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Abstract: This paper presents a Bayesian model to determine the model uncertainty of a critical horizontal gradient model 

for piping for dikes, such a Lane and Bligh. A Bayesian model is needed for two reasons. First, there is a large overlap in 

cases that failed and survived. Second, the evidence of the failed cases is limited .The model consists of a non-informative 

prior that is combined with likelihood functions for failed and survived cases. This involves modeling the mean and standard 

deviation of the model uncertainty as random variables. For survived cases we know the limit state function was larger than 0 

for the observed water level. For failed cases we know the limit state function was smaller than 0; or Z = 0; which is a less 

conservative assumption. This information is used to determine the likelihood functions for failed and survived cases. The 

prior and likelihoods are combined to find the posterior distributions of the mean and standard distribution of the model 

uncertainty. Using integration, this finally results in the (lognormal) distribution of the model uncertainty. The model is 

applied to the data of Bligh and Lane and shows both a high mean and high standard deviation of the model uncertainty, 

where the model of Lane performs better than Bligh. It is recommended to tailor the proposed model to dikes by making a 

different distinction between horizontal and vertical erosion. Furthermore, it is recommended to apply the model to more dike 

specific data since the Bligh data mainly consists of dams instead of dikes. 

 

Keywords: Bayesian inference; backward erosion piping; field observations; model uncertainty. 

 

1 Introduction 

 

1.1    Backward erosion piping 

Backward erosion piping, further referred to as piping in this paper, is one of the main failure modes of dikes. 

Piping occurs in case a head difference over the dike results in uplift of the landside blanket (if applicable) and 

subsequently in the start of erosion of the granular aquifer at the landside. With sufficient head difference, this 

erosion progresses below the dike until the river side is reached and failure occurs. There are various models 

available to determine the required length of the seepages path in order to design sufficiently safe dikes. First, 

there are the process-based models such as Sellmeijer (Sellmeijer et al. 2011) that are derived from physical 

processes and calibrated based on lab experiments. These models are typically complex, with many variables 

that allow for an accurate reconstruction of lab experiments. However, since the required parameters are 

typically difficult to obtain or exhibit high variability for real dikes, designs based on these models tend to be 

conservative. The second group of piping models is more empirical as well as more simple. These critical 

horizontal gradient-based models, see next section, typically relate the required length of the seepage path to a 

critical head difference by a Creep coefficient. These models have the advantage of simplicity, but are less 

tailored to local circumstance to allow for design optimization. 

 

1.2    Bligh’s piping model 

One of the empirical, critical horizontal gradient, piping models is the model of Bligh (Bligh 1915), which uses a 

so-called creep coefficient to determine the critical horizontal gradient over a dike. Lane’s model is an 

elaboration of Bligh’s model (Lane 1935), with the difference that Lane’s model differentiates between 

horizontal and vertical parts of the seepage path.  

L H C> D ×  (1) 

The creep coefficient (C) shows the critical horizontal gradient for a structure. In both Bligh’s and Lane’s model, 

C is intended as a safe value to relate the occurring vertical head difference (∆H) over a dike or dam to the 

required length of the seepage (L) . The creep factor is based on a dataset of failed and survived dams, mainly 

masonry dams on sand foundations. The creep factor depends on the type of sand, where fine sand is deemed 

less resistant to piping than coarse sand. However, the model uncertainty of this model is unknown and therefore 

it is not possible to quantify the safety of structures that are designed using these rules or to design and assess 

new structures with explicit safety criteria. 
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The goal of this paper is to present a method to quantify the model uncertainty in Bligh’s creep ratio and to 

apply this model to Bligh’s original data. For more information and details, please refer to Kanning (2012). 

 

1.3    Bligh’s piping data 

The data used by Bligh for his piping model, are shown in Figure 1. In this figure, both the failed and survived 

cases of Bligh (1915), as published in the paper of Lane (1935) are plotted for sand, fine sand and silt, together 

with the safe Creep ratio of 18. Bligh originally used a ratio of 15, later this is adapted to 18 to obtain more 

conservative design (TAW 2002). It should be noted that the majority of cases are (masonry) dams and not dikes.  

It can be noted in the graph that there are both unexpected failures (i.e., a failure below the Creep line) as well as 

unexpected survivals (i.e., survivals far above the Creep line). The line was intended as a conservative value for 

design purposes. In order to overcome this overlap, a Bayesian model is proposed in this paper. Furthermore 

there is typically limited data available of the cases (the only thing we know is that the limit state function was equal 

to or below 0 for failures); this inequality data is best treated in a Bayesian way. 

 
Figure 1.  The data of Bligh for sand, fine sand and silt, failed and survived, plotted against the proposed Creep ratio C= 18. 

 

2 Bayesian Inference Method 

 
The used Bayesian inference method to determine the model uncertainty (θ) in Bligh’s model is briefly discussed 

in this section. More details of the method are provided in Kanning (2012). 

 

2.1    Method 

The first step in the method is to define a limit state function (Z) including model uncertainty (θ), see Eq. (2). 

This equation is based on Eq. (1). In Eq. (2), ∆Hc is the critical water level as calculated using Eq. (1) and ∆H is 

the occurring water level. The resistance term ∆Hc  is modelled as L/C, in which 1/C is replaced by c’. 

'c

L
Z H H H c L H

C
q q q= ×D -D = × -D = × × -D  (2) 

Since both the mean (μθ) and standard deviation (σθ) of θ are unknown; these are modeled as random variables. 

A normal distribution for both variables appeared to give the most stable results, see Eq. (3). 

( , )
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N

N

q q
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q m m

q s s

m m s

s m s

=

=
 (3) 

The posterior distribution of μθ and σθ  given the evidence (D) is derived from by Bayes’ rule as Eq. (4). 

( ), | ( | , ) ( , )p D N P D pq q q q q qm s m s m s= × ×  (4) 
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In this equation, ( ), |p Dq qm s is the posterior distribution, ( | , )P D q qm s is the likelihood function, 

( , )p q qm s is the prior distribution and N is a normalizing constant. The evidence D is the dataset containing 

failed and survived piping data. The prior is discussed in more detail in Section 2.2, the likelihood function in 

Section 2.3. The likelihood function is determined by combining the likelihood function for the survived cases 

with the likelihood function for the failure cases. The distribution of the model uncertainty  θ can subsequently 

be determined by Eq. (5):  

( ) ( )| ( | , ) , |p D p p D d dq q q q q qq q m s m s m s
¥ ¥

-¥ -¥

= ò ò  (5) 

In this Eq. (5), ( | , )p q qq m s  is the probability density of θ given μθ and σθ.  In this paper, the prior and all the 

likelihood functions of Eq. (4) are numerically combined. Numerical integration is used to solve Eq. (5). In 

Section 3, examples of the outcomes are presented for the data of Bligh (1915). 

 

2.2 Prior distribution 

A non-informative prior for a problem with unknown mean and standard deviation as we are dealing with in this 

paper is given by e.g. Box and Tiao (1992) as: 

-

1
( , )non infp forq q q

q

m s m
s

µ -¥ < < ¥  (6) 

In the case of Bligh’s data, a uniform distribution might also be justified since we know most data is obtained in 

relatively extreme circumstances. This would limit the domain, and hence justify a uniform prior. Since the non-

informative prior of Eq. (6) results in the most conservative results, this prior is chosen throughout this paper. 

 

2.3 Likelihood functions for survived cases 

The first step in determining the likelihood is to write a survival observation i as a ratio of load divided by 

resistance (ξsurv), which is an approximation of the observed model performance, see Eq. (7).  

,
'

i
surv i

i

H

c L
x

D
=  (7) 

Hence, the observation D consists of ξsurv and ξfail for failed cases. In case of a survival observation, the limit state 

function value is observed to be larger than 0. Typically, the leakage length L is known, as well as the head 

difference ∆H that is at least survived. Applying this to Eq. (2), combined with Eq. (7) 

, 0surv iq x- >  (8) 

For a normal distribution of θ the likelihood function in case of a survival observation can subsequently be 

written as: 

,
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q

x m
m s
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æ ö-æ ö
= -F -ç ÷ç ÷ç ÷è øè ø
Õ  (9) 

 

2.4 Likelihood functions for failed cases 

In case of an observed failure, it is more challenging how to interpret the observed data. The leakage length is 

typically relatively well known by design drawings or adjacent sections. However, the observed water level is 

more challenging to interpret. In case of dam failures, the observed water level at failure is likely the exact water 

level where the limit state function is 0, as after failure the water level will drop again. For dikes however, it is 

possible for the water level to keep rising after a breach. Either way, it is known that the limit state function was 

exceeded, resulting in Eq. (10). 

, 0fail iq x- <  (10) 

In case the exact water level at failure is known, the “<” sign is replaced by a “=”, which results in a different 

likelihood function that is less conservative. This is further elaborated in Kanning (2012), but not further 

considered in this paper. There is also a possibility that the observed water level is lower than the water level at 

failure, especially in case of limit available data and no available hydrographs. This option is not further 

considered in this paper. Similar to the previous section, Eq. (10) can be used to derive the likelihood function in 

case of failures according to Eq. (11) 
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The combined likelihood ( | , )p q qq m s  is finally found by combining Eq. (9) and Eq. (11): 
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3 Application to Bligh’s Data 

 

The method of Section 2 is subsequently applied to Bligh’s data for sand, fine sand and silt, since this is 

supposedly the most sensitive to piping for dikes. The data consists of 8 failures and 65 survivals, see Figure 1. 

The joint distribution of μθ and σθ is shown in Figure 2, which is based on Eq. (4). It can be seen that the mean 

and standard deviation are relatively large and exhibit large uncertainty. This is mostly explained by the wide 

scatter in the data and both unexpected failures and unexpected survival cases. The distribution of θ given the 

observations can finally be obtained by applying Eq. (5) using numerical integration. The distribution of θ shows 

a high mean (6.4) and variance (3.8). This would imply that a design made using this equation has a probability 

of failure of 0.08.  

 

 
Figure 2.  Joint probability distribution of μθ and σθ based on Bligh’s data for sand, fine sand and silt. 

 

Figure 3.  Distribution of model uncertainty θ based on Bligh’s data for sand, fine sand and silt. 

 



Proceedings of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR) 791

4 Results for Lane’s Model 

 
Lane (1935) observed that the vertical part of the seepage path was more important than the horizontal part. 

Based on this, he proposed an weighted creep ratio, where the horizontal length only accounts for 1/3 compared 

to the vertical length. Together with this, he proposed a modified safe Creep ratio of 8.5. Applying this model to 

the data results in Figure 4.  

 

Figure 4.   The data of Bligh, using Lane’s model for sand, fine sand and silt, plotted against the proposed Creep ratio by 

Lane (CLane 8.5) 

Compared to Bligh’s model, this results already in less unexpected survivals and a better relation between 

model and observations. When applying Lane’s model to the Bayesian method of this paper, a mean of the 

model uncertainty of 3.5 if found and a standard deviation of 1.9. This is already considerably better than Bligh’s 

model. 
 

5 Discussion and Conclusions 

  

This paper presents a Bayesian method that allows for the explicit quantification of piping model uncertainty for 

the rules of Bligh and Lane, based on failed and survived cases. The method allows for the incorporation of 

failures and survivals, which is needed especially for piping for which failure observations are limited and 

modeling is subject to high uncertainties. The approach is applied to the piping model and data of Bligh (1915). 

This data shows a high mean and standard deviation of the model uncertainty. The model of Lane is an 

improvement of Bligh’s model, which is expressed in less model uncertainty.  

The data used in this paper mostly stem from (masonry) dams, not dikes. The data typically have a significant 

vertical part of the seepage path, which is not entirely representative for dikes that are typically dominated by the 

horizontal length. However, this vertical erosion through the blanket layer is important (see e.g. USACE 1956) 

and requires different modeling than the horizontal piping erosion. Hence, for future research it is recommended 

to separate the horizontal and vertical erosion for critical horizontal gradient-based models for dikes. 

Furthermore, since most cases in this paper are from dams, it is recommended to apply the method to dike 

specific observations, which should result in model uncertainty. 
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