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This study presents a new modeling technique to estimate the stiffness matrix of a thin-walled beam-
joint structure using deep learning. When thin-walled beams meet at joints, significant sectional defor-
mations occur, such as warping and distortion. These deformations should be considered in the one-
dimensional beam analysis, but it is difficult to explicitly express the coupling relationships between
the beams’ deformations connected at the joint. This study constructed a deep learning-based joint model
to predict the stiffness matrix of a higher-order one-dimensional super element that presents the rela-
tionships. Our proposition trains the neural network using the eigenvalues and eigenvectors of the joint's
reduced stiffness matrix to satisfy the correct number of zero-strain energy modes overcoming the ran-
domly perturbed error of the deep learning. The deep learning-based joint model produced compliance
errors mostly within 2% for a given structural system and the maximum error of 4% in the worst case.
The newly proposed methodology is expected to be widely applicable to structural problems requiring
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the stiffness of a reduction model.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Even though computing power has improved dramatically for
the last few decades, low-dimensional beam-based finite element
models still receive much attention in the vehicle [1-3] and civil
industry fields [4,5] because of their design-friendliness. No doubt,
the beam models facilitate the initial concept design [6-8] by the
computation efficiency embedded in the models compared to shell
or solid models, especially for iterative analyses unavoidable in
optimization problems or concept designs [9]. However, the classi-
cal six degrees-of-freedom (DOFs) beam models are inaccurate for
thin-walled beam structures. The inaccuracy results from complex
sectional deformations occurring in the cross-section of a thin-
walled beam, especially near the joint as shown in Fig. 1(a),
because they cannot be modeled accurately by the classical beam
models [10-17]. While higher-order beams employing more
degrees of freedom than those used in the classical beam models
can predict solution behavior correctly, matching the field quanti-
ties at a joint of thin-walled beams or deriving the joint stiffness
matrix suitable for the matching is difficult. Here, we propose a
new deep learning (DL)-based joint model using a higher-order
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E-mail addresses: D.Shin-1@tudelft.nl, alamosds@snu.ac.kr (D. Shin), yykim@s-
nu.ac.kr (Y.Y. Kim).
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0045-7949/© 2021 The Author(s). Published by Elsevier Ltd.

one-dimensional (1D) beam theory, which involves the DOFs asso-
ciated with sectional deformations.

Because the joint stiffness or flexibility accounts for significant
local sectional deformations of the thin-walled structure, inaccu-
rate estimation of the joint region results in poor solution accuracy
over the whole structure. In previous works, one corrected the
stiffness of the joint node to represent the joint flexibility while
using the classical beam model [2,18], and some researchers
focused on defining the coupling relationships between the com-
plicated deformations of beams connected at the joint node con-
sidering advanced beam models [6-8,19-21|. However, these
methods fundamentally define the joint as a single node which is
limited in reflecting the stiffness according to the shape of the
joint. On the other hand, some researchers modeled the joint using
higher-dimensional elements, such as shell elements, to express
the stiffness of complicated joints [1,22-24]; however, these meth-
ods require relatively high computational costs not expected in 1D
beam modeling. The newly proposed DL-based joint model reliably
expresses the joint flexibility as a super element. The joint stiffness
matrix is derived from a shell-based shape description [1,22-24] to
maintain solution accuracy [1,2,6-8,18-24| and use DL with the
higher-order beam theory (HoBT) [10] for the 1D modeling per-
forming in real-time [6-8,19-21].

The DL [25,26] used in this paper could be decisive in structural
analysis for creating an analysis model for a challenging problem to

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (a) llustration of modeling the 3D thin-walled beam structure with the HoJE and the joint flexibility occurring near the joint. (b) Eight DOFs used in this research with

the coordinate systems.

obtain an analytic solution [27,28], or that requires a high compu-
tational expense [29-34]. Recently, DL has gained attention for
enabling new modeling approaches within the finite element anal-
ysis due to its ability to predict results in real-time and its powerful
performance for regression. Papadopoulos et al. [33] replaced the
iterative and time-consuming process for geometric nonlinear
analysis of carbon nanotubes using deep neural network (DNN);
Lee et al. [35] proposed a learning criterion by comparing the
DNN-based static analysis results of a truss problem according to
various hyperparameters, and Liang et al. [36] predicted three-
dimensional (3D) surface stress distribution by mapping it to an
equivalent two-dimensional (2D) plane. Guo et al. [37] proposed
a deep collocation method to solve the bending analysis of the
Kirchhoff plates, and Samaniego et al. [38] applied DNNs to
approximate the solution of boundary value problems. DL also
has been used in various engineering problems, such as research
on predicting collision load conditions from plastic deformation
[39] and studies using a convolutional neural network [36,40-43].

In this study, we propose a DL-based regression model to pre-
dict a stiffness matrix for a super element, which has not been
attempted before. A DL-based joint model for a two-beam joint
system was considered to demonstrate our new methodology.
We defined a joint as a super element consisting of nodes of the
thin-walled beam elements surrounding it. First, we modeled the
joint region where thin-walled beams meet with shell elements
and then transformed the shell stiffness information into a stiffness
matrix consistent with HoBT DOFs (see Fig. 1(b) and Fig. 2(a)). A
higher-order 1D joint element (HoJE) obtained through this pro-
cess has nodal DOFs of thin-walled beam sections defining the
joint. To overcome the computational cost of the process men-
tioned above and immediately estimate the joint stiffness, we cre-
ated thousands of stiffness matrix data and trained them using DL.
The most intuitive method to train the DNN for the stiffness matrix
of HoJE is to set each independent component value of the stiffness
matrix as an output node of the DNN. However, this cannot express
the stiffness information of the HoJE correctly because the correct
matrix rank, or, the correct number of zero-eigenvalues associated
with possible rigid-body motions, cannot be guaranteed due to the
randomly perturbed machine learning error. In other words, the
constructed matrix by DL is not guaranteed to represent the phy-
sics embedded in it. Note that beam elements in the 3D space have

six zero-strain energy modes consisting of three translation and
three rotation modes; thus, the HoJE stiffness matrix should have
six zero-eigenvalues [44]. To satisfy this physical requirement or
constraints, we propose to train the DNN by adding an eigende-
composition preprocess to stiffness matrix data. Specifically, the
necessary physical constraints are considered by training the DNNs
with the eigenvalues and eigenvectors of the stiffness matrix as
output, as shown in Fig. 2(b). Additionally, the accuracy of the
DNN is improved by classifying the eigenvectors according to the
similarity of the eigenvectors during the training process. Through
this preprocess, the proposed DL-based HoJE can predict a stiffness
matrix consistent with the 1D HoBT DOFs while maintaining the
accuracy of the shell-based analysis. Therefore, the proposed joint
element is applicable regardless of joint angle or the size of the
cross-section. We will discuss the necessity of our DL-based joint
model in Appendix A.

The proposed DNN-based joint element is developed as follows.
First, the derivation of the one-dimensional super element for the
training data is introduced in Section 2. Section 3 addresses the
DNN learning process, focusing on the training approach proposed
in this research. In Section 4, various numerical examples are given
using the proposed joint model, and parametric studies about the
DNN hyperparameters are discussed. Finally, Section 5 presents
the conclusion of this study.

2. Fundamental structural analysis methods

In this section, we define the stiffness of the HoJE from a two-
beam joint structure shown in Fig. 2(a). Section 2.1 introduces a
stiffness matrix of the HoBT used in this research, and Section 2.2
shows the process of deriving the stiffness matrix of the HoJE.

2.1. Higher-order one-dimensional beam analysis

1D beam analysis expresses the behavior of the target structure
using nodes and line elements shown in Fig. 1(a). Each node of the
HoBT, a higher-order 1D beam theory considered in this study, has
three translation DOFs (U,,U,,U,), three rotation DOFs (0x,0y,0,),
and two higher-order DOFs (torsional warping W and distortion
%)- We selected two cross-sectional deformation DOFs (W and )
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Fig. 2. Illustration of the joint modeling method using (a) super element and (b) DNN.

having a major effect on the joint stiffness of the thin-walled beam
[10]. The shapes of the eight DOFs are shown in Fig. 1(b), and a
shape function y’(s) (t =n.s,zy =U,U,,U,,0x,0,,0,,W,x) corre-
sponding to each DOF is a function of s, which is a coordinate
defined along the edge of the cross-section. The exact formula of
the shape functions for the eight DOFs is summarized in Appendix
B. The non-zero components of the stiffness matrix of a box beam
element with a beam width b, height h, thickness t, the length of a
beam element [, the modulus of elasticity E, and Poisson’s ratio v
are defined as follows [7,10]:

Koy = —Kegr9) = Keo9) = G, /1 (1a)
Ke15) = Ker13) = —Kes9) = —Ke,13) = GJf, /2 (1b)
Ke22) = —Ke2.10) = Ke(10,10) = G]Fy/l (1c)
Kepa) = Kep12) = —Kewg10) = —Kero12) = —GJf, /2 (1d)
Ke3) = —Ke 11y = Kea1,11) = EJ, /1 (le)
Kewa) = Keaa,12) = GUFy/3 +Ey, /1 (1f)
Kes12) = G]Fy/6 —Ejy, /1 (1g)
Kess) = Keasazy = Gllg, /3 + E]My/l (1h)
Kes.13) = Gllg, /6 — EJy, /1 (1)
Kes6) = —Kes.12) = Ke(r4.14) = Gy, /1 (1))
Kes7) = Kee,15) = —Ke712) = —Ke1415)

—(b—-h)GJy,/2(b+ h) (1k)
Ke.7) = (b — h)*Glly,, /3(b + h)* + Gl /3 + EuJ /1 (1D)
Ke78) = —Kez16) = Kes.15) = —Ke(1s,16) = —GJo /2 (1m)

Kess) = Keass) = E11C1/3 + G(Jo + C2)/1 (1In)
K (8,16) E11C1/6 G(]Q+C2)/l (10)
Ke(1s515 = (b — h) Gly,/6(b + h) +GlJy /6 + EJp/! (1p)
where C1 =8t3/(b+h), C, = 2t3(b* + 4bh + h*)/15(b + h),
Ey=E/(1-v?), G=E/2(1+v) and [ =2bt, J; =2ht,
Jr. =2t(b+h), Ju, = W*t(3b + h)/6, Ju, = b*t(b +3h)/6,

Ju, =bht(b+h)/2, Jy=b’R*t(b+h)/24, and J, = 2b°h’*t/(b+h)
refer to the moment of inertia of each force which is the energy con-
jugate of each displacement. Note that the components of K, related
to the Uy, U,, 6, DOFs and those related to U,, 60y, 0,, W, y are
decoupled for the box beam [6-8].

2.2. Higher-order one-dimensional joint

This section introduces the process of defining the stiffness
matrix of the HoJE, which is the target of the DL training in this
study. As mentioned previously, it is crucial to express the stiffness
of the thin-walled beam’s joint precisely when modeling the thin-
walled beam system with 1D beam elements. Modeling the joint
part with 2D elements is precise but limited because the size of
the shell stiffness matrix is much larger than that of the 1D beam
stiffness matrix. Here, we transform the shell stiffness matrix of
the joint into a super element stiffness matrix based on the HoBT
DOFs to create the HoJE compressing the shell stiffness informa-
tion. The HoJE is located between two nodes of the beam elements,
as shown in Fig. 1(a), representing the coupling relationship among
the HoBT DOFs. Creating the HoJE requires two steps: condensation
and a beam node reduction process (Fig. 2(a)).

First, the condensation compresses the shell stiffness matrix Ks
into a stiffness matrix K., which only consists of global translation
DOFs (U, Uy, Uz)existing on the two cross-sections that meet the
beam element using the Guyan reduction [9,45].

For the two-beam joint structure in Fig. 2(a), the finite element
static analysis equations are as follows:
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Ksds = Fs @
[ ] -
4] v
=[] -
o wlla]=[F] ?

where S in the stiffness matrix Ks, displacement vector ds, and force
vector Fs is the notation for the shell model; the notations of the
global translation DOFs in the boundary cross-sections and the rest
of the DOFs are denoted by the subscript o and i, respectively. Then,
we can derive the condensed stiffness matrix K, displacement d.,
and force vector F, as follows:

K. = (Koo — KoiK;'Kip) (5a)
d.=d, (5b)
F. =F, - K,;K;'F; (5¢)

The following beam node reduction converts K, d., and F, to
Ksuper, dp, and F, based on the HoBT DOFs. K¢, d., and F. in Eq. (5)
can be reconstructed using subscript 1 and subscript 2, which are
the notations of each cross-section in Fig. 2(a).

[Keir Kerz

=Ko Kczz} (2)
_dcl

d. = 6b
o) (6b)
_Fcl

F. = _Fcz} (6¢)

To transform the shell-based DOFs into the HoBT DOFs, the rela-
tionship between the global translation displacements d.; and d.,
and the corresponding HoBT displacements dj; and d,, should be
predefined. The HoBT displacements d,; and d,, are composed of
six rigid body displacements (Uy, Uy, U,, 6, 0y, 0,), a warping
displacement (W), and a distortion displacement (x); the two vec-
tors d,;, dp, are expressed as follows:

dyy = U] U} UL 0} 0} 0} W' ') (7)
dy = (U2 U2 U2 62 02 02 WP ) (7b)

The vector d . consisting of the global translation displace-

ments (U, Uy, Us,,) defined at cross-section 1 (at the position
of s;) can be expressed as the product of d,;, the rotation matrix
R;, and the shape function matrix ¥ ; the notation k indicates
the k-th node among the N number of shell nodes on each section

in Fig. 2(a).

cosqp —sing 0
Ri(p) = | sinp cosp O (8)
0 0 1
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e A )7
Wis) = [y oyl gl oyl oyl oyl gl oyl 9)

U, U 0; 0, 0. w Y
N e A A A A

Aoy = | Uy | = Ri(@)¥(si)dy; = Tidy, (10)

Here, ¢ in Eq. (8) is the angle defined in Fig. 1(b), and y?(sx) in
Eq. (9) is described in Appendix B. The transformation matrix T’]<
relates d,; to the global translation displacement vector d.;y, at
the position of s,. The transformation matrix T;, which defines
the relationship between d.; in Eq. (6b) and d,; in Eq. (7a), can
be obtained by stacking the matrix T¥.

T = | T (11)

The transformation matrix converting d,, in Eq. (7b) to d.; in
Eq. (6b) is derived by stacking the matrix T, as done for T;. The
matrix T’; can be calculated by multiplying T’{ and the matrix R,,
representing the coordinate transformation according to the joint
angle ¢. Note that ¢ is the degree between two z-directional local
coordinates of both sections.

cos¢ 0 sing
Ri(¢)=| 0 1 0 (12)
—sing 0 cos¢
T, = Ry(¢)T} (13)
T
- |1 (14)
T'y

Using the transformation matrices T; and T, from Eqs. (11) and
(14), the global translation displacements d.; and d., can be
derived.

dc1 :Tldm (15&)

d; = Tody, (15b)

The force vectors F;; and F;,, defined at the HoBT based nodes in
contact with the HoJE and F.; and F., in Eq. (6¢) satisfies the fol-
lowing equations, with the displacement vector d,;, d;, d.;, and
d.; in Egs. (6b) and (7) by work conservation [1].

d;,Fyr = d;,Fy (16a)
d,F,, = dLF, (16b)

K K d. F
{ 11 czz}{ 1} _ [ cz} (17)
KCZI KCZZ ch FcZ
Substituting Eqgs. (15) and (16) into Eq. (17), the two equations
of Eq. (17) are expressed as follows:
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T-{KcllTldbl +T¥K612T2db2 = TIFcz = Fy (18a)
T;KCZITI dy; + TchZZTZde = T;ch =Fy, (18b)
Ko — {TEKC,IT] TEKC,ZTZ} (192)
Tz KcZI Tl Tz KCZZ T2
dy
dy - { } 19b
v =y, (19Db)
Fy }
F, = 19c
o= (19¢)
Ksuperdb = Fb (20)

Finally, we derived the stiffness matrix of the HoJE compressing
the shell stiffness information in one-dimensional HoBT DOFs.

3. Deep neural network training process

Here, we discuss the training process using DL to reduce the
computational cost required in creating the HoJE. The HoJE created
in Section 2.2 ensures the accuracy of the shell model with a few
DOFs because it considers a condensed stiffness matrix obtained
by the reduction of the shell elements. However, creating the base
shell model is fundamental for the process, which requires a high
computational expense. Here, we aim to eliminate the process of
shell modeling by implementing the DNN for the stiffness matrix
of the HoJE, of which the matrix size is condensed to be predictable
using DL. When predicting the stiffness matrix of the HoJE (with
the parameters determining the joint configuration), the most
straightforward idea is predicting each component of the matrix.
However, only considering the numbers misses the physical con-
straints that the stiffness matrix must satisfy, especially the zero-
eigenvalue condition [44]. In this study, we propose a data-
driven approach predicting the stiffness matrix considering the
zero-eigenvalue physical conditions. Our approach divides the
stiffness matrix into eigenvalues and eigenvectors through eigen-
decomposition preprocessing and trains them separately. We
define the parameters related to the joint’s geometry and describe
the process to create the training data in Section 3.1. Section 3.2
discusses the preprocess for the HoJE stiffness matrix data includ-
ing the eigendecomposition. Section 3.3 introduces the DNN archi-
tecture and the post-processing used in the training.

3.1. Joint parameters and training data

The two-box beam joint is defined with four parameters (width
b, height h, joint angle ¢, and joint length lj,), if the thickness t is
fixed and the cross-sections of the two beams are the same as
shown in Fig. 2(a).

Lioine = %max(b, h) (21)

It has been reported [1] that the local cross-sectional deforma-
tions, except the torsional warping and distortion DOFs considered
in this research, are damped out for the joint length i, defined in
Eq. (21). For this reason, we fixed the joint length with the defini-
tion in Eq. (21) and defined the geometry of the joint by three
parameters (b, h, ¢). We used the aspect ratio oo = h/b instead of
h to consider more general types of cross-sections. Note that these
parameters can be extended depending on the problems for the
expansion of this work.

We have set up the design space of each parameter as shown in
Table 1, considering the beam cross-sections widely used in bus

Computers and Structures 260 (2022) 106714

frames [46]. In Table 1, the feasible region refers to the region
where the trained DL will be used to replace the shell analysis,
and the training region refers to the region we selected for the
training data. The training region is wider than the feasible region
because generally, the low accuracy of the regression model is
observed near the boundary [47]. Sampling points are uniformly
chosen by n, for b, n, for o, and ny for ¢, respectively, within the
boundary of the training region, so the total number of data used
was n, - ng - ng. We modeled the joint part with the ABAQUS [48]
four-node elements for each sampling point. The mesh size of each
sampling point was determined by dividing the short side of the
cross-section into ten equal elements, which were found to yield
converged results in an earlier box beam analysis [28]. The HoJE
stiffness matrix data was collected by transforming the shell stiff-
ness matrix using the process in Section 2.

3.2. Proposed training method of a stiffness matrix

This section explains the training process of the stiffness matrix
using DL. The most intuitive method to implement the DNN pre-
dicting the stiffness matrix is building a DNN model with the joint
parameters as input nodes and with independent components of
the stiffness matrix as output nodes. However, even if the DNN is
well trained, the output nodes must have errors, which are ran-
domly perturbed. The randomly perturbed stiffness matrix cannot
perform as the stiffness matrix because it does not consider the
physical constraint of the zero-eigenvalues of the rigid body
modes. The HoJE used in this study has six rigid body modes
excluding two higher-order modes (warping and distortion); thus,
the stiffness matrix must have six zero-eigenvalues. To consider
this condition, we propose the following process. The HoJE stiffness
matrix can be decomposed into the diagonal matrix D having
eigenvalues as components and into the matrix V having each
eigenvector as a column through an eigendecomposition process
in Eq. (22).

Ksyper = VDV' (22)

Considering the HoBT discussed in Section 2, the HoJE stiffness
matrix has 16 eigenvalues and eigenvectors. Six sets of eigenvalue
and eigenvector are related to rigid body modes, of which the
eigenvalues should be zero, and the eigenvectors should represent
global rigid motions. The eigenvectors corresponding to the zero-
eigenvalues do not affect the stiffness matrix because the eigen-
vectors of the stiffness matrix are orthogonal to each other [49].
Therefore, we fixed the eigenvectors corresponding to the zero-
eigenvalues as a zero-vector. Then, the matrices D, which has ten
nonzero-eigenvalues in the diagonal components, and V, which
has ten eigenvectors that each have a 16 by 1 size as columns,
can be expressed as shown in Fig. 2, and in Eq. (23).

D = diag([D; - -- Dy, 0,0,0,0,0,0]) (23a)

V=[V;---V;0000000] (23b)

By predicting the eigenvalues and eigenvectors in Eq. (23) using
the DNN, we can derive the stiffness matrix reflecting the zero-
eigenvalues. To build DNN models for ten eigenvalues and eigen-
vectors, a criterion for classifying ten different modes is required
for each training data. The two criteria for classifying different
modes can be proposed; one is the ascending order of the eigenval-
ues, and the other is the similarity of the shape of the eigenvector.
In this study, we used the latter criterion to sort the uniformly
sampled data, and the training result was better for the latter than
the former. We will discuss these results in Example 5
(Section 4.2).
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Table 1
Lower and upper bound of the feasible region and training region for three joint parameters (beam width, beam height, and joint angle).

Joint parameter Feasible region Training region

Lower bound Upper bound Lower bound Upper bound
b 30 mm 65 mm 25 mm 70 mm
o 0.5 2.0 0.4 2.1
¢ 10° 135° 5° 140°

Let us denote the joint parameter sets for the lower boundaries
and upper boundaries in the training region in Table 1 as
(b1, o4, ¢1) and (by,, O, ¢y,,), respectively. The eigenvector
VEf"q'” is the { -th eigenvector for the joint parameter set
(bp, g, ¢,), in which p, g, and r are the arbitrary integers between
one and ny, n,, and n,, respectively. The similarities between the
eigenvector V%" and the pre-determined eigenvectors VP47,
VP41, and VP41 are compared with the modal assurance crite-
rion (MAC) [50,51]. For example, the MAC value between V4"
and VP~ is calculated as follows.

T 2

‘(vgp,q-r)) fo 1,47

((Vép,q,r))Tvgp,q.r» ((VE;) 1an) V(ﬂp—l.q.r))

MAC( pqr Vfipfl.q.r)):

(24)

Here, we considered the mode-tracking method to classify the
eigenvectors using MAC values [52]. The mode-tracking in this
research is performed in three steps shown in Fig. 3. First, ten dif-
ferent eigenvectors are defined on the joint parameter set
(by, o1, ¢). In Step 1, the eigenvectors of the stiffness matrix on
the b -axis, o -axis, and ¢ -axis are classified tracking the modes
along each axis. In Step 2, the eigenvectors of the data on the bo
-plane, a.¢ -plane, and ¢b -plane are classified along each surface.
Finally, the eigenvectors for the rest of the data are classified.

For the mode-tracking details, we calculate the MAC values
between the eigenvectors from the stiffness matrix of interest
and nearby eigenvectors whose order is predetermined. Note that
Step 1 has a single; Step 2 has two, and Step 3 has three nearby
determined eigenvector sets. For example, in Step 3, to determine
the 2nd mode of the eigenvector among ten eigenvectors defined
on the joint parameter set (b,, o4, ¢,), ten eigenvectors should
be compared to the MAC values with three nearby predetermined
eigenvectors classified as the 2nd mode (defined on the joint
parameter sets (b,_1, g, ¢;), (bp, %g-1, ¢;), and (bp, g, ¢,_1)).

AIJqV MAC( qu v(D ]qr)+MAC( qu v(zﬂﬂfl-r))
+MAC(VP" ypar) (25)

For{= 1, 2, ---, 10, AP%" (the  -th component of the track-
ing vector A?%") in Eq. (25) can be calculated by the sum of the
MAC values with the three nearby eigenvectors. Then, we can
determine the 2nd mode of the eigenvector defined on the joint
parameter set (b,, o4, ¢,) by considering the maximum compo-
nent of the A®%", During the mode tracking, we also update the
eigenvalues to match the same order. Finally, the total training
data is derived into eleven datasets, one for the eigenvalues and
ten for the eigenvectors of each mode.

3.3. Deep neural network training & post-processing

This section introduces the architectures of the DNNs and the
hyperparameters used in this study. To estimate the stiffness
matrix, we predicted the eigenvalue matrix and the eigenvector
matrix independently and reconstructed the stiffness matrix to
remain as the zero-eigenvalue condition. The basic architecture
of the DNN is a fully connected multilayer perceptron and we
implemented three different types of DNNs (two regression models
and one binary classification model) shown in Fig. 4(a). First, we
propose the architecture for the eigenvalues using 12 hidden layers
with 39 nodes for each layer. The input layer is a 13 by 1 vector,

including the design variable vector J,,, = [by, o, ¢,]T and the
one-hot vector mj”“’”e, which discriminates the eigenvector. For
example, when the location of the one-hot vector’s only nonzero
component is the 3rd (j = 3), it indicates the eigenvalue of that
mode. The output layer is the eigenvalue of the corresponding D;.
Note that all vectors ], ,,, are normalized concerning each bound-
ary of the training region in Table 1 for regularization. Once the
DNN is trained, the predicted eigenvalue DJ’.’”d can be calculated
by the DNN model shown in Fig. 4(b). The predicted eigenvalue
matrix D’ for the arbitrary design variables has ten nonzero diag-
onal components and six zero diagonal components shown in Eq.
(26).

D" — diag[DF"™, ..., DP¥ 0, ..., 0] (26)

Step of mode-tracking

Starting at a point (b,,¢,,4,)
Step 1: Mode-tracking along b-axis, a-axis, ¢-axis
Step 2: Mode-tracking in ba-plane, ag-plane, gb-plane

Step 3: Mode-tracking in other space

Fig. 3. Illustration of mode-tracking step.
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Fig. 4. (a) The description of constructing three different DNNs to predict the stiffness matrix of the super element. (b) The process of predicting the stiffness matrix for a

given joint geometry using trained DNNs.

Next, we need to build up the architecture for the eigenvectors.
In our box-beam joint problem, the out-of-plane DOFs
(Uy, 0x, 0;, W, x) and in-plane DOFs (U, U,, 0,) are physically
decoupled [6-8]. Because of the decoupled characteristic, ten
modes of the eigenvectors are divided into the out-of-plane and
in-plane modes, and it takes almost 50% of the eigenvector compo-
nents to be sparse. To reduce the training time of the eigenvectors,
we first classified the nonzero components using a classification
model and then developed a regression model only for the nonzero
components. The classification model can be neglected for general
cross-sectional beams [53], of which the DOFs are fully coupled.
The effect of the classification model is discussed in Example 5
(Section 4.2).

The DNN classification model of the eigenvector is set to have
three hidden layers (each layer has 13 nodes), and the regression
model is set to have ten hidden layers (each layer has 57 nodes).
The input layer for both of the DNN models is a 19 by 1 vector,
including the design variable vector and the one-hot vector
m*" which discriminates 16 components of the eigenvector.
The output of the classification model can be the value of 0 or 1
and this value is defined as SP, which classifies whether the eigen-
vector component is zero, shown in Fig. 4(a). The output of the
regression model is Vﬁr‘*)d which is the ¢ -th component of the j -
th mode eigenvector. We trained the classification model using
all the components of the eigenvectors in the training region in
Table 1 and trained the regression model only using nonzero com-
ponents of the eigenvectors. The predicted j -th mode eigenvector
VJP”“’ for the arbitrary joint parameter set J,,, can be derived by
the procedure in Fig. 4(b). If SP is 0, the ¢ -th component for the j
-th mode eigenvector is determined to be zero. In other cases,
the regression DNN model predicts the nonzero component of each
of the eigenvectors. By repeating this process for ¢ =1, 2, ---, 16,

and forj=1, 2, ---, 10, the predicted j -th mode eigenvector Vj’”d
can be obtained as Eq. (27).

V;_;red _ [Vpred Vpred]T (27)
J i > 7 j(16)

Finally, the predicted eigenvectors should be orthonormalized
to satisfy the characteristic of the eigenvectors of a stiffness matrix.
The orthonormality for the predicted eigenvectors ij’red can be
achieved by normalizing each of the predicted eigenvectors and
orthogonalizing in the sets of the predicted eigenvectors. The
detailed formulation is referred to in [54,55], which has been dis-
cussed with the orthonormalization of the experimental results.

red
et _ Vi (28)
J ‘vpred
]
Vel = [V VR 0, ) (29)
red  red —pred T pred -
vrred —gyped ([ (Y )V (30)

Note that the normalized eigenvector matrix vrred in Eq. (29)
has ten normalized eigenvectors and six zero-column vectors.

Using the predicted eigenvalue matrix D" and the orthonormal-
ized eigenvector matrix VP, the final predicted stiffness matrix
K" can be expressed in Eq. (31), Figs. 2(b) and 4(b).

super

Kpred _ vpredered
super

(vrred)! (31)

During the buildup of the DNN models, defining the loss func-
tion is essential. We set the cross-entropy (CE), mean absolute per-
centage error (MAPE), and mean absolute error (MAE) for the loss
function of the classification model, the eigenvalue regression
model, and the eigenvector regression model, respectively [56-
58]. The MAPE that minimizes the percentage error is selected
for the eigenvalue regression model because it is important to pre-
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dict each of the eigenvalues with similar percent errors. On the
other hand, the MAE is selected for the eigenvector regression
model because predicting the large components of the eigenvector,
which dominantly affects the stiffness matrix, more accurately is
crucial.

Finally, note that the activation function of all the DNNs is the
eLU function in Eq. (32), and the sigmoid function in Eq. (33) was
used for the output layer of the classification model [59,60]. In
Egs. (32) and (33), in and out indicate the input and output of
the node, respectively. The performances of the DNNs according
to the activation functions are described in Appendix C. We applied
the dropout technique with the parameter 0.5 to all training to
reduce overfitting and used the Adam optimizer [61,62]. All DNNs
in this research were trained using Tensorflow [63].

. if i
out — { n if'in >0 (32)
exp(in)—1 ifin<0
out = - (33)
~ 1+ exp(—in)
4. Results

Here, the validation of the DL-based HoJE by various numerical
examples is presented, and the proposed training approaches in
Section 3 are verified. Section 4.1 shows the static analysis results
for several structures composed of thin-walled box beam joints
using the proposed joint model. First, the accuracy of the DL-
based joint model was verified for two-beam joint structures
shown in Fig. 5(a) and more general 2D and 3D beam structures
shown in Figs. 5(b) and 1(a) were also validated. All the beam
structures are assumed to have a thickness of 2 mm and be made
of steel whose material properties are E = 200 GPa and v = 0.3.
The numerical analysis results using the predicted HoJE with HoBT
modeling were compared with the entire shell modeling results
and other beam modeling results.

In Section 4.2, we discuss the results according to the proposed
training approaches. Parametric studies for the eigenvalues and
eigenvectors were performed on the number of layers and nodes
of the DNNs. In addition, the results were checked when we vary
the training dataset. Lastly, it was shown that the proposed
mode-tracking method is effective by comparing the results from
the different methodologies of classifying eigenvectors.

4.1. Static analysis

4.1.1. Example 1: Two-beam joint under bending and torsion

This section presents the training results when the loss con-
verges and the static analysis results for a single joint structure
connecting two beams. The hyperparameters of DNNs are
described in Section 3 and the learning rates are 0.0005 and
0.00007 for the eigenvalue and the eigenvector, respectively. We
used a total of 5040 data (n, = 10,n, = 18,n, = 28). Table 2 shows
the average error of the eigenvalue was less than 1 %, and the min-
imum min(MAC(Vj,V]‘.’”d)) forj=1, 2, ---, 10 among all data in
the feasible region was 0.9976. The histogram of min(MAC
(Vj,V}’.’”d)) is plotted in Fig. 6(a), and the convergence histories of
the loss function are summarized in Appendix D.

To validate the predicted stiffness matrix, the static analysis
results using the predicted stiffness matrix are compared with
those using the label (super element stiffness matrix) of the train-
ing. The static analysis target is the two-beam joint structures
shown in Fig. 5(a). Note that the end section of Beam 2 is not
rigidly constrained to apply the zero resultant loads B and Q [6],
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Fig. 5. The geometries of (a) a two-beam joint structure for Example 1 and (b)
hexagonal loop structure for Example 2.

which are the work conjugate forces with the sectional deforma-
tions DOFs y and W. The compliance error between the two tip dis-

placements dfuper and dgred for the load condition R is defined as
follows:

'super

R R
Compliance error = max (W X 100> [%] (34)

(R :FX27Fy2aF227MszMyzaM227B27Q2)

R is defined as the work conjugate force with eight DOFs acting
on the end section of Beam 2 based on the local coordinates

(X2.Y,,22), and ds

super
section of Beam 2 using the label of training, while d’;red corre-
sponds to the result from predicted stiffness matrix. We com-
pletely checked the compliance errors for all data within the
feasible region. In Table 2, mostly under 2% compliance error
occurred (98.7 %), and a case with an error of more than 4 % does
not exist. The histogram of the compliance error in Eq. (34) is plot-
ted in Fig. 6(b).

To compare the performance of the predicted HoJE with those of
the shell element and other beam elements, we analyzed the single
joint structures in Fig. 5(a) with two different geometries:

is the conjugate displacement of R at the end

e Model A: b =47 mm, h =48 mm, ¢ = 57°.
e Model B: b =63 mm, h = 123 mm, ¢ = 133°.

Note that two joints of the above models were not used to train
the DNNs. In these examples, we disclosed that the end section of
Beam 2 is constrained to be rigid. A tip load is applied at the end
section of Beam 2, and we used 50 HoBT elements for each beam.



J. Jeon, J. Kim, Jong Jun Lee et al.

Table 2
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Training results of the eigenvalue and eigenvector and the compliance error in Example 1.

Eigenvalue Eigenvector

The number of compliance error under 4 % (2 %) [%]

Avg. validation loss Avg. error [%] Avg. validation loss

Min. MAC(V;, V/"!)*

0.0085 0.77 2.7803e-04 0.9976 100 (98.7)
*Minimum value among all data in the feasible region.
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Fig. 6. (a) Histograms of min(MAC(Vj,VJ‘."Ed)) forj=1, 2, ---, 10 and (b) histograms of the compliance errors in Eq. (34) (the total number of data: 3328).

As shown in Figs. 7 and 8, five out-of-plane related DOFs
(Uy, 6, 0,, W, x) are plotted according to the local coordinates
z; (Beam 1) and z, (Beam 2). The result of applying a y, directional
bending force of 100 N for Model A is shown in Fig. 7, and the result
of applying a z, directional torsional moment of 100 Nm for Model
B is shown in Fig. 8.

The red lines in both figures are the results obtained with the
ABAQUS shell elements. We determined the mesh sizes of the shell
models for the converged result by dividing the short side of the
cross-section into 15 equal elements. These shell models are dis-
cretized finer than the mesh used for training. The result of using
the predicted stiffness matrix is almost identical to the result of
using the stiffness matrix of the super element, which is used as
the label in DL shown in Fig. 7. These results show that the pre-
dicted matrix can consider the characteristics as the stiffness
matrix, and the accuracy is on par with the shell analysis result.
On the other hand, the Timoshenko beam analysis result in Fig. 8
has a large error in the global behavior, because the classical theory
cannot represent the sectional deformations, especially near the
joint [6].

In the joint angle of 133° for Model B, the HoBT modeling with a
single node matching [6] is less accurate than our proposed DL-
based method. It shows that when the joint structure has a large
joint angle, the difference between the actual joint structure and
the structure expressed by sharing a single node becomes signifi-
cant, and our super element-based modeling is more accurate.
The results in Figs. 7 and 8 show that the proposed joint model
has high fidelity similar to that of the shell model with a small
number of DOFs in real-time. Furthermore, the finite element mod-
eling with our HoJE can be easily expressed with points and lines,
as shown in Fig. 1(a).

4.1.2. Example 2: Hexagonal loop structure and simple 3D structure
To verify the validity of the proposed joint model for more gen-
eral 2D and 3D structures, static analyses were performed for a 2D

loop structure shown in Fig. 5(b) and a 3D structure shown in Fig. 1
(a). The DNN and Timoshenko results were analyzed with 50 beam
elements for each beam part same as Example 1. The 2D loop
structure has a hexagonal shape, and each beam’s length is
800 mm with a cross-section of b = 40 mm,h = 60 mm. Beam 1
of the loop structure is fixed, and a load is applied to the center
of Beam 4. The load vector (Fx,Fy,F7) is (0 N,1000 N, 1000 N).
The graphs in Fig. 9 plot the eight HoBT DOFs along with the local
coordinate system z;, z, ---, zg in each beam of the loop struc-
ture. As shown in Fig. 9, the proposed DL-based joint model can
accurately represent the joint stiffness, which the Timoshenko
beam cannot capture. In the case of the 3D structure example,
we analyze the structure in Fig. 1(a) which has an 800 mm length
for each beam with a cross-section of b = 30 mm,h = 60 mm. One
end of the 3D structure is fixed and the other end is rigidly con-
strained. The load vector (Fx, Fy,Fz) is (1000 N, 1000 N, 1000 N).
The global displacements Uy,Uy, and U defined in the global coor-
dinates X,Y, and Z along line A in Fig. 1(a) are plotted in Fig. 10.
From the results in Figs. 9 and 10, we verified that our DL-based
HoJE could be used for static analysis of general thin-walled joint
structures.

4.2. Training results

4.2.1. Examples 3: Parametric studies for the number of layers and
nodes

In Example 3, we present the proper layers and nodes for the
DNNs predicting the eigenvalues and eigenvectors by comparing
the training results. The same dataset with Example 1 was consid-
ered for training, and parametric studies were conducted by
changing the number of layers and nodes of the DNN. First, in
the case of the eigenvalue, the DNN was trained by increasing
the layer number from 6 to 14 in increments of 1, and by increasing
the node from 13 to 39 in increments of 13, which indicates the
length of the input vector [35]. Table 3 shows the results of sum-
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Fig. 7. The results of the five DOFs (Uy, 0, 0,, W, ) in the local coordinate systems for Model A of Example 1.

marizing the maximum MAPE loss and average MAPE loss for the
data in the feasible region. When the number of nodes in each layer
of the DNN is three times the length of the input vector, the loss
becomes sufficiently small, and the maximum MAPE loss is the
smallest for 12 layers. To apply the DL-based joint model to real
engineering problems, the worst prediction of the joint model
should be considered the representative performance rather than
the average prediction. Therefore, we propose a fully connected
DNN architecture for the eigenvalues with 12 layers with 39 nodes
per layer, which yields the lowest maximum prediction error on
the data within a given feasible region.

On the other hand, the parametric studies for the eigenvectors
were performed by increasing the layer from 8 to 17 in increments
of 1 and by increasing the node from 19 to 57 in increments of 19.
Table 4 shows the results of the average MAE loss for the data in
the feasible region. As in the results of Table 3, when the nodes
of the DNN predicting the component of the eigenvector are three
times that of the length of the input vector, the MAE loss becomes
sufficiently small, and the loss is minimized for 10 layers. Based on
these results in Table 4, we proposed a fully connected DNN with
10 layers with 57 nodes per layer for the training of the
eigenvector.

4.2.2. Example 4: Results according to the sampling levels

Example 4 covers the results according to the sampling levels
used for training. The DNN architecture is the same as Example
1. Based on the boundary of the training region in Table 1, Dataset
A-1 to Dataset C-3 are defined as follows:

10

e Dataset A-1: n, =6, n, =18, n, =28 (n, - n, - n, = 3024).

e Dataset A-2: n, = 10, n, = 10, ny = 28 (n, - n, - ny = 2800).
e Dataset A-3: n, = 10, n, = 18, n, = 15 (n - n, - ny = 2700).
e Dataset B: n, =10, n, = 18, n, =28 (n, - n, - n, = 5040).

e Dataset C-1: n, =19, n, =18, n, = 28 (n, - n, - ny = 9576).
e Dataset C-2: n, = 10, n, = 35, n, = 28 (n, - n, - n, = 9800).
e Dataset C-3: n, = 10, n, =18, n, = 55 (n, - n, - n, = 9900).

Dataset A-1, A-2, and A-3 have around half of the data points
compared to Dataset B, and Dataset C-1, C-2, and C-3 have around
double data points compared to Dataset B. To compare the training
results under consistent conditions, we compared the errors of the
DNNs predicted results for 3328 data points (8 levels for b, 16
levels for a, and 26 levels for ¢) in the feasible region. Refer to
the average losses of the eigenvalue and eigenvector in Table 5;
the losses decreased when additional data points were used, but
the improvement in the losses is minor when the losses in Dataset
B are compared with those of Datasets C-1, C-2, and C-3. Based on
this observation, Dataset B is used to obtain the main results in
Section 4.

4.2.3. Example 5: Results according to the mode-tracking methods
Example 5 presents the effect of the mode-tracking preprocess
for predicting the eigenvalues and eigenvectors proposed in Sec-
tion 3.2. To verify the validity of the proposed mode-tracking pre-
process, the results of the following three methods were compared.

e Method A: Classify the eigenvectors from 1st mode to 10th
mode in ascending order of eigenvalues.



J. Jeon, J. Kim, Jong Jun Lee et al.

Computers and Structures 260 (2022) 106714

3 3 x10°
Oll'lg."“*-&q\u\n\u\u 3 S 8
e I mmememememe
® 6 06 06 0 0 O
05 25 6
-1 2 "
— = =
E E g
g =15 =
= <& < 5
2t Shell 1 n/n/u/yn/"
e o o o DNN on
25 [ — — HoBT (Choi et al. [6]) ) 0.5 »w.t“::‘:“
—{3— Timoshenko R 2 ‘ :
3 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 115 2
Axial coordinate [m] Axial coordinate [m)] Axial coordinate [m]
_3 -3
g X 10 35 % 10
6 L
4 F
2 L
= 09
-2
4t
-6 -0~ -0- -O-
-8 -0.5
0 0.5 1 L5 2 0 0.5 1 1.5 2

Axial coordinate [m]

Axial coordinate [m]

Fig. 8. The results of the five DOFs (U, 0y, 0,, W, x) in the local coordinate systems for Model B of Example 1.

e Method B: Classify the eigenvectors according to the similarity
of vectors as described in Section 3-2.

e Method C: Same as Method B except for the DNN classification
model classifying nonzero-components of the eigenvector as
proposed in Section 3-3.

Method A and B have only two types of Regression DNN models
in Fig. 4(b), except the Classification DNN model. The architectures
of the DNN regression models corresponding to eigenvalues and
eigenvectors are the same as those used in Example 1. The dataset
used in training is the same as in Example 1, and we compared the
training and static analysis results for 3328 data points, which are
a subset of the training data, as in Example 4. Table 6 shows the
training results of the eigenvectors and the compliance errors. In
Method A, the minimum min(MAC(Vj,Vj’.’”d)) forj=1,2, ---, 10
among all data points in the feasible region was close to zero,
which means it was not predicting the correct eigenvector. It was
happening because eigenvectors having different shapes were clas-
sified in the same mode. It is difficult to capture the moment when
the shape of the eigenvector changes so that a compliance error of
more than 4% exists.

As discussed in Section 3.3, nearly 50% of the components in the
eigenvector have zero-values, because out-of-plane bending DOFs
(Uy, 60x, 6;, W, x) and in-plane bending DOFs (Uy, U, 6,) are
entirely decoupled [6-8]. For this reason, if only the nonzero-
terms of the eigenvectors are trained after excluding the zero-
terms of the eigenvectors (Method C), the training time is reduced

11

by half compared to the other case (Method B) shown in Table 6. In
detail, Method C took 106 minutes to train the classification model
and 483 minutes to train the regression model. This result shows
that the training time can be significantly reduced if the zero-
terms are first classified for the other regression problems with
many zero-terms. It would show a more significant effect when
we need to consider a larger number of data in the future exten-
sion. For asymmetric joint structures, whose stiffness matrix is
not so sparse, the classification process is not necessary; as such,
the training time accordingly increases, but the performance of
the DNN is maintained. To train the DNNs, a desktop computer
(CPU: Intel Core i7-8700, 3.2 GHz, RAM: 32.0 GB, and GPU: Nvidia
Geforce GTX 1050 Ti) was used.

5. Conclusion

This paper proposed a deep learning approach to predict the
stiffness of a thin-walled beam joint using one-dimensional super
elements. Because the size of the stiffness matrix of the super ele-
ment is much smaller than that of a shell-based model, the joint
stiffness could be predicted through deep learning. The dataset
used to train the deep neural network predicting the joint stiffness
was created using shell element-based results, but the resulting
stiffness matrix is formed to be consistent with the degrees-of-
freedom of a higher-order beam theory used to analyze the
remaining part of thin-walled joint structures. A critical step in
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Fig. 9. The results of the eight DOFs (Uy, Uy, U, 0, 0,, 0,, W, x) in the local coordinate systems for the hexagonal loop structure (Fig. 5(b)) in Example 2.

training is to make the stiffness matrix possess the correct number
of zero-eigenvalues; otherwise, the constructed stiffness matrix
violates the fundamental physical condition having six zero-
eigenvalues. Our training strategy ensured that this condition is
correctly satisfied by predicting the eigenvectors as well as eigen-
values of the stiffness matrix, excluding those related to six zero-
eigenvalues, not elements of the stiffness matrix directly. Addition-
ally, the regression of the eigenvectors using mode-tracking-based
preprocessing was found to be effective. It was shown that the

deep learning-based joint model constructed by the proposed
approach yielded numerical results nearly as accurate as the
shell-based results (mostly under 2 % and maximum under 4 %
errors) for a wide range of joint geometries once the deep neural
network model was constructed. We used 5040 data points to train
the deep neural network having 12 (10) layers with 39 (57) nodes
for the eigenvalues (eigenvectors). Because the constructed neural
network can yield the joint stiffness matrix in real-time, it can sig-
nificantly accelerate design optimization that requires plenty of
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Fig. 10. The results of the global displacements (Ux, Uy, Uz) for the 3D structure in Example 2.
Table 3
Maximum and average MAPE loss of the eigenvalues for the data in the feasible region according to the layers and nodes of the DNN.
Layer Maximum MAPE loss (average MAPE loss) [%]
6 7 8 9 10 11 12 13 14
13 node 124.09 (10.09) 48.63 (3.09) 28.51 (1.96) 24.94 (1.53) 32.35(1.95) 13.88 (1.62) 11.86 (1.11) 14.87 (1.17) 13.61 (1.35)
26 node 17.29 (1.37) 15.79 (1.11) 13.64 (1.07) 10.10 (0.96) 8.09 (0.87) 7.18 (0.84) 6.20 (0.90) 7.73 (0.87) 5.66 (0.93)
39 node 11.90 (0.92) 10.65 (0.85) 7.00 (0.86) 7.69 (0.77) 4.84 (0.80) 7.02 (0.73) 4.74 (0.77) 4.86 (0.68) 6.00 (0.72)
Table 4
Average MAE loss of the eigenvector components for the data in the feasible region according to the layers and nodes of the DNN.
Layer Mean absolute error (unit: 1074)
8 9 10 11 12 13 14 15 16 17
19 node 1.907 1.660 1.693 1.696 1.493 1.641 1.645 1.590 1.426 1.697
38 node 1.514 1.475 1.374 1.328 1.283 1.376 1.416 1.433 1.328 1.442
57 node 1.233 1.196 1.150 1.267 1.153 1.161 1.369 1.319 1.319 1.326
Table 5
Training results and compliance errors according to the sampling levels.
Dataset A-1 A-2 A-3 B C-1 c-2 c-3
Number of data 3024 2800 2700 5040 9576 9800 9900
Eigenvalue average loss [MAPE] 1.11 1.05 0.94 0.77 0.74 0.77 0.73
Eigenvector average loss [MAE] 1.867 1.661 1.941 1.150 0.9624 1.022 0.9721
e-04 e-04 e-04 e-04 e-04 e-04 e-04
Average compliance error [%] 0.51 0.59 0.59 0.48 0.39 0.49 0.45

changes in the joint geometries. We expect that our methodology

Table 6 . . . of predicting the stiffness using neural networks will be expanded
The eigenvector accuracy and the compliance errors according to the mode tracking .. . ) .
methods. to other structural problems requiring the reduction model’s stiff-
ness estimating.
Method Method A Method B Method C
Min. MAC (V;, V™" 1.519e-06  0.9976 0.9976 Declaration of Competing Interest
The number of compliance error 94.1 100 100
under 4 % [%] The authors declare that they have no known competing finan-
Training time [min.] 1160 1166 589 P A .
cial interests or personal relationships that could have appeared
* Minimum value among all data in the feasible region. to influence the work reported in this paper.
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Appendix A. Example of the DL-based joint model application

The newly proposed DL-based joint model can be applied to
expedite structural optimization. For example, a bus frame to be
structurally optimized is sketched in Fig. A1. As apparent in the fig-
ure, a typical frame structure consists of thin-walled box beams
connected at many joints. For efficient frame structure optimiza-
tion, the thin-walled beams should be modeled by higher-order
1D finite elements, and thus joints should be modeled accordingly
to represent joint stiffness matrices accurately. In such cases, the
newly proposed DL-based joint model becomes critical because
the DL-based joint model can predict the joint stiffness matrix as
accurately as that directly calculated by the shell model and allows
fast calculation of joint stiffness for any geometric changes occur-
ring during structural optimization. Although it requires significant
time to build a DL-based model, its use dramatically expedites the
actual structural optimization process once it is constructed.

Appendix B. Shape functions for the eight DOFs in the HoBT

This section explicitly presents the shape functions yZ(s). y(s)
is the displacement along the 7 direction at point s, when the
cross-section is deformed by the displacement of ). The index 7
indicates the local coordinates n, s, z and the index ) indicates
the displacement corresponding to the eight DOFs
(Uy,Uy,U;,04,0,,0,,W,x) shown in Fig. 1(b). The detailed formulas
are as follows [6-8]:

1 (edge 1)

Uy ) O (edge 2)

=93 (edge 3) (B.1)
0 (edge 4)
0
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1
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22
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Fig. Al. Illustration of a bus frame that possibly experiences a number of structural alterations during the optimization process.
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Table C1
Maximum and average MAPE loss of the eigenvalues and average MAE loss of the eigenvector components for the data in the feasible region according to the activation functions
of the DNN.
Activation function eLU ReLU softplus tanh
Eigenvalue Maximum (average) loss [MAPE] 4.74 (0.77) 6.56 (0.85) 5.90 (0.72) 100 (81.43)
Eigenvector average loss [MAE] 1.150 1.305 1.565 1.396
e-04 e-04 e-04 e-04
: o 18t mode 2nd mode
Eigenvalue Average validation loss
8 = = = Average training loss oo oot
3 0.008 0.008
Z 2 0.006 £ 0.006
& o =
£ = 0.004 = 0.004
<2 - =
=
‘ M,
0 0 0
0 500 1000 1500 2000 2500 3000 0 1000 2000 3000 0 1000 2000 3000
Epochs Epochs Epochs
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% 0.006 % 0006 % 0006 %0006
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Fig. D1. The convergence history of the validation loss and training loss for the eigenvalue regression model (MAPE loss) and ten eigenvector regression models (MAE loss).
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where —8 < s <! foredge 1, 3 and -5 <s <} for edge 2, 4.

(B.17)

(B.18) Appendix C. Performances of DNNs according to the activation
’ functions

This section compares the performances of the DNNs to predict
eigenvalues and eigenvectors according to the activation functions.
Other problem settings except the activation functions are the
same as those for Example 1 in Section 4.1.1. Note that because
the classification of the eigenvector part is not much affected by
choice of an activation function, it is not considered here. The for-
mulations using ReLU, softplus, and tanh are described in Egs.
(C.1), (C.2), and (C.3), respectively. The maximum and average
MAPE loss of the eigenvalues and average MAE loss of the eigen-
vector components for the data points in the feasible region are
summarized in Table C1. The result based on tanh showed signifi-
cant errors in estimating eigenvalues, while other activation func-
tions generally worked well. These results suggest that eLU was
effective as an activation function for the problem considered in
this study, but ReLU or softplus could be good candidates.

(B.19)

(B.20)
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out = max(0,in) for ReLU (C1)

out = In(e™ + 1) for softplus (C2)
in __ p—in

out =5 —° _ for tanh (C.3)
e”’l + e—m

Appendix D. The loss function convergence history for training
the regression model

This section discusses the convergence history of the loss func-
tion. Fig. D1 plots the convergence histories for the eigenvalue
regression model and ten eigenvector regression models for every
50 epochs when the DNN is trained using the entire data points at
each epoch. After the training is completed, the DNNs with the
minimum average validation loss (up to 3000 epochs) are
employed to predict the eigenvalues and eigenvectors. For exam-
ple, Fig. D1 shows that the average MAPE validation loss of the
eigenvalue regression model becomes its minimum (0.85 %) at
2900 epochs. It also shows that the mean of the minima of the
average MAE validation losses of the eigenvector regression mod-
els over ten modes is 2.780-10~%. These values are higher than
the values in Table 5 because the latter is calculated for the feasible
region, while the former is calculated for the entire training region.
It is also noted that the average training and validation losses are
close to each other, and this appears to occur because uniform
sampling is used.
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