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Abstract 

In the past decade an increase in research regarding stochasticity and probability in traffic modelling 

has occurred. The realisation has grown that simple presumptions and basic stochastic elements are 

insufficient to give accurate modelling results in many cases.  This paper puts forward a strong 

argument for the further development and application of probabilistic models and argues that a 

realisation must arise of the detrimental effects of blindly applying non-probabilistic models to traffic 

where probability is rife.  This is performed by the demonstration that deterministic and simple 

stochastic models will, in many cases, produce substantially biased results where variability is 

present in traffic. Prior to this demonstration, recent developments in probabilistic modelling are 

discussed.  

While the case for probabilistic modelling is strong in theory, the application of such modelling 

approaches is only possible with sufficiently developed models. However there are still certain 

challenges to be addressed in probabilistic modelling before a widespread implementation is likely. 

Remaining challenges for probabilistic approaches are therefore discussed and it is shown that 

computational efficiency, correlations between variables, and data gathering and processing all 

remain difficulties that have yet to be fully overcome.  

1. Introduction 
Since traffic modelling became a mainstream area of scientific research halfway through the last 

century, continuous developments have taken place in order to improve performance and eradicate 

shortcomings of models. Since the turn of the century an increase in research regarding stochasticity 

and probability in traffic modelling has occurred. The realisation that simple presumptions and basic 

stochastic elements are insufficient to give accurate modelling results has grown.  Tampere & Viti [1] 

remarked on this and included questions relating the reliability of dynamic modelling and the lack of 

most current models to properly consider stochastic elements.  

 

Van Lint et al [2] experimentally demonstrated the importance of not ignoring variations in traffic by 

showing biases in results that occurred by not considering stochastic variations. In other recent 

works, Sumalee et al [3], Jabari & Liu [4] and Szeto et al [5], among others, expanded on initial 

contributions from Chen et al [6], Clark & Watling [7], Boel & Mihaylova [8] and others to incorporate 

probability in models. Many of these contributions propose elaborate analytical solutions for the 

application of probability in modelling. However, most remain incomplete from the point of view of 

practical widespread implementation. Tampere & Viti [1] and Jabari & Liu [4] also argue that 

randomness is often applied in an imperfect and incomplete fashion. This may be through merely 

adding stochastic ‘noise’ or presuming an inaccurate distribution, for example.  For many of the 

prosed models this remains the case, which can lead to the misrepresentation of reality.  

 

In this paper a concise review of the current state of affairs in the area of probabilistic and stochastic 

modelling is given, as well as their shortcomings of these models (section 2). The case for the 

necessity of probabilistic modelling under certain conditions is argued, and demonstrations are given 
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and discussed for two cases in which non-stochastic deterministic approaches are shown to be 

inferior compared to a probabilistic approach (section 3). Challenges for further future development 

of probabilistic models are also discussed (section 4). 

2. State-of-art on probability modelling  
In this section a short description is given of both traffic modelling and, more specifically, stochastic 

and probabilistic modelling in general. The distinction made between probabilistic and stochastic is 

given, and is followed by an overview of the latest developments in probabilistic traffic modelling 

along with a discussion of each type.   

2.1 Traffic modelling in general 

Various types of traffic models exist, each with their specific purposes and applications. A well 

accepted differentiation is based on the level of detail and differentiates between macroscopic, 

mesoscopic and microscopic models [9]. Another categorisation focuses on the deterministic level of 

the model. This indicates the extent to which a model incorporates variation in its calculations and 

distinguishes between deterministic and stochastic models [9]. Within these categories further 

differentiation can be made, also between the categories further differentiation is possible. In this 

paper the main focus will be on probabilistic models, which falls in the category of stochastic models. 

And while microscopic models are also mentioned, the focus will be on macroscopic probabilistic 

models.  

 

Macroscopic traffic models do not consider individual vehicles, but rather the collective behaviour of 

vehicles and are therefore more readily applied to larger networks. In essence the vast majority of 

macroscopic traffic models are deterministic. Deterministic traffic models presume that no stochastic 

variability is present in traffic, while stochastic traffic models do presume certain levels of variations. 

A distinction in macroscopic models is generally made between first order models and higher order 

models. Lighthill and Whitham [10] were among the first to propose a first order approach based on 

fluid dynamics from the field of continuum mechanics. This group of models makes use of the law of 

conservation, combined with a fundamental relation between the main traffic quantities, density, 

volume and speed, and makes use of the numerical Godunov scheme to solve the model equations. 

Later Daganzo proposed an extention to the LWR-model in the form of the Cell Transmission Model 

(CTM) [11, 12]. In this work shockwaves are automatically incorporated in the applicable equations, 

which avoid the necessity of considering shockwaves as an external case.  

Higher order traffic models make use of multiple differential equations to describe traffic flow. One 

of the first higher order models to be proposed was by Payne [13] in which the LWR-model was 

extended with a dynamic speed equation. This addition solved a number of difficulties with the 

original first order models, which occurred at the boundaries of traffic states. Such a difficulty is the 

inability to create start-stop waves, as a first order model presumes instantaneous speed correction 

from vehicles. Despite the improvements, higher order models received a fair amount of criticism, 

partly due to the explicit level of complexity in solving them. And while methods have been 

developed to perform the task of solving the equations [14], the greater level of complexity makes 

completely understanding the mathematical properties of these models a rigorous task [15], which 

can lead to instability in their implementation [12]. However further developments by Aw & Rascle 

[16] and Zhang [17] eradicated many deficiencies, such as the violation of the anisotropic character 

of traffic [18], and opened the door for further developments. As the majority of applied 

macroscopic traffic models make use of first order theory, or an adaptation of, and these models are 

easier to understand our focus will lie with the first order approaches.   

 

Microscopic traffic models consider the individual vehicles and their interaction with the surrounding 

infrastructure and other vehicles. Often they will make use of longitudinal and latitudinal rules in 

these interactions. The rules often include a certain degree of variability corresponding to the 

variability that is seen between different drivers in different vehicles. Even for a single driver in the 
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same vehicle, actions may vary from situation to situation as in reality. Modelling individual vehicles 

is generally performed based on the principle of car-following [9, 19]. The vast majority of 

microscopic models make use of equations related to the distance, speed and acceleration of 

predecessors. Hoogendoorn [9] defined three main types of car-following model: safe-distance, 

stimulus-response, and psycho-spacing car-following models. Of these, the psycho-spacing variant is 

most the commonly applied. This was first introduced by Wiedemann [20], in which a distinction is 

made between driving behaviour under unconfined conditions and those under confined conditions. 

This led to a much greater reality in the manner that vehicles related to other vehicles at various 

downstream distances. As with many car-following models since, Wiedemann made use of lane-

changing and overtaking actions in his model, based partly on gap acceptance. It has become 

common place in micro-simulation that both car-following parameters as well as gap acceptance 

parameters contain stochastic elements [21, 22]. These variations are aimed to correspond to the 

differences between drivers, and may be applied as simple random stochastics or from a validated 

distribution of probabilities. In the rest of this paper, the focus will predominately lie with 

macroscopic models, rather than microscopic models.  

2.2 Stochastic and probabilistic models 

Both macroscopic and microscopic models can be stochastic. Application of stochasticity in traffic 

models entails the inclusion of variability in the manner in which traffic is modelled. Contrary to 

deterministic models, in which one set situation is modelled, variables in stochastic models may vary 

due to stochastic effects. Although this adds complexity, it represents the real world to a better 

extent. In this research we have chosen to explicitly make a distinction between stochastic models in 

general and probabilistic models, as the terms stochastic and probabilistic are often used identically, 

while they are not synonymous [23]. Stochastic is defined as the inclusion of variability, while 

probabilistic is defined as the occurrence of deterministic states with given probabilities. To this 

extent, we define probabilistic models as a subcategory of stochastic models in which the chance of 

certain values is the result of a probability. This probability is directly derived from proven theory 

and/or empirical observation of the considered traffic system. An empirical distribution of traffic 

demand in a peak period derived from years of data is an example of probabilistic random variable, 

while a Gaussian distribution closely representing the traffic demand in a peak period would be a 

stochastic random variable, according to the definition. 

 

In macroscopic models, stochasticity is often incorporated by means of traffic assignment or route 

choice. In deterministic assignment, vehicles are designated a route depending on the shortest cost, 

often the travel time. In the stochastic traffic assignment certain stochastic variation is added so that 

traffic makes use of multiple routes according to a variability cost function. In these models, traffic 

propagation is not considered stochastically. Including ‘complete’ stochasticity in macroscopic 

models, in which a wide range of variables are varied, is generally performed in two ways: by means 

of repetitive simulations, and secondly by including variation in the model core. Both of these 

methods are now described and discussed.  

2.3 Probabilistic modelling through repetitive simulation 

The method of repetitive simulations has been widely applied in various sciences to help describe 

probabilistic and stochastic systems [2, 6, 24]. The method, commonly known as Monte Carlo 

simulation,  presumes predefined probabilities for each of the input variables, indicating the 

probability of occurrence and the corresponding value [25]. From each variable, random values are 

sampled which are applied simultaneously to model for all the input variables. The probability of 

certain values occurring is directly related to the predefined probabilities. The outcome of the 

simulation is recorded as a single entry of the results’ distribution. By repeating this process many 

times with different input samples, a complete distribution of the results is constructed.  

The application of Monte Carlo simulation has been widely applied, mainly due to its relative 

simplicity and effectiveness. However, the method has its drawbacks. Main concerns in traffic 
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modelling in the past have been the computational load of the method [3, 6, 24] and the presence of 

correlation between input variables. As one may imagine, performing hundreds or even thousands of 

simulations is time consuming, but will often be necessary to achieve a required level of accuracy, 

especially when large numbers of input variables are applied.  

Solutions for these difficulties have been offered in various forms. The use of intelligent sampling 

methods to reduce the variance from sampling and therefore the required number of simulations 

has been applied [2, 26, 27]. This also helps towards reducing possible sampling errors, which may 

cause discrepancies in results [3]. However, it has been shown that despite low initial biases for this 

solution, an amplification may occur leading to high standard error in the final results [7]. A more 

brute force solution to computational load lies in ever more powerful computers, which have the 

capability of performing many more calculations at an ever greater pace [6].  

Correlation between input variables may be considered prior to simulation at the sampling stage [6]. 

Variables with dependencies may have probabilities which rely on the values sampled from other 

variables. In this way correlation between two or more variables is included and allows for a realistic 

simulation. However calculating non-bias outcomes in situations in which correlations are more 

complex and, furthermore, have dependencies on variables in the model, becomes much more 

difficult [24]. In many approaches the extent of bias is presumed to be limited and therefore little 

attention is spent on this difficulty.  

2.4 Probabilistic modelling through probability in the model core 

Modelling probability in the core of traffic models considers multiple stochastic factors in model 

equations and therefore eradicates the need for multiple simulations. Therefore the method is 

sometimes also known as the one-shot method.  A number of different approaches have been 

proposed in which variability is incorporated in the core of a traffic model. Distinction may be made 

between those methods that propose an analytical or numerical approach extension to traffic 

propagation in which stochastic variables are included, and those which consider stochastic effects 

by bringing stochasticity into the fundamental relations.  

An analytical approach to probability in the model core, or simply one shot, probabilistic traffic 

modelling has proven an extremely difficult undertaking. Clark & Watling [7] proposed a method for 

travel time reliability based on day-to-day variations in the travel demand matrix. Their framework 

computes a total travel time distribution based on the multivariate moments of a link flow vector. 

This was successfully demonstrated, however the method only considers a single random variable, 

namely the traffic demand, and therefore has limited difficulties with correlation. Others propose a 

more numerical approach to analytically incorporating stochasticity in the model core. Recent 

developments include Sumalee et al [3], who proposed a stochastic cell transmission model (S-CTM) 

which makes use of fives operational modes depending on the states of traffic flow. Each mode 

incorporates a set of probabilistic conditions to describe probability in each mode. Others who 

proposed using multiple functions as dictated by the traffic state, include Munoz et al [28] and Sun 

[29]. A main reason for considering multiple traffic states is the avoidance of nonlinearity in the 

fundamental relation, which is difficult to quantify otherwise. More recently Jabari and Liu [4] argued 

that presuming non-linearity, while being mathematically beneficial, may lead to inconsistency with 

the original deterministic dynamics. Therefore Jabari and Liu [4] propose to include stochasticity as a 

function of the uncertainty in the driver gap choice, represented by the random vehicle headway. In 

doing so, they argue that non-linearity is avoided in continuous time as all traffic dynamics may be 

derived to the longitudinal car following behaviour. Boel and Mihaylova [8] similarly proposed an 

extension to the CTM with stochastic elements. Rather than reconstructing the CTM as piece-wise 

structure based on traffic states, they defined the sending and receiving functions from the CTM as 

random variables in which the dynamics of the average speed in each cell is stochastically varied. The 

purpose was to incorporate stochasticity in the heart of the model at link level, which may propagate 

through an entire network through cell interaction. However, as their approach only considers a 

single stochastic scenario at a time, repetitive simulations are required to compose a probability 

distribution of the outcomes. 
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Stochasticity can also be included in (macroscopic) traffic models by means of a stochastic 

fundamental diagram. Li et al [30] make a strong argument that a simple, but effective manner of 

probabilistic modelling is to make use of a probabilistic fundamental diagram. Such a diagram is 

constructed through a flux function obtained from random elements observed from speed-density 

data. Kim and Zhang [31] also previously described stochasticity in the fundamental diagram by 

defining the growth and delay of perturbations from random fluctuations in both the gap time and 

transitions between traffic states. In their work they closely examined fluctuations in car following to 

derive their defined gap time.  

 

Advances in approaches bringing probability to the core of a model have generally been performed 

as extensions of existing methods. This has the obvious advantage that sound theory may be further 

elaborated on. The extension of the cell transmission model (CTM) is therefore a logical one. While 

disadvantages of applying such non-linear approaches are brought forward [4], the question remains 

to which extent this has a detrimental effect on the outcomes. Jabri and Liu [4] argue that most 

models are nonlinear and therefore handle traffic propagation inconsistently, and that stochastic 

variables are often applied as mere white noise. While possibly guaranteeing consistency when 

avoiding nonlinearity, it must be realised that random stochastics in traffic will not adhere to set 

analytical formulations, as they result from human behaviour. Therefore marginal errors, if any, may 

not be of great significance, and we must remember that a model is merely a representation of 

reality and not visa versa.  

The majority of the presented methods, while applying stochasticity, do this based on presumptions 

of random variables. In many cases, certain random distributions may be acceptable, however many 

random variables do not align to a set form when empirically challenged. To this degree the random 

variables are not pure probabilistic, according to the definition used in this paper
1
, as the random 

variables do not always accurately correspond to real-life probabilities. A further major difficulty that 

is only partially addressed is that of dependence between random variables [2, 3, 6]. These 

correlations are often presumed non-existent for the ease of modelling [3], or are simplified by 

means of presumptions or transformations [4, 7]. While some research does consider correlations 

between random variables, these models often are restricted to less elaborate modelling 

approaches. 

 

Some advances have been recently made in stochastic core modelling, as shown. The majority of 

these models are developed for very specific purposes with possibilities for larger scale 

implementation. However the, sometimes complex, formulations may provide difficulty for 

implementation of methods in a complete macroscopic or mesoscopic framework. To the knowledge 

of the authors, no model has yet been developed that is capable of matching the accuracies of the 

computationally heavy repetitive simulation through a one-shot approach on a comprehensive 

network.  

3. Application area of probabilistic models  
Often there is a specific and sometimes urgent need to use probabilistic models. This is argued in 

many of the papers presented here thus far. The application of simple stochastic or deterministic 

models in some cases may be unintentionally deceiving policy-makers with biased results. However, 

it is not always apparent when probabilistic models should be applied and what the extent is of 

errors made by applying non-probabilistic or non-stochastic models. 

In the following paragraph, two experimental cases are given to demonstrate area’s in which 

deterministic modelling has shortcomings and a probabilistic or stochastic approach is required. 

Thereafter the application horizon for the probabilistic approach is discussed.  

                                                           
1
 Probabilistic: The occurrence of deterministic states with given probabilities 
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3.1 Experimental demonstrations 

To demonstrate potential situations in which modelling, without consideration of variation in traffic 

quantities, can lead to biased results, two small scale experimental cases are considered. These cases 

each have a focus on a specific contribution of probabilistic modelling. The goal of the experiments is 

to show that considering variations as probabilities gives significantly different results than by 

considering a single deterministic run. In each case, the capacity of the road sections is varied 

according to a probable real-life distribution. Variations in capacity are applied to all road sections as 

a blanket factor, which may represent the reduction in operational capacity from i.e. weather 

conditions, luminance conditions, etc. The applied distributions are logarithm functions and are 

shown in Figure 1. To avoid the necessity to derive correlation between capacity and demand 

variation, only the capacity is varied, which is more than sufficient to give an indication of the effects 

of modelling traffic variability. In each case, use is made of dynamic macroscopic traffic assignment 

model INDY, which is based on the link transmission model, as developed by Yperman [32]. The 

model is applied to a section of the Amsterdam network, as shown in figure 2.  

 

  
Fig.1 Capacity factor functions for model input: case 1 (left) and case 2 (right) 

 

 
Fig.2 Network used for the experimental cases in INDY, representing the south ring of Amsterdam 

 

The outcomes of the experiments are analysed using the total experienced delay on the entire 

network compared to free-flow conditions, and are expressed in lost vehicle hours. For case 1, the 

averaged travel time over route AB (see Fig. 2) are also analysed. Other result indicators may also be 

used, such as the travel over other specified trajectories or the average network speed, among 

others. For the demonstration here, it is not of great importance which is chosen, merely that the 

network can be evaluated. The mean average and the median of the distributed results are 
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compared with that of a single model run for the median situation, which represents a deterministic 

model run. 

In general, the total experienced delay Tlost is defined as: 
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Where  veh  = vehicles 

  ttscen.veh  = travel time in the scenario 

  ttff.veh  = travel time in free flow 

 

In the macroscopic model, where vehicles are not modelled individually, the total experienced delay 

Tlost is calculated by: 
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(2) 

 

Where  t = time 

  qlink.t = traffic flow on link at time t 

  llink = length of link 

  vlink.t  = cell speed on link at time t 

  vff.link  = cell speed on link in free-flow 

 

The averaged travel time over route AB is the average of all travel times during the simulation on the 

route, and is defined as: 
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(3) 

 

Where  TTAB = travel time between origin A and destination B 

  llinkAB = length of a link, situated between origin A and destination B 

  vlinkAB.t  = cell speed on link at time t 

  n = number of time steps 

   

Case setups 
In the first experimental case a near-critical level of traffic flow is present on the network. This could 

represent a situation in a busy peak hour period on a well-designed network which nicely meets the 

extreme level of demand. In the reference scenario, the capacities are set to the median value of all 

possible capacity values corresponding to the capacity distribution; this is the ‘average’ situation. The 

stochastic scenario takes a sample from the capacity distribution (Fig. 3a) and applies these values to 

the network. This is iterated for 40 simulations and is performed for Latin hypercube and systematic 

sampling, to verify that the sampling method is not leading. Both systematic and Latin hypercube 

sampling are both advanced sampling methods that systematically sample from ordered sub-

selections. For more information on these methods see [33, 34]. These methods are chosen, as they 

represent the input distributions in the outcomes much better than for simple random sampling for a 

low number of samples [33-35]. 

The second experimental case considers the event that the variability of the capacity is extensive. 

This may be the case in a period in which extreme weather is present in varying severity over an 
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extended period of time. The capacity distribution as in figure 3b is applied, which shows a greater 

variation in capacity value compared to case 1. Again for the reference scenario, the capacities are 

set to the median value of the all possible capacity values corresponding to the capacity distribution. 

The stochastic scenario takes a sample from the capacity distribution and applies it to the network, 

which is repeated for 40 iterations. This is also performed for Latin hypercube and systematic 

sampling. 

Results of experimental cases 

The results from the experimental cases are shown in the form of histograms, as well as the 

numerical values for each sampling method. The outcome of the median input value, which is used 

to represent the deterministic case, is also given.  

Case 1 

 

 
Fig.3 Network delay for case 1. Sampled as systematic (a-left) and as Latin hypercube (b-right) sampling 

 

 

Sampling method Median Network delay 

(vehicle hours) 

Average Network delay 

(vehicle hours) 

Latin Hypercube 12164 17990 

Systematic 12166 17986 

Median input 9113 9113 

 

Table 1 Network delay of case 1 in lost vehicle hours 

 

 
Fig.4 Averaged travel times on route AB (see fig. X) for case 1. Sampled as systematic (left) and as Latin 

hypercube (right) sampling 
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Sampling method Median Travel times 

(minutes) 

Average Travel times 

(minutes) 

Latin Hypercube 20.23 23.98 

Systematic 20.23 23.95 

Median input 18.16 18.16 

 

Table 2 Averages travel times for case 1 on route AB (see fig. X) 

 

Case 2 

 

  
Fig.5 Network delay of case 2. Sampled as systematic (left) and as Latin hypercube (right) sampling 

 

 

Sampling method Median Network delay 

(vehicle hours) 

Average Network delay 

(vehicle hours) 

Latin Hypercube 12136 17845 

Systematic 12164 18481 

Median input 12359 12359 

 

Table 3 Network delay of case 2 in lost vehicle hours 

 

The results of case 1 show that, depending on the sampled capacity value, a skewed distribution is 

produced with an average of a little under 18000 lost vehicle hours in the network (Fig. 3 and Table 

1). This is considerably higher than the deterministic situation, modelled with the input median, 

which produced a little over 9000 lost vehicle hours. In the probabilistic case, the near-critical level of 

traffic flow on capacity will be breached in many cases in which the capacity is marginally below the 

critical level of traffic flow. And while this may not happen in the majority of cases, when it does, 

widespread congestion can occur in the network and a higher number of lost vehicle hours are 

registered. The average capacity remains above that of the critical traffic demand.  Because the 

‘average’ situation, as modelled in a deterministic approach, does not trigger widespread congestion, 

the number of lost vehicle hours is significantly lower which gives a misleading outcome. When 

considering the travel times over route AB, a similar outcome is obtained (Fig. 4 and Table 2). The 

deterministic value (18.2 minutes) is set very close to the left side of the distribution, while travel 

times well above these 18 minutes are recorded in many cases.   

The results of case 2 show similar distributions to that of the first case. The average of the repetitive 

simulations lies just over 18000 lost vehicle hours, while the deterministic run produces just over 
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12000 lost vehicles hours (Fig. 5 and Table 3). For this experiment a larger variation is applied to the 

input capacity variable. This results in a slightly larger spread of lost vehicle hours for the probabilistic 

approach. The deterministic approach also shows a greater number of lost vehicle hours due to a 

greater average capacity drop in the input, which allows the traffic demand to exceed capacity to a 

greater extent. As capacity in this case is low enough to become critical, the difference between the 

probabilistic and deterministic outcomes is smaller, while the average probabilistic outcomes are 

only slightly higher for case 2 than in case 1. This further show the sensitivity of the deterministic 

approach to small changes in the input, while these are easily represented by the probabilistic 

approach. 

By considering a complete distribution of probable input values, a complete distribution of outcomes 

can be considered for the probabilistic approach. In the model, a small deterioration in road capacity 

has an amplified effect on the experienced traffic delay, a characteristic that is not picked up by the 

deterministic approach.  We have therefore demonstrated a major deficiency of deterministic and 

simple stochastic models. The inability to consider anything other than an average situation and the 

sensitively to variations in ‘real’  input variables, by presuming single values rather than distributions, 

leads to a considerable chance of model results giving unreliable and biased outcomes. 

3.2 Application horizon 

While the need for a greater element of probability and consideration of variability has been shown, 

this does not apply for all applications in which traffic models are required. In many cases 

deterministic models will work just as well. It is therefore necessary to evaluate under which 

conditions variability should be considered, while considering potential drawbacks of including 

variation in traffic
2
.  

 

In general the main advantages of using deterministic models are the relatively short calculation time 

and the limited amount of input data required. The advantages of using probabilistic models are an 

increased accuracy with consideration of numerous situations, as demonstrated in the experimental 

cases, and the possibility of giving results with a reliability score. It is easy to see that a probabilistic 

model will always be preferred if it can be just as easily applied as a deterministic model, however 

this is not the case. It is therefore necessary to review the goals and requirements of a model analysis 

before performing calculations. This is a step that is too often omitted in practice, mainly due to 

practical issues or understandable unawareness from the viewpoint of the user. Considering the 

aforementioned advantages of the models, a concise overview of conditions under which both model 

types should be used, is given in Table 4. 

 

Probabilistic modelling Deterministic modelling 

Applicable for… Applicable for… 

Large variation in input variables Limited variation in input variables 

Distribution of input variable is reliable and can 

be easily determined 

Distribution is unreliable and cannot be easily 

determined 

Variation in input variables has an amplified 

effect on model outcome 

Variation in input variables has a limited or linear 

effect on model outcome 

Congested network with high congestion 

volatility 

Uncongested network or congested with low 

congestion volatility 

Comprehensive overview  of network 

performance 

General indication of network performance 

Table 4 Application horizon for probabilistic models versus deterministic models. 

 

                                                           
2
 For deterministic, one may also read deterministic and simple stochastic, and for probabilistic, one also may 

read probabilistic and fully stochastic. 
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Variations in the input variables lead to a primary source of variation in the model results. When 

these variations are relatively large, the results from model runs will also show greater variations. 

When the level of variation is small, there is no need to apply a probabilistic approach and a 

deterministic approach suffices. The same is valid when the variation in input variables has a direct 

linear correlation with the outcome of a model, as in both cases a similar ‘average’ situation will 

result from both a distributed input and a mean or median input. In an uncongested network this will 

often be the case, as traffic can propagate at (near) desired speeds without too much disruption, 

resulting in a stable model output. Furthermore, it goes almost without saying that when probability 

distributions or functions cannot be accurately constructed, one should apply a known variable in 

deterministic model rather than applying inaccurate presumptions of a distribution function. Finally 

the main application of probabilistic modelling should be to give an accurate and comprehensive 

overview of traffic on network under a wide variety of conditions. If one is merely interested in a 

general indication of network performance then a deterministic model again suffices.  

4. Challenges for further development 
Though research on pure probabilistic modelling is gaining momentum, a number of significant 

challenges remain for the further development of probabilistic macroscopic modelling. And while 

many of these challenges have been addressed individually or in part in research, a further challenge 

remains in bringing each part together to form a complete and operational probabilistic model. The 

main challenges discussed here are: 

1. Computational efficiency 

2. Correlation between multiple variables 

3. Data gathering and processing (as input and for calibration) 

We might add a fourth in the form of the implementation, however this has already been discussed 

in part in the previous section, and does not explicitly affect the core workings of the model. 

Therefore we limit ourselves to the first three. 

4.1 Computational efficiency  

Consideration of computational efficiency applies to the computational load of a model on the 

applied hardware, but also the speed at which calculations can be made as a consequence of the 

applied calculations. Macroscopic models in their application are almost always applied to larger 

networks and therefore demand computational power, which is severely compromised by including 

probability. The computational load of models in general has been seen as a problem in the past [3, 

6, 24] However nowadays this problem is diminishing with the increase in computational power of 

hardware [24]. Nevertheless the possibilities of increased computational power seem to always be 

tested to the limit as advancement of modelling techniques continually demand greater 

computational power [36]. For both probabilistic methods mentioned in this paper: repetitive 

simulations and one-shot analytical solutions, there are difficulties relating to scientific advancement 

in terms of the computational efficiency. 

Repetitive, or rather Monte Carlo, simulation techniques have applied greater computing power to 

tackle the lack of applied variables and the complexity of the variables functions [24].  Greater 

numbers of random variables are considered in the input, and model, in an attempt to describe the 

traffic system to a more realistic extent. This however means that correlation between considered 

variables becomes of greater importance as the effect of correlation becomes greater as one 

considers larger numbers of dependant events. As described in the following paragraph, determining 

correlation functions is hard enough, however calculating them also leads to a greater demand of 

hardware resources. 

The analytical approach to probabilistic modelling may even hold a greater challenge to 

computational possibilities. Even now they  can still be time-consuming due to multiple intricate 

equations that need to be solved [3].  As solutions for probabilistic approaches emerge, the 

complexity level of mathematical algorithms with multiple differential equations remains high [24]. 

In this, a simple rule that the more elaborate the solution, the greater the computational load, is 
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evident. Recent developments should be lauded, but come in many cases with such drawbacks. The 

challenge for researchers in this field is therefore: not only to develop elegant solutions for 

probabilistic modelling, but to do this in a manner that allows easy and efficient application in 

computational terms. Furthermore, with a greater efficiency, comes a larger network that can be 

calculated, shorter calculation times, and a greater robustness of the model. 

4.2 Correlation between multiple variables 

When applying probabilistic modelling it is a necessity to consider multiple random variables as both 

input and in the model itself, depending on the applied approach. In the simplest terms, one has at 

least the traffic demand and supply as input variables, however these may consist of many other 

variables, such as weather effects, general randomness in demand, and others. These all have some 

level of dependence which cannot be ignored [24]. Also in the core of the model, dependencies are 

present between values of random variables. In deterministic modelling, one has only to consider 

single values, which relate directly to one another. Within random variables, not every permutation 

will be possible in conjunction with another from a separate random variable. A simple example of 

this is a speed of 100 km/h which will never occur simultaneously with a traffic density of 40 

veh/hr/lane, while both may be present as part of the probability of their random variables. A limited 

number of solutions have been proposed to deal with correlations in [24, 37], however many of the 

approaches are complex or may only deal with specific dependant relations. While offering some sort 

of solutions, a difficulty remains and is connected to the challenges from the previous paragraph, in 

that the applicableness of the methods in an operational model may be cumbersome due to their 

complexity. To this extent there remains a challenge to develop a global approach to consider 

correlation between random variables in a manner that can be easily implemented and that does not 

substantially detract from the efficiency of the model. 

4.3 Data gathering and processing 

Probabilistic models by definition work with a wide variety of possible values for the considered 

random variables. The outcomes of these models will often be given as a distribution, and the input 

will often encompass an even greater spread of data points. In some cases input for probabilistic 

models will be explicitly applied from empirically collected data, and other cases will be applied from 

an empirically derived or presumed analytical function. In either case there is a need for large 

amounts of data to form a generically valid distribution or to validate the presumed function. The 

specific type of data depends heavily on the manner in which an approach is applied. However for 

approaches which try to include multiple variations of traffic influencing variables, such as weather 

conditions, gathering and processing the required data is not a trivial task. If we consider weather 

and even the effects of snow, it must be pointed out that a great number of permutations are 

possible. One can distinguish between snowfall and lying snow on the road surface, between the first 

snowfall of the year and snow two weeks later when drivers have already become accustomed to the 

conditions. Also various combinations of weather conditions can be considered, such as strong 

winds, poor luminance, and low sunshine, all in combination with snow. Each situation needs 

consideration to be able to determine specific causation of events and correlations between the 

events. This requires years of data, and even then this may be insufficient. This challenge obviously 

applies for many other variables, besides the weather. And once sufficient data has been gathered, it 

still needs to be processed. The principal difficulty of this, is processing the data in such a way that 

dependencies between variables are correctly reflected in the random variables, or as a correlation 

function. To address these issues the application or development of concise methodologies is 

required, which will allow for an efficient and comprehensive data processing and result in accurate 

distributions.  
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5. Conclusions 
In this paper the case for probabilistic approaches in macroscopic traffic modelling is argued. This 

begins with a description of current practices in traffic flow modelling, and more importantly, in 

stochastic and probabilistic traffic flow modelling. It is shown that currently two main avenues of 

probabilistic models are utilised: repetitive Monte Carlo simulation, and the analytical consideration 

of probability in the core of a model. Current and recent research developments on both of these 

approaches are discussed. While classically, the Monte Carlo approach has been applied, the 

advancement of various analytical approaches has increased, with a number extensions of 

deterministic models being proposed.  

Too often probabilistic models are not considered in practice, either for application or the necessity 

for development. Focussing on deterministic or simple stochastic models has the danger of closing 

ones eyes to inaccuracies caused by an incorrect choice of modelling approach. To demonstrate this, 

two experimental cases are given in which the application of a deterministic approach is shown to 

yield substantially biased results in comparison to a probabilistic approach. While probabilistic 

models can be seen as more ‘complete’ than deterministic models, their application is not 

recommended in every situation. A short investigation is therefore performed on the application 

horizon of probabilistic models. 

While the case for probabilistic modelling is strong in theory, the application of such modelling 

approaches is only possible with sufficiently developed models. However there are still certain 

challenges to be addressed in probabilistic modelling before a widespread implementation is likely. 

These refer to computational efficiency of the models, both as computational load and efficiency in 

applied algorithms. Overcomplicated analytical approaches, while possibly being sound, may 

negatively contribute to this inefficiency. Furthermore the matter of correlation between variables 

poses an interesting challenge. This is the case for both correlations between input variables in the 

models, and also between random variables for analytical approaches. Also collecting and processing 

empirical data as probability input or for calibration requires attention and is not as trivial as may 

seem. 

To conclude, there is a necessity, but also many challenges for the scientific and consultancy worlds 

to further the development and application of probabilistic modelling in traffic analysis.  A realisation 

must arise of the detrimental effects of blindly applying non-probabilistic models where probability is 

rife. It is the joint responsibility of both worlds to address this and make further developments in this 

area of research possible.  
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