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High-performance routers have the task of transmitting traffic in be-
tween the nodes of the Internet, the network of networks that carries
the vast amount of information among billions of users. The switch
fabric is the key building block of every router, and various switch
fabric architectures are used in the market products. The crossbar-
based switch fabric architectures (both buffered and unbuffered) of-
fer very high performances and are widely used for high-performance
routers. However their cost grows quadratically with the input/out-
put port count, since they require internal crosspoints (and buffers)
for every input/output port pair.

Recently, a functional-level design of two novel Network-on-Chip
based switch fabric architectures was proposed, Unidirectional NoC
(UDN) and Multidirectional NoC (MDN), as a replacement of the
buffered crossbar switch fabric architecture. In this thesis, we pro-
pose the hardware design and implementation of the aforementioned
architectures for the FPGA platform. We further improve the rout-
ing and scheduling algorithms of these architectures for feasible hard-
ware design. The synthesis and simulations are carried out over a
wide range of switch sizes and traffic scenarios. The simulation re-
sults are also validated on the FPGA platform, by generating pseudo-

random destination addresses for the packets on LFSR based test modules. The results show that UDN
outperforms MDN in terms of throughput, whereas MDN offers greater performance-cost ratio. Both ar-
chitectures offer scalability, flexibility and high performance, confirming the ideas in the original proposal.
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Introduction 1
This chapter describes the motivation and objectives of this thesis. First, it gives

an overview of the background information that forms the basis for this research.
Then, it describes the problem statement and the thesis contributions. Finally, it

presents the outline for the following chapters.

1.1 Thesis Overview

The Internet has become the backbone of communication among the billions of users
all over the world, connecting networks of different sizes, purposes and scopes. The
Internet is defined as the network of networks (Figure 1.1), and it carries information
and services among the vast number of nodes. The communication among these networks
and nodes is realized by a broad and diverse body of electronic and optical technology.
The routers have the task of transmitting the traffic to the destination nodes, through
the best possible route. The links in between the routers and the nodes has to transmit
the data as fast as possible, while the routers provide the bandwidth to ensure that they
are not a bottleneck in the network communication.

The Internet is based on packet mode communication. All the information to be
communicated is divided into suitably sized blocks, called packets. The routers connect
two or more networks, decide the routing path of a packet that has been injected in the
router and finally transmit the packet to the destination address (packet forwarding).
These two essential tasks of the router are implemented by four basic modules, which
are the line cards, packet processing unit, routing unit, and the switch fabric
(Figure 1.2). The switch fabric, moreover, requires the implementation of a scheduling
unit, which regulates and grants permission for the pairing of input/output ports.

The main design challenges for implementing switch fabrics include bandwidth, la-
tency, scheduling algorithms, interfacing, and routing algorithms. Several switch fab-
ric architectures have been proposed, including the crossbar [4], shared-bus [5] and
shared-memory [6] switches, which deal with these design challenges in various ways
(Figure 1.3). Crossbar switch is the dominant architecture in today’s high-performance
switches, due to a number of reasons. Crossbar switch is more scalable than the shared-
bus and shared-memory; this is due to the limitations in bus transfer bandwidth and
memory access bandwidth, respectively. Crossbar switch provides point-to-point con-
nections and non-blocking properties, as well as supporting multiple simultaneous
transactions, increasing the bandwidth and speed of the router.

1
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Figure 1.1: the Internet, a Network of Networks

Figure 1.2: the Router Block Diagram

The crossbar switches are further divided into unbuffered [7] and buffered or com-
bined input-crosspoint queueing (CICQ) [8][9] crossbar switches. The unbuffered
crossbar switches have the advantage of low cost, because of using no internal buffers;
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Figure 1.3: Switch Architectures

however the scheduling unit gets very complex and needs to be centralized. On the other
hand, the buffered crossbar switch architectures require dedicated internal buffers,
which are instantiated per all input/output combinations, resulting in the area cost to
grow quadratically with the port count; however the scheduling unit is distributed and
simpler.

1.2 Motivation

1.2.1 Problem Statement

The proposal in [1], [10], and [11] studies the performance of Network-on-Chip based
crossbar switch fabric, targeting greater scalability and flexibility, as well as greater
performance per hardware cost, compared to buffered crossbar switch fabric (Figure 1.4).
[1] proposes functional-level design of two NoC based switch fabric, Unidirectional NoC
(UDN) and Multidirectional NoC (MDN).

In this thesis, we address to the problem of hardware design and implementation of
the NoC based switch fabric architectures, and try to validate and prove the claims of
the original proposal in hardware. The hardware implementation mandates the alter-
ing of some design parameters, constraints and algorithms, during the transition from
functional-level to register-transfer level design. In particular, we wish to investigate the
performance and cost of the NoC based switch fabrics over a wide range of switch sizes,
to explore the hardware implementation feasibility.
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Figure 1.4: Buffered Crossbar and NoC Based Crossbar Switch Architectures

1.2.2 The Thesis Contributions

In this thesis, we carry out the hardware design and implementation of NoC based
crossbar switch fabric proposed in [1], and investigate the performance and cost through
synthesis and simulations over a wide range of switch sizes. The hardware design is
implemented in RTL, using VHDL. The simulation results are also validated on the
FPGA platform, by generating pseudo-random destination addresses for the packets on
LFSR based test modules.

In the thesis, we have explored the scalability of the UDN and MDN switches, over
uniform and non-uniform (unbalanced) traffic scenarios. We have altered the MDN
routing algorithm in the original proposal, for better performance and simpler imple-
mentation. We have further proposed a method to improve load balancing by randomly
assigning the T-Value parameter of the routing algorithm of UDN and MDN. Finally,
we have proposed various arbitration schemes based on Round Robin scheduling, and
explored their performances.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2, we present the background information and the related literature.
This chapter includes the detailed explanation of the terminology used throughout the
thesis, various architectures that historically have been the milestones in the network
switch design, Network-on-Chip related information, and discussions why a certain design
decision has been preferred over the others.

In Chapter 3, we present the hardware design of the Unidirectional NoC (UDN)
and Multidirectional NoC (MDN), including the Input Buffers, Network Interface and
Routers. The routing and scheduling algorithms and their hardware implementations
are discussed in Chapter 4.

In Chapter 5, the synthesis results are presented for the individual modules that con-
stitute the UDN and MDN switches, as well as different sized UDN and MDN switches.
The synthesis results include the operational frequency and the 2-tuple resource cost
(Number of Slice LUTs, Number of Slice Registers) of the modules.

Simulation results of UDN and MDN switches are presented in Chapter 6. The
switches are tested under two different traffic types: the Bernoulli Uniform and Unbal-
anced (Weighted) Traffic. In addition, our proposals for improving the scheduling and
load balancing are simulated in order to explore their positive and negative aspects.

In Chapter 7, we define the performance and cost functions for the UDN and MDN
architectures, and present the performance / cost analysis for both architectures, over a
wide range of sizes and various traffic loads. We conclude this chapter with a comparison
of the architectures.

In Chapter 8, we present the in-circuit verification, which is an important step of
reconfigurable hardware design; it involves mapping the final design on the reconfigurable
platform (FPGA) and carrying out the verification/validation of the results and the
timing analysis.

Finally, we conclude the thesis in Chapter 9, giving a detailed observation on the
results we have obtained and point out the possible future work.





Background Information &
Related Work 2
This chapter includes the detailed explanation of the terminology used all through

the thesis, various architectures that historically has been the milestones in the
network switch design, the emergence of network-on-chip evolving from computer

networks as a new paradigm for on-chip communication, and some communicational
protocols.

2.1 Introduction

The Internet is a network of networks, carrying vast quantity of information and services
among the billions of users all over the world. Internet services such as WWW, email,
VOIP, IPTV, e-commerce, e-banking, FTP etc. are increasingly used on daily basis [12],
and therefore require increasing network bandwidth, such that the great quantities
of data can be communicated in between the servers and users. High-performance
routers have the task of transmitting traffic in between the nodes of the Internet. The
routers need to support high bandwidths, in order not to become the bottleneck in the
network communication.

The Internet is based on packet mode communication. All the information to
be communicated is divided into suitably sized blocks, called packets. The routers
connect two or more networks, and perform two important functions: routing path
determination, computing the route of a packet that has been injected in the router,
and packet forwarding, transmitting the packet to the destination address. The line
cards, routing unit, and the switch fabric are the key building blocks of a router,
which implement the two essential functions of the router. When a packet is injected
into the router, it is first accepted by the inbound network interface (input line card).
Once the routing path is computed on the routing unit, it is forwarded via the switch
fabric to the outbound interface (output line card) and finally ejected from the router,
to its final destination [13].

The design of the switch fabric, the module responsible of packet forwarding, con-
stitutes an important part of the network router design, and therefore it remains to be
an open research problem. Various switch fabric architectures are used in the market
products, like Vitesse’s GigaStream and IBM’s Power Packet Routing Switch [14].

7
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2.2 Switch Fabric Architectures

The development of switch fabric architectures has shown a trend from the shared
resources towards dedicated resources. Some of the reasons for this trend include:

• The need for higher bandwidths. We live in a web-dependent world, where the
use of Internet services, such as email, VoIP, streaming audio and video, search
engines and online encyclopedias, become a must even in our daily lives. All these
services require high data rates, and therefore higher bandwidth in the routers
become crucial for data transfers.

• Developments in the integrated circuits (IC) technology, which have led to the point
where very complex systems could be implemented on a single chip, resulting in
low cost routing solutions that incorporate hardware-software co-design to yield
high performance routers [13].

The important parameters in designing a switch fabric are throughput, packet
delays, amount of buffering, scalability, complexity of the implementation
and packet loss. The shared-bus, shared-memory, crossbar architectures are the basic
approaches that shape the switch fabric design; the proposed solutions are either a
variation or combination of these architectures. As a result, it is important to describe
the characteristics of these approaches [13].

The shared-bus switch fabric (Figure 2.1) is the simplest among the router architec-
tures. It is implemented by a shared single medium over which all data is transmitted.
Statistical multiplexing is used to allocate the bus for an input/output port pairing, since
the Internet is based on packet mode communication. Statistical multiplexing might
either serve the packets in the first-come-first-serve fashion, or might deliver the packets
according to a scheduling discipline (such as Round Robin) for fair queuing. The bus is
the bottleneck of the communication, since all the traffic flows over it. It is reliable and
simple to implement. As the number of input/output ports increase, scalability becomes
an important issue, as it gets more difficult for the bus to support the total bandwidth.

The shared-memory switch fabric’s typical architecture is shown in Figure 2.2. The
shared-memory architecture is implemented by a dual-port, shared and centralized mem-
ory which is used as an output buffer. The inbound packets are multiplexed into the
centralized buffer, and the outbound packets are demultiplexed into the output line cards.
The advantage of the approach is that the buffer can be statistically shared, according
to the buffering needs. The disadvantage is that the memory access speed becomes the
bottleneck, resulting in scalability and bandwidth issues.

The third approach, crossbar switch fabric (Figure 2.3), relies on dedicated resources,
as opposed to the shared resources of the first two architectures. In a crossbar, there
exists a crosspoint for any input/output port combination. The crossbar switches are
very good for their scalability and non-blocking properties. Since there is a crosspoint for
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Figure 2.1: Shared-Bus Switch Architecture

Figure 2.2: Shared-Memory Switch Architecture

every input/output port pair, it also supports multiple simultaneous transactions. The
crossbar switches are further divided into unbuffered, and fully-buffered switches.

Some variations and combinations of the above approaches, such as partially-buffered
crossbar switch fabric [15] and Bufferless Clos-Network Switches [16], are also available.
[15] proposes a partially-buffered architecture that is comparable to the cost of unbuffered
switch, and to the performance of fully-buffered switch. [16] proposes a Memory-Space-
Memory architecture which is a combination of shared-memory and bufferless crossbar
architectures.

Recently, a functional-level design of two novel Network-on-Chip based switch fab-
ric architectures were proposed, Unidirectional NoC (UDN) and Multidirectional NoC
(MDN), as a replacement of the buffered crossbar switch fabric architecture proposed
in [1]. With this novel architecture, the trend goes back towards shared resources, in
exchange of scalability.
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Figure 2.3: Crossbar Switch Architecture

In the next section we explain the emergence of Network-on-Chip as an on-chip
communication paradigm.

2.3 Emergence of Network on Chip (NoC)

On-chip communication has evolved, in accordance to the increase in number of ele-
ments that are present in a certain system-on-chip. As the number of modules increased,
the difficulty of implementing the communication has increased as well. The scalabil-
ity of the communication circuitry became an important part in the design effort. With
these aspects, the evolution of on-chip communication resembles of the switch fabric; the
main difference being that the communication on-chip is in circuit mode, as opposed
to packet mode. This means that a dedicated circuit (or channel) has to be established
in between the nodes, as if they were physically connected via an electrical circuit [17].

The simplest methodology, involves the communication of two IPs, via a dedicated
point-to-point connection. This communication involves a hand-shake protocol; a
valid signal indicating that the initiator has set the data for the target, and an accept
signal, indicating that the target has used the data. In this methodology, the modules
need to have a connection to each module they need to communicate with, exponen-
tially increasing the implementation cost. The scalability and re-use of these types of
communicational circuits are very low.

A remedy to the high costs and re-use issues of point-to-point communication is to
communicate over a shared single communication channel, a bus [18], which all modules
are connected to. In this case only one of the modules can access this channel at a
given time, resulting in a system bottleneck. The modules that are in communication
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at a given time seem as if they are hard-wired to the bus that they are communicating
through, while the rest of the modules are not. To realize this, there is the need of an
arbitration (scheduling) system, to grant the communication rights to the nodes over the
bus. On the other hand, the bus communication lacks scalability, like the point-to-point
communication.

Verifying the communication circuit repeatedly even for minor changes in the system
quickly become a major burden in the design effort, and therefore designing for scalability
becomes crucial [19]. Network-on-Chip (NoC) is a solution to the scalability issue in
on-chip communication. NoC communication has a different structure from the other on-
chip communication architectures, because it is based on packet mode communication,
like a network router. The communication in NoC is realized on a router matrix, where
the nodes are connected to each other with point-to-point connections [20]. This kind of
a structure makes it possible for new routers to be added in the matrix very easily.

In on-chip communication, point-to-point is one end, representing singularity in con-
nections, whereas NoC is the current other end, emphasizing scalability and abstraction
among many others. Abstraction is another important aspect of NoC [21]; because the
router communication is based on packets, the computational part is completely sepa-
rated from the communicational part. Abstraction implies composability, which means
changing only some parts of NoC without changing and re-verifying rest of the system.
Abstraction layers are implemented to provide services for the higher abstraction levels
to use, hiding the details of implementation, yielding composability [21].

2.4 Network on Chip

Network on chips, a relatively new concept in system-on-chip communication, borrows
many ideas from the computer networks, the domain in which the research on routers
and packet switching has matured. However, these ideas need to be adapted in NoC as
well, since there is no direct translation of these methodologies [22].

Figure 2.4 shows a network-on-chip, in the form of an N-by-N router matrix. Com-
putational cores are connected to network interfaces, which are in turn connected to
the routers. Different network topologies such as mesh, torus, express cubes, etc.
can be used to enhance the connections in between the routers, such that the diameter
of the network (largest minimal hop count) can be decreased [23]. Some other impor-
tant concepts in NoC are routing, flow control, buffer management, quality of
service and network interfaces.

The router is the most important building block of a network-on-chip. Routing
decision is about finding the path in between a start and ending point in NoC, which can
be in a deterministic, oblivious or adaptive fashion [17]. In deterministic routing,
the path in between the source and destination are always the same. In oblivious routing,
any of the possible routes is chosen, regardless of the network state. In adaptive routing,
the network state is taken into consideration while computing the routing path. The
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Figure 2.4: Network-on-Chip Switch Fabric

routing path can be computed all-at-once in the NI, or incrementally (step by step)
on the routers. As the packets are transmitted over the routers, contention (more than
one packets competing over a certain route) and congestion (decrease in throughput due
to contention) become the main routing problems that need to be avoided. As a solution,
flow control needs to be applied in either a bufferless or buffered fashion. Bufferless
flow control deals with the routing problems by either dropping both of the packets;
dropping one of the packets; or misrouting one of the packets. Buffered flow control
involves use of large buffers in the routers to store one of the packets, which increases
the size and cost of the circuit, as well as adding buffer management overhead [17],
in return of lossless routing.

The packets’ data structure is organized in two sections, the header and the pay-
load. The header carries the routing related information and instructions, whereas the
payload carries the actual data packet is delivering to the destination. Large network
packets are broken into smaller pieces called flow control digits (flits), for serializing
the packet transmission in between the routers.

In buffered flow control scheme, the switching mode determines when a packet
is forwarded in between two routers. In Store and Forward mode [24], a packet is
forwarded when the current router has received the whole packet, and the next router
has the space for the whole packet. In Virtual Cut Through mode [25], a packet
is forwarded when the current router has received the flit, and the next router has the
space for the whole packet. In Worm Hole mode [26], a packet is forwarded when the
current router has received the flit, and the next router has the space for the flit.

Buffered flow control solves the contention by forwarding one of the packets and
storing the other, which requires the routers to have buffers in various schemes. Input
Buffering is the simplest and cheapest scheme, with the worst performance among



2.4. NETWORK ON CHIP 13

others; it is implemented either by first-in-first-out (FIFO) buffers per input port
or a shared-memory [27]. Output Buffering is an efficient scheme, however it is the
most expensive since it is implemented by FIFO buffers per input/output port pair.
Virtual Output Buffering [28] is logically the same as Output Buffering, however
implementation-wise it uses dual port rams per input port, virtualizing the buffers per
input/output port on a single ram. Input and (Virtual) Output Buffering schemes suffer
from head-of-line blocking (HOL), in case of contention. Some architectures consist
of combinations of the above schemes [29].

If a packet is waiting for an event to occur, but the event will never occur due to
some blocking in the switch, this is called a deadlock. In Figure 2.5, we exemplify
this problem, on a mesh based topology, with buffered flow control. When HOL occurs
in a circular loop, the packets cannot be forwarded to the next routers, because all of
the input buffers are already full and are blocking each other. A proposal to avoid
deadlocks suggests the use of virtual channels, implemented as parallel buffers, to yield
deadlock-free network [30][31].

Figure 2.5: Example of a Deadlock, on a Mesh Topology [1]

The network interface acts as an abstraction layer between the computational
unit’s interface and NoC interface (Figure 2.6). Since on-chip communication is based
on circuit mode, the data has to be packetized in the packetization unit of the network
interface. Once the packets are generated, they are transmitted to the next router, in
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equally sized flits.

Figure 2.6: Packetization on the Network Interface

Once the packet (or flit) is received by the router and its routing path has been com-
puted, the packet needs to be forwarded to the next router in the NoC switch. However,
a NoC router has multiple input ports competing for an output port, resulting in con-
tention. A scheduling algorithm computes which packet has to be forwarded prior to
the other packets, and therefore which input port is to be connected to a certain output
port. The arbiter makes a link in between the input and output port, according to the
output of the scheduling algorithm, such that the packet is transmitted. In this thesis,
we will refer to the scheduling and arbitration terms interchangeably. The arbitration on
NoC is very similar to the arbitration in the bus communication. The scheduling algo-
rithm might be implemented as a variation of Random [32], Priority [33], or Round
Robin [34] algorithms among many others. Round Robin offers fair scheduling, assign-
ing each resource equal usage in circular order, which results in starvation-free system.

As mentioned earlier, the buffered flow control requires buffer management: this
is to inform the previous router about the availability of the buffers in the current
router. This is also called backpressure, meaning that the current router informs the
previous routers when they should stop transmitting packets (or flits). There are three
types of flow control mechanisms that are commonly used, to provide backpressure:
credit-based, on/off and ack/nack [35]. In the credit-based scheme, the sender keeps
track of the empty buffer space in the receiver. It sends data only when remote space
is greater than 0, and the credits are returned by the receiver when its buffer space
becomes available. If the credit can only be equal to 1 or 0, then the scheme is called
valid/accept. In on/off scheme, only the changes in the buffer are sent, like when
the buffer is full and available. In the ack/nack scheme, the packets (or flits) are sent
optimistically without keeping track of the buffer availability; if the buffer is not available,
the packet is dropped, and nack signal is set to inform the sender that it has to be sent
again [17].

The communication through the NoC is pipelined automatically due to the nature
of the routing and point-to-point communication in between the routers. In this way,
the critical path is restricted to the control signals in a router, improving the scalability
of the switch. Once the routing decision has been made, and the first flit has been issued
to the next router, all the other flits are going to be delivered each cycle. This fact
increases the throughput of the system [20].

Some acclaimed implementations of NoC include Aetherial [36], Nostrum [37],



2.5. COMMUNICATION TECHNOLOGIES, PROTOCOLS & PACKETS 15

Xpipes [38], Intel 80 Core NoC [39], and Mango [40]. They all make different
decisions in terms of the schemes explained in the previous paragraphs, to achieve their
design goals.

NoC, a paradigm of on-chip communications, with its basic concepts borrowed from
computer networks, is proposed to be applied back to its original domain, to remedy some
shortcomings in the crossbar switch fabric design. In regard to this matter, the basic
building blocks of NoC, including the buffers, flow control, arbitration and routing units
need to be used in the correct combination of schemes, to be able to provide competitive
solutions.

2.5 Communication Technologies, Protocols & Packets

ISO/OSI 7 layer model (Figure 2.7) is a reference model which divides a communi-
cation system into smaller parts called layers [41]. In this way, the layers are abstracted
from each other. Each layer offers services to higher layers, using the services of the
lower layers. All the communicational protocols are placed into one of the layers. The
Internet also uses a set of protocols called TCP/IP, which is very similar to ISO/OSI 7
layer model with its four abstraction layers.

Layer 7 Application

Layer 6 Presentation (Data Representation)

Layer 5 Session (Interhost Communication)

Layer 4 Transport (Flow control)

Layer 3 Network (Routing, (De)packetization)

Layer 2 Data Link (Transport of frames/flits)

Layer 1 Physical (Transport of single bits)

Figure 2.7: ISO/OSI 7 Layer Model, the Abstraction Layers

Ethernet technology used in local area networks (LANs), internet protocol
(IP) technology used in packet-mode internetworking, and asynchronous transfer
mode (ATM) technology used in simultaneous digital transfer of video, audio, data,
etc. as in ISDN systems are among the most known examples of technologies used
in communication, and their similarly named protocols are categorized under different
layers of OSI and/or TCP/IP models. Ethernet and IP protocols use variable-size
packets, whereas ATM packets (cells, in common usage) are fixed size [2]. ATM
protocol involves the properties of both circuit mode and packet mode networking, and
therefore it is suitable for wide area data networking as well as real-time media transport.
Moreover, Ethernet and IP packets can be encapsulated in ATM packets [42][43].

In the light of the above information, we chose ATM packets as the input/output
packet type of our switch. For the other packet types, we would only have to change
the (de)packetizing unit in the network interface; therefore this is not a crucial design
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Figure 2.8: Diagram of the UNI ATM Packet, where the top row denotes the number of
bits. [2]

decision. The ATM packet (Figure 2.8) is 53 bytes in length, where 5 bytes constitute
the header section and 48 bytes constitute the payload.
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Recently, functional-level designs of Unidirectional NoC (UDN) and Multidirec-

tional NoC (MDN) have been proposed as a replacement of the buffered cross-
bar switch fabric [1]. In this chapter, we explain how these functional-level de-

signs can be implemented in hardware for reconfigurable platforms, specifically Field-
Programmable Gate Arrays (FPGAs). The routing and scheduling algorithms and their
respective implementations are presented in Chapter 4.

3.1 UDN/MDN Overview

Block diagrams for UDN and MDN switch architectures are presented in Figure 3.1 and
Figure 3.2. The main difference among the two switches is how their input/output pins
are placed in the layout. In UDN, the input pins are placed on the west side of the
layout, whereas the output pins are on the east side. On the other hand, in the MDN
switch, the pins are placed all around the peripheral, where input and output pins are
next to each other. In Figure 3.1, it can be observed that the northmost row routers of
UDN Switch have two input (West, South) and two output (East, South) ports; similarly,
the southmost row routers have two input (West, North) and two output (East, North)
ports. The central UDN Routers have three input (West, South, North) and three output
(East, South, North) ports.

UDN and MDN switch architectures have the same NoC specifications. The switching
mode is in store and forward scheme, and input buffers are used for the buffered
flow control, implemented by FIFOs. The scheduling is based on variations of the
round robin scheme. In the original proposal [1], the buffer management is credit-
based, however in our design we prefer the valid/accept scheme instead; the drawback
of credit-based buffer management is that for every flit transfer, a credit is sent to the
previous router, resulting in a communication overhead [35].

The size of the UDN switch, as shown in Figure 3.1, is defined by the 2-tuple (N,
M), where N denotes the number of input/output ports, and M denotes the number of
router columns. Some restrictions apply to (N, M) values: N ∈ N, and N ≥ 2; M ≤ N
and M = 2m, where m ∈ N0. The restrictions on M are caused by the routing algorithm
involving Modulo M operations (discussed in Chapter 4). Because Modulo M operation
requires division in case M 6= 2m, but it is a simple bit-selection operation in case M
= 2m, we can avoid the extra cycles caused by the division operation by applying this
restriction. With some minor modification in the scheduling algorithm, M = N - 1 ⇒ N

17
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Figure 3.1: Unidirectional NoC

Figure 3.2: Multidirectional NoC

= 2n, where n ∈ N1 is also a possible (N, M) combination; this is further explained in
Chapter 4, in the UDN routing algorithm. The number of routers in the UDN switch is
equal to N × M.

The size of the MDN switch, as shown in Figure 3.2, is defined by N, which denotes
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the number of input/output ports. Because the input/output ports are placed around
the peripheral of the switch, some restrictions apply to N: N = 4 × n, where n ∈ N1 .
The input/output ports are placed counterclockwise, starting from the West side of the
layout. The ports in between 1(N/4) are placed on the West, (N/4 + 1)(N/2) on the
South, (N/2 + 1)(3N/4) on the East and (3N/4 + 1)N on the North side of the layout.
The number of routers is equal to (N/4)2.

In the UDN and MDN switch design, the same network interface, flow control
unit, and router input buffer (FIFO) modules are used. The UDN and MDN routers
are different, due to the different number of ports; the top-level switch designs are also
different due to the placement of the switch pins. In the next sections, we explain our
design decisions for the UDN and MDN building blocks and top-level switches.

3.2 U(M)DN Packet Organization

U(M)DN Packet is a wrapper for ATM packets, such that they can be routed in the
UDN and MDN switch fabrics. The routing algorithms for UDN and MDN, as proposed
in [1], require different input parameters (discussed in Chapter 4); therefore it is not
possible to use the same packet type in both of the switches. In Chapter 4, we propose
a new MDN routing algorithm, which makes it possible to use the same packet type in
UDN and MDN switches, with no abundant data fields. The U(M)DN packet consists
of the header and payload sections (Figure 3.3). The payload is where the ATM packet
is stored.

The header is composed of the routing information, including Valid Bit, Unicas-
t/Multicast Bit, T-Value, and Destination Address(es) Bitmap. Valid Bit is
set when the ATM packet is wrapped into the U(M)DN packet (packetized) in the net-
work interface and is used to check if FIFO pointer is pointing to a valid packet; this
bit is only an extra precaution, because our FIFO design have mechanisms to control
if the buffer is empty or has valid packets to be forwarded. Unicast/Multicast Bit
determines if the packet has a single (unicast) or multiple (multicast) destination ad-
dresses. Destination Address(es) Bitmap (DAB) is the field where the destination
address(es) is(are) stored; in the unicast traffic, there is a single address, which is en-
coded in unsigned binary form, whereas in the multicast traffic, the destination addresses
are bitmapped onto this field. Please note that the U(M)DN packet header includes the
latter two data fields, in order to be compatible with the proposal in [1] that supports
multicast traffic, even though our UDN/MDN switch implementations do not involve
multicast traffic, which is left as future work. T-Value is used for load balancing, in
the routing algorithms of both of the architectures, and it will be further explained in
Chapter 4.

The width of T-Value and DAB is determined according to the switch size. In UDN,
T-Value requires a width of LOG2(M) bits, and DAB, a width of N bits. In MDN, T-
Value requires a width of LOG2(N/4) bits, and DAB, a width of N bits. Considering an
UDN switch (N, M) = (64, 64), then T-Value is 6 bits, and DAB is 64 bits. Considering
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Figure 3.3: U(M)DN Packet Structure, where the top row denotes the number of bits.

an MDN switch (N) = (64), then T-Value is 4 bits, and DAB is 64 bits. The resulting
U(M)DN Packet structure is shown in Figure 3.3.

In order to have the same size of packets in the simulations, we have fixed the
U(M)DN packet size to 63 bytes, where 53 bytes are the payload, and the remaining
10 constitute the header. We divide the U(M)DN packet into seven 9-byte flits, and
serialize the transfer between the routers.

3.3 Input Buffers (FIFOs)

Before diving into the hardware design and implementation details of NI and Routers,
it is necessary to explain the general structure of the input buffering hardware, since the
same architecture is used with small variations in NI and Routers. The input buffer we
have chosen to implement is based on the register-based synchronous FIFO buffer,
in the form of a circular queue [3]. Instead of using the embedded block RAMs on
the FPGA, we used the flip-flops (slice registers), for better cost analysis, as discussed
in Chapter 5.

The circular queue is implemented as presented in Figure 3.4. The initial register
position is marked by the Read Pointer (RP) and Write Pointer (WP). During a
write operation, the data is written into this register, and the WP is incremented. In
the same way, after a successful read operation, the RP is incremented to point to the
following data. Status register (SR) is incremented after each write operation and
decremented after each read operation. If SR = 0, then the buffer is empty (Empty
Status Signal is set); therefore there cannot be made any read operations. If SR =
Buffer Size, then the buffer is full (Full Status Signal is set); therefore no more write
operations are allowed until SR is decremented. The Empty Status Signal informs the
packet forwarding unit (PFU) in the current module (NI or Routers) about the
availability of a valid packet for a read operation. The Full Status Signal generates
Accept Signal, which informs the previous module’s (NI or Router) PFU about the
availability of buffer space.

We implement two variations of the input buffer in our design. The first variation is
used in the Input Network Interface and stores ATM packets. The second variation is
used in the Routers and Output Network Interface, storing U(M)DN flits. The details
of these input buffers are explained in the following sections.
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Figure 3.4: Circular Queue Based Buffer Implementation [3]

3.4 Network Interface (NI)

Network Interface (NI) is the module that acts as an abstraction layer in between the
network protocol and UDN/MDN switch protocols. There are two types of NI: Input
NI (INI) and Output NI (ONI). When an ATM packet is injected into the switch,
INI encapsulates (packetizes) the ATM packets into U(M)DN packets, and transmits
them to the next router, in equally sized flits. ONI, in return, receives the U(M)DN flits
from the last router in a packet’s routing path, strips (depacketizes) the ATM packet
from U(M)DN packet and ejects it from the switch. In the next subsections, we explain
the details of INI and ONI hardware design.

3.4.1 Input Network Interface

When an ATM Packet is injected into the crossbar switch fabric from a line card, the
first module that it will be processed is the Input Network Interface (INI). The
three tasks of the INI are,

• Buffering the ATM Packets injected into the switch from the input line cards,



22 CHAPTER 3. UDN/MDN HARDWARE DESIGN

• Packetizing an ATM Packet into U(M)DN Packet,

• Transmitting the U(M)DN packet, divided into flits, to the next router.

The block diagram of INI and INI Input Buffer are presented in Figure 3.5 and
Figure 3.6, respectively. The step-by-step packet flow is as follows: If INI Input Buffer
is not full (Accept Out = 1), then the line card sets Write Enable signal (WrEn =
1) and forwards an ATM packet to INI ATM in port, in the same cycle. It is the
Packetizer, where the ATM packet is encapsulated into U(M)DN payload, and the
routing information in the U(M)DN header is generated, as explained in Section 3.2.
INI Packet Forwarding Unit (IPFU) is composed of a flit counter, and a finite
state machine (FSM), with (IDLE, READ) states. If the input buffer on the next
router is available (Accept In = 1) and INI Input buffer is not empty (FIFO Empty =
0), FSM makes a transition from IDLE to READ state; IPFU issues a read operation
(RdEn = 1) from the current input buffer, and a write operation to the next router’s input
buffer (WrEn Out = 1); and the flit counter is incremented each cycle to index (select)
the individual flits of the U(M)DN packet, as they are forwarded to the next router,
from the Flit Out port. Once the whole packet is forwarded, FSM makes a transition
to IDLE state, and waits for the conditions (Accept In = 1) and (FIFO Empty = 0) to
be met in order to issue another forwarding operation.

The flow in the INI Input Buffer is exactly as explained in Section 3.3. Accept Out
signal is equal to the inverse of Full Status Signal.

Figure 3.5: Input Network Interface Block Diagram

3.4.2 Output Network Interface

The U(M)DN packet is transmitted through the routers in the switch, until it reaches the
Output Network Interface (ONI) connected to the packet’s destination output port,
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Figure 3.6: Input Buffer of the Input Network Interface: ATMin port width is 53-bytes,
and FlitOut port width 9-bytes. PFU selects individual flits from the U(M)DN packet
and serializes the transfer to the next routers.

where the original ATM packet is stripped (depacketized) from the U(M)DN packet. The
three tasks of the ONI are,

• Buffering the U(M)DN Packets, divided into flits,

• De-packetizing an U(M)DN Packet into an ATM Packet,

• Ejecting the ATM Packet to the output line card.

The block diagram of ONI and Router Input Buffer are presented in Figure 3.7
and Figure 3.8, respectively. ONI employs the same input buffer module as the routers,
because their input data type is Flit. The step-by-step packet flow is as follows: If
INI Input Buffer is not full (Accept Out = 1), then the previous router’s PFU sets
Write Enable signal (WrEn = 1) and forwards an U(M)DN packet, divided into flits, to
ONI Flits In port. It is the Depacketizer, where The ATM is stripped from the U(M)DN
payload. The ONI Packet Forwarding Unit (OPFU) is composed of a finite state machine
(FSM), with (IDLE, READ) states. If the output line card is available (Accept In =
1) and the input buffer is not empty (FIFO Empty = 0, and therefore it has at least
one complete packet), the FSM makes a transition from IDLE to READ state; OPFU
issues a read operation (RdEn = 1) to the input buffer, and a write operation to the
output line card (WrEn Out = 1); and the ATM packet is forwarded to the output line
card. Please note that OPFU is simpler than IPFU, since it does not embody a counter
to index individual flits. Once the ATM packet is forwarded, FSM makes a transition
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to IDLE state, and waits for the conditions (Accept In = 1) and (FIFO Empty = 0) to
issue another forwarding operation.

Figure 3.7: Output Network Interface Block Diagram: ATMout port width is 53-bytes,
and FlitIn port width 9-bytes. The ATM packet is stripped from the U(M)DN Wrapper
and ejected to the output line card.

Router (ONI) input buffer requires more complex control circuitry than the INI input
buffer, as can be observed in Figure 3.8. It complies with the explanations in Section 3.3,
and in addition it has a Write Control Unit, which is composed of a flit counter, and
a finite state machine (FSM), with (IDLE, WRITE) states. If the input buffer is
available (Accept Out = 1), the previous router issues a write operation (WrEn = 1) and
starts transmitting Flits, one at a cycle. FSM makes a transition from IDLE to WRITE
state; and the flit counter is incremented each cycle to index (select) the flit sections of
the register memory. Once the whole packet is accepted and written on the buffer, FSM
makes a transition to IDLE state. Another packet is accepted only when the conditions
(FSM = IDLE) and (FIFO Full = 0) are met.

3.5 UDN Router Design

The northmost row routers of UDN switch have two input (West, South) and two
output (East, South) ports; similarly, the southmost row routers have two input
(West, North) and two output (East, North) ports. The central routers have three
input (West, South, North) and three output (East, South, North) ports. This implies
that the traffic flow can occur only through seven input/output combinations in UDN
central routers, as shown in Figure 3.9.
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Figure 3.8: Router Input Buffer

Figure 3.9: Possible Traffic Flows on UDN Switch (on 3 I/O Port Routers)

3.5.1 Router Types

It is important to investigate if the physical input/output port combinations exactly
match the possible traffic flows. In this section, we present the findings of a simulator we
have written in C to investigate which types of traffic flows occur on UDN switches of
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any given (N, M) size, over UDN XY Modulo Routing Algorithm (discussed in Chapter
4).

In Figure 3.10, we present the results for the UDN switches of size (N, M) = (2,
1), (4, 3), (8, 7), (16, 15). The values corresponding to the southmost and northmost
rows (0 and 7) imply 2 I/O Port Routers; whereas the central values (1 to 7) correspond
to 3 I/O Port Routers with different traffic flows, for which the legend is provided in
Figure 3.11. The simulations reveal that there are 8 types of routers, which are being
repetitively used in UDN switches with any (N, M) size.

Figure 3.10: Routers with Different Traffic Flows over Various Switch Sizes

These router types do not only have different traffic flows, but also different frequen-
cies on these traffic flows. In other words, the frequency of a packet to travel through
a distinct I/O port pair in a router depends on the router type. This observation will
be useful in the scheduling related section, to explain the weighted arbitration. We first
investigate the UDN switch and, then discuss shortly why this does not apply to MDN
switch.

In Figure 3.12, a UDN switch with (N, M) = (3, 2) is presented, with its traffic flow
map. Each router is named with a capital letter, and I/O ports of the switch are named
i1, o1, etc. Figure 3.13 shows the routing paths for all I/O port pairs, over UDN XY
Modulo routing algorithm, with the T-Values set to 0.

When a packet is transmitted from an input port to an output port, it travels through
certain routers, as listed in Table 3.1. We also tabulate the I/O port pairs on the routing
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Figure 3.11: Legend for the Traffic Flows

Figure 3.12: UDN Switch, (N, M) = (3, 2)

paths, in Table 3.2. For instance, if a packet is transmitted from i0 to o1, then this will
be shown as A (W → E), B (W → S), D (N → E). Finally, we also tabulate the flows
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Figure 3.13: Routing Paths in a UDN Switch, over UDN XY Modulo Routing Algorithm

Table 3.1: List of Routers in the Routing Path of the I/O Port Pairs

I0 → O0 : A, B
I0 → O1 : A, B, D
I0 → O2 : A, C, E, F
I1 → O0 : C, A, B
I1 → O1 : C, D
I1 → O2 : C, D, F
I2 → O0 : E, F, D, B
I2 → O1 : E, C, D
I2 → O2 : E, F

on individual routers, in Table 3.3.

On Table 3.4, it can be observed that certain flows through some I/O port pairs are

Table 3.2: List of Port Pairs on the path in between the Switch’s I/O Pairs

I0 → O0 : A (W → E), B (W → E)
I0 → O1 : A (W → E), B (W → S), D (N → E)
I0 → O2 : A (W → S), C (N → S), E (N → E), F (W → E)
I1 → O0 : C (W → N), A (S → E), B (W → E)
I1 → O1 : C (W → E), D (W → E)
I1 → O2 : C (W → E), D (W → S), F (N → E)
I2 → O0 : E (W → E), F (W → N), D (S → N), B (S → E)
I2 → O1 : E (W → N), C (S → E), D (W → E)
I2 → O2 : E (W → E), F (W → E)
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Table 3.3: Traffic Flows on Individual Routers

A : (W → E), (W → E), (W → S), (S → E)
B : (W → E), (W → E), (W → S), (S → E)
C : (W → E), (W → E), (S → E), (N → S), (W → N)
D : (W → E), (W → E), (N → E), (S → N), D (W → S)
E : (W → E), (W → E), (N → E), (W → N)
F : (W → E), (W → E), (N → E), (W → N)

Table 3.4: Frequency of Traffic Flows on Router Types

more frequent than the others. For example, in Router A, (W → E) traffic is twice as
frequent as (W → S) or (S → E). Another observation is that the same router types on
a switch have the same frequencies for the traffic flows; A and B are Type 0, E and F
are type 7 and have the same frequencies.

It is also noteworthy to observe that when N = M in a UDN switch (Figure 3.14) and
T-Value is set to 0, there is an abundant column of routers, without any active routing
(i.e. only West → East flow); in this case, the optimal switch would be M = N 1.

However, with two types of 2 I/O Port and six types of 3 I/O Port UDN Routers,
the switch implementation quickly gets complicated, because:

• Any changes made on the RTL description for one module needs to be made on
all the others,

• Reusability and scalability of the design suffers from the large number of router
types,

• Preprocessor constructs of hardware definition languages (i.e. VHDL) are very
weak, and therefore make it problematic to instantiate the different types of routers
on the corresponding (Row, Column) index of the crossbar switch.

Because of these reasons, some reduction of the router types is needed, in exchange
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Figure 3.14: All routing paths on the switch, N=M=4

of some decrease in the performance, discussed further in Sections 4.2.1 and 6.4. On
Figure 3.11, it can be observed that router types 0 and 7 are the mirrored copies of each
other. Using a generic position constant (North or South), it is possible to differentiate
these two types. All the other routers, 1 to 7, have 3 I/O ports, and can also be reduced
to one single module; in this case, the traffic flow differences need to be resolved within
the arbitration unit and scheduling algorithm, by eliminating the I/O combinations for
the non-existent traffic flow (discussed in Section 4.2.1).

3.5.2 UDN Router Architecture

Hardware implementation of the 2 and 3 I/O Port UDN Routers are very similar, because
they use the same input buffers and Packet Forwarding Units (PFU). The arbiters are
also based on the same principles; however they get more complex as the number of I/O
ports increase. In this section we describe the overall architecture of the UDN router
and discuss the routing and arbitration in Chapter 4.

The block diagram for a 3 I/O Port Router is given in Figure 3.16. There are 3 input
ports, West, North and South; and there are 3 output ports, East, North and South.
The router input buffer modules are placed at each input port, whereas the PFUs are
placed to each output port. Routers use the same IPFU modules as INIs.

Here is a step-by-step flow example, to illustrate how a packet is forwarded through a
router. In this example, we look from the perspective of IPFU at the East Output Port.
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All three of the West, South and North input ports will compete for the East Output
Port, if

• All three input ports have at least one packet in their input buffers (Empty Signal
= 0), and

• The routing unit computes that the head-of-line packets in all input ports are to
be ejected over the East Output Port.

However, with three input ports competing for the same output port, there is con-
tention. The contention is handled by the scheduling algorithm, which controls the
arbiter to “virtually connect” one of the input ports to the East output port. In this
way, IPFU can perform the read operations from the respective input buffer. This is
illustrated in Figure 3.15, where the red line (thick horizontal line in B&W copy) sym-
bolizes the arbiter. Read Enable (RdEn), FIFO Empty and Flit Indexing signals are
interfaced through the arbiter, in between the IPFUs and input buffers. Further details
on arbitration and scheduling algorithms are discussed in Chapter 4.

Figure 3.15: 3 I/O Port UDN Router, Top-Level Block Diagram

3.6 Instantiating Routers and NIs in the UDN Switch

The Routers and NIs are instantiated using VHDL preprocessor command generate,
such that many design parameters of the switch, like switch size, buffer width, U(M)DN
packet size, etc. can be controlled with constant values. In this way, the changes on the
VHDL code are easily made to adjust the switch parameters.

The connections in between the router ports and NIs have to be addressed accord-
ing to a certain indexing scheme, such that router signals can be connected correctly
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Figure 3.16: Arbiter, Virtually Connecting an Input Port to the Output Port

under the generate code blocks. In the UDN Routers, all input and output ports have
inbound and outbound flow control signals. These signals should be connected to the
corresponding signals in the previous or following routers. We define the 3-tuple UDN
Switch Index as Signal Name (Source Output Port, Destination Column Ad-
dress, Destination Row Address).

In order to describe the UDN Switch Index better, we present an example UDN
switch of size (2, 2), in Figure 3.17. The Routers and NIs are indexed together with
(Column Address, Row Address) indices. The East output port of INI(0, 0) is connected
to the West input port of Router(1, 0), which is composed of the inbound Write Enable
and Flits In signals and outbound Accept Out Signals. Write Enable signal, is indexed as
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WE(E, 1, 0), because Source Output Port is East and the destination module is indexed
as (1, 0).

The code segment in Listing 3.1 instantiates the matrix of central UDN Routers
with 3 I/O ports. In this way, the respective signals are connected in between the
corresponding router and NI modules.

Figure 3.17: UDN Switch Indexes, for a UDN Switch of Size (2, 2)

Listing 3.1: Nested Generate for 3 I/O Port Router Instantiation

Gen_Router_cR : f o r i in 1 to SwitchN−2 generate −−Row( i )
Gen_Router_cC : f o r j in 0 to SwitchM−1 generate −−Column( j )

Router_c : Router3UDN

g ene r i c map
(

RouterColAddr => j+1,
RouterRowAddr => i

)
port map
(

reset => reset ,
clk => clk ,
−−
acceptOutW => internalAccepts ( WEST ) ( j ) ( i ) ,
UDN_flit_inW => internalFlits ( EAST ) ( j+1)(i ) ,
writeEn_inW => internalWE ( EAST ) ( j+1)(i ) ,
−−−
acceptOutN => internalAccepts ( NORTH ) ( j+1)(i−1) ,
UDN_flit_inN => internalFlits ( SOUTH ) ( j+1)(i ) ,
writeEn_inN => internalWE ( SOUTH ) ( j+1)(i ) ,
−−−
acceptOutS => internalAccepts ( SOUTH ) ( j+1)(i+1) ,
UDN_flit_inS => internalFlits ( NORTH ) ( j+1)(i ) ,
writeEn_inS => internalWE ( NORTH ) ( j+1)(i ) ,
−−−
acceptInE => internalAccepts ( WEST ) ( j+1)(i ) ,
UDN_flit_outE => internalFlits ( EAST ) ( j+2)(i ) ,
writeEn_outE => internalWE ( EAST ) ( j+2)(i ) ,
−−−
acceptInN => internalAccepts ( SOUTH ) ( j+1)(i ) ,
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UDN_flit_outN => internalFlits ( NORTH ) ( j+1)(i−1) ,
writeEn_outN => internalWE ( NORTH ) ( j+1)(i−1) ,
−−−
acceptInS => internalAccepts ( NORTH ) ( j+1)(i ) ,
UDN_flit_outS => internalFlits ( SOUTH ) ( j+1)(i+1) ,
writeEn_outS => internalWE ( SOUTH ) ( j+1)(i+1)

) ;
end generate ;

end generate ;

3.7 MDN Router Design

The MDN architecture is based on the UDN switch; therefore, most of the UDN modules
are also being used in the MDN switch, including INI, ONI, IPFU, INI Input Buffer,
and Router Input Buffer. The arbiter is also very similar in terms of basic principles.

On the other hand, the MDN switch requires 4 I/O Port Routers, because the MDN
switch architecture has the input/output pins placed all around the layout peripheral.
Due to this fact, there is only one type of MDN Router, which permits traffic flow in
all sixteen possible I/O combinations, with the same frequency. The MDN Router has
four Router Input Buffers at the input ports, four IPFU at the output ports and a more
complex arbiter, compared to the 2 and 3 I/O Port UDN Routers due to the increase in
number of traffic flows.

3.8 MDN Virtual Channels

MDN switch architecture is prone to deadlocks, because of its multidirectional nature. In
[30], it was proposed that virtual channels can be used to avoid deadlocks. [1] proposes
a functional-level design for virtual channels, to remedy the deadlock problem in MDN
switch. According to the proposal, two virtual channels (VC0, VC1) are used in North
and South input ports. In addition, the West input port of the westmost column routers
and the East input port of the eastmost column routers are virtual channeled. If the
destination of a packet is the east of the current router, then VC0 is used, whereas in the
other cases VC1 is used. Figure 3.18 represents the block diagrams of the three MDN
Routers with virtual channels at different input ports.

In [1], the packets at a virtual channeled input port are demultiplexed into the virtual
channels; however, the virtual channel outputs are directly connected to the arbiters,
without any multiplexing, resulting in a much more complex arbiter due to the increased
number of resources competing for the output ports. Our proposal involves the use of a
multiplexing unit, in order to implement the virtual channels on one physical link, such
that the flow control will perceive it just like any other input buffer (Figure 3.19).

Two Router Input Buffers are instantiated in the Virtual Channel, without any
changes. The flow control and flit input/output signals are connected to the Virtual
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Figure 3.18: Virtual Channels in the MDN Routers [1]

Figure 3.19: Virtual Channel for an Input Ports of MDN Router

Channel interface with multiplexing and demultiplexing circuitry. The first flit of the
packet has the destination field; we need to compute if the packet is destined to an
output address to the east of the current router, and demultiplex the packet and Write
Enable signal accordingly.

We implement a small arbitration unit, to select one of the two channels competing
for the virtual channel output port. The arbitration is based on Round Robin scheduling,
where the channels are selected in order, with fair time sharing. The channel is changed,
when the PFU issues a Read Enable signal; however if a read enable signal is not is-
sued over a certain time (timeout period), then the channel is changed automatically.
The signals U(M)DN and FIFO Empty are multiplexed and the Read Enable signal is
demultiplexed according to the RR value.
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Our VHDL implementation instantiates a Router Input Buffer or Virtual Channel
according to the position of the MDN Router in the MDN switch, using the generate
command; thus, we do not have multiple VHDL codes for the MDN Routers.

3.9 Instantiating Routers and NIs in the MDN Switch

Like the UDN switch, MDN switch also requires an indexing scheme for module instan-
tiation. Similar to the UDN Switch Index, we define the MDN Switch Index, as Signal
Name (Source Output Port, Destination Column Address, Destination Row Address)
(Figure 3.21).

Figure 3.20: Multidirectional NoC

In UDN, all input/output ports and NIs were on the West and East sides respectively,
making it easy to describe which NIs should be connected to which router. In MDN, it
is additionally required to determine on which side of the MDN switch is a certain NI.
We have implemented two VHDL functions to convert an I/O port address into MDN
switch index. The first function (NIconnIN, Listing 3.2) is used for determining the
MDN switch index for inbound signals, whereas the second (NIconnOUT, Listing 3.3)
is for the outbound signals (for both INI and ONI). The functions basically check if
the value of an I/O port address is smaller than the corner values of the MDN switch
(e.g. Southwest corner = N/4 + 1), to compute on which side of the layout the port
is (Figure 3.20). MdnSwitchDim constant is equal to N/4, defining number of I/O port
pairs per switch side. These functions are called whenever an NI is instantiated in the
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top-level MDN switch design, to compute the MDN switch Index of NI signals, such that
they are correctly connected to the corresponding routers.

Figure 3.21: MDN Switch Indexes, for an MDN Switch of size N=8

Listing 3.2: Converting the Switch Output Address to MDN Switch Index for INI

f unc t i on NIconnIN ( destAddr : integer range 0 to ( SwitchN−1)) re turn NIconnection i s
v a r i ab l e NIconnect : NIconnection ;

begin
i f ( destAddr < ( SwitchN /4 + 1) ) then

NIconnect . dir := WEST ;
NIconnect . row := conv_integer ( destAddr )+1;
NIconnect . col := 0 ;

e l s i f ( destAddr < ( SwitchN /2 + 1) ) then
NIconnect . dir := SOUTH ;
NIconnect . row := MdnSwitchDim+1;
NIconnect . col := conv_integer ( destAddr)−MdnSwitchDim+1;

e l s i f ( destAddr < ( SwitchN ∗3/4 + 1) ) then
NIconnect . dir := EAST ;
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NIconnect . row := (3∗ MdnSwitchDim)−conv_integer ( destAddr ) ;
NIconnect . col := MdnSwitchDim+1;

e l s e
NIconnect . dir := NORTH ;
NIconnect . row := 0 ;
NIconnect . col := MdnSwitchM−conv_integer ( destAddr ) ;

end i f ;
r e turn NIconnect ;

end NIconnIN ;

Listing 3.3: Converting the Switch Output Address to MDN Switch Index for ONI

f unc t i on NIconnOUT ( destAddr : integer range 0 to ( SwitchN−1)) re turn NIconnection i s
v a r i ab l e NIconnect : NIconnection ;

begin
i f ( destAddr < ( SwitchN /4 + 1) ) then

NIconnect . dir := EAST ;
NIconnect . row := conv_integer ( destAddr )+1;
NIconnect . col := 1 ;

e l s i f ( destAddr < ( SwitchN /2 + 1) ) then
NIconnect . dir := NORTH ;
NIconnect . row := MdnSwitchDim ;
NIconnect . col := conv_integer ( destAddr)−MdnSwitchDim+1;

e l s i f ( destAddr < ( SwitchN ∗3/4 + 1) ) then
NIconnect . dir := WEST ;
NIconnect . row := (3∗ MdnSwitchDim)−conv_integer ( destAddr ) ;
NIconnect . col := MdnSwitchDim ;

e l s e
NIconnect . dir := SOUTH ;
NIconnect . row := 1 ;
NIconnect . col := SwitchN − conv_integer ( destAddr ) ;

end i f ;
r e turn NIconnect ;

end NIconnOUT ;

Listing 3.4: Calling Listing 3.2 and Listing 3.3 to Instantiate Input NIs on MDN Switch

Gen_NIinputs : f o r i in 0 to SwitchN−1 generate
NIinputs : NIinput

g ene r i c map
(

NIaddr => i

)
port map
(

reset => reset ,
clk => clk ,
−−−
ATMin => SwitchATMin ( i ) ,
WEin => SwitchWEin ( i ) ,
acceptOut => SwitchAcceptOut ( i ) ,
−−−
acceptIn => internalAccepts ( NIconnIN ( i ) . dir ) ( NIconnIN ( i ) . col ) ( NIconnIN ( i ) . row ) ,
flit_out => internalFlits ( NIconnOUT ( i ) . dir ) ( NIconnOUT ( i ) . col ) ( NIconnOUT ( i ) . row ) ,
WEout => internalWE ( NIconnOUT ( i ) . dir ) ( NIconnOUT ( i ) . col ) ( NIconnOUT ( i ) . row )

) ;
end generate ;

The code segment below (Listing 3.5) instantiates the matrix of MDN Routers. In
this way, all signals are connected in between the corresponding routers and NI modules.
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Listing 3.5: Nested Generate Loops for MDN Router Matrix Instantiation

Gen_Router_MDN_R : f o r i in 1 to MdnSwitchDim generate −−Row( i )
Gen_Router_MDN_C : f o r j in 1 to MdnSwitchDim generate −−Column( j )

Router4_MDN : Router4MDN

g ene r i c map −− Deleted f o r sav ing from the space in the r epor t .
port map
(

reset => reset ,
clk => clk ,
−−
acceptOutW => internalAccepts ( WEST ) ( j−1)(i ) ,
UDN_flit_inW => internalFlits ( EAST ) ( j ) ( i ) ,
writeEn_inW => internalWE ( EAST ) ( j ) ( i ) ,
−−−
acceptOutE => internalAccepts ( EAST ) ( j+1)(i ) ,
UDN_flit_inE => internalFlits ( WEST ) ( j ) ( i ) ,
writeEn_inE => internalWE ( WEST ) ( j ) ( i ) ,
−−−
acceptOutN => internalAccepts ( NORTH ) ( j ) ( i−1) ,
UDN_flit_inN => internalFlits ( SOUTH ) ( j ) ( i ) ,
writeEn_inN => internalWE ( SOUTH ) ( j ) ( i ) ,
−−−
acceptOutS => internalAccepts ( SOUTH ) ( j ) ( i+1) ,
UDN_flit_inS => internalFlits ( NORTH ) ( j ) ( i ) ,
writeEn_inS => internalWE ( NORTH ) ( j ) ( i ) ,
−−−
acceptInW => internalAccepts ( EAST ) ( j ) ( i ) ,
UDN_flit_outW => internalFlits ( WEST ) ( j−1)(i ) ,
writeEn_outW => internalWE ( WEST ) ( j−1)(i ) ,
−−−
acceptInE => internalAccepts ( WEST ) ( j ) ( i ) ,
UDN_flit_outE => internalFlits ( EAST ) ( j+1)(i ) ,
writeEn_outE => internalWE ( EAST ) ( j+1)(i ) ,
−−−
acceptInN => internalAccepts ( SOUTH ) ( j ) ( i ) ,
UDN_flit_outN => internalFlits ( NORTH ) ( j ) ( i−1) ,
writeEn_outN => internalWE ( NORTH ) ( j ) ( i−1) ,
−−−

acceptInS => internalAccepts ( NORTH ) ( j ) ( i ) ,
UDN_flit_outS => internalFlits ( SOUTH ) ( j ) ( i+1) ,
writeEn_outS => internalWE ( SOUTH ) ( j ) ( i+1)

) ;
end generate ;

end generate ;





UDN/MDN Routing &
Scheduling 4
In Chapter 3, there have been made many forward references to this chapter, because

the routing and scheduling units constitute the brain of the UDN and MDN switches.
The routing unit computes the path a packet should travel in between the input and

output ports of the switch, whereas the scheduling unit resolves the contention among
the input buffers competing for the same output port and controls the arbiter to virtually
connect one of the input buffers to the output port.

In this chapter, we propose routing and scheduling algorithms for UDN and MDN
switches. [1] proposed the UDN XY Modulo and MDN XY Modulo routing algorithms.
With some minor corrections and changes for better hardware performance, we apply
UDN XY Modulo as it was proposed. MDN XY Modulo algorithm in [1], on the other
hand, requires different input parameters than the UDN XY Modulo algorithm. This
results in distinct UDM and MDN packets, with different header data fields. Instead,
we propose a new algorithm for MDN routing, which uses the same input parameters as
the UDN XY Modulo algorithm.

In [1], the scheduling scheme is not explained in details, but it is mentioned that it is
Round Robin based. In this chapter, we also discuss some possible scheduling schemes
based on Round Robin for UDN and MDN switches.

4.1 Routing in UDN and MDN Switches

In a NoC, the routing path for a packet can be computed all-at-once, i.e. at NI, as
it is implemented in Best Effort Switch of Aetherial NoC [36] or incrementally, i.e. at
the Routers. If all-at-once routing is chosen, this will create overhead in the U(M)DN
packet, since the decision for each router has to be encoded on the packet header. On
the contrary, in the incremental routing, the packet header does not have the full routing
path, but the destination address; therefore, the routing path is computed one step at a
time at each router, until the packet is ejected from the switch.

We choose to implement the incremental routing, because the overhead for all-at-
once routing in the U(M)DN packet gets very high as the switch size increases and the
header/payload ratio becomes inefficient. Here is a step by step explanation why we
cannot implement a feasible all-at-once routing scheme for UDN switch. In a U(M)DN
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packet,

Routing Path Byte-Width = Network Diameter * Bit-Width for Direction Encoding,
Network Diameter = (2 * CEILING (SQRT (N*M)) - 1
Bit-Width for Direction Encoding = LOG2 (Number of directions)
Number of Directions = 4 (i.e. West, North, South, East)

In a UDN switch of N=M=64, Routing Path = 127 × 2 bits ≈ 32 bytes, which is an
unacceptable overhead with respect to 53-bytes payload encapsulating the ATM packet.
In addition, all-at-once routing will only permit Unicast traffic, but will not be able to
support Multicast.

Both UDN and MDN Routing Algorithms are based on modulo operation. The
algorithms make a balanced distribution of the traffic over the columns or rows, thus
earning its name XY Modulo; this means that the modulo operation is applied if the
communication is on the X axis (from switch’s West Input Port to switch’s East Output
Port as in UDN and MDN, or from switch East Input Port to switch West Output
Port as in MDN) or on the Y axis (from switch’s North Input Port to switch’s South
Output Port, or vice versa, as in MDN). In Figure 4.1, we exemplify the XY Modulo
routing on the X axis, where packets are injected into the switch from i0 input port,
with destinations to the o0 - o3 output ports. The packets are routed on different router
columns per input/output port pairs, distributing the load on the switch.

Figure 4.1: XY Modulo Routing on UDN and MDN Switches

Another important parameter of UDN and MDN Routing Algorithms is the T-Value.
With the T-Value, the proposed routing algorithms can be made deterministic, obliv-
ious or even adaptive. T-Value is a field in the U(M)DN packet header, and it is used
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to alter which column should be in the vertical routing path of a packet. If T-Value
is set to 0, the routing is deterministic, meaning that it will always be routed through
the same router column. If T-Values are set to a constant value, or random values, the
packet could be routed in different columns which make the routing oblivious. If a load
observation unit is implemented (not a part of this thesis) to compute the T-Values
for better load balancing, then the routing would be adaptive.

4.1.1 UDN Routing Algorithm: UDN XY Modulo

UDN XY Modulo Routing Algorithm proposed in [1] makes a balanced distribution of
the packets on the columns. There has been made some changes and restrictions on the
proposed algorithm in [1], in order to correct a minor mistake and make the algorithm
more suitable for hardware implementation. The changes are stressed with the bold font
in Listing 4.1. The conditional equation of UDN XY Modulo algorithm, ((destAddr
mod M) = ((RouterRowAddr + RouterColAddr + T Value) mod M)), may
evaluate true even if the current packet row is equal to the destination row, which results
in an erroneous routing; therefore the conditional equation if (RouterRowAddr =
destAddr) is added in the code.

The input parameters of the algorithm are previous router direction (Pre-
vRouter), destination address (destAddr) and T-Value. The internal constants
are Router Row Address, Router Column Address, and M. Modulo M opera-
tion requires division in case M 6= 2m (m ∈ N0), and it can be implemented based on
the binary division by a constant integer algorithm; however in case M = 2m, it can
be implemented as a simple bit-selection operation, which avoids the extra cycles and
hardware caused by the division operation. This restriction can be extended to allow M
= N -1, with some minor modification in the conditional modulo equation, where M is
substituted by N, if and only if N = 2n, where n ∈ N1.

Listing 4.1: UDN XY Modulo Routing Algorithm

case PrevRouter i s
when NORTH =>

i f ( RouterRowAddr = destAddr ) then
NextRouter <= EAST ;

e l s e
NextRouter <= SOUTH ;

end i f ;
when SOUTH =>

i f ( RouterRowAddr = destAddr ) then
NextRouter <= EAST ;

e l s e
NextRouter <= NORTH ;

end i f ;
when WEST =>

i f ( RouterRowAddr = destAddr ) then −−CORRECTION OVER [ 1 ]
NextRouter <= EAST ;

e l s i f ( ( destAddr mod M ) = ( ( RouterRowAddr + RouterColAddr + T_Value ) mod M ) ) then
i f ( RouterRowAddr > destAddr ) then

NextRouter <= NORTH ;
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e l s e
NextRouter <= SOUTH ;

end i f ;
e l s e

NextRouter <= EAST ;
end i f ;

end case ;

4.1.2 MDN Routing Algorithm: MDN XY Modulo

[1] proposes an MDN Modulo XY routing algorithm that requires the direction of input
port whence the packet was injected to the switch and the direction of the destination
port whence the packet will be ejected out as input parameters; as a result these data
fields have to be included in the U(M)DN packet. We suggest a replacement over the
approach in [1]; our suggestion does not require these extra parameters; instead it uses
the same input parameters as the UDN XY Modulo, previous router direction (Pre-
vRouter), destination address (destAddr) and T-Value. The algorithm code is
1/4th of the proposal in [1] in terms of lines of codes, and the hardware is also simpler.

In the UDN switch, the input and output ports are numbered from 1 to N. Since
the input ports are only on the West and output ports are only on the East, there is no
ambiguity on which side of the switch layout the ports are. However, in the MDN switch,
it is needed to compute if a certain I/O port lies on a certain side of the switch, which
complicates the routing algorithm. As a solution, we propose that the input/output
ports are also indexed with the same scheme as routers in the switch matrix, as shown
in Figure 4.2. In this way, we can describe the position of the port on any sides of the
switch.

Figure 4.2: MDN Switch, Routers and I/O Ports Indexed with (Column, Row) Indices

In order to translate the output addresses into (column, row) addresses (e.g. 1 →
(0, 1)), we need a simple converter (Listing 4.2), where the MdnSwitchM(Direction)S
constants refer to the corner point addresses of the switch I/O ports.

Listing 4.2: Switch Output Address to (Row Column) Address Converter
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i f ( destAddr < MdnSwitchMSouthS ) then
MdnDestAddr . row := conv_integer ( destAddr )+1;
MdnDestAddr . col := 0 ;

e l s i f ( destAddr < MdnSwitchMEastS ) then
MdnDestAddr . row := MdnSwitchDim+1;
MdnDestAddr . col := conv_integer ( destAddr)−MdnSwitchDim+1;

e l s i f ( destAddr < MdnSwitchMNorthS ) then
MdnDestAddr . row := (3∗ MdnSwitchDim)−conv_integer ( destAddr ) ;
MdnDestAddr . col := MdnSwitchDim+1;

e l s e
MdnDestAddr . row := 0 ;
MdnDestAddr . col := MdnSwitchM−conv_integer ( destAddr ) ;

end i f ;

The MDN XY Modulo routing algorithm we propose (Listing 4.3) is a natural exten-
sion of UDN XY Modulo, for output ports placed on multiple sides. XY modulo operation
is applied only when a packet is transmitted vertically or horizontally (i.e. from/to switch
I/O ports (East→West), (West→East), (North→South), (South→North)). T Value is
very similarly used to vary the columns used in horizontal packet transmission, and the
rows used in vertical packet transmission.

Listing 4.3: MDN XY Modulo Routing Algorithm
i f ( destAddrRC . col = RouterColAddr ) then

i f ( destAddrRC . row < RouterRowAddr ) then
NextRouter <= NORTH ;

e l s e
NextRouter <= SOUTH ;

e l s i f ( destAddrRC . row = RouterRowAddr ) then
i f ( destAddrRC . col < RouterColAddr ) then

NextRouter <= WEST ;
e l s e

NextRouter <= EAST ;
e l s e

case PrevRouter i s
when WEST =>

i f ( destAddrRC . col > RouterColAddr ) then
i f ( destAddrRC . row = ( ( ( RouterRowAddr+RouterColAddr+T_Value )

mod MdnSwitchDim ) + 1) ) then
i f ( destAddrRC . row < RouterRowAddr ) then

NextRouter <= NORTH ;
e l s e

NextRouter <= SOUTH ;
e l s e

NextRouter <= EAST ;
e l s e

i f ( destAddrRC . row < RouterRowAddr ) then
NextRouter <= NORTH ;

e l s e
NextRouter <= SOUTH ;

when EAST =>
i f ( destAddrRC . col < RouterColAddr ) then

i f ( destAddrRC . row = ( ( ( RouterRowAddr+RouterColAddr+T_Value )
mod MdnSwitchDim ) + 1) ) then

i f ( destAddrRC . row < RouterRowAddr ) then
NextRouter <= NORTH ;

e l s e
NextRouter <= SOUTH ;

e l s e
NextRouter <= WEST ;

e l s e
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i f ( destAddrRC . row < RouterRowAddr ) then
NextRouter <= NORTH ;

e l s e
NextRouter <= SOUTH ;

when NORTH =>
i f ( destAddrRC . row > RouterRowAddr ) then

i f ( destAddrRC . col = ( ( ( RouterRowAddr+RouterColAddr+T_Value )
mod MdnSwitchDim ) + 1) ) then

i f ( destAddrRC . col < RouterColAddr ) then
NextRouter <= WEST ;

e l s e
NextRouter <= EAST ;

e l s e
NextRouter <= SOUTH ;

e l s e
i f ( destAddrRC . col < RouterColAddr ) then

NextRouter <= WEST ;
e l s e

NextRouter <= EAST ;
when SOUTH =>

i f ( destAddrRC . row < RouterRowAddr ) then
i f ( destAddrRC . col = ( ( ( RouterRowAddr+RouterColAddr+T_Value )

mod MdnSwitchDim ) + 1) ) then
i f ( destAddrRC . col < RouterColAddr ) then

NextRouter <= WEST ;
e l s e

NextRouter <= EAST ;
e l s e

NextRouter <= NORTH ;
e l s e

i f ( destAddrRC . col < RouterColAddr ) then
NextRouter <= WEST ;

e l s e
NextRouter <= EAST ;

end case ;

The algorithm is simulated and verified in MDN switches of various I/O sizes. In
the simulations under uniform traffic, the packets are distributed equally to the output
ports, which show that the solution proposed in [1] can be securely replaced by this
algorithm.

4.2 Scheduling in UDN and MDN Switches

The scheduling unit resolves the contention among the input buffers of a router, com-
peting for the same output port, as well as controlling the arbiter to virtually connect
the chosen input buffer to the output port.

We propose the use of some basic scheduling schemes based on Round Robin for
UDN scheduling. These are static, dynamic and weighted round robin schemes. In
MDN, because of its uniform structure, only static scheduling is implemented.

In this section, we first investigate the traffic load per input/output port pairs in the
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UDN and MDN switches, and then explain the proposed scheduling schemes.

4.2.1 UDN Scheduling

The scheduling of the UDN switch is an asymmetric bipartite graph matching problem.
This can be formulated as G = (I, O, E) where I denotes input ports (W, N, S), O
denotes output ports (E, N, S) and E denotes the edges. The graph is a directed graph.
The unmatched graph is presented in Figure 4.3.

Figure 4.3: Bipartite Graph Matching Problem in UDN

The UDN scheduling algorithms we propose are based on Round Robin (RR)
scheme. The idea that lies behind RR scheme is that each input buffer in a router is
connected to the output port, in fair amounts, such that none of them suffers starvation
and provide the optimum throughput. This can be easily implemented via circular
shift registers, where the most significant value register is the RR pointer, to control
the arbiter to connect the corresponding input port to the output port. In the RR
Registers (RRR), all of the possible input ports for a given output port are listed
(Figure 4.4). When Shift signal is set, the registers are shifted according to the Shift
Amount. There exists an RRR for each Packet Forwarding Unit (PFU). The RRR for
the East PFU of a 3 I/O Port UDN Router is illustrated in Figure 4.5. Let us name each
period required to successfully transfer a packet from the input buffer of the current
router to the input buffer of the next router a round. After each round, RR pointer
moves to the next RR value.

Figure 4.4: RRRs for All Output Ports (Inner Circle), and the Input Ports that can
access the respective output ports (Outer Circle)
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Figure 4.5: Implementation of the East RRR for 3 I/O Port UDN Router

Here is a step-by-step explanation on how the scheduling and arbitration works.

1) The arbiters control the validity and direction of the head-of-line packets in the
input buffers they are related to. East Arbiter controls West, North and South buffers;
North Arbiter controls West and South buffers; and South Arbiter controls West and
North buffers.

Figure 4.6: Arbiters control the head-of-line packets in the input buffers

2) The matching packet/output port combinations are kept, whereas the others are
discarded. At this point, North Arbiter cannot make any connections, South Arbiter
can make only one connection to West input buffer, and East Arbiter has to choose in
between the South and North input buffers. The decision is made according to the RR
pointer (shown with the small arrow on RRRs); the order of priority is (West, North,
and South). Therefore, East Arbiter will choose the North input buffer.
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Figure 4.7: The valid combinations are kept, whereas the others are discarded

3) The final connections are made.

Figure 4.8: Final Connections in between the input buffers and PFUs

In Section 3.5.1, we discussed that design of the arbiter helps reducing the eight
types of UDN Routers into two type; one for 2 I/O port and one for 3 I/O port router.
Let’s consider the case when a certain traffic flow does not exist logically for a certain
router type. For example, the North→East flow does not exist in UDN Router Type
2, even though the physical ports exist; therefore this flow is never going to take place.
According to our design, regardless of if the East RR pointer points to the North value,
the arbiter will check if there is a valid packet at the West, South and North input ports
destined to the East output port; once it has the information of valid packets, it will
choose them according as in the above example. Since North input buffer cannot have
a packet destined to East (in UDN Router Type 2), the next possible input buffers will
be granted permission. All of these operations are realized in one cycle, and therefore
no extra cycles are spent in case of contention.
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We propose three arbitration schemes, based on the RRRs described in the previous
paragraphs, to schedule the UDN switch: Static, Dynamic and Weighted Arbitration.

The difference in between the Static and Dynamic arbitration lies in the shift amount,
used to shift the RR pointer. In Static Arbitration, the shift amount is always equal to 1;
whereas in Dynamic Arbitration, the shift amount depends on the rank of served input
port. For example, in the East RRR, the register values are West, North, and South;
if the RR pointer points to West, but South (rank = 3) is served (because there are
no valid packets in the West input buffer (rank = 1), and nor in the North (rank=2)),
the pointer will be shifted by 3. Dynamic arbitration requires a barrel shifter for the
hardware implementation, as opposed to the constant shifter in the static arbitration.

The static and dynamic arbitration schemes are far from considering the discussion
of traffic flow frequencies in Section 3.5.1. In Table 3.4, it has been shown that router
I/O port pairs have different frequencies for transmitting a packet. In order to involve
these frequencies into the arbitration scheme, the Round Robin registers need to have
weighted values, thus earning its name to the Weighted Arbitration. However, in order
to use this arbitration scheme, we have to go one step back, and implement seven types
of UDN Routers (one 2 I/O port is enough because of mirrored nature of Type 0 and
7) as opposed to reducing them into 2 types, since the RRR organization is different for
each router type.

In Table 3.4, the weights of traffic flows are presented for different router types. In
2 I/O Port Routers (Type 0 and 7), the ratio of West → East flow to South(North) →
East flow is 2x/1x. In 3 I/O Port Routers (Type 1 and 3), the West → East flow is also
twofold the South(North) → East flow. Then, we need to allocate three locations in the
East RRR of 2 and 3 I/O port routers, where two of them have the value West, and one
South(North).

Please note that the shift amount is always 1 in the weighted arbitration scheme.
The ratios and RRR widths change according to the (N, M) values.

4.2.2 MDN Scheduling

The scheduling of the MDN is simpler compared to the UDN switch. First, 4 I/O Port
MDN Routers are all the same type, and they allow traffic flow in all input/output port
combinations. In addition, the traffic flows have all the same frequencies. Consequently,
we only implement Static Round Robin Arbitration for MDN scheduling, which will
satisfy the scheduling requirements of the MDN switch due to its uniform router structure
and traffic flows.
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In this chapter, we present the synthesis results for the UDN and MDN switches. The

area and frequency results for specific modules and switches of various (N, M)/(N)
sizes are presented. The synthesis is realized on Xilinx ISE 11.1, using Xilinx Syn-

thesis Technology (XST), with the settings “Optimization Goal: Speed”, “Optimization
Effort: Normal” and “Keep Hierarchy: No”. The specific FPGA device is Virtex 5 -
XC5VTX240T, FF1759, -2.

The XST reports the area results in terms of ’Number of Slice LUTs’ and ’Num-
ber of Slice Registers’, unlike the results for older platforms like Virtex 4, which
reported a single value for slice usage; therefore, all the performance/cost analysis will
be reported in 2-tuple, separately for the ’Number of Slice LUTs’ and ’Number of Slice
Registers’. We do not present the results in terms of logic cell count, gate count or
ASIC area size, since the design is made for the reconfigurable platforms, and therefore
the conversions of the FPGA metrics using certain formulas are not meaningful, even in
terms of providing scientific estimates.

A brief description about the Virtex-5 slice architecture will be that it consists of
4 6-bit input look-up tables (LUTs) and 4 Flip-Flops (FFs). A 6-bit input LUT can
implement a more complex function compared to a 4-bit input LUT (as in older FPGA
platforms), increasing the frequency of the circuitry and decreasing the resource usage
at the same time.

A question might arise why we present synthesis results, which are only an estimate
of the “place & route” results. There are three main reasons: First, our switch interface
involves very wide ATM ports which cannot be mapped onto an FPGA without serializer
and deserializer units; however, the presence of these units would affect the place &
routing results. Second, the whole synthesis, mapping and place & routing process takes
very long times for large switch sizes; because we want to obtain results over a wide range
of (N, M)/(N) values, running all processes makes it very impractical for the purposes
of this thesis. Third, XST tool, starting from version 9.1, claims that the correlation in
between the synthesis and place & route tools have been improved, resulting in synthesis
results with higher quality.

Please note that, in the designs, we did not use any embedded FPGA resources like
operational modules or block rams; the modules are described in a way that they would
only infer Slice LUTs and Slice Registers, but not other embedded FPGA resources. In
this way, a better performance/cost analysis can be carried out.
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5.1 UDN Synthesis Results

The modules that constitute the UDN switch have different tasks and therefore different
weights on the combinational and sequential circuits. This can be observed by comparing
the weights of the number of LUTs and Registers for any module. The synthesis results
of the individual modules are given in Table 5.1. The input buffer depth is set to 2.

Table 5.1: Synthesis Results for individual UDN Modules

From the Table 5.1.1, the following information can be obtained:

• The critical path of the switch is on the router with highest port number (i.e. 3
I/O, in UDN)

• Considering that there are 2 input buffers in the 2 I/O port Router, the remaining
LUTs are used for the implementation of the arbiter, routing logic and flow control
logic. (≈600 LUTs for 2 I/O Port Router)

• Almost all registers are used in the input buffers for the NIs and Routers, except
some simple counters used in the flow control. There are also no pipe-stages other
than the buffers themselves.

The synthesis for the UDN switch is carried out for a wide range of (N, M) combina-
tions, in order to make the area (cost) and frequency (performance) exploration over a
large number of samples. The resulting frequencies, Number of Slice LUTs and Number
of Slice Registers are given in Table 5.2, Table 5.3, and Table 5.4. In the tables, the blue
colors (light gray in B&W copy) imply that the switch fits on the FPGA chip it was
synthesized for; whereas the red colors (dark gray in B&W copy) imply that the switch
uses more than 100% resources. In order to obtain these results, the constraint on 100%
was removed. These circuits can be hypothetically mapped on an FPGA with greater
slice count. The cells with no values are invalid (N, M) combinations. The respective
charts for the tables are also presented.

The critical path in the switch, which determines the operational frequency of the
all circuitry, is on the 3 I/O Port Router, and it starts from the Round Robin registers of
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any arbiter, passes through the flow control logic, then through the Read Enable signal
that decrements the Read Pointer in the Input Buffer and ends on the Status Counter,
which determines if the buffer is FULL, EMPTY or in between.

Table 5.2: Frequency Results for various (N, M) Switches in MHz

Figure 5.1: Frequency Results for various (N, 1) Switches

The frequency depends on the number of switch I/O Ports (N value), but not the M
value. There are very small variances among the values for different M, as a result of
the heuristic algorithms used in the synthesis. Even though the critical path does not
change from N value to N value, the routing delay increases since the usage of FPGA
resources also increase, decreasing the operational frequency of the circuit. In an ASIC
synthesis, there would be very little difference among different N values as well, since
the critical path remains the same.

The number of slice LUTs is the parameter that defines the area/cost of the combi-
national logic, in FPGA terminology. In Table 5.3, the synthesis results for this metric
are listed. Two graphs are presented, one plotted versus M and the other versus N.

In Figure 5.2, it can be observed that the increase in the charts are linear, except
when N=M, where there is very small increase. An important note about the synthesis
is that the T-Values were tied to 0 during the process; as a result, when N=M, the final
column does not infer full arbiters, but simplified modules which support only West’East
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Table 5.3: Number of Slice LUTs for various (N, M) Switches

Figure 5.2: Number of Slice LUTs vs. M

traffic flow. This is not something we have done intentionally; the synthesis optimiza-
tion algorithms automatically simplify the arbitration modules, due to the reasoning
explained on Figure 3.14. The increase is also linear for the charts in Figure 5.3. This
implies that as N x M product is increased, the cost increases quadratically, resulting in
high resource costs.

In Figure 5.4 and Figure 5.5 it is shown that the “Number of Slice Registers” increases
linearly for plots vs. M and N, similar to the “Number of Slice LUTs” charts.

5.2 MDN Synthesis Results

The MDN switch inherits many modules from the UDN switch. MDN XY Modulo Unit,
Virtual Channel and 4 I/O Port Router are the main additions to the building blocks.
The synthesis results of the individual modules are given in Table 5.5.
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Figure 5.3: Number of Slice LUTs vs. N

Table 5.4: Number of Slice REGs for various (N, M) Switches

Table 5.5: Synthesis Results for individual MDN Modules
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Figure 5.4: Number of Slice REGs vs. M

Figure 5.5: Number of Slice REGs vs. N

The synthesis for the MDN switch is carried out for a wide range of (N) values,
in order to make the area (cost) and frequency (performance) exploration over a large
number of samples. The resulting frequencies, Number of Slice LUTs and Number of
Slice Registers are given in Table 5.6, Table 5.7, and Table 5.8.

The critical path in the MDN switch, which determines the operational frequency
of the all circuitry, is on the 4 I/O Port Router, and it passes through the same exact
signals as in 3 I/O Port UDN Router.
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Table 5.6: Frequency Results for various MDN Switches

Figure 5.6: Frequency vs. N, in MDN

Table 5.7: Number of Slice LUTs for various MDN Switches
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Figure 5.7: Number of Slice LUTs vs. N, in MDN

Table 5.8: Number of Slice Registers for various MDN Switches

Figure 5.8: Number of Slice Registers vs. N, in MDN



5.3. UDN/MDN COMPARISON 59

5.3 UDN/MDN Comparison

The UDN vs. MDN switches comparison is tabulated in Table 5.9. Even though the
4 I/O Port MDN Router consumes twice the amount of resources as the 3 I/O Port
UDN Router, and 3.5 times as the 2 I/O Port UDN Router, the comparison of the
overall UDN and MDN switches show that MDN is much more cost efficient for a given
N value (number of switch input/output ports). On the other hand, the operational
frequencies of the MDN switches of various sizes are below the operational frequencies of
the UDN switches, which affects the performance. The costs of the UDN switch increase
quadratically, as the N ×M product is increased, unlike the MDN switch which increases
subquadratically ((N/4)2). Therefore, in terms of costs, MDN is preferable over UDN.

The performance does not only depend on the frequency, but throughput as well,
which will be explored in Chapter 6 and 7.

Table 5.9: UDN and MDN Switch Comparison





UDN/MDN Simulations 6
In this chapter, we present the simulation results of various sizes of UDN and MDN

switches, the arbitration schemes we proposed, and the usage of T-Value for load
balancing.

The simulations in this chapter are all carried out on fully synthesizable circuitry,
with the exception of packet generation units; therefore the simulations present reliable
information on the performance, which will be used together with the frequency results
in Chapter 5, to yield performance metrics of the switches.

We have used Modelsim, as the HDL simulation tool.

6.1 Simulation Environment

We have implemented two modules as a part of the testbench; namely, ATMgenerator and
ATMsink. ATMgenerator uses open-source SynthWorks’ Random Library (VHDL) to
generate uniform and weighted pseudo-random values, which are used as the destination
address for the ATM packets. ATMgenerator module outputs the packet information
on a text file, for each generated ATM packet. This information is composed of 1)
Destination Address, 2) Source Address, and 3) Packet ID. This information is also
added to the ATM packet’s payload, for verification purposes; ATMsink outputs the
ejected packet information on a text file, and the two files are compared such that it can
be verified that the injected and ejected ATM packets correspond to each other. In this
way, we also obtain the number of injected and ejected packets, at any given time in the
simulation, in order to compute the throughput performance of the system.

6.1.1 Traffic Types

The simulation is carried out for both of the UDN and MDN switches, under the
Bernoulli Uniform and Unbalanced (Weighted) Traffic.

The Bernoulli Uniform Traffic is commonly used for testing of the network
switches. In the Bernoulli Uniform Traffic, the probability that an input packet is des-
tined to a certain output port is equal to the probability of any other output ports. This
ensures that the traffic load is distributed equally among all input/output port pairs.

The Unbalanced (Weighted) Traffic requires that the traffic is not distributed
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Figure 6.1: Simulation Environment Block Diagram

equally on the output ports as in Bernoulli Uniform Traffic, but it should be distributed
with a certain weight on some of the output ports. In this thesis we define the weight
in the following scheme: For each generated packet, the probability that the packet is
destined to the output port Oi is equal to (i / (

∑N
n=1 n); for example if the switch I/O

port number, N = 4, then a packet will have the probability of 1/10 for O1, 2/10 for O2,
3/10 for O3 and 4/10 for O4.

6.2 UDN Simulations

The UDN simulations are carried out for all (N, M) switch size combinations, for which
the synthesis results are reported in Section 5.1. In this way, the corresponding “Number
of Average Packets / Cycle” is calculated for each (N, M) combination.

The simulations are carried out for 25000 cycles (250 s, for 100 MHz), with input
buffer width of two and static arbitration. Each 100 cycles, the simulator computes the
average number of packets injected to the switch per input port, the average number of
packets ejected from the switch per output port, “average number of packets per output
port per cycle”, and “percentage of sent packets” (number of output packets / number
of input packets × 100). We cannot present this data in a table due to its large size;
however the charts from Figure 6.2 to Figure 6.5 present the respective charts for the
tables corresponding to the simulations of UDN switches (2,1) and (3,1). As it can be
observed on the charts, the values increase (or/and decrease) until they saturate to a
final value. The region before the saturation is the “cold start” region, during when the
switch routers’ buffers are filled, as the packets proceed through the switch; the saturated
values represent the switches under full performance. “Percentage of sent packets” charts
show how the number of input packets to output packets ratio also saturates after the
cold start period; the final saturated value indicates the latency of the switch.
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In the following subsection, we will only provide the saturated values, instead of pre-
senting the tables or the charts for the simulations. The saturated values are calculated
as the average of the values in between 20’000th and 25’000th cycles.

Figure 6.2: Average Number of Packets/Output Port/Cycle, UDN (2,1)

Figure 6.3: % Sent Packets, UDN (2,1)

Figure 6.4: Average Number of Packets/Output Port/Cycle, UDN (3,1)

6.2.1 Simulations under Bernoulli Uniform Traffic

We provide the simulation results of UDN switches with possible (N, M) values, un-
der Bernoulli Uniform Traffic, in Table 6.1 - Table 6.2, and their respective graphs in
Figure 6.6 - Figure 6.7.
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Figure 6.5: % Sent Packets, UDN (2,1)

Table 6.1: Average Number of Packets/Output Port/Cycle, after saturation

Table 6.2: % Sent Packets, after saturation

“Number of Average Packets/Output Port/Cycle” is an important factor of the
“throughput performance” function of the switch, together with the “operational fre-
quency”. As M is increased for constant N series, the “Number of Average Packets/Out-
put Port/Cycle” value increases logarithmically, until it saturates at M = N - 1. When
M = N, the value decreases slightly, because of the delay caused by the abundant router
column.
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Figure 6.6: Average Number of Packets/Output Port/Cycle vs. M, after saturation

Figure 6.7: % Sent Packets vs. M, after saturation

The behavior of the series in “% Sent Packets” vs. M graph can be explained with
two different phenomena. It is observed that the series first increase logarithmically and
then decrease linearly; the increase is caused by the fact that when M is too small, there
is congestion over the routers to route the packets from/to relatively large number
of I/O ports of the switch; as M increases the congestion decreases, and thus the series
increase. The reason for the series to decrease after a certain M values is that the number
of columns, and therefore the number of hops for the packet to travel, suppresses the
first phenomena; as M increases, there are more stages (routers) that the packets must
be routed through, and therefore the series start to decrease.

In Figure 6.6, we have shown that the constant N series logarithmically increase, when
M is also increased. In order to look to the same data set from another perspective,
the “Number of Average Packets/Output Port/Cycle” vs. N graph with constant M
series is plotted (Figure 6.8); in this new graph, the constant M series decrease as N is
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increased. This means that as N is increased, the switch’s performance per output
port decreases.

Figure 6.8: Average Number of Packets/Output Port/Cycle vs. N, after saturation

In order to evaluate the real performance of a switch, “Number of Average Packet-
s/Output Port/Cycle” parameter should be transformed into “Number of Packets/Cy-
cle” (Table 6.3) by multiplying the values with the corresponding N value, such that
the overall performance of the switch is obtained. This new parameter is plotted vs.
M (Figure 6.9) and N (Figure 6.10). N series increase logarithmically until M = N - 1,
and then slightly decrease at M = N. M series increase slightly for small M values, and
linearly for greater M values; when M is too small compared to N, the traffic on the
switch gets congested, and therefore there is little performance increase, and even some
decrease for greater N values. The graphs show that the UDN switch scales well under
the Bernoulli Uniform Traffic.

Table 6.3: Number of Packets/Cycle
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Figure 6.9: Number of Packets/Cycle vs. M, after saturation

Figure 6.10: Number of Packets/Cycle vs. N, after saturation

6.2.2 Simulations under Unbalanced (Weighted) Traffic

We provide the simulation results of UDN switches with possible (N, M) values, under
Unbalanced (Weighted) Traffic, in Table 6.4 - Table 6.5, and their respective graphs in
Figure 6.11 - Figure 6.12.

The behavior of the charts in Figure 6.11 - Figure 6.12 are already explained in the
previous subsection. Here, we will only discuss the differences from the results under
Bernoulli Uniform Traffic.
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Table 6.4: Average Number of Packets/Output Port/Cycle, after saturation

Table 6.5: % Sent Packets, after saturation

Figure 6.11: Average Number of Packets/Output Port/Cycle vs. M, after saturation

Figure 6.6, the performance of greater N series gets very close to the performance of
smaller N series, as M increases and the series saturate. However, in Figure 6.11, greater
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Figure 6.12: % Sent Packets vs. M, after saturation

N series perform worse than the smaller N series. For example, “Average Number of
Packets/Output Port/Cycle” is equal to 0.0994 for Switch (2, 1) and 0.0934 for Switch
(32, 32) under Bernoulli Uniform Traffic, where the difference is much smaller, as opposed
to the difference in between 0.0878 for Switch (2, 1) and 0.0521 for Switch (32, 32) under
Unbalanced (Weighted) Traffic. In a similar way, the values of N series are smaller when
M = N than when M = 1, under Unbalanced (Weighted) Traffic, as opposed to the
simulation under Bernoulli Uniform Traffic, where the values when M=N are greater
than when M=1.

In Figure 6.13, “Average Number of Packets/Output Port/Cycle” vs. N graph is
presented.

Following the discussion in the previous subsection, we compute “Number of Pack-
ets/Cycle” (Table 6.6), in order to obtain the overall performance of the switches. The
charts “Number of Packets/Cycle” vs. M and vs. N are presented in Figure 6.14) and N
(Figure 6.15. The graphs show similar behavior to the simulations under Bernoulli Uni-
form Traffic, and therefore indicate that UDN Switch scales well under the Unbalanced
Traffic.
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Figure 6.13: Average Number of Packets/Output Port/Cycle vs. N, after saturation

Table 6.6: Number of Packets/Cycle

6.3 MDN Simulations

The MDN Switch simulations are carried out for all (N), for which the synthesis results
are reported in Section 5.2. In this way, the corresponding “Average Number of Packets
/ Cycle” is calculated for each N value. The simulations are performed in the same way
as UDN simulations, under the Bernoulli Uniform Traffic and Unbalanced (Weighted)
Traffic, and the resulting charts are presented in the following subsections.
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Figure 6.14: Number of Packets/Cycle vs. M, after saturation

Figure 6.15: Number of Packets/Cycle vs. N, after saturation

6.3.1 Simulations under Bernoulli Uniform Traffic

The simulation results of MDN Switches with possible (N) values, under Bernoulli Uni-
form Traffic, are presented in Table 6.7 and its respective graph in Figure 6.16.

In Figure 6.16, as the N values increase, there is first some decrease in the values
of “Average Number of Packets/Output Port/Cycle” until N=12, and then some loga-
rithmic increase. The decrease is because of the multi-hop nature of the MDN switch:
when N=4, there is one single router, and therefore no congestion in the traffic flows;
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Table 6.7: Average Number of Packets/Output Port/Cycle, after saturation

Figure 6.16: Average Number of Packets/Output Port/Cycle vs. N, after saturation

however, as the number of I/O ports increase, the traffic gets congested, decreasing the
throughput. The increase after N = 16, can be explained with the fact that the number
of routers becomes greater than the number of inputs, supporting higher throughput.

In order to compute the “Number of Packets / Cycle”, the overall throughput of the
switch, we multiply the values in Table 6.7 by N, and present the results in Table 6.8
and Figure 6.17. The graph increases linearly, as N is increased, which means that it
scales well under the Bernoulli Uniform Traffic.
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Table 6.8: Number of Packets/Cycle, after saturation

Figure 6.17: Number of Packets/Cycle vs. N, after saturation
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6.3.2 Simulations under Unbalanced (Weighted) Traffic

The simulation results of MDN Switches with possible (N) values, under Unbalanced
(Weighted) Traffic, are presented in Table 6.9 and its respective graph in Figure 6.18.

Table 6.9: Average Number of Packets/Output Port/Cycle, after saturation

Figure 6.18: Average Number of Packets/Output Port/Cycle vs. N, after saturation

It is noteworthy to observe that MDN Switch performance per port decreases linearly
under the Unbalanced Traffic, as N is increased. Comparing its performance to the MDN
simulations under Bernoulli Uniform Traffic, it can be concluded that the switch cannot
be scaled under Unbalanced Traffic.

In order to compute the “Number of Packets / Cycle”, the overall throughput of the
switch, we multiply the values in Table 6.9 by N, and present the results in Table 6.10
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and Figure Figure 6.19. The graph increases linearly, until it saturates at a certain value.
This also shows that the MDN Switch is not scalable under Unbalanced Traffic, since
there is no more increase in throughput, as the number of I/O ports are increased.

Table 6.10: Average Number of Packets/Output Port/Cycle, after saturation

Figure 6.19: Average Number of Packets/Output Port/Cycle vs. N, after saturation
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6.4 Comparison of Arbiter Schemes

In this section we present the simulations of the UDN arbiter schemes, as explained
in Section 4.2.1. First we compare static and dynamic arbitration schemes, on UDN
Switches (with reduced router types) of size N = 8, and M = (1, 2, 4, 7, 8), over uniform
traffic. The performance comparison is given in Table 6.11/Figure 6.20, where the values
are the average of 2500 cycles, after the values are saturated.

Table 6.11: Performance Comparison of Static and Dynamic Arbitration

Figure 6.20: Performance Comparison of Static and Dynamic Arbitration

The results show that the Static and Dynamic arbitration schemes result in very
similar results in UDN Switch. For some M values, the throughput is slightly higher
with static arbiters; and for some other M values, vice versa. This means that for UDN
Switch architecture, both of the arbitration schemes are applicable.

In order to compare Static arbitration with weighted arbitration, we return back to
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our example in Section 3.5.1, the UDN Switch of size (3, 2) and designate three cases: 1)
(3, 2) UDN Switch with reduced routers and static arbiter, 2) (3, 2) UDN Switch with
unreduced routers and static arbitration, and 3) (3, 2) UDN Switch with unreduced
routers and weighted arbitration. RRR values in the routers for the respective test cases
are given below, where OtherPort constant is either South or North, according to the
position of 2 I/O Port Router.

1)

2 I/O Port Router

East RRR (West, OtherPort)
OtherPort RRR (West)

3 I/O Port Router

East RRR (West, South, North)
South RRR (West, North))
North RRR (West, South)

2)

2 I/O Port Router

East RRR (West, OtherPort)
OtherPort RRR (West)

3 I/O Port Router of Type 3

East RRR (West, South)
South RRR (North))
North RRR (West)

3 I/O Port Router of Type 1

East RRR (West, North)
South RRR (West))
North RRR (South)
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3)

2 I/O Port Router

East RRR (West, West, OtherPort)
OtherPort RRR (West)

3 I/O Port Router of Type 3

East RRR (West, West, South)
South RRR (North))
North RRR (West)

3 I/O Port Router of Type 1

East RRR (West, West, North)
South RRR (West))
North RRR (South)

In Table 6.12, “Average Number of Packets / port / cycle” and “% Sent Packets”
results are presented for all of the test cases. The second test case performs better than
the first, because the unreduced routers are more efficient for the specific traffic flows on
their respective positions in the UDN Switch. The third case performs much better than
the others, since its RRRs have the weighted values, and therefore the arbiter performs
better in granting permission to the input ports over the output port, according to the
weights of the traffic flows.

In Section 3.5.1, we have explained that we have reduced the router types into two
types, in order to increase the reusability and scalability of the RTL description of the
implementation. While this holds to be a necessary decision implementation-wise for
greater degree of reconfigurability, here we also show that it decreases the performance.
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Table 6.12: Performance Comparison of Static and Weighted Arbitration

Figure 6.21: Performance Comparison of Static and Weighted Arbitration

6.5 Increasing Throughput with T-Value

We have explained that T-Value parameter can be used to balance the load on the switch,
by changing the column the packets are routed through vertically for a certain Switch
I/O Port pair. In this thesis, we did not implement a load observation unit, which would
calculate T-Values according to the network state; however we investigate the effect of T-
Values by assigning them random values and measuring the throughput of the switches,
as a comparison to the case where all T-Values are set to 0. The simulations are carried
on UDN Switches with size of (8,1), (8,2), (8,4), (8,7), (8,8). T-Values are randomly
generated in the range of 0 and M-1. The simulation results are presented in Table 6.13
and Figure 6.22.

In all cases, the random T-Values result in equal or better performance than setting
them to 0. This can be explained by the fact that the load balancing on the switch
decreases the congestion over certain links, by providing better packet distribution on
the columns, which improves the throughput performance.

In the following figures, we present the ratio of packet loads over the links of UDN
Switch of size (8, 7), with T-Values set to 0. The Figure 6.23 shows the ratio of number
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Table 6.13: Evaluation and comparison of two cases: T-Values=0 and T-
Values=Random(0..M-1)

Figure 6.22: Evaluation and comparison of two cases: T-Values=0 and T-
Values=Random(0..M-1)

of packets over the West ⇒ East links; the Figure 6.24, for South ⇒ North links, and
Figure 6.25, for North ⇒ South links. In this way we can show the accumulative distri-
bution of packets over the switch. The West ⇒ East links are loaded more around the
eastmost and westmost columns, and less in the center; the South ⇒ North and North
⇒ South link, on the other hand, are loaded more in the center.

On the other hand, carrying out the same simulations with random T-Values, we can
observe that the packet loads over the links are different from the case where T-Values
are set to 0, in Figure 6.26 - Figure 6.28. The higher ratios exist only on a very small
number of links, and the congestion in the central region of the switch is resolved for
South ⇒ North and North ⇒ South links. Using the random T-Values, the vertical
traffic is balanced and well distributed, resulting in greater throughput.



Figure 6.23: Packet Load over West to East Links
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Figure 6.24: Packet Load over South to North Links
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Figure 6.25: Packet Load over North to South Links
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Figure 6.26: Packet Load over West to East Links
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Figure 6.27: Packet Load over South to North Links
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Figure 6.28: Packet Load over North to South Links



UDN/MDN Performance &
Cost Analysis 7
In this chapter, we present the performance and cost analysis of the UDN and MDN

switches. The performance and cost analysis are done with regard to the findings of
the synthesis (Chapter 5) and simulations (Chapter 6) that were carried out with the

static arbitration scheme, under Bernoulli Uniform Traffic and with T-Values set to 0.

In the first section, we define the performance and cost functions, and then present
the respective data and analysis.

7.1 Defining the Performance & Cost Functions

7.1.1 Performance

We define the UDN/MDN Performance metric to be the data throughput, which is
expressed as “Number of packets / time”. “Number of packets / cycle” is measured in
the simulations. The cycles can be converted in seconds by multiplying them with the
operational frequency of the respective switch size, computed during synthesis.

UDN/MDN Performance = Throughput Performance
Throughput Performance = Number of Packets / Time
Number of Packets / Time = Number of Packets / Cycle × Operational Frequency

7.1.2 Cost

Since the implementation of the switch is made for FPGA platforms, we define the 2-
tuple UDN/MDN Cost, in the same way XST reports it, as (“Number of Slice LUTs”,
“Number of Slice Registers”). These values are computed during the FPGA synthesis.

UDN/MDN Cost = (“Number of Slice LUTs”, “Number of Slice Registers”)

7.1.3 Performance / Cost

The 2-tuple Performance per Cost compound metric makes it possible to compare UDN
and MDN switches, which offer different ratios of performance and cost.

87
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UDN/MDN Performance per Cost = (“UDN/MDN Performance” / “Number of Slice LUTs”,
“UDN/MDN Performance” / “Number of Slice Registers”)

7.2 UDN Performance & Cost Analysis

In Table 7.1 and Figure 7.1, we present the UDN Performance, for (N, M) sized switches.
The values in this table are computed by multiplying the “Number of Packets/Cycle”
values in Table 6.3 with the corresponding operational frequencies in Table 5.2. UDN
Performance increases logarithmically with respect to M, which means that the highest
performance is achieved when N=M.

Table 7.1: UDN Performance

Figure 7.1: UDN Performance
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UDN Cost results were presented in Chapter 5, as “Number of Slice LUTs” and
“Number of Slice Register” on Table 5.3 and Table 5.4, respectively. Here, we present
the same tables, for the reader’s convenience, in Table 7.2 and Table 7.3

Table 7.2: Number of Slice LUTs for various (N, M) Switches

Table 7.3: Number of Slice REGs for various (N, M) Switches

The UDN Performance per Cost compound metric for (N, M) sized switches is pre-
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sented in Table 7.4 (Figure 7.2) and Table 7.5 (Figure 7.3) respectively. Even though
the overall performance of (32, 32) UDN switch is ≈ 10 times greater than (2, 1) UDN
switch, the Performance per LUT Cost compound metric is ≈ 60 times smaller. This
shows that UDN switch is cost inefficient, even though it provides high performance.
The compound metric will be further used to compare the UDN switch to MDN, in the
following sections.

Table 7.4: UDN Performance / Number of Slice LUTs Cost

Figure 7.2: UDN Performance / Number of Slice LUTs vs. M
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Table 7.5: UDN Performance / Number of Slice REGs Cost

Figure 7.3: UDN Performance / Number of Slice Registers vs. M

7.3 MDN Performance & Cost Analysis

In Table 7.6 and Figure 7.4, we present the MDN Performance, for (N) sized switches,
under uniform traffic. The values in this table are computed by multiplying the “Number
of Packets/Cycle” values in Table 6.8, with the corresponding operational frequencies
in Table 5.6. MDN Performance increases linearly with respect to the number of I/O
ports, proving its scalability.

MDN Cost results were presented in Chapter 5, as “Number of Slice LUTs” and
“Number of Slice Register” on Table 5.7 and Table 5.7, respectively. Here, we present
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Table 7.6: MDN Performance

Figure 7.4: MDN Performance

the same tables, for the reader’s convenience, in Table 7.7 and Table 7.8.

The MDN Performance per Cost compound metric for (N) sized switches is presented
in Table 7.9 and Table 7.10, and their respective figures Figure 7.5 and Figure 7.6. Even
though the overall performance of (32) MDN switch is ≈ 4 times greater than (2) MDN
switch, the Performance per LUT Cost compound metric is ≈ 11.2 times smaller. This
shows that higher performance through greater switch sizes is expensive for MDN switch.
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Table 7.7: Number of Slice LUTs for various MDN Switches

Table 7.8: Number of Slice Registers for various MDN Switches

Table 7.9: MDN Performance / Number of Slice LUTs Cost
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Figure 7.5: MDN Performance / Number of Slice LUTs vs. N

Table 7.10: MDN Performance / Number of Slice REGs Cost

7.4 UDN/MDN Comparison

In this section, we compare the UDN and MDN switches. We have chosen to compare
four UDN and MDN switches with the same number of input/output ports. For UDN,
we have chosem M = N - 1, since it yields the greatest performance compared to other
M values. The comparisons are presented in Table 7.11 - Table 7.13.

UDN has higher operational frequency than the corresponding MDN switch. UDN
has its critical path on the arbitration and flow control combinational cloud of its 3 I/O
Port Router, whereas MDN has it on its 4 I/O Port Router, with more complex arbiter,
resulting in longer critical path.

The UDN LUT and Register cost is much greater than MDN. The (8, 7), (16, 15), (32,
31) UDN switches require more than 100% of the resources on a Virtex-5 (XC5VTX240T,



7.4. UDN/MDN COMPARISON 95

Figure 7.6: MDN Performance / Number of Slice Registers vs. N

FF1759, -2), and therefore cannot be placed on the FPGA. On the other hand, only (32)
MDN switch cannot be placed on the FPGA.

Table 7.11: Comparison of Synthesis Results

In the simulation phase, it was observed that UDN performance is greater than MDN,
since less number of ports competes for an output port in UDN Router (3, as opposed
to 4), resulting in less contention and congestion, and therefore greater throughput.

Even though the throughput performance is greater for UDN, the performance/cost
compound metrics show that MDN’s performance per resource cost is much greater than
UDN. This is because UDN switch resource costs increase quadratically with respect to
N × M product, whereas it increases subquadratically ((N/4)2) in MDN.

In order to make it easier to compare the UDN and MDN switches’ performance to
other switches, we also present the throughput performance in terms of Gigabytes/sec,
in Table 7.14.



Table 7.12: Comparison of Simulation Results

Table 7.13: Comparison of Performance and Performance/Cost

Table 7.14: Throughput Performance in Gbytes / sec



In-Circuit Verification 8
In this section we present the mapping of the implementation on the reconfigurable

platform. The implementation was mapped on a Virtex-5 FPGA board, specifically
on xc5vtx240t-2ff1759. The testing system was implemented in Xilinx’s Embedded

Development Kit 11.1 (EDK). In this section we also present the architectures that we
have used to generate random packets for in-circuit testing.

8.1 LFSR (Linear Feedback Shift Registers) for Testing

We have implemented a simple LFSR module as a building block of the synthesizable
ATM generator, in order to validate the circuit on the FPGA board. This module yields
1-bit random output, and therefore it should be instantiated as many as required by a
certain register width. In order to ensure the same bit values do not synchronize, the
modules are instantiated with different initial seed values. The resulting pseudo-random
value is the output address for a packet, and the width is LOG2(N). The block diagram
is presented in Figure 8.1.

LFSR generates a series of pseudo-random bits, according to the initial seed value at
reset. For example if the seed value is 1101, the order of outputs will be as in Table 8.1.

As one might notice, the number of generated 1s is more than number of 0s, by a
difference of one. However, in [44] it is discussed that in a random stream, the difference
between the two sums will tend to grow progressively smaller in proportion to the length
of the stream as the stream gets longer. In order to have a better pseudo-randomness,

Figure 8.1: Linear Feedback Shift Registers, with 1-bit Output
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Table 8.1: List of Generated Random Values on a 4-Bit LFSR, with Seed = 1101

cycles FF XOR Output
0 1101 0 1
1 0110 0 0
2 0011 1 1
3 1001 0 1
4 0100 0 0
5 0010 0 0
6 0001 1 1
7 1000 1 0
8 1100 1 0
9 1110 1 0

10 1111 0 1
11 111 1 1
12 1011 0 1
13 0101 1 1
14 1010 1 0
15 1101 0 1

number of registers should be increased in LFSR. For the purpose of validating the design
on FPGA, we leave the precision at 4 bits.

However, the solution above solves only the problem of random address generation
for Bernoulli Uniform Traffic. For unbalanced traffic, we would need weighted random
generation. Weighted random values can be achieved with weight rounding, in a simple
way. This is implemented as an array of values, in which the values with higher weights
are more frequent. This array is indexed with a variable, which is randomly generated by
the LFSR. Since it is easier to generate index value in between 0 - 2A, where A denotes
number of randomly generated bits, the weight needs to be rounded to an integer multiple
of (1 / 2A). The greater A is, more accurate the rounding will be. We leave the weighted
random generation as a future work.

8.2 FPGA Validation

The UDN switch (N, M) = (4, 3) has been validated on Virtex-4 FPGA Platform,
specifically on ML41x(XC4VFX60-FF1152-11) board. Due to the fact the board offers
only a 100 MHz clock maximally, the full frequency of the switch (290.252 MHz) cannot
be exploited. The block diagram for the validation system is presented in Figure 8.2.

The top level module with ATM Generators and NoC switch has a state machine
involving two states, IDLE and RUN. In the IDLE state, ATM generator modules are
not enabled, therefore no packet is injected in the NoC switch. Once the PowerPC
microprocessor is initiated and the testing software runs, the first address of BRAM
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Figure 8.2: Block Diagram for FPGA Validation System

NoC 1 is set to 1. These trigger the ATM Generators and NoC switch, which changes
the state machine from state IDLE to state RUN. As the input packets are injected to the
NoC switch, they are also written to BRAM NoC 1. When the packets are transmitted to
the destination address, they are written to BRAM NoC 2. In this way we can compare
the packets, and validate if the system works correctly. With this approach, we were
able to validate that all the packets have been transmitted correctly to the output ports
and that the simulation results hold correct.

Using this system, we can also do some performance analysis. Once the system has
been run a certain amount of time, the packet generation can be stopped and the NoC
switch can be stalled by resetting the first address of BRAM NoC 1; in this way we
ensure no new packets are transferred afterwards and therefore written to the memories.
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Measuring the time period (in cycles) in between the points where the ATM generators
were started and stopped, we can observe if the performance of the system on the FPGA
platform matches the simulations. The pseudo-code example in Listing 8.1 describes this
procedure.

Listing 8.1: Pseudo-code for Performance Analysis

// Set Memory Base Addresses
bram1 = XPAR_BRAM_CNTLR_0_BASEADDR ;
bram2 = XPAR_BRAM_CNTLR_1_BASEADDR ;

//Enable ATM gene ra to r s and NoC Switch
∗bram1 = 1 ;

// Star t PowerPC Assembly Timer
//Do some dummy ope ra t i on s that w i l l take some time
//Disab le ATM gene ra to r s and S t a l l NoC Switch

∗bram1 = 0 ;
//Stop PowerPC Assembly Timer
//Compute number o f input /output packets
//Compute the number o f c y c l e s the NoC Switch was a c t i v e

//Compute Number o f Output Packets per cy c l e
//Compute % Sent Packets (Output Packets / Input Packets )

Please note that the simulations are more accurate and precise compared to the
performance analysis carried out on the FPGA board, due to a number of factors:

• Timing measurement is not very accurate; the number of cycles measured for the
same code varies from one run to another. As a result, we run the code multiple
times and averaged the number of cycles, which offers a remedy to the problem up
to a certain degree.

• The LFSR generates seven pseudo random 0s, as opposed to eight 1s. This harms
the generation of a uniform traffic as accurate as in the simulations.

In 9’723’460 cycles, the NoC switch is injected 3’159’577 packets and has ejected
3’144’095; then “Number of Output Packets per cycle” is equal to 0.32335 and “% Sent
Packets” is equal to 99.51%, as opposed to 0.35315 and 99.541% values we have obtained
in the simulations, respectively. The error percentage for the FPGA performance analysis
results are 9.2% and 0.03%.
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Recently, the functional-level design of two novel Network-on-Chip based switch fab-

ric architectures were proposed, Unidirectional NoC (UDN) and Multidirectional
NoC (MDN), as a replacement of the buffered crossbar switch fabric architecture

[1][10][11].

The buffered crossbar switch consists of buffered crosspoints that makes point-to-
point connections in between all input-output pairs. On the other hand, the NoC based
crossbar switch consists of NoC routers, which are used to switch the packets from
any input of the switch to any output. NoC routers are shared resources, unlike the
dedicated crosspoints and the internal buffers. NoC also provides path diversity, as a
result of multiple routing paths in between an input/output pair; this feature can be
exploited for better load balancing over the switch fabric. The novel architectures based
on NoC have many advantages over the internally buffered crossbar switches, including
scalability, flexibility and reconfigurability.

In this thesis, we advanced the proposal in [1], by carrying out the hardware design
and implementation of the aforementioned NoC based crossbar switches and studying
their respective performance and cost metrics, over a wide range of switch sizes and
traffic scenarios, in order to prove the claims of the original proposal. Moreover, we have
implemented a test system in order to validate the switches on the reconfigurable FPGA
platform and carry out some basic performance measurements.

Because of the non-uniform nature of UDN switch routers and traffic flows, as opposed
to MDN, we have written a software simulator in order to investigate different types of
routers, traffic flows and their frequencies on the UDN switch. This has led to our
proposal on the Weighted Arbitration scheme, which proved to improve the throughput
performance by 5% on a (3, 2) UDN Switch. However, we have decided to exchange this
small performance increase, with flexibility and easy reconfigurability, by reducing the
eight types of UDN Router into two types, and therefore onitting the use of Weighted
Arbitration.

We have investigated load balancing and its effects on throughput performance, by
comparing the test cases when T-Values are set to 0 and set to random values, and
showing that random values perform better, with up to 12% speedup for certain switch
sizes.

Through the simulations on UDN and MDN switches, under Bernoulli Uniform Traffic
and Unbalanced (Weighted) Traffic, we have shown that the switches are performance-
wise scalable, as the number of input/output ports are increased. UDN switch proved to
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be scalable under both traffic types, whereas MDN failed scalability under Unbalanced
Traffic.

We have shown that the UDN switch performs much better than MDN, in exchange
of its high costs. By carrying out performance and cost analysis, we have shown that
MDN yields better performance per cost. UDN offers 6.56 and 42.12 Gbytes/sec ag-
gregate bandwidth for (4, 3) and (32, 31) switch sizes; which implies 1.64 and 1.32
Gbytes/sec bandwidth per port, respectively. On the other hand, MDN offers 5.22 and
21.36 Gbytes/sec aggregate bandwidth for (4) and (32) switch sizes; which implies 1.31
and 0.67 Gbytes/sec bandwidth per port, respectively. High performance Ethernet cables
offer 1.25 Gbytes/sec of bandwidth; therefore, UDN switch proves to be a competitive
architecture to comply with the market products, whereas MDNs performance does not
match this bandwidth, as number of input/output ports is increased. UDN’s high perfor-
mance makes it suitable for performance critical cases, whereas MDN is a better solution
for cases that require cost efficiency.

All in all, the claims in the original proposal [1] are proved to be correct, in terms of
the NoC based switches’ high-performance, scalability and flexibility.

Implementing of a load observation unit, to set the T-Values according to the state
of the NoC switch, would implement adaptive routing and could improve the throughput
and load balancing further. Implementing multicast traffic would provide further capa-
bility to the NoC switches, to route ATM packets with multiple destination addresses.
In addition, UDN and MDN NoC switches would benefit from fault tolerance prop-
erty, which can be implemented by dynamically reconfigurable UDN and MDN routers,
which would be reconfigured to route the packets to an alternative path, in the case
of a malfunctioning router. These are all left as future work, to improve the systems’
performance, reliability and service capability.
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