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Abstract

In this report two Agent-Based Models, the Passenger Model and the Transfer Model, will be
constructed and analyzed. The objective is to make a realistic model inspired by a cell-based
model to simulate passenger flows on a train platform. We will start by studying the cell-based
model and we will explain which aspects have been applied to our model. Then the Passenger
Model, which can also be applicated to different environments, will be introduced. After that the
Transfer Model, which is an even more realistic model for a train platform, is constructed. The
models are used to analyze different types of platforms to investigate what an optimal platform
would look like.

These models can help visualizing passenger flows and can be used to analyze the performance
of existing platforms and platforms that have yet to be designed.
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Chapter 1

Introduction

Rush hour in London, one of the biggest metropolises in the world, means that Tubes and trains
are almost always packed. Therefore Underground and railway stations are overcrowded, which
results in long queues for escalators and exits. Some entrances are closed dozens of times a year,
simply because there are too many people on the Tube stations [20]. After a while the amount of
people in the station is reduced and the entrances can be reopened, such that people can carry
on with their journey with a lot of delay. Figure 1.1 confirms these findings and gives us a cause
of this problem, it shows that the number of passengers during the morning peak increases over
the years (although there is a small fall around 2009 and 2010).
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Figure 1.1: Passengers entering central London during the morning peak between 2003 and 2015
according to Transport for Londen (TfL) [28]. It can be seen that the amount of passengers is
increasing. From 2003 to 2015, the number of passengers using the London Underground and
DLR has increased by 50%.

London is not the only city struggling with this problem, lots of big cities all over the world
are having issues with overcrowdness, especially during rush hour [5]. If we do not react, the
problem will become bigger and stations have to be closed more times. By 2050, 66 per cent
of the world’s population is expected to live in urban areas [29]. A short term solution to
this problem is to reduce the number of passengers during rush hours such that the number of
passengers is more evenly distributed throughout the day, but eventually this will not entirely
solve the problem. Another solution would be expanding the stations to make more space to
move, so more passengers can use the station at the same time, yet this is rather expensive and
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10 CHAPTER 1. INTRODUCTION

difficult to accomplish in big cities. A long term solution and a less expensive solution would
be designing a platform such that the passengers can migrate over the platform in an optimal
way to cause a minimal amount of delay. There are a lot of other locations where such crowds
are, take for example an airport during peak season, major sports events or music festivals. For
safety reasons there must be an evacuation plan for all these places, to get everyone as fast as
possible out of a building or away from a specific place. To make this possible there needs to be
no unnecessary obstacles causing delay in these types of situations. Recently there was panic in
the Oxford Circus subway station (London) which resulted into many people being injured [13].
The Deputy Mayor for Transport, Val Shawcross, said: [14] “Clearly there is an issue about
getting people out of stations very quickly, and that is something I think is worthy of more
examination.” This type of crowd panic happens often and sometimes even with fatal outcomes
like in Turin this year [12] or seven years ago during the Love Parade in Duisburg [33].

This sums up that there are serious problems making a platform or other type of environment
safe in these type of situations. Therefore we will study the evacuation of train platforms as
well as the migration of people over these platforms.

1.1 Several Models

There exist several methods to model passenger flows. For example using partial differential
equations or Agent-Based Modelling. Recently, the Delft University of Technology has come up
with another model called NOMAD |[2] which is based on the microscopic behaviour of humans.
This indicates that there is still some interest in this kind of model. For this study we will
model the passenger flow using an Agent-Based Model. An Agent-Based Model is often used
for biological purposes, to simulate the migration, deformation, division and death of cells are
a few examples. This way of modelling makes it possible to describe and simulate the complex
behaviour of cells. Because of these models it is possible to look on a micro level at cells and
on a macro level at an entire system, such as a tumor. These models are not used for cells only,
they are applied on other levels as well, like on DNA-, tissue- and cell colony level. Cell-based
modelling is another way to describe these kinds of individuals. You can roughly divide cell-
based models into two categories: with or without lattice. Some models with a lattice make use
of a grid to state the location of cells such as cellular automata (CA) models, here cell positions
are allowed to take a predefined set of gridpoints only [3]. Models without a grid make it possible
to model continuous migration of cells, using equations of motion depending on time, which in
our case is more realistic.

1.2 Goal of this Study

The main goal of this study is to investigate whether Agent-Based Modelling inspired by cell-
based modelling can be used to model passenger flows. Realistic assumptions must be made to
construct such a model. Moreover, the results will be evaluated to see whether they are realistic.
Another aspect is to design the model in a way that it is applicable to other environments. Hence
a general model is aimed for. Besides this, we will look at the optimization of platforms. A good
platform would require both comfort for waiting passengers like benches, and a good passenger
flow such that the passenger migration time interval is as short as possible. For safety reasons
we also aim for a platform with a small evacuation time interval.
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1.3 Thesis Structure

First of all the cell-based model from biology is explained in detail and we will explain which
aspects are used to make a realistic model and which aspects are abandoned here. Subsequently
we explain in depth how our model, the Passenger Model, is implemented and how we model
human behaviour as well as possible. In Chapter 4 we will analyze the data obtained from the
Passenger Model. Some initial values will be altered to see whether the model is realistic and
how these values will influence the travel and evacuation time. A few different platforms will
be simulated and analyzed here to finally conclude what a good platform requires. Chapter 5
contains an even more realistic model, the Transfer Model, to simulate a platform with arriving
and departing trains. This model will be simulated to analyze platforms on their performances
regarding passenger flows. Finally we will combine our main results in a conclusion and we will
try to answer our main questions.
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Chapter 2

Cell-Based Model

Since our model for passenger flows has been constructed based on a cell-based model, we first
need to understand how a cell-based model works. To describe the behaviour of cells we need to
know what influences the movement of cells. Before we begin to explain this model, there are a
few assumptions that are made. We assume that the cells are on a two dimensional substrate
and that the projections of the cells are perfect circles with a fixed radius R. This radius can
differ for different cells. There are some aspects for the cell-based model that we do not use, for
the sake of simplicity or to make the model more realistic for passengers on a platform. More
information regarding the migrational behaviour of cells can be found in [4][30][31].

Migration of cells depends on several factors, such as the presence of other cells and their
movements, mechanotaxis'. Other factors are for example chemotaxis? and random walk. All
these factors will give a component to the velocity. If we combine all the factors we find the
total velocity. We will describe the components that are responsible for the velocity in the next
section of this chapter and we will explain which aspects will be used in our model and why we
incorporate them.

2.1 Mechanotaxis

Imagine n cells with respectively a radius of Ry, R, ..., R,, all strictly positive, in a two dimen-
sional substrate Q ¢ R?. Let N be the set of cells, then we have N = {1,2,...,n}. A cell will
move in a certain direction that is determined by a traction force exerted by another migrating
cell. The traction force causes deformations in this substrate and therefore a strain that other
cells can sense. Both cells exert this force that causes this strain and therefore they will start
migrating towards one another. We can calculate the migration of cells from the equations for
this strain. We denote the strain energy density from cell with index ¢ € N by Mi0 . Let r € Q
be the coordinates of a position on the substrate and r; the location of cell i on the substrate.
The strain energy density caused by cell ¢ at location r is equal to:

M;(r) = M?exp(—Ai |rl;?”i|). (2.1)

The movement of a cell along a rigidity gradient.
2Oriented movement toward or away from a chemical stimulus.

13



14 CHAPTER 2. CELL-BASED MODEL

Here \; is a damping factor caused by the characteristics of the substrate with index ¢ and the
substrate. Using Equation (2.1) we can determine the strain energy density at r;, Vi e N:

M(T‘Z) = Z Mj(ri) = Z M]Qexp (—)\]M) . (22)

jeN jeN R

Equation (2.2) gives us the strain energy density at every position on the substrate. Hence we
know the strain energy density that each cell detects. To determine the direction of migration
T

for cell ¢ we need the unit vector from cell ¢ to another cell 7, e and the strain cell 7 detects
J 7

from cell j: M;(r;). The direction for cell ¢ depends on all cells, hence we get:

re—
zi= ), Mj(ri)——.
jeN |rj - 7"1'|
Using the numerical Forward Euler [32] method, we can determine the new location for every
cell by using the following formula:

’I‘Z‘(t + At) = ’I’i(t) + AtoziM(Ti)ﬁi.

Here 2; = ;—Z| and «; depends on the viability of a cell and depends on the force that is exerted
by cell 7, as well as by the resulting friction between the cell and the substrate. Moreover «;
depends on the radius of cell ¢ and the mobility of the surface. We will not use these parameters

in the passenger flow model for sake of simplicity (so we set a; = 1).

However, using these equations to model a passenger flow on a platform will lead to strange
outcomes. In reality, passengers will not walk towards each other since their goal is to reach the
exit. Moreover passengers do not exert any force which can be felt by other passengers across the
platform. However, we still want to use these equations to describe the migrational behaviour
of the passengers, hence we will incorporate this into the model by treating exits to exert the
traction force as described above to attract the passengers. All passengers on the platform will
notice the exits, and based on the distance between the exit and the passenger we can determine
their direction. Let U be the set containing all exits then there is always one exit @ € U which
is the closest exit to a passenger. For now, the location of this exit is denoted by 4, as if it is
one point. This will be specified and explained in detail in Section 3.2.1. The equation for the
new location for all passengers i based on the closest exit @ € U is the following:

Ti(t + At) = ’I“i(t) + AtUiM(’r‘i)ﬁi, (2.3)

M (r;) = Aexp (—BM). (2.4)
R;
Here 2; is the unit vector from r; to @. v; is the prefered walking speed of passenger i. Constants
A, B € R can be chosen such that there is a realistic function for the migration towards exits. To
estimate these constants we need to compute M (r;) for different values of A and B. First it is
important to note that M (r;) is a number that indicates how much movement there is caused by
the closest exit. After combining all components we multiply it by the velocity of the passenger
and then we can derive the new location of passenger i. If there is one passenger and one exit
on a platform with no obstacles, then you would expect that this passenger can walk with his or
her desired speed (say v; = 1.4 [m/s]) regardless of his or her size. According to Equation (2.4)
M(r;) will increase in value when this passenger comes closer to the exit, with a maximum of
A. This is assumed because a passenger will search for exits first which causes a relatively low
walking speed and as the passenger comes closer to the exit the passenger will have a relatively
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high walking speed. Since you would not walk (or run) twice as fast as your desired speed v
when you are close to an exit, we want A to be slightly above 1. The further you are away from
the exit the smaller M (7;) becomes, with its limit to zero. So we need to take into account the
size of platforms. Although there are platforms longer than one kilometre [16], we will model
platforms with a size around 50 metres to speed up the computation time. So a long distance to
the exit would be around 50 metres, if you are on the other end of the platform (with one exit).
Then M (r;) close to 1 is desired because you would not walk very slow to an exit if there are
no other passengers around you. Figure 2.1 shows us values of M (r;) for different values of A
and B, here R; = 0.3 [m] is fixed. M (r;) is initially intended to be close to 1, even if a passenger

A=1.1,B=10"
- A=11B=10""
« A=11,B=10"

06 — A=12B=10"
- A=12B=10"
..... A=13B=10"
04f| — A=13,B=10""
- A=13B=10"
“““ A=13B=10"

0 10 20 . 30 40 50
Distance [m]

Figure 2.1: Value of M (r;) with R; = 0.3 [m] for different values of A and B. On the z-axis is
the distance from the exit. You can see that the further away a passenger is from an exit, the
smaller the value M(r;) is.

is far away from the exit. The choice B = 1072 leads to rapidly decreasing values for M (r;) if
passenger 7 is far away from the exit. This is in contrast with the choice B = 107, here M (r;)
is nearly constant for every distance to the exit. Therefore a value B = 107 is chosen. For A
however it is a bit arguable which value we need to take, a realistic model is desired and we do
not think that people will walk (or run) a lot faster, nor will they walk (or run) much slower
than their desired speed. Therefore the value A = 1.1 is chosen. For sake of completeness, here
is the initially chosen equation for the new location of passenger ¢ depending on the closest exit

R

ri(t+ At) = ri(t) + Atviz; - 1.1exp (—10‘3“712‘]%;’””) .

2.2 Random Walk

The migration of a cell is not only influenced by other cells, it is also influenced by random
factors. At each timestep the next location is determined by either the random factor or using
the mechanotaxis described as above. This random component can be determined by using the
normal distribution [26]. However in the model for passenger flows a different method has been
chosen. Choosing either the random factor or using the mechanotaxis as before can be done
when movements are very small and/or the timesteps are very small. Modelling lots of cells
and, in our case, passengers leads to a long computation time. To reduce this computation
time we want to take a relatively large timestep. Instead of taking only the random factor
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or the mechanotaxis, we add the random facter every timestep in the calculation of the new
location. In Equation (2.2) you can see the added component W (¢), which is a Wiener Process
[15]. Here W (t) contains two independent and identically distributed (iid) samples from the
standard normal distribution for every time ¢.

ri(t+ At) = ri(t) + AtviZ; - 1.1 exp (—10—3W) +W(L).

1

2.3 Colliding Cells

Cells will migrate towards each other due to the mechanotaxis, therefore they will eventually
collide with each other. Colliding cells deliver less strain energy which leads to a lower total
strain from cell i. A colliding cell on a two dimensional substrate has the following total strain
energy density function:

M;(r) = My(r) - MY, (2.5)
5
. 16 /R.E:h2
MU:_G RZ_’hQ. (2.6)
45 /2w R?

For the derivation, we refer to [30]. In Equation (2.2) E; denotes the elasticity modulus of cell
7 and h is the sum of the two radii of both cells minus the distance between the two cells and
then divided by two. So if cell ¢ and j with radius equal to R are colliding then h is equal to
h= w However, passengers do not deliver any strain energy and therefore this formula
is not used in the Passenger Model. Some rules must apply for colliding passengers, because two
passengers cannot stand or walk on the same position. In Section 3.2.5 it is further explained

how we prevent passengers from crashing into one another.

2.4 Chemotaxis

We make a small excursion to the biology of skin tissue. When there is a small wound on your
skin, some cells move towards the wound area or are already there. This is no coincidence,
since cells can react to chemical signals. An example is that bacteria will move towards high
concentrations of food (glucose). This movement is called chemotaxis. It is also possible that
cells move away, from poison for example. This is referred to as negative chemotaxis. A passenger
will likely move to a space where there is a low concentration of passengers in order to have
more room for himself. In real life no one likes crowded spaces and we are much more inclined
to go to a space where there are fewer people. However, the main goal of the passenger remains
to get to an exit. People react on passengers close to them, if someone from the right is getting
close, it is likely that you will move slightly to the left to get some space. The area around a
passenger such that he or she will react to someone else in this area is called the comfort zone.
This also holds for walls and objects (e.g. benches or shops). More details about this type of
movement can be found in Sections 3.2.3 and 3.2.4.

2.5 Life Cycle of a Cell

Cells are living organisms and therefore they will die eventually. A dead cell will not migrate on
its own anymore, only exterior forces can effect the location of this cell. Looking at passengers
on a platform, there is a chance that a passenger dies on a platform. However in the model for
passengers we do not take this into account, because this rarely happens on platforms. Another
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aspect we do not encounter in our model is cell division, a so called mother cell generates a
daughter cell. Applying this on our model, it would be equivalent to a woman giving birth to a
child, as this also rarely happens on a platform, we leave this out of our model.

2.6 Conclusion

Looking at all different components based on the behaviour for cells, we think that this model can
be used to model passenger flows as well. Still some changes have to be made in order to make
it more realistic. The largest difference between the cell-based model and the Passenger Model
that we consider in this manuscript, is that there is no mechanotaxis between the passengers.
Instead we incorporate mechanotaxis between passengers and exits. Some minor changes would
be that we need to adjust the scale, if we model passengers as circles then the radius would
be orders of magnitude larger than the radius of cells. Some changes are made for the sake
of simplicity and because they are rare events on a platform, such as dying passengers and
passengers giving birth. Another difference between the cell-based model and the model for
passengers is the presence of benches, shops and other obstacles on the platform. Passengers
normally do not walk into these things so we need to describe this behaviour as well.
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Chapter 3

The Passenger Model

To look whether the cell-based model including the adjustments stated in Chapter 2 is working,
we will construct a computer program that can be used to model the passenger flow on a train
platform. A general program is needed so we can alter the program in terms of properties of
the platform and properties of the passengers. The programming language of choice for this
is Python [10][18][21] because of personal preference. The basic idea for the program is to
determine the direction of every passenger and move them from their original place to their new
place using these directions. Many other things happen during this process: new passengers
arrive on the platform and sometimes passengers bump into each other. To make a realistic
model, the Passenger Model needs to take into account that there are objects of different shapes
and some natural human traits such as herd behaviour. We will call the adapted cell-based
model as the Passenger Model and we will explain in detail how this model works.

3.1 Arrival of Passengers

When a train arrives at the train station there are multiple doorways from the train to the
platform. We will call these entrances, because these are the entrances to the platform. For
every entrance we need an algorithm to determine when and how much passengers appear on the
platform. We will use a Poisson distribution [1][27] to model this process, because it is a discrete
probability function and one can use this distribution to say how often an event occurs within
a predefined time-interval. Besides this distribution we need to take the width of the entrance
into account, for example, when an entrance has a width of one metre, only one passenger can
go through the door when he/she has a width between 25 and 50 centimetres. The Poisson
distribution needs a rate parameter A > 0 to determine the probability of k£ occurrences within
a time interval. This parameter A can be increased if we want to model an entrance where a lot
of passengers come from per second. The probability for X =k is given in Equation (3.1) (see
also A.4).
Ak
]P’(X:k):e‘)‘y, for k=0,1,2,.... (3.1)
Now that we know how many passengers arrive we only need to know when and where.

When we change the timestep of the calculations we need to make sure that passengers
still arrive after each other within a few seconds, Thus we determine every second how many
passengers alight from the train using the Poisson distribution. These passengers are put in
front of the entrance on the platform and are ready to walk around. When there are multiple
passengers at once we set them next to each other, just like in reality, see Figure 3.1.

19
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— — L — 20 —

Figure 3.1: Example of alighting passengers, green lines: entrances, blue circles: passengers, red
circles: group of passengers, black lines: walls.

3.2 The Migration

The most important part of the model is to determine the direction in which passengers will
walk, this depends on many different factors. From the cell-based model we know that there
is mechanotaxis for every cell. For passengers we can use this mechanotaxis to determine the
movement towards the exits.

If there is more than one exit, we need to decide which exit a passenger prefers to go to. Often
a passenger wants to go to the nearest exit to for example transfer to another train platform.
However, sometimes the passenger has reached his final destination and therefore he or she wants
to go to a specific exit on the platform. Because of this, a random factor needs to decide how
many passengers on average go to the nearest exit. To find the closest exit we need to calculate
the shortest distance to every exit for each passenger. We can do this by parametrising the exit,
if exit u is a straight line with endpoints u; and us we can parametrize exit u as follows:

u(7) =uy +7(ug —uq),7€[0,1].

Let r;(t) be the location of passenger i on time ¢, now the distance between passenger i and all
points for exit u is equal to:

6; (7,t) = |lu(r) —7i(t)]]
We can square this function and then minimize this by taking the derivative with respect to 7
and set it to zero. We can eliminate the optimal 7', we find:

<ri(t) - -u >
7A_Zu(t): r’L() u17u2 ul

[|lwr — ual|?

Here < a,b >= a - b is the dot product. We defined exit v by w(7) with 7 € [0,1], but 7 does
not necessarily need to be in the interval [0,1]. Therefore we define 7;* = min(max(7;*,0),1).
Now we find the minimal distance between passenger ¢ and exit u to be equal to 6}'(7*(t),1).
Likewise we find that the point of exit u closest to passenger i is w(7(t)).

3.2.1 Mechanotaxis

Now that we know which exit the passenger wants to go to, we can calculate the direction for
each passenger to the exit. The direction from passenger i to the closest point of exit u is
equal to u(7;'(t)) —7i(t). We normalise this expression and multiply it by M (r;), see Equation
(2.4). We can now use the following formula for every passenger i to determine the direction of
passenger i towards the closest exit :

plri®) —a@ @) a7 (1) - i)
R; HCIOR N
However only this formula is not enough, sometimes people will cross their paths and the plat-

form is almost never totally empty. Beside these things we also have a random factor due to the
fact that passengers never walk in perfectly straight lines.

d;(t) = Aexp (—
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3.2.2 Random Walk

This random factor can be modelled by a normal distribution N '(j, o) just like in the cell-based
model [26]. It is possible to alter the parameters p and o as we like. If we would like a high
random factor with a small variance then we can take a high 4 and a small 0. We denote this
change in direction by m which contains two iid samples of the normal distribution, so for every
time step and each passenger this will be a different vector. The formula for the next location
based on only this random walk and mechanotaxis is:

ri(t+ At) = ri(t) + d;(t) + n.

3.2.3 Interaction with other Passengers

When it is rush hour on a busy platform, there are a lot of passengers. Often people do not
prefer to walk close to other people, so we allow some distance between the individuals. When
we want to determine the next location at time ¢+ At for passenger ¢, we need the location of all
other passengers at time t. However the direction a passenger will take does not depend on all
other passengers. It will mostly depend on other passengers close to him or her. So we need a
kind of comfort zone around passenger ¢ and whenever another passenger j is inside this comfort
zone we will alter his or her direction to move away from passenger j. Let dl1 > R; be the radius
around passenger ¢, the circle around passenger ¢ with radius dZ-1 is now the comfort zone. The
following formula for the next location based on other passengers is obtained:

ri(t) —ri(t) if [lri(t) —r; ()] < df,
0 elsewhere.

ri(t+ At) =ri(t) + 3° bi(t),  bi(t) =
jeN
i#]
For comparing platforms, it may be good to determine the total interaction time with passengers
for a simulation. This is the total time that passengers are in each other’s comfort zones.
Hypothetically, platforms with a high total interaction time will lead to a longer travel times.

3.2.4 Interaction with Walls and Objects

For walls and other objects on the platform we can use the function 6;"(t) from the previous
section to determine the minimal distance between passenger ¢ and wall or object w. Here
we assume that walls and all objects can be seen as straight line segments. Like with other
passengers, passenger ¢ will not alter his direction for a bench which is far away. So we need
another comfort zone to check whether walls or objects are close to passengers. However, a wall
or object does not move, so walking along the wall does not need to be effecting the direction of
the passenger. Walking straight onto a wall will effect the direction, so we need the direction of
the previous timestep to determine the direction for this timestep. For this model we determine
the minimal distance to every object, when this distance is inside the comfort zone with radius
d? > R;, we determine the minimal distance between the passenger and object again but now
a timestep ahead using the last direction of this passenger. If the new distance is smaller than
the old distance we know that the passenger is walking towards the wall or object and therefore
alter his or her direction. Using the angle of the walking direction towards the wall or object
we can determine how much we alter the walking direction, the direction is always in opposite
towards the wall but the intensity changes due to the angle of walking direction. We note this
direction for passenger i by w;.

Again for analyzing different platforms, it seems to be useful to calculate the total interaction
time with walls. It makes it possible to see if a high total interaction time with walls has a
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positive or negative influence for the travel time of passengers. Hypothetically, it will be a
negative influence, interaction with a wall will lower the speed of passengers which causes a
longer travel time.

3.2.5 Collisions

However, since we are dealing with a discrete problem it sometimes occurs that two passengers
will overlap with one another. Therefore we need to adjust the location of passengers for those
who collide with other passengers or objects. We do this by resetting the location for those who
collide. Let d3 be the distance between two passengers, for example 7 and j, so d3 = ||r; — 7;]|.
Now we can determine the adjusted location for passenger i, denoted by r; and in the same way
the adjusted location for passenger j.

« Ri+Rj—d3 ri—Tj « Ri+Rj—d3 ri—T;

T =T+ : r;=Ti+ . .
o 2 lri w7 2 [ =l

For walls and objects the formula is very much alike, if passenger ¢ overlaps with a wall of object
w we can only change the position of passenger ¢ to make sure that he or she does not hit the
wall. Again, we denote the adjusted location by r;. The direction has to be away from the wall
or object so that the adjusted location for passenger ¢ is equal to:

T

T=ri+(ri-w(7)) =2r; —w(7").

Here w(7;”) is the closest point of wall or object w for passenger 1.

3.2.6 Herd Behaviour

On top of all these formulas for changing the position of passengers, we need to take into account
the average direction and speed of passengers. When everyone around you is heading to exit
e € E (F is the set of all exits), you probably would go to exit e as well. Furthermore, you would
adjust your walking speed a bit when everyone around you is walking faster or slower than you.
This can be done after we determine the movement for every passenger. This behaviour depends
on a few parameters. Firstly, the choice of the passengers around you for whom you alter your
speed, can vary. This is been done by making a circle around every passenger ¢ € N with radius
h. Every other passenger that is inside this circle, that is if his or her centre is inside this region,
influences the speed of passenger i. We use m; to denote the migration vector for passenger 1,
this is difference between the new location and the old location based on mechanotaxis, random
walk, and interaction with passengers, walls and objects. The average movement a; of the
passengers around passenger ¢ is the sum of these migration vectors divided by the number of
passengers around him or her. The new migration vector will depend on the amount of herd
behaviour that is encountered, say that your direction and speed is based on a fraction p of the
movement around you then the altered migration vector m; will be:

m; = (1-p)m; + pa;.

If there is nobody near you, then according to this formula, you would walk slower than you
normally would. Therefore the formula needs to be improved:

. {(1 —p)m; +pa; if there are passengers near you,
i =

m; if there is no one near you.
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3.3 Group of Passengers

Lots of people travel in groups, for example with their family or friends. Usually they are close
to each other in the train because they want to talk to one another and they often stay together
when they arrive on the platform. Therefore we use the option to set multiple passengers as a
group when they arrive at the same time through the same entrance. Taking the same transfer
or having your bicycles next to each other outside the station are a couple of reasons why these
groups will take the same exit. If there are multiple exits and one exit is closer to a part of
the group but another exit is closer to another part of the group, then we need to make sure
that they will go to the same exit. By taking the centre of the group we can determine the
closest exit to this centre, by using the function 6;'(7,t) as before. To determine the centre of a
group we take the sum of the coordinates of the passengers and then divide it by the number
of passengers in this group (method 1). Another method would be to determine the point such
that the distance between each passenger from the group and that point is equal (method 2).
However, only method 1 is applicable because a group with 3 passengers on a straight line has
no point such that the distance between each passenger and that point is equal. Furthermore,
there is only one such point for three passengers not being on a line. This gives a requirement
for more members of a group. For a graphical explanation see Figure 3.2. Here you can see that
the method 1 is closer to the two passengers and in reality it would seem that the two passengers
on the left have bigger influence on choosing the exit than the other passenger on the right.

@
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(3,1.5)
Method 1
x ° 1.06 PY
(1.67,1.5) Method 2
1.06
(Ln
@

Figure 3.2: Difference between two methods to determine the centre of a group. Three passengers
(blue circles). Method 1 (green), mean coordinate. Method 2 (orange), point such that distance
from point to every passenger is equal. Method 2 is not applicable because these three passengers
define the circumference of a circle. A fourth member must be on this circumference to enable
the existence of such a point.

3.4 Own Will

The closest exit is not always the exit you want to go to, mainly because your total route will be
shorter if you would take another exit. Therefore some passengers will walk towards a specific
exit, regardless of the distance to the exit. Taking this into account the mean travel time of a
passenger will increase, due to the fact that the distance to the specific exit will always be greater
or equal to the distance to the closest exit. We will analyze this using numerical experiments in
Chapter 4.

If one member of a group of passengers has a particular will, then the whole group will go to
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the specific exit of this member. If there are multiple members of a group with this characteristic,
then they will go to the exit of the leader of the group. For the leader, we will use the member
with the lowest index number.

3.5 Departure of Passengers

The final part of the model is when passengers arrive at one of the exits. A passenger is at
the exit when the minimal distance between him or her and an exit is smaller than his radius.
So 6;'(7,t) < R;, here i is the passenger, u is an exit and R; is the radius of passenger i. The
minimal ¢ for which this equation is true is the time that passenger i arrives at the exit and
therefore departs from the platform. From that moment we stop calculating the next location
for passenger i. This location does not appear in the calculations for other passenger’s locations
either. We determine the time interval this passenger needed to get from the train to the exit.
This is called T¢.4¢, this is the time interval we want to minimize. We will analyze this in Chapter
4. The moment that the last person leaves the platform is denoted by T4, Which is the time
interval that is necessary to get all passengers off the trains and platform. This is an important
value, as stated before, because we aim at an evacuation process that proceeds as quickly as
possible.

3.6 Conclusion

The Passenger Model is inspired by cell-based models to simulate passenger flows on a train
platform. However, this model can be applied to different situations as well, such as concerts
(outside or inside) and sports events. Basically an area with multiple exits and entrances where a
lot of people are walking can be simulated with this model. Passengers will arrive on the platform
using a Poisson-distribution, walk towards one of the exits and depart when they arrived at an
exit. The migration is based on multiple features, namely mechanotaxis, chemotaxis, random
walk, collisions and herd behaviour. However this list does not contain all aspects that influence
the migration. If a passenger is with someone else in a group, they want to stay close to
each other. Some passengers want to go to a specific exit because of their location of work or
home. Finally, when all passengers have left the trains and found their way off the platform, the
stochastic variables T,.;; and T,y Will be used to analyze different types of platforms. Now a
program can be made to simulate multiple passengers on a platform using a combination of all
these apsects. Subsequently we can analyze the obtained data which will be done in Chapter
4. As an example of a platform with passengers and multiple objects, a freeze-frame of an
animation has been made, see Figure 3.3. Here it can be seen that there are two triangle shaped
objects (red lines) and a lot of passengers on the platform. Note that the size of each passenger
differs. From the top and bottom, passengers alight from the trains and they will find their
way to their preferred exit. Passengers colored in red are part of a group, blue means that they
travel alone. The black lines represent the edges of the platform and the green lines represent the
entrances of the trains. It can be seen that most space of the platform is occupied by passengers.
In particular the number of individuals is high near the exits of the platform.
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Figure 3.3: A freeze-frame of an animation with 2 trains (their entrances are colored green), 2
exits (blue lines), 200 passengers (red and blue circles) and triangle shaped objects (red lines).
The red colored passengers are members of a group and the blue passengers travel alone.
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Chapter 4

Statistical Analysis

To analyze the data we used the program RStudio [24]. From our model discussed in Chapter 3
we can produce a lot of data. We have many parameters to change the situation on the platform,
we will call these parameters the explanatory variables. Using these explanatory variables we
obtain some output variables, the response variables. The focus of this project is to get an
optimal platform such that the travel time for the passengers is as low as possible. So the most
important explanatory variables are the location and number of obstacles on the platform. The
two most important response variables are, the mean travel time of the passengers T,.;; and the
time, Teyae, for which all passengers have reached one of the exits. To find the optimal platform
we want to have these response variables as low as possible, therefore we want to decide which
explanatory variables significantly affect the response variables. Before we begin to analyze the
data, some initial choices must be made.

4.1 Initial Values

Humans are unique for a lot of characteristics and for these features we use a normal distribution
to create a lot of different values. A lot of these features need to be (strictly) positive and
therefore we will use the Lognormal distribution as it does not take negative values [25]. Let
X ~N(0,1) and Y = exp(k +£X), then In(Y) ~ N (k,£2) and Y ~ Lognormal(v, A\?), with the
following probability density function:

fly) = = P (-5 (n(y) - p)?) if y>0,
0 if y <0.

The mean of the lognormal distribution is equal to: E[Y'] = exp(v+ ’\72) and the variance is equal
to: Var[Y] = [exp(A?) — 1]exp(2v + A?). Say that we want a mean equal to 4 and a variance
equal to o2, then we have these equations:

)\2
,u:exp(VJr 7)

02 = [exp(A?) - 1] exp(2v + A\?)
Using substitution we get:

2
v=In(u) - % (4.1)

/\Q:IH((%)2+1) (4.2)

27
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Using Equations (4.1) and (4.2) we can construct a lognormal distribution with mean p and
variance 0.

4.1.1 Passenger Characteristics

For the speed of the passengers we want the mean to be the average walking speed for humans,
which is around p =5 [km/h] ~ 1.4 [m/s]. Furthermore, we take as standard deviation o = 1.4/5
to allow passengers to run or to walk slowly according to their preferences. A lot of factors
influence this velocity, e.g. age, culture, gender and the purpose of travelling. Similarly we set
the sizes for the passengers with the lognormal distribution. The size is fixed by the radius for a
passenger, since we are modelling passengers as circles. We take the mean as = 0.3 [m] and a
standard deviation of o = 0.05 such that there are very few extremely small or large passengers.
Another value we want to vary for passengers is the comfortzone, a circle around a passenger
such that he or she moves away for passengers who are inside this circle. This value cannot
be negative either, hence we will use the lognormal distribution again. This time with mean
p =2 [m] and standard deviation o = 0.5. The comfortzone for walls and obstacles, which we call
the wallzone, is set equal to 0.5 [m] for every passenger and works similarly as the comfortzone
for passengers. The same holds for the meanzone, this is the zone around a passenger for which
he or she will adapt the direction and velocity for passengers in this zone (herd behaviour). We
set the radius of this zone equal to 3 [m]. How much we take this value into account, is fixed
by the value meanvalue, which is set to 0.1. The last zone we need to discuss is the zone for
groups. This is the zone for which the centre of a group needs to be inside for every member
of the group. The radius of this zone is set to 1.5 [m]. The number of passengers entering the
platform from one train is set as 100 passengers, the larger the platform and thus the train,
the larger this number can be. The parameter for the Poisson distribution to model how many
passengers enter the platform per second per entrance is set to 0.5 [S_l] this means that on
average one passenger alights from an entrance of a train per 2 seconds.

4.1.2 Platform and Train Dimensions

The size of the platform is also something we have to talk about. As discussed in Section
2.1 we will model a platform with a length equal to 50 metres and width equal to 10 metres.
Although a platform would be larger in reality [19], a smaller platform is simulated to speed up
the simulation. The number and size of entrances and exits are based on reality as well. The
number of the entrances of a train is set to six with a width of two metres. So out of the 50
metre, about 25% is occupied by the entrances. We will model the platform with two exits, both
with a width of four metres. Unless it is specifically otherwise stated, these values will be used
during the simulations.

4.2 Influence of the Time Step

Before we start producing and analyzing the data, we need to check whether the time step
influences the response variables. As stated earlier, a large time step is desired because otherwise
the program has a long running time. First an empty platform is modeled. Simulating this
situation 1000 times with time steps equal to At =0.125, At = 0.25, At = 0.5 and At =1 second,
gives us the probability and cumulative density functions that can be seen in Figure 4.1. The
figures on the left are the probability and cumulative density function for Te.;;. It can be seen
that decreasing the value of At will result in a lower value for T¢.;, it can also be seen that there
is convergence for the mean and variance. We even observe convergence in probability, which
implies convergence in distribution. This suggests that for a relatively small At we get the true
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values for the response variables, see Table 4.1. The models with At = 0.125 and At = 0.25
look very similar, for T..; it is only shifted a bit. If we shift the distribution of At = 0.25 to
the left with the difference in mean (which is equal to: pat-0.25 — prat=0.125 ~ 0.276), then the
Kolmogorov-Smirnov test [22] gives us a p-value of 0.9356 which strongly suggests that these
distributions indeed are samples from the same distribution.

Similar results are for Teyqe, however in this case the distribution with At = 0.5 seems to fit
the distributions with At =0.125 and At = 0.25. At =1 is still not usefull.
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Figure 4.1: Probability density functions (top) and cumulative density functions (bottom) for
Tezit (left) and Tiyqc (right) for 4 different time steps.

Texit Tevac
At mean | variance || mean | variance

1 17.94 0.76 66.13 43.66
0.5 14.78 0.54 59.50 25.80
0.25 || 14.09 0.50 58.77 26.52

0.125 || 13.81 0.45 58.38 23.43

Table 4.1: Mean and Variance for Ty and Teyqe using 4 different time steps (seconds). It can
be seen that there is some convergence as At decreases, especially for Teu;:.

Using Richardson’s extrapolation [32] it is possible to estimate the rate of convergence, here
we assume that the error of the approximation has the form c,h? + O(h?*!). Here ¢, # 0 and
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p € N. Let p; denote the rate of convergence for T,,;+ and po the rate of convergence for Tiyqe.
Using formula (4.3) and (4.4) gives us an estimation of these convergence rates p; and po.

Teait (At = 1) = Tegir(At = 3) 14.09 - 14.78
1 D [l
Topit(At = 1) = T (At = 1) 13.81 - 14.09
Tevac(At = l) - Tevac(At = l) 58.77 - 59.50
B 1
Tovac(At = 1) = Topae(AL = 1) 58.38 — 58.77

Since we estimated the error with c,h?” we can calculate this error:

Tewit(At = %) — Teit (At = zl;)

cp WP = ~ 13.81 - 14.09 = -0.28,
21 — 1
Tevac At = Tevac =1
cp,hP? = ( 822)2 : (Af=3) 58.38 — 58.77 = —0.39.

To receive a better approximation for T.,; and T.yq. we can add this error estimate to the
original estimation:

1
Tewit (At = 8) +cp ' ~13.81 -0.28 = 13.53 s,
Tevac (At = 8) + CthPQ ~ 58.38 = 0.39 = 57.99 s.

For better approximations, a smaller h can be used and can be done in further research.

4.3 The Monte Carlo Error

From a mathematical point of view we want to look at the convergence of the mean of the
response variables. Since we are using Monte Carlo methods to estimate the mean, variance
and the cumulative probability of Tey;+ and Teyee, we know that convergence depends on the
sample size. Increasing the sample size four times will reduce the error by half [9]. To see if
this is correct we need to estimate the mean and the variance of the response variables. Let N
be the sample size, then unbiased estimators for the mean X and variance o? are respectively
Xy = % Zf\il X; and s?\, = ﬁ Zf\zfl (X; - Xn)?, here X; is f9r example Teg;t for simulation <.
According to the strong law of large numbers we know that X — X if NV — oo and similar for
the variance: s3 N~ 0% if N - co. Imagine that we have k batches of Monte Carlo simulations

and each Monte Carlo simulation contains N samples. We denote this by {X, (@ )}Z 1, So this set
contains N times k values (so we need N times k simulations). For every batch of Monte Carlo
simulations we know from the central limit theorem that:

VN(X - X) ~ N (0,02),

where o2 represents the variance of the iid stochastic variables X;. From this we can calculate
the variance of X](\;):

. _ . . 2
Var(VN(XP - X)) = N-Var(XP) = 6* = Var(x V) = UN

) 2
We have already an estimation for o2, namely s3. So as result we have: Var(X](VZ)) ~ SWN
The Monte Carlo Error (MCE) is defined by the standard deviation of X (l), so this means:
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Figure 4.2: The Monte Carlo Error (MCE) plotted against the sample size on a double logarith-
mic scale for Tepi (left) and Teyqe (right).

MCEN ~ 5\/—% From this it can be seen that the error reduces with a factor 10 if the sample
size increases with a factor 100. The same four different time steps have been used as in the
previous section to determine this Monte Carlo Error. In Figure 4.2 the error for T..;; and Teyqc
have been plotted versus the sample size N. It can be seen that all time steps follow roughly the
same line, however you can also see that a higher At results in a higher error. This suggests that
multi-level Monte Carlo [7] may be an opportunity to make simulations much faster. Multi-level
uses the following formula:

E[Tv] =E[To] + f:E[Ti -Tiq1].

Here T; denotes a stochastic variable using time step h; = 27¢[s]. It can be seen that if E[T;~T;_;]
is small, then a small error has been made if you estimated E[T;] with T3 = E[Ty]. This has
not been done in this study due to lack of time, however it is good to keep in mind that multi-
level Monte Carlo simulation can reduce the simulation time.

With the estimates for the mean and the variance we can make 95% confidence intervals for
different sample sizes:

. __ 1.96sy
<X <Xn+ = 0.95.
VN NTTUN )

Again, this formula shows you that quadrupling the sample size will reduce the confidence
interval with 50%. From now on we will simulate every model with a time step At = 0.25. From
4.3 we can see the predicted length which is the observed length using 10 simulations multiplied
by v/10 and then divided by the square root of the sample size N. It can be observed that the
expected convergence rate is approximately the same. Note that at the beginning the sample
size is very small and that the convergence is not very good. We can also observe that the
variance of T yqc is much larger than the variance of Teygt.

It can be seen that the 95% confidence interval for Ti.; is: [12.62,12.70], and for T,y
[56.49,57.08].
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Figure 4.3: Length of confidence interval (observed and predicted) plotted against the sample
size for Teyir (left) and Teyqe (right).

4.4 Mean Free Path of Passengers

An interesting value for platform designing engineers is the mean free path, which respresents the
mean distance an individual can move without colliding with another individual. To determine
this value in our situation, we need to assume that all passengers have the same size, radius
R = 0.3. Hence the area for which a passenger would collide with another passenger has area
equal to A = 7(2R)?. The total distance a passenger travels on average during time interval ¢ is
equal to vt, here v represents the mean velocity of all passengers, which in our case is equal to
v =1.4 [m/s]. The area that a passenger uses in time ¢ is equal to: A+ 4Rwvt. This is the area
for which a passenger will collide if the centre of another passenger is inside this area. However,
we did not encounter the case that other passengers are moving as well, therefore the mean
relative velocity is used: @p¢ = V/20. Furthermore we need to know how many passengers are
on the platform. If there are no passengers on the platform we would have a high mean free
path, whereas if the amount of passengers increases, then the mean free path decreases. We will
denote the number of passengers per square metre by n,. The complete formula for the mean
free path, A, is now [17]:

)= vt ~ ot o1
no(A+4R\/20t)  4Rn,(Rm++/20t) 2Rn,v/3
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The last approximation holds if 7tv/2 >> R, where time ¢ is the time a passenger travels and we
saw in our model that a passenger needs 10 to 20 seconds approximately. Let ¢t = 10 [s] then we
have: vtv/2 ~ 1.4-10v/2 = 142 >> 0.37 ~ 0.94. Therefore we think the estimation is reasonable.
Using the area of the platform, which is Ay = 10-50 = 500 [m2], we can determine n, at every
time step, since we know the number of passengers at every time step. When a train with six
entrances arrives at a platform with two exits and we let 1000 people walk from the train to
the exits, then there is a time interval in which the number of passengers on a platform hardly
changes, therefore the mean free path hardly changes as well. In Figure 4.4 you can see on the
left that in the beginning and at the end of the simulation the value for the amount of passengers
varies a lot and therefore the value for the mean free path changes rapidly accordingly. On the
right you can see a figure where the right y-axis is scaled such that the value for the mean free
path can be seen more clearly. As one can see, the value for the mean free path is close to 10
metres. This is, of course, on a platform with no obstacles.
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Figure 4.4: The mean free path (red) and the number of passengers (blue) can be seen. On the
right a right y-axis is scaled to see more details in the mean free path.

4.5 Sprinter and Intercity Trains

We investigate the influence of the entrances at the trains on the values for T,;;+ and Teyqc.
The size of the entrances could be important as well as the positions of the entrances. Different
traintypes or metrotypes have different kind of doors as well as different spacings between doors.
Sometimes the floor of the trains are on the same height of the platform, but there are also trains
with small steps what will cause a minor delay in the passenger flow.

In the Netherlands there are roughly two types
of trains, Sprinters and Intercities. Sprint-
ers are for short distances and therefore the
level of comfort is lower than in an Intercity.
However they have relatively more doors than
Intercities. Furthermore the doors are more
spread over the length of the Sprinter in com-
parison to the Intercity. This is because the
Intercity is made for long distances and there- Figure 4.5: Difference between the entrances of
fore large coaches are needed. An Intercity an Intercity (top) and a Sprinter (bottom).
repeatedly has a pair of doors close to each

Metre

Metre
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other, however the pairs are far away from each other. In Figure 4.5 the difference between the
two trains can be seen, the entrances above belong to an Intercity and the ones below belong
to a Sprinter. We choose them to be two metres wide to test only if the location matters for
Tewit and Typee. To test whether there is a difference between these two trains, we simulate a
platform with only sprinter doors and a platform with only intercity doors and then look at
their distribution functions for Tp.;: and T.yqe. We will simulate this a 1000 times with 100
passengers. The results can be found in Figure 4.6.
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Figure 4.6: Probability (top) and Cumulative (bottom) Density Functions for the T, (left)
and Teyqee (right). Here two different type of trains are compared, the Sprinter (blue) and the
Intercity (red). It can be seen that for both Tey;; and Tiyec, the Intercity has better results.

The cumulative distribution function (cdf) of the Intercity compared to the cdf of the Sprinter
is more to the left. Therefore the Intercity doors are ‘better’ than the Sprinter doors, since in
general the passengers are faster from the platform with the Intercity doors. It should be noted
that the difference between these two doors is not very large, the difference in means for T,
and Tpyqc is respectively 0.26 and 1.89 seconds. Testing whether the datasets come from the
same distribution function (the null-hypothesis) with the Kolmogorov-Smirnov test gives us for
Tesit & p-value equal to 2.837 - 10713 and for Thpge a p-value < 2.2 - 10716, From these p-values
(p = P{reject Hy|Hy is true}) we can see that the probability to wrongfully reject the null-
hypothesis is very low. Therefore it can be concluded that there is indeed enough evidence to
say that there is a statistically significant difference in the distributions of the two trains. A
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platform with an Intercity will likely be evacuated more quickly than a platform with a Sprinter.
Passengers from an Intercity will likely find their exit sooner than passengers from a Sprinter.

4.6 Group of Passengers and Own Will

To measure the influence of the “groups” and “own will” on both response variables, multiple
simulations have been done with “groups” and without “groups” and similar for “own will”.
First some probability density functions have been obtained, which can be seen in Figure 4.7.
Here it can be seen that the distributions with both “groups” and “own will” switched off and
the one with only “own will” switched on is approximately the same. Similarly, the distribution
with both “groups” and “own will” on and the one with only “groups” switched on are roughly
the same. This suggests that the group behaviour has an influence on the response variables
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Figure 4.7: Probability density functions (top) and cumulative density functions (bottom) for
Terit (left) and Teyqee (right). “Groups” and “own will” switched off and on.

whereas the factor “own will” has not. A linear model T' = o« + 3 - G + € makes it possible to
test whether the factors “groups” and “own will” do influence the response variables [6]. We
can test the null hypothesis Hy : 8 = 0 against the alternative hypothesis Hy : § # 0. Here
T is the response variable, « the intercept and S the slope, G is the factor “groups” or “own
will” and € is the error that this model contains. For G equal to the factor “own will” give for
both response variables T, and T,y,4. respectively § = 0.02 and 8 = 0.13 with the following
corresponding p-values for the Student’s t-test (t-test) [23]: 0.47 and 0.398. Hence the likeli-
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hood to wrongfully reject Hy is large. This implies that switching on or off “own will” does not
significantly influence the results. However, fitting the model with G equal to the factor groups
gives for both response variables Tey;; and Teyqc respectively 8 = =0.4 and 8 = —1.35 with the
following corresponding p-values for the t-test: < 2-107'6 and < 2-10716. This points towards
that the factor “groups” has a significant statistical influence.

For further simulations we will still model with both variables switched on because these
variables do not influence the computation time. Furthermore these variables are taken into
account because they have been introduced to make a platform more realistic.

4.7 Parameter Variation

To verify whether this model is a good representation of reality we alter some of our initial
values. Hypothetically, the radius of the passengers will influence T¢.;; and Teyqc not that much.
Smaller passengers do not feel the presence of other passengers as much as larger passengers, so
their direction will not alter that much. If the radius is large, then there is a high probability
that passengers are in their comfort zones. If two passengers are inside each other’s comfort
zone, then they will react to this. However the amount of time to find their exit will not alter
that much. Simulating a platform with 100 passengers with different radii gives us the opportu-
nity to see whether there is some difference, see Figure 4.8. Here we used the graphical method
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Figure 4.8: Boxplots for the response variables T¢.;, interaction with passengers, interaction
with walls/objects and Teyq. for different values of width R of passengers.

boxplot to represent a distribution. Sample values are sorted and divided into four groups. The
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median (black line) divides the sample values into two equal groups, 50% of the sample size has
a sample value greater or equal to this median and the other half has a sample value smaller
than this median. The top of the box is the upper quartile, which divides the top 50% into two
groups. The bottom of the box is the lower quartile, which divides the bottom 50% into two
groups. The dotted line (called whisker) and dots above the box represents the top 25%, where
the dots are called outliers. Similar for the dotted line and dots underneath the box, which
represents the bottom 25%, where the dots are called outliers again.

You can see that especially the time that passengers are in each other comfort zones increases
when the radius increases. It can also be seen that a radius equal to 0.2 metre gives a high spread
for the time of interaction with walls. This is mainly because of the fact that we model with a
time step of At = 0.25 seconds, this causes a relative big jump for passengers with a small radius
which results in ‘missing’ the exit. Hence this error is caused by a relatively large time step.
For both T,.;+ and Tpyec there is no significant difference. To test whether a different radius
significantly changes the mean for the response variables we use the t-test. For the interaction
with passengers we get a really low p-value, < 2-10716 which means that indeed the radius
influences the interaction with passengers. We can also find an estimation for the slope, which is
equal to 31.9 [s/dm] with standard error equal to 1.08. This means that increasing the radius of
the passengers with 10 centimetres results in 31.9 extra seconds of interaction with passengers
(with a small deviation). However for Te;+ and T4 there is no clear relation. This seems to
be a realistic result as stated before.
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Figure 4.9: Boxplots for the response variables T¢,.;:, interaction with passengers, interaction
with walls/objects and Teyq. for different values of the speed of passengers.
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Simulating passengers with a different speed will, hypothetically, result in a decreasing relation
for all four response variables. Passengers who have a high walking speed will likely find their
exit faster than passengers with a low speed, this explains a decreasing relation for T,,;; and
Tevac- The passengers are in a short time frame on the platform which results in a low interac-
tion time for both walls and passengers. To see whether this is a correct hypothesis we perform,
again, a lot of simulations with different sampled values for the speed. The results can be seen
in Figure 4.9.

Examining whether the speed influences the response variables using a t-test indeed results
into the observation that the speed is of significant importance (all p-values are < 2- 10’16), see
Table 4.2. Notice that T¢,;; reduces by roughly one second while T¢,,. reduces with 2 seconds.
This is probably due to the fact that T.,.. mainly depends on the last few passengers and
because of the fact that there are fewer passengers on the platform which results into more
walking space. These findings seems to be realistic as well.

Response Variable ‘ Slope ‘ Std. Error | p-value
Tovit -9.82 0.10 <2-10716
Interaction with Passengers | —348.7 4.2 <2-10716
Interaction with Walls -11.22 0.50 <2-10716
Tovac ~20.46 0.55 <2-10716

Table 4.2: Testing with the t-test whether the slope is equal to zero. Here, the slope is the
change in seconds for the response variables, if the speed is increased with 1 [m/s], with the
corresponding standard error and p-value.

4.8 Platform Design

From an architecture point of view, we want to determine what kind of obstacles influences the
transfer and evacuation times. Further, one of our main goals of this study is to make a platform
such that T+ and Teyqe are as low as possible. Using Monte Carlo methods we can model this.
We can measure the increase in time but we can also measure how many passengers are close to
each other and obstacles or walls. One may expect that the travel and evacuation time is lower
if passengers only spend a short time close to walls, obstacles or other passengers and vice versa.
We will investigate whether this hypothesis is correct. First we need to place a few obstacles
on the platform. Based on maps of platforms and experience, you could have benches and little
shops for comfort on a platform. Furthermore, small obstacles such as trash cans, signs and
pillars can be added to the platform. We will model four different platforms with obstacles and
one platform with no obstacles at all as a reference. The four chosen platforms can be seen in
Figure 4.10. Note that the third platform has no obstacles, but the difference is that it only
has one exit. Simulating this with this input data, we will have four different response vari-
ables, which can be analyzed to choose which platform is preferred in comparison with the other
platforms. First probability density functions have been made for Te.;+ and Teyee, Which can be
seen in Figure 4.11. Clearly platform C, with only one exit, stands out. Every measurement
of T,z;+ is higher than the maximum value of all other platforms. Also for Ti,. it can be seen
that platform C is clearly not a handy platform for an evacuation in comparison with the other
platforms. For all other platforms T,,;; and T, are distributed nearly around the same values
and the maximum difference between the means is less than half a second. To take a closer look
at the difference between platforms A,B and D we construct a cumulative probability distribu-
tion function, see Figure 4.12. Here it can be seen that platform B clearly is a better platform
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Figure 4.11: Probability density functions for T,..;; and Tgyq4c, for different platforms.

for what concerns Tyt and Teyee. Moreover in comparison with an empty platform, there is
not much difference between the two. The difference between platform A and D is remarkable,
for Ty, platform A is clearly a better than platform D. However, if we look at Teyqe it can be
seen that in particular the end of the cdf platform A has a long tail. P(Teyee < 56.75) = 0.95
for platform A and P(Teyec < 51.0) = 0.95 for platform D, so we can see a 5 second difference
here, which is roughly a 10% increase. From these findings and the Kolmogorov-Smirnov test
which confirms our findings we can say that an empty platform has the same distribution as
platform B and gives the best results for Te.;: and Teyqe. Platform A and D look a bit similar
however the results do not follow the same distribution. The p-values from the Kolmogorov-

Smirnov test are below 0.01. Platform C has the worst results for T+ and Teyqc, see Figure 4.11.

To determine whether the interaction time with passengers and walls or objects are significant
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Figure 4.12: Cumulative density functions for T.;; and Ty, for different platforms.

for the results, the mean, standard deviation and correlation between these interaction variables
with T..;+ and Teyee has been calculated. These values can be seen in Table 4.3. First of all, it

Interaction Passengers Correlation || Interaction Walls || Correlation

Platform || mean sd Terit ‘ Tevac || mean sd Tezit ‘ Tevac
Empty 358.4 36.97 0.540 | 0.019 || 17.44 4.42 0.096 | 0.100
A 379.3 41.22 0.596 | 0.010 || 39.09 19.09 0.362 | 0.838

B 374.9 38.75 0.541 | 0.013 || 17.60 4.27 0.163 | 0.172

C 602.4 59.79 0.615 | 0.010 || 16.81 7.02 0.039 | 0.038

D 3779 40.39 0.552 | 0.040 || 115.26 12.00 0.738 | 0.167

Table 4.3: For every platform the mean and standard deviation of the interaction with passengers
and interaction with walls/objects is shown (in seconds). Furthermore the correlation coefficients
between the interaction times and Ty it, Tepae are given.

can be seen that the mean value (and standard deviation) for the interaction with passengers
is roughly the same for platforms A,B and D. The mean value for an empty platform is the
lowest because passengers have more space to walk on and therefore there is less interaction.
Notice that the interaction with passengers has some correlation with T¢.;, but for Ty, the
correlation is very small. Hence the interaction time with passengers does not influence the
evacuation time. From the information of the interaction with walls it can be said that the more
interaction the higher the travel time will be, however this does not hold for the evacuation
time. For platform A there is a clear relation between the interaction with walls and T,4.. For
platform D there is a clear relation between the interaction with walls and T..;;. Again the
difference between platform B and an empty platform is small, there is only a minor increase
in correlation for platform B in comparison with an empty platform. From these data, it can
be observed that a platform with obstacles increases the interaction time with passengers and
walls. A platform with only one exit will have a higher interaction time with passengers but a
bit lower interaction time with walls. For a good platform it requires to have a low interaction
time with passengers and walls, this is hard to accomplish because adding obstacles will cause
more interaction. Therefore platform B has been chosen cleverly because there is only a small
increase in the interaction time with walls.
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4.9 Conclusion

The Passenger Model described in Chapter 3 has been analyzed. First some realistic assumptions
have been made for the initial values of the characteristics of passengers and the dimensions of
the platform and trains. The size of the platform is a bit small but this speeds up the computa-
tion time and the results will be similar if the platform is larger. To simulate a passenger flow on
a platform we need a time step to determine each time step the new location of all passengers.
As result we saw that a time step equal to At = 0.25 [s] gives approximately the true values for
Terit and Tepqe. Analyzing these response variables has been done using Monte Carlo methods.
Therefore there are few types of errors made. The first error is the error of the model which
uses Forward Euler to determine the next location of passengers. The second error is the Monte
Carlo Error, this is the error we make if we analyze the data and we found out that the error
decreases with the factor ﬁ, where N is the sample size. Further, we observed that multi-level
Monte Carlo may be an opportunity to decrease the simulation time. We also found out that
it is possible to determine the mean free path for passengers on a platform and that this value
fluctuates between five and ten metres if there is one train on a platform. Changing the location
of entrances may be a part of a way to reduce the travel and evacuation time, as we have seen in
Section 4.5. Subsequently the factors “group” and “own will” have been implemented to make
the model more realistic and after analyzing these factors we found out that the factor “group”
has a postive influence on Tg.;; and T,y4c, as these response variables decreases when we switch
“groups” on.

To test whether the model works properly we altered some of our initial values to see if the
results are realistic. Increasing the size of passengers will increase the interaction time with
passengers, but the other response variables remain somewhat equal. Increasing the walking
speed of the passengers will lead to a decrease for all response variables, because passenger will
spend less time to reach an exit. These results satisfy our hypotheses which indicates that our
model can be used to analyze different types of platforms. Four different platforms have been
compared with an empty platform as reference, simulating 100 passengers and two trains. A
platform with only one exit is clearly not suitable. The other three platforms seems to have
similar results in comparison with an empty platform, however platform B shows better results
than platform A and D, if we take the interaction with passengers and walls into account.
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Chapter 5

Transfer Model

To make a more realistic model for passengers on a platform, we need to add more aspects to
the model. A lot of passengers want to transfer to another train to reach their destination,
therefore the entrances of trains are also treated as exits. However, passengers will not enter the
train when there are alighting passengers as this is common courtesy. Furthermore we need to
specify where a passenger wants to go to. Moreover, if there is no train at the other side of the
platform, transferring passengers need to go to their preferred entrance in a train (so not only
to the closest one). This is due to the fact that this particular entrance is close to the exit of
the station of their next destination, mostly useful if there is only one exit on a platform which
is far to the right or left of a platform. Instead of only passengers that are alighting from trains,
there are also passengers that are entering the station and therefore enter the platform via the
exits. These passengers want to go to a train as well as the transferring passengers, so the same
rules apply for them as well.

With these guidelines making a more realistic model, we can determine the time of walking
on the platform and the time of total evacuation again. However, we can determine the dwell
time as well. This is very interesting for metro and train services, because on basis on the
dwell time of a train a schedule is made for the arriving and departure times. A low dwell time
is desired, because this means that more trains per unit time can arrive and this will reduce
travel time of the train and thus is beneficial to the passengers. We can determine in what way
obstacles on a platform influence these times.

5.1 Description of the Transfer Model

The frame of the model is already there: the Passenger Model as described in Chapter 3. How-
ever, we need to adapt a lot of things to make it work. Trains will arrive at different times and
will depart at different times and therefore we need to make our own timetable such that there
will never be two trains at one side of the platform at the same time. For every train the number
of passengers can be adjusted and this can also be done for the amount of arriving passengers,
which are the passengers that arrive at the platform through the exits. Furthermore, the size
and number of doors, in other words, the type of train can be altered if desired.

Passengers who are entering the platform through the exits have a probability of 50% that
they will take the train on their left hand and 50% chance that they will take the train on
their right hand, this is regardless of the presence of a train. Thirty percent of the passengers
alighting from the trains are set as transfer passengers and will walk to the other side of the
platform (if there is still a train that has yet to arrive). But where do the passengers go to if

43
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there is no train? The answer to this question is based on reality and experience on a platform.
Many passengers will stand on the side of the platform waiting for the train to arrive, in many
countries it is not known on forehand where the entrances of the train are. However in some
countries (mainly in East-Asia and Europe), it is known where you can get on a train, because
they use platform screen doors [11]. The number of used platform screen doors is increasing
and therefore we will model a platform where it is known on forehand where the entrances of
the train are located, because then the destination of a passenger is known before the train has
arrived. The only thing left to do is to determine which entrance every passenger will go to.
This is done using the normal distribution with the expected value equal to the x coordinate
and standard deviation equal to the length in metres of the platform (which in this case is
50). The outcome defines the chosen entrance of a train, however values outside the interval
[0,50] are not desired, because this will lead to a strange behaviour. Therefore the normal
distribution is used again as long as the value is inside the interval [0,50]. This type of distri-
bution is called the truncated normal distribution [8], see Figure 5.1 for a sample distribution
of a passenger with x coordinate equal to 50. When the entrance of a train is chosen there is

0.025

0.020

\

ity
\

0.015 4

0.010

Probability Densi

0.005

0'0000 10 20 30 40 50

Figure 5.1: Green histogram is produced using 100.000 samples of the truncated normal distri-
bution, blue line is the corresponding probability density function. Here p = 50 and o = 50.

another 50% chance that the passenger will wait on the right hand side of the entrance and
50% to stand on the left hand side. When a passenger has arrived at this area he or she will
stay there untill the train arrives and all passengers are alighted from this entrance. However
it can also happen that the train arrives during the walk to this area, in this case the passen-
ger will go to the nearest exit and again wait untill all passengers are alighted from this entrance.

When all passengers got off the train, this train still has to wait untill everybody is inside.
However, when is this true? There is a continious flow from the exits of the platform to the
trains, so it will take very long to wait untill everyone is inside. Therefore it is stated that a
train leaves if there are no passengers who alight and if there are no passengers within one metre
off the train. The first time that this condition holds for a train, it leaves the train station and
the dwell time is then equal to the difference between the time of departure and time of arrival.

Finally, when the last train has left the train station, each passenger needs to leave the
platform through the exit (there is no other possibility of leaving the platform). The time at
which the last passenger has left the platform is again denoted by T¢yqc.. The overall average
travel time for all passengers, that is the passengers going from train to another train, passengers
going from a train to an exit of the platform and the passengers going from the exit of the
platform to a train is denoted by T¢.;t-
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5.2 Analysis of the Travel, Evacuation and Dwell Time

Again the same types of platforms have been simulated as in Chapter 4, however only 10 sim-
ulations have been done per platform due to long computation time. Three trains have been
modeled each with 100 passengers and the timetable can be seen in Table 5.1. The arrival time
is fixed, but the departure time can vary due to the fact that not everybody has alighted or due
to passengers who are still within one metre of the train. The number of passengers that arrive
at the platform is set to 100 passengers per exit. For every train, the dwell time is measured.

Bottom Top

Train 1 | Train 3 | Train 2
Arrival 0 120 60
Departure 40 160 100

Table 5.1: Timetable of all simulations for three trains in seconds.

Tewit, Tevae and the interaction times are measured as well. For the travel and evacuation time
the boxplots in Figure 5.2 have been made. It can be seen that platform C, with only one exit,
is still not useful as it gets for both the exit time and the evacuation time a high value. An
empty platform, platform A and platform B give similar results, however an empty platform
still has a smaller spread in comparison with the other platforms. Platform D clearly stands out
for both variables, as it takes low values for Te,;; but high values for T, 4.. This is in contrast
to the results in Section 4.8 where it was the other way around. Again a table has been made
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Figure 5.2: Boxplot for T,.;+ and Teyqc for different platforms.

to investigate whether we can say something about the interaction times, see Table 5.2. For the
interaction with passengers we can see that there is a huge increase in comparison with Table
4.3. This is mainly because passengers are close to each other when they are waiting for the next
train. Adding obstacles to a platform causes even more interaction time with passengers and
the correlation between this interaction and 7.,.;; is higher than in case of a platform without
any obstacles. Even some negative correlations can be seen, this may be the result of doing
only 10 simulations, the corresponding p-values are all above 0.1 so we do not reject the null
hypothesis that the correlation p is equal to zero (so Hy: p =0 and Hj : p #0). Although it can
also be the result of a high interaction time which is mainly based due to waiting passengers.
Similarly, the platforms with obstacles have a higher interaction time with walls in comparison
with platforms without obstacles. Furthermore, the correlation with 7¢,; is much higher for
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platforms with obstacles.

Interaction Passengers Correlation Interaction Walls Correlation
Platform || mean sd Terit ‘ Tevae || mean sd Terit ‘ Tevac
Empty 3833 131 0.239 | -0.230 || 72.18 6.96 0.117 | -0.288
A 4084 315 0.788 | 0.022 || 904.8 140 0.715 | -0.019
B 4247 172 0.447 | 0.391 || 966.7 133 0.571 | 0.413
C 3888 122 -0.260 | 0.135 || 49.88 5.20 -0.080 | -0.440
D 4386 149 0.496 | -0.156 || 2426 191 0.591 | 0.461

Table 5.2: For each platform the mean and standard deviation of the interaction with passengers
and interaction with walls/objects is shown (in seconds). Furthermore you can see the correlation
between these interaction times with T, and Tepge.

Lastly we will look at the dwell times. First we combined the dwell times for all three trains and
looked at the difference between the platforms, this can be seen in Figure 5.3. The dwell time
for platform D is on average much higher than for all other platforms, with some measurements
almost four times higher than measurements from other platforms. This type of platform is
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Figure 5.3: Dwell times of 3 trains combined for different platforms (in seconds)). It can be seen
that only platform D is really different from the rest.

clearly not useful in real life because of the many obstacles that makes it difficult to transfer.
The other platforms give roughly the same observations. In Figure 5.4 it can be seen that the
dwell time for the last train, which is train 3, has on average the lowest dwell time. This is due
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to the fact that at the end of the simulation, only a few passengers will be at the platform which
will cause a low dwell time. An empty platform and platform B seem to give similar results for
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Figure 5.4: Dwell times of the 3 trains for different platforms (in seconds).

the dwell time just like before. Further, these two platforms seem to have the lowest and least
varying dwell times of all different platforms. Although platform B contains some objects it
gives comparable results for the dwell times as an empty platform. This is a remarkable result,
as adding objects would give less walking area for passengers.

To test these two categorials variables we make the following model:

Y =a+vDy+7v2D2+ B1Ey + foEa + B3E3 + B4 Ey + 61 D1 Ey + 62 Do Fy
+ 53D1E2 + 54D2E2 + 55D1E3 + 56D2E3 + 57D1E4 + 58D2E4 +e.

Here D; (i = 1,2) and E; (j = 1,2,3,4) are dummy variables defined as in Table 5.3. Now «

Ey | Es | B3 | By

Dy | Do Empty Platform | 0 0 0 0

Train1 | O 0 Platform A 1 0 0 0
Train 2 | 1 0 ’ Platform B 0 1 0 0
Train3 | 0 1 Platform C 0 0 1 0
Platform D 0 0 0 1

Table 5.3: Defenition for dummy variables D; (i =1,2) and E; (j =1,2,3,4).

is the estimation for the dwell time for train 1 on an empty platform and « + ~; for train 2
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on an empty platform, moreover a + v, + 83 + J5 is the estimation for the dwell time of train
2 on platform C. We can estimate the coefficients with this linear model in Rstudio ?7. For
every estimation we can test the null hypothesis that this estimation is equal to zero against the
alternative hypothesis that it differs from zero. A summary of all these tests is represented in
Table 5.4. Here it can be seen that the dwell time is not significantly different for different trains.
Also the type of platform does not significantly influence the dwell time, except for platform D
which increases the dwell time hugely. Also from the interaction coefficients §; and dg it can
be seen that the dwell time for train 2 on platform D is very high in comparison with train
1 on an empty platform. The negative estimation of dg is due to the fact that 4 has a high
positive estimation. If we ignore platform D, it can be seen that every other coefficient (except
the intercept ) does not have any stastical significance to the dwell time. So adding obstacles
to a platform, platform A and B, do not need to influence the dwell time. However, these high
p-values are probabily the effect of doing only 10 simulations per platform which results in only
10 sample values per train per platform. To investigate whether a platform with obstacles has
a lower dwelltime than an empty platform, more simulations must be made.

Coefficient | Estimate p-value Coeflicient | Estimate p-value
a 45.4 <2-10716 5 0.575 0.877
o] -1.100 0.676 89 0.175 0.963
Yo -3.250 0.218 53 -0.275 0.941
b1 0.175 0.947 04 0.100 0.979
B 0.575 0.827 s 0.750 0.840
B 0.400 0.879 56 1.675 0.653
B4 20.125 | 3.26-10712 57 68.700 | <2-10716
3 -19.225 | 8.15-107"

Table 5.4: Estimations for the coefficients with their corresponding p-value for the null hypothesis
that they are equal to zero.

5.3 Conclusion

To make the Passenger Model even more realistic, transferring passengers have been taken into
account. Again some assumptions have been made to simulate these transferring passengers. A
timetable has been made, as we are dealing with multiple trains. Again we analyzed the travel
time and evacuation time of the passengers. The interaction with passengers has next to no
meaning, because transferring passengers are close to each other when they are waiting to get
on the train. Platform C, a platform with only one exit, is still not ideal in reality because of
a high travel time and a high evacuation time. Platform D has the best results for T..;; but
the worst results for Tyy,qc, so the obstacles on platform D are not convenient for an evacuation.
Platform A and B seem to have the same results as an empty platform, but there is a wider
spread. Furthermore, the interaction time with passengers and walls are higher for platform A
and B than for an empty platform.

The Transfer Model gives us the opportunity to analyze the dwell time for trains on different
platforms. From Figure 5.3 we can see that platform D is clearly not ideal concerning the dwell
time as it takes relatively large values. We could not see any differences between the other
platforms and an empty platform. This implies that adding obstacles does not necessarily to
increase the dwell time. However it should be noted that we only used 10 simulations to measure
the dwell time.



Chapter 6

Conclusion and Recommendations

6.1 Conclusion

In this thesis, we studied the possibility of constructing an Agent-Based Model inspired by the
cell-based model to simulate passenger flows. Furthermore, we analyzed this model whether it
has realistic results and whether it can be used for simulating passenger flows. Two models have
been made: the Passenger Model and the Transfer Model. First the cell-based model has been
studied to determine which aspects can be used in these models. We adjusted these models even
more by using a Poisson distribution for the arrival of passengers and taking “groups” and “own
will” into account. Even the herd behaviour of humans have been included in the model. The
travel time and the evacuation time have been analyzed as we want to minimize these variables.
A good platform requires some objects, because they have a positive influence on the comfort of
passengers, however a low interaction time with passengers and walls is desired. We found out
that the location of doors, the factor “groups”, the size of passengers and the speed of passengers
have an influence on the response variables. Assumptions that we made seem to be realistic and
all the results satisfied our hypotheses, which indicates that these models indeed represent the
reality.

Analyzing four different types of platforms with two trains on each side of the platform has
been done with the Passenger Model. A platform with only one exit is clearly not ideal as
the travel and evacuation time are relatively high. Furthermore, it seems that a platform with
a large object in the centre of a platform gives better results than large objects closer to the
exits. The same four platforms have been analyzed with the Transfer Model. This model is even
more realistic as passengers can transfer to other trains and these trains can arrive and depart
according to our own choice. We analyzed again the travel and evacuation time as well as the
dwell time. We found out that a platform with objects near the entrances of trains has a negative
influence on the evacuation and the dwell time. Adding objects in the centre of a platform do
not have significantly different results than an empty platform. This is an interesting result,
because this indicates that it is possible to add objects to a platform without getting worse
results for the travel, evacuation and dwell time. Perhaps even better results can be obtained
by adding objects to a platform.

6.2 Recommendations

While constructing the models, we encountered several things that can be adjusted to make
the models even more realistic. From the cell-based model we used the mechanotaxis to de-
termine the movement from passengers towards exits. The constants A and B can be chosen

49
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differently to simulate a more realistic passenger flow. The interaction with passengers and
walls/objects happens instantaneously, however it would be more realistic if this happens more
gradually. Furthermore, to implement the herd behaviour we used a fraction p, this is the
amount of movement of a passenger which is based on passengers around you. This p does not
depend on the number of passengers around a passenger. It is more likely that passengesr will
adapt their velocity more if there are more passengers around them. For the Transfer Model
we used the truncated normal distribution to determine the movement of a transferring passen-
ger. Adjusting the parameters of this distribution can ensure that the reality is better simulated.

Simulating both models led to a few problems. The simulation time may be reduced using
multi-level Monte Carlo so more simulations can be made to make more precise estimations.
More Monte Carlo techniques can be used to reduce the variance, the control variates method
[9] has been implemented but led to a very small decrease. Especially for the Transfer Model,
more simulations are required to analyze the data better. This can lead to different results
or that results can be substantiated more strongly. For further studies we also recommend to
simulate more kinds of platforms to get a better picture for an optimal platform. Lastly it would
be very useful to compare these findings with real data. This may be the best way to check if
the models do represent reality.
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Appendix A

Distributions

A.1 Normal Distribution

The probability density function of a random variable X is:

R

202

1
f(w)=0m

With g and 02 > 0 denotes the mean and the variance of the distribution. Notation: X ~

N(p,0?).

A.2 Log-Normal Distribution

Let X be normally distributed with mean z and variance o > 0 (i.e. X ~ N(i,0?)). Then
Y =eX has the log-normal distribution with the following probability density function:

fly) = — = exp (-5, (In(y) - p)*) ify>0,
0 if 4 <0.

Vica verca, In(Y') ~ N'(i£,0?). The mean and variance are respectively exp(j+ "—22) and exp(2u+
02)[exp(c?) - 1]. One of the main properties of this distribution is that it only takes positive
real values.

A.3 Truncated Normal Distribution

Let X be normally distributed (i.e. X ~ N (u,0?)) with g eR and 0 > 0. If X € (a,b) for some
a,b € R with a < b, then X has a truncated normal distribution (a < X < b). The probability
density function for a < x < b is:
2
()

I
f(@) = ——— —
o (3 (ot (75) -ert(25)))

If @ > —co and b — oo you can see that f will approach the probability density function for the
normal distribution.

o7
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A.4 Poisson Distribution

A random variable X is Poisson distributed with parameter A if X takes values in {0,1,2,...}
and their probability is equal to:

k
P(X =k) = N

R for k=0,1,2,....

Here X is the average rate of an event happening in a fixed time interval. If such events occurs
independently from each other, then the Poisson distribution can be used. The mean and
variance of X are both equal to .



Appendix B

Python Code

B.1 Passenger Model

Here the main program (B.1.1) uses the functions from B.1.2 to do 1000 simulations with 100
passengers. The output is a matrix with response variables T¢.it, Tevae, the interaction time
with passengers and the interaction time with walls and objects. Initial values can be adjusted
to adapt the characteristics of passengers or the dimensions of the train and platform. Obstacles
can be added to simulate different types of platforms.

B.1.1 Main Program

numpy as np

matplotlib.pyplot as plt
sys
time
Passengermodel poissoncalculate ,

##Initial Values##

initialvalues , determinewalls, progression ,

#These values can be adjusted#

width = 10. #metre

length = 50. #metre

dt = 0.25 #secondes

sprinter = np.array ([[[2,0],[4,0]], [[8,0],[10,0]],[[14,0],[16,0]], [[20.5,0],[22.5,0]],
[[34,0],[36,0]], [[40,0],[42,0]], [[46,0],[48,0]]])

intercity np.array ([[[3.5,width],[5.5,width

. width],[20.5,width]] [

11,0[44.5 , width] ,[46.5 ,width]]])
entrance = np.arra

([l14,0],[6,0]],[[12,0],
exits = np.array ([[[0,3],[0,7]] ,[[length ,3],[
obstacles = np.zeros ((0,2,2))
numberofpassengers = 100
numberofsimulations = 1000

poissonvalue = 0.5 #/second
speedinit = 1.4 #metre/second
Rinit = 0.3 #metre
wallzone = 0.5 #metre
comfortzoneinit = 2. #metre
groupzone = 1.5 #metre
meanzone = 3. #metre
meanvalue = 0.1

grouptrue = False

ownwilltrue = False

AB = [1.1, 10%x.3]

##Main Program##

edges = np.array ([[0.,0.],[0.,width],[length ,
Walls =

timel = time.time ()

X = np.zeros ((numberofsimulations ,23))
a (numberofsimulations) :
progression (a,numberofsimulations)
numberofsteps []

people = []

grouplst = []

Walls = determinewalls (Walls ,np.zeros (shape
speed, R, peopleonplatform , comfortzone ,

speedinit ,exits ,ownwilltrue)
poisson poissoncalculate (numberofpassen

11,[[6.5,width],[8.5,width]],[[15.5,width],

length ,7]]])

width] ,[length ,0.]])

(0,2,2)) ,exits)
ownwill = initialvalues (numberofpassengers

gers ,entrance , poissonvalue , Rinit)

numberofpassengers ,

determinematrix

5

[[27.5,0],[29.5,0]],

[17.5,width]],[[18.5,

[29.5 , width] ,[31.5,width]],[[32.5,width],[34.5,width]],[[41.5,width],[43.5,width

[14,0]],[[20,0],[22,0]],[[28,0],[30,0]],[[36,0],[38,0]],[[44,0],[46,0]]])

np.array ([[edges [0],edges [1]] ,[edges [1],edges [2]] ,[edges [2],edges [3]] ,[edges [3],edges [0]]])

,comfortzoneinit , Rinit ,

entrance , poisson , peopleonplatform ,dt,length , width ,R

poissonvalue ,
(exits)

timel)%60) +

seconds

mean, evac, interpas, interwall = determinematrix(Walls,
. ,people ,numberofpassengers ,obstacles , wallzone , exits ,comfortzone ,speed ,numberofsteps ,a, grouplst ,
. groupzone , grouptrue ,meanzone,ownwill , meanvalue,AB)
X[a,:] = np.array ([mean,interpas , interwall , evac, length ,width, dt, comfortzoneinit ,
. speedinit , Rinit , wallzone ,groupzone , meanzone, meanvalue, AB[0], AB[1],
s (entrance) , (obstacles), grouptrue, ownwilltrue])
"It took ' + ( (time.time () timel)/60) 4’ minutes and ° + ( (time.time ()
to determine the matrix.’
##Save Data##
string =
i ( (obstacles)):
string 4= (obstacles [i][0])+ (obstacles [i][1])
string ==~ :

99
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string = 'no’
np.savetxt (" matri + string 47 _obstacles_.” 4 str(len(entrance)) 4+ 7 _entrance_.” + str(dt) + 7 _dt.csv”, X,
delimiter="
.
B.1.2 Functions
import numpy as np
import matplotlib.pyplot as plt
import sys
##Initial Values##
def normaltolognormal (mu,sigma) :
#determines the parameter for the lognormal distribution with mean mu and sd sigma#
1 = np.sqrt(np.log ((sigma/mu)=*%*2+4+1))
v = np.log(mu) - 1%%2/2
return v, 1
def initialvalues (numberofpassengers, comfortzoneinit ,Rinit, speedinit, exits ,ownwilltrue):
#determines the intial values for all passengers#
v,1 = normaltolognormal (speedinit ,speedinit/5); speed = np.random.lognormal(v,],numberofpassengers)
v,1 = normaltolognormal (Rinit ,0.05); R = np.random.lognormal(v,l,numberofpassengers)
peopleonplatform rango (numberofpassengers)
v,l = normaltolognormal (comfortzoneinit ,0.5) ;comfortzone = np.random.lognormal(v,]l,numberofpassengers)
ownwill = (np.random.uniform (0,10, numberofpassengers) <2)*np.random.randint (1,14 lcn (exits),
numberofpassengers) if ownwilltrue == True clsc np.zeros(numberofpassengers)
return speed, R, peopleonplatform , comfortzone, ownwill
def exitinwall (exits ,wall):
#determines whether there is an exit in a wall#
for exit in exits:
it wall[0][1] != wall[1][1] and exit [0][1] != wall[0][1] and wall[0][1] != exit[1][1]:
ratio = (wall[0][0] - wall[1][0]) /(wall[O][1] -wall[1][1])
it (wall[0][0] exit [0][0]) /(wall[0][1] exit [0][1]) == ratio and (wall[0][0] exit [1][0]) /(wall
[0][1] -exit [1][1 == ratio:
if min(wall[0][1] ,wall[1][1])<min(exit [0][1],exit [1][1]) and max(wall[0][1],wall[1][1])>max(
- exit [0][1],exit [1][1]) :
return True, exit
elif wall[0][1] == wall[1][1] and exit [0][1] == exit [1][1] and wall[0][1] == exit [0][1]: #als muur en
exit horizontaal lopen
if min(wall[0][0] ,wall [1][0])<min(exit [0][0],exit [1][0]) and max(wall[0][0],wall[1][0])>max(exit
- [0][0] ,exit [1][0]):
return True, exit
return False, exit
def determinewalls (Walls, walls , exits):
#makes a set of all walls (without exits)#
while Walls.size !=0:
wall = Walls [0]
boolian , exit = exitinwall (exits, wall)
if boolian — True:
xwall [wall [0][O0] ,wall[1][0]]
xexit [exit [0][0] ,exit [1][O]]
ywall = [wall[0][1],wall[1][1]]
yexit = [exit [0][1] ,exit [1][1]]
if xwall [0] == xwall[1]:
walll = np.array ([[[ wall [np.argmin(ywall)][0] ,min(ywall)] ,[exit[np.argmin(yexit)][0],min(yexit)
11D
wall2 = np.array ([[[exit [np.argmax(yexit)][0] ,max(yexit)],[wall[np.argmax(ywall)][0] ,max(ywall)
- 11D
else:
walll = np.array ([[[min(xwall),wall[np.argmin(xwall)][1]] ,[min(xexit),exit[np.argmin(xexit)
- 10D
wall2 = np.array ([[[max(xexit),exit[np.argmax(xexit)][1]],[max(xwall),wall[np.argmax(xexit)
1011111)
Walls = np.append(Walls,walll , axis = 0)
Walls = np.append(Walls,wall2, axis = 0)
Walls = np.delete (Walls ,0, axis = 0)
else:
Walls = np.delete (Walls, 0, axis = 0
walls = np.append(walls, np.array ([wall]),axis=0)

return walls

##Functions to determine the new location of passengers##

def normalize (X, boolian = True ):
#Normalizes a vector X#
if boolian == True:
X = X/np.linalg .norm(X) if np.linalg.norm(X) != 0 clsc np.array ([0,0])
return X
def centregroup (matrix, step, group):
#Determines the centerpoint of a group#
middle = np.zeros (2)

for i in group:
middle += matrix[i][step][:]
middle = middle/len (group)
return middle
def passengersaroundyou (matrix,i,step,people,boundary):
#Returns the passengers around you and the amount of passengers around you with radius=boundary#

passengers = []
for j in [x for x in people if x!=i]:
d = np.linalg .norm(matrix[i][step][:] - matrix[j][step][:])

if d<boundary :
passengers .append (j)
return passengers , len(passengers)

def groupofpassenger (i, grouplst):
#Returns the group of passenger i, if i isn’t in a group it returns []#
if i in sum(grouplst ,[]):
for group in grouplst:
it i in group:
return group

else:

return []

def peopledirection (matrix, i, step,comfortzone ,R,people, grouplst ,interpas ,dt):
#Returns the direction for passenger i based on passengers in his/her comfortzone#

passengers , total = passengersaroundyou (matrix,i,step ,people,comfortzone[i])
group = groupofpassenger (i, grouplst)
direction = np.zeros(2)
for j in passengers:
if np.linalg .norm(matrix[i][step][:] - matrix[j][step][:])<comfortzone[i]/max(1l,total) + R[i]:
if j not in group:

interpas 4= dt
direction 4= matrix[i][step][:] -matrix[j][step][:]
return normalize (direction), interpas
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whichexit (matrix, step, point, exits, i, grouplst,ownwill):
#Returns the exit passenger i will go to#
if i in sum(grouplst ,[]) :

for group in grouplst:

if i in group:
if sum(ownwill [group]) >0:

index = np.argmin((ownwill [group]>0)==True)
point = group [index]
else:
point = centregroup (matrix, step, group)
distances = []
for exit in exits:
distances .append (distance (point, exit))
index = np.argmin(distances); exit = exits|[index]

return exit, index

exitdirection (matrix, step, point, i, exit,R, AB):
#Returns the direction towards the preferred exit of passenger i#
boundary = R[i]/np.linalg.norm(exit [1] exit [0])

t = tbar(point,exit)
if t<=1-boundary and t>=boundary:
direction = directionline (point ,exit)
else:
direction = (exit[0]4+exit[1])/2 point

return normalize (direction )*AB[0]*np.exp ( AB[1]* distance (point ,exit)/R[i])

tbar (point , line):

#Determines t such that the distance between point and line is the smallest#
t = np.dot(point -line [0],line [1] line[0]) /(np.linalg.norm(line [0] line [1]) **2)
return t

directionline (point, line):

#Returns the direction from point to linesegment#

t = tbar (point, line)

direction = line [0]4 min(max(t,0),1)*(line[1] line[0]) point
return direction

distance (point , line):

#Returns the minimum distance from point to line#

d = np.linalg .norm(directionline (point ,line))

return d

walldirection (point ,i,walls ,wallzone ,R, interwall ,r0,dt) :
#Returns the direction for passenger i based on walles and obstacles#

wallboundary = wallzone4R[i]; Wall = []
direction = np.zeros (2)
for wall in walls:
d = distance (point, wall)
if d<wallboundary :
Wall=wall
dl = distance (point + normalize (r0)*d, wall)
r = directionline (point , wall)
ifodld:
hoek = np.arccos ((d-d1)/d)
direction -= abs(1-hoek/(np.pi/2))=*r
interwall 4= dt
else:
direction -= 0.1xr
return normalize (direction), interwall , Wall

randomdirection () :
#Returns a random vector#

xy = np.random.normal (0,0.5,2)
return xy
collidinggroups (matrix, i, step, grouplst, groupzone,R):
#Determines whether members of a group are still close to each other#
group = groupofpassenger (i, grouplst)
d = np.linalg .norm(matrix[i][step][:] - -centregroup (matrix, step, group)) - (groupzone4R[i])
if d>0:

matrix[i][step][:] 4= 1l.lxds*normalize(centregroup (matrix, step, group) matrix[i][step][:])
return matrix
collidingwalls (matrix, i, step, walls ,R):
#Determines whether passengers are colliding with walls and replaces them#
for wall in walls:

d = distance (matrix[i][step][:], wall)

if d<R[i]:

matrix[i][step][:] -= directionline (matrix[i][step][:],wall)*1.1

return matrix[i][step][:]

collidingpeople (matrix, i, step, people,R):
#Returns the new location for passengers who are colliding with other passengers#

for j in people:
ifi == j:
return matrix
. .
d = np.linalg.norm (matrix[i][step][:] - matrix[j][step][:])

it d<R[i]4R[j]:
matrix [i][step][:] 4= (R[i]+R[j] -d)/1.9%normalize (matrix[i][step][:
matrix [j][step][:] 4= (R[i]+R[j]-d)/1.9%normalize (matrix[j][step][:

“matrix[j][step][:
“matrix [i][step][:])

return matrix
meandirection (matrix, i, step, people, directionmatrix , meanzone,speed) :
#Returns the mean direction for passenger i using passengers around him#
direction = np.zeros (2)
pas, tot = passengersaroundyou(matrix ,i,step ,people,meanzone)
for j in pas:
direction += directionmatrix[j]*speed[j]
if tot>0:

refurn direction/tot

else :

return direction

poissoncalculate (numberofpassengers ,entrances , poissonvalue , Rinit):

#Returns a vector for each entrance with how many passenger alight every second using the Poisson
- distribution#
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poisson = np.zeros (shape = (0,len(entrances)), dtype = int)
while numberofpassengers >0:
lst = np.random.poisson (poissonvalue, len(entrances));
for i in range(len(lst)):
I1st [i] = min(lst[i],int(np.linalg .norm(entrances[i][0] -entrances[i][1]) /(2xRinit)))
if sum(lst [:i41])>=numberofpassengers and sum(lst [:i])<numberofpassengers:
Ist[i] = 1st[i] sum(lst [:i+1])+numberofpassengers
elif sum(lst[:i+41])>=numberofpassengers:
Ist [i]=0
value = sum(1lst)
numberofpassengers .= sum(lst)
poisson = np.append (poisson, [lst],axis = 0)
return poisson
entrancelocation (matrix, step, entrances, poisson, peopleonplatform, dt, length, width,R,people, grouplst ,

. speed, grouptrue,ownwill):
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#Determines for every alighting passenger their initial position#

for ingang in range(len (entrances)):
instappers = poisson[step/int(1/dt) ,ingang]
if entrances[ingang][0][0] == length or entrances[ingang][0][1] == width:
normaal = normalize (np.array ([-abs(entrances [ingang][1][1] -entrances[ingang][0][1]) ,-abs(entrances|
ingang ][0][0] - entrances[ingang][1][0])]))
normaal = normalize (np.array ([abs(entrances[ingang][1][1] -entrances[ingang][0][1]) ,abs(entrances|
.~ ingang][0][0] - entrances[ingang][1][0])]))
if instappers >1 and grouptrue == True:
grouplst .append (peopleonplatform [:instappers])
ownwill [peopleonplatform [: instappers]] = 0
speed [ peopleonplatform [: instappers]] = sum(speed[peopleonplatform [:instappers]])/float (len(
- peopleonplatform [:instappers]))
for i in range(instappers):
t = (2xi4+1.)/(instappers*2.) + np.random.uniform (-0.1,0.1)
x = entrances [ingang][0]+ tx(entrances[ingang][1] -entrances[ingang][0])
matrix [peopleonplatform [0]][step][:] = x+normaal # np.array ([R[peopleonplatform [0]] ,R|
peopleonplatform [0]]])
people .append (peopleonplatform [0])
peopleonplatform .remove (peopleonplatform [0])
return matrix, people, grouplst, speed
def exitreached (matrix, i, step, exits, people,R,numberofsteps, grouplst ,evac,dt):
#Checks whether passenger i has reached an exit#
for exit in exits:
if distance(matrix[i][step][:], exit)<R[i]:
group in grouplst:
if i in group:

group .remove (i)
people.remove (i)
numberofsteps.append (step -np.argmax(matrix[i]>0)/2)

if people == []:
evac=stepx*dt
return people, grouplst, evac, numberofsteps
def progression (count, total):

#Shows the progression of the simulation#
length = 60
filled_len = int(round(length % count / float (total)))
if filled_-len >int (round(length *(count-1)/float (total))):

bar
sys.stdout . write (
sys.stdout . flush ()

% (bar))

def direction (matrix ,step, people ,numberofpassengers , walls , obstacles , wallzone ,R, exits , comfortzone , grouplst ,

interpas , interwall ,ownwill ,dt,AB):
#Determines the direction for each passenger on the platform based on every aspect#
directionmatrix = np.zeros ((numberofpassengers ,2))
for i in people:
point = matrix[i][step][:]
exit , index = whichexit (matrix, step, point, exits, i, grouplst,ownwill)
r0 = exitdirection (matrix ,step ,point ,i,exit ,R,AB)
rl, interpas = peopledirection (matrix,i,step ,comfortzone ,R,people,grouplst, interpas ,dt)
r2, interwall, Wall = walldirection (point ,i,np.append(walls ,obstacles ,axis=0),wallzone ,R, interwall , r0
,dt)
r3 = randomdirection ()
direction = rO+rl4r2+r3
directionmatrix [i] = normalize(direction ,np.linalg.norm(direction)>1)
it np.linalg.norm(direction) <0.5 and Wall !=[]:
if np.linalg .norm(Wall[0] - point)<np.linalg.norm(Wall[0][1]  point):
directionmatrix [i] = normalize (Wall[0] -Wall[1])
els :
directionmatrix [i] = normalize (Wall[1] Wall[0])
return directionmatrix , interpas, interwall
##Simulationht
def determinematrix (walls ,entrances , poisson , peopleonplatform ,dt,length ,width ,R, people ,numberofpassengers ,
obstacles ,wallzone , exits ,comfortzone ,speed ,numberofsteps ,a, grouplst ,groupzone, grouptrue, meanzone,
ownwill gemiddeldevalue ,AB) :
#Here everything is combined, passengers alight , walk and depart from the platform. It returns the response
variables
matrix = np.zeros ((numberofpassengers,1,2)); step = 0; interpas = 0; interwall = 0; evac=0
while people != [] or peopleonplatform !=][]:
matrix = np.append (matrix, np.zeros ((numberofpassengers, 1, 2)),axis=1);
if peopleonplatform != [] and step%(int(1/dt)) == 0: matrix, people, grouplst, speed = entrancelocation
(matrix ,step, entrances , poisson, peopleonplatform , dt, length, width,R,people, grouplst , speed,
grouptrue , ownwill)
directionmatrix , interpas, interwall = direction (matrix,step,people,numberofpassengers , walls ,obstacles ,
- wallzone ,R, exits ,comfortzone ,grouplst , interpas, interwall ,ownwill,h6dt,6 AB)
for i in people [:
vect = (1.gemiddeldevalue)x*directionmatrix[i]*speed[i]+gemiddeldevalue*xmeandirection(matrix,i,step,
. people ,directionmatrix , meanzone,speed)
matrix[i][step+1][:] = matrix[i][step][:] + dtxvect
people, grouplst, evac, numberofsteps = exitreached (matrix, i, step+1, exits, people,R,
numberofsteps , grouplst , evac,dt)
matrix = collidingpeople (matrix, i, step+1, people,R)
matrix[i][step +1][:] = collidingwalls (matrix, i, step+1, np.append(walls,obstacles, axis = 0),R)
if grouptrue == True:
or i in sum(grouplst ,[]):
matrix = collidinggroups (matrix,i,step+1,grouplst ,groupzone ,R)
step+4=1
eturn dtxsum(numberofsteps)/float (len(numberofsteps)), evac, interpas, interwall

B.2 Transfer Model

Here the main program (B.2.1) uses the functions from B.1.2 and some extra functions from
B.2.2 (where functions with the same name need to be replaced), to do 10 simulations with
100 passengers per train. The output is a matrix with response variables T..;t, Tepac, the dwell
time for every train, the interaction time with passengers and the interaction time with walls
and objects. Initial values can be adjusted to adapt the characteristics of passengers or the
dimensions of the train and platform. Further, the number of trains and passengers can be
changed and the entire timetable can be adjusted as well.
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B.2.1 Main Program

import numpy as np

import matplotlib.pyplot as plt

import sys

import time

from Transfermodel import poissoncalculate , initialvalues , progression, determinematrix, animation

##Initial Values##
#Platform Choice#

empty = np.zeros ((0,2,2))

A = np.array ([[[10, 4] ,[10, 6]],[[15, 4] ,[15, 6]],[[10, 4] ,[15, 4]1],[[10, 6],[15, 6]],[[40, 4] ,[4
61],[0[35, 4],[35, 6]],[[40, 4],[35, 4]],[[40, 6],[35, 6]],[[19, 5],[23, 5]],[[27 , 5],[31 , 5]]])

B = np.array ([[[5 ,5],[15, 5]]1,[[45, 5],[35, 5]]1,[[20 , 4],[30, 411 .,[[20, 6],[30, 6]1],[[20, 4], s
- 6]].[[30, 4],[80, 6]]])

D = np.array ([[[9, 0],[4 ,3]],[[ 9, 10],[4, 7]],[[17, oO],[12, 38]],[[17, 10],[12, 7]],[[33, 0],[38,
31],[0[83, 10],[38, 7]],[[41, o0],[46, 3]],[[41, 10],[46, 7]]])

platform = empty

#These values can be adjusted#

width = 10. #metre

length = 50. #metre

dt = 0.25 #second

sprinter0 = np.array
- ([[l4,0],[6,0]],[[12,0],[14,0]],[[20,0],[22,0]],[[28,0],[30,0]],[[36,0],[38,0]],[[44,0],[46,0]]])
sprinterl = np.array ([[[4,width],[6,width]],[[12,width],[14,width]],[[20,width],[22,width]],[[28 ,width],[30,
width]] ,[[36 ,width] ,[38 ,width]] ,[[44 ,width],[46 ,width]]])

entrances0 = np.concatenate (([sprinter0] ,[sprinter0]))
entrancesl = np.concatenate (([sprinterl],))

exits = np.array ([[[0,3].[0,7]],[[length 3], [length ,7]]])
obstacles = platform

numberofpassengers = np.array ([[100, 100], [100],[200]])
arrival = np.array ([[0, 120], [60]])

departure = np.array ([[40, 160], [100]])
numberofsimulations = 1

poissonvalue = 0.5 #/second

speedinit = 1.4 #metre/second

Rinit = 0.3 #metre

wallzone = 0.5 #metre

comfortzoneinit = 2.#metre

groupzone = 1.5 #metre

meanzone = 3. #metre

meanvalue = 0.1

grouptrue = False

ownwilltrue = False

transfertrue = True
AB = [1.1, 10%x.3]

##Main Program##

entrances = [entrances0O ,entrancesl]
timetable = np.array ([arrival ,departure])
edges = np.array ([[0.,0.],[0.,width],[length ,width],[length ,0.]])
walls = np.array ([[edges [0] ,edges [1]] ,[edges[1] ,edges[2]] ,[edges[2],edges [3]] ,[edges[3],edges[0]]])
timel = time.time ()
X = np.zeros ((numberofsimulations,23+ lcn (entrances0)+lcn (entrancesl)))
for a in range(numberofsimulations):
progression (a,numberofsimulations)
numberofsteps = []
parenlst = []
dwelltime = [[] ,[]]
for i in range(len(arrival)):
for j in range(len (arrival[i]))
dwelltime [i].append(departure [i][j] arrival [i][j])
speed ,R, peopleonplatform ,comfortzone ,ownwill , transfer ,train ,people , whichtrain = initialvalues (
numberofpassengers , comfortzoneinit , Rinit ,speedinit ,exits ,ownwilltrue , transfertrue)
poisson ,timetable = poissoncalculate (numberofpassengers ,entrances ,poissonvalue ,Rinit,timetable ,exits)
mean, evac, interpas, interwall, matrix,dwelltime = determinematrix(walls ,entrances , poisson ,
peopleonplatform ,dt,length ,width ,R, people ,numberofpassengers ,obstacles ,wallzone ,exits ,comfortzone ,
speed ,numberofsteps ,a, parenlst , groupzone, grouptrue h,meanzone,ownwill , meanvalue, transfer ,train ,
timetable , whichtrain ,dwelltime ,AB)
X[a,:] = np.concatenate ((np.array (sum(dwelltime ,[]) ) ,np.array ([mean, interpas, interwall, evac, length ,
width ,dt ,comfortzoneinit , poissonvalue ,speedinit , Rinit ,wallzone ,groupzone ,meanzone ,meanvalue, AB[O0],
. AB[1], sum(map(sum,numberofpassengers)),len(exits), len(np.concatenate ((entrances[0],entrances[1]))),
len (obstacles) ,grouptrue ,ownwilltrue])))
print It took ' 4 str(int(time.time () -timel)/60) 4+’ minutes and ’ 4+ str(int(time.time () -timel)%60) + ' seconds
to determine the matrix.’
##Save Data##
string = '~
for i in range(len(obstacles)):
string + tr(obstacles [i][0])+=tr(obstacles[i][1])
if string == ' :
string = 'no’
np.savetxt (str(versie) +” _Transfer.csv’, X, delimiter=",")
animation (length , width, walls, exits, entrances, obstacles, evac, sum(map(sum,numberofpassengers)), matrix,R,
[],dt,timetable , transfer)
.
B.2.2 Functions
def initialvalues (numberofpassengers, comfortzoneinit ,Rinit, speedinit, exits ,ownwilltrue,transfertrue):
#determines the intial values for all passengers#
numberofpassengers = sum (map(sum,numberofpassengers))
v,l = normaltolognormal (speedinit ,speedinit /5); speed = np.random.lognormal(v,]l,numberofpassengers)
v,]l = normaltolognormal (Rinit ,0.05); R = np.random.lognormal(v,]l,numberofpassengers) #meter
peopleonplatform0O = [range(numberofpassengers [0][i]) or i in range(len(numberofpassengers[0]))];
peopleonplatforml = [range(numberofpassengers [1][i]) for i in np.arange(len (numberofpassengers[1]))];
peopleonplatform = [peopleonplatform0 ,peopleonplatforml ,[ranze(numberofpassengers [2][0]) ]]
v,1 = normaltolognormal (comfortzoneinit ,0.5) ; comfortzone = np.random.lognormal(v,l,numberofpassengers)
prob = np.random.uniform (0,10, numberofpassengers)
ownwill = (prob<2)*np.random.randint(1,14+lcn (exits),numberofpassengers) if ownwilltrue clsc np.zeros (
numberofpassengers)
transfer = (prob>7) if transfertrue clsec np.zeros(numberofpassengers)
train = np.zeros(numberofpassengers) if transfertrue clsc
people = []
train[-numberofpassengers [2][0]:] = (prob[-numberofpassengers[2][0]:] >5); transfer [ numberofpassengers
[2][0]:] = np.ones(numberofpassengers [2][0])
whichtrain = np.zeros ((2,numberofpassengers))
return speed ,R, peopleonplatform ,comfortzone ,ownwill ,transfer ,train ,people,whichtrain

areaexit (exit ,point,whichtrain ,i):
#Returns the area a transfer passengers wants to go to and whether he has arrived or not#
area = np.zeros ((2,4,2)); hoogte = 1.4;
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plusmin = 1 if exit[0][1] == 0 clsec -1
arca [0] = np.array ([exit [0],2%exit [0] exit[1],exit[0]+ plusminsnp.array ([0,hoogte]) ,2%exit [0] exit[1]+
plusminsnp.array ([0, hoogte]) ])
area [1] = np.array ([exit[1],2*exit [1]-exit[0],exit[1l]+ plusmin*np.array ([0,hoogte]) ,2xexit [1] -exit[0]+
plusmin*np.array ([0, hoogte]) ])
if whichtrain[1][i] == 0:
index = np.random.randint (0,2)
area = area[index]
whichtrain [1][i] = index+1
¢lif whichtrain [1][i] == 1:
area = area [0]
else:
area = area[1]
if all(point>np.min(area,axis=0)) and all(point<np.max(area ,axis=0)):#blijf staan
arrived = True
else :
arrived = False
return area , arrived, whichtrain

exitdirection (matrix, step, point, i, exit,R, groupslst ,AB):
#Returns the direction towards the preferred exit of passenger i#

if exit.shape !=(2,):
boundary = R/np.linalg .norm(exit [1]-exit [0])
t = tbar (point,exit)
if t<=1boundary and t>=boundary :
direction = directionline (point ,exit)
else :
direction = (exit[0]4+ exit[1]) /2 point
return normalize (direction )*AB[0]*np.exp (-AB[1]* distance (point , exit)/R)
else :
yeturn normalize (exit - point)*AB[0]*np.exp (-AB[1]*np.linalg.norm(exit -point)/R)

walldirection (point , walls , wallzone ,R, interwall ,r0,dt,exit):
#Returns the direction for passenger i based on walles and obstacles#

wallboundary = wallzone4+R; Wall = []
direction = np.zeros (2)
if exit.shape == (2,):

if mp.linalg.norm(exit - point)<wallboundary+42*R:
return np.zeros(2), interwall , Wall

it distance (point,exit)<wallboundary-+2+R:
return np.zeros(2), interwall , Wall
for wall in walls:
d

= distance (point, wall)
if d<wallboundary :
Wall=wall
dl = distance (point + normalize (r0)=*d, wall)
r = directionline (point ,wall)
ifodi<d:
angle = np.arccos ((d-d1)/d)
direction .= abs(l-angle/(np.pi/2))=x*r
interwall 4= dt
else:
direction -= 0.1lxr
return normalize (direction), interwall , Wall

poissoncalculate (numberofpassengers , entrances , poissonvalue , Rinit ,times , exits) :
#Returns a vector for each entrance with how many passenger alight every second using the Poisson
distributiong

p0 = [[] for - in range(len(entrances[0]))]; pl = [[] for - in range(len(entrances[1]))]; p2 = [[]]; ast =
copy .deepcopy (numberofpassengers); p = [p0O,pl,p2]
for platform in range(len (entrances)):
for train in range(len (p[platform])):
for tijd in range(times [0][platform][train]):
plplatform][train].append ([0]*lcn (entrances [platform][train]))
while ast[platform][train]>0:
Ist = np.random. poisson (poissonvalue, len(entrances|[platform][train]))
for i in range(len (lst)):
Ist [i] min(lst[i],int(np.linalg .norm(entrances [platform][train][i][0] entrances[platform
J[train][i][1]) /(2*Rinit)))
it sum(lst [:i+1])>=ast[platform][train] and sum(lst [:i])<ast[platform][train]:
st [i] = 1st[i] sum(lst [:i+1])+ast[platform][train]
clif sum(lst [:i41])>=ast [platform ][train]:
Ist [i]=0
ast [platform ][ train] -= sum(lst)
p[platform][train].append(list (1st))

if len(p[platform][train])>times [1][platform][train]:
times [1] [ platform ][ train]+=5

while ast[2][0] >0:
st = np.random. poisson (2% poissonvalue, len (exits))
for i in range(len (lst)):
Ist[i] = min(lst[i],int(np.linalg.norm(exits[i][0] - exits[i][1]) /(2% Rinit)))
if sum(lst [:i4+1])>=ast [2][0] and sum(lst [:i])<ast [2][0]:
Ist [i] = Ist[i]-sum(lst [:i+41])+ast[2][0]
elif sum(lst [:i+41])>=ast [2][0]:
Ist [i]=0
ast [2][0] -= sum(lst)
p[2][0].append(list (Ist))
return p,times
entrancelocation (matrix, step, entrances, poisson, peopleonplatform ,numberofpassengers ,dt,length, width,R,
people, groupslst, speed, grouptrue,exits ,train):
#Determines for every alighting passenger their initial position#
for platform in range(len (peopleonplatform)): #2
for train in range(len(peopleonplatform [platform])): #0
if peopleonplatform [platform ][train]!=[]:
if platform == 2:
passageways = exits
else:
passageways = entrances[platform][train]
for ingang in range(len (passageways)):
alighters = poisson[platform][train][int(stepxdt)][ingang]
if alighters >0:
toevoeg = [0,sum(numberofpassengers [0]) ,sum(np.sum(numberofpassengers [:2]))]
if len(train)>0 and platform!=2:train[np.array(peopleonplatform [platform][train]][:
alighters])4sum(numberofpassengers [platform ] [: train])+toevoeg [platform]] = np.
zeros (alighters) if entrances[platform][train][ingang][0][1] ==0 clsc np.ones(
alighters)
if passageways[ingang][0][0] == length or passageways|[ingang][0][1] == width:
normaal = normalize (np.array ([ -abs(passageways|[ingang][1][1]  passageways[ingang
‘ 1{0][1]) . abs(passageways [ingang][0][0]  passageways[ingang][1][0])]))
else:
normaal = normalize (np.array ([abs(passageways[ingang][1][1] - passageways[ingang
J[0][1]) ,abs(passageways[ingang][0][0] - passageways[ingang][1][0])]))
if alighters >l and grouptrue == True:

groupslst .append(peopleonplatform [platform ][train][: alighters])
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speed [peopleonplatform [platform][train][: alighters]] = sum(speed[peopleonplatform [
platform ][ train][: alighters]])/float (len (peopleonplatform [platform][train][:
alighters]))
for i in rangec(alighters):
t = (2%i+1.)/(alighters*2.) + np.random.uniform (-0.1,0.1)
x = passageways [ingang][0] + t=*(passageways|[ingang][1] - -passageways|[ingang][0])
matrix [peopleonplatform [platform][train][0]4+sum(numberofpassengers[platform ][: train

- ])+toevoeg[platform]][step][:] = x+normaal % np.array ([R[peopleonplatform [

. platform ][ train][0]4+sum(numberofpassengers[platform][: train])4+toevoeg|
platform]] ,R[peopleonplatform [platform ][ train][0]+sum(numberofpassengers [
platform | [: train])+toevoeg[platform]]])

people .append(peopleonplatform [platform ][ train][0]+«um(numberofpassengers[platform

J[:train])4toevoeg[platform])
peopleonplatform [platform ][ train].remove(peopleonplatform [platform][train][0])
return matrix, people, groupslst, speed, train

def walk (matrix ,step ,people ,numberofpassengers , walls ,obstacles ,wallzone ,R, exit ,comfortzone ,groupslst , interpas,
interwall ,ownwill ,dt,i ,AB):
#Determines the direction for each passenger on the platform based on every aspect#
point = matrix[i][step][:]
r0 = exitdirection (matrix ,step ,point ,i,exit ,R[i],groupslst ,AB)
rl, interpas = peopledirection (matrix ,i,step,comfortzone ,R, people , groupslst , interpas ,dt)
r2, interwall , Wall = walldirection (point ,np.append (walls ,obstacles ,axis=0),wallzone ,R[i], interwall
Lexit)
r3 = randomrichting ()
direction = rO4rl4r2+4r3
if np.linalg.norm(direction) >1:
return normalize(direction), interpas, interwall
elif np.linalg.norm(direction) <0.5 and Wall !=[]:
if np.linalg .norm(Wall[0] . point)<np.linalg.norm(Wall[0][1] -point):
return normalize (Wall[0] -Wall[1]), interpas, interwall

, r0,dt

return normalize (Wall[1] -Wall[0]) , interpas , interwall
else:
return direction , interpas, interwall

def wexit(point ,i,train ,length ,whichtrain):
#Returns the exit of a train, that has not arrived yet, for passenger i#
if whichtrain [0][i]==0:
x=np.random.normal (point [0] ,50)
while x<0 or x>length :
x=np.random.normal (point [0],50)
index = np.argmin(abs(train[:,:,0][:,0] x))
exit = train[index]
whichtrain [0][i] = index+1
else :
exit = train [whichtrain [0][i] 1]
return exit, whichtrain
def direction (matrix ,step ,people ,numberofpassengers , walls ,obstacles ,wallzone ,R, exits ,comfortzone , groupslst ,
interpas , interwall ,ownwill ,dt,poisson ,transfer ,train ,entrances , Trains, whichtrain ,length ,AB):
#Determines what the goal of every passenger is and uses ’'walk’ to calculate the direction#
directionmatrix = np.zeros ((sum(map(sum,numberofpassengers)) ,2))
for i in [x for x in people if transfer[x]==False]
point matrix [i][step][:]
exit ,index = whichexit (matrix ,step ,point ,exits ,i,groupslst ,ownwill)
directionmatrix [i], interpas,interwall = walk(matrix,step ,people ,numberofpassengers , walls ,obstacles ,
wallzone ,R, exit ,comfortzone , groupslst , interpas, interwall ,ownwill,dt,i, AB)
for i in [x for x in people if transfer [x]==True]:
point matrix[i][step][:]; trainotherside = Trains[int (train[i]+1)%2][0]
if trainotherside==[]:
if Trains[int (train[i]+4+1)%2][1] [1:
exit ,whichtrain = wexit(point, i, entrances[int(train[i]+4+1)%2][0], length, whichtrain)
area ,arrived ,whichtrain = areaexit (exit ,point,whichtrain ,i)
if arrived: directionmatrix[i] = np.zeros (2)
clse:directionmatrix[i],interpas ,interwall=walk(matrix ,step ,people ,numberofpassengers , walls,
obstacles ,wallzone ,R, centregroup (area) ,comfortzone , groupslst , interpas, interwall ,ownwill
,dt ,i ,AB)

else :
if (Trains[int(train[i]+1)%2][1][ 1]+ 1)==lcn (entrances[int (train[i]4+1)%2]):
exit ,index = whichexit (matrix ,step ,point ,exits ,i,groupslst ,ownwill)
directionmatrix[i], interpas ,interwall = walk(matrix,step ,people,numberofpassengers , walls ,
. obstacles ,wallzone ,R, exit ,comfortzone ,groupslst , interpas, interwall ,ownwill,dt,i,AB)
else:
exit ,whichtrain = wexit (point, i, entrances[int(train[i]4+1)%2][Trains[int(train[i]4+1)
- %2][1][-1]+1], length, whichtrain)
area ,arrived ,whichtrain = areaexit (exit ,point ,whichtrain , i)
if arrived: directionmatrix[i] = np.zeros (2)
clse:directionmatrix [i],interpas ,interwall=walk (matrix ,step , people ,numberofpassengers , walls
,obstacles , wallzone ,R, centregroup (area) ,comfortzone , groupslst , interpas, interwall
ownwill ,dt,i,AB)

else:
exit ,index = whichexit(matrix,step ,point,entrances [int (train[i]+1)%2][trainotherside [0]],

B
groupslst , ownwill)
if sum ([row[index] for row in poisson[int(train[i]+1)%2][trainotherside [0]][int (stepxdt-2):]])==
directionmatrix [i],interpas ,interwall = walk(matrix,step ,people ,numberofpassengers , walls ,
- obstacles ,wallzone ,R, exit ,comfortzone , groupslst , interpas, interwall ,ownwill, dt,i 6 AB)
else :
area ,arrived , whichtrain = areaexit (exit ,point,whichtrain , i)
if arrived: directionmatrix[i] = np.zeros(2)
clse:directionmatrix[i],interpas ,interwall=walk(matrix ,step ,people ,numberofpassengers ,walls ,
obstacles , wallzone ,R, centregroup (area) ,comfortzone , groupslst , interpas, interwall ,ownwill
,dt i ,AB)
return directionmatrix , interpas, interwall

def whichtrains (entrances ,arrival ,peopleonplatform ,step , Trains ,dt,dwelltime , matrix) :
#Here it is determined whether trains have to arrive or have to depart depending on time#

for platform in range(len(entrances)):
for train in range(len (entrances[platform])):
if train in Trains[platform][0]: #train is nu op het platform
it peopleonplatform [platform][train]==[] and dtsstep>=arrival [1][platform][train] and np.sum(
abs(matrix [np.nonzero(matrix [:,step][:,1]) ,step][:,:,1] -entrances[platform][train
][0,0,1]) <1)==0:
arrival [1][platform][train] = stepxdt
dwelltime [platform ][ train] = dtxstep —arrival [0][platform][train]
Trains [platform ] [0].remove(train)
Trains [platform ] [1]. append(train)
c¢lif train not in Trains|[platform ][1]: #train moet nog komen
if Trains[platform][0] ==[] and dtxstep>=arrival [0][platform][train]:

Trains [platform ] [0]. append(train)
return Trains ,dwelltime ,arrival

##Simulation##

def determinematrix (walls ,entrances ,poisson ,peopleonplatform ,dt,length ,width ,R, people ,numberofpassengers ,
obstacles ,wallzone ,exits ,comfortzone ,speed ,numberofsteps ,a, groupslst ,groupzone, grouptrue, meanzone,
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ownwill , meanvalue, transfer ,train ,arrival ,whichtrain ,dwelltime ,AB) :

#Here everything is combined, passengers alight , walk, transfer and depart from the platform. It returns
. the response variables

matrix np.zeros ((sum (map(sum, numberofpassengers)) ,1,2));

step = 0; interpas 0; interwall = 0; evac=0; Trains JI11 .00 L0

while people != [] or np.cum(np.sum(peopleonplatform)) !=0:
matrix = np.append (matrix, np.zeros ((sum (map(sum,numberofpassengers)), 1, 2)),axis=1);

Trains ,dwelltime , Tijden =

whichtrains (entrances ,arrival ,peopleonplatform ,step, Trains ,dt,dwelltime ,
matrix)

if nmp.sum(np.sum(peopleonplatform)) != 0 and stepxdt%l == 0: matrix, people, groupslst, speed, train =
entrancelocation (matrix ,step, entrances, poisson, peopleonplatform ,numberofpassengers, dt, length

-, width ,R, people ,groupslst , speed, grouptrue, exits ,train)
directionmatrix , interpas, interwall = direction(matrix,step ,people ,numberofpassengers ,walls,obstacles,

wallzone ,R, exits ,comfortzone , groupslst , interpas ,
entrances , Trains , whichtrain ,length ,AB)
for i in people[:]:

interwall ,ownwill ,dt, poisson , transfer , train ,

vect = (1 -meanvalue)xdirectionmatrix[i]*speed[i]+meanvaluexmeandirection (matrix,i,step,people,
- directionmatrix , meanzone,speed)
matrix[i][step+1][:] = matrix[i][step][:] 4+ dtxvect
matrix = collidingpeople (matrix, i, step+1, people ,R)
if transfer [i]:
it len(Trains[int (train[i]4+1)%2][1]) == len (entrances[int (train[i]4+1)%2]):
people, groupslst, evac, numberofsteps = exitreached (matrix, i, step+1, exits, people,R,
numberofsteps , groupslst ,evac,dt, transfer ,length , width)
clif Trains[int (train[i]4+1)%2][0] !'= []:
people, groupslst, evac, numberofsteps = exitreached (matrix, i, step+1, entrances|[int (train
[i]4+1)%2][Trains [int (train[i]4+1) %2][0][0]], people ,R,numberofsteps, groupslst ,evac,dt,
transfer ,length , width)
else:
people, groupslst, evac, numberofsteps = exitreached (matrix, i, step+1, exits, people, R,
numberofsteps , groupslst ,evac ,dt,transfer ,length ,width)
for i in people[:]:
matrix [i][step+1][:] = collidingwalls (matrix, i, step+1, np.append(walls,obstacles, axis = 0),R)
if grouptrue == True:
for i in sum(groupslst ,[]):
matrix = collidinggroups (matrix,i,step+1,groupslst ,groupzone ,R)
step4=1
print step
if step == 2000:
break
return dtssum(numberofsteps)/float (len (numberofsteps)), evac, interpas, interwall, matrix,dwelltime
##Animation#H#
def animation (length, width, walls, exits, entrances, obstacles, evac, numberofpassengers, matrix,R, parenani,
. dt,times, transfer):
plt.axis ([-2, length+2, -2, width+2]) #randen
for wall in walls:
plt.plot ([wall [0][0] ,wall[1][0]] ,[wall[0][1],wall[1][1]],linewidth=2,c="k")
for exit in exits:
plt.plot ([exit [0][0] ,exit [1][0]] ,[exit [0][1],exit[1][1]], linewidth=5, c="b")
for obstacle in obstacles:
plt.plot ([obstacle [0][0] ,obstacle [1][0]] ,[obstacle [0][1],obstacle[1][1]], linewidth = 4, ¢ = ')
Ist = []
for step in range(int(evac/dt)+1):
for k in range(len(lst)):
x = lIst [k]
x.remove ()
Ist =
for platform in range(len (entrances)):
for train in range(len (entrances [platform])):
if times[O][platform][train]<step*dt and times|[l][platform][train]>step=*dt:
for ingang in entrances[platform|][train]:
line = plt.Line2D ([ingang [0][0] ,ingang[1][0]] ,[ingang [0][1] ,ingang[1][1]], linewidth=4,
e='r’)
plt.gca().add-line(line)
Ist .append(line)
plt.title(str(int(stepxdt)) + ~ seconds’)
for i in range(numberofpassengers) :
if np.array-equal (matrix[i][step][:],np.array ([0,0])) == False:
color = ’r’ if i in sum(parenani,[]) eclsc ‘b’
color = ’r’ if transfer[i] clesc b’
p = plt.Circle (matrix[i][step][:], radius = R[i], color=color)
1st .append(p)
plt.gca () .add-patch(p)
fig = plt.gecf()
# fig.savefig (’Animatie’+ str(step) 4+ ’.png’)

plt .pause (0.0001)
plt .show ()



Appendix C

R code

Here the code in R code is showed for only a few statistical analysis due to the fact that much
of the analysis is done in the same way. For the Passenger Model we included the analysis of
the time step and the platform design. For the Transfer Model we included also the analysis of
the platform design.

C.1 Passenger Model

C.1.1 Time Step

setwd (" ~“/Documenten/ The
M8 = read.csv (" dt=0

/RUN4/Time Step”)

v? ,header = FALSE, sep

read.csv (" dt =0 ,header = FALSE, sep Ty M4=M4 [, e (1,4) ]

M2 = read.csv (" dt=0. . header — FALSE, sep=" " ) ;M2=M2[ , ¢ (1,4) ]

Ml = read.csv(’dt=1 ,header = FALSE, sep 7)) MI=M1[, e (1,4) ]

names(M8) = c("exit” ,”evac”);names(M4) = c(7exit” ,"evac”); names(M2) = c("exit” ,”evac”); names(Ml) = c("exit’,
evac
Probability Density Functions

") ;M8=M8[,c(1,4)]

plot(lwd = 3, cex.lab = 1.5,cex.axis = 1.2,density (M8Sexit), col="rcd”, xlim=c(min(M8$exit) max(Mi$exit)) xlab=
expression (paste(” Travel time to reach exit . ” ,T[exit],” 17)) ,ylab=" Probability Density” ,main=’
Probability Density Function for different Timesteps”); lines (lwd = 3,density (Md$exit),col="hlue”);lines (
lwd = 3,density (M28exit) ,col="grcen”);lines (lwd = 3,density (Ml$exit) ,col="black”)

legend (" topright” ,lty=1,lwd=3,cex=1. 5 bcy_“n“ ,seg.len=2, legend=c(expression (paste(Delta ,t, 0.1257)),
express)on(paste(Delta t, =0. )) expression (paste(Delta ,t,”=0.5")) ,expression(paste(Delta ,t,”=1"))),
col=c("red”, "blue” ,“gyeen” ,7 b l ack?” ))

plot (lwd = 3, cex.lab = 1.5,cex.axis = 1.2,density (M8$evac),col="recd” ,xlim=c (min(M8$evac) ,max(Mi$evac)) ,ylim=c
. (0,0.1), xlab=expression (paste(”Time for which the platform is empty,” ,T[evac],” [s]”7)),ylab="Probability
Density” ,main="Probability Density Function for different Timesteps”);lines(lwd = 3,density (Md$evac) ,col
"blue”) ;lines(lwd = 3,density (M28evac),col="grcen”);lines (lwd = 3,density (Ml$evac),col="black")

legend( topright” 1ty =1,lwd=3,cex=1.5,bty="n", .len=2,legend= c(expressxon(paste(Dclta Jt, 7 =0.125")),
expression (paste(Delta ,t, "=0.25")) ,expressnon(paste(Dcltd,t, =0. )) ;expression (paste(Delta ,t, " =1"))),
col=c("red”, "blue” ,”green” ,”black”))

i rCumulative Density Functinosyihbbpptdt

cdf.ml.sec.x = sort(Ml$exit);cdf.m2.sec.x = sort (M28exit);cdf.md.sec.x = sort(MdSexit);cdf.m8.sec.x = sort (M8$

exit);cdf.ml.evac.x = sort(Ml$evac);cdf.m2.evac.x = sort (M28evac);cdf.md.evac.x = sort(Md8evac);cdf.m8.
evac.x = sort (M8Sevac)

par (mar=c (5,6 ,5,1) +.1)

plot (lwd = 3,cex.lab = 1.5,cex.axis = 1.2,cdf.m8.sec.x,seq(0.001,1,0.001),col="red” ,type="1" ,xlim = c (10 ,max(
cdf.ml.sec.x)), xlab=expression(T[exit]) ,ylab="Cumulative Probability” ,main="");lines (lwd 3,cdf.md.sec.
x,seq (0.001,1,0.001) ,col="blue”);lines (lwd = 3,cdf.m2.sec.x,seq(0.001,1,0.001) ,col="green”);lines (lwd =

- 3,cdf.ml.sec.x,seq(0.001,1,0.001) ,col="hlack"”)

legend (" topleft”, lty=1,lwd=3, cex—l 5,seg.len=2,bty="n", legend=c(expression(paste(Delta t, "=0.125")),
expression (paste(Delta . t, ”=0.257)) expression(paste(Delta t,”=0.5")) expression(paste(Delta t,”=1"))),
col=c("red”, ”blue”,” green” ,” black”

plot (lwd = 3,cex.lab = 1.5,cex.axis = 1.2,cdf.m8.evac.x,seq(0.001,1,0.001) ,col="red” ,type="1",xlim = c (40 ,max(
cdf.ml.evac.x)) ,xlab=expression(T[evac]) ,ylab="Cumulative Probability” ,main="");lines (lwd = 3,cdf.m4.evac
.x,seq(0.001,1,0.001) ,col="bluec”);lines (lwd = 3,cdf.m2.evac.x,seq(0.001,1,0.001) ,col="green”);lines (lwd =

3,cdf.ml.evac.x,seq(0.001,1,0.001) ,col="black”)

legend (" topleft”, lty=1,lwd=3,cex=1.5,seg.len=2,bty="n", legend=c(expression (paste(Delta ,t, ”"=0.125")),
expression (paste(Delta ,t, ).257)) ,expression (paste(Delta ,t,”=0.5")) ,expression(paste(Delta ,t,”=17))),
col=c("red”, "blue” ,” black”))

ettt Boxplots and test sHAAAAAA

boxplot (Mi$exit ,M28exit ,M48exit ,M88exit); boxplot (Mi$evac ,M28evac ,Md$evac ,M8$evac)

ks.test (M8Bexit ,MiBexit); ks.test (M8Bevac ,MdBevac)

ks . test (MaSexit ,M2Bexit) ks, test (MiSevac ,M2Bevac)

ks.test (M28exit ,Ml$exit);ks.test (M28evac ,MiBevac)

C.1.2 Platform Design

setwd (" ~/Documenten/ Thesis /RUN4/ Model” )

AA = read.csv(”EmptyPlatform.csv” ,header = FALSE, D)
A = read.csv (" PlatformA .csv” ,header = FALSE, sep
B = read.csv (" PlatformB .csv” ,header = FALSE, sep=
c = read.csv (" PlatformC v” ,header = FALSE, se
read,csv("Plntt«nnlD,( v” ,header = FALSE, sep
AAAA[ 4]3A=A[,1:4];B=B[,1:4];C=C[,1:4];D=D[,1: 4]
names(AA) = c(Vexit”,"interpas” ,"interwall” ,"cvac”); names(A) = c(”exit”,"interpas” ,”interwall” ,”evac”);names(B
) = c(Vexit”, interpas”,”interwall” ,”evac”);names(C) = c(”exit” ,”interpas”,” interwall”,”evac”);names(D) =

c(”exit” ,”interpas” ,”interwall” ,”evac”)

67
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S D istribution for Texit and Tevachitbtttitt

plot(lwd 3 cex.lab = 2,cex.axis = 1.2 ,density (AA8exit) ,xlim=c(11,30) ,col="bluc” ,xlab =expression(T[exit]) ,ylab

"Probability Density” ,main="");lines (lwd=3,density (A8exit) ,col="red”);lines (lwd=3,density (B$exit) ,h col=
. 7green”);lines (lwd=3,density (C8exit) ,col="black”); lines(lwd=3,density(D$exit) ,col="orange”)

legend (" top” Ity =1,Iwd=3,cex=1.5,bty="n" ,seg.len=2, legend=e (" Empty Platform” " Platform A”,” Platform B "

Platform C” ,” Platform D”),col=c(”blue”, "red” ,”green” ,” black” ,” oran 7))
plot (lwd:S cex.lab = 2,cex.axis = 1.2,density (AA$evac) ,xlim=c(30,100) ,col="hbluec” ,xlab=expression(T[evac]) ,ylab
Probability Density” ,main="");lines (lwd=3,density (A8evac) ,col="red”);lines (lwd=3,density (B$evac) ,h col="

. green”);lines (lwd=3,density (C8evac) ,col="black”);lines (lwd=3,density (D8evac) ,col="orange”)
legend (" topright” ,lty=1,lwd=3,cex=1.5,bty="n" ,seg.len=2, legend=c(” Empty Platform”,” Platform A”,” Platform B”,”
- Platform C”,”Platform D”),col=c(” blue”, "red”,” een” ,” black” ,” orange”))

ks.test (AASexit ,BSexit); ks.test (AASevac ,B8evac)
qqplot (AA8exit ,D8$exit)

par (mar=c (5,6 ,5,1) +.1)
plot (lwd=3, cex.lab = 2,cex.axis = 1.2,xlim = c(12,16) ,sort (AASexit) ,seq(0.001,1,0.001),'1  ,col="bluec” ,xlab =
expression (T[exit]) ,ylab="Cumulative Density”);lines (lwd=3,sort (ASexit) 5eq(0.001,1,0.001) ,col="rcd");
lines (lwd=3,sort (B$exit) ,seq(0.001,1,0.001) ,col="green ),llnes(lwd 3, sort(D$ex1t),seq(O 001,1,0.001) ,col=
- "orange”)
legend (" bottomright” ,lty=1,lwd=3,cex=1.5,bty="n" ,seg.len=2, legend=c(” Empty Platform” ,” Platform A”,” Platform B’
. ,”Platform D”),col=c(”blue”, "red”,” green” ,” orange”))

plot (lwd=3, cex.lab = 2,cex.axis = 1.2,sort(AA$evac) ,seq(0.001,1,0.001),'1",col="blue” ,xlab =expression(T[evac
. 1) ,ylab = ”Cumulative Density lines (lwd=3,sort (A$evac) ,seq(0.001,1,0.001) ,co ed” ),llnes(lwd 3,sort (B
- 8evac) ,seq(0.001,1,0.001) ,col="green”); hnes(lwd 3, sort(D$evac),seq(O 001,1,0. 001) ,col="ora
legend (" bottomright” 1ty =1,lwd=3,cex=1.5,bty="n" ,seg.len=2, legend—c (" Empty Platform”,” Platform A”,” Platform B”

,” Platform D”),col=c(”blue”, "red”,” green” ,” orange”))

#pHHH#R elation between Texit/Tevac and Interaction walls/Interaction passengerssHHHHHHHHHH

cor (AA[,1:4]); cor(A[,1:4]); cor(B[,1:4]); cor(C[,1:4]); cor(D[,1:4])

pairs (AA[,1:4]); pairs(A[,1:4]); pairs(B[,1:4]); pairs(C[,1:4]); pairs(D[,1:4])

plot (AA[, 1],AA[ 2] ,xlab=expression(t[exit]) ,ylab="Time of interaction with obstacles” ,main=bquote(” Correlation

(round(cor(AA[,l],AA[,B]) ,digits=3))));

plot(A[ ],A[ 2], xlab= expression(t[exit]) ,ylab="Time of interaction with obstacles” ,main=bquote(” Correlation =
(round(cor(A[ 1],A[,3]) ,digits=3))));

plot(B[ 1],B[,2], xlab= expression(t[exit]) ,ylab="Time of interaction with obstacles
(round(cor(B[ 1],B[,3]) ,digits=3))));

plot(C[ 1],C[,2], xlab= expression (t[exit]) ,ylab="Time of interaction with obstaclec
(round (cor (C[,1],C[,3]) ,digits=3))))

plot(D[ 1], [,2],xlab=expression (t[exit]) ,ylab="Time of interaction with obstacles” ,main=bquote(” Corrclation =

. (round(cor(D[, ]1,D[,3]) ,digits=3))))

C.2 Transfer Model

,main=bquote (” Correlation =

,main=bquote (” Correclation =

C.2.1 Platform Design

setwd("'/D()r\nn(nnn/Th(sis/RI'N4/Tr;\nster\lud(l")
AA = read.csv(”EmptyPlatform.csv”  header = FALSE,sep=".")
read.csv (7 PlatformA . ,header =
read.csv(” PlatformB . ‘header —
read.csv (" PlatformC . sheader =
read.csv (7 PlatformD .csv” ,header = s
AA=AA[ ,1:7];A=A[,1:7];B=B[,1:7];C=C[,1:7];D=D[,1:7]
names(AA) = c (" T17,7T2" » " exit” ,”interpas” ,” interwall”

gQw»
LI 1

17,7 B "uxit”,”
interwall

; names(A) =

. interpas”,”interw , ) inames(B) = c(”T .xit” ,” interpa ,"evac”) ;names (C)
.= e(7T1” ,7T2” 7 T: exit” ,”interpas” ,” interwall ) inames(D) = c(”T1 T2” ,”T3” ,” exit” ,” interpas” ,
interwall” ,”evac”)
boxplot (cex.lab = 2,cex.axis = 1.2 ,AA8exit ,A8exit ,BSexit ,C8exit ,DSexit ,names = c(” TATL,TBY L, 7C” 7D” ), ylab=
expression (T[exit]) ,xlab="Platform” ,col = c(”white” ,”blue” ,”red” " green” ,”
boxplot(cex.lab = 2,cex.axis = 1.2 ,AA8evac ,A8evac ,B8evac ,C8evac,D$evac ,names = c(’ TA” B ,"’D7) ,ylab=

expression (T[evac]) ,xlab

cor(AA[,4:7]); cor(A[,4:7]); cor(B[,4:7]); cor(C[,4:7]); cor(D[,4:7])

mean (AA$interwall); sd(AA$interwall); cor(AA$exit ,AA8interwall); cor(AA8evac ,AA8interwall)
mean(A$interwall); sd(A$interwall); cor(A$exit ,A8interwall); cor(A$evac,A$interwall)
mean(B$interwall); sd(B$interwall); cor(B$exit ,B$interwall); cor(B$evac ,B8interwall)
mean(C$interwall); sd(C$interwall); cor(C$exit,C8interwall); cor(C$evac,C8interwall)
mean(D$interwall); sd(D$interwall); cor(D$exit,D$interwall); cor(D$evac ,D$interwall)

>Platform” ,col = e¢(” white” ,”blue” ,”red” ,” green” ,” o

op = par(mfrow=c(2,3))
boxplot(cex.lab = 2, cex.axls 1.2 ,AA8T1,AA8T3,AA8T2,ylab = "Dwell time” ,xlab = "Empty platform” ,names = c(”
. Train 17, ”Train 27 E 37))
boxplot (cex.lab = 2,cex. JA$T1,A8$T3,A8T2, ylab = "Dwell time” ,xlab = "Platform A” ,names = c(” Train 17,
”Train 27, ”Train
boxplot (cex.lab = 2,cex. ,B$T1,B$T3,B$T2, ylab = "Dwell time” ,xlab = " Platform B” ,names = c(” Train 17,
*Train 27, ”Train
boxplot(cex lab = 2,cex.axis = 1.2,C8T1,C8T3,C8T2,ylab = "Dwell time” ,xlab = " Platform C” ,names = c(” Train 17,
. ?Train 27, ”"Train 37))
boxplot (cex.lab = 2,cex.axis = 1.2 ,D$T1,D$T3,D$T2,ylab = " Dwell time” ,xlab = " Platform D’ ,names = c(” Train 17,
"Train 27, ”Train 37))
boxplot(cex.lab = 2,cex.axis = 1.2,xlab = "Total” ,C(AA$T1 A8T1 B$T1 C8T1 D$T1) c (AA8T3,A8T3,B$T3,C8T3,D$T3) ,c(
_ AA$T2,A$T2,B$T2,C$T2,DST2) .names = c(‘ Train 17, ”Train . rain 3”7),ylab="Dwell time”)
op = par(mfrow=c(1,1))
boxplot (cex.lab = 2,cex.axis = 1.2,c(AAST1,AAST2,AAST3) c(AST1,A$T2,A$T3) ,c(BST1,B$T2,BST3) ,c(C$T1,C8T2,C8T3) ,c
(D$T1,D8T2,D8T3) ,names — c(” Empty” ,” A" ,”B" ,7C" ,"D" ), ylab="Dwell time” xlab="Platform” ,col = c(” white” ,

blue” ,”red” ,” green” ,"nx:\nu( "))

rowl = c(AA$T1 AA$T2 AA$T3 A$T1 A$T2 A$T3 B$T1 B$T2 B$T3 C$T1 C$T2 C$T3,D$T1,D$T2,DS$T3)
AA” 1AA” A lA ’

rowAA = AA AA > 1AA” 1—\A lAA )

rowA = " )

rowB = B” )

rowC = ”Cr Shb)

rowD = 7D” D7)

rowT1 = R 7T,

rowT3 = ," T2

rowT2 = R »T3” " T3")

row2 = c(rowAA ,rowAA, rowAA rDWA rowA , rowA rowB s rowB s rowB rowC ,rowC ,rowC ,rowD ,rowD ,rowD)
row3 = c(rowT1l,rowT2,rowT3, rowT1 , rowT2 , rowT3, rowT1 , rowT2 , rowT3 , rowT1, rowT2 , rowT3 , rowT1 , rowT2 ,rowT3)
df = data.frame(rowl ,row2 ,rowS)

fit = Im(df$rowl” factor (df$row3)x*factor (df$row2))

summary ( fit )

anova(fit)

par (mar=c (5,6 ,5,1) +.1)

rowl = c(AAST1,AA8T2,AA8T3,A$T1,A8T2,A8T3,B$T1,B$T2,B$T3,C$T1,C$T2,CS$T3)

row2 = c(rowAA,rowAA,rowAA,rowA ,rowA ,rowA ,rowB,rowB ,rowB ,rowC ,rowC,rowC)

row3 = c(rowT1l,rowT2,rowT3,rowT1l,rowT2,rowT3,rowT1,rowT2,rowT3,rowT1,rowT2,rowT3)
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df = data.frame(rowl,row2,row3)
boxplot (cex.lab = 1.5, cex.axis = 1.5, ylab = "Dwell Time [s]” ,df$rowl~df$row3+df$row2, xlab "Empty Platform ,
. Platform A, Platform B, Platform C” ,names = c("T1”, "T2”, "T3” »T »T2” , "T3”
»T1?, »T2”, "T3”,”T1”, "T2”, "T3"),ecol = e¢(”white” ,” white” ,” white” ,” blue” ,” blue” ,” blue red” ,”"red”, '

,”green” ,” green” ,” green”))
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