subtlety.

As the RA implementation should be correct for every client, we

cannot fix the instance to be verified. We have to prove correctness

irrespective of the number of threads executing the code. This is

the classical formulation of a parameterized system as it has been

studied over the last 35 years [16].

To explain the challenges of parameterized verification under RA,

it will help to understand how to program under RA. The slogan of

RA is never read “overwritten” values [33]. Assume we have shared

variables x and y, initially 0, and a thread first stores 1 to y and

then 1 to x. Assume a second thread reads the 1 from x. Under
RA, that thread can no longer read the value 0 from y. Formulated

axiomatically [8], the reads-from,modification order, program order,

and from-read should be acyclic [33]. While less concise, there

are operational formulations of RA that make explicit information

about the computationwhichwill be useful for our development [26,

27, 38]. The high-level picture is this. Program and modification

order are encoded as natural numbers, called timestamps. Each
thread stores locally a view object, a map from shared variables

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

482

https://doi.org/10.1145/3519270.3538445
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3519270.3538445

PODC ’22, July 25–29, 2022, Salerno, Italy. Shankaranarayanan Krishna, Adwait Godbole, Roland Meyer, and Soham Chakraborty

Variables x and y initially 0

producer consumer
λ1 : r B y τ1 : y B 1

λ2 : if(r == 1) : τ2 : for i in 1..z :

λ3 : x B 1 τ3 : s B x
⊕ . . . τ4 : assume s = (i %% l)+1
⊕ x B l τ5 : y B 2

Figure 1: A producer-consumer program (left) and an execution snippet with two threads playing the roles of producer and
consumer, respectively (right). We have z ∈ N, x, y shared variables, r, s local registers, and ⊕ representing non-deterministic
choice.

to timestamps. This map reflects the thread’s progress in terms of

seeing or, as above, hearing from stores to shared variables. The

communication is organized in a way that achieves the desired

acyclicity. Store instructions generate messages that decorate the
variable-value pair by a view. This view is the one held by the thread

except that the timestamp of the variable being written is raised

to a strictly higher value. The shared memory is implemented as

a pool to which the generated messages are added and in which

they remain forever. When loading a message from the pool, the

timestamp of the variable given by the message must be at least

the timestamp in the thread. The views are then joined so that the

receiver cannot load values older than what the sender has seen.

An Execution under RA. Consider the program in Figure 1. The

initial shared memory minit consists of two messages, one per vari-

able. The green box below minit represents the program counter

of each thread (λ,τ), the values of their local registers r resp. s,
and their local views. After the store at τ1, the local view of the

consumer is changed to
x7→0

y7→10
, by increasing the timestamp of y to

some t ∈ N (here 10) larger than the current value for y (here 0).

Then a message is added to minit extending it to m1. When loading

a message from the pool, the timestamp of the variable given by

the message must be at least the timestamp of the same variable

in the thread’s local view. The views are then joined so that the

receiver cannot load values older than what the message generator

has seen. When Thread 1, the producer, executes λ1, it loads the

message

[
y, 1, x7→0

y7→10

]
in m1, resulting in the local view

x7→0

y7→10
. The

shared memory is implemented as a pool of messages to which

the generated messages are added and in which they remain for-

ever. Continuing on the example, another message is added when

Thread 1 executes λ3 and makes a store for x , generating the mem-

ory m2 (note the increase in the timestamp of x). Let Thread 2

execute the load instruction τ3 after Thread 1 executed λ3. The
local view of Thread 2 before τ3 is

x7→0

y7→10
. Thread 2 can load the

message

[
x, 0, x7→0

y7→0

]
from minit or the message

[
x, 4, x7→7

y7→10

]
from

m2, because the timestamp associated to x in either message is at

least as large as Thread 2’s view on x . After loading, the local view
of Thread 2 will either be

x7→0

y7→10
or

x7→7

y7→10
, depending on the load.

The timestamps render the RA semantics infinite-state, which

makes algorithmic verification difficult. Indeed, the problem of

solving safety verification under RA in a complete way has recently

been studied and proven to be undecidable even for programs with

finite data domains [1]. Despite considerable efforts [1, 17, 31], the

community is missing an expressive class of programs for which

the safety verification problem under RA is tractable. We observe

that all these works focus on the non-parameterized setting. As

argued in the introduction, the parameterized setting is equally

common for RA implementations. Yet, for parameterized systems

the problem has not been studied at all. We contribute such a study

and find that it brings the desired tractability to verification.

Problem Statement. We consider parameterized systems consist-

ing of arbitrarily many environment (env) threads executing the

same program and an apriori fixed number of distinguished (dis)
threads executing possibly different programs. Programs are writ-

ten in a simple while-language Com with the following statements:

c ::= skip | assume e(r) | assert false | r := e(r) |

c; c | c ⊕ c | c∗ | r := x | x := r | cas(x, r1, r2)

We obtain an instance of the system by fixing the number of

env threads. Programs compute on (thread-local) registers r from
the finite set Reg using assume, assert, assignments, sequential

composition, non-deterministic choice, and iteration. Conditionals

if and iteratives while can be derived from these operators, and

we use them where convenient. The shared memory is modeled

through variables xwhich are accessed bymeans of load r B x, store
x B r, and compare-and-swap operations cas(x, r1, r2). A cas is a
load instruction followed by a store instruction, executed atomically.

We have a finite set Var of shared variables, and work with the data

domain Dom. We do not insist on a shape of expressions e but

require an interpretation [[e]] : Domn → Dom that respects the

arity n of the expression. The problem considered is as follows.

Safety Verification for Parameterized Systems:
Given a parameterized system, is there a system in-

stance such that some computation of that instance

reaches an assertion violation?

The complexity of the problem depends on the system class

under consideration. We denote system classes by signatures of

the form env(type) ∥ dis1(type) ∥ · · · ∥ disn (type). The “types”

constrain the programs executed by the threads, and we consider

two restrictions: a loop-free control flow, denoted by acyc, and the

instruction set which forbids the atomic compare-and-swap (CAS)

command, denoted by nocas. Thus, env(nocas, acyc) ∥ dis(acyc)
represents the class of systems in which the arbitrarily many env
threads neither have loops nor CAS operations and a single distin-

guished dis thread executes a loop-free program.

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

483

Parameterized Verification under Release Acquire is PSPACE-complete PODC ’22, July 25–29, 2022, Salerno, Italy.

∥ dis1(nocas) ∥ dis2(nocas) ∥ dis3 ∥ dis4 dis(nocas) ∥ dis(nocas) dis1(acyc) ∥ · · · ∥ disn (acyc)
env(nocas) [1] non primitive recursive [1] PSPACE-complete (§4,5)

env(acyc) undecidable (even without dis threads, [22])
Table 1: Overview of the complexity results. Each entry corresponds to a system class where the type of the environment (env)
resp. distinguished (dis) threads is given by the row resp. column. Safety verification is undecidable for classes in red.

We focus on the class env(nocas) ∥ dis1(acyc) ∥ · · · ∥ disn (acyc),
where the env threads execute a CAS-free program (identical for

all of them), and the dis threads execute loop-free programs that

may contain CAS operations. We forbid CAS operations for the env
threads due to the following result of ours: in the presence of CAS,

even loop-free env threads are sufficient for undecidability.

Theorem 1.1. Parameterized safety verification for env(acyc) is
undecidable.

To motivate the class of parameterized programs we consider,

we look at a number of concurrency benchmarks from the liter-

ature [29, 34, 37]. The Phoenix-2.0 benchmarks from Kozyrakis

[29] are shared memory concurrent programs that perform data-

intensive processing tasks, the programs from Lahav and Mar-

galit [34] are used for robustness analysis, and the benchmarks

from [37] are concurrent data structures. To classify the bench-

marks in our terms, the programs peterson-ra-bratosz, rcu [34], as

well as the Phoenix benchmark programs [29] (histogram, kmeans,

linear-regression, matrix_multiply, pca, string_match, word_count,

sort_pthread) contain a fixed-size loop that can be unrolled and no

cas accesses. This means they belong to the class env(nocas, acyc).
Likewise, the benchmarks dekker-fences [37], lamport-2-ra, lamport-
2-3-ra, peterson-ra [34] fall into the class env(nocas). Finally, we
also have the benchmarks barrier, chase-lev-deque, and peterson-ra-
bratosz from [37]. The program chase-lev-dequeue contains a loop
with a fixed bound which can be unrolled completely and a CAS

access which is not within any loop; barrier and peterson-ra-bratosz
contain wait loops (read-till-specific-value). Wait loops can be re-

modeled as a load followed by an assume statement, and hence

these benchmarks fall into the class env(nocas) ∥ dis1(acyc) ∥ · · · ∥
disn (acyc).

Our Contributions. We list the main contributions of the paper.

Table 1 summarizes the landscape of complexity results.

A Simplified Semantics. Our first contribution is a simplified

semantics (§3) for parameterized systems of the form env(nocas)
that is equivalent with the standard RA semantics as far as safety

verification is concerned, and can be seen as an extension of the RA

semantics to the parameterized case. The simplified semantics uses

the notion of timestamp abstraction, which allows us to be imprecise

about the timestamps of the env threads. Our simplified semantics

is not restricted to the case of having indistinguishable threads,

but also works when we allow distinguished threads, without any

restrictions.

PSPACE Upper Bound As our second contribution, we give a

PSPACE-algorithm (§4) for the safety verification problem in the

class env(nocas) ∥ dis1(acyc) ∥ · · · ∥ disn (acyc). This class cap-
tures bounded model checking [19] where the distinguished threads

are explored up to an under-approximate loop-unrolling bound. Our

PSPACE upper bound is obtained by encoding the safety verifica-

tion problem into the query evaluation problem for linear Datalog,

known to be in PSPACE [23]. The linear Datalog format is sup-

ported by Horn-clause solvers [14, 15], a state-of-the-art backend

in verification.

Lower Bounds. Our third contribution is a matching lower bound

for the safety verification problem in the above class. Actually,

we provide a stronger lower bound, namely for env(nocas, acyc)
which implies that safety verification of env(nocas) ∥ dis1(acyc) ∥
· · · ∥ disn (acyc) is PSPACE-complete. Additionally, to justify our

choice of CAS-free env threads, we prove that safety verification

for env(acyc) is undecidable (even for loop-free programs).

Related Work Atig et al. showed that safety verification is decid-

able for x86-TSO [3, 9]. This has been generalized to models with

non-speculative writes [10] andwith persistence [2]. These decision

procedures rely on well-structuredness arguments [5, 21], often

leading to high complexities. Verification for parameterized TSO

programs has been considered in [4]. Esparza, et. al. studied the

complexity of leader-contributor systems [20]. At the heart of their

technique is the so-called copycat-lemma. Our simplified semantics

relies on an infinite-supply property which can be thought of as a

copycat variant for RA. The verification of concurrent programs

under RA in the non-parameterized setting has been studied in [1],

where safety verification is shown to be undecidable for programs

having four distinguished threads with CAS operations and non-

primitive-recursive for systems having two distinguished threads

and no CAS operations.

Supplementary material. This paper is accompanied by a full

version [22] which contains additional material and proofs.

2 THE RELEASE-ACQUIRE SEMANTICS
A parameterized system consists of an unknown and potentially

large number of threads, all running the same program. Threads

compute locally over a set of registers and interact with each other

by writing to and reading from a shared memory. The interaction

with the shared memory is under the Release Acquire (RA) seman-

tics [27, 33, 38]. Below we present the operational semantics of RA

[27, 38]. Recall the program syntax from the introduction and that

we work with parameterized systems having unboundedly many

env threads.
Local Configurations. The RA semantics enforces a total order

on all stores to the same variable. We model these total orders

by Time = N and refer to elements of Time as timestamps. Using

the total orders, each thread keeps track of its progress in the

computation. It maintains a view from View = Var → Time, that
maps each shared variable x to the timestamp of the most recent

event the thread has observed on x. The thread keeps track of the

program from Com to be executed next (which can in practice be

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

484

PODC ’22, July 25–29, 2022, Salerno, Italy. Shankaranarayanan Krishna, Adwait Godbole, Roland Meyer, and Soham Chakraborty

represented as a program counter) , and the register valuation from

RVal = Reg → Dom. The set of thread-local configurations is thus
LCF = Com × RVal × View.

Unbounded Threads. The number of threads is not known a pri-

ori. Let TID = N be the set of thread identifiers. The thread-local

configuration map then assigns a local configuration to each thread:

LCFMap = TID → LCF.

Views. The views maintained by the threads are used for synchro-

nization. They determine where in the (appropriate) total order

a thread can place a store and from which stores it can load a

value. To this end, the shared memory holds messages - variable-
value pairs enriched by a view - of the form (x, d, vw): Msgs =
Var × Dom × View.

Shared Memory. A memory state is a set of such messages, and

we use Mem = 2
Msgs

for the set of all memory states. With this,

the set of all configurations of a parameterized system under RA is:

CF = Mem × LCFMap.

Transitions. To define the transition relation among configura-

tions, we first give a thread-local transition relation among thread-

local configurations −⇁ ⊆ LCF × LAB × LCF in Figure 2. Thread-

local transitions may be labelled with messages when represent-

ing interaction with the shared memory (load, store, and CAS):

({ld, st} × Msgs) ∪ ({cas} × Msgs × Msgs). Transitions that op-
erate only on the local state of a thread are unlabeled, and re-

ferred to as silent transitions. The set of possible labels is LAB =
{ε} ∪ ({ld, st} ×Msgs) ∪ ({cas} ×Msgs ×Msgs). We elaborate on

the load, store, and CAS transitions by which a thread with local

view vw interacts with the shared memory.

Load. A load transition r B x picks a message (x, d, vw′) from the

sharedmemory and updates register rwith the value d. Themessage

should not be outdated, meaning the timestamp of x in the message,

vw′(x), should be at least the thread’s current timestamp for x, vw(x).
The timestamps of other variables do not influence the feasibility

of the load transition. They are taken into account, however, when

the load is performed. The thread’s local view is updated by joining

the current view vw and vw′
by taking the maximum timestamp

per address; (vw ⊔ vw′) = λx.max(vw(x), vw′(x)).

Store. When a thread executes a store x B r it adds a message

(x, d, vw′) to the memory, where d is the value held by the register

r. The new thread-local view (and the message view), vw′
, is ob-

tained from the current vw by increasing the time-stamp of x to a

fresh timestamp. We use vw <x vw′
to mean vw(x) < vw′(x) and

vw(y) = vw′(y) for all y , x.

CAS. A CAS transition is a load and store instruction executed

atomically. An instruction cas(x, r1, r2) has the intuitive meaning

atomic{r B x; assume r = r1; x B r2}. The instruction loads the

shared variable x, checks whether the value matches that of r1, and,
if it does, sets it to the value of r2. The check and the assignment

happen atomically which means the timestamp ts of the load and

the timestamp ts′ of the store should be adjacent, ts′ = ts + 1.
The transition relation among configurations −→ ⊆ CF × TID ×

(Msgs ∪ {ε}) × CF is defined in Figure 2. It is labeled by a thread

identifier and possibly a message (if the transition interacts with

the shared memory). In the case of loads, we require the memory to

hold the message to be loaded. In the case of stores, the message to

be stored should not conflict with the memory. In the case of CAS,

we require both of the above, and that the twomessages should have

consecutive timestamps. For now, two messages are non-conflicting
if either they are on different variables or their timestamps are

different. We defer a full definition of non-conflict to later where

we can give it a broader perspective.

Initial Configuration. Fix a parameterized system c of interest.
The initial thread-local configuration is lcfinit = (c, rv0, vw0), where

the register valuation assigns rv0(r) = 0 to all registers and the

view has vw0(x) = 0 for all x ∈ Var. The initial configuration of

the parameterized system is cf0 = (Meminit, lcfminit). The initial

memoryMeminit holds messages where all shared variables store

value dinit ∈ Dom and the view that is constantly zero. The initial

thread-local configuration map assigns lcfminit(th) = lcfinit to all

threads. A computation (or execution or run) is a finite sequence of

consecutive transitions

ρ = cf0
(th1,msg

1
)

−−−−−−−−−→ cf1
(th2,msg

2
)

−−−−−−−−−→ . . .
(thn,msgn)
−−−−−−−−−→ cfn .

It is initialized if cf0 = cfinit. We use TS(ρ) for the set of all non-
zero timestamps that occur in all configurations across all variables.

We use TID(ρ) to refer to the set of thread identifiers labeling the

transitions. For a set TID′ ⊆ TID of thread identifiers, we use ρ ↓TID′

to project the computation to transitions from the given threads.

With first(ρ) = cf0 and last(ρ) = cfn we access the first resp. last

configurations in the computation.

3 A SIMPLIFIED SEMANTICS
In this section, we propose a simplified semantics for the class of

systems env(nocas) ∥ dis1 ∥ · · · ∥ disn . The key insight behind the

simplification is Lemma 3.3 (Infinite Supply Lemma) which shows

that if some env thread th generates a message (x, val, vw) in a com-

putation ρ, then ρ can be extended to a computation where a clone
of th generates the message (x, val, vw′) with vw′ = vw[x 7→ t] for
some t > vw(x). The lemma and hence the simplification result rely

on the following assumption: arbitrarily many env threads execute
identical, CAS-free programs.
Making clones of env threads. Let us call a message msg an env
message if it is generated in a computation ρ by an env thread,

and define dis messages similarly. The fact that the number of env
threads is arbitrarily high allows clone env threads to duplicate

the computation and hence the generated messages. CAS-freeness

is crucial here, as it guarantees the duplicated computation to be

valid under RA. To ensure that the clone env threads can mimic the

env computation in ρ, we require that dis messages can be read by

the env clones whenever they can be read by the env threads in ρ.
This means that we respect the relative order among timestamps

between env and dis threads.
Making space for clones. To accommodate the timestamps of the

clone envmessages in the extended computation, we create unused

timestamps along Time. Clones generate their messages in this

unused region via timestamp lifting (§3.1). Then, we define how to

combine the original computation ρ with that of the clones via an

operation called superposition (§3.2). Finally, Lemma 3.3 shows how

clones can generate messages with arbitrarily higher timestamps.

Timestamp abstraction. Since we can duplicate-at-will the env
messages, we need not store the entire set of envmessages produced.

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

485

Parameterized Verification under Release Acquire is PSPACE-complete PODC ’22, July 25–29, 2022, Salerno, Italy.

(ST-local)

rv(r) = d vw <x vw′

(x B r, rv, vw) st, (x,d,vw′)
−−−−−−−−−⇁ (skip, rv, vw′)

(LD-local)

vw(x) ≤ vw′(x) rv′ = rv[r 7→ d]

(r B x, rv, vw) ld, (x,d,vw′)
−−−−−−−−−⇁ (skip, rv′, vw ⊔ vw′)

(CAS-local)

rv(r1) = d1 rv(r2) = d2 vw(x) ≤ vw′(x) = ts ṽw = vw′[x 7→ ts + 1] vw′′ = vw ⊔ ṽw

(cas(x, r1, r2), rv, vw)
ld, (x,d1,vw′)
−−−−−−−−−−⇁

st, (x,d2,vw′′)
−−−−−−−−−−−⇁ (skip, rv, vw′′)

(LD-global)

lcfm(th) = lcf lcf ld,msg
−−−−−⇁ lcf′ msg ∈ m

(m, lcfm)
(th,msg)
−−−−−−−→ (m, lcfm[th 7→ lcf′])

(ST-global)

lcfm(th) = lcf lcf st,msg
−−−−−⇁ lcf′ msg # m

(m, lcfm)
(th,msg)
−−−−−−−→ (m ∪ {msg}, lcfm[th 7→ lcf′])

(CAS-global)

lcfm(th) = lcf lcf
ld,msgl−−−−−−⇁

st,msgs−−−−−−⇁ lcf′ msgl ∈ m msgs # m

(m, lcfm)
(th,msg)
−−−−−−−→ (m ∪ {msgs }, lcfm[th 7→ lcf′])

(Unlabelled)

lcfm(th) = lcf lcf −⇁ lcf′

(m, lcfm)
th
−→ (m, lcfm[th 7→ lcf′])

Figure 2: Shared memory transitions: local transition relation (blue, silent transitions omitted) and global transition relation
(green).

Those with the smallest timestamps act as sufficient representatives.

Additionally, when a thread reads from an envmessage, we need not

be bothered about timestamp comparisons since we could always

generate a clone with as high a (missing) timestamp as required.

We capture this notion with timestamp abstraction (§3.4).

3.1 Timestamp Lifting
Timestamp Transformations. In our development, we make use

of timestamp transformations µ : Time → Time. We extend this to

views vw with a collection of per variable timestamp transforma-

tions M = {µx}x∈Var, where µ
x
transforms the timestamps of vari-

able x. The transformed viewM(vw) : Var → Time is λx.µx(vw(x)).
We also extend timestamp transformations to messages, memories,

configurations, and computations by transforming the view entries.

RA-valid timestamp lifting. A timestamp transformationM =

{µx}x∈Var is an RA-valid timestamp lifting for a computation ρ if it

satisfies two properties for each x ∈ Var: (1) it is strictly increasing

in that for all t1, t2 ∈ N with t1 < t2 we have µ
x(t1) < µx(t2) and

moreover µx(0) = 0, (2) CAS-timestamps remain consecutive in

that a CAS operation on x with (load, store) timestamps (t , t + 1)
leads to µx(t + 1) = µx(t) + 1, . Note that M(cfinit) = cfinit. The
following lemma says that the runM(ρ) obtained by modifying the

timestamps of an RA computation ρ with an RA-valid timestamp

lifting M is also an RA computation.

Lemma 3.1 (Timestamp Lifting). Let M = {µx}x∈Var be an RA-
valid timestamp lifting. If ρ is an RA computation, then so isM(ρ).
If a configuration cf is reachable, so is M(cf).

Lemma 3.1 tells us how to make space for clone env threads in a

given computation ρ. Next we see how to obtain a new computation

by embedding the clone computations in ρ.

3.2 Superposition
We define the superposition ρ ▷ ρ ′ of two computations ρ, ρ ′ as
the computation that first executes ρ and then ρ ′, and such that

the threads transitioning in ρ resp. ρ ′ are disjoint. This requires
us to combine the memory in last(ρ) with the memory of every

configuration in ρ ′. The combination, in turn, requires ρ and ρ ′ to
be non-conflicting, which we discuss first.

Conflict. We need a notion of conflict not only for messages as

given by the RA semantics, but also for memories, configurations,

and computations. Two messagesmsg
1
= (x1, d1, vw1) andmsg

2
=

(x2, d2, vw2) are non-conflicting, denoted by msg
1
msg

2
, if either

their variables are different, x1 , x2, the timestamps are different,

vw1(x1) , vw2(x2), or the timestamps are both zero, vw1(x1) =
0 = vw2(x2). Two memory states are non-conflicting, m1 # m2, if

for all msg
1
∈ m1 and msg

2
∈ m2, we have msg

1
msg

2
. Two

configurations are non-conflicting, cf1 # cf2, if their memory states

are non-conflicting. Two computations are non-conflicting, denoted

ρ # ρ ′, if they use different threads and non-conflicting messages,

TID(ρ) ∩ TID(ρ ′) = ∅ and last(ρ) # last(ρ ′).
The superposition of two non-conflicting computations is

ρ ▷ ρ ′ = ρ; (last(ρ) ⊕− ρ ′).

Wedefine the addition operation ⊕− . The addition of a configuration

cf to a computation ρ = cf0−−−−−−−−−→(th1,msg
1
) . . .−−−−−−−−−→(thn,msgn) cfn yields

the new computation

cf ⊕− ρ = (cf ⊕− cf0)
(th1,msg

1
)

−−−−−−−−−→ . . .
(thn,msgn)
−−−−−−−−−→ (cf ⊕− cfn).

The addition of configurations cf1 = (m1, lcfm1), cf2 = (m2, lcfm2)

is the configuration cf1 ⊕− cf2 = (m1 ∪m2, lcfm), where lcfm(th) =
lcfm1(th) if lcfm1(th) , lcfinit and lcfm(th) = lcfm2(th) other-
wise. In particular, note that the initial configuration is neutral

for addition, that is cf ⊕− cf0 = cf. Consequently, when ρ # ρ ′

holds and ρ ′ is initialized, we have, last(ρ) = last(ρ) ⊕− first(ρ ′) =
first(last(ρ) ⊕− ρ ′).

The concatenation ρ1; ρ2 expects computations ρ1 and ρ2 with
last(ρ1) = first(ρ2) and returns the sequence consisting of the

transitions in ρ1 followed by the transitions in ρ2. We write ρ ↓env
and ρ ↓dis to denote the projections of ρ to env resp. dis. LetMsgs(ρ)
be the memory in last(ρ), and Msgs(ρ ↓dis) ⊆ Msgs(ρ) the subset
of messages added by dis threads during ρ. The following lemma

shows when superposition leads to a valid computation under RA.

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

486

PODC ’22, July 25–29, 2022, Salerno, Italy. Shankaranarayanan Krishna, Adwait Godbole, Roland Meyer, and Soham Chakraborty

Lemma 3.2 (Superposition). Consider RA computations ρ, ρ ′

with ρ ↓env #ρ ′ ↓env and Msgs(ρ ↓dis) = Msgs(ρ ′ ↓dis). Then the
superposition ρ ▷ (ρ ′↓env) is an RA computation.

3.3 Infinite Supply Lemma
Let ρ be a computation in which an env message msg = (x, d, vw)
is generated. We will show how to duplicate the message. We space

out the timestamps of Msgs(ρ) using timestamp lifting so that we

create holes (unused timestamps) along Time. Then we generate

clones of env threads, denoted by copy(env). The holes are made

to accomodate the timestamps of copy(env) and the (higher) times-

tamp of the copy of msg. We preserve the order of timestamps in

copy(env) threads relative to those of dis threads. This ensures that
reads-from dependencies between env and dis are maintained.

Define the computation ρ̃ as a clone of ρ ↓env that is executed
by copy(env) threads. The write timestamps used by copy(env)
threads are the unoccupied timestamps generated by the timestamp

lifting operation M(ρ). We show an example of this via a graphic.

Let eTi resp. dTi denote the timestamps chosen by env and dis along
ρ (first row).

RA computation ρ : init dT0 eT0 dT1 eT1 eT2

Timestamp lifted computation M(ρ) : init dT0 eT0b eT
0

a dT
1 eT1b eT

1

a eT
1
b eT

2

a

Clone copy(ρ ↓env) computation ρ̃ : init dT0 eT0b eT
0
a dT

1 eT1b eT
1
a eT

2

b eT
2
a

The second row shows the lifted computation (lifted timestamps

have subscript a)M(ρ) and the holes (faded). The third row shows

holes being used by copy(env) for ρ̃ (subscript b). The construction
guaranteesM(ρ) # ρ̃ and superpositionM(ρ)▷ ρ̃ is allowed. In this

computation, ρ̃ generates a clone of the message msg = (x, d, vw),
namely msg′ = (x, d, vw′) with higher vw′(x). Additionally, since
eTia, eT

i
b have the same position relative to all dTj timestamps, so

do vw(y), vw′(y) for all variables y , x.
Now we state the Infinite Supply Lemma. As helper notation, for

a computation ρ and each variable x, we denote the timestamps of

stores of dis threads on x as tsx
0
< ts

x
1
< · · · .

Lemma 3.3 (Infinite Supply). Let ρ be an RA computation in
which an env thread generates the message (x, d, vw). For each t∗ ∈ N,
there exist timestamp lifting functions M1 = {µx

1
}x∈Var and M2 =

{µx
2
}x∈Var, and an RA computation ρ1 so that

M1(ρ) ▷M2(ρ ↓env) ▷ ρ1

is an RA computation. This computation generates amessage (x, d, vw′)

satisfying (ts comes from ρ)

(1) ∀i ((t∗ ≤ tsxi ∧ vw(x) ≤ tsxi) =⇒ vw′(x) ≤ µx
1
(tsxi)),

(2) ∀i , ∀y , x, vw(y) ≤ tsyi =⇒ vw′(y) ≤ µ
y
1
(tsyi),

(3) vw′(x) ≥ µx
2
(t∗).

To see the lemma, understand M1(ρ) as the timestamp lifted

computation with holes. ComputationM2(ρ ↓env) is the copy(env)
run, and ρ1 is generated by another set of clones that produce the

newmessage (with higher timestamp). We note that run triplication

is not strictly necessary for message duplication, but makes the

proof easier. Points (1) and (2) in the lemma refer to the relative

ordering between env and dis timestamps, (3) refers to the new

message having an arbitrarily high x timestamp.

3.4 Abstracting the Timestamps
We introduce the timestamp abstraction, the key building block for

the simplified semantics. Considering the asymmetry between the

dis and env messages, we distinguish the timestamps for the two

types of threads.

Timestamp Abstraction. If an env thread has read a message

(x, d, vw) from a dis thread with timestamp ts = vw(x) and has

generated amessagemsg on x, then clones ofmsg are available with
arbitrarily high timestamps at least as high as ts. To capture this

in our abstraction, we assign the env message msg a timestamp ts+

that is by definition larger than ts. We define the set of timestamps

in the simplified semantics as N ⊎ N+, where N+ contains for each

ts ∈ N a timestamp ts+. The timestamps are equipped with the

order ⪯ in which ts+ is greater than ts and smaller than ts + 1:

0 ≺ 0
+ ≺ 1 ≺ 1

+ ≺ . . . Timestamps of the form ts ∈ N are used for

the stores of dis threads while those of the form ts+ are used for

env threads. We admit multiple stores with the same timestamp ts+,
but at most one store for timestamps of the form ts. This abstracts
timestamps of multiple env messages between two dis messages by

a single ts+ timestamp. Initial messages have timestamp 0 as usual.

Simplified Semantics, on an Example. We illustrate the simpli-

fied semantics in Figure 3 by parameterizing the program from

Figure 1. The formal definition of the simplified semantics can

be found in the full version of the paper [22]. The parameterized

program has a single dis thread running program consumer, and
arbitrarily many env threads running producer. We consider a com-

putation in which dis, and l (out of the unboundedly many) env
threads participate. To refer to the different instances of the env
threads, we decorate the instruction labels by superscripts from

{1, . . . , l}.
The consumer thread generates timestamps of the form ts, 1 in

the example. The producer threads generate timestamps of the form

ts+
1
, . . . , ts+l . There can be several writes with timestamp ts+, in

particular some ts+i may be equal. Additionally, when reading from

the producer generated messages, consumer does not perform any

timestamp checks, but only updates its view by taking joins. As a

result, the load with value 2 during the second loop iteration (i=2)
is feasible even if ts+

2
< ts+

1
, unlike in the classical RA semantics.

Due to the lack of timestamp comparisons, consumer can perform

the loop arbitrarily many times (z > l), and the number of env
threads needed is independent of z.

The simplified semantics captures in a precise way the reach-

ability problem in the original semantics. Let αde be the function
that drops all views from messages and local configurations, and

let =de be the equality of local configurations modulo views.

Theorem 3.4 (Soundness and Completeness). A configura-
tion cf is reachable in RA iff there is an abstract configuration cfde

reachable in the simplified semantics so that cfde =de αde(cf).

4 PSPACE UPPER BOUND FOR SAFETY
VERIFICATION

This section discusses the safety verification problem for the class

env(nocas) ∥ dis1(acyc) ∥ · · · ∥ disn (acyc). Assuming a finite data

domain Dom, we show that the problem can be solved in PSPACE
by leveraging the simplified semantics from Section 3. Our approach

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

487

Parameterized Verification under Release Acquire is PSPACE-complete PODC ’22, July 25–29, 2022, Salerno, Italy.

Figure 3: Execution under the simplified semantics, producer transitions and messages are given in red, consumer transitions
and messages in blue. The execution begins with the consumer thread generating a message on ywith value 1 and timestamp 1
leading to the memory m1. The producer threads executing λ1...l

1
read from this message and reach states λ1...l

2
. They generate

messages on x with values {1, . . . , l} shown in memory m2. These are then read by the consumer as it loops around τ3, τ4 for
different iterates i, (i=1, i=2, i>2) as shown along the transition.

is to encode the safety verification problem into a Datalog program.

The encoding is interesting for two reasons: (1) it yields a complexity

upper bound that, given [1], came as a surprise, and (2) it provides

practical automated verification opportunities, considering that

Datalog-based Horn-clause solvers are state-of-the-art in program

verification [14, 15].

Theorem 4.1. The safety verification problem for env(nocas) ∥
dis1(acyc) ∥ · · · ∥ disn (acyc) is non-deterministic polynomial-time
relative to the query evaluation problem in linear Datalog (NPPSPACE),
and hence is in PSPACE.

Linear Datalog is a syntactically restricted variant of Datalog

for which query evaluation is in PSPACE. Theorem 4.1 mentions

non-deterministic polynomial time relative to the linear Datalog

oracle. We provide a non-deterministic poly-time procedure makeP
that converts a given verification instance to a Datalog problem P
such that (1) for an unsafe instance, atleast one execution ofmakeP
results in P with successful query evaluation, and (2) for a safe

instance, no execution of makeP gives P with successful query

evaluation.

The generated Datalog problem P = (Prog, g) consists of (1) a

Datalog program Prog and (2) a ground atom g. A Datalog pro-

gram [18] consists of a predicate set Preds, a data domain Data,
and a set of inference rules Rules. An inference rule has the form

head : − body
1
, . . . , bodyt , where head and bodyi are positive lit-

erals. A rule with one literal in the body is a linear rule, one without

a body is called a fact. A linear Datalog program is one where all

rules are linear or facts.

An instantiation of a rule is the result of replacing each occur-

rence of a variable in the rule by a constant, and a ground atom is a

predicate in which all terms are constants. For every instantiation

of a rule, if all ground atoms constituting the body are true then

the ground atom in the head can be inferred to be true. The query
evaluation problem for Datalog is, given a problem instance (Prog, g)
as above, determine whether Prog ⊢ g, meaning we can infer the

atom g from the program Prog using the given inference rules. The

combined complexity (in terms of Prog and g as input) of query

evaluation [23] for linear Datalog is PSPACE, while non-linear rules
raise it to NEXPTIME [25, 42]. We do not directly reduce safety ver-

ification to query evaluation in linear Datalog, but instead use an

intermediate notion of Cache Datalog. We proceed as follows.

(1) For ease of encoding, we introduce Cache Datalog, Datalog
with an additional parameter, the Cache, that is decisive in
controlling the complexity of encodings as follows: every

Cache Datalog program can be turned into a linear Datalog

program at a cost that is linear in the size of the program

and the Cache (Lemma 4.2);

(2) makeP generates Cache Datalog programs Prog and a query
instance (Prog, g) such that Prog ⊢ g iff the given verification

instance is unsafe, thereby constituting a correct reduction

(Lemma 4.3). Further, a Cache of polynomial size is sufficient

for query evaluation (Lemma 4.4).

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

488

PODC ’22, July 25–29, 2022, Salerno, Italy. Shankaranarayanan Krishna, Adwait Godbole, Roland Meyer, and Soham Chakraborty

Cache Datalog. A Cache is a set of ground atoms that is used

to control the inference process. In the presence of a Cache, the
semantics of Datalog is adapted by the following two rules.

Add: For an instantiated rule, the ground atom in the head can be

inferred and added to Cache only when all the ground atoms in

the body are in Cache.

Drop: Atoms in Cache can be dropped non-deterministically.

The standard semantics of Datalog can be seen in Cache Datalog
by monotonically adding all inferred atoms (starting with facts)

to the Cache and never dropping anything. To show the PSPACE
upper bound, we use a notion of inference that bounds the size of

the Cache. For a Cache Datalog program Prog and k ∈ N, we write
Prog ⊢k g to mean that ground atom g can be inferred from Prog
with a computation in which |Cache| ≤ k .

Lemma 4.2. Given Cache Datalog program Prog, ground atom g,
and bound k , in time quadratic in |Prog| + |д | + k we can construct a
linear Datalog program Prog′ so that Prog ⊢k g iff Prog′ ⊢ g.

4.1 Datalog Encoding
Theorem 3.4 tells us that safety verification under RA is equivalent

to safety verification in the simplified semantics. Safety verification

in the simplified semantics, in turn, can be reduced to the following

Message Generation (MG) problem.

Message Generation (MG):
Given system c and goal messagemsg# = (x∗, d∗, _), is
there a reachable configuration cfde = (mde, lcfmde)

with msg# ∈ mde
(for some vwde

)?

To see the connection between MG and safety verification, note

that we can replace each assert false statement in the program

by x∗ B d∗ for variable x∗ and value d∗ unused elsewhere. The

system is unsafe if and only if a goal messagemsg# = (x∗, d∗, vwde)

is generated for some vwde
.

While encoding into Datalog, we non-deterministically guess vwde
.

For this, we crucially show that there are only exponentially-many

choices of vwde
. Given c, msg#, our non-deterministic poly-time

procedure makeP satisfies the following.

Lemma 4.3. Given parametrized system c and goal message msg#,
Message Generation holds iff there is an execution of makeP that
generates a query instance (Prog, g) with Prog ⊢ g. The construction
of Prog and g is in (non-deterministic) time polynomial in |c|.

The procedure makeP generates one query instance (Prog, g)
per execution. Here, we give the intuition, the details ofmakeP can

be found in the full version [22]. Since the parameterized system

consists of n loop-free dis threads, each can execute only linearly-

many instructions in their size. The total number of instructions

executed (and so the number of timestamps used) by the dis threads
is thus polynomial in the combined size of the dis programs cidis. Let
this bound be T . Then we have the timestamps {0, 0+, · · · ,T ,T+},
and this number of timestamps forms the crux of the polynomial

bound in Lemma 4.3. Procedure makeP guesses the dis threads’
part of the computation when generating a query instance.

Program Prog uses four predicates. The environment message

predicate emp(x, d, vwde) represents an available env message on

variable x with value d and view vwde
. The environment thread

predicate etp(lc, rv, vwde) encodes the env thread configuration,

where lc is the control state, rv the register valuation, and vwde
the

thread view. We have similar message and thread predicates for the

dis threads. The distinguished message predicate dmp(x, d, vwde)

represents an available dis message. Additionally, for each dis
thread i , we have a distinguished thread predicate dtpi (lc, rv, vw

de)

that encodes the configuration of the thread disi .
As rules, we have the fact dmp(x, dinit, vwde

init) for each variable x

with dinit the initial value and vwde
init the initial view. We moreover

have the facts etp(λinit, rvinit, vwde
init) and dtpi (λinit, rvinit, vw

de
init)

that represent the initial states of the env resp. dis threads. We also

have rules corresponding to the env transitions and the guessed dis
thread run fragments. Finally, the query atom g is a ground atom

of the form emp or dmp capturing the goal message msg#. The
instances generated in the non-deterministic branches of makeP
differ only in the guessed dis run and in the atom g.

4.2 Cache Size
With the encoding at hand, the challenge is to establish a polynomial

bound on the cache size for the query instances generated bymakeP.
Let Q0 = |Dom| |Var| + |dis| where |dis| is the combined size of all

dis threads. A Cache of size O(Q2

0
) is sufficient to infer g.

Lemma 4.4. For each (Prog, g) generated by makeP, Prog ⊢ g if
and only if Prog ⊢k g with k ∈ O(Q2

0
).

To see that the above size of Cache is sufficient, we analyze the

structure of computations in the simplified semantics. The analysis

will reveal a dependency relation among the generated messages.

This dependency relation will give enough information to guide

the Datalog computation so as to use a small Cache.
Consider computation ρde ending in configuration last(ρde) =

(mde, lcfmde). For every message msgde in memory mde
, we use

genthread(msgde) for the first thread which added msgde to mde
.

(Recall that the simplified semantics admits the repeated insertion

of envmessages due to the reuse of timestamps fromN+). We define

depend(msgde) as the set of messages which genthread(msgde) has
read before generating the first instance of msgde. Further below,
we will also need the read-count rc(msgde,msg′) ∈ N, the number

of times genthread(msgde) reads msg′ ∈ depend(msgde) before
generating msgde.

Definition 1. The dependency graph of a computation ρde with
last(ρde) = (mde, lcfmde) is the directed graph Gρde = (V ,E) with

V = mde and E = depend, the vertices are the messages and we have
an edge (msgde

1
,msgde

2
) ∈ E if msgde

1
∈ depend(msgde

2
).

As depend(−) is based on the linear order of the computation,

the dependency graph is acyclic. We denote the sets of sink and

source vertices of G by sink(G) resp. source(G). A path in G is also

called a dependency sequence. The height of a vertex v is the length

of a longest path from a source vertex to v . The maximal height

over all vertices is height(G). See Figure 4 for an example.

Compact Computations. Unfortunately, dependency graphs may

contain exponentially many vertices (due to the views), and given

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

489

Parameterized Verification under Release Acquire is PSPACE-complete PODC ’22, July 25–29, 2022, Salerno, Italy.

th1 th2
r := y // 0

r := y // 1

x := 1

y := 2

r := x // 0

y := 1

r := x // 1

y := 2

Figure 4: Two possible dependency graphs for the code snippet. Both th1 and th2 are env threads. The color of each message
msg gives genthread(msg), with th1 being orange, th2 violet, and init gray. We denote the view as a vector tx ty . Since we only
consider the thread adding a message for the first time genthread(y, 2, 0+0+) can be either th1 (left graph) or th2 (right graph).

the PSPACE-hardness there is no way to reduce this to polynomial

size. Yet, there are two parameters that we can reduce, the fan-in of

each vertexv , the number of messages read by genthread(v) before
generating v , and and the height of the dependency graph. We call

a computation ρde compact if its dependency graph Gρde satisfies

the following two bounds. (1) Every message v depends on a small

number of other messages, |depend(v)| ≤ Q0. (2) The dependency

sequences are polynomially long, that is, height(Gρde) ≤ Q0. If a

vertex/messagemsg in the dependency graph has fan-in > Q0, then,

thanks to the simplified semantics, genthread(msg) can read from

an earlier message with the same variable/value pair. Likewise, if

the dependency sequence is longer than Q0, then it will contain

two messages with the same variable and value. The segment of

the sequence between these two can be truncated without affecting

the remainder of the computation. The following lemma says that

compact computations are sufficient:

Lemma 4.5. Any message that can be generated in the simplified
semantics can be generated by a compact computation.

InCacheDatalog, the inference of an atom g from a programProg
involves a sequence of applications of the Add (to Cache) and Drop
(from Cache) rules that ends with g being inferred. Such a sequence

for Prog ⊢ g corresponds to a run ρde under the simplified RA

semantics. The run ρde can be compacted to ρde
′
with Lemma 4.5.

From the dependency graph of ρde
′
we can read off an inference

strategy that keeps the Cache size polynomial in |Var|, |Dom|, and

|cdis |. The following lemma formalizes the argument and concludes

the proof of Lemma 4.4.

Lemma 4.6 (Datalog Inference Strategy). LetmakeP generate
the query instance (Prog, g). The inference for Prog ⊢ g implies the
existence of an execution ρde under the simplified semantics, which
can be compacted to ρde

′
. The computation ρde

′
can be mapped back

to a new inference sequence such that Prog ⊢k g for k ∈ O(Q2

0
).

4.3 Quantifying the number of env threads to
generate msg#

While parameterization is useful to model systems with an apriori

unknown number of components, for (non-parameterized) systems

with a large, but fixed number of components, parameterization

is sound but not complete. That is, a bug in the non-parameterized

system implies that it will be detected in the parameterized version

of the system, however, the converse is not necessarily true.

We now determine a concrete value at which parameterization

becomes complete. That is, if a non-parameterized system has at

least this number of env threads, then there is a bug in the non-

parameterized system iff there is a bug in the corresponding param-

eterized variant. In general, the bound can be doubly exponential

in the system parameters |Var|, |Dom|, |dis|. However, for certain
programs, it can be much lower, reducing the gap with which pa-

rameterization over-approximates a non-parameterized system.

Attributing costs to nodes. We attribute costs to nodes in the

dependency graph via the function cost : mde → N. Intuitively, the
cost of amessage corresponds to the number of env threads required
for generating the message. For an initial message, cost(msg) = 0.

For an env message,

cost(msg) = 1 +
∑

msg′∈mde↓env

rc(msg,msg′) · cost(msg′).

For a dis message,

cost(msg) =
∑

msg′∈mde↓env

rc(msg,msg′) · cost(msg′).

For a dependency graph G which generates the goal messagemsg#,
the cost of the graph is defined as cost(G) = cost(msg#).

Figure 5: Cost annotated dependency graph for the producer-
consumer example (z ∈ N, the cost of themsg# message is the
loop-bound for the consumer).

Consider the producer-consumer example in Figure 1. We are

interested the reachability of τ5. Figure 5 shows the dependency
graph with the costs added to the nodes. We have cost(G) = z,
the cost of the target message msg# = (y, 2) is the loop-iteration
count of the consumer. Note that we have modeled the consumer

as dis thread and the producers as env threads. The cost shows

that z-many env threads are sufficient to generate message msg#.
However, in reality, l env threads suffice, and hence the cost is an

over-approximate bound.

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

490

PODC ’22, July 25–29, 2022, Salerno, Italy. Shankaranarayanan Krishna, Adwait Godbole, Roland Meyer, and Soham Chakraborty

5 PSPACE-HARDNESS OF env(nocas, acyc)
We show that the semantic simplification we have given is tight,

and further simplification is not possible. Having shown that safety

verification of env(nocas) ∥ dis1(acyc) ∥ · · · ∥ disn (acyc) is in
PSPACE, we now give amatching lower bound. For the lower bound,

it suffices to consider the variant without dis threads and with only

loop-free env threads, env(nocas, acyc). Even more, the result refers

to Parameterized RA in its simplest form, called PureRA, in which

(1) registers are forbidden and (2) stores can only write value one

to a memory that is initially zero. PureRA eliminates thread-local

computations and lays bare the complexity inherent to reasoning

purely about the synchronization possible in RA. Suprisingly, the

problem is PSPACE-hard even for this restricted form. Note that

PSPACE-hardness in the presence of local registers is trivial, since

PSPACE-computations can be encoded with register valuations.

cenv = cAG ⊕ cSATC ⊕ c
FE[0] ⊕ · · · ⊕ c

FE[n−1] ⊕ cassert

cAG = pick(u0); pick(e1); pick(u1); · · · ; pick(un); s B 1

where pick(u) = (tu B 0) ⊕ (fu B 0)

cSATC = assume (s = 1); check(Φ);

((assume (tun = 0);an,1 B 1;)⊕

(assume (fun = 0);an,0 B 1))

c
FE[i] = assume (ai+1,0 = 1); assume (ai+1,1 = 1);

(assume (fei+1 = 0) ⊕ assume (tei+1 = 0));

((assume (tui = 0);ai,1 B 1)⊕

(assume (fui = 0);ai,0 B 1))

cassert = assume (a0,0 = 1); assume (a0,1 = 1); assert false

Figure 6: Program cenv executed by the env threads is a non-
deterministic choice between functions cAG, cSAT, cFE[i], and
cassert.

We prove the lower bound by a reduction from the canonical

PSPACE-complete problem, TQBF, described as follows. Given a

Quantified Boolean Formula

Ψ = ∀u0 ∃e1 ∀u1 · · · ∃en ∀un Φ(u0, e1, . . . ,un)

over variablesVars(Ψ) = {u0, . . . ,un , e1, . . . , en }, decide whetherΨ
is true. FormulaΨ hasn+1 universally andn existentially quantified
variables. Given a TQBF instance Ψ, we construct an instance of

the parametrized safety verification problem for PureRA consisting

of the program cenv (only env threads), such that cenv is unsafe

iff the TQBF instance is true. Assuming the TQBF instance is Ψ
from above, the program cenv consists of functions (sub-programs),

one of which may be executed non-deterministically. The task

of checking whether Ψ holds is distributed over the env threads
executing these functions. Each function has a particular role which

we now describe.

- cAG: The Assignment Guesser guesses a possible satisfying

assignment for Vars(Ψ).
- cSATC: The Satisfiability Checker checks satisfiability of Φ w.r.t.

an assignment guessed by cAG.

- c
FE[i]: The ∀∃ (ForallExists) Checker at level 0 ≤ i ≤ n − 1

verifies that the (i+1)th quantifier alternation ∀ui∃ei+1 is respected
by the guessed assignments. This proceeds in levels, where the

function c
FE[i+1] at level i + 1 triggers the function c

FE[i] at level i ,
till we have verified that all assignments satisfying Φ confirm the

truth of Ψ.
- cassert: The Assertion Checker reaches assert false when all

the previous functions act as intended, implying that the formula

was true.

Due to the parameterization, an arbitrary number of threads may

execute the different functions at the same time. However, there is

no interference between the threads, and there is a natural order

between the roles: cSATC requires cAG to function as intended, and

c
FE[i] requires cAG, cSATC, and c

FE[j] with n − 1 ≥ j > i .
We show a novel way to encode the guessed assignments to

the Boolean variables in the RA views: for each b ∈ Vars(Ψ), we
maintain shared variables tb , fb . A view vw encodes b as

(vw(tb) = 0 ⇐⇒ b = 1) ∧ (vw(fb) = 0 ⇐⇒ b = 0).

Then, by the RA semantics, the value of b is true if the init message

on tb is readable (recall that the init message is readable only if

the thread-local view on tb is 0). Finally, we need to check that

quantifier alternation is maintained. For all i ∈ [n . . . 1], a set of
threads checks that the alternation ∀ui−1∃ei is respected by the

guessed assignments. Then they pass on their assignments to the

checkers at level i − 1. This sets up a dependency structure (similar

to Section 4) so that a special message can be written iff Ψ is true.

Theorem 5.1. Parameterized verification for env(nocas, acyc) is
PSPACE-hard, even in PureRA.

6 CONCLUSION
Atomic compare-and-swap (CAS) operations are indispensible for

practical implementations of distributed protocols. At the same time,

they hinder verification efforts. Undecidability of safety verification

in the non-parameterized setting [1] and even in our loop-free

parameterized setting env(acyc) are a testament to this. We tried

to reconcile the two by studying the controlled use of CAS in

parameterized systems (CAS-free env threads, loop-free dis threads).
For such systems, we were able to simplify the RA semantics by

abstracting from the timestamps of env threads. The simplified

semantics is sound and complete for safety verification and leads to

a PSPACE-upper bound. We provide a matching PSPACE-hardness
result that gives an insight into the complexity inherent to the

synchronization capabilities of RA.

We concludewith interesting avenues for futurework. A problem

arising from this work is the decidability of CAS-free parameterized

systems env(nocas)| |dis1(nocas) ∥ · · · ∥ disn (nocas) which seems

to be as elusive as its non-parameterized twin dis1(nocas) ∥ · · · ∥
disn (nocas). We believe the ideas in this paper can be adapted to

causally consistent shared memory models [31] and transactional

programs [13] in the parameterized setting.

ACKNOWLEDGMENTS
This work was partly supported by SERB MATRICS grant

MTR/2019/000095.

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

491

Parameterized Verification under Release Acquire is PSPACE-complete PODC ’22, July 25–29, 2022, Salerno, Italy.

REFERENCES
[1] P. A. Abdulla, J. Arora, M. F. Atig, and S. N. Krishna. 2019. Verification of programs

under the release-acquire semantics. In PLDI. ACM, 1117–1132.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar,

and Prakash Saivasan. 2021. Deciding reachability under persistent x86-TSO.

Proc. ACM Program. Lang. 5, POPL (2021), 1–32. https://doi.org/10.1145/3434337

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong

Ngo. 2018. A Load-Buffer Semantics for Total Store Ordering. Log. Methods
Comput. Sci. 14, 1 (2018). https://doi.org/10.23638/LMCS-14(1:9)2018

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan. 2020. Parameter-

ized verification under TSO is PSPACE-complete. Proc. ACM Program. Lang. 4,
POPL (2020), 26:1–26:29. https://doi.org/10.1145/3371094

[5] Parosh Aziz Abdulla and Bengt Jonsson. 1993. Verifying Programswith Unreliable

Channels. In Proceedings of the Eighth Annual Symposium on Logic in Computer
Science (LICS ’93), Montreal, Canada, June 19-23, 1993. IEEE Computer Society,

160–170. https://doi.org/10.1109/LICS.1993.287591

[6] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W.

Hutto. 1995. Causal Memory: Definitions, Implementation, and Programming.

Distributed Comput. 9, 1 (1995), 37–49. https://doi.org/10.1007/BF01784241

[7] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-

elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/

2627752

[8] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-

elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2 (2014), 7:1–7:74.

[9] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal

Musuvathi. 2010. On the verification problem for weak memory models. In

Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V.

Hermenegildo and Jens Palsberg (Eds.). ACM, 7–18. https://doi.org/10.1145/

1706299.1706303

[10] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal

Musuvathi. 2012. What’s Decidable about Weak Memory Models?. In Program-
ming Languages and Systems - 21st European Symposium on Programming, ESOP
2012, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings (Lec-
ture Notes in Computer Science, Vol. 7211), Helmut Seidl (Ed.). Springer, 26–46.

https://doi.org/10.1007/978-3-642-28869-2_2

[11] Hagit Attiya and Sergio Rajsbaum. 2020. Indistinguishability. Commun. ACM 63,

5 (2020), 90–99. https://doi.org/10.1145/3376902

[12] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.

Mathematizing C++ Concurrency. SIGPLAN Not. 46, 1 (Jan. 2011), 55–66. https:

//doi.org/10.1145/1925844.1926394

[13] Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. 2019. Robustness

Against Transactional Causal Consistency. In 30th International Conference on
Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Nether-
lands. 30:1–30:18. https://doi.org/10.4230/LIPIcs.CONCUR.2019.30

[14] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. 2015.

Horn clause solvers for program verification. In Fields of Logic and Computation
II. Springer, 24–51.

[15] Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko. 2013. On solving

universally quantified Horn clauses. In SAS (LNCS, Vol. 7935). Springer, Springer,
105–125.

[16] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut

Veith, and Josef Widder. 2016. Decidability in Parameterized Verification. SIGACT
News 47, 2 (2016), 53–64. https://doi.org/10.1145/2951860.2951873

[17] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017. On

verifying causal consistency. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 626–638. http:

//dl.acm.org/citation.cfm?id=3009888

[18] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1990. Syntax and semantics of

datalog. In Logic Programming and Databases. Springer, 77–93.
[19] EdmundM. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded

Model Checking Using Satisfiability Solving. Formal Methods Syst. Des. 19, 1
(2001), 7–34.

[20] Javier Esparza, Pierre Ganty, and Rupak Majumdar. 2016. Parameterized Verifica-

tion of Asynchronous Shared-Memory Systems. J. ACM 63, 1 (2016), 10:1–10:48.

https://doi.org/10.1145/2842603

[21] Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transition systems

everywhere! Theor. Comput. Sci. 256, 1-2 (2001), 63–92. https://doi.org/10.1016/

S0304-3975(00)00102-X

[22] Adwait Godbole, Shankara Narayanan Krishna, and Roland Meyer. 2021. Safety

Verification of Parameterized Systems under Release-Acquire. https://doi.org/

10.48550/ARXIV.2101.12123

[23] Georg Gottlob and Christos Papadimitriou. 2003. On the complexity of single-rule

datalog queries. Information and Computation 183, 1 (2003), 104–122.

[24] Mengda He, Viktor Vafeiadis, Shengchao Qin, and João F. Ferreira. 2018. GPS

$$+$$ + : Reasoning About Fences and Relaxed Atomics. Int. J. Parallel Program.
46, 6 (2018), 1157–1183.

[25] Neil Immerman. 2012. Descriptive complexity. Springer Science & Business

Media.

[26] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor

Vafeiadis. 2017. Strong Logic for Weak Memory: Reasoning About Release-

Acquire Consistency in Iris. In 31st European Conference on Object-Oriented Pro-
gramming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74), Peter
Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 17:1–17:29.

https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

[27] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.

2017. A promising semantics for relaxed-memory concurrency. In POPL. ACM,

175–189.

[28] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.

2018. Effective stateless model checking for C/C++ concurrency. Proc. ACM
Program. Lang. 2, POPL (2018), 17:1–17:32. https://doi.org/10.1145/3158105

[29] Christos Kozyrakis. [n.d.]. Phoenix 2.0 Benchmarks. https://github.com/kozyraki/

phoenix.

[30] Ori Lahav. 2019. Verification under Causally Consistent Shared Memory. ACM
SIGLOG News 6, 2 (apr 2019), 43–56. https://doi.org/10.1145/3326938.3326942

[31] Ori Lahav and Udi Boker. 2020. Decidable verification under a causally consistent

shared memory. In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 211–226.

https://doi.org/10.1145/3385412.3385966

[32] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire

consistency. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 649–662.

https://doi.org/10.1145/2837614.2837643

[33] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire

consistency. In POPL. ACM, 649–662.

[34] Ori Lahav and RoyMargalit. 2019. Robustness against Release/Acquire Semantics.

In PLDI 2019. 126âĂŞ141. https://doi.org/10.1145/3314221.3314604

[35] Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory

Models. In ICALP (LNCS, Vol. 9135). Springer, 311–323.
[36] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.

2011. Don’t settle for eventual: scalable causal consistency for wide-area storage

with COPS.. In SOSP, Ted Wobber and Peter Druschel (Eds.). ACM, 401–416.

http://dblp.uni-trier.de/db/conf/sosp/sosp2011.html#LloydFKA11

[37] Brian Norris. [n.d.]. Model Checker Benchmarks. https://github.com/

computersforpeace/model-checker-benchmarks.

[38] Anton Podkopaev, Ilya Sergey, and Aleksandar Nanevski. 2016. Operational

Aspects of C/C++ Concurrency. CoRR abs/1606.01400 (2016). arXiv:1606.01400

http://arxiv.org/abs/1606.01400

[39] Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2018. On Parallel Snapshot Isola-

tion and Release/Acquire Consistency. In Programming Languages and Systems
- 27th European Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thes-
saloniki, Greece, April 14-20, 2018, Proceedings. 940–967. https://doi.org/10.1007/

978-3-319-89884-1_33

[40] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: navigating weak

memory with ghosts, protocols, and separation. In OOPSLA. ACM, 691–707.

[41] Viktor Vafeiadis and ChinmayNarayan. 2013. Relaxed separation logic: a program

logic for C11 concurrency. In OOPSLA. ACM, 867–884.

[42] M Vardi. 1982. The complexity of relational database queries. In Proc. STOC.
137–146.

Session 10 PODC ’22, July 25–29, 2022, Salerno, Italy

492

https://doi.org/10.1145/3434337
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1145/3371094
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1145/3376902
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.4230/LIPIcs.CONCUR.2019.30
https://doi.org/10.1145/2951860.2951873
http://dl.acm.org/citation.cfm?id=3009888
http://dl.acm.org/citation.cfm?id=3009888
https://doi.org/10.1145/2842603
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.48550/ARXIV.2101.12123
https://doi.org/10.48550/ARXIV.2101.12123
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3158105
https://github.com/kozyraki/phoenix
https://github.com/kozyraki/phoenix
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
http://dblp.uni-trier.de/db/conf/sosp/sosp2011.html#LloydFKA11
https://github.com/computersforpeace/model-checker-benchmarks
https://github.com/computersforpeace/model-checker-benchmarks
http://arxiv.org/abs/1606.01400
http://arxiv.org/abs/1606.01400
https://doi.org/10.1007/978-3-319-89884-1_33
https://doi.org/10.1007/978-3-319-89884-1_33

	Abstract
	1 Introduction
	2 The Release-Acquire Semantics
	3 A Simplified Semantics
	3.1 Timestamp Lifting
	3.2 Superposition
	3.3 Infinite Supply Lemma
	3.4 Abstracting the Timestamps

	4 PSPACE Upper Bound for Safety Verification
	4.1 Datalog Encoding
	4.2 Cache Size
	4.3 Quantifying the number of redenv threads to generate msg#

	5 PSPACE-hardness of redenv(nocas, acyc)
	6 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 41.65, 717.96 Width 527.56 Height 17.35 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 2

 CurrentAVDoc

 41.6491 717.9572 527.5551 17.3538

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 10
 11
 10
 11

 1

 HistoryList_V1
 qi2base

