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Abstract: In this work, we introduce a new workflow to solve portfolio optimization problems on
annealing platforms. We combine a classical preprocessing step with a modified unconstrained
binary optimization (QUBO) model and evaluate it using simulated annealing (classical computer),
digital annealing (Fujitsu’s Digital Annealing Unit), and quantum annealing (D-Wave Advantage).
Starting from Markowitz’s theory on portfolio optimization, our classical preprocessing step finds the
most promising assets within a set of possible assets to choose from. We then modify existing QUBO
models for portfolio optimization, such that there are no limitations on the number of assets that can
be invested in. Furthermore, our QUBO model enables an investor to also place an arbitrary amount
of money into each asset. We apply this modified QUBO to the set of promising asset candidates we
generated previously via classical preprocessing. A solution to our QUBO model contains information
about what percentage of the whole available capital should be invested into which asset. For the
evaluation, we have used publicly available real-world data sets of stocks of the New York Stock
Exchange as well as common ETFs. Finally, we have compared the respective annealing results
with randomly generated portfolios by using the return, variance, and diversification of the created
portfolios as measures. The results show that our QUBO formulation is capable of creating well-
diversified portfolios that respect certain criteria given by an investor, such as maximizing return,
minimizing risk, or sticking to a certain budget.

Keywords: quantum annealing; digital annealing; simulated annealing; portfolio optimization; QUBO

1. Introduction

To this day, a multitude of highly relevant problems are thought to be intractable. This
means that there are currently no known exact algorithms that can solve every instance
of those problems in a worst-case polynomial time span. Due to the lack of exact algo-
rithms, stochastic and heuristic algorithms inspired by nature, such as simulated annealing
(SA), genetic algorithms (GA), swarm intelligence methods, and many more, have been
developed. Those heuristic methods may not always find an optimal solution; however,
in some cases they may yield a sufficiently good answer in a significantly shorter time span
compared to known exact algorithms.

Based on several successful developments in the past decade, another tool to solve
certain currently hard-to-solve problems has become available: quantum computing. Quan-
tum computing itself, as a theoretical concept of performing calculations, has been known
for decades. However, it was not clear whether quantum computers could eventually be
built or not. Since the first machines potentially able to harness quantum phenomena to
perform calculations became available in the last decade, intensive research efforts have
been directed to understand these new computational possibilities. In theory, quantum
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computers promise to solve currently intractable problems, such as the factoring of num-
bers (see Shor’s algorithm [1]), in polynomial time. However, currently available quantum
computers suffer from noise, missing error correction, low numbers of qubits, and more,
and are thus far from reaching the theoretically possible speedups.

Current research efforts can be split into two main classes. The first class is concerned
with the investigation of possible near-term advantages using currently available quantum
and classical hardware. The second class is concerned with the creation of quantum algo-
rithms that may exhibit speedups over current classically available algorithms, but require
so-called fault-tolerant quantum hardware.

Commercially available quantum computers can also be split into two main classes:
quantum annealers and quantum-gate computers. The former, manufactured for example
by D-Wave Systems, are based upon the adiabatic theorem to perform calculations. Many
of the (decision) problems currently thought to be intractable have an optimization version
that can easily be mapped onto the native input format of quantum annealers, namely the
Ising model (or the equivalent QUBO model). As of now, these models have become a
quasi-standard for examining NP-complete and NP-hard problems in the realm of quantum
computing. There is a plethora of known transformations for NP-complete/-hard problems
to the QUBO model (see e.g., [2]), as well as guidelines on how to formulate QUBO models
in general (see e.g., [3]). The performance of various QUBO formulations for certain
problems has been subject to intensive investigations in the past couple of years (see
e.g., [4–11]) and is still an ongoing effort.

In this paper, we focus on the applicability of annealing techniques to the NP-hard
problem of portfolio optimization [5], a well-known topic for investment funds and indi-
vidual investors.

The pioneering work by Harry Markowitz [12] in 1952 can be considered the foun-
dation of portfolio optimization. The goal here is to distribute an investor’s capital on
assets such that a given objective, such as maximizing the return or minimizing the risk, is
optimized. Portfolio optimization is an actively researched question in scientific domains
such as combinatorial optimization [13], operations research [14], data science [15], and the
application of quantum computing [16]. Not only the academic community is focusing on
this topic, but it is also a core business of banks and financial advisers and the combination
of portfolio optimization with quantum techniques is addressed by numerous companies
and consultants [17,18].

Current approaches of solving portfolio optimization with annealing techniques
(see [5,11,19–21]) exhibit, amongst others, the following limitations:

• Limited amount of assets to choose from;
• Use of naive investment strategies for the calculation of future returns.

These approaches also try to solve portfolio optimization as a whole, which limits
the possible problem sizes significantly, as current quantum hardware is not advanced
enough yet to tackle bigger problems. Thus, we present a new workflow combining a
classical preprocessing step with a modified QUBO model for portfolio optimization that
is able to solve significantly larger optimization problems. In our modified QUBO model,
we enable an investor to place an arbitrary amount of money into an arbitrary number of
assets, which was not possible previously. The solutions to our QUBO model tell investors
how to split their capital amongst available strategies in order to reach their goals (i.e.,
achieve a certain return and minimize risk). We evaluate our QUBO model via quantum
annealing (QA), simulated annealing (SA), and digital annealing (DA).

This paper is organized as follows. First, we provide the reader with some preliminar-
ies: in particular, we recall the foundations of portfolio optimization (Section 2), quantitative
investing (Section 3), the QUBO model, and simulated and quantum annealing (Section 4).
In Section 5 we give an overview of portfolio optimization in the field of quantum annealing.
In Section 6 we present our approach to portfolio optimization followed by an evaluation
in Section 7. The conclusion together with some discussion is given in Section 8.



Appl. Sci. 2022, 12, 12288 3 of 20

2. Portfolio Optimization

Modern portfolio theory is about the optimal selection of assets for a given level of risk
to achieve the maximal return [12]. This theory was first presented in 1952 by the pioneer
in this field, Harry Markowitz [12]. His theory shows that investors should diversify their
portfolios to achieve a maximum return under a given level of risk. The investors decide for
themselves how to calculate the expected return and what return indicators are important.
Suppose there are l assets. The expected return of a portfolio is given by

E =
l

∑
i=1

Xiµi (1)

Variables Xi with 0 ≤ Xi ≤ 1 denote the portion of the asset i in the whole portfolio

and µi is the expected return of asset i. Of course
l

∑
i=1

Xi = 1 holds. The expected risk of a

portfolio is given by
V = ∑ ∑ σijXiXj (2)

Here, σij denotes the covariance between assets i and j.
The investor has the possibility to select different combinations of (E, V). It is assumed

that all combinations are distributed according to Figure 1. The x-axis represents the
expected return (the more right the better) and the y-axis represents the expected risk (the
lower the better):

Figure 1. Distribution of portfolios with E representing the expected return and V the expected risk.
Figure inspired by [12].

The dashed/solid line in Figure 1 denotes the convex hull around a set of portfolios.
That is, all envisioned portfolios lie inside that area. Every dot represents a single portfolio.
The blue dot marks the portfolio where the expected return is the highest, while the
portfolio marked with a green dot has got the lowest risk. As a trade-off for the lower
risk, the portfolio represented by the green dot also yields lower expected returns than the
portfolio represented by the blue dot. The solid part of the line in Figure 1 denotes the area
where optimal portfolios may lie, which is also called the efficient frontier. Portfolios within
the efficient frontier are considered optimal because they exhibit the best balance between
maximizing the return E while also minimizing the risk V. The red dot, for example, is not
optimal, because the green dot has a lower expected risk with the same expected return.
Similarly, the yellow dot has a lower expected return compared to the green dot with the
same expected risk.
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To find the best investment portfolios, the problem needs to be formulated as an
optimization problem:

min ∑ ∑ XiXjσij −∑ Xiµi s.t. ∑ Xi = 1 (3)

This is the constrained quadratic form of the portfolio theory of Markowitz. Out of
l assets, the ones with the lowest covariance σij and highest return µi shall be selected.
The weighted percent values Xi describe how the different assets build up the solution
portfolio [5].

3. Quantitative Investment Strategies

Quantitative trading can be defined as the systematic implementation of trading
strategies that humans create through rigorous research. In this context, systematic is
defined as a disciplined, methodical, and automated approach [22] (p. 15).

The quantitative investment process starts by testing a possible strategy. Therefore,
one has to start by gathering the necessary historical data, which might contain several
flaws. For example, the data might be not adjusted to stock splits or dividends, there might
be missing values, reported values might not be correct, and so on. If this is the case, one has
to include a data cleaning step before one proceeds [22] (pp. 135–136). After establishing
the data set for the potential strategy, the strategy is fitted to the historical data. There are
additional pitfalls that need to be considered. For example, a historical database of stock
prices might not include stocks that have “disappeared” due to bankruptcies, delistings,
mergers, or acquisitions, and thus suffer from a so-called survivorship bias, because only
“survivors” of those often unpleasant events remain in the database [23] (p. 33). Another
example of a possible bias is the so-called data-snooping bias. This bias can be thought
of as a kind of overfitting of the parameters to given historical data. It occurs when one
tries to optimize the parameters of a strategy such that it performs exceptionally well on
historical data. It is very likely that such an optimization can be performed [23] (p. 35).
The look-ahead bias is about situations where information is used that was only available
after the investment has been made. This information was not available when an asset was
bought or sold [23] (p. 58). After the strategy shows acceptable performance on historical
data, the strategy is tested on an out-of-sample data set, usually taken from the near past.
Finally, the out-of-sample test (so-called backtest) is evaluated, and the strategy will either
be used for investments or discarded [23] (p. 29).

In our work, the price series of assets are the foundation of a trend strategy and a
mean reversion strategy. Trend strategies (also called momentum strategies) are based on
the theory that sometimes markets move long enough in one direction such that the trend
can be identified and exploited. Mean reversion strategies assume, however, that there
exists a center of a price series (e.g., the mean of a price) and that the price including its
fluctuation always returns to its center [22] (pp. 39–45). The price series must be stationary
for a mean reversion strategy. Stationarity can mathematically be tested by the augmented
Dickey–Fuller (ADF) test [24] (p. 49). Price changes in a price series are described as

∆y(t) = λy(t− 1) + µ + βt + α1∆y(t− 1) + . . . + αk∆y(t− k) + εt (4)

The ADF test finds out if λ = 0. If the hypothesis λ = 0 can be rejected, then the next
price change ∆y(t) depends on y(t− 1). Therefore, the series is not a random walk. The test
statistics is the regression coefficient λ divided by the standard error of the regression
λ/SE(λ). Since mean reversion is expected, λ/SE(λ) must be negative and lower than the
critical z-score of the hypothesis. Variable k denotes price lags of the price series, βt is the
constant drift of the price series, and α is the auto-regressive parameter. Error term εt is
independent and identically distributed with a mean of 0. Intuitively formulated, being a
stationary price series means that the price moves away from its initial value slower than a
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geometric random walk. The speed of this moving can mathematically be calculated by
the variance

Var(τ) = 〈|z(t + τ)− z(t)|2〉 (5)

in which z is the log price (z = log(y)), τ an arbitrary point in time, and 〈. . .〉 the average
over all ts. For a geometric random walk the following is known:

〈|z(t + τ)− z(t)|2〉 ∼ τ (6)

Notation ∼ indicates that the relation for large τ becomes equality and for small τ the
relation deviates from a constant line. If the price series is mean reverting or in a trend,
then the formula is the following:

〈|z(t + τ)− z(t)|2〉 ∼ τ2H (7)

Here, H is the Hurst exponent with a value of H = 0.5 for a geometric random walk,
H < 0.5 for a stationary price series, and H > 0.5 for a trend. The trend or stationarity is
stronger the larger the difference of H from 0.5 [24] (p. 51).

Since price series are finite sets, the statistical significance of H must be determined.
The hypothesis test for that is the variance ratio test [24] (p. 52), and it tests if

Var(z(t)− z(t− τ))

τVar(z(t)− z(t− 1))
= 1 (8)

The null hypothesis is that the price series is a random walk. If the test equals 1,
then a random walk can be rejected; if the test equals 0, then the series may be a ran-
dom walk. The p-value of the test gives the probability that the null hypothesis can be
accepted [24] (p. 52).

Variable λ in the ADF test formula (Equation (4)) is a measure for the time a price
series needs to return to its center, also called half-life. For that, the price series must
be transformed into its differential form. For this, the Ornstein–Uhlenbeck formula can
be used:

dy(t) = (λy(t− 1) + µ)dt + dε (9)

where dε represents Gaussian noise. If λ is positive, then the price series is not stationary,
while a λ close to 0 means that it will take a long time until the series returns to its center.
Additionally, the measure of half-life provides a guideline for how the period of the moving
average and the moving standard deviation for strategies shall be selected. The period is
optimal if it is a small portion of λ [24] (p. 53).

Most price series are not stationary, however, stationary portfolios can be created out of
several distinct price series. This works via the cointegration of price series. Cointegration
means that if a linear combination of non-stationary price series can be found, then they are
cointegrated with each other. A common combination consists of two price series. Here,
one price series is invested in long (an investor bought and owns the asset) and the other is
invested with a factor (hedge ratio) in short (an investor lent and sold an asset and returns
it later). That is called the pairs-trading strategy. To test the stationarity of the cointegration,
the augmented Dickey–Fuller (ADF) test can be used. First, the optimal hedge ratio is
calculated by linear regression

S = V0 + hV1 (10)

where S is the alleged stationary price series, h the hedge ratio, and V0, V1 are the two
distinct series. Using S, a portfolio will be created. On top of the price series of the portfolio,
the ADF test is executed to show stationarity. Not all pairs of series are suitable for a
pairs-trading strategy. The mathematical techniques presented in this section are crucial
for the preprocessing step in our portfolio optimization step. By the use of backtesting
strategies on different assets and discarding strategies on assets where the backtest results
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are unsatisfactory, the search set for the portfolio optimization can be reduced. However,
the complexity of the optimization problem still remains.

4. Annealing Methods and the QUBO Model

As we use different types of annealing methods for our evaluation, namely simulated
annealing, quantum annealing, and digital annealing, we recall the necessary fundamentals
in this section. All types of annealing methods are meta-heuristics designed to find the
global optimum of a given optimization problem.

4.1. Simulated Annealing

Simulated annealing (SA) is named after its analogy to the process of physical an-
nealing with solids, in which a crystalline solid is heated and then allowed to slowly cool
down until it achieves its most regular crystal lattice configuration (i.e., its minimum lattice
energy state), and thus is free of crystal defects. If the cooling schedule is sufficiently slow,
the final configuration results in a solid with such a superior structural integrity [25]. Simu-
lated annealing establishes the connection between this type of thermodynamic behavior
and the search for a global optimum for a discrete optimization problem. Furthermore, it
provides an algorithmic means for exploiting such a connection [25]. At each iteration of a
simulated annealing algorithm applied to a discrete optimization problem, the values for
two solutions (the current solution and a newly selected solution) are compared. Improving
solutions are always accepted, while a fraction of non-improving (inferior) solutions are
accepted in the hope of escaping local optima while continuing to search for a global
optimum. The probability of accepting non-improving solutions depends on a tempera-
ture parameter, which is typically non-increasing with each iteration of the algorithm [25].
For an in-depth mathematical description of the simulated annealing idea, see [25,26].

4.2. Quantum Annealing

Quantum annealing (QA) is a heuristic method for solving combinatorial optimization
problems, similar to simulated annealing [27]. Quantum annealing is a derivative of adia-
batic quantum optimization [4], which is based on the time-dependent Schrödinger equation

i}d2ψ(t)
dt

= H(t)Ψ(t) (11)

where ψ(t) denotes the quantum mechanical wave function of an underlying physical
system and H(t) is the time-dependent Hamiltonian that drives the dynamics [4]. A generic
form of this Hamiltonian is

H(t) = A(t)H0 + B(t)H1 (12)

with t ∈ [0, T] and T being the final evolution time. The schedules A(t), B(t) are monotonic
and satisfy A(0) = 1, B(0) = 0 and A(T) = 0, B(T) = 1. Therefore, the quantum state
ψ(0) evolves under an interpolation from H0 to H1 in order to prepare the final state ψ(T).
Assuming the initial state is an eigenstate of H0, then the adiabatic theorem promises that
the quantum state will remain an instantaneous eigenstate of H(t) provided the dynamics
evolve sufficiently slow. The latter condition may be enforced by choice of the annealing
time T or the schedules. Consequently, we may select the final Hamiltonian H1 to represent
a computational problem in which the eigenstates encode a well-defined solution [4].

4.3. Digital Annealing

Digital annealing and the corresponding hardware the Fujitsu Digital Annealing Unit
(DAU) are designed to solve fully connected quadratic unconstrained binary optimiza-
tion (QUBO) problems. It is implemented on application-specific CMOS hardware and
currently solves problems of up to 8192 variables [28]. The DAU’s algorithm is based on
SA, but differs from it in two main ways: first, it uses a parallel-trial scheme in which
each Monte Carlo step considers a flip of all variables (separately), in parallel. If at least
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one flip is accepted, one of the accepted flips is chosen uniformly at random and it is
applied. The advantage of the parallel-trial scheme is that it can boost the acceptance
probability, because the likelihood of accepting a flip out of N flips is typically much larger
than the likelihood of flipping a particular variable. Parallel rejection algorithms on GPU
(see [29,30]) are examples of similar efforts in the literature to address the low acceptance
probability problem in Monte Carlo methods [28]. Finally, digital annealing employs an
escape mechanism called dynamic offset, such that if no flip was accepted, the subsequent
acceptance probabilities are artificially increased by subtracting a positive value from the
difference in energy associated with a proposed move. This can help the algorithm to
surmount short, narrow barriers [28]. For more details on digital annealing, see [28,31].

4.4. Quadratic Unconstrained Binary Optimization (QUBO)

The quadratic unconstrained binary optimization problem (QUBO) model has emerged
as an underpinning of the quantum computing area known as quantum annealing (as
well as digital annealing), and has also become a subject of study in neuromorphic com-
puting [3]. Through these connections, QUBO models lie at the heart of experimentation
carried out with quantum computers developed by D-Wave Systems and neuromorphic
computers developed by IBM [3]. Furthermore, QUBO models can also be used as an input
for algorithms such as QAOA [32], which can be executed on quantum-gate computers.

There are many well-known reductions of NP-hard and NP-complete problems to
QUBO (see [2]), which itself is an NP-hard optimization problem [3]. We proceed to define
QUBO as presented in [33]:

Given a graph G = [N, E] with node set N = {1, 2, . . . , i, . . . n} and edge set E = {(i, j) :
i, j ∈ N}. Denoting the weight of edge (i, j) by cij, we define QUBO as

Minimize : ∑
i∈N

ciixi + ∑
(i,j)∈E

cijxixj (13)

with xi = {0, 1}; i ∈ N. An equivalent compact definition, where the coefficients of
Equation (13) are represented as a matrix Q is

Min xtQx (14)

with x ∈ {0, 1}n and Q being an n× n matrix of coefficients [33].

5. Related Work

There are several methods for portfolio optimization. The largest influence comes
from Markowitz’s work [12] for portfolio selection. Probability and optimization theory
is combined to find a portfolio with minimized risk and maximized return [34]. In the
following paragraphs, existing portfolio optimization approaches using quantum methods
are presented.

The portfolio optimization problem has been solved using two different quantum com-
puting methods. The first method is the quantum linear systems algorithm. The algorithm
creates a risk-return curve in which the portfolio with the lowest risk for a given return can
be found [35]. The second method is quantum annealing. In the following, we will present
existing quantum annealing approaches.
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Elsokkary et al. [11] selected the expected price value of a stock as the return. For the
risk measure, the variance of the stock price was used. Additionally, a budget for the
portfolio can be chosen. The corresponding QUBO model consists of three parts.

Minimize : θ1 ∑
i
[−αiE(Ri)]

+ θ2 ∑
i,j

αiαjCov(Ri, Rj)

+ θ3(∑
i

αi Ai − B)2

(15)

The first part is for the expected return with E(Ri), ai ∈ 0, 1 depending if a stock i
is selected for the portfolio or not. The second part represents the risk with Cov(Ri, Rj),
and if i = j then it is the variance of the stock price. The third part constrains the model
to a given budget B. Ai is the price of the stock i. The positive weights θ1, θ2, θ3 describe
how important each term in the model is. In the application of that approach, data from
the Abu Dhabi securities exchange has been used, and the algorithm was executed on
the D-Wave Quantum Annealer. The thetas were all set to 13 to have equal importance
for the three terms. Given a budget of USD 100, their algorithm constructed a portfolio
worth USD 121.176. Therefore, the thetas were adjusted to θ1 = 0.8, θ2 = 0, θ3 = 0.2,
and the constructed portfolio was worth USD 119.007, where no optimization for risk
was made [11]. Their approach lacks the ability to have more than one stock for each
security in the portfolio. Additionally, the authors did not mention how the expected return
was calculated. Venturelli et al. [5] used a similar approach for portfolio optimization
via quantum annealing. The authors used investment funds instead of stocks as assets,
the annual return of each fund as the expected return, and the annual standard deviation
of the logarithmic return as the risk. Using the two factors of return and risk, the Sharpe
ratio was calculated for each fund in order to put each fund into one of the 12 classes for
the “attractiveness” of the asset. The QUBO model has been defined as follows:

O(q) =
N

∑
i=1

aiqi +
N

∑
i=1

N

∑
j=i+1

bijqiqj (16)

The attractiveness class of each fund is represented by ai, while qi ∈ 0, 1 indicates
whether fund i is in the portfolio or not. bi j is the covariance of the corresponding returns
as a measure to construct a diversified portfolio:

Openalty(q) = P(M−
N

∑
i=1

qi)
2 (17)

Additionally, the approach has an extension to choose the amount of funds in the
portfolio out of N funds. The amount of funds that shall be in the portfolio can be selected
using M. P is a penalty that sets the global minimum of the function to the wanted amount

such that
N
∑

i=1
qi = M. The approach was executed via quantum annealing and reverse

quantum annealing. The results show that reverse annealing is 100 times faster than
quantum annealing [5]. Their approach lacks the ability to tell the theoretical investor
how much of the capital shall be invested into which fund. Their work did not show any
portfolios constructed by the quantum annealer, instead, they just showed if the problem
has been solved and in what time. Additionally, the expected return of each fund was
computed naively by means of historical returns.

The approach by Phillipson and Bhatia [19] is similar to Venturelli et al. [5] and
Elsokkary et al. [11]. N assets to invest in are available out of the Nikkei225 and S&P500.
The expected return of asset i is µi calculated over a quarterly 5-year data period. The risk
is modeled by a risk matrix xT ∑ x, where the diagonal is the variance of each assets and
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the other cells represent the covariance of the assets. n determines how many assets shall
be contained in the resulting portfolio. The return of the result portfolio shall be higher
than R∗ and the approach searches for the portfolio out of n assets that achieves the target
return with minimal risk. The corresponding QUBO formulation is as follows:

min(λ0xT ∑ x + λ1(
1

∑
i=1

xi − n)2 + λ2(µ
Tx− R∗)2) (18)

The lambdas weigh each term for its importance. The results in that approach only
show how fast quantum annealing is compared to other optimization algorithms such as
simulated annealing [19].

To conclude, existing approaches lack the ability to tell a theoretical investor how
much of the capital needs to be allocated to which asset to have the optimal portfolio.
Additionally, taking the mean of historical returns is a naive estimate of asset returns.

6. Portfolio Optimization Implementation

In this section, we will present our implementation of the portfolio optimization
problem. First, the implementations of the pairs-trading strategy (Section 6.1) and trend-
following strategy (Section 6.2) are presented. The strategies are backtested in a prepro-
cessing step such that only certain strategies on specific stocks and ETFs are included in
the possible solution set of the portfolio optimization. The preprocessing starts with the
backtesting of both strategies. First, both strategies are applied to the historical price data
from 2015 to 2019 of the stocks and ETFs. Then the returns of the strategies with their
corresponding assets are saved for that timeframe. Next, the Sharpe ratio and variance
based on these returns for all strategy/asset combinations are computed. The 18 strat-
egy/asset combinations with the highest Sharpe ratios are saved and later used for portfolio
optimization. Finally, our QUBO model is presented (Section 6.3) which is the central part
for the different annealing heuristics.

6.1. Pairs-Trading Strategy

The pairs-trading strategy was implemented similarly to Chan et al. [24] (p. 56) to
show how an investment strategy can be used in combination with annealing algorithms.
Because most of the price series of assets are not stationary, cointegrated pairs of price series
were used. If a linear combination of non-stationary price series can be found, then they are
cointegrated. To find the stationary combinations, the ADF test was used. First, for every
possible combination of distinct price series a linear regression was created. The regression
coefficient tells how the pairs are combined. The idea is that if for example, one asset is
25% long, then the other one is 75% short. The regressions coefficient is the so-called hedge
ratio. Next, the ADF test was executed on the combined price series to test whether the
combined series is stationary. If that was the case, then the Hurst exponent was calculated
to determine how strong the series’ stationarity is. Only strongly stationary series were
used for further executions of the pairs trading strategy. Afterward, the remaining price
series were tested in an out-of-sample data set. As parameters for the strategy the rolling
mean and the rolling standard deviation of the series are needed. To calculate the rolling
mean and rolling standard deviation, 1/4 of the half-life was used for the rolling window
size. For each data point of the price series, the Z-score in its distribution of returns was
calculated. For simplification, we assumed that the returns follow a Gaussian distribution.
The formula for calculating the z-score is:

z-score =
return Of PriceSeries− rolling Mean

rolling Standard Deviation
(19)

If the z-score is in one of the two 25% confidence intervals, then a trade will be executed.
The first price series of the pair will be invested long and the second short. The hedge
ratio tells how much the second will be invested in short per unit of the first asset. At that
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moment the return of the cointegrated price series is on the edge of its return distribution.
Because of the stationarity, the return will revert to its mean. As soon as the return comes
back close to its mean, the trade will be finalized and both positions will be closed. For every
transaction, transaction costs of 1% have been assumed. This includes commissions and
fees for the US-American market of a broker (interactive brokers commissions, https://
www.interactivebrokers.com/en/index.php?f=1590&p=stocks1, 29 August 2021). Slippage
and market impact are not included because we only used percentages of the overall capital
for the calculation of the positions. To model slippage and market impact, exact transaction
amounts must be known. Out of the result of the backtest, the Sharpe ratio for every pair
was calculated and it is used later on for the annealing. For the Sharpe ratio, a risk-free
rate of 1.54% was used (YCharts, US 1 Year Treasury Rate, https://www.ycharts.com/
indicators/1_year_treasury_rate, 29 August 2021). The risk-free rate is the return of the
1-year treasury bill of the US.

6.2. Trend-Following Strategy

The trend-following strategy was implemented again similarly to Chan et al. [24] (p. 138)
to show how multiple investment strategies can be used with annealing algorithms. First,
for every asset, the Hurste exponent was calculated to find price series that are in a trend.
Afterward, the statistical significance of the price series was calculated because they are
finite. If the Hurst exponent indicates a strong trend in one direction and the statistical
significance was large enough, then the assets are used for further executions. Second,
the parameters of this strategy were calculated. Those are the lookback and the holding
period. The idea is that a price series is observed for the amount of time of the lookback
period. Because the series is in a trend, an investment can be made for the amount of time of
the holding period. To calculate both periods, the correlation coefficient for different pairs of
periods was used. Additionally, the statistical significance of the correlation coefficient was
calculated. The largest or smallest coefficient was used to determine the pair of periods. It is
possible that after an increase or decrease of the lookback period of the asset price, the exact
opposite happens for the holding period. Next, an out-of-sample backtest was executed as
well. Every remaining asset with momentum was observed for the duration of the lookback
period. Using the value of the return and the correlation coefficient, an investment was
made long or short. For example, if a price series has a negative return during the lookback
period and a negative correlation coefficient, the investment made was long. After the
duration of the holding period, the position is sold. At this point in time the lookback
period will be observed again, until the start of a new holding period is found. Transaction
costs are the same as for the pairs-trading strategy. Out of the returns, the Sharpe ratio was
calculated for the annealing.

6.3. QUBO Model

As a foundation for our QUBO model, the approaches of Venturelli et al. [5], El-
sokkary et al. [11], and Palmer et al. [36] were used. In the approach of Venturelli et al., only
a specific number of stocks can be selected. In our model, we lift this restriction and thus
enable the investor to select an arbitrary amount of assets to invest in. With the approach
of Elsokkary et al., only a single predefined amount of capital can be invested into an asset,
or no money at all will be spent on this asset. In our model, we do not limit the investor to
certain predefined amounts of money that can be invested into each asset, but enable the
investor to spend an arbitrary amount of money on each asset. Palmer et al. incorporate
logarithmic returns as well as a limitation of the amount of money that can be invested into
a single asset in their QUBO model. The amount of money that can be invested into a single
asset n in the approach of Palmer et al. is limited to the interval [ωmin

n , ωmax
n ]. The values

ωmin
n and ωmax

n denote the percentage values with respect to the whole available budget,
i.e., ωmin

n and ωmax
n are in the range [0, 1]. Palmer et al. introduce this limitation in order to

foster the creation of diverse portfolios. In our approach, we do not incorporate logarithmic
returns, but rather use the Sharpe ratio of the assets that we gained via our preprocessing

https://www.interactivebrokers.com/en/index.php?f=1590&p=stocks1
https://www.interactivebrokers.com/en/index.php?f=1590&p=stocks1
https://www.ycharts.com/indicators/1_year_treasury_rate
https://www.ycharts.com/indicators/1_year_treasury_rate
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step. We also do not limit an investor to certain ranges of amounts that the investor can
spend on individual assets. In our evaluation (see Section 7), we will empirically show that
lifting this restriction in our approach will still lead to the creation of a diverse portfolio.
Thus, this restriction is not necessary for our QUBO model.

We now present our modifications to the approaches mentioned above. In our ap-
proach, we do not limit the number of stocks that can be invested in and we also enable
investors to spend potentially arbitrary fractions of their capital on each strategy. A so-
lution to our approach indicates which fraction of the whole capital should be spent on
which strategy.

In our approach, we use 7 bits to express the available capital, similar to Ottaviani et al. [37].
Thus, a total fraction of 127/127 of the whole capital can be spent on strategies of a portfolio.
For each available strategy si we introduce a 7-bit binary variable bi as

bi = xi1 , xi2 , . . . , xi7 (20)

Binary variable xi1 is the least significant bit and binary variable xi7 is the most significant
bit. Variable bi will denote which fraction of the whole capital should be spent on a certain
strategy. The 7 bits, capable of representing 27 = 128 different values from 0 to 127, is
an arbitrary number that was chosen because it is the closest binary representation to
the decimal number 100. For example, 0000000bin = 0dec represents 0/127 = 0, meaning
that no capital is invested in the corresponding strategy. The other extreme, namely
1111111bin = 127dec, represents 127/127 = 1, meaning that the entire capital is invested
in the corresponding strategy. If for example bi = 7, then the fraction 7/127 of the whole
capital is spent on strategy si. The goal of the portfolio optimization here is to allocate
and distribute 100% (127/127) of the capital efficiently over different strategies to ensure
diversification and lower risk. If an investor needs a more fine-grained breakdown of the
capital, more than 7 bits can be used, resulting in a higher number than 127 and lower
possible fractions than 1/127.

Similarly to Venturelli et al. [5], the attractiveness of an asset in our approach is
measured by using the Sharpe ratio. However, in our approach, we do not cluster the
Sharpe ratios into different classes with different weights, but use the nominal value of the
Sharpe ratio. To calculate the Sharpe ratio of a strategy, we test the strategy on different
assets and calculate the Sharpe ratio in accordance with the results of the backtest. We
can now formulate the first part of our QUBO formulation. Suppose there are l strategies
available. The following equation determines which fraction of the budget should be spent
on which strategy, based on the Sharpe ratio of the respective strategy:

−
7l−1

∑
i=0

2i mod 7SR f loor(i/7)xi (21)

As explained, we dedicate 7 bits to each strategy in order to enable the approach to
dedicate only a certain fraction of the whole capital to a strategy within a portfolio. Notice
that the bits xi mod 7, x(i+1)mod7, . . . , x(i+6)mod7 for i = 7s, s ∈ { 0, . . . , l − 1 } constitute for
one of the bi as introduced in Equation (20). Thus, in the above equation the Sharpe ratio SR
of a single strategy is used 7 times. Hence, SRk = SRk+1 = . . . = SRk+6 = SR f loor(k/7) with
k = 7s, s ∈ { 0, . . . , l − 1 }. The Sharpe ratio here is the value calculated by the backtesting
of the preprocessing. As diversification is an important measure to reduce risks involved
in investing, we add a second term that uses the covariance between different strategies,
analogously to Venturelli et al. [5], which fosters the creation of well diversified portfolios.

7l−1

∑
i=0

7l−1

∑
j=i+1

cov(s f loor(i/7)s f loor(j/7))xixj (22)
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To complete our approach, we add a final term, which penalizes both overspending
and underspending of the available budget:

(127−
7l−1

∑
i=0

2i mod 7xi)
2 (23)

As this was the last step of our approach, the final QUBO formulation of our approach
is given as

− θ1

7l−1

∑
i=0

2i mod 7SR f loor(i/7)xi

+ θ2

7l−1

∑
i=0

7l−1

∑
j=i+1

cov(s f loor(i/7)s f loor(j/7))xixj

+ θ3(127−
7l−1

∑
i=0

2i mod 7xi)
2

(24)

Remember, l denotes the number of available strategies, while parameters θ1, θ2, θ3
are weights to give more importance to different parts of the QUBO model. For example,
to emphasize minimizing the risk, θ2 should be increased. As mentioned earlier, if the
investor needs a finer breakdown of the capital, all 7s in Equation (24) needs to be replaced
by the number of bits the investor needs. Additionally, in Equation (24), the value 127
needs to be replaced by the maximum number representable by the chosen number of bits.

6.4. Theoretical Remarks

In this subsection we provide a theoretical analysis of the preprocessing steps as well as
the QUBO model regarding scalability and complexity. First, we describe our preprocessing
of the pairs trading strategy, which is the process of finding all stationary asset pairs of all
available assets, see the pseudocode in Algorithm 1.

Algorithm 1 Pairs trading: find stationary pairs

1: procedure FINDSTATIONARYPAIRS(assets) . list of assets containing price data
2: stationaryPairs = []
3: for prices1 in assets do
4: for prices2 in assets do
5: if prices1 == prices2 then
6: continue
7: else
8: stationaryPair, hedgeRatio, hurstExponent = CadfTest(prices1, prices2)
9: if stationaryPair == True hurstExponent < 0.4 then

10: stationaryPairs.add((prices1, prices2, hedgeRatio, hurstExponent))
11: end if
12: end if
13: end for
14: end for
15: return stationaryPairs
16: end procedure

The procedure shown in Algorithm 1 has a time complexity of O(n2) since we need to
iterate over each asset and then through each other asset. Next for preprocessing, we need
to execute a backtest to see how well a pairs trading strategy performs on all stationary
pairs. Therefore, the actual strategy illustrated in Algorithm 2 is executed on the same
timeframe as the assets used for Algorithm 1. The time complexity for that procedure is
O(n) since we only have to iterate over each timestep of the backtest period. Therefore,
the overall time complexity of the pairs trading preprocessing is O(n2)
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Algorithm 2 Pairs trading strategy

1: procedure PAIRSTRADINGSTRATEGY(stationaryPairs)
2: for pair in stationaryPair do
3: pairsTradingReturns = []
4: capital = 1
5: hal f Li f e = getHalfLife(pair.prices1, pair.prices2)
6: for i = 0; i < length(prices1) − hal f Li f e; i++ do
7: spread = pair.prices1 − (pair.hedgeRatio× pair.prices2[i + hal f Li f e])
8: rollingWindow = pair.prices1[i:(i+hal f Li f e)] − (hedgeRatio ×

pair.prices2[i:(i+hal f Li f e)])
9: rollingMean = mean(rollingWindow)

10: rollingStd = mean(rollingWindow)
11: zScore = (spread− rollingMean) / rollingStd
12: if zScore > 1.28 then
13: Go LONG in pair.asset1 and SHORT in pair.asset2
14: else if zScore < −1.28 then
15: Go SHORT in pair.asset1 and LONG in pair.asset2
16: end if
17: if zScore < 0.25 LONG pair.asset1 then
18: Close position and add to returns
19: else if zScore > −0.25 SHORT in pair.asset1 then
20: Close position and add to returns
21: end if
22: end for
23: end for
24: return pairsTradingReturns
25: end procedure

The trend-following strategy is executed on the same assets as the pairs trading
strategy. The preprocessing procedure for the trend following strategy is described in
Algorithm 3. It consists of two parts, first, for each asset we calculate the best lookback and
holding period as well as their correlation coefficient as described in Section 6.2. Second,
we execute the actual strategy based on the parameters found. The time complexity for
that process is O(n) since we only have to iterate over each asset once.

Algorithm 3 Trend following: preprocessing

1: procedure FINDSTATIONARYPAIRS(assets) . list of assets containing price data
2: returns = []
3: for prices in assets do
4: lookBackPeriod, holdingPeriod, corCoe f = GetLookbackHoldingPeriodsAndCor

Coef(prices)
5: for price in prices do
6: if corCoe f > 0 (not LONG in asset || not SHORT in asset) then
7: Go LONG in the current asset for the duration of the holdingPreiod
8: else if corCoe f < 0 (not LONG in asset || not SHORT in asset) then
9: Go SHORT in the current asset for the duration of the holdingPreiod

10: end if
11: if holdingPeriod is over then
12: close position and add return to returns
13: end if
14: end for
15: end for
16: return returns
17: end procedure
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Now we will give some theoretical remarks to our QUBO formulation, see Equation (24).
The procedures will fill the matrix entirely because the covariance between each asset
is needed. Depending on the number of bits, as described in Equation (20), each asset
occupies a number of variables equal to the number of bits. Therefore, the two dimensions
of the QUBO matrix have a complexity of O(sb), where s is the number of strategies and
b is the number of bits. It is not possible to make the resulting dense matrix more sparse,
as it would contradict the goal of risk minimization in the original portfolio optimization
problem. In order to minimize risk in a portfolio, the covariance between assets must be as
close as possible to 0. That means that all assets in a portfolio are diverse and mitigate risk.
Therefore, even if the QUBO matrix contains many 0s, they can not be eliminated because
they are highly wanted. This fact makes portfolio optimization a computationally heavy
problem and it shows the importance of new technologies such as quantum annealing or
digital annealing.

7. Evaluation

We evaluate our new QUBO formulation for portfolio optimization by assuming a
hypothetical investor who splits their money according to the suggestion of the QUBO
optimization process and observing the development of their portfolio. We show that it is
possible to add additional risk minimization, if needed, by adjusting the parameters of our
model. The same is true for the maximization of the expected return.

7.1. Dataset

Our data set consists of stocks of the New York Stock Exchange (NYSE) as well as
common exchange-traded funds (ETFs). The data set contains the daily adjusted closing
prices of those stocks and respective ETFs over a period of 5 years, starting on 31 December
2014 and ending on 31 December 2019. The daily adjusted closing prices of each stock and
respective ETF over the 5-year period form a price series. Since the data were not complete
(e.g., daily closing prices were missing for several days for certain stocks or ETFs), we
decided to only keep price series that contain more than 900 daily prices. All the data were
acquired via Yahoo Finance.

7.2. Evaluation Framework

The experiments are carried out on D-Wave System’s Quantum Annealer (Advantage
System 4.1), on Fujitsu’s Digital Annealing Unit (DAU Version 2), and on a classical
computer using simulated annealing. We use default parameters for all algorithms on their
respective hardware systems. We use UQO [38] as a platform to handle the execution of
our experiments. Since D-Wave’s Advantage System 4.1 only provides about 5000 qubits,
arranged in the Pegasus graph, we were only able to use 18 strategies. We chose 8 pairs-
trading strategies on ETF pairs and 10 trend-following strategies on different NYSE stocks
as our 18 strategies. Each of the 18 strategies were selected by the best Sharpe ratio of
the backtest results. To compare the annealing results to a random process, we created
randomized portfolios, each of them consisting of an arbitrary amount of strategies that
were assigned an arbitrary fraction of the capital.

7.3. Diversification Measure

In the following figures to be seen, the coloring indicates the diversification of the
portfolios. We used the following equation to determine the diversification of a portfolio:

∑si∈P ∑sj∈P
i 6=j

cov(si, sj)wsi wsj + ∑si∈P 1wsi wsi

−∑si∈P(wsi ln(wsi )) + 10−10 +
1

∑ si∈P
wsi 6=0

1

In this equation, P denotes a portfolio, the price series of the portfolio are denoted by
si, sj, 1 ≤ i, j ≤ 18, and 0 ≤ wsi , wsj ≤ 1 are the fractions of the capital that were invested
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into the strategies si, sj in this specific portfolio P. In the denominator of the first part of the
equation, we added the term 10−10 to the entropy of the portfolio to prevent division by
zero, as it might be possible that wsi = 1, which implies that all other weights wsj 6= wsi

must be zero, and thus the value of the denominator would be ln(1) = 0. Intuitively,
the first part of the equation measures how similar the price series within the portfolio are,
while the second part of the equation adds a reward for portfolios with a larger number
of selected strategies. We normalize the result of the above diversification measure to the
closed interval [−1, 1]. The best value for diversification is 0, while −1 and 1 denote the
worst possible diversification. Here, 1 (dark-red coloring) means that all price series of the
strategies in the portfolio behave exactly the same, while −1 (dark-blue coloring) means
that (groups of) time series behave exactly opposite, i.e., if the price of one series increases
then the price of the other series decreases by the same amount. In our case, no portfolio
received a normalized diversification result below 0, as none of the strategies within the
created portfolios had negative correlation.

7.4. Results

We now present the results of our experiments. For all our experiments, we created
1000 random portfolios as well as 10, 000 samples for each of the annealing strategies
simulated annealing, quantum annealing, and digital annealing. In our visualizations, we
plot all the random portfolios, while for the portfolios generated with any of the annealing
strategies we only plot the 10 best results. We start off by evaluating the created portfolios
when using equal values for θ1 (weight for return) and θ2 (weight for risk).

Please note that in Figure 2 all portfolios generated by simulated annealing (marked as
diamonds) and digital annealing (marked as stats) are almost stacked on top of each other,
while portfolios generated by quantum annealing (crosses) reside in the same area as port-
folios generated by simulated annealing and digital annealing, but exhibit an observable
distribution. Nevertheless, the diversification, denoted by the coloring of the respective
shapes, is roughly the same.

Figure 2. Annealing results with equal weights for return and risk.
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If we now increase θ1 to 400, which means we reward the creation of portfolios that
yield higher returns, we obtain the results visualized in Figure 3. Note that there is nothing
special about the value of 400, it is just an arbitrary value that emphasizes the creation of
portfolios that yield higher returns.

Figure 3. Annealing results with increased weight on return.

The results show that, apart from a few outliers, the y-values of the annealing portfolios
of Figure 2 and of Figure 3 are approximately equal. However, when comparing the results
in Figure 2 to Figure 3, we can observe that the portfolios of the latter experiment possess a
higher x-value. As the y-value indicates risk and the x-value indicates return, the conclusion
is that while maintaining an equal amount of risk, the portfolios generated in Figure 3 yield
a higher return.

In the next experiment, we increase θ1 to 1000 and decrease θ2, which is the indicator
for risk, to 1. This leads to portfolios that yield higher returns than previous experiments
but also exhibit a lot more risk. The results of this experiment are visualized in Figure 4.

In this experiment, we observe that the resulting portfolios created by simulated
annealing (diamonds) and digital annealing (stars) increase their Sharpe ratio as well as
their risk significantly. One can also see that the color shifts from a greenish coloring in
Figure 3 to a yellow color in Figure 4. These portfolios are less diversified than portfolios
in the experiment of Figure 3. This is the intended effect of increasing the risk and the
return. The portfolios generated by quantum annealing (crosses), however, only exhibit
a slight trend towards increasing their Sharpe ratio. A significant change in risk can not
be observed. One explanation for this might be that the decrease of θ2 from 100 to 1 is
not significant enough for quantum annealing to mitigate influences such as noise or the
additional scaling of parameters performed by the quantum annealer itself.
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Figure 4. Annealing results with increased weight on return and reduced weight on risk.

We now use the best portfolios generated by each of the annealing approaches in the
previous experiment (θ1 = 400, θ2 = 100, θ3 = 1) to investigate the potential returns we
would have received if we invested in these portfolios in the year 2020.

TPOR is the abbreviation of the ETF Direxion Daily Transportation Bull 3X Shares while
DUSL is the abbreviation of the ETF Direxion Daily Industrials Bull 3X Shares. TPOR-DUSL
in Figure 5 is a portfolio that only contains the pairs trading strategy with ETFs TPOR and
DUSL. The pairs-trading strategy is long in the asset TPOR and short in the asset DUSL.
Long in TPOR means that 75% of the investor’s capital is allocated to TPOR. Short in DUSL
means that a number of stocks equal to 25% of the investor’s capital was borrowed from
a bank, with the intention of selling it back to the bank at a later point in time. As can be
seen in Figure 5, this portfolio lost approximately 60% of its value in 2020. The portfolios
generated by the different annealing strategies have allocated between 23% to 25% of
the investor’s total capital to TPOR-DUSL. Hence, these portfolios underperform as well.
The slight differences between the performances of the portfolios generated by simulated
annealing, quantum annealing, and digital annealing can be explained by slightly better
(or worse) diversification and slightly more (or less) allocation to TPOR-DUSL and other
strategies in the respective portfolios.

In the above experiments, we observed that the created portfolios used between
80 and 120% of the available capital. Thus, sometimes we observed overspending and
sometimes underspending. Although this is not a big problem in our approach, as we can
just keep the proportions and scale the whole portfolio such that exactly 100% of the capital
is used, we still can enforce this constraint by increasing the parameter θ3. To investigate the
effect of increasing θ3 in our QUBO model, we examined the results of Figure 3 with respect
to the capital spent in the created portfolios. In the experiments visualized in Figure 3, we
observed that the portfolios created by simulated annealing and digital annealing already
used exactly 100% of the capital, while the portfolios created by quantum annealing were
off by approximately±9%. When increasing the value of θ3 from 1 to 100, we get the results
as seen in Figure 6.
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Figure 5. Portfolio performance with optimization weights θ1 = 1000, θ2 = 1, θ3 = 1 in the year 2020.

An interesting result when comparing Figure 6 with the previous experiments of
Figure 3 is that when increasing θ3, portfolios with a lower Sharpe ratio seemed to be
created. For the portfolios created by simulated annealing and digital annealing, we
observed that all the created portfolios used 99.2% of the whole capital. The increase of θ3
did not show any significant impact on portfolios created by quantum annealing. Here, we
still observed that the portfolios used ±10% too much (or too little) of the budget.

Figure 6. Annealing results with increased weight on the budget.
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8. Conclusions

In this paper, we have introduced a new workflow to solve portfolio optimization
problems. We have started with a classical preprocessing step in which we used classical
backtesting for all pairs-trading and trend-following strategies. We applied the strategies to
historical real-world data within the time span of 2015–2019. Based upon the results of this
step, we chose the most promising strategy/asset combinations as an input to our modified
QUBO formulation for portfolio optimization. Our modified QUBO model enables an
investor to place an arbitrary amount into arbitrary many assets. The solutions to our QUBO
formulation create portfolios in which a certain fraction of the overall budget is dedicated
to certain strategies, while also respecting the amount of risk that should be taken and the
magnitude of return that should be achieved. We evaluated our QUBO formulation via
simulated annealing, digital annealing, and quantum annealing. The simulated annealing
results show that our approach works as intended, meaning that portfolios were generated
that respect the given preferences of the investor (expressed by the chosen values of
θ1, θ2, θ3) while also creating diversified portfolios. The results of quantum annealing
were also promising, yet not as good as the simulated annealing and digital annealing
results. The probable cause for this is a combination of inherent noise, missing error
correction, scaling of the parameters, and others. We note, however, that we only used
default parameters for all of our evaluations. Hence, for future work, finding and using
more suitable parameter configurations or adding techniques such as reverse annealing or
certain types of low polynomial running-time post-processing might significantly increase
solution quality in all cases. The combination of classical algorithms and reverse annealing
might also provide benefits over purely classical or purely quantum methods.
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