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In this paper, a new method to obtain a geometrically nonlinear structural dynamics model based on the full linear
finite element model of slender structures is presented. For this purpose, a finite element model is divided into multiple
segments along its span. For each segment, a modal analysis is carried out. Boundary grid points are defined on each
segment and loaded by fictitious masses. The modal analysis produces a set of elastic modes and six rigid-body modes
that have significant deformations near the boundary. These deformations facilitate high-accuracy integration of the
segments into a coupled model, in which the fictitious masses are removed. The elastic modes are used as master modes
that describe the deformation, whereas the rigid-body modes are used as slave modes to establish displacement
compatibility between the segments. The modal analysis is carried out with the local segment attached to its own
reference frame, yielding a local linear solution that is part of a global nonlinear analysis. Large rotations and
displacements are provided by the rigid-body modes in a corotational framework.

Nomenclature

= state matrix

input matrix

generalized damping matrix

output matrix

feedthrough matrix

unit vector of coordinate systems

force vector

vector of centrifugal force

vector of gravitational force

vector of rotational force

gravity vector

identity matrix

generalized stiffness matrix

generalized mass matrix

mass matrix containing fictitious masses only
= generalized mass matrix including fictitious masses

vector containing concentrated masses

number of modes per segment, number of segments
rotation matrix

position vector

transformation matrix

displacement vector

rotation vector

damping-coefficient matrix

elastic-mode displacement

rigid-body mode displacement

pseudotime

= normal modes of a system with fictitious masses removed
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= normal modes that serve as generalized coordinates
rotation angle

rotation magnitude

rotation vector

angular velocity

natural frequency
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1. Introduction

EROELASTIC simulations of aircraft and wind turbines are

time consuming, certainly when including geometric non-
linearities in a high-fidelity structural model. Several software tools
have been developed to model the wing and blade structure using
either multibody formulations or beam models. One of the nonlinear
beam formulations is the intrinsic beam model. A comprehensive
overview of the beam theory is provided by Hodges [1]. Hodges [2]
has first presented formulations that describe the strain—velocity
relations. Inherently, beam models are one-dimensional models,
combined with cross-sectional properties. Asymptotic methods can
be used to obtain the stiffness and mass properties of a cross section of
a slender beam [3,4]. Palacios and Palacios et al. obtained the cross-
sectional properties based on a full linear finite element model [3,6],
thereby matching the detail level from linear load models with
nonlinear beam models. As the formulations are strain based, the
rotations and displacements that are needed for an aerodynamic
analysis need to be retrieved. Quaternions allow tracing the
deformation by integrating the strains along the beam axis [6].
Several of the nonlinear beam models have been validated against the
Princeton beam experiment, which is a cantilever beam with a large
tip displacement. Hodges and Patil [7] compare this experiment to the
intrinsic beam formulation; Dowell et al. [8] make a comparison with
the Dowell-Hodges formulation; and Hopkins and Ormiston [9]
benchmark their tool based on a combination of rigid- and flexible
body kinematics, in which the flexibility is described by beam
elements.

The second approach is the flexible multibody formulation, as
incorporated in packages as MSC/Adams. Several different
approaches are used in multibody codes. One approach uses rigid
bodies that are interconnected by springs, which can only provide
very coarse structural solutions. More advanced multibody codes
use flexible elements, and are usually based on energy formulations
[10] or beam formulations [11]. The element formulations are
provided in a rotational framework. Shabana et al. [12] distinguish
floating-frame approaches, incremental-rotation approaches, or
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large-rotation vectors. The large-rotation-vector approach is used for
the formulations in this paper. Most research predominantly focuses
on beam formulations, as three-dimensional finite element models
are computationally very costly for multibody simulations [13] and
the effective introduction of constraints to those simulations [14,15].
This paper will present an alternative, compact formulation, based on
modal reduction, for a full geometrically nonlinear simulation of
slender structures.

The starting assumption is that the structural dynamics, for
example, of a wind turbine, can be separated into substructures, such
as the blades, the tower, and the drive train. These substructures can
be further broken down into segments, for which modal reductions
are carried out. The mode shapes and the generalized stiffness and
mass matrices of the separate segments are then used as a basis for
the analysis. Compatibility between two connected segments is
established through displacement constraints applied to the rigid-
body modes. The underlying assumption here is that large
deformations and rotations are modeled by rigid-body modes in a
corotational framework, whereas elastic modes serve as master
coordinates for the deformations. Two intersegmental displacement-
compatibility types can be identified. The first one is a fixed
connection, in which the two sides of the connection have the same
displacements and rotations. A geometrically nonlinear formulation
is provided in this paper for this type of connection. An example
would be the interface between multiple wing segments. The second
type of connection allows relative rotational degrees of freedom
between the segments. In the case of aircraft, morphing wings can be
named. Selitrennik et al. [16] provide formulations for a morphing
wing-body structure with a single rotational degree of freedom
between the wing and body motions of a flight vehicle. A similar
approach is used by De Breuker et al. [17], who developed a
morphing-wing framework based on nonlinear beam formulations in
a corotational framework.

The structural model can be seen as a geometrically nonlinear
extension of the modal coupling method of Craig and Bampton [18].
Nonlinear compatibility is introduced between the different segments
through rotation matrices. Additionally, the modal basis is obtained
using fictitious masses [19]. This approach allows obtaining a set of
rigid-body and elastic modes, which are close to a fixed—fixed
condition in a single modal analysis, in which all modes are
orthogonal, and so no orthogonalization procedure needs to be
followed as in the case of the Craig—Bampton’s approach. The modal
basis can be used, as described in this paper, to model the dynamic
structural response of a full wind turbine or a morphing aircraft.

II. Modeling Aspects

The modeling approach is an extension to a research program, in
which modal-based formulations for geometrically nonlinear
structural dynamics were investigated. Selitrennik et al. [16]
have modeled morphing aircraft structures, using geometrically
nonlinear compatibility relations. This paper describes two types of
connections that can link segments to each other. A novel
geometrically nonlinear structural model describes in detail how
fixed connections between two adjacent subsegments can be
formulated, for example, in the case of large wing deformations, in
which the subsegments of the wing are linked to each other. The
second type of joints is morphing connection, as described by
Selitrennik et al. [16].

The modeling process starts with a standard modal analysis for
each segment, performed with large fictitious masses loading the
boundary coordinates. The resulting modes and generalized matrices
are used to perform the subsequent simulations. Compatibility is
established between the segments during the time-domain simulation
in an iterative manner.

A. Fictitious Masses

For the modal analysis, each structural segment can be analyzed
individually and is integrated into the global structural model through
compatibility conditions for the boundary grid points of the
segments. A full linear finite element model can be used, as will be

shown in a numerical example, as a basis for such a modal reduction.
For each segment, the boundary grid points are defined and loaded by
large fictitious masses, which is a well-established method in
substructuring [19,20]. Ateach of these boundary points, two or more
segments will be connected with each other. Fictitious masses are
concentrated inertia terms that need to be large enough to introduce
significant local deformations near the connecting grid points of each
segment. As such, their magnitudes should be typically larger than
the respective inertia of the segment under consideration, but not too
large to avoid numerical ill-conditioning [20]. As the analysis is
performed with free—free boundary conditions, rigid-body modes
and elastic modes with significant local deformations are obtained.
For subsequent analyses, the fictitious masses need to be removed
from the generalized mass matrix by

M=M;—¢"Mp (M

in which M ¢ is the generalized mass matrix of a segment with
fictitious masses, and M ; has the same dimension as the full discrete
mass matrix. Because only the boundary elements are loaded, the
matrix containing the fictitious masses M is nonzero only for the
nodal locations of the fictitious mass. ¢ denotes the eigenvectors of
the structure generated with fictitious masses. M is the full
generalized mass matrix of a segment to be used in the geometrically
nonlinear analysis. The diagonal generalized stiffness matrix is not
affected by the removal of the fictitious masses.

B. Equations of Motion

The basic assumption is that the structural displacements in each
segment are defined by the sum of large rigid-body displacements
and rotations of the local body-attached coordinate system and small
elastic deformations. As an example, the displacements of two
structural segments and their local coordinate systems are shown in
Fig. 1 with a tip follower force applied. The elastic deformations in
Fig. 1 are exaggerated for clarity. Whereas the e, coordinate system
coincides with the global coordinate system, the rotation of e; is
equal to that of the tip point of the first segment. The linear normal
modes are calculated in these local systems. To avoid the usage of the
normal modes in expressing large rigid-body rotations, these are
defined by the rotations of the local coordinate system. Large rigid-
body translations, however, are still defined as combinations of rigid-
body modes. The elastic deformations relative to the local coordinate
system are defined as a linear combination of the elastic normal
modes, whereas the rigid-body modes are constrained to yield
intersegmental displacement compatibility. To be conveniently
consistent with these assumptions, the structural rotations in the
following formulation are expressed relative to the local coordinate
system. The structural displacements, however, are the total ones,
expressed in either the local or global coordinate system.

The modal rigid-body displacements of each segment are
constrained to yield displacement compatibility between adjusting

“

€
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Fig. 1 Structural displacements of two segments and the respective
reference frames e, and e;.
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structural segments. The master—slave relation between the elastic
and rigid-body modes is expressed by means of a transformation
matrix 7' in

I K
6_{56}_T§e (@)

in which & is the full set of mode displacements, &, are the
displacements of the rigid-body modes, and &, are the displacements
of the elastic modes, as obtained with fictitious masses. Because T
depends on large structural rotations, it is nonlinear and time
dependent. It is defined later for the case of fixed connections and the
case of relative rotations between segments. As both the modal
displacements and the transformation matrix are time dependent, the
derivatives of Eq. (2) are

E=T¢, + T, 3)
and
E=Té& +2T¢, + T, 4)

Equations (2—4) are used to express a reduced set of the modal
equation of motion in state-space format:

gl _[A B]fa 0 S
g |c plé * [TTMT] ' TT ¢T F ©)

with

A
B

C = -[rrmr| " [1" M +17RT]

D = -[r"mr]" 217 M T +17 BT | ©6)

in which K and B are the generalized stiffness and damping matrices.
The terms TTKT and TTBT are diagonal matrices with the
generalized stiffness and generalized damping of all segments on the
diagonal. F is the vector of discrete time-dependent external forces
and inertial forces. The latter are related to the angular velocity of the
rotating local coordinate systems, and are neglected in the inertia term
of the linear modal formulation, as explained in Sec. IL.G.

C. Fixed Connections

Fixed connections are the centerpiece of the current analysis. They
are used to rigidly connect the interface of two or more structural
segments by establishing displacement compatibility between
adjacent blade or wing segments. First, the modes are separated into
rigid-body and elastic modes. The rigid-body modal displacements
are constrained to establish the displacement compatibility between
segments, which yields the transformation of Eq. (2) that can be
partitioned as

&,
gl
=G t=T éff ™
: o
Ene

in which the subscripts ir and ie denote the rigid-body and elastic
modes of the ith segment. For a fixed connection between two
adjacent segments without any relative degrees of freedom, T is based
on the displacement compatibility:

. —o7 1o, “1R.u.
{gzr} — |: ¢1; ¢wi|§ie + {¢tr If)lul—l} (8)

in which ¢;, and ¢,, are rigid-body and elastic modal displacement
matrices at the root of the ith segment in local coordinates, and u;_; is
a vector of three translations and three rotations of the boundary grid
point of the previous segment in the global reference frame. The
square rotation matrix R; converts the six displacements of a grid
point from the global reference frame to local coordinates of the ith
segment, as defined in Sec. IL.D. The vector of boundary
displacements at the tip of each segment in global coordinates can be
obtained by

516
U= R7'¢;enaTiq - &)
gie

in which T ; denotes the sequential compatibility transformation
matrix for the segment that is considered, as detailed after Eq. (10).
The dimension of T is k by i(k — 6); @; ena is the matrix of modal
displacements of the end grid point of the ith segment with dimension
6 by k. As the overall transformation matrix is nonlinear and time
dependent, it needs to be constructed at each time step, starting at a
known displacement condition. The analysis is carried out
sequentially to find the global transformation matrix, starting from
a segment with a known displacement. In the presented equations of
motion, the structure is clamped at the root of the first segment.
Theoretically, it would not be needed to introduce any rigid-body
motion for the first segment if the modal reduction of the root segment
was carried out with a clamped and a free end. Combining Eqgs. (8)
and (9) allows assembling the transformation matrix in Eq. (5):

T, 0 0
[T>] 0
T = o (10)

[T,]
in which

F, = [—rﬁr,'rme]
1

~ ii _¢i_rl¢ie
T, = ¢i_-¢ll,rRiRi_—ll¢i<e“d|: j|
0 1

As the modal analysis is carried out in a local reference frame, alast
step is needed to transform the structural displacements to the
displacements in the global coordinate systems, u; ,;. In the local
coordinate system, the nodal locations of the deformed structure can
be obtained by adding the modal displacements to the location vector
of the nodes of the finite-element-method model. The global
displacement is obtained by integrating the displacements along the
structure starting at the root segment:

—o=1o. .
g =Ry ["undef,i + 4’1‘[ ¢’; Pie } { g” }] + Uiy grens (11

with

Upglend = 0

D. Rotation Matrices in a Corotational Framework

The nonlinear compatibility has been assessed except for the
rotation matrix that needs to be used to convert the displacements
from the global coordinate system to the body-attached reference
frame. The formulation of rotations is one of the key problems in
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formulating geometrically nonlinear structural models using a
corotational framework. In this paper, total rotations are modeled by
the rotational vector approach [21]. First, the coordinate systems are
defined by unit-size, orthogonal vectors e. In the case of the global
coordinate system, the unit vectors e® are simply the unit vectors of
the undeformed coordinate system. For the other coordinate systems,
defining unit vectors is slightly more complex. One of the unit vectors
is specified based on the undeformed structure. The unit vector is
defined along the longitudinal axis of the structure:

ek =u,. —u. (12)
in which u is the vector of the nodal coordinates of the undeformed
structure. The subscript 1, z denotes the location in axial direction of a
root boundary grid point, whereas 2, z denotes a position at unit
distance along the undeformed beam axis. In the case of the initial
coordinate system, without structural deformation, the remaining two
unit vectors can be obtained in the same manner. If small strains are
assumed and the cross section remains perpendicular to the axis of the
tower and blades, this is also true for both the body-attached reference
frame and the elastic body-attached reference frame. In the case of
large strains and warping, the second and third vectors need to be
defined in a different manner. In that case, an auxiliary vector g is
defined that is orthogonal to €. It is convenient for the blades to
specify g in the edgewise direction. The vector g, is normalized to
form the second vector of the coordinate system, e’ . The vectors, ¢
and e}, span a plane, to which a perpendicular vector is computed,
which is the third vector of the coordinate system. A sample
coordinate system for an undeformed beam is shown in Fig. 2.

e = el xel (13)

The orthogonal rotation matrix for a node is obtained using three
independent parameters. A vector of rotation angles, ¥ to W3, each
defined around a corresponding direction vector of the body-attached
coordinate system, is used to describe the orientation of the segment,
based on the global rotations of the previous segment. These
rotation angles are used to define a rotation vector u, and rotation
magnitude y:

¥, u;g(4)
Y= lIJZ = ui,gl(s) =uy (14)
Y3 ui,gl(6)

in which the rotation magnitude can be obtained from the rotation

angles ¥, to ¥
w=¥+¥:+ 9} (15)

Finally, the rotation matrix can be constructed:

Rsub = I+

sinzp\i, . 1 [2 sin(zp/2)i|2li12 (16)
W

2 W

in which I is a unit matrix, and Ry, = I when y = 0 and

€2

Fig. 2 Sample definition of the coordinate system.

i 0 -¥, v,
lP = ‘P:; O —lIJl
—lPZ lP] 0

As forces, moments, rotations, and displacements need to be
transformed into the new reference frame, the full rotation matrix to
be used per segment is given by

_ Rsub 0
R—[ o ] (17)

sub

E. Joints

The formulation of joint connections between segments is an
extension of the formulation for fixed connections. Whereas in the
case of fixed connections as described earlier, one segment is
connected to a previous segment; in the case of a joint, a segment has
multiple follower segments. The different follower segments are
independent of each other and only attached through compatibility
conditions at the joint. An example of such a connection is a
helicopter hub that connects multiple blades to one shaft. The
compatibility condition for each follower segment with respect to the
master segment remains unaltered, as described in Eq. (8). However,
the transformation matrix that expresses the relation between the
deformation of different segments needs to be modified. Up to
the joint, the transformation given in Eq. (10) stays unaltered. After
the joint, multiple rows with the same entries in the first positions are
added, such that

T, 0 0 0
T, 0 0
Tjoint = ' ~
(7] 0
[Tsl]
L [TSZ] n
= — _ i _¢s_llr¢sle 0
T = ‘/’jll.erRj—llff’/,end[ 0] ! 0
~ T 0 _¢s_1r¢5‘2€
TsZ = ¢;-|]-1.erR;_]1¢j,end|: Oj 0 21 (18)

in which the index j denotes the master segment before the joint, and
the indices s1 and s2 are the follower segments after the joint. This
can be easily extended to joints with more than two follower
elements. If the slave segment has follower segments by itself, the
previously described procedure holds and compatibility is just
established with respect to the respective master segment.

F. Morphing Connections

Multiple morphing connections can be found in engineering
applications. Examples are the pitch mechanism in wind-turbine
blades, or a morphing connection between the aircraft body and the
wing. Contrary to fixed connections, morphing connections allow for
rotational degrees of freedom. This modifies Eq. (8), which yields

fir _ _¢;1¢ie ¢i_rlRmRiui— ¢t_rlg
{éie}_[ b ]5,—6+{ 3 1}+{ A }(19)

in which R,, is the associated rotation matrix defined in the local
reference frame, and Q is the displacement vector of the morphing
connection
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0

0

0
Q= 20
. (20)

(%)

K]
The variable ¢; denotes the rotations about the principle axes of the
body-attached coordinate system of the current segment. These
rotation angles are typically given as functions of time. As the

morphing rotations do not depend on the elastic modes, Eq. (7) is
expanded to include the morphing degrees of freedom:

fle
¢1_1191 526
0
2 V21 ¢
E=T1q . 0t =Tou) o @n
: . 1
fne ¢—119 92
0 .
Q,

in which T, is the transformation matrix 7', expanded to include the
Q-related terms. This formulation allows the simple application of
consecutive morphing connections, by repetitively applying Eq. (19).

G. Applied Forces

Because Eq. (5) is expressed in modal coordinates defined in the
local reference frame for each segment, the applied forces in F should
be defined in the respective frames. This inherently renders the
application of external forces as follower forces, which is very
convenient, for example, in aeroelastic analyses, in which the lift and
drag forces of a given section are defined with respect to the local
coordinate system. Forces that are defined in the global coordinate
system should be transformed to local coordinates using the rotation
matrices presented in the previous sections.

During simulations with large structural rotations, inertial and
gravitational forces play an important role. As modal formulations
are used, both need special attention. Being based on small
displacements, the generalized inertial forces implied by M in Eq. (5)
do not account for some discrete acceleration terms resulting from the
rotation of the local coordinate systems. Selitrennik et al. [16]
identified the missing inertial force terms that should be included in
the applied force vector F. The rotation-related inertial force vector
applied to each mass point is

d dr
f,,,=—m%xr—mexa—ma)x(mxr) (22)

in which o is the angular-velocity vector of the local coordinate
system, and r is the mass location vector in the rotating frame. The
three terms in Eq. (22) are the Euler, Coriolis, and centrifugal forces.
The assumptions underlying the modal approach already considered
the first term. The Coriolis forces 2m X (dr /dt) are small for wind-
turbine structural dynamics, and thus neglected in this work.
However, the centrifugal forces in the last term should be added as
external forces [16]. The angular-velocity vector can be directly
obtained from the rigid modal velocities given in Eq. (3).

Some forces are expressed in different coordinate systems.
Examples of such forces are gravitational forces, which are naturally
defined in the global reference frame. Therefore, they need to be
converted to the respective local reference frames through the
rotation matrices. In these reference frames, the forces can be
generalized and included in the equations of motion:

fo=¢"Rg(¥\. ¥, ¥)me (23)

in which g is the gravitational vector, m is the lumped nodal mass,
and R is the local rotation matrix. The gravity vector depends on the
orientation of the segment in time.

H. Damping

The common approach to include damping into the equations of
motion in generalized coordinates uses a diagonal damping matrix, in
which the damping values are typically about 2% of the critical
modal damping coefficient B. = 2m®,,, in which m and w,, are the
generalized mass and the natural frequency of the respective mode.
However, when generalized coordinates are based on the modes
generated with fictitious masses, the assignment of a diagonal
damping matrix B in the matrix D of Eq. (7) would effectively cause
coupling forces between the natural modes. Hence, it is necessary to
define B, such that it is effectively diagonal, namely, causing no
coupling forces when the fictitious masses are removed by Eq. (1)
[20]. The process starts with solving the generalized-coordinate
eigenvalue problem with the fictitious masses removed:

K® = MDa? (24)

in which @ is the eigenvector matrix, and @,, is a diagonal matrix with
the eigenfrequencies of the new system. The generalized equation of
motion could be expressed in the new modal coordinates as

@' M, + O BOE, + BTKDE, = BT YTF (25)

Whereas the generalized mass and stiffness terms in Eq. (25) are
diagonal due to the orthogonal modes, B is still to be set, such that the
generalized damping matrix will also be diagonal and of the standard
form:

@7 BD = 20" MO, (26)

in which ¢ is the assigned diagonal nondimensional damping matrix
associated with the modal coordinates of Eq. (25). It is easy to show
that, to obtain Eq. (26), B should be

B= 2M¢5[¢TM®]“5)nq>TM N

III. Numerical Solver

The following summarizes the terms of the nonlinear state-space
equation [Eq. (5)] for cases of fixed connections between the
structural segments. Itis based on segmental normal modes generated
with fictitious masses at the interface coordinates, and expressed
in local coordinate systems. The state-space matrices, defined in
Eq. (5), include the transformation matrix T that assures interface-
displacement compatibility. The discrete external forces, expressed
in the local coordinate, are included in F. In addition to specific
excitation forces, F should also include the centrifugal forces in
Eq. (22) and the gravitational forces of Eq. (23), when applicable.

In the numerical examples presented in this paper, the equation of
motion, as presented in Eq. (5), is solved using Simulink. The ode23s
stiff/mod Rosenbrock’s algorithm is used for time integration with a
variable step size determined by the algorithm and a relative tolerance
of 0.01%. The transformation matrix 7 is built in every time step
starting at root condition. The boundary-grid-point rotation vectors
are used to compute the rotation matrix R, which is then used for the
following segment. This procedure is repeated until the tip of the
structure is reached and the full transformation matrix 7' is obtained.
The time derivatives of 7 are obtained through numerical
differentiation. As shown in Eq. (3), the transformation matrix is
used to compute the state-space matrix at a given time step. The time
derivatives of the state vector are numerically integrated, using a
Simulink integrator block for continuous time integration. The
resulting state vector at time ¢+ 1 serves as input to function
evaluation at the next time step.
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Table1 Beam properties

Parameter Value
Web and flange thickness 2cm
Web height 40 cm
Flange width 20 cm
Elastic modulus 70 GPa
Poisson’s ratio 0.3
Density 2600 kg/m?
Beam length 30m

IV. Numerical Example: A Uniform Beam

The previously outlined method is applied to a test case to estimate
its accuracy and demonstrate convergence for multiple segments. For
the presented analysis, a uniform cantilever I-beam is considered.
The properties of this beam are given in Table 1.

All structural segments of the test case have been modeled in
MSC/Nastran using shell elements. A reference line coinciding with
the centroid of the cross section has been added to be used as
comparison in the nonlinear simulation. The model has been loaded
with fictitious masses at both ends with a diagonal mass matrix
consisting of 10° kg entries for translational and 10* kg - m? for
rotational degrees of freedom. This model has been created with
varying segment lengths, such that it is divided into two, three, four,
five, six, eight, and ten segments. The full finite element model was
used for verification of the results. The static solution and transient
linear simulations were obtained using MSC/Nastran, whereas the
static and dynamic nonlinear simulations have been performed with
Abaqus. Nonlinear static simulations have been performed with and
without follower loads, and compared to the modal-based solution.
Figure 3 shows the mesh and the boundary conditions (root clamp) of
the Nastran model. Figure 4 provides a close-up of how the forces are
introduced into the structure. The total load is split and is applied at
the intersection of the flanges and the web. This is done to prevent any
twist and to ensure planar deformations.

A. Linear Verification

As a first test case, the presented method is benchmarked against
the linear static and dynamic results of the full finite element model of
a 20 m version of the beam described in Table 1. The rotation matrix
R;, as defined in Eq. (17), is replaced by an identity matrix. For both
static and dynamic analyses, a time integration of Eq. (5) was used.
The damped-out solution is used as a static comparison. High
structural damping coefficients are used to enforce quick
convergence of the dynamic simulation to the static results. Figure 5
displays the results due to an applied tip force. One can see that the
analytical solution and the solution of the presented approach
practically coincide. As a comparison, Fig. 5 also includes the
nonlinear solution with the load not following the tip deflection
obtained by MSC/Nastran, but remaining in the global coordinate
system. The difference between the analytical solution and the results
of the mode-shape-based analysis is less than 0.1%.

Figure 6 shows the comparison of the linear time-domain
simulation in MSC/Nastran (transient response) and the presented
method, both for a step input in force at t = 0. Again, the curves
correspond very well to each other. Errors are less than 0.1% between
two corresponding sets of data points. For the dynamic simulation,
Rayleigh stiftness proportional damping was used. Because the
modal coupling procedure does not affect the diagonality of the
stiffness matrices, the damping matrix remains diagonal and its
special treatment in Eq. (27) is not needed.
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Fig. 5 Linear static analytical solution vs modal simulation, two
segments.
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B. Nonlinear Static Verification

As the linear modal solutions accurately reproduce the results of
the linear finite element analysis, the nonlinear static behavior can be
evaluated in the next step. The dynamic analysis has been run,
including the nonlinear rotation matrices, until convergence to
reproduce the static nonlinear results obtained by Abaqus. The main
objective of this chapter was to present a method that offers a compact
formulation for nonlinear dynamic solutions with a significant
reduction in computation time compared to finite element
simulations. The static solution for the Abaqus model takes about
2 min CPU time. Running a dynamic simulation with heavy damping
to obtain a static solution with the presented method with two
segments only takes of the order of 10 s. This is a speed increase of a
factor of 12. Increasing the number of segments will also increase the
computational time significantly. A solution with 10 segments for a
strongly nonlinear simulation case approaches the same CPU time as
the Abaqus simulation.

Figures 7 and 8 show the results for a simulation with two
segments. The continuous curve is the computed deformation using
the nonlinear modal approach. The figures illustrate the displacement
due to a tip force of 2000 and 5000 N, respectively. Both loads are
modeled as follower forces in the local reference frame, which is
shown in Fig. 1, and follow the rotation and translation of the
respective segment. Four static, nonlinear, full finite element
simulations have been performed for comparison using Abaqus: a tip
force of 2000 and 5000 N both with the load as follower force, and
with the tip force in the global coordinate system. The dots represent
the linear, analytical solution. Already for two segments, nonlinear
effects can be captured by the model. A clear inboard displacement of
the beam tip can be observed in the nonlinear modal solution
compared to none in the linear solution. Whereas the error in tip
defection of the mode-based model with load of 2000 N, compared to
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Fig. 7 Static displacement under tip force of 2000 N, two segments.
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Fig. 8 Static displacement under tip force of 5000 N, two segments.

Abaqus, is about 1.5%, it is increased to 13% with 5000 N, for highly
nonlinear deformations, as shown in Fig. 8.

To improve the accuracy of the nonlinear structural modal model,
the number of segments was increased to three. Figures 9 and 10 both
show a significant accuracy improvement. The error for 2000 N, in
which the tip deflection is 25% of the beam length, is about 0.5%. For
the high load of 5000 N, the error in tip deflection is 5%. One can
conclude that, in our case, two segments are sufficient for the weakly
nonlinear problem, and three segments are needed to obtain good
accuracy for the highly nonlinear problem that exhibits tip deflections
up to 60-70% of the beam length.

Figure 11 displays an extension of the applicability range of the
model. As an example, the rolling up of the beam with an increasing
tip moment is considered. At least five segments are needed to model
a full circle, because the assumption of linearity for local
deformations implies that rotation angles of 90 deg and more cannot
be reached for each segment. The result of the simulation with 10
segments is displayed in Fig. 11. Each curve corresponds to the static
results due to an applied tip moment increasing from 50,000 to
400,000 N - m in steps of 50,000 N - m. For 10 linear segments,
the beam can be completely rolled up, such that its tip touches
the root.

C. Nonlinear Dynamic Verification

Two simulations were performed for nonlinear dynamic
comparisons: a moderate tip-force step of 1000 N and a high step
of 2000 N. Figures 12 and 13 display the time history of tip
deflections in the horizontal and vertical directions for the tip-force
step of 1000 N. The simulations with both two and three segments
closely approximate the deflection amplitude. The frequency of the
two-segment analysis is less accurately captured with an error of
about 3% compared to the finite element solution. Increasing the
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Fig. 9 Static displacement under tip force of 2000 N, three segments.
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Fig. 10 Static displacement under tip force of 5000 N, three segments.



Downloaded by TU DELFT on February 22, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.J054787

BERNHAMMER, BREUKER, AND KARPEL 3591

Vertical position [m]

-5 I I I I I I I )
-10 -5 0 5 10 15 20 25 30

Horizontal position [m]

Fig. 11 Static beam deflection with tip moments from 50,000 to
400,000 N - m and 10 segments.
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number of segments from two to three improves the simulation, as it
reduces the frequency difference between the corotational framework
approach and the nonlinear finite element simulation. The reason for
the difference in frequency can be found in Fig. 12, which displays
the horizontal tip displacement of the beam due to large deflections.
Both two and three segments manage to capture the horizontal tip
displacement. However, the accuracy of the approach using two
segments still needs to be improved by increasing the number of
segments in the simulation. Whereas the finite element simulation
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Fig. 15 Vertical tip displacement for a step tip force of 2000 N.

gives a maximal displacement of 1.7 m in the x direction, the
simulations with two and three segments show displacements of only
1.2 and 1.5 m, respectively. Increasing the number of segments also
improves the prediction of the y-direction tip displacement and the
frequency of the response.

Figures 14 and 15 show the results of the same simulations, but
with a tip-force step of 2000 N. As expected, the nonlinearity effects
are significantly larger. The maximum tip deflection is now more
than 60% of the beam length. The simulation using three segments
approximates the amplitude of the vertical displacement quite well
compared to the finite element simulation, whereas the model using
two segments overpredicts the maximum amplitude by about 10%.
The vibration frequency is shifted to a higher value, butincreasing the
number of segments in the corotational framework reduces this
difference. The two-segment solution overpredicts the stiffening
effect on the frequency by a factor of 2.0 compared to the finite
element solution. Increasing the number of segments to three already
decreases this difference to a factor of 1.7.

For the tip displacement in the x direction, increasing the number
of segments allows approximating the nonlinear finite element
solution more accurately. Whereas for two segments, the difference
in tip x-direction displacement, as shown in Fig. 14, is around 30%,
this difference reduces to 13% for three segments. An undesirable
side effect also becomes visible. The solution using three segments
produces higher harmonic oscillations, which are damped out after
one cycle. These are particularly visible in Fig. 14. The reason for
these vibrations is the excitation by a step in tip force, which causes
local vibration of the tip segment due to modal truncation. Still, the
presented new method captures the x-direction displacements, even
for higher vibration amplitudes.



Downloaded by TU DELFT on February 22, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.J054787

3592 BERNHAMMER, BREUKER, AND KARPEL

D. Convergence

A static solution was obtained using the modal-based approach
with two to ten structural segments. Figures 16 and 17 show the
convergence of the tip displacement and the vibration frequency,
respectively. For a static tip loading of 2000 N, two segments already
give a solution with less than 3% error compared to the finite element
solution. When increasing the number of segments, the solution
converges quickly to an accuracy that is adequate for most
engineering purposes. Four segments yield a solution of less than
0.5% error compared to the Abaqus solution with tip displacements
of more than 30% of the beam length. The error for the high-load case
of 5000 N is higher and converges slower. Using two segments only
gives a very poor representation and produces an error of 13% in
terms of tip deflection. When the number of segments is increased,
the solution significantly improves to less than 5% error with four
segments. When doubling the number of segments again to eight, the
error in tip deflection is as small as 2%.

15

< A

& o} 2000 N tip force

-

g A 5000 N tip force

$10

Q

<

o

2

o A

=

hnd N

g’ A

= o > a

= A

<) o A
0 L L Q Q Q L o L 1)

1 2 3 4 5 6 7 8 9 10
Number of segments

Fig. 16 Error in tip displacement vs number of segments.

200
190
180}
170} o
160 |
150
140}
130} o

120} o
110}
100

Frequency increase captured [%)]

2 4 6 8 10
Number of segments

Fig. 17 Frequency increase compared to that of Abaqus vs number of
segments.

Fig. 18 Structural validation load case of Ibrahimbegovic [22].

Table 2 Beam properties

of Ibrahimbegovic [22]
Parameter Value
Length 10 m
Axial stiffness 10,000 N
Shear stiffness 10,000 N

Torsional stiffness 100 N - m?
Bending stiffness 100 N - m?

The geometric nonlinearities introduce a stiffening effect that
causes the oscillation frequency to shift from 0.1323 Hz for the linear
solution to 0.1396 Hz in case of the nonlinear Abaqus solution. Both
cases are determined with a 2000 N step force applied. Because of
this large step, the displacement significantly exceeds the static
solution and reaches maximum tip displacements of more than 55%
of the beam length. As shown in Fig. 17 and may be deduced from
Fig. 15, simulations with both two and three segments overpredict the
frequency shift by a factor of almost 2.0 and 1.7, respectively. When
increasing the number of segments, this overprediction reduces to
17% for eight segments and 13% for 10 elements, resulting in a
vibration frequency of 0.1408 Hz compared to 0.1396 Hz in the
nonlinear Abaqus solution.

V. Validation of Structural Model with Literature

As an additional validation case, the highly nonlinear beam example
of Ibrahimbegovic [22] has been used as benchmark. This is a static
example, in which the beam is loaded by a large moment and a force, as
shown in Fig. 18. The static loading combination causes the beam to
deflectin a helical shape. For the current analysis, a force of 3.5 Nand a
moment of 147 N - m have been applied. The transformation matrix
T is analogous to Eq. (10).

The nonlinear static solution was obtained by pseudotime steps, in
which the load was increased. The magnitude of this step in loading
was chosen to be 0.2% of the total applied load to ensure converged
results. A relaxation scheme with a relaxation factor of 0.2 has been
applied, such that the mode displacement of the updated pseudotime
step is

§T+1 =02- écomputed +038- gr (28)

in which 7 is the pseudotime. During this process, the rotation matrices
from the previous pseudotime step were used. A test case with five
segments has been performed. For this purpose, the beam properties of
Table 2 have been modeled in Nastran using 20 PBEAM elements per
segment along the beam axis. The boundary grid points of each
segment have been loaded with six concentrated fictitious inertias. The
first 20 eigenmodes of each segment, including six rigid-body modes,
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Fig. 19 Out-of-plane tip displacement calculated with five segments
compared to Ibrahimbegovic [22].
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were taken into account in the analysis. The low number of segments
has been chosen intentionally, as to demonstrate the capability of the
presented method to model large structural deformations with a small
number of degrees of freedom. The result of the static tip displacement
in the z direction vs the pseudotime is shown in Fig. 19. The modal
approach presented in this chapter and the beam model by
Ibrahimbegovic [22] agree well with an error of less than 1% up to a
pseudotime of 0.5, which corresponds to an arc of 180 deg combined
with the shown out-of-plane tip deflection. The model captures the
nonintuitive inversion of the tip displacement starting atabout r = 0.5,
which eventually leads to tip displacements in the opposite direction of
the applied force, as has been shown by Ibrahimbegovic [22].

VI. Conclusions

A compact method to describe the geometrically nonlinear
structural dynamics of a slender beam has been formulated based on
modal reduction. The presented modal approach allows a significant
reduction of the structural degrees of freedom with adequate solution
accuracy, while still being able to capture geometric nonlinearities.
The small-strain assumption of this approach is key to decouple the
linear elastic deformation described by the elastic modes and the
large deformations introduced by nonlinear compatibility relations in
a corotational framework. This decoupling is achieved by dividing
the structure into several segments, which are connected to each other
by compatibility conditions. Fictitious masses have been introduced
at the boundary grid points of the segments to yield local
deformations in the low-frequency modes. The representation of the
edges in the structural model is instrumental in efficiently
constructing the intersegmental compatibility. Even when the
structure is modeled with only a few segments, the presented method
captures moderate geometric nonlinearities accurately. The model
accuracy can be enhanced by increasing the number of segments.

The different compatibility formulations that are related to fixed
connections, joints, and morphing connections make the method
suitable for a wide range of engineering applications, such as highly
flexible aircraft, morphing aircraft configurations, or wind turbines.
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