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Periodic event-triggered control with a relaxed triggering condition

Aleksandra Szymanek, Gabriel de A. Gleizer and Manuel Mazo Jr.

Abstract— In networked control systems (NCSs), extensive
data exchange between plants and controllers leads to an
unnecessary usage of communication and computational re-
sources. Aperiodic sample-and-hold methods such as event-
triggered control (ETC) can reduce the number of transmis-
sions, allowing more applications to operate within the same
network. However, most existing event-triggering mechanisms
enforce a Lyapunov function of the continuous-time closed-
loop system to be (almost) always decreasing. We propose a
relaxed triggering condition for periodic event-triggered control
(PETC) based on bounding the Lyapunov function with an
exponentially decaying reference function, which reduces the
communications while guaranteeing the same decay rate as
competing strategies. We provide sufficient global exponential
and input-to-state stability conditions for linear time-invariant
(LTI) systems under our event-based state feedback, giving
explicit performance guarantees in the presence of additive
disturbances. Finally, some simulation results illustrate the
performance of the proposed control strategy.

Index Terms— event-triggered control, networked control
systems, state feedback, disturbances, input-to-state stability

I. INTRODUCTION

In computer controlled systems, periodic control is a
standard choice for implementing a feedback controller [1].
An undoubtful advantage of this approach is the existence of
reliable design and analysis methods, as well as guarantees
on stability and performance. However, periodic execution
of control tasks may lead to unnecessary usage of resources,
especially in networked control systems (NCSs), where com-
munication is severely constrained. To reduce the number
of transmissions via network, one can instead implement
the controller in an aperiodic way. Some early approaches
to event-based control include [2]–[4]. Shortly after that,
event-triggered control (ETC) was introduced [5], followed
by self-triggered control (STC) [6]. Both strategies have
been developed intensively since then [7]–[14]. Most of
the ETC implementations assume continuous monitoring of
the triggering condition, which is difficult to achieve in
computer controlled systems, thus needing the discretization
of a strategy designed for continuous time. Furthermore, as
discussed in [15], event-based control can result in the unde-
sired Zeno behavior. The above-mentioned reasons motivated
the concept of periodic event-triggered control (PETC) [16],
in which the triggering condition is only checked at periodic
measurement times, resulting in a more practical approach
with a minimum inter-event time by design.

Although ETC in general generates fewer transmissions
than periodic control, there are significant differences in the
number of events for specific ETC and STC implementations
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due to the different underlying triggering conditions. Most
of them (e.g., [7], [8], [11], [16]) require that the Lyapunov
function of the continuous-time closed-loop system has to
be monotonically decreasing; once it stops decreasing, the
control action is updated. However, this is not necessary to
stabilize the system, usually leading to excessive updates.
One approach that aims at relaxing the triggering condition is
dynamic triggering [17], that requires the Lyapunov function
to be decreasing only on average. For this, it introduces a
dynamic variable that acts as a buffer and can balance out
the increase of the Lyapunov function to some extent. This
strategy was later adapted to PETC [18]. In general, dynamic
triggering proves to be less conservative than the correspond-
ing static event-generators. All of the aforementioned control
strategies have exponential stability proved with a given
convergence rate through LMIs. Due to the conservativeness
involved in these LMI approaches, the actual convergence of
the Lyapunov function is usually much faster than prescribed.
Ideally, the triggering mechanism would lead to a decay
rate as close as possible from prescribed, further saving
communication resources by doing so.

We achieve this through a relaxed triggering condition
for PETC based on bounding the evolution of a monitored
Lyapunov function by an exponentially decaying signal. It
can be regarded as a PETC implementation of the triggering
mechanism for STC from [9], aiming at the same perfor-
mance when the system is not subject to disturbances. To
achieve this, our triggering mechanism performs a one-step-
ahead prediction of the Lyapunov function to avoid an actual
violation. A second condition, verifying if the Lyapunov
function has overpassed the reference, is aggregated for the
perturbed case. These two conditions, allied with the fact
that it is a (reactive) ETC, result in improved disturbance
rejection when compared to the STC from [9], which solely
relies on multi-step disturbance-free state projections. We
prove global exponential stability of the disturbance-free
closed loop, and finite L∞ gain from additive disturbance to
state, providing formulas for the associated gains. Our PETC
yields fewer events when compared to the existing PETC
strategies and achieves better disturbance rejection than STC.
Hence, we believe this is a competitive PETC strategy for
application in resource-constrained NCSs.

A. Notation
R+ denotes the set of non-negative real numbers, while

R+
0 the same set including 0. N is a set of natural numbers

excluding 0 and N0 including 0. For a vector x ∈ Rn, we
denote by |x| :=

√
xTx its 2-norm. For a matrix A ∈ Rn×m,

we denote by AT its transpose. For a symmetric square
matrix P ∈ Rn×n, we write P � 0 (P � 0) if P is
positive (semi-)definite. By λm(P ) and λM (P ) we denote
the minimum and maximum eigenvalue of P , respectively.
Solutions of an autonomous system with state x and initial
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condition x0 are denoted by xx0
(t); if it has exogenous

inputs u and δ, a trajectory is denoted by xx0uδ(t). For
a signal δ : R+

0 → Rnδ , its L∞-norm is denoted by
||δ||∞ := ess supt|δ(t)|. We say δ ∈ L∞ if ||δ||∞ < ∞.
A function β : R+

0 → R+
0 is said to be a K-function if it is

continuous, strictly increasing and β(0) = 0. Also, it is said
to be a K∞-function if it is a K-function and β(s)→∞ as
s → ∞. For any function f : R+

0 → Rn and t ≥ 0, we use
f(t+) to denote the limit f(t+) = lim

s→t,s>t
f(s).

II. PROBLEM STATEMENT
Consider an LTI system of the form

ẋ(t) = Apx(t) +Bpû(t) + Eδ(t), (1)

where x(t) ∈ Rnx denotes the states of the plant, û(t) ∈ Rnu
is the control input and δ(t) ∈ Rnδ is the disturbance vector.
Matrices Ap ∈ Rnx×nx , Bp ∈ Rnx×nu and E ∈ Rnx×nδ are
known and δ(t) ∈ L∞. Moreover, we assume that an upper
bound on ||δ||∞ is known. A state-feedback controller under
PETC implementation is described by the following:

û(t) = Kx̂(t), t ∈ R+
0 , (2)

with x̂(t) ∈ Rnx being the last measurement available to
the controller. This availability is dictated by a triggering
condition C : R2nx → R, which is checked by an intelligent
sensory system at every instant tk = k∆, k ∈ N, where ∆
is some properly chosen sampling interval. The new mea-
surement is sent to the controller only when this condition
is enabled, which, for t ∈ (tk, tk+1], can be written as

x̂(t) =

{
x(tk), when C

(
x(tk), x̂(tk)

)
> 0,

x̂(tk), when C
(
x(tk), x̂(tk)

)
≤ 0.

(3)

Matrix K is designed such that Ap+BpK is Hurwitz.1 Thus,
there exists a Lyapunov function V (x) = xTPx such that

(Ap +BpK)TP + P (Ap +BpK) = −Q, (4)

with some Q � 0, which specifies the decrease rate of V . We
define the decay rate of the Lyapunov function as the largest
λ0 ∈ R+ that satisfies V (xx0

(t)) ≤ V (x0)e−λ0t,∀t ∈
R+

0 ,∀x0 ∈ Rnx . For the continuous-time closed-loop system
and given P and Q satisfying (4), this is λ0 = λm(P−1Q).

The triggering condition is usually dependent on the
values of x and x̂, that can be put together in one vector
ξ :=

[
xT x̂T

]T
. Moreover, a significant number of existing

triggering conditions can be expressed in the quadratic form
C(ξ(tk)) := ξT (tk)Qξ(tk), Q ∈ Rnξ×nξ , which will also be
adopted in this paper.

Before stating the objective of the paper, let us define the
necessary stability and performance notions.

Definition 2.1 (GES): The system (1) is said to be glob-
ally exponentially stable (GES), if there exist σ ∈ R+ and
ρ ∈ R+, such that for any x(0) = x0 ∈ Rnx and δ ≡ 0
all corresponding solutions to (1) satisfy: |x(t)| ≤ σ|x0|e−ρt
for all t ∈ R+

0 .
Definition 2.2 (EISS): The system (1) is said to be expo-

nentially input-to-state stable (EISS), if there exist σ ∈ R+,
ρ ∈ R+ and γ ∈ K∞, such that for any x(0) = x0 ∈ Rnx

1For separating the concerns between control design and digital imple-
mentation, we assume the K has already been designed.

and δ ∈ L∞ all corresponding solutions to (1) satisfy:
|x(t)| ≤ σ|x0|e−ρt + γ(||δ||∞) for all t ∈ R+

0 . Furthermore,
if there is a g <∞ satisfying γ(d) ≤ gd,∀d ∈ R+, we call
g the L∞ gain from disturbance to state.

The main objective of this paper is to design a triggering
condition that minimizes the gap between the actual and the
prescribed decay rate of the monitored Lyapunov function in
order to reduce the number of control updates.

III. MAIN RESULTS
This section describes the relaxed triggering condition

for PETC, which is the main contribution of this paper,
giving guidelines for choosing the required parameters, and
presenting stability and performance analyses. In particular,
we prove the closed-loop system is GES and EISS.

A. Triggering condition
Unlike most of the existing triggering conditions, in our

relaxed triggering an exponentially decaying function bounds
the actual Lyapunov function: conceptually, the triggering
condition is xx0

(t)TPxx0
(t) > xT0 Px0e

−λt, with 0 <
λ < λ0 being the desired convergence rate. However, some
modifications are made for PETC implementability. First, an
auxiliary discrete-time state η : N→ Rnx is introduced:

η(0) = P
1
2x(0), (5a)

η(tk+1) = e−0.5λ∆η(t+k ), (5b)

η(t+i ) = P
1
2x(ti), (5c)

where {ti}i∈N are the triggering times. The intention of
the auxiliary variable is such that ηT η imitates the desired
convergence of the Lyapunov function. Denoting ζ :=[
xT x̂T ηT

]T
, the sequence of triggering times ti is

obtained from t0 = 0 and

ti+1 = inf{t > ti|ζ(t)TQ1ζ(t) > 0 ∨
ζ(t)TQ2ζ(t) > 0 ∨
t = ti +Nmax∆, t = k∆, k ∈ N},

(6)

where Nmax∆ is a designed maximum inter-event time and

Q1 :=

P 0 0
0 0 0
0 0 −I

 ,
Q2 :=

 ATPA ATPBK 0
(BK)TPA (BK)TPBK 0

0 0 −Ie−λ∆

 ,
A := eA

p∆, B :=

∫ ∆

0

eA
psBpds.

An intuitive explanation of this triggering condition is that
ζ(tk)TQ1ζ(tk) > 0 checks if, at the current sampling time
tk, the Lyapunov function of our interest is above the bound,
while ζ(tk)TQ2ζ(tk) > 0 checks if this will happen at the
next sampling time tk+1. If any of these two conditions is
true, the mechanism triggers. It also triggers if neither is
true, but the maximum inter-event time is reached. In the
disturbance-free case, the one-step-ahead prediction from the
second triggering condition prevents the Lyapunov function
from exceeding the bound, which improves performance.
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The proposed triggering condition has three design pa-
rameters: the sampling interval ∆, a desired Lyapunov-
function decay rate λ, and the maximum inter-event number
of steps Nmax. As already mentioned, λ must be smaller
than the decay rate of the continuous-time closed-loop λ0.
This ensures a minimum inter-event time, which, in turn,
influences the choice for ∆. This minimum inter-event time
τmin > 0 is given by [9, Lemma 4.1]:

τmin = min{τ ∈ R+ : detM(τ) = 0}, (7)

where

M(τ) := C(eF
T τCTPCeFτ − CTPCe−λτ )CT ,

F :=

[
Ap +BpK BpK
−Ap −BpK −BpK

]
, C :=

[
I 0

]
.

Once the minimum inter-event time is computed, the sam-
pling time ∆ has to be chosen such that ∆ < τmin. These
guidelines for choosing λ and ∆ are the necessary conditions
for stability of the system under our PETC implementation,
and Nmax is essential for performance, as will be seen next.

B. Stability analysis
We start the stability analysis by proving GES of the PETC

system with our relaxed triggering condition in the absence
of disturbances. Let us define:

g(∆, Nmax) := e
ωµ∆
µ−ω

(
eλ∆+eλNmax∆

) µ
µ−ω
(
1+eλNmax∆

) −ω
µ−ω,

G =

[
P

1
2ApP−

1
2 + (P

1
2ApP−

1
2 )T P

1
2BpKP−

1
2

(P
1
2BpKP−

1
2 )T 0

]
, (8)

µ = λm(G), ω = λM (G).

Theorem 3.1: If λ < λ0 and ∆ < τmin, the sequence of
control updates times given by (6) renders the closed loop
system (1) GES with

σ =

(
λM (P )

λm(P )

) 1
2 (
g(∆, Nmax)

) 1
2 and ρ =

1

2
λ.

In the presence of additive bounded disturbances we give
performance guarantees in the following theorem.

Theorem 3.2: If λ < λ0, ∆ < τmin and δ ∈ L∞, the
sequence of control update times given by (6) yields the
closed loop system (1) EISS with

γ(||δ||∞) =
λM (P )

λm(P )

∫ ∆

0

|eA
prE|dr

(
g(∆, Nmax)

1
2

1− e− 1
2λ∆

+1

)
||δ||∞.

The proofs of the two theorems given in this section can be
found in the Appendix.

IV. NUMERICAL EXAMPLE

To illustrate how the relaxed triggering condition reduces
the number of communication instants we compare our
approach with triggering conditions (7) and (14) from [16],
where the monitored Lyapunov function is required to be
decreasing from sample to sample, and with dynamic PETC
[18]. As an example we take the plant from [19]:

d

dt
x(t) =

[
0 1
−2 3

]
x(t) +

[
0
1

]
u(t) +

[
1
0

]
δ(t).

We set x0 =
[
10 0

]T
as initial condition and K =[

1 −4
]
. The associated Lyapunov function and matrix

Q satisfying (4) were chosen to be P =

[
1 0.25

0.25 1

]
and Q =

[
0.5 0.25
0.25 1.5

]
, which yield λ0 ≈ 0.4836. We

chose the desired decay rate λ = 0.3, thus ρ = 0.15.
The corresponding minimum inter-event time according to
Lemma 1.1 is τmin = 0.3, and so we set ∆ = 0.05 ≤ τmin.
The maximum inter-event time was taken as 2 seconds,
hence Nmax = 40. Using Theorems 3.1 and 3.2, the EISS
parameters according to Definition 2.2 are σ = 2.8974 and
γ(d) = gd, g = 18.4483.

For the triggering conditions (7) and (14) from [16]
parameters σ, β, respectively, were chosen to minimise the
number of events, while still ensuring the LMIs presented
therein to be feasible, with ρ = 0.3. The values we found
are σ = 0.16 and β = 0.95. Similar approach was applied
in finding σ for dynamic PETC, where σ = 0.15 was
found. Additionally, the value of acceptable L2 gain (θ) from
disturbance to state had to be chosen. For a fair comparison
we set it to θ = 20, such that it is of comparable order of
magnitude to the L∞ gain resulting from our PETC.

Figure 1 shows the evolution of the monitored Lyapunov
function for the four triggering conditions, with δ ≡ 0.
Additionally, in Fig. 1(d) we show how our imposed bound
on the Lyapunov function ηT η evolves in order to give an
intuition on how our relaxed triggering condition works.
Table I presents a comparison among the number of events
from all four triggering conditions, for other desired con-
vergence rates and ∆ = 0.05. Statistics on the number of
communications for each case were computed based on 10
simulations where initial conditions were varied, pseudo-
randomly uniformly sampled such that both state components
ranged from -10 to 10. For all triggering conditions, the pa-
rameters were chosen such that the number of transmissions
was small as possible. For all cases, the relaxed triggering
condition yielded the fewest number of communications.
The performance difference is bigger the faster the desired
convergence is. Moreover, our triggering condition results in
lower standard deviation compared to the PETC implementa-
tions with second and third best number of communications.

A possible disadvantage of the relaxed triggering condition
are the oscillations of the monitored Lyapunov function, as
can be seen in Figure 1(d); they corresponded to oscillations
in the state trajectories, which is generally undesired. One
possible reason is that the original controller is designed
for a faster convergence rate than the one imposed by the
triggering condition. Setting λ = 0.45 (ρ = 0.225), which is
very close to λ0, reduced the oscillations to some extent.

Figure 2(a) illustrates how the relaxed PETC deals with
disturbances. Here, ρ was set to 0.225 and disturbance
δ(t) = sin(t) was present throughout the whole simulation.
The total number of events in this case was 52, which
was mostly because the disturbance started to dominate the
dynamics at the final part of the simulation. Dynamic PETC
(Fig. 2(b)) seems to be more robust, sampling-wise, at these
regions, having had a total of 29 events. Bursts of events
when disturbances are present and states approach the origin
are common for static event-triggering mechanisms (ETMs)
[13]. Our relaxed PETC can be consider as a static ETM
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(a) Triggering condition (7) from [16]
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(b) Triggering condition (14) from [16]
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(c) Dynamic PETC from [18]
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(d) Relaxed triggering condition

Fig. 1. The evolution of the monitored Lyapunov function for three different triggering conditions. Common parameters are: ∆ = 0.05 and ρ = 0.15.
For (7) from [16] σ = 0.16, for (14) from [16] β = 0.95, for dynamic PETC from [18] σ = 0.15 and for our relaxed triggering condition Nmax = 20.

TABLE I
AVERAGE (µ) AND STANDARD DEVIATION (σ) OF NUMBER OF

COMMUNICATIONS FOR DIFFERENT TRIGGERING CONDITIONS AND

DECAY RATES

ρ This work (7) from [16] (14) from [16] Dynamic
PETC [18]

0.1 µ = 17.6
σ = 0.699

µ = 52.8
σ = 0.422

µ = 19.8
σ = 0.789

µ = 22.4
σ = 1.647

0.125 µ = 17.3
σ = 0.823

µ = 53.5
σ = 0.527

µ = 23.2
σ = 1.317

µ = 26.3
σ = 2.71

0.15 µ = 17.6
σ = 0.843

µ = 56.6
σ = 0.516

µ = 22.2
σ = 1.751

µ = 28.6
σ = 3.026

0.175 µ = 17.6
σ = 0.843

µ = 58.7
σ = 0.483

µ = 21.3
σ = 1.252

µ = 29.2
σ = 2.3

0.2 µ = 17.6
σ = 0.843

µ = 59.8
σ = 0.422

µ = 23
σ = 2.582

µ = 30.3
σ = 1.636

0.225 µ = 17.7
σ = 0.823

µ = 62.9
σ = 0.316

µ = 33.2
σ = 2.348

µ = 32.4
σ = 0.966

because it does not take into account any past values of the
states or the Lyapunov function. Nevertheless, apart from
these burst the relaxed PETC does not degrade to periodic
control when allowed to run for a longer time.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a relaxed triggering condition
for PETC based on bounding the evolution of the Lya-
punov function with a decaying exponential. The system
is guaranteed to be GES in the case without disturbances
and has a finite L∞ gain from disturbance to state when
bounded additive disturbances are acting on the system. The
proposed strategy reduces the number of communications by
minimizing the gap between the desired and the actual con-
vergence rate. Compared to other PETC strategies, where the
Lyapunov function is required to be decreasing from sample
to sample, our triggering condition significant reduces the

0 2 4 6 8 10
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(a) Relaxed triggering condition with Nmax = 40
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(b) Dynamic PETC from [18]

Fig. 2. Evolution of the Lyapunov function with the relaxed triggering
condition for ∆ = 0.05, ρ = 0.225 and δ = sin(t).

number of events, especially when the influence of distur-
bances is small. As follow-up work, aside from investigating
the oscillations caused by our triggering mechanism, we are
currently investigating if the number of events can be further
reduced by predicting if the monitored Lyapunov function
could cross the reference exponential bound multiple times.

APPENDIX

Proof of Theorem 3.1: Let us start by defining the
monitored Lyapunov function V (t) := x(t)TPx(t), the
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exponentially decaying continuous-time bound S(ti + τ) :=
V (ti)e

−λτ and sampling times within one inter-event time
rn = ti + n∆, n ∈ N0, rn ∈ [ti, ti+1). At discrete sampling
instants the bound given by our PETC implementation is
equal to S(t), namely η(rn)T η(rn) = S(rn). Therefore,
in the absence of disturbances, the monitored Lypaunov
function satisfies V (rn) ≤ S(rn). The behavior is thus the
same as the STC’s from [9], and so is this proof, except for a
small modification. To bound the evolution of the Lyapunov
function in between the samples, let us start with finding the
derivative V̇ for the PETC system ẋ = Apx(t) +BpKx(ti).
For t ∈ [ti, ti+1], we have

V̇ (t) = v(t)TGv(t), v(t)T :=
[(
P

1
2x(t)

)T (
P

1
2x(ti)

)T].
(9)

Matrix G (8) is symmetric and hence orthogonally diago-
nalizable. Furthermore, it holds that µ = λm(G) < 0 and

ω = λM (G) > 0. To prove it, let us write G =

[
H D
DT 0

]
,

with D 6= 0. According to the Schur complement condition,
G � 0 if and only if H � 0 and G/H = −DTH−1D � 0.
If we assume that H � 0, then also H−1 � 0. If so, there
exists a non-singular matrix M such that H−1 = MMT . We
can rewrite DTH−1D = DTMMTD = (MTD)TMTD �
0. That gives us H � 0 and G/H � 0, so G is not
(semi-)positive definite. Similarly, we can show that G is
not (semi-)negative definite (by applying the same reasoning
for −G). Hence, G must have at least one positive and at
least one negative eigenvalue.

Since v(t)T v(t) = V (t) +V (ti), (9) can be used to lower
and upper bound the derivative of the Lyapunov function:

µ
(
V (t)+V (ti)

)
≤ V̇ (t) ≤ ω

(
V (t)+V (ti)

)
, t ∈ [ti, ti+1).

By integrating the above inequality on both sides, we can
bound V (t) itself by:

V (t+ s) ≤ eωsV (t) + V (ti)(e
ωs − 1), (10a)

V (t+ s) ≥ eµsV (t) + V (ti)(e
µs − 1), (10b)

for t + s ∈ [ti, ti+1). We know the values of the Lypaunov
function at sampling instants so we use them to obtain the
bounds on V (rn + s), when s ∈ [0,∆):

V (rn + s)

≤

{
V (rn + s) ≤ eωsV (rn) + V (ti)

(
eωs − 1

)
, s ∈ [0, s∗],

eµ(s−∆)V (rn+1) + V (ti)
(
eµ(s−∆) − 1

)
, s ∈ [s∗,∆),

where s∗ is the point where branches (10a) and (10b) meet.
Since the first bound is increasing and the second decreasing
in s, V (rn + s∗) is the maximum of the Lyapunov function
between rn and rn+1. We can find s∗ by equating the two
bounds, which results in:

s∗ =
1

ω − µ
log

(
V (rn+1) + V (ti)

V (rn) + V (ti)

)
+

µ∆

µ− ω
We substitute back the obtained expression for s∗ to one of
the bounds on V (rn + s) to obtain

V (rn + s∗) ≤ −V (ti)

+ e
ωµ∆
µ−ω

((
V (rn) + V (ti)

) µ
µ−ω

(
V (rn+1) + V (ti)

) −ω
µ−ω

)
.

Using the fact that V (rn) ≤ S(rn) for all rn ∈ N0 and
dropping the first term, we have

V (rn + s∗) ≤

e
ωµ∆
µ−ω

((
S(rn) + S(ti)

) µ
µ−ω

(
S(rn+1) + S(ti)

) −ω
µ−ω

)
.

Because S(rn) = eλs
∗
S(rn + s∗), S(rn+1) =

eλ(s∗−∆)S(rn + s∗) and S(ti) = eλ(n∆+s∗)S(rn + s∗), and
due to the fact that µ

µ−ω + −ω
µ−ω = 1, we can factor out

S(rn + s∗) to obtain V (rn + s∗) ≤ g̃(∆, n)S(rn + s∗) with

g̃(∆, n) = e
ωµ∆
µ−ω

(
eλs

∗
+ eλ(n∆+s∗)

) µ
µ−ω

·
(
eλ(s∗−∆) + eλ(n∆+s∗)

) −ω
µ−ω .

To make the above formula independent of time, we bound
s∗ ≤ ∆ and n = Nmax − 1, since the right-hand side is
increasing in both parameters:

g̃(∆, Nmax − 1) ≤ e
ωµ∆
µ−ω

(
eλ∆ + eλNmax∆

) µ
µ−ω

·
(
1 + eλNmax∆

) −ω
µ−ω = g(∆, Nmax).

(11)

V (rn + s∗) ≤ g(∆, Nmax)S(rn + s∗) holds for all n ∈
[0, Nmax], so we can write

V (ti + τ) ≤ g(∆, Nmax)S(ti + τ).

Now we can use the fact that our PETC implementation
yields V (ti+1) ≤ V (ti)e

−λτi to obtain

V (t) ≤ g(∆, Nmax)V (t0)e−λt,

where we substituted t = ti + τ . Finally, using bounds

λm(P )x(t)Tx(t) ≤ V (t) ≤ λM (P )x(t)Tx(t)

we arrive at

|x(t)| ≤
(
λM (P )

λm(P )

) 1
2 (
g(∆, Nmax)

) 1
2 |x(t0)|e− 1

2λt. (12)

Choosing t0 = 0 concludes the proof.
Before giving the proof for Theorem 3.2, we introduce

two lemmas.
Lemma 1.1 ([9, Lemma A.1]): Consider system (1) and a

positive definite function Ṽ (x) = (xTPx)
1
2 , P � 0. For any

given 0 ≤ T <∞ the following bound holds:

Ṽ (xx0uδ(t)) ≤ Ṽ (xx0u0(t)) + γP,T (||δ||∞), ∀t ∈ [0, T ],

γP,T (s) := s
λM (P )

λ
1
2
m(P )

∫ T

0

|eA
prE|dr.

Lemma 1.2: The Lyapunov function Ṽ (x) = (xTPx)
1
2 ,

P � 0 of system (1) under the proposed PETC implemen-
tation, with λ < λ0, ∆ < τmin and δ ∈ L∞, satisfies

Ṽ (ti+1) ≤ Ṽ (ti)e
− 1

2λτi + γP,∆(||δ||∞).

Proof of Lemma 1.2: From our PETC implementation,
if the inter-event time is τi = ti+1 − ti = ni∆, then for the
case if δ = 0 it holds that

V (x(rn)) ≤ V (x(ti))e
−λn∆,

Ṽ (x(rn)) ≤ Ṽ (x(ti))e
− 1

2λn∆, (13)
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for all n = 0, ..., ni. When bounded disturbances are present
(13) holds only for n = 0, ..., ni−1, due to a possible worst-
case scenario when ζ(ni∆)TQ1ζ(ni∆) > 0. It corresponds
to the situation when at time rni−1

one-step-ahead prediction
of the Lyapunov function would still be below the bound,
but due to disturbances at rni it exceeded the bound. Using
Lemma 1.1 we can write it as

Ṽ (xx(rni−1
)uδ(rni)) ≤ Ṽ (xx(rni−1

)u0(rni)) + γP,∆(||δ||∞).

The left-hand side becomes Ṽ (ti+1) and on the right-hand
side we can use (13) to bound the prediction made without
taking into account the disturbances.

Proof of Theorem 3.2: We start by iterating Lemma 1.2.

Ṽ (ti) ≤ e−
1
2λ(ti−t0)Ṽ (t0) + γP,∆(||δ||∞)

i−1∑
k=0

e−
1
2λτmink

≤ e− 1
2λ(ti−t0)Ṽ (t0) + γP,∆(||δ||∞)

∞∑
k=0

e−
1
2λ∆k

≤ e− 1
2λ(ti−t0)Ṽ (t0) + γP,∆(||δ||∞)

1

1− e− 1
2λ∆

,

where we used the fact that τmin > ∆. Without loss of
generality, we choose t0 = 0:

Ṽ (ti) ≤ Ṽ (0)e−
1
2λti +

γP,∆(||δ||∞)

1− e− 1
2λ∆

. (14)

From GES of the unperturbed case, we have

Ṽ (xx(rn)u0(rn + s)) ≤ g(∆, Nmax)
1
2 Ṽ (ti)e

− 1
2λ(n∆+s).

(15)
for all s ∈ [0,∆]. In PETC we make only a one-step-ahead
prediction and use the true value of the Lyapunov function
at rn to predict rn+1. Using Lemma 1.1 and with x(rn) as
the initial condition for predicting x at time rn+s, we write:

Ṽ (xx(rn)uδ(rn + s)) ≤ Ṽ (xx(rn)u0(rn + s)) + γP,∆(||δ||∞)
(16)

for all s ∈ [0,∆]. Substituting (15) in (16) gives

Ṽ (xx(rn)uδ(rn + s)) ≤ g(∆, Nmax)
1
2 Ṽ (ti)e

− 1
2λ(n∆+s)

+ γP,∆(||δ||∞), ∀s ∈ [0,∆],

which holds for all n ∈ [0, ..., Nmax], and, with τ = n∆+s,
becomes

Ṽ (x(ti + τ)) ≤ g(∆, Nmax)
1
2 Ṽ (ti)e

− 1
2λτ + γP,∆(||δ||∞),

(17)
where the extensive subscripts are dropped for compactness
of expressions. By replacing (14) into (17) we arrive at

Ṽ (x(ti+τ)) ≤ g(∆, Nmax)
1
2 Ṽ (t0)e−

1
2λ(ti+τ)

+ γP,∆(||δ||∞)

(
g(∆, Nmax)

1
2

1− e− 1
2λ∆

e−
1
2λτ + 1

)
.

Now, substituting ti + τ = t and bounding e−
1
2λτ ≤ 1 gives

Ṽ (x(t)) ≤ g(∆, Nmax)
1
2 Ṽ (t0)e−

1
2λt

+ γP,∆(||δ||∞)

(
g(∆, Nmax)

1
2

1− e− 1
2λ∆

+ 1

)
.

Finally, using the following bound λ
1
2
m(P )|x| ≤ Ṽ (x) ≤

λ
1
2

M (P )|x|, one can bound the evolution of states as follows:

|x(t)| ≤ σ|x(0)|e− 1
2λt

+ λ
− 1

2
m (P )γP,∆(||δ||∞)

(
g(∆, Nmax)

1
2

1− e− 1
2λ∆

+ 1

)
,

which proves that the system is EISS.
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