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A B S T R A C T

We introduce an approach to formulate and solve the multi-class user equilibrium traffic assignment as a
mixed-integer linear programming (MILP) problem. Compared to simulation approaches, the analytical MILP
formulation makes the solution of network assignment problems more tractable. When applied in a multi-
class context, it obviates the need to assume a symmetrical influence between classes and thereby allows
richer traffic behavior to be taken into account. Also, it integrates naturally in optimization problems such as
maintenance planning and traffic management. We develop the model and apply it for the Sioux Falls network,
showing that it outperforms the traditional Beckmann-based and MSA approaches in smaller-scale problems.
Further research opportunities lie in developing extensions of MILP-based assignment, with different variants
of user equilibrium or dynamic assignment, and in improving the model and solution algorithms to allow
large-scale application.
1. Introduction

Traffic assignment (TA) has been widely studied over decades.
The core concept of TA is to predict how traffic is distributed over
a network, given network supply and the demand from road users.
Through time, many variations of TA have emerged. Bliemer et al.
(2017) summarize these variations according to three capabilities,
namely spatial (capacitated or not), temporal (static or dynamic), and
behavioral (route choices). Another classifier is whether time vari-
ance is involved, dividing the assignment into static traffic assignment
(STA) and dynamic traffic assignment (DTA) (Peeta and Ziliaskopoulos,
2001). In terms of user class considerations, TA can be characterized as
single-class (SC) assignment and multi-class (MC) assignment, where
the latter involves different user classes such as vehicle types.

TA models mostly build on Wardrop’s first or second principle,
concerning user equilibrium (UE) and system optimal (SO) network
states, respectively. While SO scenarios, in which vehicles collectively
minimize total travel time, are relevant for specific situations such as
emergency evacuation (Sbayti and Mahmassani, 2006), the UE con-
dition expresses route choices by un-coordinated road users. In this
situation, equilibrium is reached when no driver can reduce personal
travel time by making a different routing decision. Szeto and Wong
(2012) review some of the extensions of UE assignment. These include
stochastic UE assignment, risk-based UE, reliability-based UE, mean
excess traffic equilibrium, robust UE, etc. The UE condition is also

∗ Corresponding author.
E-mail address: x.lin@tudelft.nl (X. Lin).

used in assignments other than traffic networks (Soumis and Nagurney,
1993). This study focuses on the mathematical formulation of the
classic UE captured by the Wardrop’s first principle.

Mathematical formulations of UE TA come in many forms, either
analytical or via simulation. Simulation-based methods are descriptive
and do not aim to optimize. They provide probable results of certain
choices and traffic management strategies. As a result simulation meth-
ods often lack well-defined solution properties such as optimality and
uniqueness (Szeto and Wong, 2012) which could help to assess the
validity of calculated network states. For a recent review of simulation
based formulations readers are referred to Ameli et al. (2021).

The advantages of describing the TA problem using analytical mod-
els, according to Boyce et al. (2001), are three-fold. First, analytical
representations are specific and precise. Second, the existence, the
uniqueness, and the stability of solutions can be determined with
analytical models. Third, solution algorithms to analytical models and
their convergence properties can be determined.

In this paper we develop a new analytical formulation for MC UE
STA using mixed-integer linear programming (MILP). MILP is widely
used in operations research (OR) where a wide range of solving al-
gorithms and well developed software packages are available. Com-
pared with previous approaches based on mathematical programming
(mainly the Beckmann transformation approach, BT), this formulation
vailable online 7 November 2022
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is capable of handling multi-class assignment without the strict assump-
tion of symmetrical interaction between classes (further discussed in
Section 2). We argue that the MILP formulation opens new doors for the
domain of optimization based TA, as it makes mature tooling from OR
available for solving and analyzing TA problems. It lays a foundation
for further development of more comprehensive and complex models
and studies such as DTA and UE solution properties.

The remainder of the paper is organized as follows. Section 2
reviews literature to explain the problems encountered by current
formulations. Section 3 develops our new MILP formulation for MC UE
STA. Section 4 compares the MILP with other methods in a benchmark
network and explores approaches to speed up computation. Section 5
concludes the study and proposes future research directions.

2. Literature review

This section reviews some of the core issues of formulating UE
assignments. We start with the multi-class travel cost functions. Then
we discuss analytical TA formulations and the assumption of inter-
class symmetry, which has been an obstacle to formulate UE with
mathematical programming.

2.1. Travel cost functions

Many factors contribute to road users’ route choice distributions.
These factors range from the length and reliability of travel time to tolls
and fuel costs (Bliemer, 2001). This paper focuses only on one factor,
travel time, which is often estimated by volume-delay functions such as
Bureau of Public Roads (BPR) functions (U.S. Bureau of Public Roads,
1964). A BPR function associates link travel time to the minimum travel
time (free flow travel time 𝑇0), link capacity 𝐾 and link flow 𝑥link:

= 𝑇0

(

1 + 𝛼
(

𝑥link

𝐾

)𝛽
)

, (1)

n which 𝛼 and 𝛽 are constants and usually 𝛼 = 0.15 and 𝛽 = 4.
When considering scenarios with multiple user classes, studies sug-

est a detailed description of the volume-delay relationship when sev-
ral user classes are present (Yun et al., 2005; Müller and Schiller, 2015;
u et al., 2016). Noriega and Florian (2007) on the other hand, adopts
more straightforward extension of the above BPR function, which

ncludes the passenger car equivalent (PCE) value and aggregates the
lows of different vehicle classes. The function can be written as follows:

link
𝑚𝑒 = 𝑇𝑚𝑒,0

⎛

⎜

⎜

⎝

1 + 𝛼

(
∑

𝑚′ 𝜋𝑚′𝑥link
𝑚′𝑒

𝐾𝑒

)𝛽
⎞

⎟

⎟

⎠

, ∀𝑚, 𝑒, (2)

n which 𝑐link
𝑚𝑒 represents the travel cost on the link 𝑒 for class 𝑚; 𝑇𝑚𝑒,0

tands for the free-flow travel time on link 𝑒 by class 𝑚; 𝐾𝑒 is the
apacity of link 𝑒; and 𝜋𝑚′ is the PCE value for class 𝑚′.

.2. Analytical TA formulations and asymmetry issues

Given a network and demand, an MC UE STA can be represented
y the following complementary conditions:

𝑚𝑤𝑝 ≥ 0, ∀𝑚,𝑤, 𝑝; (3)

𝑚𝑤𝑝 ≥ 𝑐∗𝑚𝑤, ∀𝑚,𝑤, 𝑝; (4)

𝑚𝑤𝑝
(

𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤
)

= 0, ∀𝑚,𝑤, 𝑝, (5)

n which 𝑥𝑚𝑤𝑝 stands for the number of users in class 𝑚, origin–
estination (OD) pair 𝑤 choosing route 𝑝; 𝑐𝑚𝑤𝑝 is the travel cost for
user in class 𝑚, OD pair 𝑤 choosing route 𝑝; 𝑐∗𝑚𝑤 is the travel cost of

lass 𝑚, OD pair 𝑤 under UE condition.
The above UE condition can be expressed using a variational in-
2

quality (VI) formulation (Bliemer and Bovy, 2003), a fixed-point
ormulation (Szeto et al., 2011), or a nonlinear complementary pro-
ramming formulation (Szeto and Lo, 2004), etc. Nagurney (1998)
roves that VI, fixed-point, nonlinear complementary programming are
quivalent. It also points out that under the special circumstance where
he Jacobian matrix of the cost function is symmetric, the UE condi-
ion can be expressed in a mathematical programming formulation,
.e., BT. The symmetry conditions can be inter-user, inter-spatial, or
nter-temporal (Bliemer and Bovy, 2003). In a multi-class assignment,
nter-class symmetry is a strong assumption, which usually does not
old in reality. This symmetry condition expressed in mathematical
erms is:
𝜕𝑐𝑚′𝑒

𝜕𝑥link
𝑚𝑒

=
𝜕𝑐𝑚𝑒
𝜕𝑥link

𝑚′𝑒

, (6)

in which 𝑥link
𝑚𝑒 =

∑

𝑤,𝑝 𝛿𝑝𝑒𝑥𝑚𝑤𝑝 stands for the traffic flow of user class
𝑚 on link 𝑒 (𝛿𝑝𝑒 = 1 if link 𝑒 is used by path 𝑝). Eq. (6) describes the
inter-user class symmetry, that one user class affect the other user class
exactly the same with the other way around (Bliemer and Bovy, 2003).
Under such condition, the TA problem can then be expressed in the
following formulation as the BT (Beckmann et al., 1956):

min 𝐽BT =
∑

𝑚,𝑒 ∫

𝑥link
𝑒

0
𝑐𝑚𝑒(𝑥) 𝑑𝑥. (7)

Since the assumption of symmetry usually does not hold in reality,
the method of BT is mostly theoretical for MC assignments. Due to this
limitation, the researchers have turned to other formulations such as VI
or fixed-point instead of the mathematical programming formulation,
despite its simplicity and practicality. Bliemer and Bovy (2003) state:
‘‘Writing the model as an optimization problem is the most practical
formulation in the sense that many literature and algorithms exist for
solving this type of problem, however, due to the presence of asym-
metries in the cost functions, as an optimization problem and a more
general type of problem formulation such as the VI problem formula-
tion should be used instead’’. Nagurney (1984) states that ‘‘multimodal
traffic UE problem can only be reduced to a minimization problem if
the Jacobian matrix of the travel cost functions is symmetric’’, which
is ‘‘not expected to hold’’.

To bring the statements above into the context of this paper, we
now examine the inter-class symmetry assumption (Eq. (6)) using the
multi-class cost function (Eq. (2)):

𝜕𝑐link
𝑚𝑒

𝜕𝑥link
𝑚′𝑒

=

𝜕
⎛

⎜

⎜

⎝

𝑇𝑚𝑒,0
⎛

⎜

⎜

⎝

1 + 𝛼

(

∑

𝑚 𝜋𝑚𝑥link
𝑚𝑒

𝐾𝑒

)𝛽
⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

𝜕𝑥link
𝑚′𝑒

=

𝜕𝑇𝑚𝑒,0𝛼

(

∑

𝑚 𝜋𝑚𝑥link
𝑚𝑒

𝐾𝑒

)𝛽

𝜕𝑥link
𝑚′𝑒

=
𝛼𝛽𝜋𝛽−1

𝑚′ 𝑇𝑚𝑒,0

𝐾𝛽
𝑒

(𝑥link
𝑚′𝑒 )

𝛽−1.

(8)

imilarly,

𝜕𝑐link
𝑚′𝑒

𝜕𝑥link
𝑚𝑒

=
𝛼𝛽𝜋𝛽−1

𝑚 𝑇𝑚′𝑒,0

𝐾𝛽
𝑒

(𝑥link
𝑚𝑒 )𝛽−1. (9)

herefore, as Eq. (6) indicates, the assumption of inter-class symmetry
equires that

𝛼𝛽𝜋𝛽−1
𝑚′ 𝑇𝑚𝑒,0

𝐾𝛽
𝑒

(𝑥link
𝑚′𝑒 )

𝛽−1 =
𝛼𝛽𝜋𝛽−1

𝑚 𝑇𝑚′𝑒,0

𝐾𝛽
𝑒

(𝑥link
𝑚𝑒 )𝛽−1, (10)

.e.,

𝑥link
𝑚′𝑒

𝑥link

)𝛽−1

=
𝜋𝛽−1
𝑚 𝑇𝑚′𝑒,0
𝛽−1

. (11)

𝑚𝑒 𝜋𝑚′ 𝑇𝑚𝑒,0
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Eq. (11) needs to hold if symmetry is assumed. On the right-hand side,
the PCE values and free-flow times are user class property and link
property, which are not dependent on link flows. This indicates that
if the symmetric assumption holds, there should be a fixed ratio of link
flows of different classes, which is usually unrealistic.

To summarize this section: although being a powerful tool, the
existing mathematical programming’s application in UE TA (mainly BT
formulation) is limited as it relies on a strong and unrealistic assump-
tion of symmetry. In this paper, we propose a new formulation for
MC STA under UE conditions using mathematical programming. In this
formulation we start from the basic UE TA conditions (Eqs. (3)–(5)),
and bypass the symmetry assumption to construct the mathematical
programming formulation.

3. Methodology

As discussed in the literature review, previous studies provide many
options for link cost functions. In this study, we use the MC BPR type of
cost function shown in Eq. (2). Note that one can also use more detailed
MC link cost functions in this formulation without the need to change
the framework of the formulation.

Next we build the MILP formulation for the MC UE STA conditions
((3)–(5)). This section breaks it down into a few steps. First, we rewrite
the UE STA problem into an optimization problem. Subsequently, we
include a linear approximation of the BPR function into the optimiza-
tion problem. Lastly, we linearize this optimization problem so that it
is reduced to MILP.

3.1. Formulating MC UE STA into an optimization problem

In the UE conditions, Eq. (5) specifies that if path 𝑝 is used by user
class 𝑚, the path cost 𝑐𝑚𝑤𝑝 should be equal to 𝑐∗𝑚𝑤, the minimal travel
ost between OD pair 𝑤; if this path is not used, then the cost can be
qual to or higher than the minimal travel cost. Here, we include a
inary variable 𝑎𝑚𝑤𝑝 to rewrite this condition:

𝑚𝑤𝑝(𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤) = 0, (12)

in which 𝑎𝑚𝑤𝑝 is a flag, denoting if path 𝑝 between OD pair 𝑤 is used
by class 𝑚:

𝑎𝑚𝑤𝑝 =

{

0, if 𝑥𝑚𝑤𝑝 = 0,
1, if 𝑥𝑚𝑤𝑝 > 0,

∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤. (13)

After rewriting (5) into (12), we relax this condition to form an
objective function for the optimization problem:

min 𝐽 |𝑥 =
∑

𝑚∈

∑

𝑤∈

∑

𝑝∈𝑤

𝑎𝑚𝑤𝑝(𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤). (14)

Due to Condition (4), the objective function 𝐽 is non-negative. There-
fore, when 𝐽 reaches the minimal value 0, all traversed paths have
𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤 = 0, and all non-traversed paths have 𝑎𝑚𝑤𝑝 = 0. This
is equivalent to the user equilibrium condition specified in (5). The
conditions of the STA problem are listed as follows.

𝑥𝑚𝑤𝑝 ≥ 0, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤; (15)

𝑎𝑚𝑤𝑝 =

{

0, if 𝑥𝑚𝑤𝑝 = 0,
1, if 𝑥𝑚𝑤𝑝 > 0,

∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤; (16)

𝑐𝑚𝑤𝑝

{

≥ 𝑐∗𝑚𝑤, if 𝑎𝑚𝑤𝑝 = 0,
= 𝑐∗𝑚𝑤, if 𝑎𝑚𝑤𝑝 = 1,

∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤. (17)

The above objective function (14) and constraints (15), (16), and (4)
formulate the optimization problem for UE STA. The solution to the
problem is the flows under UE conditions. Condition (17) specifies in
what circumstances 𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤 is considered minimal. This condition
is not included in the MILP formulation since the objective function
(14) is already minimizing 𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤. We now focus on the link cost
3

function (BPR) for calculating travel costs.
3.2. BPR linear approximation

To start with the linear approximation of BPR, we need to specify
the relationship between path flow/cost and the link flow/cost:

𝑥link
𝑚𝑒 =

∑

𝑤∈

∑

𝑝∈𝑤

𝛿𝑝𝑒𝑥𝑚𝑤𝑝, ∀𝑚 ∈ , 𝑒 ∈  ; (18)

𝑥link
𝑒 =

∑

𝑚∈
𝜋𝑚𝑥

link
𝑚𝑒 , ∀𝑒 ∈  ; (19)

𝑐link
𝑚𝑒 = 𝑇𝑚𝑒,0

⎛

⎜

⎜

⎝

1 + 𝛼

(

𝑥link
𝑒
𝐾𝑒

)𝛽
⎞

⎟

⎟

⎠

, ∀𝑚 ∈ , 𝑒 ∈  ; (20)

𝑐𝑚𝑤𝑝 =
∑

𝑒∈
𝛿𝑝𝑒𝑐

link
𝑚𝑒 , ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤, (21)

in which 𝛿𝑝𝑒 = 1 denotes that path 𝑝 includes link 𝑒, otherwise 𝛿𝑝𝑒 = 0.
With these equations, the MC BPR function (20) is adopted in our study.

Next, we linearize Eq. (20) using piecewise approximation. We use
piecewise segments with the universal length for each link. Let 𝐿 be
the number of linear segments to approximate the BPR function. Index
𝑙 ∈  stands for the 𝑙th linear segment in the approximated BPR
function, with the range

[

𝑥𝑙−1, 𝑥𝑙
)

. Hence if the total link flow 𝑥link

falls into the 𝑙th segment, for all class 𝑚 ∈  and link 𝑒 ∈  , the
approximated link cost 𝑐appr is

𝑐appr
𝑚𝑒 |𝑥link

𝑒 ∈
[

𝑥𝑒,𝑙−1 ,𝑥𝑒,𝑙)
𝑐link
𝑚𝑒 (𝑥𝑒,𝑙) − 𝑐link

𝑚𝑒 (𝑥𝑒,𝑙−1)
𝑥𝑒,𝑙 − 𝑥𝑒,𝑙−1

(

𝑥link
𝑒 − 𝑥𝑒,𝑙−1

)

+ 𝑐link
𝑚𝑒 (𝑥𝑒,𝑙−1),

(22)

n which 𝑥0 = 0. To include all possible values of 𝑥link
𝑒 with linear

egments, we use the following form:
appr
𝑚𝑒 =

∑

𝑙∈
𝑏𝑒(𝑙)𝑐

piece
𝑚𝑒 (𝑙),∀𝑒 ∈  , 𝑚 ∈ , (23)

n which

piece
𝑚𝑒 (𝑙) =

𝑐link
𝑚𝑒 (𝑥𝑒,𝑙) − 𝑐link

𝑚𝑒 (𝑥𝑙−1)
𝑥𝑒,𝑙 − 𝑥𝑒,𝑙−1

(

𝑥link
𝑒 − 𝑥𝑒,𝑙−1

)

+ 𝑐link
𝑚𝑒 (𝑥𝑒,𝑙−1), (24)

𝑚𝑒(𝑙) =

{

1, 𝑥 ∈
[

𝑥𝑙−1, 𝑥𝑙
)

,
0, otherwise,

∀𝑚 ∈ , 𝑒 ∈  , 𝑙 ∈ . (25)

n the above equations, 𝑏𝑒(𝑙),∀𝑙 ∈  act as sets of selectors, denoting
n which segment the link load falls. Fig. 1 illustrates the piecewise
pproximation of BPR using 4 segments (𝐿 = 𝐿left + 𝐿right). The first
𝐿left = 2) segments cover the situation where the total volume (number
f all vehicles weighted by PCE) is less than the capacity. The other
𝐿right = 2) segments cover the situation where the total volume is more
han the capacity but less than twice of capacity. In reality, the volume
hould not exceed the capacity. However, we include the situation
here the volume is larger than the capacity to investigate the impact
f piecewise approximation on the quality of the assignment.

The optimization problem after involving BPR approximation is
hen with the objective function (14) and constraints (15), (16), (24)
nd (25).

.3. MILP

We conduct further linearization to convert the above formulation
nto MILP. We start from the optimization problem at the end of the
revious section and explain the process step by step.

.3.1. Linearizing the objective function
The objective function (14) is in a quadratic term, with a continuous

alue (𝑐𝑚𝑤𝑝−𝑐∗𝑚𝑤) multiplied by a binary value (𝑎𝑚𝑤𝑝). To linearize this
erm, we introduce a new value 𝑧𝑚𝑤𝑝. Let

𝑚𝑤𝑝 =

{

𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤, if 𝑎𝑚𝑤𝑝 = 1,
∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤. (26)
0, if 𝑎𝑚𝑤𝑝 = 0,
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Fig. 1. Piecewise linearized BPR function vs original BPR function with 𝐿 = 4.

Linearizing the above constraint (26), we have:

𝑚𝑤𝑝 ≤ 𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤; (27)

𝑚𝑤𝑝 ≥ 𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤 −𝑀(1 − 𝑎𝑚𝑤𝑝), ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤; (28)

𝑧𝑚𝑤𝑝 ≤ 𝑀𝑎𝑚𝑤𝑝, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤. (29)

onstant 𝑀 stands for a sufficiently large number. In practice, this can
e the upper bound of possible value of 𝑧𝑚𝑤𝑝. The objective function
hen becomes:

in 𝐽 =
∑

𝑚∈

∑

𝑤∈

∑

𝑝∈𝑤

𝑧𝑚𝑤𝑝, (30)

ith the additional linear constraints (27)–(29).

.3.2. Linearizing conditions related to route choices
To linearize Constraint (16), we use the similar approach with the

‘big M’’ method, as follows:

𝑥𝑚𝑤𝑝 ≥ 𝑎𝑚𝑤𝑝, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤; (31)

𝑚𝑤𝑝 ≤ 𝑀𝑎𝑚𝑤𝑝, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤. (32)

.3.3. Linearizing conditions related to the BPR approximation
Linearizing the quadratic form of 𝑐appr

𝑚𝑒 in Constraint (23) we intro-
uce ℎ𝑚𝑒(𝑙):
appr
𝑚𝑒 =

∑

𝑙∈
ℎ𝑚𝑒(𝑙),∀𝑚 ∈ , 𝑒 ∈  , (33)

n which

𝑚𝑒(𝑙) =

{

𝑐piece
𝑚𝑒 (𝑙), if 𝑏𝑒(𝑙) = 1,
0, if 𝑏𝑒(𝑙) = 0,

∀𝑚 ∈ , 𝑒 ∈  , 𝑙 ∈ . (34)

Performing the linearization on Constraint (34), for all 𝑚 ∈ , 𝑒 ∈
, 𝑙 ∈  we have the following:

𝑚𝑒(𝑙) ≤ 𝑀𝑏𝑒(𝑙); (35)

𝑚𝑒(𝑙) ≥ −𝑀𝑏𝑒(𝑙); (36)

𝑚𝑒(𝑙) ≤ 𝑐piece
𝑚𝑒 (𝑙) +𝑀(1 − 𝑏𝑒(𝑙)); (37)

𝑚𝑒(𝑙) ≥ 𝑐piece
𝑚𝑒 (𝑙) −𝑀(1 − 𝑏𝑒(𝑙)). (38)

To linearize Constraint (25), we need to use additional auxiliary
inary variables 𝑏̂𝑒(𝑙):

̂𝑒(𝑙) =

{

1, if 𝑥link
𝑒 > 𝑥𝑙,
link ∀𝑒 ∈  , 𝑙 ∈ {1, 2,… , 𝐿 − 1}. (39)
4

0, if 𝑥𝑒 ≤ 𝑥𝑙, 2
Linearizing the constraints:
link
𝑒 − 𝑥𝑙 ≤ 𝑀𝑏̂𝑒(𝑙), ∀𝑒 ∈  , 𝑙 ∈ {1, 2,… , 𝐿 − 1}; (40)
link
𝑒 − 𝑥𝑙 ≥ 𝑀(𝑏̂𝑒(𝑙) − 1), ∀𝑒 ∈  , 𝑙 ∈ {1, 2,… , 𝐿 − 1}. (41)

he relation between 𝑏𝑒(𝑙) and 𝑏̂𝑒(𝑙) is:

𝑒(𝑙) = 𝑏̂𝑒(𝑙 − 1) − 𝑏̂𝑒(𝑙),∀𝑒 ∈  , 𝑙 ∈ , (42)

n which 𝑏̂𝑒(0) = 1 and 𝑏̂𝑒(𝐿) = 0.

.4. Final MILP formulation

We use a 𝑘th Dijkstra shortest path method to exogenously enumer-
te the paths before building the model. Note that this may generate
ifferent shortest paths for different vehicle classes. Consequently, the
odel is formulated and fed to an MILP solver. The final form of the
ILP formulation for UE STA is listed as follows:

in 𝐽 =
∑

𝑚∈

∑

𝑤∈

∑

𝑝∈𝑤

𝑧𝑚𝑤𝑝,

.t.

𝑚𝑤𝑝 ≤ 𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤;

𝑚𝑤𝑝 ≥ 𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤 −𝑀(1 − 𝑎𝑚𝑤𝑝), ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤;

𝑚𝑤𝑝 ≤ 𝑀𝑎𝑚𝑤𝑝, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤;

𝑚𝑤𝑝 ≥ 0, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤;

𝑥𝑚𝑤𝑝 ≥ 𝑎𝑚𝑤𝑝, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤;

𝑚𝑤𝑝 ≤ 𝑀𝑎𝑚𝑤𝑝, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤;

𝑚𝑤𝑝 − 𝑐∗𝑚𝑤 ≥ 0, ∀𝑚 ∈ , 𝑤 ∈  , 𝑝 ∈ 𝑤;

piece
𝑚𝑒 =

𝑐link
𝑚𝑒 (𝑥𝑒,𝑙) − 𝑐link

𝑚𝑒 (𝑥𝑒,𝑙−1)
𝑥𝑒,𝑙 − 𝑥𝑒,𝑙−1

×
(

𝑥link
𝑒 − 𝑥𝑒,𝑙−1

)

+ 𝑐link
𝑚𝑒 (𝑥𝑒,𝑙), ∀𝑚 ∈ , 𝑒 ∈  , 𝑙 ∈ ;

appr
𝑚𝑒 =

∑

𝑙∈
ℎ𝑚𝑒(𝑙), ∀𝑚 ∈ , 𝑒 ∈  ;

𝑚𝑒(𝑙) ≤ 𝑀𝑏𝑒(𝑙), ∀𝑚 ∈ , 𝑒 ∈  , 𝑙 ∈ ;

𝑚𝑒(𝑙) ≥ −𝑀𝑏𝑒(𝑙), ∀𝑚 ∈ , 𝑒 ∈  , 𝑙 ∈ ;

𝑚𝑒(𝑙) ≤ 𝑐piece
𝑚𝑒 (𝑙) +𝑀(1 − 𝑏𝑒(𝑙)), ∀𝑚 ∈ , 𝑒 ∈  , 𝑙 ∈ ;

𝑚𝑒(𝑙) ≥ 𝑐piece
𝑚𝑒 (𝑙) −𝑀(1 − 𝑏𝑒(𝑙)), ∀𝑚 ∈ , 𝑒 ∈  , 𝑙 ∈ ;

link
𝑒 − 𝑥𝑙 ≤ 𝑀𝑏̂𝑒(𝑙), ∀𝑒 ∈  , 𝑙 ∈ {1, 2,… , 𝐿 − 1};
link
𝑒 − 𝑥𝑙 ≥ 𝑀(𝑏̂𝑒(𝑙) − 1), ∀𝑒 ∈  , 𝑙 ∈ {1, 2,… , 𝐿 − 1};

𝑒(𝑙) = 𝑏̂𝑒(𝑙 − 1) − 𝑏̂𝑒(𝑙), ∀𝑒 ∈  , 𝑙 ∈ .

.5. Special order sets

Some commercial solvers offer the option of using the special or-
er set (SOS) type of constraints in solving MILP problems with sets
f binary variables that satisfy certain conditions with accelerated
omputations. SOSs are suitable for constraints specifying piecewise
pproximation and can generally accelerate computations. In our im-
lementations we make use of this feature with the experiments. We
ompare the performance of the implementation of MILP and the
mplementation with SOSs (MILP-SOS) in our numerical examples in
he next section.

For each link 𝑒 ∈  , the aggregated flow 𝑥link
𝑒 =

𝑚
∑

𝑤
∑

𝑝 𝛿𝑝𝑒𝑥𝑚𝑤𝑝𝜋𝑚 monotonically determines the travel time of each
ehicle class via this link according to the BPR function. In MILP-SOS,
he piecewise BPR function is represented by SOS type 2 constraints. A
ype 2 SOS constraint specifies that in a set of variables [𝑏1, 𝑏2,… , 𝑏𝑛],
nly 2 (consecutively) of them can take values other than 0 (Keha et al.,

𝑐link(𝑥), the number
004). Denote cost function with linearized BPR as 𝑚𝑒
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of segments 𝐿 = 𝐿left +𝐿right, and the capacity of link 𝑒 as 𝐾𝑒 we have
he following:

OS:
[

(𝑏1, 0), (𝑏2, 𝐾𝑒∕𝐿left),… , (𝑏𝐿+1, 𝐾𝑒∕𝐿left × 𝐿)
]

, ∀𝑚 ∈ , 𝑒 ∈  ;

(43)
𝐿+1
∑

𝑙=1
𝑏𝑚𝑒,𝑙 = 1, ∀𝑚 ∈ , 𝑒 ∈  ;

(44)
𝐿+1
∑

𝑙=1
𝑏𝑚𝑒,𝑙𝐾𝑒∕𝐿left × (𝑙 − 1) = 𝑥link

𝑒 , ∀𝑚 ∈ , 𝑒 ∈  ;

(45)
𝐿+1
∑

𝑙=1
𝑏𝑚𝑒,𝑙𝑐

link
𝑚𝑒 (𝐾𝑒∕𝐿left × (𝑙 − 1)) = 𝑐link

𝑚𝑒 , ∀𝑚 ∈ , 𝑒 ∈  .

(46)

Condition (43) declares the SOSs for the solver. Each of the sets has
𝐿+1 pairs of auxiliary decision variables 𝑏𝑙 and their weights 𝐾𝑒∕𝐿left×
(𝑙 − 1). Constraints (44)–(46) complete the SOS constraints in our
implementation MILP-SOS. Constraints (43)–(46) replace the previous
BPR linearization (Constraints (22)–(25), and (33)–(42)) in MILP.

3.6. Capability in handling asymmetry

Here we briefly discuss the relations between this mathematical pro-
gramming formulation and the inter-class symmetry assumption. In the
BT formulation, the symmetry assumption (6) makes the BT equivalent
to the UE condition expressed in (5). In our MILP formulation, this UE
condition is directly transformed to the optimization problem (14) with
(13) specifying the auxiliary binary variable 𝑎. Hence, the condition of
(5) is equivalent to 𝐽 = 0 in (13) and (14). The MILP formulation does
not require this symmetric assumption (6) and can handle situations
with inter-class asymmetry.

4. Numerical examples

In this section, we conduct a series of numerical TA experiments on
the network Sioux Falls1 (see Fig. 2). Methods of MILP, BT, and MSA
are compared in a single class case. Subsequently, we investigate the
performance of MILP formulation in multi-class scenarios and compare
it to that of MSA. The experiments are coded in Matlab 2018b on a
Windows 10 server with INTEL Xeon 6148 2.4 GHz CPU, and 32 GB
RAM. The MILP and the BT are solved by IBM Cplex 12.10, while the
MSA gets its results from link-based iterations.

We use the average gap (shown in Eq. (47)) of the results to
measure the quality of the assignments. This indicator denotes the
distance from the solution to the perfect UE (Ameli et al., 2021). The
average gap of a perfect assignment is 0. Note that the lowest path
costs 𝑐∗𝑚𝑤 are calculated over the loaded network after the assignments,
which may include different paths from the ones enumerated before the
assignment. In order to isolate the influence of possible inefficient path
enumerations, we also use Agap-P to calculate the average gap value
on the pre-assigned paths using 𝑐∗𝑚𝑤:

𝐴𝐺𝑎𝑝 =
∑

𝑚
∑

𝑤
∑

𝑝(𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤)𝜋𝑚𝑥𝑚𝑤𝑝
∑

𝑚
∑

𝑤
∑

𝑝 𝜋𝑚𝑥𝑚𝑤𝑝
; (47)

𝐴𝐺𝑎𝑝-𝑃 =
∑

𝑚
∑

𝑤
∑

𝑝(𝑐𝑚𝑤𝑝 − 𝑐∗𝑚𝑤)𝜋𝑚𝑥𝑚𝑤𝑝
∑

𝑚
∑

𝑤
∑

𝑝 𝜋𝑚𝑥𝑚𝑤𝑝
. (48)

1 The network properties of Sioux Falls can be found at the follow-
ng link: https://github.com/bstabler/TransportationNetworks/tree/master/
iouxFalls; The visualization is made by the Matlab package developed by KU
euven: https://www.mech.kuleuven.be/en/cib/traffic/downloads
5

Fig. 2. Sioux Falls network, online version with colors. Digits in black represent node
numbers; digits in other colors represent link numbers.

Table 1
Single-class OD matrix.
fromNode toNode Demand

1 7 6250
1 20 7500
13 2 7500
13 18 5000
19 1 10000
24 2 10000

Table 2
Comparison of single class assignments: MILP, BT, and MSA, in terms
of computation time and average gap.

Method MILP BT MSAa

Time (s) 20.7 31.7 351.7
Average Gap 0.7085 4.5012 13.4686

aThe gap of link flow summation between the last two iterations is
smaller than 10−8.

With the 2 indicators (Agap and Agap-P), the inaccuracies (deviation
from the perfect UE) brought by pre-assigned paths and BPR lineariza-
tion are isolated. In particular, if Agap-P = 0, then the BPR linearization
brings no inaccuracy; while if Agap = Agap-P, the pre-assigned paths
remain the shortest after the assignment.

4.1. Single-class assignment

We first compare MILP with BT and MSA in a single-class assign-
ment using the OD pairs and demand in Table 1. Both MILP and BT are
using 6 pre-assigned paths and 5 segments for BPR linearization. MSA
converges after 351.7 s. The results of assignments are shown in Figs. 3–
5. Table 2 lists computation time and average gap of each assignment
method. The results show that the MILP takes the least time and has
the lowest average gap. BT and MSA both use more time than MILP
and yield larger gaps. The advantage of the MILP in this SC assignment
is obvious.

4.2. Multi-class assignment

Next, we look further into the performance of the MILP formulation
in a scenario with two user classes. The MC demand is given in Table 3.
Several configurations are used in the experiments to better understand
the performance of the MILP formulation, with assignment from the
MSA as a reference (see Table 4). These configurations are built by

https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
https://www.mech.kuleuven.be/en/cib/traffic/downloads
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Fig. 3. MSA results single class assignment.

Fig. 4. BT results single class assignment.

altering 3 inputs: the number of enumerated paths, the number of
segments in the piecewise linearization, and a multiplier to the demand
of cars (×1, ×2, ×3, ×5). The demands given by Table 3 are considered
as ×1, the ‘‘original demand’’. Scenarios of ×2, ×3, ×5 are with 2,3, and
5 times the original car demand. The truck demands remain the same
across all configurations. The configuration also includes the different
numbers of pre-assigned paths and the number of piecewise segments
considered in the MILP formulation. Note that in reality, the traffic
flows on a link should not be larger than the capacity, and BPR also
becomes less accurate in such a situation. However, we still include the
scenarios with excessively high demand (×5) and BPR segments outside
the capacity. This is to gain a full insight into the performances of the
proposed mathematical formulation.

Table 4 shows the performances (time, Agap, Agap-P) of the multi-
class assignments using MILP and MSA methods under different condi-
tions (demand, number of pre-assigned paths, and number of segments
for BPR approximation). With the MSA method, the higher the demand
6

Fig. 5. MILP results single class assignment.

Table 3
Multi-class OD matrix.
fromNode toNode Demand Car Demand Truck

1 7 2500 1500
3 20 3000 800
13 2 3000 500
19 1 2000 300
24 2 2400 500
12 18 2000 700

the more iterations are needed for the algorithm to converge and
hence more time is required. MSA assignments that do not converge
within 1500 iterations are stopped. In the MILP approach, the solving
time generally increases if more paths/segments are considered. It
is not uncommon that solving time becomes less feasible to find an
exact solution to a larger size optimization problem. This makes an
interesting next step to develop specific algorithms tailored to this type
of optimization problem to increase the efficiency of finding exact or
near exact solutions.

4.3. Discussions on the performance of MILP

4.3.1. Solution quality reflected by average gaps
In Table 4, under the Demand ×1 scenario, the MILP provides

excellent solution quality, keeping both the Agap-P and Agap at 0.
This outperforms MSA in terms of both solving time and precision.
On average, the time required to solve the UE is less than MSA at the
current scale. However, the solution becomes less accurate when the
demand increases. This inaccuracy has at least two sources.

The first source is the piecewise linear approximation, reflected
by the value of Agap-P. In the current MILP formulation, the inaccu-
racy increases when the demand of a link exceeds its capacity, since
the BPR function contains a 4th-order link volume argument. With
higher demand, it is more likely that the piecewise approximation
becomes less precise in representing the link costs given by the BPR
function. Interestingly, increasing the number of segments used in the
assignments does not guarantee preciser results. See experiments 3–
6, 10–13, and 14–17. In theory, more segments likely will result in
a piecewise approximation that fits better the BPR function. From
the experiments we see that the accuracy gain may vary in different
situations, depending on the distribution of link flows.
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Table 4
Experiment results with different configurations of MILP and MSA.
MILP Demand No. Paths 𝐿left/𝐿right Time (s) Agap Agap-P

1 ×1 3 2/1 0.172 0 0

2 ×2 3 2/1 0.953 0.2424 0.0789
3 ×2 4 2/1 1.546 0.0808 0.0808
4 ×2 4 3/1 6.032 0.1254 0.1254
5 ×2 4 2/2 3.688 0.4998 0.4998
6 ×2 4 3/2 4.187 0.1724 0.1724
7 ×2 5 2/1 8.063 0.0605 0.0605

8 ×3 3 2/1 0.922 4.3927 0.4705
9 ×3 3 2/2 8.532 4.3034 0.8919
10 ×3 4 2/1 3.016 2.5195 0.1972
11 ×3 4 2/2 2.782 2.6697 0.8721
12 ×3 4 3/2 22.734 2.4623 0.2608
13 ×3 4 3/3 4.375 2.9379 1.0039
14 ×3 5 2/1 51.750 2.3011 0.9958
15 ×3 5 2/2 4.969 2.9384 1.1770
16 ×3 5 3/2 455.469 2.2962 0.6861
17 ×3 5 3/3 226.500 3.0163 1.6120
18 ×3 M 2/1 0.578 2.1113 0.1599
19 ×3 M 3/2 1.782 2.1700 0.2860

20 ×5 3 2/1 1.391 44.5027 4.3988
21 ×5 4 2/1 16.437 35.0108 4.2701
22 ×5 5 2/1 85.297 31.2293 15.2133
23 ×5 5 2/2 658.203 26.0172 8.5628
24 ×5 M 2/2 282.469 4.0837 2.6640

MSA Demand Iterations Convergence Time Agap

25 ×1 831 Y 106.33 0.2901
26 ×2 1285 Y 257.03 0.3995
27 ×3 >1500 N 365.95 0.5127
28 ×5 >1500 N 330.02 0.6622
h
S
f
f
d

4

u
(
p
q
p
s
(
a
t

Table 5
Used paths in experiment 14.

Route 1 Route 2 Route 3 Route 4 Route 5 Route 6

Pre-
assigned
Path
usage

1 1 1 1 1 1
1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

Table 6
Used paths in experiment 18.

Route 1 Route 2 Route 3 Route 4 Route 5 Route 6

Re-assigned Paths 2 4 1 8 2 2

Re-
assigned
Path
usage

1 1 1 1 1 1
1 1 – 0 0 0
– 1 – 0 – –
– 1 – 0 – –
– 0 – 1 – –
– – – 1 – –
– – – 0 – –
– – – 1 – –

The second source of inaccuracy is related to the path pre-
ssignment, reflected by the value of Agap − Agap-P. In an empty

Sioux Falls network, the number of possible paths from one node to
another can be many, and their travel costs do not differ largely. When
loaded with higher demand, vehicles can quickly fill up the first several
pre-assigned paths in one OD pair. Cheaper paths can emerge after
assignment. In this situation, increasing the number of pre-assigned
paths can increase the performance, as seen in Table 4 with demand
×2, ×3 and ×5. However, increasing the number of paths also increases
he size of the problem and the computation time.

When the demand is low (such as ×1 or ×2) and vehicles do not
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fill up the pre-assigned paths, or when there are only limited paths
between each OD in the network (such as in a motorway network), in-
creasing the number of pre-assigned paths does not provide significant
improvements to the solution: see experiment 1 or compare experiment
3 and 7. In this situation, all potential paths are included in the solving
process and Agap = Agap-P, indicating that the path enumeration does
not bring any inaccuracy. On the other hand, as our experiments with
higher demands (such as × 5) have shown, the inaccuracy becomes
igher when it considers a congested urban environment (such as
ioux Falls). Nevertheless, these limits are not related to the MILP
ormulation itself, but to the procedures built around it, namely the BPR
unction, the piecewise linearization and path pre-assignment, thus not
iminishing the potential of the MILP formulation.

.3.2. Assignment with initial results
In an exploration for better path enumeration mechanism, we man-

ally pick paths according to the results from previous assignments
marked by ‘‘M’’ in Table 4). In these experiments, different number of
aths may be manually assigned to each OD pair to improve solution
uality and reduce solving time. For example, 𝑘th dijkstra assigned 5
aths to each OD pair in experiment 14 (Table 4). It took 51.75 s to
olve. Table 5 shows which of the assigned paths are actually used
indicated by 𝑎𝑚𝑤𝑝 = 1). This information can be used for a second
ssignment: if between 1 OD pair only the first path is used, we reduce
he number of pre-assigned paths to 1. If the 𝑘th path is used, we set

the number of pre-assigned paths larger than 𝑘. Applying this method
to a second assignment (experiment 18), we have the results of path
usage listed in Table 6. Compared with experiment 14 in Table 4, we
see reductions in both solving time as well as Agap. Similar results
are obtained from experiment 19, applying the path usage information
from experiment 16; and from experiment 24, re-assigned with the
results from experiment 23. The results indicate that pre-selecting the
number of considered paths can provide much more precise solutions
with shorter computation times (by a factor up to 250). This feature
is particularly useful when conducting STA with an initial solution.
It applies to assignments that evaluate different traffic management
strategies and/or under different travel demand.
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Table 7
Sizes and solving difficulties of MILP and MILP-SOS with different numbers of OD pairs.
Experiment Total DV Binary DV Linear constraints SOSs Nodes

MILP (50-OD) 2900 832 5852 – 2593
MILP (100-OD) 3900 1132 7752 – 43943
MILP-SOS (50-OD) 1912 300 2356 152 1749
MILP-SOS (100-OD) 2912 600 4256 152 19292
Table 8
Computation time of MILP, MILP-SOS and MSA.
No. ODs 20 40 60 80 100 120

Solving time MILP (s) 0.19 6.08 20.67 73.84 374.34 3566
Solving time MILP-SOS (s) 0.11 1.83 9.33 3.92 66.67 48.48
Speed up factor 1.70 3.32 2.22 18.84 5.61 117.11

Solving time MSA (s) 59.2 119.97 144.87 156.10 209.23 233.84
Iterations MSA 700 955 1022 1035 1171 1213
Fig. 6. Computation time of MILP with/without SOSs.

4.3.3. Scalability
We discuss the scalability of both MILP without and with the SOS

feature (MILP, MILP-SOS). The benchmark experiment uses demand ×1,
4 segments for piecewise approximation, and 3 pre-assigned paths. Ta-
ble 7 shows the size of the problem formulated in MILP and MILP-SOS
with 50/100 ODs in terms of numbers of all decision variables, binary
decision variables, linear constraints, SOSs, as well as numbers of nodes
needed to solve the mixed-integer problems. The table indicates that
MILP-SOS can largely reduce the problem size. Note that the number
of binary decision variables in MILP-SOS is only related to the number
of all considered paths; the number of SOSs is related to the number
of links and the number of segments used for piecewise BPR. When the
number of OD pairs doubles, the number of nodes required for MILP
increases by 16 times; while for MILP-SOS it is by 10 times.

We gradually increase the size of the problem by adding more
OD pairs into the problem. Fig. 6 and Table 8 show the evolution of
computation time of solving MILP, MILP-SOS, and MSA. From them we
can see that for smaller problems, MILP and MILP-SOS is faster than
MSA. In terms of the speed-up factor brought by the SOS feature, in
general we can say the speed-up factor is larger when solving larger
problems. Both MILP and MILP-SOS will need more time solving larger
scale problems. To scale up this method, specifically designed heuristics
algorithms (such as column generation (Gamache et al., 1999)) should
be studied.
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5. Conclusion

Solving multi-class UE with mathematical programming formula-
tions brings many benefits. However, the existing method, namely
Beckmann Transformation, depends on a strong assumption of sym-
metry. This paper presents a novel MILP formulation based on math-
ematical programming but does not depend on such assumptions. The
method makes use of a piecewise linearized BPR function and a 𝑘th
shortest path enumeration along with the assignment process. We
compare this formulation with other existing methods in the Sioux
Falls network in terms of solving time and solution quality. The results
suggest that the developed MILP is capable of finding good UE solution
for smaller to medium networks. With a realistic demand, the Average
Gap of MILP approach remains below 1.

We also explore approaches to improve the solving performance: a
path-assignment approach is developed and can substantially improve
the performance when an initial solution is available; a special order
set method is used to reduce the number of the binary variables in
the MILP problem and can accelerate computation. Nevertheless, our
experiments show that the current solving methods do not scale. To
apply the MILP formulation to larger problems more supplementary in-
vestigations are needed to speed up the computation, such as designing
better path enumeration and solving algorithms. It is also interesting
to apply this formulation in settings with more complexity such as
dynamic traffic assignment.
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