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Overlapping Andreev states in semiconducting nanowires: Competition of one-dimensional and
three-dimensional propagation
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(Received 21 December 2019; revised manuscript received 29 April 2020; accepted 30 April 2020;
published 20 May 2020)

The recent proposals of devices with overlapping Andreev bound states (ABS) open up opportunities to control
and fine tune their spectrum that can be used in various applications in quantum sensing and manipulation. In this
paper, we study the ABS in a device consisting of a semiconducting nanowire covered with three superconducting
leads. The ABS are formed at two junctions where the wire is not covered. They overlap in the wire where
the electron propagation is 1D and in one of the leads where the propagation is 3D. We identify a number
of regimes where these two overlaps either dominate or compete, depending on the junction separation L as
compared to the correlation lengths ξw, ξs in the wire and in the lead, respectively. We utilize a simple model
of 1D electron spectrum in the nanowire and take into account the quality of the contact between the nanowire
and the superconducting lead. We present the spectra for different L, detailing the transition from a single ABS
in the regime of strong 1D hybridization to two almost independent ABS hybridized at the degeneracy points,
in the regime of weak 1D hybridization. We present the details of merging the upper ABS with the continuous
spectrum upon decreasing L. We study in detail the effect of quantum interference due to the phase accumulated
during the electron passage between the junctions. We develop a perturbation theory for analytical treatment of
hybridization. We address an interesting separate case of fully transparent junctions. We derive and exemplify
a perturbation theory suitable for the competition regime demonstrating the interference of 1D and two 3D
transmission amplitudes.

DOI: 10.1103/PhysRevB.101.195430

I. INTRODUCTION

The nanostructures made of semiconducting nanowires in
contact with bulk superconducting leads or with a supercon-
ducting shell are often used in the research aimed to achieve
the Majorana-based qubits [1–4]. This boosted the fabrica-
tion technology of such nanostructures that has progressed
significantly over the last decade [5–19]. The improved tech-
nology makes it possible to realize more sophisticated and
multifunctional setups that involve multiple superconducting
terminals and gate electrodes. As one of the first steps in this
direction, a setup of an “Andreev molecule” has been recently
proposed in Ref. [20]. In this setup, a nanowire is covered
with three superconducting electrodes (Fig. 1). The pieces of
the nanowire not covered by electrodes form two Josephson
junctions. Each junction can host an Andreev bound state
(ABS) emerging from the Andreev scattering in the nanowire
covered by a superconductor. If the separation L between the
junctions is not too big, these states overlap and hybridize.
This reminds a simple model of a diatomic molecule where
two atomic states are hybridized; this analogy justifies the
term. Different setups concerning Andreev molecules have
been considered in Refs. [8,21,22]. In such simple artificial
molecules, in distinction from atomic and molecular physics,
the quantum states can be engineered and tuned by changing
the parameters. Thus they can be a testbed for more compli-
cated few-body systems, perhaps even actual molecules. The
presence of tunable discrete levels and the peculiarities of the

spectrum can be utilized in resonant and quantum computing
devices.

We have considered the Andreev molecule setup suggested
in Ref. [20] in our recent work [23]. We have shown that
the energy splitting δE at the degeneracy point of two ABS
is much smaller than the superconducting gap �. The small
parameter involved is an effective resistance of the lead where
the ABS overlap R, and δE � √

RGQ�, GQ ≡ e2/(π h̄) being
the conductance quantum. For the present setup, the resistance
R by order of the value is the resistance of the lead between
the junctions, assuming the lead is in the normal state. A
more precise definition is elaborated on in Sec. XI. However,
this conclusion is based on the assumption of quick electron
transfer from the nanowire to the lead. This does not have to
be a general case. If the contact between the nanowire and the
superconducting lead is not very good [24–26], the electrons
can stay in a nanowire for a sufficient time to propagate
between the junctions without escaping to the lead. In this
case, the ABS mainly overlap in the nanowire rather than in
the lead; this results in much stronger hybridization [15,20].
The 1D propagation in the wire brings about quite different
and various physics, so the present paper is not an extension
of Ref. [23].

In this work, we consider and analyze a number of regimes
where 1D or 3D propagation dominate or the two compete
with each other. To characterize the contact between the lead
and the nanowire, we use τ , the time a normal electron
spends in the nanowire before escaping to the lead (a similar
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FIG. 1. The Andreev molecule setup [20] consists of a semicon-
ducting nanowire covered by three superconducting leads with the
phases ϕ1, ϕ2, and ϕ3. Two junctions A and B are formed in the
nanowire. Their transmissions can be tuned by the nearby gates.
The ABS at these junctions can be hybridized depending on the
separation L.

model has been considered in Refs. [27,28], in their notations,
τ = γ −1). This gives a correlation length ξw = vwτ, vw being
a typical electron velocity in the wire that defines a spread
of ABS wave function in the wire. The condition L � ξw

defines the regime of strong 1D hybridization (see Fig. 2). The
opposite condition defines the regime of weak 1D hybridiza-
tion, where the ABS are almost independent except for the
degeneracy points where they split with δE � � exp(−L/ξw).
However, this does not exhaust the regimes. If exp(−L/ξw) �√

RGQ, the overlaps in the wire and in the lead become com-
parable, and we expect the regime of the competition of 1D
and 3D propagation. At further increase of L/ξw, the 3D prop-
agation dominates, this being the case described in Ref. [23],
see Fig. 2. This sequence of regimes implies ξw < ξs, ξs being
the correlation length in the superconducting lead. The propa-
gation in the lead is naturally diffusive and is characterized by
the scattering time τs, ξs � vs

√
τs/�, vs being the electron

velocity in the superconducting material. If the velocities in
the superconducting metal and the superconducting wire were
the same, the diffusive propagation would have been slower
implying ξw � ξs. However, the velocity in the semiconductor
is typically two orders of magnitude slower. The condition
ξw < ξs then implies τ� < (vs/vw)

√
τs�. For good contacts

between the wire and the superconductor, τ � 0.2� [29]
and the condition holds even for rather dirty superconductors
τs� � 10−4.

We investigate the resulting ABS spectrum in all these
regimes. Starting from a simple model of 1D semiconducting
spectrum augmented with self-energy describing supercon-
ducting proximity effect, we derive scattering matrix for-
malism that permits us to compute and understand the ABS
energies in 1D regimes. We extend this formalism to in-
clude 3D propagation amplitudes to describe the competition

L

strong 1D
hybridization

weak 1D
hybridization

weak 3D
hybridization

exp. small
hybridizationcompetition

FIG. 2. The hybridization regimes depending on the junction
separation L and the correlation lengths ξw, ξs in the nanowire and in
the lead, respectively. We distinguish strong 1D hybridization, weak
1D hybridization, competition of 1D and 3D hybridization, weak 3D
hybridization. The ABS become independent at L � ξs. The 3D case
has been considered in Ref. [23]. In this work, we concentrate on the
first three regimes.

regime. We present the spectra for different L, illustrating
the transition from a strong 1D hybridization regime for
L/ξw � 1 to the regime with two energy levels with a siz-
able splitting at L/ξw ∼ 1, and further to almost independent
ABS hybridized at the degeneracy points, for L/ξw � 1. We
present the details on how the upper energy level disappears
merging with the continuous quasiparticle spectrum upon
decreasing L. We study the effect of quantum interference
on the spectrum in various regimes, that is, the oscillatory
dependence on the phase accumulated during the electron
passage between the junctions. We demonstrate that the en-
ergies can be significantly affected by the interference for
L/ξw � 1 in the whole range of the phases, while for larger
L/ξw the interference is pronounced only in the vicinity of
the degeneracy points. We provide analytical formulas for this
case. We separately address an interesting case of ballistic
junctions and discuss its peculiarities with respect to other
results. We derive and analyze analytical formulas for the
competition regime demonstrating the interference of 1D and
two 3D transmission amplitudes. We show that the variances
of 3D amplitudes are the same and scale as ∼GQR. As the
1D transmission amplitudes scale as e−L/ξw , the competition
regime occurs, when these two scales are of the same order.
We derive an analytical formula for the energy splitting due to
3D propagation and compare it to the results of Ref. [23].

Let us explain in detail our motivation to study ABS in this
setup in different regimes, as well as outline the significance
of the results obtained for interesting device operations. The
device provides two discrete ABS, their energies depending
on two external parameters—two superconducting phases,
and, in addition, on a gate voltage that controls the interfer-
ence. As such, it can be used as a quantum computation unit,
or, more generally, as an element coupled to a microwave field
with the frequency matching the energy difference between
a pair of quantum states. Such resonant conditions enable
high-precision measurement of the energy dependence on the
parameters involved. This opens up a variety of applications in
quantum sensing and in implementation of feedback schemes.

The setup can be used as a quantum unit utilizing resonant
quantum manipulation. Various qubit realizations are possible
in the device under consideration. Here we do not speculate
which one would be more practical but just count all of them.
A single junction with a single spin-degenerate ABS provides
four quantum states that differ in fermion occupation numbers
nσ = 0, 1, σ labeling the spin projection. For each parity of
quasiparticle number, we have two states. Thus, there are two
ways to make a qubit out of this: either an Andreev singlet
qubit for even parity [5,30] or an Andreev spin qubit [5,31]
for odd parity. The double-junction setup under consideration
typically encompasses two spin-degenerate ABS levels; this
provides 4 × 4 = 16 quantum states, eight for each parity. For
a single qubit realization, one chooses two states out of eight:
This gives 28 possible realizations for each parity. If one of
the qubit states is the ground state, which is convenient in
some quantum applications, there are seven possible realiza-
tions. There are enough states for a double-qubit realization.
Four basis states should be chosen. This gives 70 possible
realizations. If one of the basis states is the ground state, 35
realizations are available. The basis states differ in fermion
occupation numbers ni,σ , i and σ labeling the level and the
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spin, respectively. Their energies are given by:

E =
∑
i,σ

Ei(ni,σ − 1/2). (1)

The peculiar features of our results permit various inter-
esting quantum manipulation applications. Without making a
complete list, let us shortly mention the most evident ones. In
the weak coupling regime, one can realize two singlet qubits
corresponding to two junctions. These qubits are conveniently
uncoupled in most of the parameter space. Bringing then to the
degeneracy lines makes it possible to arrange two-qubit gates.
The pronounced interference effect at the anticrossing makes
it possible to operate this gate by a separate voltage gate.
Another example of an interesting quantum manipulation in
the weak coupling regime has been outlined in Ref. [23].
This manipulation makes a swap of a quasiparticle between
the junctions. The protocol is to sweep the phases slowly
through an avoided level crossing, this prevents Landau-Zener
tunneling, and to get back rapidly. The merging of an ABS
state with a continuum upon changing a parameter (one of
the phases) is interesting for a realization of a nonunitary
quantum gate. It provides a wave function collapse and can be
used as a quantum measurement. To see this, let us consider
a phase setting when there are two ABS and a quasiparticle
that is in the superposition: It is delocalized between the
upper and lower level. Changing the setting to the region
where only the lower level is present makes the wave function
collapse: We have either no quasiparticle or a quasiparticle
localized in the lower level. Similar nonunitary operations can
be realized for other qubit realizations. The manipulations are
performed changing the gate voltages of the gates adjacent
to the nanowire and fluxes controlling the superconducting
phases. To describe this quantitatively, one needs, in addition
to the ABS energies, to compute the off-diagonal elements of
the Hamiltonian describing the manipulation. This, as well as
a specification of a concrete quantum manipulation scheme, is
beyond the scope of this work.

The paper is organized as follows. In Sec. II we present
the details of the setup and the model in use. We consider the
wave functions and the spectrum edge for the infinite uniform
nanowire and discuss the dependence on the parameter τ�

in Sec. III. The scattering matrix approach is derived and
outlined in Sec. IV. We summarize and discuss the main
results in Sec. V. In Sec. VI we consider the strong 1D
hybridization. We develop a perturbation theory suitable in
the opposite limit, in Sec. VII. The detailed discussion of
the interference effect is presented in Sec. VIII. The transfer
between single-band and two-band regimes is detailed in
Sec. IX. Section X focuses on the case of the fully transparent
junctions. The competition regime is considered in Sec. XI.
We conclude in Sec. XII.

II. THE SETUP AND MODEL

Let us detail the Andreev molecule setup (Fig. 1). Elec-
trically, this is a three-terminal circuit with two junctions.
We assume the same superconducting material for all elec-
trodes, so that the superconducting gap is the same for all
of them. The spectrum of the bound states will depend on
three superconducting phases of the electrodes, ϕ1, ϕ2, and

ϕ3. In fact, by virtue of gauge invariance, it depends only
on two phase differences ϕ̃1 = ϕ1 − ϕ3, ϕ̃2 = ϕ1 − ϕ3. If the
junctions can be regarded as independent, two independent
ABS with energies E1,2(ϕ̃1,2) are formed. If the ABS are
hybridized, each energy depends on both phase differences.
We assume that the wire is sufficiently long in comparison
with the electron wavelength, kFL � 1.

We describe the electron spectrum in the nanowire with a
minimal model. We have to stress that this is not a toy model:
It is essentially more elaborated and directly related to the
actual nanowires, so we expect the results to be immediately
relevant for the experiments.

We assume that the nanowire has a single propagation
mode, disregard the spin splitting, and concentrate on the
states close to the Fermi surface. Since the energies of the
ABS are of the order of the proximity-induced gap �̃, this im-
plies sufficiently big Fermi energy EF � �̃. The Hamiltonian
with the linearized spectrum is naturally written as a matrix
in the basis of right- and left-moving electrons, whose field
operators are envelope functions of exp(±ikFx), 
σ (x) =
exp(ikFx)
R,σ (x) + exp(−ikFx)
L,σ (x), x being an effective
coordinate along the nanowire, σ being spin index. It reads:

Hnw =
∫

dx′dx
∑

α,β=R,L;σ


†
α,σ (x′)Hnw

αβ (x, x′)
β,σ (x), (2)

Ĥnw = −ivw
∂

∂x
τz + V̂A(x) + V̂B(x). (3)

Here, vw is the Fermi velocity, and τz is a diagonal matrix
with τRR

z = −τ LL
z = 1. We assume that the wire is ballistic

under the electrodes while the electrons are scattered in the
junction regions; V̂A(x) and V̂B(x) are the matrix potentials
responsible for this scattering. In principle, there is not much
work to generalize Hnw and to include parabolic dispersion,
spin-orbit splitting, and spin magnetic field [1,2,7]. However,
in this paper, we would like to focus on the phenomenon of
hybridization that does not necessarily involve spin, so we
keep it simple. The Fermi energy, vw and kF in the nanowire
can be changed by the applying voltage to an underlying gate
[3]. Importantly, even small changes of this gate voltage can
cause significant change of the phase kFL accumulated by an
electron moving between the junctions.

The Hamiltonian describing the jth superconducting lead,
where j = {1, 2, 3}, is convenient to write not specifying the
orbital electron states present in a disordered superconductor.
We label these states with q and assume a homogeneous
superconducting order parameter �eiϕ j . In terms of the cor-
responding creation/annihilation operators d†

q,σ and dq,σ the
Hamiltonian reads as follows:

Hj =
∑

q

ξnd†
q,σ dq,σ + �e−iϕ j dq,↑dq,↓ + �eiϕ j d†

q,↑d†
q,↓, (4)

ξn being the energies of the orbital states counted from the
Fermi energy.

The contact between the nanowire and a lead is of tunnel-
ing nature and is described with a tunneling Hamiltonian

HT =
∑
k,q

tk,qa†
k,σ

dq,σ + t∗
k,qd†

q,σ ak,σ , (5)
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k labeling the normal-electron states in the nanowire, a†
k and

ak being the creation/annihilation operators in these states.
The tunnel coupling tk,q depends on the electron states in both
the nanowire and the leads. In the absence of superconductiv-
ity, the escape rate from the state k to the lead 1/τk is given by
Fermi’s golden rule

1

τk
= 2π

h̄

∑
q

|tk,q|2δ(Ek − ξq). (6)

It is convenient and realistic to assume that this escape rate
does not depend on the state, so the quality of the contact
between the nanowire and the leads is characterized by a
single escape time τ .

Under these circumstances, the tunneling into a lead can
be conveniently incorporated into a local self-energy [27,28]
� j , which is a matrix in the basis of right- and left-moving
electrons and holes (
e,R, 
h,L, 
e,L, 
h,R)

� j = 1

τ
√

�2 − E2

⎛
⎜⎝

−E �eiϕ j 0 0
�e−iϕ j −E 0 0

0 0 −E �eiϕ j

0 0 �e−iϕ j −E

⎞
⎟⎠, (7)

so the resulting equation for the Green’s function in the
nanowire reads:

(E − H)G(x, x′) = −δ(x − x′) (8)

H = −ivwη
∂

∂x
+ WA(x) + WB(x) + �(x), (9)

with

η =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠, (10)

WA =

⎛
⎜⎜⎜⎝

V RR
A 0 V RL

A 0

0 −V LL
A 0 −V RL

A

V LR
A 0 V LL

A 0

0 −V LR
A 0 −V RR

A

⎞
⎟⎟⎟⎠, (11)

WB having the same structure.

III. UNIFORM NANOWIRE

In this section, we will consider the spectrum and the
wave functions in an infinite and uniform semiconducting
nanowire with the proximity-induced gap �̃ < �. There are
no states at energies below �̃ in a uniform nanowire, there are
modes confined in the nanowire at �̃ < E < �, and there are
extended states in the wire and leads at E > �. For a uniform
wire, we can regard det(E − H) as an equation for the wave
vector for a given energy. Correspondingly, the wave vector is
imaginary at 0 < E < �̃, is real in the interval �̃ < E < �,
and complex otherwise.

Since we will later concentrate on ABS, we concentrate
at E < �̃. The imaginary part of the wave vector gives an
energy-dependent inverse localization length ξ−1

w :

vwτξ−1
w =

√
1 − E2τ 2 − 2E2τ√

�2 − E2
. (12)

The condition ξ−1
w (E ) = 0 eventually defines the gap �̃. It is

given by an implicit relation

τ� = �

�̃

√
� − �̃

� + �̃
(13)

and is plotted in Fig. 3(a) as a function of (τ�)−1. Short
τ implies a good contact, so �̃ ≈ � at τ� � 1. In the
opposite limit, �̃ ≈ 1/τ � �. In Fig. 3(b) we plot the inverse
correlation length versus energy normalized by the proximity
gap �̃, for various τ�. We see that for any value of this
parameter the correlation length is close to the escape length
vwτ . For a bad contact, vwτξ−1

w =
√

1 − (E/�̃)2; for a good
contact ξw = vwτ for all energies except the vicinity of the
gap edge.

There are four eigenfunctions at each energy, correspond-
ing to right- or left-moving electrons and the exponent de-
creasing either to the left or to the right,(


e,R


h,L

)
=

(
1

ei(∓χ−ϕ)

)
e∓x/ξw , (14)(


e,L


h,R

)
=

(
1

ei(±χ−ϕ)

)
e∓x/ξw . (15)

Here, we introduce an important phase χ associated with
the phase of Andreev reflection from a corresponding piece of

Δ̃
/
Δ

(τΔ)−1

E/Δ̃

E/Δ̃

χ
v w

τ
ξ−

1
w

(a) (b)

(c)

FIG. 3. (a) The relative proximity gap �̃/� versus the parameter
(τ�)−1 characterizing the quality of the tunnel contact between the
nanowire and the superconducting lead. For a good contact, τ →
0, �̃ → �. (b) The inverse correlation length ξw(E ) versus energy
for different values of τ�. (c) The Andreev reflection phase χ versus
energy. In both plots, the values of the parameter for different curves
correspond to �̃/� = {0, 0.1, 0.2, 0.3, ..., 0.9, 0.98, 1}.
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the nanowire,

χ = arcsin

√√√√1 −
[

E (1 + τ
√

�2 − E2)

�

]2

(16)

in the interval 0 < E < �̃. As we will see, the ABS energies
are determined from the energy dependence of χ . At any value
of τ�, χ (0) = π/2, χ (�̃) = 0. It is interesting to note that
χ (E/�̃) exhibits very little dependence on τ�. This is seen
in Fig. 3(c) where all the curves corresponding to different
τ� collapse into one. This is why the ABS spectrum is hardly
sensitive to τ�, and we do not have to explore its dependence
on this parameter.

IV. SCATTERING APPROACH

To avoid describing the details of the junctions and the
corresponding potentials in their vicinity, we implement the
scattering approach for the problem under consideration. The
scattering approach to the setup was first implemented in
Refs. [20,32] at lesser detail level and recently elaborated
on in Ref. [33]. Their results are qualitatively the same. A
scattering matrix, by definition, is a matrix that relates the
outgoing wave amplitudes to incoming ones. In the setup
under consideration, there are two junctions, A and B (see
Fig. 1). We assume that the junction region is shorter than
ξw; this assumption permits us to neglect possible Andreev
scattering in the junctions as well as the energy dependence
of the scattering amplitudes at the energy scale ��̃. If we
regard the junction A as a scattering region, the incoming
electron wave amplitudes are {�e,R

1 ,�e,L
3 } and the outgoing

ones are {�e,L
1 ,�e,R

3 }, where 1,3 refer to the leads adjacent
to the junction A, and the amplitudes correspond to the wave
functions on the side of a lead. The electron scattering matrix
for the junction A in this basis is

Se
A =

⎛
⎝ rAe−iθA

1 tAe−i
θA
1 +θA

3
2

tAe−i
θA
1 +θA

3
2 −rAe−iθA

3

⎞
⎠. (17)

Here, real rA and tA, r2
A + t2

A = 1, denote reflection and trans-
mission amplitudes, and θA

1,3 are the corresponding reflection
phases. The electron scattering matrix for junction B, Se

B,
is defined on a similar basis: The incoming amplitudes are
{�e,R

4 ,�e,L
2 } and outgoing ones are {�e,L

4 ,�e,R
2 }, where 4

refers to the wave functions in the lead 3 close to the junction
B. The matrix reads:

Se
B =

⎛
⎝ rBe−iθB

3 tBe−i
θB
3 +θB

2
2

tBe−i
θB
3 +θB

2
2 −rBe−iθB

2

⎞
⎠. (18)

The scattering matrix for holes is obtained from the
electron one via complex conjugation. Thus, the to-
tal scattering matrix describing the scattering from the
junctions, SNS, relates the incoming amplitudes �+ =
{�e,R

1 ,�e,L
3 ,�h,R

1 ,�h,L
3 ,�e,R

4 ,�e,L
2 ,�h,R

4 ,�h,L
2 } to the outgo-

ing ones �−={�e,L
1 ,�e,R

3 ,�h,L
1 ,�h,R

3 ,�e,L
4 ,�e,R

2 ,�h,L
4 ,�h,R

2 }

and has a block-diagonal form

SNS =

⎛
⎜⎜⎝

Se
A 0 0 0

0 Sh
A 0 0

0 0 Se
B 0

0 0 0 Sh
B

⎞
⎟⎟⎠. (19)

The subscript “NS” here stands for “normal scattering.” Since
the junctions are short, no Andreev scattering mixing elec-
trons and holes occur there. The matrix therefore separates
in blocks for electrons and holes. Andreev scattering occurs
in the wire regions covered by superconducting leads and is
described by Andreev scattering matrix SAS. The outgoing
wave amplitudes for SNS are incoming wave amplitudes for
SAS and vice versa. This gives �− = SAS�+, and the matrix
SAS is derived from the matching of the wave functions (14).
It reads:

SAS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 reh
1 0 0 0 0 0

0 0 0 reh
3 t e

R 0 0 0
rhe

1 0 0 0 0 0 0 0
0 rhe

3 0 0 0 0 t h
R 0

0 t e
L 0 0 0 0 reh

4 0
0 0 0 0 0 0 0 reh

2
0 0 0 t h

L rhe
4 0 0 0

0 0 0 0 0 rhe
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(20)

with

reh,he
1,2 = ei(±ϕ1,2+χ ), (21)

reh,he
3 = reh,he

4 = ei(±ϕ3+χ )r3, (22)

r3 = 1 − e−2L/ξw

1 − e2iχ e−2L/ξw
, (23)

t e,h
R = t e,h

L = e±ikFLt, (24)

t = (1 − e2iχ )e−L/ξw

1 − e2iχ e−2L/ξw
, (25)

|t |2 + |r3|2 = 1. (26)

The notations eh and he imply the electron conversion into a
hole and vice versa. The transmission amplitudes t e,h

R,L do not
involve a conversion and correspond to electron or hole prop-
agation through the part of the nanowire under the third lead.
The phases ±kFL acquired in the course of propagation are
manifested in the quantum interference effect, as we will show
later. For a small separation between the junctions, L/ξw �
1, r3 → 0 and |t | → 1. This implies that the electrons or
holes do not exhibit Andreev reflection directly passing to
another junction. In the opposite limit, L/ξw � 1, |r3| = 1,
and |t | = 0. The scattering matrix is separated into blocks
indicating the separation of ABS formed at the two junctions
are completely separated from each other.

Since �− = SAS�+ and �+ = SNS�− an ABS is formed
provided SNSSAS has a unit eigenvalue. This gives an equation
that is satisfied at an energy corresponding to an ABS energy,

det (1 − SNSSAS) = 0. (27)
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In this work, we solve this equation numerically and analyti-
cally for various cases.

V. OVERVIEW OF THE ABS SPECTRUM

In this section, we discuss the propagation processes in
the setup, relate those to the features of the spectrum, and
give an overview of the concrete results. To start with, we
shall note that the hybridization of ABS states formed at
two junctions requires either electron or hole propagation
between the junctions. This is evident from the scattering
approach where the scattering matrix is separated into the
blocks for each junction unless there are nonzero transmission
amplitudes t e,h

R,L. This propagation may naturally take place in
1D wire or involve an escape to the 3D lead with a subsequent
return to the wire.

In the strong 1D hybridization regime L � ξw the propaga-
tion between the junctions is unobstructed by anything, even
by Andreev reflection, since the propagation time is too short
for a particle to feel the induced gap in the nanowire. As the re-
sult, the third electrode has no effect on the ABS, and we have
a compound junction between A and B that supports a single
ABS. We show this explicitly and analytically in Sec. VI. In
the opposite limit L � ξw of the weak 1D hybridization the
direct propagation is strongly reduced by Andreev reflection
in the wire: An electon/hole is turned back as a hole/electron.
There are two independent ABS, and hybridization is only
important in the vicinity of degeneracy points where two
energies cross. We develop a perturbation theory valid for a
small direct transmission amplitude (Sec. VII) that provides
an analytical expression for this splitting for general scattering
matrices.

The crossover between the regimes is not trivial since the
number of ABS in two limits are different. We illustrate the
crossover by numerical calculations presented in Fig. 4. In the
figure, we plot the ABS spectrum versus the phase of the third
lead, ϕ3, at various separations between the junctions and for
representative choice of the junction scattering matrices. In
Fig. 4(a) that corresponds to a small separation and strong
1D hybridization regime; we observe a single ABS with no
ϕ3 dependence. The second ABS emerges from continuous
spectrum at larger separations [Fig. 4(b)], and the energies get
closer to each other upon increasing L [Fig. 4(c)]. Deep in
the weak 1D hybridization regime, the ABS energies corre-
spond to independent junction states with virtually invisible
anticrossings [Fig. 4(d)]. The emergence of the second ABS
from the continuum is of separate interest and is investigated
in Sec. IX.

A clear idealized case is where the propagation in the junc-
tions is ballistic like in the covered sections of the nanowire. In
principle, this can be realized in sufficiently pure nanowires.
This case is characterized by the absence of quantum inter-
ference involving the phase kFL, since the electrons or holes
are never reflected, and zero-energy crossings of ABS. It is
detailed in Sec. X.

In general, the junctions are not transparent, that is, tA,B �=
1, the electrons and holes propagating between the junctions
may reflect from those and bounce in the piece of the nanowire
covered by the third lead. The bounces result in the quantum
interference pattern involving the phase kFL. This pattern

FIG. 4. The overview of the ABS spectrum. The ABS energies
are plotted versus the phase of the third lead ϕ3 for different sep-
arations L. For all plots, tA = 0.85, tB = 0.95, θA

1 = θB
3 = 0, and

θA
3 = θB

2 = −π, τ� = 0.2, ϕ1 = π, ϕ2 = π/4. (a) L/(vwτ ) = 0.1.
The strong 1D hybridization regime: a single ABS in both junctions
hardly depending on ϕ3. (b) L/(vwτ ) = 1. The crossover between the
regimes. The second ABS emerges from the continuous spectrum. It
remains close to the band edge. (c) L/(vwτ ) = 2. The system tends
towards the formation of two independent ABS. The energy splitting
at anticrossings is still comparable with �̃. (d) L/(vwτ ) = 6. The
weak 1D hybridization regime. Two ABS are almost independent;
the energy splitting near degeneracy points is almost invisible.

can be observed experimentally by changing kF slightly with
a back gate. We discuss and illustrate the interference in
Sec. VIII. It is clearly visible in both 1D regimes.

If the 1D propagation amplitudes become sufficiently
small, �GQR, we enter the competition regime (Fig. 2). To
describe this, we extend the perturbation theory of Sec. VII
to include the 3D propagation amplitudes next to the 1D
propagation amplitudes. This analysis is rather involved since
3D propagation also encompasses the electron-hole and hole-
electron conversion and is detailed in Sec. XI. We will show
that the result can be regarded as interference of two indepen-
dent 3D amplitudes affected by mesoscopic fluctuations in the
lead and a single 1D amplitude affected by the phase kFL.
To describe the 3D amplitudes, we refine the semiclassical
approach suggested in Ref. [23] and eventually correct an
error in that reference.

VI. STRONG 1D HYBRIDIZATION

In this section, we consider the limit L � vwτ, ξw, when
electrons do not exhibit Andreev reflection in the piece of the
nanowire covered by the third lead. For the scattering ampli-
tudes defined in Eqs. (21)–(25) this implies r3 → 0, t → 1.
Solving the Eq. (27) in this limit, we obtain an equation for
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the ABS energy,

sin2 χ = Ts sin2

[
ϕ1 − ϕ2

2

]
. (28)

Here, Ts is in fact the transmission coefficient of the normal
scattering in a compound junction obtained by putting the
junctions A and B in series. It is given by the usual expression
(see, e.g., Ref. [34])

Ts = t2
At2

B

1 + r2
Ar2

B + 2rArB cos θ
, (29)

where θ ≡ θA
3 + θB

3 − 2kFL. As a rather trivial interference
effect, it involves the phase accumulated in the course of
round trip between the junctions.

As mentioned in Sec. III, the dependence of χ on the
parameter τ� is insignificant if normalized on the proximity
gap �̃, so we can approximate sin χ ≈

√
1 − (E/�̃)2. This

reproduces a standard relation for an ABS in a one-channel
junction between two leads [34]:

EABS = �̃

√
1 − Ts sin2

[
ϕ1 − ϕ2

2

]
. (30)

VII. WEAK 1D HYBRIDIZATION:
PERTURBATION THEORY

Let us turn to the opposite limit L/ξw � 1. In this weak 1D
hybridization regime, the transmission amplitude t is small,
eventually, exponentially small, t = (1 − e2iχ )e−L/ξw . We will
develop a perturbation theory for the ABS energies in terms of
t . We restrict ourselves to the most important situation of the
vicinity of the degeneracy points, where the energies of two
ABS formed at the junctions A and B, almost coincide. The
perturbation lifts the degeneracy resulting in the anticrossing
of two energy levels. The energy splitting at the anticrossing
δE is much smaller than �̃, δE � |t |�̃.

The derivation is as follows. In the limit t = 0 the scat-
tering matrix SNSSAS is separated into two independent 4 × 4
blocks corresponding to the junctions A and B. We examine
the eigenvectors of the blocks and pick up one corresponding
to the eigenvalue 1 at certain energy, that is, to the ABS
energy. The perturbation enters an off-diagonal 4 × 4 block.
We project this block on the eigenvectors |A〉 and |B〉 found
for the A and B blocks. We take the derivative of the diagonal
blocks A and B with respect to energy. With this, we obtain
an effective 2 × 2 Hamiltonian to describe the anticrossing
region,

Heff = E0 +
(

δEA M
M∗ δEB

)
, (31)

where E0 is the energy at the degeneracy point, δEA,B are
small deviations from the degeneracy in zeroth order in |t |,
and M ∝ t is the nondiagonal matrix element representing
the perturbation. This element contains the expressions for
the 4-eigenvectors that are rather clumsy. In the most compact
form, it can be expressed using the notations

√
2u±

A,B =

√√√√
1 ± sgnϕ̃1,2

√
1 − r2

A,B

cos2 χ0
, (32)

(u+
A,B)2 + (u−

A,B)2 = 1, u± are related to electron and hole
amplitudes in the third lead. The matrix element is defined
upon an arbitrary phase factor and reads

M = e−L/ξw sin χ0

χ ′(E0)

[
u−

B u+
A e−iθ/2 − u−

A u+
B eiθ/2

]
, (33)

where χ ′(E0) = ∂χ/∂E |E=E0 , χ0 = χ (E0).
The matrix element is thus contributed by two amplitudes

corresponding to the right- and left-moving electrons. If the
junctions are ballistic, only one of these amplitudes survives
depending on the sgnϕ̃1 (sgnϕ̃2 = −sgnϕ̃1 in the anticross-
ing). This case is further detailed in Sec. X.

The energy splitting then assumes the form

δE2 = 4|M|2 = C((u+
A u−

B )2 + (u−
A u+

B )2

−2u−
A u+

A u−
B u+

B cos θ )), (34)

where

C = 4e−2L/ξw sin2 χ0

(χ ′(E0))2
. (35)

If we implement the heuristic approximation we made for
χ (E ), C = 4(�̃ − E2/�̃)2e−2L/ξw .

Equation (34) makes explicit the interference pattern that
is periodic in θ . Moreover, both amplitudes become equal in
modulus and the energy splitting vanishes at θ = 0 provided
the junctions have the same transmission coefficients and
sgnϕ̃1 = sgnϕ̃2.

VIII. INTERFERENCE AT L � ξw

In both regimes of strong and weak 1D hybridization, we
have seen a significant interference effect, Eqs. (29) and (34).
However, in the strong hybridization regime the effect was
confined to the ABS energies not depending on the phase
of the third lead, while in the weak hybridization regime it
was visible in the vicinity of the degeneracy points only. This
motivates us to explore the effect at the intermediate values
of L � ξw. The numerical results obtained are presented in
Fig. 5. The subplots are computed at increasing values of L.
In each subplot, the different curves correspond to different
values of the phase kFL.

As we see, the significant interference effect is compatible
with ϕ3 dependence of the curves, that is, with significant
probability of Andreev reflection between the junctions. How-
ever, the magnitude of interference gradually reduces upon
increasing L and becomes confined to anticrossing regions at
L � 3vwτ .

In Fig. 6 we present the zoom on the vicinity of the
degeneracy point; this makes the strong interference effect
evident. For this parameter choice, the spectrum in the zoom
window is described by the perturbation Hamiltonian (31)
with the accuracy of three significant digits.

IX. UPPER ABS MERGING WITH THE CONTINUUM

Generally, an upper ABS that persists in a multiterminal
system at certain phase settings may disappear merging with
the continuous spectrum. In a general context, this situation
has been thoroughly investigated in Ref. [35]. For our three-
terminal setup with no appreciable spin-orbit interaction, this
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FIG. 5. The overview of the interference effect. The ABS ener-
gies at different settings of the phase kFL versus the phase of the
third lead ϕ3. The values of the separation for the subplots are:
L/(vwτ ) = (a) 0.25, (b) 0.50, (c) 1.00, (d) 2.00, (e) 3.00, (f) 5.00.
In each subplot, the accumulated phase takes the value kFL mod π =
{0, 1, 2, 3, 4}π/8, and the curves move upwards upon increasing the
phase. For all the plots tA = 0.6, tB = 0.7, θA

1 = θB
3 = 0, θA

3 = θB
2 =

−π, τ� = 0.2, ϕ1 = π, ϕ2 = π/4. (a) The strong 1D hybridization
regime. A single ABS persists in the system. Its energy is related to
the transmission coefficient of the effective junction; the transmission
coefficient depends on interference. (b) The second ABS appears; the
interference effect is still strong over the whole range of ϕ3. (c)–(e)
The effect is gradually confined to the anticrossing regions. (f) The
weak 1D hybridization regime, the energy splitting near degeneracy
points is not visible although is still affected by the interference.

consideration predicts the gap edge touching (GET) curves in
the two-dimensional space of the phases ϕ̃1, ϕ̃2. The merging
occurs at these curves.

Our setup provides a natural cause for such merging since
we expect a single ABS in the strong 1D hybridization regime
and two ABS in the weak 1D hybridization regime. The upper
band should therefore go to the continuum upon decreasing
the separation L. We investigate this in detail in this section.

It turns out that the upper ABS is present in the structure at
any settings of L and junction scattering matrices. The region
in the space (ϕ̃1, ϕ̃2) where both states are present fills almost
the entire space in the weak hybridization regime and shrinks
to a line in the strong hybridization regime. Thus the upper

FIG. 6. A zoom of an anticrossing region in Fig. 5(e). The en-
ergies are computed numerically and coincide with the perturbation
theory results of Sec. VII in three significant digits.

(a)

(b) (c)

(d) (e)

FIG. 7. Gap edge touching by the upper ABS. (a) The GET
curves in the plane (ϕ̃1, ϕ̃2) for different separations L/(vwτ ) given
in the labels. The fixed parameters are: tA = 0.85, tB = 0.95, τ� =
0.2, vF /(L�) = 1, ϕ3 = 0, θA

1 = θB
3 = 0, θA

3 = θB
2 = −π , and

kFL = π/4. (b)–(e) The ABS energies at ϕ̃2 = π/4 [dashed
line in (a)] illustrate the merging of the upper ABS with the
continuous spectrum. The values of the separation go through
L/(vwτ ) = {0.001, 0.1, 0.25, 0.5} from (b) to (e). For all plots, the
vertical axis is E/�̃ ranging from 0.7 to 1; the horizontal axis is ϕ̃1

ranging from 0 to 2π .

state in the strong hybridization regime is present only on this
line.

This is illustrated in Fig. 7(a) where we plot the GET
curves for various L in an elementary cell (0, 0), (2π, 2π ) (the
overall spectrum is periodic in both phases with the period
2π ). The curves are symmetric with respect to ϕ̃1 = ϕ̃2 line.
At vanishing L, the curves converge to the line. It is easy to
understand why. Since the third lead is irrelevant, there is a
zero phase difference at this line for the resulting two-terminal
junction. It is known to be a GET point for a two-terminal
junction [34]. Upon increasing L, the curves move apart
bounding a region where the upper ABS is present. Already
at L/(vwτ ) = 1, this region fills the elementary cell almost
entirely. Upon further increase, the GET curves are pressed
to the boundaries of the elementary cell where either ϕ̃1 = 0
or ϕ̃2 = 0. Indeed, in this limit we have two independent
two-terminal junctions, and this defines the positions of their
GET points.

It is interesting and instructive to look at the spectrum
of both ABS. It is plotted in Figs. 7(b)–7(e) along the line
ϕ̃1 = π/2. The subfigures correspond to different settings of
L. Figure 7(b) corresponding to the smallest L represents the
lowermost ABS and seems to touch the edge at ϕ̃1 = ϕ̃2.
However, it only seems this way. In fact, there is a tiny region
near this point where the upper ABS is present, and it is
separated in energy from the lowermost one. This structure
becomes apparent upon increase of L [see Figs. 7(c)–7(e)].

X. BALLISTIC JUNCTIONS

In this section we concentrate on the special case of bal-
listic junctions, implying no normal reflection in the regions
A, B: rA = rB = 0. The spectrum separates into two parts: for
right-moving electrons and left-moving holes, and for left-
moving electrons and right-moving holes, that are obtained
from each other by exchange of the electrons and holes. An
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energy level at E in one part corresponds to the energy level
at −E in another part by virtue of Bogoliubov-de Gennes
symmetry. Correspondingly, Eq. (27) splits into two parts. The
part for right-moving electrons and left-moving holes reads

[e−i(2χ−ϕ̃1 ) − κ (eiϕ̃1 − 1) − 1]

× [e−i(2χ+ϕ̃2 ) − κ (e−iϕ̃2 − 1) − 1] = −4κ sin2 χ. (36)

Here, κ ≡ exp(−2L/ξw). This equation is to be solved for χ

and then energy for any given ϕ̃1,2.
To understand the qualitative characteristics of the spec-

trum, let us consider the weak hybridization regime κ → 0.
In zeroth order approximation, two first brackets give rise to
two solutions χ = ϕ̃1/2 and χ = π − ϕ̃2/2. Under heuristic
approximation discussed, this gives rise to two ABS energies
E = �̃ cos(ϕ̃1/2) and E = −�̃ cos(ϕ̃2/2) for the states local-
ized at the junctions A and B, respectively. The energies of the
states cross zero at ϕ̃1,2 = π , which is a known peculiarity
of the completely ballistic two-terminal junction [34]. The
small κ is relevant at the degeneracy line ϕ̃1 + ϕ̃2 = 2π and
especially near the point ϕ̃1 = ϕ̃2 = π where the degeneracy
occurs at zero energy. We expand all the phases in the vicin-
ity of this point, χ = π/2 + Eχ ′(0), ϕ̃1,2 = π + δϕ1,2. With
this, the equation reduces to

(2Eχ ′(0) − δϕ1)(2Eχ ′(0) + δϕ2) = 4κ. (37)

In the limit L → ∞ this equation decouples into two brackets,
each corresponding to junctions A and B. Assuming, L is
large, but finite, we obtain

Eχ ′(0) = 1
4 [δϕ1 − δϕ2 ±

√
(δϕ1 + δϕ2)2 + 16κ]. (38)

We see that the finite hybridization removes the degeneracy
at δϕ2 = −δϕ1. However, it does not remove the zero energy
crossings. Those are just shifted to a hyperbola δϕ1δϕ2 +
4κ = 0.

To get an overview of the spectrum for the whole range of
L, we plot the energies of ABS along the symmetry line ϕ̃1 =
ϕ̃2 (Fig. 8, left column) and in the perpendicular direction
ϕ̃1 = −ϕ̃2. Along both lines, there is a convenient opportunity
to make implicit plots expressing the phases through the
energy.

At the symmetry line, the ABS is double degenerate: The
states for right- and left-moving electrons have the same
energy. In the weak 1D hybridization regime [Fig. 8(a)], the
phase dependence approaches that of independent junctions.
However, in accordance with Eq. (38), the zero-energy cross-
ing is shifted from the symmetry line even for small κ . Upon
decreasing L, [Figs. 8(b)–8(d)], the energy raises approaching
the gap edge; this is in accordance with the limit of a single
compound junction.

For the plots in the perpendicular direction, the curves of
blue (red) color correspond to right- (left-)moving electrons.
We see the energy crossings that is a hallmark of the ballistic
junction case. The positions of the crossing gradually shift
from ±π at big separations to ±π/2 at small separations in
accordance with the limits of independent junctions and a
single compound junction.

We remind that there is no interference effect on ABS since
there is no normal scattering at the junctions. The plots along
the lines ϕ̃1 = ±ϕ̃2 do not visually resemble those in Fig. 4

FIG. 8. The ABS energies for purely ballistic junctions. We plot
along the lines ϕ̃1 = ϕ̃2 = ϕ (left column) and ϕ̃2 = −ϕ̃1 = ϕ (right
column). The energies are doubly degenerate in the left column
plots. In the right column, the blue (red) color corresponds to right-
(left-)moving electrons. The values of L/(vwτ ) for the rows are:
(a) 2.30, (b) 0.8, (c) 0.35, (d) 0.05. We have taken the limit τ� → 0
disregarding the energy dependence of ξw. The zero energy crossings
visible in the right column are the main peculiarity of the purely
ballistic case.

which may lead to the idea that the spectra are very different.
To prevent this, we replot the ABS for the ballistic case in
Fig. 9 for the same parameters except setting rA = rB = 0.
The resulting plots do resemble those in Fig. 4, zero-energy
crossings being the only qualitative difference.

XI. COMPETITION BETWEEN 1D AND 3D PROPAGATION

In this section, we consider the competition of 1D and
3D electron propagation as seen in the hybridization of the
ABS in the Andreev molecule setup under consideration. As
we have seen, the 1D propagation amplitudes t e,h

R,L between
the junctions formally become exponentially small. However,
this should not immediately imply the exponentially small
hybridization. As estimated in Ref. [23], the 3D propagation
amplitudes are of the order of

√
RGQ, R being a resistance

characterizing the lead, and thus are not exponentially small
provided the separation L � ξs.

A full and simultaneous account for 1D and 3D propaga-
tion seems a formidable task. In principle, it can be achieved
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FIG. 9. The ABS for the setup with purely ballistic junctions
(rA = rB = 0) versus the phase of the third lead ϕ3 for a set of
different separations L. All parameters except tA,B are the same as
for the plots in Fig. 4.

by a nonlocal extension of the self-energy in Eq. (7): �(x) →
�(x, x′). However, such self-energy cannot be conveniently
averaged over the disorder in the superconducting lead with-
out canceling the effect, which makes it hardly computable.
A solution could be brute-force numerical computation of the
Green’s function for an atomic-level lattice model. However,
such numerical exercises are seldom conclusive in practice, in
view of long computation times and arbitrary modeling.

We proceed with a different method which may seem
heuristic, but, in fact, is completely adequate to the problem
in hand. To explain it, let us formulate a problem in terms of
scattering matrix for the junctions. Whatever the propagation,
it can be incorporated into (electron and hole) transmission
amplitudes between the junctions. Let us note that the compe-
tition occurs for small amplitudes where a perturbation theory
is applicable. In this case, the amplitudes can be regarded as
the sums over possible electron trajectories connecting the
junctions. There is a direct 1D trajectory that connects the
junctions through the nanowire. It accounts for the amplitudes
t e,h
R,L considered above. In addition, there are trajectories where

an electron starts at the junction, escapes to the lead at rather
short distances vwτ � L, travels in the lead, and returns to
the nanowire close to the opposite junction. In distinction
from the 1D amplitude, the 3D amplitude represented by the
sum over these trajectories is a random quantity: It depends
on the disorder configuration in the superconducting lead
and vanishes upon the averaging over disorder. Importantly,
the variance of this amplitude can be averaged over disorder
and is determined by the properties of the superconducting
lead at the space scale L rather than the details of the es-
cape. Technically, it is computed as the average of electron
Green’s function G(r, r′), r, r′ being close to the opposite
junctions. Besides, there are trajectories that enter and escape

the nanowire several times. Since the wire is separated from
the lead by a tunnel barrier, and the wire cross section is
small compared to that of the lead, the contribution of such
trajectories can be safely neglected. In conclusion, the relevant
transmission amplitude in the competition regime is a sum of
the 1D amplitude specified above and a random 3D amplitude.
Let us compute the hybridization.

First of all, we need to extend the perturbation theory
developed in Sec. VII onto an arbitrary set of transmission
amplitudes connecting the junctions A, B. The nondiagonal
matrix element M can be presented in the following form [cf.
Eq. (33)]

M = 1

2χ ′(E0)

[
e−i

θA
3 −θB

3
2 eiϕ3theu+

A u+
B + e−i

θA
3 +θB

3
2 thhu+

A u−
B

+ ei
θA
3 +θB

3
2 teeu−

A u+
B + ei

θA
3 −θB

3
2 e−iϕ3tehu−

A u−
B

]
. (39)

Equation (33) is reproduced if we leave here only the direct
1D propagation amplitudes substituting t eh = t he = 0, t ee =
t e
L, t hh = t h

R , with t e
L, t h

R taken from Eq. (24).
We need to add the 3D amplitudes. We choose two points in

the lead rA and rB that are close to the corresponding junctions.
The matrix of four transmission amplitudes is related to
the Green’s function describing the propagation between the
points as follows [36]:

tAB = i

2πν
G3(rA, rB), (40)

ν being the density of states in the lead per one spin direction.
Owing to the assumption of the uniform order parameter, the
Green’s function G3(rA, rB) can be related to the quantum
propagator P(rA, rB, ξ ) defined in terms of the exact electron
wave functions 
n(r) in the normal state,

P(rA, rB, ξ ) =
∑

n


∗
n (rA)
n(rB)δ(ξ − ξn), (41)

and thus expressed in terms of the electron propagation in the
normal state,

G3(rA, rB)

=
∫

dξP(rA, rB, ξ )
1

ξ 2 + �2 − E2

(
E + ξ �eiϕ3

�e−iϕ3 E − ξ

)
.

(42)

Using Eq. (40), we define two 3D amplitudes Ae and Ao for
the diffusive case as

Ae =
∫

dξ

2πν

√
�2 − E2

ξ 2 + �2 − E2
P(rA, rB, ξ ), (43)

Ao =
∫

dξ

2πν

ξ

ξ 2 + �2 − E2
P(rA, rB, ξ ). (44)

Those are real in the subgap region |E | < � provided we
assume time reversibility in the normal state. For the energies
above the gap, Ae becomes imaginary and these two ampli-
tudes can be related to real and imaginary parts of an electron
wave at rB that is emitted from a source at rA. With this, the
transmission amplitudes are represented as the sum of the 1D
propagation amplitudes and two random 3D amplitudes Ae,o
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taken with proper coefficients,

tee = iE√
�2 − E2

Ae + iAo + eikF L(1 − e2iχ )e−L/ξw , (45)

teh = i�eiϕ3

√
�2 − E2

Ae, (46)

the = i�e−iϕ3

√
�2 − E2

Ae, (47)

thh = iE√
�2 − E2

Ae − iAo + e−ikF L(1 − e2iχ )e−L/ξw . (48)

To obtain the variances of the random Ae,o we implement
the relation between the product of two quantum propagators
and the semiclassical propagator P (rA, rB, t ) that gives the
probability for a particle to be at the point rB at the time
moment t , provided it is at rA in the time moment 0. This
relation was implemented in Ref. [23] and reads

ν

2π

∫
dtP (rA, rB, t )ei(ξ−ξ ′ )t = P(rB, rA, ξ )P(rA, rB, ξ ′).

(49)
We have to admit a calculation error made in Ref. [23]. To
correct this, the r.h.s. of Eq. (3) of this work must be divided
by 2π .

With this, the variances are given by

〈
A2

e

〉 = 〈
A2

o

〉 = 1

8πν

∫
P (rA, rB, t )e−2

√
�2−E2|t |dt, (50)

〈AeAo〉 = 0. (51)

Simply enough, Ae and Ao are independent variables with
equal variations.

There is a remarkably simple and general expression for
the variances valid in the limit L � ξs, that is, for the separa-
tions much smaller than the correlation length in the supercon-
ductor. In this case, we can replace the factor e−2

√
�2−E2|t | with

1. Let us regard the lead in the normal state as a distributed
conducting media earthed far from the points rA,B. Let us in-
ject the current IA in the point rA and measure the voltage VB at
the point rB. This defines a three-point resistance R ≡ VB/IA.
Considering kinetics of the semiclassical electron motion, we
can express R in terms of the semiclassical propagator,

R = 1

2e2ν

∫ ∞

0
P (rA, rB, t )dt . (52)

The variances are expressed in terms of this resistance,

〈
A2

e

〉 = 〈A2
o〉 = GQR

2
. (53)

This expression does not depend on the geometry and resis-
tivity distribution in the lead.

To give a simple formula that describes the competi-
tion regime, let us assume E � �, ballistic junctions, and
sgnϕ̃1 = −sgnϕ̃2. Under these assumptions,

M = �̃[−iAo + 2e−ikF Le−L/ξw ], (54)

and the energy splitting is given by

(δE )2 = 4�̃2
[
4e−2L/ξw + A2

o + 4Ao sin(kF L)e−L/ξw
]
. (55)

Let us note the presence of interference effect that was absent
for 1D consideration of ballistic junctions. It arises due to
the absence of momentum conservation in the course of 3D
propagation. The 1D and 3D propagation provides on aver-
age the same contribution into the energy splitting provided
e−L/ξw = √

GQR/8.
In Ref. [23] we have addressed the situation L � ξs as-

suming a concrete model of a quasi-2D lead of width L,
thickness d � L, and resistance per square R�, rA, rB being
at the corners of the lead. The classical propagator in this case
reads:

P (rA, rB, t ) = 1

dL

√
1

πD|t |
∞∑

n=−∞
(−1)ne−D π2

L2 n2|t |
, (56)

D being the diffusion coefficient, D = (2e2νdR�)−1.
We neglect the contribution of 1D transmission and find

from Eq. (39) the average energy splitting

(δE )2 = 1

2(χ ′(E0))2
MGQReffF

(
L

ξL

)
, (57)

M = 1

�2 − E2

[
�2 + 2E�

[
u−

A u+
A cos θA

3 + u−
B u+

B cos θB
3

]
+2u+

A u−
A u+

B u−
B

(
�2 cos

(
θA

3 − θB
3

)
+(2E2 − �2) cos

(
θA

3 + θB
3

))]
, (58)

where conforming to the definitions of Ref. [23] Reff =
R�ξL/L, F (z) = 4z/π

∑∞
n=0 K0[(2n + 1)z], F (0) = 1. This

generalizes Eq. (6) of that work to the case of arbitrary
scattering matrices. A calculation error in Eq. (6) is corrected
by dividing its r.h.s. by π .

XII. CONCLUSIONS

In this work, we present a detailed study of the ABS
spectrum in the three-terminal Andreev molecule setup con-
centrating on the effects of 1D propagation in the wire and on
the competition of 1D and 3D propagation. We have identified
several regimes for various relations of the junction separation
L as compared with the correlation lengths ξw, ξs in the
nanowire and in the superconducting lead. We have presented
the details of ABS spectrum in these regimes and discussed
the crossovers between the regimes. In particular, we have
discussed the limits of weak and strong 1D hybridization, the
interference effect, the emergence of the upper ABS from the
continuous spectrum, and detailed the competition of 1D and
3D transmissions seen in the hybridization of the ABS. Our re-
sults facilitate the experimental realization of the setup where
the presence of the discrete ABS and the peculiarities of their
spectrum can be used for quantum sensing and manipulation.
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