
Delft University of Technology
Delft Institute of Applied Mathematics

Mathematical Model of Ventura’s Bus Door
System

Submitted in partial fulfilment

of the requirements for the degree of

Bachelor of Science

Author:

Lisette de Bruin (4856821)

Supervisor:

Dr. D.J.P. Lahaye

Abstract

After decades of urban growth, mass transport, including buses, will play a significant role in

our daily life. Therefore the requirements for buses and their bus door system are increasing.

Ventura Systems is a company that is specialized in bus door systems and wishes to gain

knowledge on their bus door system using mathematical modeling. This bachelor thesis

provides the base for the mathematical models for modeling a bus door system. Multiple

models are presented and one model is analyzed in more depth.

Acknowledgements

First of all, I would like to thank my supervisor Dr. D.J.P. Lahaye, whose efforts pushed

this bachelor thesis to a higher level. He helped me structure the process and gave numerous

insights and feedback. The feedback was extremely helpful. I especially value the fact that

he would always allow me to incorporate my ideas and would just provide some minor hints

about the direction that I should take. I would also like to thank my friends and family, for

their support and interest in my project. Without any obligation to do so, I could always

reach out for any sort of unconditional support. This has been a great help while writing

this thesis and has enhanced its quality.

Contents

1 Introduction 1

2 Developments in dynamics of flexible multibody systems 3

2.1 Methods . 4

2.1.1 Floating frame of reference . 4

2.1.2 Convected coordinate system . 5

2.1.3 Finite segment method . 6

2.1.4 Absolute nodal coordinate formulation 6

2.2 Dynamic formulations . 8

2.2.1 Floating frame of reference . 8

2.2.2 Linear theory of elastodynamics . 9

3 Ventura’s data 11

3.1 Fourier analysis . 11

3.2 Test data . 12

4 A single-degree-of-freedom mass-spring system 14

4.1 No external forces . 14

4.1.1 Damped system without external forces 16

4.2 Constant external force . 18

4.2.1 Damped system with constant external force 19

4.3 Periodic external force . 20

4.3.1 Damped system with periodic external force 23

5 Estimating parameters 26

5.1 Estimation of the spring constant . 26

5.2 Estimation of the damping constant . 27

6 Laplace transforms 28

6.1 Introduction to Laplace transforms . 28

6.2 No external forces . 29

6.2.1 Damped system without external forces 30

6.3 Constant external force . 31

6.3.1 Damped system with constant external force 32

6.4 Periodic external force . 34

6.4.1 Damped system with periodic external force 36

6.5 The Transfer function . 41

7 Two-degree-of-freedom mass-spring system 43

7.1 No external forces . 43

7.1.1 Damped system without external forces 48

8 Single point mass in two spatial dimensions mass-spring system 53

8.1 No external forces . 53

8.1.1 Damped system without external forces 56

8.2 Constant external force in the y-direction . 59

8.3 Periodic external force in the y-direction . 60

9 A two dimensional two spring-coupled masses system 62

9.1 Damped without external forces . 62

10 Conclusion 65

Bibliography 69

Appendices 69

A Python Code Used in Chapter 3 and 5 69

B Laplace Transform Table 74

C Matlab Code Used in Chapter 6 75

D Julia Code Used in Chapter 4 77

E Julia Code Used in Chapter 7 87

F Julia Code Used in Chapter 8 94

G Julia Code Used in Chapter 8 102

List of Figures

2.1 Flexible multibody system (Shabana, 1997) 3

2.2 Floating frame of reference (Shabana, 1997) 4

2.3 Four coordinate systems (Shabana, 1997) . 5

2.4 Finite segments (Eberhard, n.d.) . 6

2.5 Model of ANCF rope element (Luo, Fan, and Cui, 2021) 7

3.1 Acceleration plotted against time . 12

3.2 FFTs of the acceleration data . 13

4.1 A visualization of an undamped mass-spring system without external forces . 15

4.2 A graph of the analytical and numerical solution of the displacement of the

mass for the undamped situation without external forces 16

4.3 A visualization of a damped mass-spring system without external forces . . . 17

4.4 A graph of the analytical and numerical solution of the displacement of the

mass for the damped situation without external forces 18

4.5 A graph of the analytical and numerical solution of the displacement of the

mass for the undamped situation including a constant external force 19

4.6 A graph of the analytical and numerical solution of the displacement of the

mass for the damped situation including a constant external force 20

4.7 A schematic picture of a bus driving on the road (Sindy, Zandbergen, and

Zon, 2021) . 20

4.8 A graph of the analytical and numerical solution of the displacement of the

mass for the undamped situation including a periodic external force 22

4.9 A graph of the analytical and numerical solution of the displacement of the

mass for the undamped situation including a constant external force with ω = ω0 23

4.10 A graph of the analytical and numerical solution of the displacement of the

mass for the damped situation including an periodic external force 24

5.1 A graph of the FFTs of the acceleration measured by the accelerometers and

of the simplified model . 27

6.1 Pole-zero maps of both transfer functions . 41

6.2 A visualization of the relation between the pole location, eigenfrequency and

damping ratio (Thompson, 2014) . 42

7.1 A visualization of an undamped two spring-coupled mass system without ex-

ternal forces . 44

7.2 A graph of the analytical and numerical solution of the displacement of both

masses for the undamped situation without external forces 48

7.3 A diagram of a damped two spring-coupled mass system without external forces 48

7.4 A graph of the analytical and numerical solution of the displacement of both

masses for the undamped situation without external forces 50

7.5 A graph of the analytical and numerical solution of the displacement of both

masses for the classically damped situation without external forces 51

7.6 A graph of the analytical and numerical solution of the displacement of both

masses for the non-classically damped situation without external forces . . . 52

8.1 A diagram of an undamped mass-spring system without external forces mov-

ing in both the x- and y-direction . 54

8.2 A visualization of an undamped mass-spring system without external forces

moving in both x- and y-direction . 56

8.3 A diagram of a damped mass-spring system without external forces moving

in both the x- and y-direction . 57

8.4 A visualization of a damped mass-spring system without external forces mov-

ing in both x- and y-direction . 59

8.5 A visualization of a damped mass-spring system including constant external

force moving in both x- and y-direction . 60

8.6 A visualization of a damped mass-spring system including periodic external

force moving in both x- and y-direction . 61

9.1 A diagram of a damped two spring-coupled mass system without external

forces moving in both x- and y-direction . 63

9.2 Both the analytical and numerical solution of the displacement of the masses

in a damped system . 64

B.1 Laplace transform table (Daud, Romli, and Ahmad, 2021) 74

Chapter 1

Introduction

The future sustainable growth of cities and urban areas will increasingly rely on means of

mass transport. All major bus manufacturers are therefore studying new designs of mini-

vans, city buses, coaches, and mono-rails. This development increases the requirements of

the door systems. Bus door systems are expected to become lighter, and more responsive to

passenger via sensors and electronics and more adaptable to the market (Lahaye, n.d.). In the

design stage of a bus, it is important to understand its response to different maneuvers, such

as bumps and emergency braking. Virtual simulations can give worthwhile information and

knowledge about the behavior of these vehicles under these different conditions, allowing

faster, cheaper, and more precise design. However, numerical models of passenger buses

are not straightforward due to the multiple elements that interact with each other and with

nonlinear responses, making it harder to predict their behavior to different requests (Teixeira,

Moreira, and Tavares, 2015b). Ventura Systems is an example of a bus door manufacturer

that wishes to gain such understanding.

Ventura Systems, a Dutch business, is the market leader in innovative door systems for

public transport (Systems, n.d.). Met by new challenges from the market, the company is

eager to engage in the mathematical modeling and numerical simulation of the products

it manufactures. The company wishes to gain an understanding of factors such as weight

reduction and the enlargement of glass surfaces impacts factors such as the live cycle of

door systems and the production process (Lahaye, n.d.).This project aims to provide the

start of the mathematical models which could be of help for Ventura to answer some of

the challenges it is faced with. Eventually, an answer will be given to what insights the

explained models give. Firstly, a review of past and recent developments in the dynamics of

flexible multibody systems is given based on an article by Ahmed A. Shabana. Secondly, the

vibration data obtained by Ventura is presented. The data is not included in the Appendix

due to the size of the data set. Afterward, the first model is introduced. The one-dimensional

1

CHAPTER 1. INTRODUCTION 2

single-degree-of-freedom mass-spring system is a simplification of a bus door in its frame.

Multiple situations are considered and the corresponding equations of motions are solved.

Thereafter, the parameters from these equations of motion are estimated using the previously

presented real-life data. In the following chapter, the same differential equations as before

are solved using a different method, namely the Laplace transform method. The single-

degree-of-freedom mass-spring system is extended to a two-degree-of-freedom mass-spring

system in Chapter 7.

Chapter 2

Developments in dynamics of flexible

multibody systems

A multibody system shown in Figure 2.1 is a collection of bodies and interconnection ele-

ments. Multibody dynamics allows dynamic analysis of interconnected rigid and deformable

components (Teixeira, Moreira, and Tavares, 2015a). Flexible multibody dynamics is a

rapidly growing field with various applications in vehicle analysis, aerospace engineering,

robotics, and biomechanics (Bauchau, 2011). Multibody systems take the dynamic interac-

tions of the different components of the system. The motion of the subsystem is kinematically

constrained due to different types of joints (Teixeira, Moreira, and Tavares, 2015a). In 1997,

Ahmed A. Shabana wrote a paper on the basic approaches used in computer-aided kinematic

and dynamic analysis of flexible mechanic systems. In this chapter, a part of Shabana’s pa-

per will be outlined and, if needed, further explained. In Section 2.1, four methods used in

the computer-aided kinematic and dynamic analysis of flexible mechanical systems are ex-

plained. In the following section, two approaches that can be used for the dynamic analysis

of flexible multibody systems are presented.

Figure 2.1: Flexible multibody system (Shabana, 1997)

3

CHAPTER 2. DEVELOPMENTS IN DYNAMICS OF FLEXIBLEMULTIBODY SYSTEMS4

2.1 Methods

For the kinematic description of the motion of deformable bodies that undergo large dis-

placement, multiple methods are used. In this section, the most used methods are pointed

out and a short explanation is given.

2.1.1 Floating frame of reference

The most widely used method in computer simulation of flexible multibody systems is the

floating frame of reference formulation (FFR). In this formulation, two sets of coordinates

are used. The idea is to split the overall motion of bodies that experience small deformation

into one frame that describes the location and orientation of a selected body coordinate

system, while the other describes the deformation of the body with respect to its coordinate

system. The idea is visualized in the figure below.

Figure 2.2: Floating frame of reference (Shabana, 1997)

Using FFR kinematics, the global position vector of an arbitrary point in body i can be

describes as

r⃗i = Ri + Ai(u⃗i
o + u⃗i

f) (2.1)

Ai represents the transformation matrix that defines the orientation of the body coordinate

system. The vectors u⃗i and u⃗i
f) define the position of the point with respect to the FFR

(Shabana, 1997). The subscript o refers to the position in the undeformed state, while

subscript f refers to the generalized elastic coordination, defined in the local coordinate

system (Nada et al., 2010).

CHAPTER 2. DEVELOPMENTS IN DYNAMICS OF FLEXIBLEMULTIBODY SYSTEMS5

2.1.2 Convected coordinate system

The incremental finite element formulations that use the convected coordinate system have

been widely used to solve large rotation and deformation problems. There are two types of

finite elements that are used in the static and dynamic analysis of deformable bodies, namely

the isoparametric and non-isoparametric elements (Shabana, 1997). The term isoparametric

is derived from the use of the same shape functions to define the element’s geometric shape as

are used to define the displacements within the element (Logan, 2007). On the other hand,

the non-isoparametric elements use infinite small rotations as nodal coordinates. One of the

most widely used computational procedures for non-isoparametric parameters elements is

the incremental finite element approach. In the incremental methods, it is assumed that

the element shape function can describe small rotations. A convected coordinate system

that shares the large rotation of the element is chosen for each element. The incremental

finite element formulations do not lead to exact modeling of the rigid body dynamics when

the structures rotate as rigid bodies. To solve this, a finite element formulation for the

dynamic analysis of multibody systems that consists of interconnected deformable bodies

was presented. Four coordinate systems are used to define the finite element configuration

(Shabana, 1997). The coordinate systems will be explained with the help of Figure 2.3.

Figure 2.3: Four coordinate systems (Shabana, 1997)

In a multibody system, a deformable body is divided into more than one element. To

avoid confusion, some vectors have multiple superscripts. The superscript i to the body

number in the multibody system and the superscript j refers to the element number of the

deformable body i. First of all, a global coordinate system is employed, which is fixed in time

and serves as a unique standard for all deformable bodies (Shabana, 1997). Second of all,

CHAPTER 2. DEVELOPMENTS IN DYNAMICS OF FLEXIBLEMULTIBODY SYSTEMS6

the system X i
1, X

i
2, X

i
3 is the floating body coordinate system, which represents the overall

motion of the body (Lahaye, personal communication, 2022). This system does not have

to be rigidly attached to the origin of the body. Connectivity conditions between the finite

elements of this body are defined in the body coordinate system using a Boolean matrix

approach (Shabana, 1997). Thirdly, there is an element coordinate system, in Figure 2.3,

X ij
1 , X

ij
2 , X

ij
3 , that translates and rotates with the element. The origin of the coordinate

system is rigidly attached to a point on the element (Shabana, 2003). Lastly, the system

X ij
i1 , X

ij
i2 , X

ij
i3 is an intermediate element coordinate system. Its origin is rigidly attached to

the origin of the body X i
1, X

i
2, X

i
3 coordinate system. The axes of this system are selected

in such a way that they are parallel to the axes of the element coordinate system in the

undeformed initial configuration (Shabana, 1997).

2.1.3 Finite segment method

In the finite segment method (FSM), the deformable body is assumed to consist of a set

of rigid bodies which are connected by springs and/or dampers as shown in Figure 2.4

(Shabana, 1997). An advantage of this method is that it only requires the use of rigid

multibody dynamics formulations (Hamper et al., 2012). However, some problems remain

to be solved using the FSM. For example, the selection of the number, size, and location of

the rigid segments, and the representation of the inertia coupling between these multibody

segments (Shabana, 1997).

Figure 2.4: Finite segments (Eberhard, n.d.)

2.1.4 Absolute nodal coordinate formulation

As mentioned before, classical beam and plate element shape functions cannot be used to

describe large rotations. Another procedure, called the absolute nodal coordinate formulation

(ANCF) introduces large displacements of finite elements relative to the global reference

frame without using any local frame (Dmitrochenko, 2008). It was demonstrated that this

absolute nodal coordinate formulation leads to exact modeling of the rigid body inertia when

the structures rotate as rigid bodies. The locations and the deformations of the material

CHAPTER 2. DEVELOPMENTS IN DYNAMICS OF FLEXIBLEMULTIBODY SYSTEMS7

points on the finite element are defined in the global coordinate system using the element

shape function and the nodal coordinates (Shabana, 1997). The model of the ANCF rope

element is shown in the figure below.

Figure 2.5: Model of ANCF rope element (Luo, Fan, and Cui, 2021)

L is the length of the rope element and x is the coordinate of the element in the length

direction. q⃗1 and q⃗2 are the generalized coordinates of the two nodes of the rope element.

r⃗(x) is the absolute coordinate of the point on the element, whose coordinate is x. The node

coordinates of the gradient default rope beam element are composed of the node position

and its derivative to the axial element coordinates. For this case, the coordinates can be

expressed as

q⃗e =

[
q⃗1

q⃗2

]
(2.2)

=


r⃗T (x = 0)

r⃗′T (x = 0)

r⃗T (x = L)

r⃗′T (x = L)

 (2.3)

=


e⃗1

e⃗2

e⃗3

e⃗4

 (2.4)

as defined in (Luo, Fan, and Cui, 2021). Now, the global position vector can be expressed

CHAPTER 2. DEVELOPMENTS IN DYNAMICS OF FLEXIBLEMULTIBODY SYSTEMS8

as

r⃗ =
[
s1(x)I3 s2(x)I3 s3(x)I3 s4(x)I3

]

e⃗1

e⃗2

e⃗3

e⃗4

 (2.5)

r⃗ = Se (2.6)

S is called the element global shape function. Using this method, beam and plate elements

can be used to obtain exact modeling of the rigid body dynamics, and these elements can

be considered as isoparametric elements (Shabana, 1997).

2.2 Dynamic formulations

Using different methods for kinematic description, various dynamic approaches can be used

for formulating the dynamic equations of flexible multibody systems (Shabana, 1997). In

this section,

2.2.1 Floating frame of reference

When using the FFR, described in Section 2.1.1, Lagrange’s equation can be used to develop

the dynamic equations of motion of the deformable bodies that undergo large reference

displacements. The equations of motion of a deformable body can be written as follows

M i ¨⃗yi +Kiy⃗i = q⃗ie + q⃗iv + q⃗ic (2.7)

as stated in (Shabana, 1997). The superscript i refers to the body number. M is the mass

matrix, K is the stiffness matrix, and y⃗ is the vector of the system generalized coordinates.

The vector q⃗e is the vector of externally applied forces, q⃗v is the vector of the Coriolis

and centrifugal forces, and q⃗c is the vector of the constraint forces. A kinematic pair is a

connection between two bodies that impose constraints on their relative movement, which

is the case for flexible multibody systems (Gufler, Wehrle, and Zwölfer, 2021). When these

conditions are expressed in analytical form, they are called equations of kinematic constraints

(Flores, 2015). The constraint forces divert unconstrained movement to valid movement

(Vaxman, 2018). The equations of motion of the multibody system can be written as

M ¨⃗y +Ky⃗ = q⃗e + q⃗v + q⃗c (2.8)

CHAPTER 2. DEVELOPMENTS IN DYNAMICS OF FLEXIBLEMULTIBODY SYSTEMS9

Using this method, y⃗ can be expressed as follows

y⃗ =

[
y⃗r

y⃗f

]
(2.9)

In the case of a rigid body displacement, the elastic coordinates y⃗f are equal to zero (Nada

et al., 2010). Using the expression from Equation 2.9, the equations of motion can be written

as [
Mrr Mrf

Mfr Mff

][
¨⃗yr
¨⃗yf

]
+

[
0 0

0 Kff

][
y⃗r

y⃗f

]
=

[
(q⃗e)r

(q⃗e)f

]
+

[
(q⃗v)r

(q⃗v)f

]
+

[
(q⃗c)r

(q⃗c)f

]
(2.10)

The stiffness matrix takes a simple form and it is the same as the stiffness matrix that

appears in structural mechanics.

2.2.2 Linear theory of elastodynamics

Before the FFR was introduced, there was another approach to obtaining the total motion

of the deformable bodies, namely the linear theory of elastodynamics. In the linear theory of

elastodynamics, the rigid body motion and elastic deformation are not solved simultaneously.

The assumption is made that the elastic deformation does not have a significant effect on

the rigid body displacements, thus the inertia terms in the reference equations are assumed

to be independent of the elastic deformation. However, this assumption may not be valid

when high-speed, lightweight mechanical systems are considered. The effect of the coupling

between the elastic deformation and the gross rigid body motion can be significant (Shabana,

1997). To understand the assumptions better, the equations of motion for a deformable body

i shown in Equation 2.10 are rewritten as

M i
rr
¨⃗yir +M i

rf
¨⃗yif = (q⃗ie)r + (q⃗iv)r (2.11)

M i
fr
¨⃗yir +M i

ff
¨⃗yif +Ki

ff
¨⃗yif = (q⃗ie)f + (q⃗iv)f (2.12)

Notice that the constraint forces do not appear in this equation, since the dependent coor-

dinates are eliminated (Shabana, 2003). In linear theory of elastodynamics, the effect of the

deformation on the rigid body displacement is neglected (Shabana, 1997). Thus the equation

can be written as a linear system of algebraic equations as follows

M i
rr
¨⃗yir = (q⃗ie)r (2.13)

M i
ff
¨⃗yif +Ki

ff
¨⃗yif = (q⃗ie)f + (q⃗iv)f −M i

fr
¨⃗yir (2.14)

CHAPTER 2. DEVELOPMENTS IN DYNAMICS OF FLEXIBLEMULTIBODY SYSTEMS10

The first equation can be solved using rigid multibody computer programs. The obtained

results are substituted into the second equation in order to determine the deformation of the

bodies using standard finite element techniques (Shabana, 1997).

Chapter 3

Ventura’s data

In this chapter, Ventura’s real-life data will be presented and visualized. The data is useful

to gain more insight into the simplified model, which will be introduced in the following

chapter. First, Fourier analysis will be explained. Thereafter, a short explanation of the

data is given and the data is visualized. The mentioned theory is brought into practice by

analyzing the data. Both Julia and Python are used. The code can be found in Appendix

A.

3.1 Fourier analysis

All waveforms are composed of sinusoids with different properties, including their frequency

(Sindy, Zandbergen, and Zon, 2021). Until now, the solutions were given with respect

to time and are represented in the time domain. However, when dealing with multiple

sinusoids, all with different amplitude and frequency, the frequency domain is more compact

and useful. Fourier analysis is a translation between these two mathematical worlds. The

Fourier Transform transforms a function from the time domain into the frequency domain.

The Fourier Transform of a function f(t) is defined as

F (ω) =
1

2π

∫ ∞

−∞
f(x)eiωt dt (3.1)

as stated in (Haberman, 2013). The Discrete Fourier Transform (DFT) is the equivalent of

the continuous Fourier Transform for signals known only at instants separated by sample

times (i.e. a finite sequence of data). The Fast Fourier Transform (FFT) is an algorithm

for efficiently computing the DFT of discrete data samples and is used in this chapter to be

able to analyze the data (Cochran et al., 1967).

11

CHAPTER 3. VENTURA’S DATA 12

3.2 Test data

The data from a test is described in Sindy’s, Zandbergen’s, and van Zon’s report. In this

test, three accelerometers were placed on a bus. Two meters were placed at the bottom

center of the aluminum frame of each door. The other one was placed at the top center of

the bus portal. These accelerometers measure the accelerations in g (9.80665 m
s2
) of the

door in the x-, y- and z-direction. Since this research only focuses on the vibration of the

door, the data measured by the accelerometer placed at the top center of the bus portal

is disregarded (Lahaye, personal communication, 2022). Ventura drove the bus with the

three accelerometers over an extremely bumpy road (Sindy, Zandbergen, and Zon, 2021).

From a conversation with Ventura, it turns out that the acceleration in the y-direction is

most useful and therefore used in this research (Lahaye, personal communication, 2022).

The accelerations in the y-direction, measured by the two accelerometers placed on the door

frame, are presented below.

(a) Acceleration measured by the accelerom-
eter on the left door frame

(b) Measured acceleration measured by the
accelerometer on the right door frame

Figure 3.1: Acceleration plotted against time

When performing an FFT on these results, the plots contain noise. Therefore, low-pass

filtering is used to denoise the data of the FFT and to get more accurate results. A low-pass

Butterworth filter allows signals with a frequency lower than the cut-off frequency. All the

signals with frequencies more than the cut-off frequency are enervated. Ventura advised

a cutoff frequency of 10% of the Nyquist frequency (Sindy, Zandbergen, and Zon, 2021).

The Nyquist frequency equals half the sampling frequency (Yamamoto, Yamamoto, and

Nagahara, 2016). With help of the function fft in Python, the following graphs for the

FFTs of the data are found.

CHAPTER 3. VENTURA’S DATA 13

(a) FFT of the acceleration measured by the
accelerometer on the left door frame

(b) FFT of the acceleration measured by the
accelerometer on the right door frame

Figure 3.2: FFTs of the acceleration data

From the graphs, the eigenfrequency of the bus door can be derived. There are clearly

visible peaks at approximately 10 Hz in both graphs. From a conversation with Ventura,

it can be concluded that these peaks represent the eigenfrequency of the bus. There are

also two smaller peaks at approximately 2 Hz. These peaks represent the frequency of the

external force exerted by the road on the bus door (Lahaye, personal communication, 2022).

Chapter 4

A single-degree-of-freedom

mass-spring system

In this chapter, different situations for a one-dimensional mass-spring system are considered.

In real life, the mass would represent the bus door in its frame. For every situation, the

equation of motion is stated and a solution is found by plugging in a guess solution. Firstly,

there are no external forces included in the system. Afterwards, a constant external force is

added. Finally, a periodic external force is taken into consideration. For all three situations,

both an undamped as a damped situation is analyzed. The analytically found solution and

numerical solution are plotted in Julia to make sure that the found solution is correct. The

initial conditions u0 = 3 and v0 = 0 are assumed to be able to verify the solutions.

4.1 No external forces

A point mass m is connected to a wall by means of a spring with spring constant k. In

this chapter, the assumption is made that the point mass rests on a frictionless surface, so

gravity does not play a role. Since no external forces are applied, any movement of the

mass will be due to the initial conditions. In this chapter, the mass can only move in the

x-direction. The initial position is defined as u0 and the initial velocity is defined as v0. x0

defines the equilibrium position of the mass. u(t) denotes the displacement of the mass from

its equilibrium position. In this chapter, this notation will be simplified to u in the equations

of motion. Remember u still depends on time.

The figure below shows a diagram of a simple system with a mass and a spring.

14

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 15

k
m

u

y

x

x0

Figure 4.1: A visualization of an undamped mass-spring system without external forces

The spring force acts to restore the spring to its natural length and can be calculated

using Hooke’s law (Braun, 1991). Hooke’s law states that the force is proportional to the

extension. A spring will apply an opposing force which is proportional to the extension or

compression of the spring. The equation of motion for the mass is

mü+ ku = 0 (4.1)

Since u(t) is an oscillating movement, the movement can be described as u(t) = F cos(ωt),

but also as the real part of Feiωt = F (cos(ωt) + i sin(ωt). The reason to do this, is that

it is easier to work with an exponential function than with a cosine, since the algebra of

exponentials is much easier than that of sines and cosines (Gottlieb and Pfeiffer, 2013).

By substituting Feiω0t for u in Equation 4.1 the following equations are obtained

−mω2
0Feiωt + kFeiω0t = 0 (4.2)

Feiω0t(−mω2
0 + k) = 0 (4.3)

−mω2
0 + k = 0 (4.4)

ω0 =

√
k

m
∨ ω0′ = −

√
k

m
(4.5)

This frequency, ω0, is known as the angular eigenfrequency or natural angular frequency.

The natural frequency of a system, is the frequency for which a systems tends to oscillate

in absence of any driving force (COMSOL, 2018). The plus or minus sign determines the

direction of the rotation. For this research, there is no need to take both angular frequencies

into consideration and therefore, from now on, the negative one is being neglected. From

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 16

Equation 4.5, it follows that

y(t) = Aeiω0t (4.6)

y(t) = A cos(ω0t) + Ai sin(ω0t) (4.7)

y(t) = y1(t) + iy2(t) (4.8)

is a complex solution for Equation 4.1, where A is an arbitrary complex-valued amplitude.

According to Braun, y1(t) and y2(t) are two real-valued solutions of Equation 4.1 (Braun,

1991). Thus an expression for u(t) can be obtained

u(t) = c1 cos(ω0t) + c2 sin(ω0t) (4.9)

This method will be used throughout the project, to obtain a real-valued solution. By

plugging in the initial conditions, it turns out that c1 = u0 and c2 =
v0
w0
. From above figure,

Figure 4.2: A graph of the analytical and numerical solution of the displacement of the mass
for the undamped situation without external forces

it can be concluded that the obtained solution is correct.

4.1.1 Damped system without external forces

Now a damper with damping constant c is added to the system. A visualization of this

system is presented is the figure below.

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 17

k

c m

u(t)

y

x

x0

Figure 4.3: A visualization of a damped mass-spring system without external forces

The damping force always acts in the direction opposite the direction of motion, and is

proportional to the velocity u̇ (Braun, 1991). The equation of motion for this system is

mü+ cu̇+ ku = 0 (4.10)

For convenience, complex notation is used again. Consider u(t) of the form u(t) = Feiωt

where F is a complex-valued amplitude. Remember ω0 =
√

k
m

and use the notation ζ =
c

2
√
km

. ζ is called the damping ratio and described how rapidly the oscillations decay from

one bounce to the next. Equation 4.10 can be written as

−mFω2eiωt + cF iωeiωt + kFeiwt = 0 (4.11)

Feiωt(−mω2 + ciω + k) = 0 (4.12)

−mω2 + ciω + k = 0 (4.13)

−ω2 +
c

m
iω +

k

m
= 0 (4.14)

−ω2 + 2iζω0ω + ω2
0 = 0 (4.15)

ωn =
−2iζω0 +

√
w2

0(−4ζ2 + 4)

−2
(4.16)

ωn = iζω0 + ω0

√
(1− ζ2) (4.17)

ωn = ω0(iζ +
√
(1− ζ2)) (4.18)

The method used in Section 4.1 is used to obtain a real-valued solution. In this way, equation

4.10 can be rewritten as

u(t) = e−ω0ζt(c1 cos
(
ω0

√
(1− ζ2)t

)
+ c2 sin

(
ω0

√
(1− ζ2)t

)
) (4.19)

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 18

By plugging in the initial condition, it turns out that c1 = u0 and c2 = v0+u0w0ζ

w0

√
1−ζ2

. The

expression ω0

√
1− ζ2 is called the damped natural (angular) frequency (COMSOL, 2018).

Figure 4.4: A graph of the analytical and numerical solution of the displacement of the mass
for the damped situation without external forces

Figure 4.4 shows that the analytical solution coincides with the numerical solution.

4.2 Constant external force

Since the final model will represent a bus door, a realistic constant force would be a person

leaning against the bus door. In this case, the external force would be a constant value.

Equation 4.1 could be written as

mü+ ku = F (4.20)

where F is a constant. Every solution of Equation 4.20 is of the form u(t) = uhomogeneous(t)+

uparticular(t) (Braun, 1991). A homogeneous solution is already obtained in Section 4.1 and

equals uhomogeneous(t) = c1 cos(ω0t)+c2 sin(ω0t). For a particular solution û(t) = A ·F , where

A is some constant value, is substituted in Equation 4.20. Thus a value for A can be found

k(A · F) = F (4.21)

A =
1

k
(4.22)

Therefore, the solution for Equation 4.20 equals

u(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F

k
(4.23)

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 19

By substituting the initial conditions it turns out that c1 = u0 − F
k
and c2 =

v0
ω0
.

Figure 4.5: A graph of the analytical and numerical solution of the displacement of the mass
for the undamped situation including a constant external force

With help of Figure 4.5, the analytical solution is verified to be correct

4.2.1 Damped system with constant external force

Now, the same damper as in Section 4.1.1 is added to this system and the equation of motion

equals

mü+ cu̇+ ku = F (4.24)

where F represents the constant external force. In Section 4.1.1, the homogeneous solution

for Equation 4.23 is already obtained. The particular solution is the same as the particular

solution is Section 4.2. So the solution for Equation 4.23 equals

u(t) = uhomogeneous(t) + uparticular(t) (4.25)

u(t) = e−ω0ζt(c1 cos
(
ω0

√
(1− ζ2)t

)
+ c2 sin

(
ω0

√
(1− ζ2)t

)
) +

F

k
(4.26)

Plugging in the initial conditions, it can be concluded that c1 = u0 − F
k
and c2 =

v0+ω0ζc1

w0

√
1−ζ2

.

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 20

Figure 4.6: A graph of the analytical and numerical solution of the displacement of the mass
for the damped situation including a constant external force

The found solution coincides with the numerical solution as showed in the figure above.

4.3 Periodic external force

When a bus is driving on the road, the bumps in the road exert a periodic force on the bus

with a certain amplitude, depending on the quality of the road (Sindy, Zandbergen, and

Zon, 2021). These bumps can cause movement in the support of the spring. An external

force, which is moving the spring up and down, can be written as f(t) = F cos(ωt) (Gottlieb

and Pfeiffer, 2013). F is the amplitude of the force and ω the angular frequency of the force.

Figure 4.7 visualizes this situation.

Figure 4.7: A schematic picture of a bus driving on the road (Sindy, Zandbergen, and Zon,
2021)

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 21

Adding this force to the system gives the following equation of motion

mü+ ku = F cos(ωt) (4.27)

Notice that f(t) is equal to Re{Feiωt}. A homogeneous solution is already obtained in

Section 4.1 and equals uhomogeneous(t) = c1 cos(ω0t) + c2 sin(ω0t). A particular solution can

be found by using complex exponentials. The problem is divided into two separate problems.

First, the assumption that ω ̸= ω0 is being made. Afterwards, it is assumed that ω = ω0.

Case 1: ω ̸= ω0. For a trial solution û(t) = Beiωt is taken and it is assumed that ω ̸= ω0.

B denotes some complex number. By substituting ˆu(t) in Equation 4.27, it turns out

that

−mω2Beiωt + kBeiωt = Feiωt (4.28)

Beiωt(−mω2 + k) = Feiωt (4.29)

B =
F

−mω2 + k
(4.30)

B =
F

m(ω2
0 − ω2)

(4.31)

uparticular(t) = Re{û(t)}, thus uparticular(t) =
F

m(ω2
0−ω2)

cos(ωt). By adding the homoge-

neous solution and the particular solution, a solution for the non-homogeneous problem

can be obtained.

u(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F

m(ω2
0 − ω2)

cos(ωt) (4.32)

By plugging in the initial conditions, it turns out that c1 = u0 − F
m(ω2

0−ω2)
and c2 =

v0
ω0
.

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 22

Figure 4.8: A graph of the analytical and numerical solution of the displacement of the mass
for the undamped situation including a periodic external force

From Figure 4.8, it can be concluded that the obtained solution is correct.

Case 2: ω = ω0. The frequency of the external force equals the natural frequency of the

system if ω = ω0. This case is called the resonance case (Braun, 1991). The solution

found in Case 1 does not work if ω = ω0, since the denominator would equal zero. To

solve this problem, the trial solution is chosen differently. The usual choice is multiplied

by t, thus û(t) = Bteiwt. B is still some complex number. Equation 4.27 is rewritten

and the expressions û(t) = Bteiwt and ω = ω0is substituted, which gives

mü+ ku = Feiω0t (4.33)

ü+
k

m
u =

F

m
eiω0t (4.34)

2iω0Beiω0t − ω2
0Bteiω0t + ω2

0Bteiω0t =
F

m
eiω0t (4.35)

2iω0Beiω0t =
F

m
eiω0t (4.36)

B =
1

2iω0

F

m
(4.37)

B =
−iF

2ω0m
(4.38)

uparticular(t) = Re{û(t)}, thus uparticular(t) = F
2ω0m

t sin(ω0t). By adding the homoge-

neous solution and the particular solution, a solution for the non-homogeneous problem

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 23

can be obtained.

u(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F

2ω0m
t sin(ω0t) (4.39)

The same method is applied to find the value of c1 and c2. For this situation c1 = u0

and c2 =
v0
ω0
.

Figure 4.9: A graph of the analytical and numerical solution of the displacement of the mass
for the undamped situation including a constant external force with ω = ω0

The figure above shows that analytical solution is correct.

4.3.1 Damped system with periodic external force

A damper is added to the system and the equation of motion described in Section 4.3.

mü+ cu̇+ ku = F cos(ωt) (4.40)

The homogeneous solution for the above equation is already found in Section 4.1.1 and equals

u(t) = e−ω0ζt(c1 cos
(
ω0

√
(1− ζ2)t

)
+ c2 sin

(
ω0

√
(1− ζ2)t

)
). To find a particular solution

for Equation 4.40, the trial solution û(t) = Xeωit is substituted for u in the equation of

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 24

motion, where X denotes some complex number. The following expression for X is obtained

−mω2Xeiωt + cXiωeiωt + kXeiωt = Feiωt (4.41)

Xeiωt(−mω2 + ciω + k) = Feiωt (4.42)

X(−mω2 + ciω + k) = F (4.43)

X =
F

−mω2 + ciω + k
(4.44)

X =
F

−mω2 + ciω + k
· −mω2 − ciω + k

−mω2 − ciω + k
(4.45)

X =
−Fmω2 + Fk − Fciω

m2ω4 − 2mkω2 + k2 + c2ω2
(4.46)

X =
−mω2F + Fk

(mω2 − k)2 + c2ω2
− Fcω

(mω2 − k)2 + c2ω2
i (4.47)

uparticular(t) = Re{û(t)}, thus uparticular(t) = −mω2F+Fk
(mω2−k)2+c2ω2 cos(ωt) +

Fcω
(mω2−k)2+c2ω2 sin(ωt).

Adding up the particular solution to the homogeneous solution, a solution for Equation 4.40

can be found.

u(t) = e−ω0ζt(c1 cos
(
ω0

√
(1− ζ2)t

)
+ c2 sin

(
ω0

√
(1− ζ2)t

)
) (4.48)

+
−mω2F + Fk

(mω2 − k)2 + c2ω2
cos(ωt) +

Fcω

(mω2 − k)2 + c2ω2
sin(ωt)

From the initial conditions, it follows that c1 = u0− −mω2F+Fk
(mω2−k)2+c2ω2 and c2 =

v0+ζω0c1− Fcω2

(mω2−k)2+c2ω2

ω0

√
1−ζ2

.

Figure 4.10: A graph of the analytical and numerical solution of the displacement of the
mass for the damped situation including an periodic external force

CHAPTER 4. A SINGLE-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 25

The obtained solution is correct, since the analytical solution coincides with the numerical

solution as showed in Figure 4.10.

Chapter 5

Estimating parameters

In this chapter, the spring and damping constant from the simplified model can be deter-

mined. This is done with the help of Ventura’s data, presented in Chapter 3, and Python.

The same code is used as in Chapter 3 and thus can be found in Appendix A. First, the

spring constant is calculated using the eigenfrequency. Secondly, the damping constant is

estimated using the previously presented FFTs.

5.1 Estimation of the spring constant

The bus door’s eigenfrequency equals approximately 10 Hz as mentioned before. The exact

eigenfrequency is calculated in Python by taking the average of the peaks’ frequencies.

This frequency will be denoted f0. In the same manner, the frequency of the external force

exerted on the bus door can be calculated. This frequency equals approximately 1.7 Hz.

Using the formula ω = 2πf , the angular frequency of the external force can be found. It

turns out that the angular frequency of the external force equals about 10.7 Hz.

It appears that a good approximation of the door’s mass equals 80 kg (Lahaye, personal

communication, 2022). With the help of the eigenfrequency and the mass, an estimation for

the spring constant k can be made.

ω0 = 2πf0 (5.1)√
k

m
= 2πf0 (5.2)√

k

80
= 2π · f0 (5.3)

k ≈ 344531.52
N

m
(5.4)

26

CHAPTER 5. ESTIMATING PARAMETERS 27

The exact value is calculated in Python and is included in the code.

5.2 Estimation of the damping constant

With help of the peak widths of the two FFTs, an estimation for the damping constant

c can be made. The real-life system is damped. Previously, the conclusion is made that

the external force has an angular frequency. Therefore, the real-life data will be compared

with the data obtained by the model described in Section 4.1.1. The solution described in

Section 4.3.1 is differentiated twice to obtain a solution for the acceleration of the mass. To

be able to compare this solution to the measured data, the solution is divided by the gravity

acceleration. Afterward, the FFT of the solution is plotted. Preferably, the peak of the FFT

coincides with the peaks of the FFTs shown in Figure 3.2a and 3.2b. By trial and error, it

can be concluded that c = 670 and F = 25 are good estimations for the damping constant

and the amplitude of the external force as shown in the figure below.

Figure 5.1: A graph of the FFTs of the acceleration measured by the accelerometers and of
the simplified model

Chapter 6

Laplace transforms

Using Laplace Transforms is another way to solve differential equations. When solving the

differential equation, some characteristics of the system can be determined. First, the Laplace

transform is explained and some useful properties are stated. Afterward, all differential

equations of the systems from Chapter 4 are solved using this method. To be able to find

the solutions for some systems, systems of equations are solved with the help of Matlab. The

code can be found in Appendix C.

6.1 Introduction to Laplace transforms

The Laplace transform of a function f(t) is defined as follows:

F (s) = L{f(t)} =

∫ ∞

0

f(t)e−st dt (6.1)

at least for those s, such that the integral converges (Kazem, 2013). The Laplace transform

is very useful for solving differential equations since the Laplace transform of f ′(t) is very

closely related to the Laplace transform of f(t) (Braun, 1991). This is shown in the lemma

below.

Lemma 6.1.1.

L{f ′(t)} =

∫ ∞

0

f ′(t)e−st dt

=
[
e−stf(t)

]∞
0
−
∫ ∞

0

−se−st dt

= −f(0) + sL{f(t)}

28

CHAPTER 6. LAPLACE TRANSFORMS 29

In the same manner, the Laplace transform of f ′′(t) can be related to f(t).

Lemma 6.1.2.

L{f ′′(t)} = −f ′(0) + sL{f ′(t)}

= −f ′(0) + s(−f(0) + sL{f(t)})

= −f ′(0)− sf(0) + s2L{f(t)}

To find the solution of a differential equation using Laplace transforms, the following

steps are taken. First of all, replace each term in the differential equation with its Laplace

transform. Secondly, rearrange the equation to give the transform of the solution and sub-

stitute the initial conditions. Third of all, rewrite the equation such that the equation is

composed of expressions for which the Laplace inverse is known. Lastly, invert the Laplace

transform to obtain the solution. The inversions of the Laplace transform can be found in

Appendix B.

6.2 No external forces

Recall that the equation of motion of the undamped free motion equals

mü+ ku = 0 (6.2)

ü+
k

m
u = 0 (6.3)

Let U(s) = L{u(t)} and substitute this expression is the above equation.

L{u′′(t)}+ k

m
L{u(t)} = L{0} (6.4)

s2U(s)− su(0)− f ′(0) +
k

m
U(s) = 0 (6.5)

U(s) =
su(0) + f ′(0)

s2 + k
m

(6.6)

U(s) = u(0) · s

s2 + k
m

+
f ′(0)√

k
m

·

√
k
m

s2 + k
m

(6.7)

u(t) = u(0) cos

(√
k

m
t

)
+

f ′(0)√
k
m

sin

(√
k

m
t

)
(6.8)

CHAPTER 6. LAPLACE TRANSFORMS 30

In Section 4.1 is described that ω0 =
√

k
m
. Plugging in the initial conditions and the

expression for ω0, the following solution can be obtained

u(t) = u0 cos(ω0t) +
v0
w0

sin(ω0t) (6.9)

This is the same solution as the solution found in Section 4.1.

6.2.1 Damped system without external forces

Equation 4.10 is rewritten to the following equation

ü+
c

m
u̇+

k

m
u = 0 (6.10)

U(s) = L{u(t)} is substituted in the above equation and the following equation is obtained

L{u′′(t)}+ c

m
L{u′(t)}+ k

m
L{u(t)} = L{0} (6.11)

s2U(s)− su(0)− u′(0) +
c

m
(sU(s)− u(0)) +

k

m
U(s) = 0 (6.12)

U(s)[s2 +
c

m
s+

k

m
] = su(0) + u′(0) +

c

m
u(0) (6.13)

U(s) =
su(0) + c

m
u(0) + u′(0)

s2 + c
m
s+ k

m

(6.14)

To simplify the notation the initial condition u(0) and u′(0) are respectively notated as u0

and v0. Also, remember from the Sections 4.1 and 4.1.1 that ω0 =
√

k
m

and ζ = c
2
√
km

. Thus

Equation 6.14 can be rewritten as

U(s) =
su0 + 2ω0ζu0 + v0
s2 + 2ω0ζs+ ω2

0

(6.15)

U(s) =
u0(s+ ω0ζ)

s2 + 2ω0ζs+ ω2
0

+
v0 + u0ω0ζ

s2 + 2ω0ζs+ ω2
0

(6.16)

U(s) =
u0(s+ ω0ζ)

s2 + 2ω0ζs+ ω2
0ζ

2 + ω2
0(1− ζ2)

+
v0 + u0ω0ζ

s2 + 2ω0ζs+ ω2
0ζ

2 + ω2
0(1− ζ2)

(6.17)

U(s) =
u0(s+ ω0ζ)

(s+ ω0ζ)2 + (ω0

√
1− ζ2)2

+
v0 + u0ω0ζ

ω0

√
1− ζ2

ω0

√
1− ζ2

(s+ ω0ζ)2 + (ω0

√
1− ζ2)2

(6.18)

u(t) = u0e
−ω0ζt cos

(
ω0

√
(1− ζ2)t

)
+

v0 + u0ω0ζ

ω0

√
1− ζ2

e−ω0ζt sin
(
ω0

√
(1− ζ2)t

)
) (6.19)

u(t) = e−ω0ζt(u0 cos
(
ω0

√
(1− ζ2)t

)
+

v0 + u0ω0ζ

ω0

√
1− ζ2

sin
(
ω0

√
(1− ζ2)t

)
) (6.20)

CHAPTER 6. LAPLACE TRANSFORMS 31

The same solution is found in Section 4.1.1.

6.3 Constant external force

The equation of motion from Section 4.2 is rewritten as

ü+
k

m
u =

F

m
(6.21)

By taking the Laplace transform of Equation 6.21, the following equations are obtained

L{u′′(t)}+ k

m
L{u(t)} = L{F

m
} (6.22)

s2U(s)− su(0)− u′(0) +
k

m
U(s) =

F

m

1

s
(6.23)

U(s)(s2 +
k

m
) =

F

m

1

s
+ su(0) + u′(0) (6.24)

U(s) =
F
ms

s2 + k
m

+
su(0) + u′(0)

s2 + k
m

(6.25)

The initial conditions and ω0 can be substituted in the above equation.

U(s) =
F
ms

s2 + ω2
0

+
su0 + v0
s2 + ω2

0

(6.26)

U(s) =
F
m

s(s2 + ω2
0)

+
su0 + v0
s2 + ω2

0

(6.27)

To be able to apply the Laplace inverse, fraction decomposition is used.

F
m

s(s2 + ω2
0)

=
α1

s
− α2s+ α3

s2 + ω2
0

(6.28)

=
α1s

2 + α1ω
2
0 − α2s

2 − α3s

s(s2 + ω2
0)

(6.29)

The following system of equations has to be solved 1 −1 0

0 0 −1
k
m

0 0


α1

α2

α3

 =

00
1

 (6.30)

CHAPTER 6. LAPLACE TRANSFORMS 32

With the help of the theory known from linear algebra, the following values for the alphai’s

are found

α1 =
m

k
(6.31)

α2 =
m

k
(6.32)

α3 = 0 (6.33)

With this information Equation 6.27 can be written as

U(s) =
F

m
(
m
k

s
−

m
k
s

s2 + ω2
0

) +
su0 + v0
s2 + ω2

0

(6.34)

U(s) =
F
k

s
−

F
k
s

s2 + ω2
0

+
su0

s2 + ω2
0

+
v0

s2 + ω2
0

(6.35)

U(s) = u0
s

s2 + ω2
0

−
F
k
s

s2 + ω2
0

+
v0
ω0

ω0

s2 + ω2
0

+
F

ks
(6.36)

u(t) = (u0 −
F

k
) cos(ω0t) +

v0
ω0

sin(ω0t) +
F

k
(6.37)

This appears to be the same solution obtained in Section 4.2

6.3.1 Damped system with constant external force

In this section, the equation of motion for a damped spring with constant external force

will be solved with the Laplace transform. The equation of motion for this situation can be

written as

ü+
c

m
u̇+

k

m
u =

F

m
(6.38)

Repeating the steps executed before, the following expressions are obtained

L{u′′(t)}+ c

m
L{u′(t)}+ k

m
L{u(t)} = L{F

m
} (6.39)

s2U(s)− su(0)− u′(0) +
c

m
(sU(s)− u(0)) +

k

m
U(s) =

F

m

1

s
(6.40)

U(s)[s2 +
c

m
s+

k

m
] = su(0) + u′(0) +

c

m
u(0) +

F

m

1

s
(6.41)

U(s) =
su(0) + c

m
u(0) + u′(0)

s2 + c
m
s+ k

m

+
F
m

1
s

s2 + c
m
s+ k

m

(6.42)

CHAPTER 6. LAPLACE TRANSFORMS 33

The initial conditions and ω0 are plugged into Equation 6.42. Afterwards, partial fraction

decomposition is used to obtain the solution.

U(s) =
su0 +

c
m
u0 + v0

s2 + c
m
s+ ω2

0

+
F
m

1
s

s2 + c
m
s+ ω2

0

(6.43)

(6.44)

U(s) =
su0 +

c
m
u0 + v0

s2 + c
m
s+ ω2

0

+
F
m

s(s2 + c
m
s+ ω2

0)
(6.45)

1

s(s2 + c
m
s+ ω2

0)
=

α1

s
− α2s+ α3

s2 + c
m
s+ ω2

0

(6.46)

=
α1s

2 + α1
c
m
s+ α1ω

2
0 − α2s

2 − α3s

s(s2 + c
m
s+ ω2

0)
(6.47)

From the above expression, a matrix equation is obtained. 1 −1 0
c
m

0 −1
k
m

0 0


α1

α2

α3

 =

00
1

 (6.48)

The following values for αi’s are found

α1 =
m

k
(6.49)

α2 =
m

k
(6.50)

α3 =
c

k
(6.51)

CHAPTER 6. LAPLACE TRANSFORMS 34

By substituting these values the Laplace transform can be simplified

U(s) =
su0 +

c
m
u0 + v0

s2 + c
m
s+ ω2

0

+
F

m
(
m
k

s
−

m
k
s+ c

k

s2 + c
m
s+ k

m

) (6.52)

U(s) =
su0 +

c
m
u0 + v0

s2 + c
m
s+ ω2

0

+
F
k

s
−

F
k
s+ c

m
F
k

s2 + c
m
s+ k

m

(6.53)

U(s) =
su0 + 2ω0ζu0 + v0

s2 + c
m
s+ ω2

0

+
F
k

s
−

F
k
s+ 2ω0ζ

F
k

s2 + c
m
s+ k

m

(6.54)

U(s) = (u0 −
F

k
)

(s+ ω0ζ)

(s+ ω0ζ)2 + (ω0

√
1− ζ2)2

+
ω0ζu0 + v0 − ω0ζ

F
k

s2 + c
m
s+ k

m

+
F
k

s
(6.55)

U(s) = (u0 −
F

k
)

(s+ ω0ζ)

(s+ ω0ζ)2 + (ω0

√
1− ζ2)2

+
v0 + ω0ζ(u0 − F

k
)

ω0

√
1− ζ2

ω0

√
1− ζ2

(s+ ζω0)2 + (ω0

√
1− ζ2)2

+
F
k

s

(6.56)

u(t) = e−ω0ζt((u0 −
F

k
) cos

(
ω0

√
(1− ζ2)t

)
+

v0 + ω0ζ(u0 − F
k
)

ω0

√
1− ζ2

sin
(
ω0

√
(1− ζ2)t

)
) +

1

k
· F

(6.57)

This is the same solution as found in Section 4.2.1.

6.4 Periodic external force

Recall that the equation of motion for the undamped situation including a periodic external

force equals

mü+ ku = F cos(ωt) (6.58)

ü+
k

m
u =

F

m
cos(ωt) (6.59)

The Laplace transform is substituted to obtain

L{u′′(t)}+ k

m
L{u(t)} = L{F

m
cos(ωt)} (6.60)

s2U(s)− su(0)− u′(0) +
k

m
U(s) =

F

m

s

s2 + ω2
(6.61)

U(s)(s2 +
k

m
) =

F

m

s

s2 + ω2
+ su(0) + u′(0) (6.62)

U(s) =
F

m

s

(s2 + ω2)(s2 + k
m
)
+

su(0) + u′(0)

s2 + k
m

(6.63)

(6.64)

CHAPTER 6. LAPLACE TRANSFORMS 35

The initial conditions and the expression for ω0 are used to rewrite Equation 6.64 to

U(s) =
F

m

s

(s2 + ω2)(s2 + ω2
0)

+
su0 + v0
s2 + ω2

0

(6.65)

(6.66)

Once again, two different situations have to been discussed. Firstly, it is assumed that

ω ̸= ω0. Secondly, the assumption that ω = ω0

Case 1: ω ̸= ω0 Equation 6.66 can be written as

U(s) =
F

m

s

(s2 + ω2)(s2 + ω2
0)

+
su0

s2 + ω2
0

+
v0

s2 + ω2
0

(6.67)

To be able to find the Laplace inverse of this expression, partial fraction decomposition

is used.

s

(s2 + ω2)(s2 + ω2
0)

=
s2 + α1s+ α2

s2 + ω2
− s2 + α3s+ α4

s2 + ω2
0

(6.68)

=
s4 + ω2

0s
2 + α1s

3 + α1ω
2
0s+ α2s

2 + α2ω
2
0 − s4 − ω2s2 − α3s

3 − α3ω
2s− α4s

2 − α4ω
2

(s2 + ω2)(s2 + ω2
0)

(6.69)

This gives us a system of equations that has to be solved.
1 0 −1 0

0 1 0 −1

ω2
0 0 −ω2 0

0 w2
0 0 −ω2



α1

α2

α3

α4

 =


0

−ω2
0 + ω2

1

0

 (6.70)

With the help of Matlab, the values for the αi’s are obtained.

α1 =
m

−mω2 + k
=

−1

ω2 − ω2
0

(6.71)

α2 = ω2 (6.72)

α3 =
m

−mω2 + k
=

−1

ω2 − ω2
0

(6.73)

α4 =
k

m
= ω2

0 (6.74)

CHAPTER 6. LAPLACE TRANSFORMS 36

Thus Equation 6.67 can be rewritten as

U(s) =
F

m
(
s2 + α1s+ α2

s2 + ω2
− s2 + α3s+ α4

s2 + ω2
0

) +
su0

s2 + ω2
0

+
v0

s2 + ω2
0

(6.75)

U(s) =
F

m
(1 +

α1s

s2 + ω2
− 1 +

α3s

s2 + ω2
0

) +
su0

s2 + ω2
0

+
v0
ω0

ω0

s2 + ω2
0

(6.76)

u(t) =
F

m
(α1 cos(ωt) + α3 cos(ω0t)) + u0 cos(ω0t) +

v0
ω0

sin(ω0t) (6.77)

u(t) = (u0 −
F

m(ω2
0 − ω2)

) cos(ω0t) +
v0
ω0

sin(ω0t) +
F

m(ω2
0 − ω2)

cos(ωt) (6.78)

Case 2: ω = ω0 If ω = ω0, the solution differs from the solution found in the first case.

Equation 6.66 can be written as

U(s) =
F

2ω0m

2ω0s

(s2 + ω2
0)

2
+

su0 + v0
s2 + ω2

0

(6.79)

U(s) =
u0s

s2 + ω2
0

+
v0
ω0

ω0

s2 + ω2
0

+
F

2ω0m

2ω0s

(s2 + ω2
0)

2
(6.80)

u(t) = u0 cos(ω0t) +
v0
ω0

sin(ω0t) +
F

2ω0m
t sin(ω0t) (6.81)

These two solutions correspond with the solutions found in Chapter 4.

6.4.1 Damped system with periodic external force

The damping factor is added to Equation 6.59.

ü++
c

m
u̇+

k

m
u =

F

m
cos(ωt) (6.82)

CHAPTER 6. LAPLACE TRANSFORMS 37

The Laplace transform is substituted to obtain

L{u′′(t)}+ c

m
L{u′(t)}+ k

m
L{u(t)} = L{F

m
cos(ωt)} (6.83)

s2U(s)− su(0)− u′(0) +
c

m
sU(s)− c

m
u(0) +

k

m
U(s) =

F

m

s

s2 + ω2
(6.84)

U(s)(s2 +
c

m
s+

k

m
) =

F

m

s

s2 + ω2
+ su(0) + u′(0) +

c

m
u(0)

(6.85)

U(s) =
F

m

s

(s2 + ω2)(s2 + c
m
s+ k

m
)

(6.86)

+
su(0) + u′(0) + c

m
u(0)

s2 + c
m
s+ k

m

(6.87)

Partial fraction decomposition is applied to divide the first fraction into two separate frac-

tions.

s

(s2 + ω2)(s2 + c
m
s+ k

m
)
= F1 − F2 (6.88)

=
s2 + α1s+ α2

s2 + ω2
− s2 + α3s+ α4

s2 + c
m
s+ k

m

(6.89)


1 0 −1 0
c
m

1 0 −1
k
m

c
m

−ω2 0

0 k
m

0 −ω2



α1

α2

α3

α4

 =


− c

m

− k
m
+ ω2

1

0

 (6.90)

CHAPTER 6. LAPLACE TRANSFORMS 38

With the help of Matlab, the αi’s can be found. To simplify these expressions, the constants

q = c2ω2 + k2 − 2kmω2 +m2ω4 is introduced.

α1 =
−m2ω2 + km

c2ω2 + k2 − 2kmω2 +m2ω4
=

−m2ω2 + km

q
(6.91)

α2 =
c2ω4 + cmω2 + k2ω2 − 2kmω4 +m2ω6

c2ω2 + k2 − 2kmω2 +m2ω4
=

c2ω4 + cmω2 + k2ω2 − 2kmω4 +m2ω6

q

(6.92)

α3 =
c3ω2 + ck2 − 2ckmω2 + km2 + cm2ω4 −m3ω2

m(c2ω2 + k2 − 2kmω2 +m2ω4)
=

c3ω2 + ck2 − 2ckmω2 + km2 + cm2ω4 −m3ω2

mq

(6.93)

α4 =
k(c2ω2 + cm+ k2 − 2kmω2 +m2ω4)

m(c2ω2 + k2 − 2kmω2 +m2ω4)
=

k(c2ω2 + cm+ k2 − 2kmω2 +m2ω4)

mq
(6.94)

Firstly, the values for α1 and α2 are plugged into the expression for F1.

F1 =
s2 + (−m2ω2+km

q
)s+ c2ω4+cmω2+k2ω2−2kmω4+m2ω6

q

s2 + ω2
(6.95)

=
s2 + (−m2ω2+km

q
)s+ ω2q+cmω2

q

s2 + ω2
(6.96)

=
s2 + (−m2ω2+km

q
)s+ ω2 + cmω2

q

s2 + ω2
(6.97)

= 1 +
(−m2ω2+km

q
)s+ cmω2

q

s2 + ω2
(6.98)

The same is done to simplify the expression for F2.

F2 =
s2 + (c

3ω2+ck2−2ckmω2+km2+cm2ω4−m3ω2

mq
)s+ (k(c

2ω2+cm+k2−2kmω2+m2ω4)
mq

)

s2 + c
m
s+ k

m

(6.99)

=
s2 + (cq+km2−m3ω2

mq
)s+ (kq+kcm

mq
)

s2 + c
m
s+ k

m

(6.100)

=
s2 + c

m
s+ km−m2ω2

q
s+ k

m
+ kc

q

s2 + c
m
s+ k

m

(6.101)

= 1 +

km−m2ω2

q
s+ kc

q

s2 + c
m
s+ k

m

(6.102)

CHAPTER 6. LAPLACE TRANSFORMS 39

Using these expressions, the partial fraction decomposition of Equation 6.89 can be found.

s

(s2 + ω2)(s2 + c
m
s+ k

m
)
= F1 − F2 (6.103)

= 1 +
(−m2ω2+km

q
)s+ cmω2

q

s2 + ω2
− (1 +

km−m2ω2

q
s+ kc

q

s2 + c
m
s+ k

m

) (6.104)

=
(−m2ω2+km

q
)s+ cmω2

q

s2 + ω2
−

km−m2ω2

q
s+ kc

q

s2 + c
m
s+ k

m

(6.105)

With the above expression, the Laplace inverse of Equation 6.87 can be obtained.

U(s) =
F

m

s

(s2 + ω2)(s2 + c
m
s+ k

m
)

(6.106)

+
su(0) + u′(0) + c

m
u(0)

s2 + c
m
s+ k

m

U(s) =
F

m
(
(−m2ω2+km

q
)s+ cmω2

q

s2 + ω2
−

km−m2ω2

q
s+ kc

q

s2 + c
m
s+ k

m

) +
su(0) + u′(0) + c

m
u(0)

s2 + c
m
s+ k

m

(6.107)

Another constant, p = (−mω2+k)F
q

is introduced. This expression and the initial conditions

are substituted.

U(s) =
ps+ cω2F

q

s2 + ω2
−

ps+ kcF
mq

s2 + c
m
s+ k

m

+
su0 + v0 +

c
m
u0

s2 + c
m
s+ k

m

(6.108)

(6.109)

Recall that c
m

can be written as 2ζω0.

U(s) =
ps+ cω2F

q

s2 + ω2
−

ps+ 2ζω0
kF
q

s2 + c
m
s+ k

m

+
su0 + v0 + 2ζω0u0

s2 + c
m
s+ k

m

(6.110)

U(s) = p
s

s2 + ω2
+

cωF

q

ω

s2 + ω2
− p

s+ ω0ζ

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

(6.111)

+ p
ω0ζ

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

−
2ζω0

kF
q

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+ u0
(s+ ω0ζ)

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

(6.112)

+
v0 + ζω0u0

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

CHAPTER 6. LAPLACE TRANSFORMS 40

U(s) = p
s

s2 + ω2
+

cωF

q

ω

s2 + ω2
+ (u0 − p)

s+ ω0ζ

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
ζω0

(−mω2+k)F
q

− ζω0
2kF
q

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
v0 + ζω0u0

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

(6.113)

U(s) = p
s

s2 + ω2
+

cωF

q

ω

s2 + ω2
+ (u0 − p)

s+ ω0ζ

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
ζω0

F (−mω2−k)
q

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
v0 + ζω0u0

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

(6.114)

U(s) = p
s

s2 + ω2
+

cωF

q

ω

s2 + ω2
+ (u0 − p)

s+ ω0ζ

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
ζω0

F (mω2−k)
q

− 2ζω0
Fmω2

q

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
v0 + ζω0u0

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

(6.115)

U(s) = p
s

s2 + ω2
+

cωF

q

ω

s2 + ω2
+ (u0 − p)

s+ ω0ζ

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
−ζω0p− Fcω2

q

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
v0 + ζω0u0

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

(6.116)

U(s) = p
s

s2 + ω2
+

cωF

q

ω

s2 + ω2
+ (u0 − p)

s+ ω0ζ

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
v0 + ζω0(u0 − p)− Fcω2

q

(s+ ω0ζ)2 + (ω0

√
1− ζ2

(6.117)

U(s) = p
s

s2 + ω2
+

cωF

q

ω

s2 + ω2
+ (u0 − p)

s+ ω0ζ

(s+ ω0ζ)2 + (ω0

√
1− ζ2)

+
v0 + ζω0(u0 − p)− Fcω2

q

ω0

√
1− ζ2

ω0

√
1− ζ2

(s+ ω0ζ)2 + (ω0

√
1− ζ2

(6.118)

u(t) = e−ζω0t((u0 − p) cos
(
ω0

√
(1− ζ2)t

)
+

v0 + ζω0(u0 − p)− Fcω2

q

ω0

√
1− ζ2

sin
(
ω0

√
(1− ζ2)t

)
)

+ p cos(ωt) +
Fcω

q
sin(ωt) (6.119)

The same solution is obtained is Section 4.3.1.

CHAPTER 6. LAPLACE TRANSFORMS 41

6.5 The Transfer function

Without solving the differential equation, the transfer function provides a basis for deter-

mining characteristics of the differential equation and the system. The transfer function is

the ratio of output to input of a system after taking the Laplace transform. The transfer

function is often called H(s). It is often convenient to write H(s) = N(s)
D(s)

. The zi’s such that

N(zi) = 0 are called the zeros of the system and the pi’s such that D(pi) = 0 are called the

poles of the system (Olsder et al., 2011). The transfer functions for the systems described

in Chapter 4 are defined as follows:

Hnodamping(s) =
1

s2 + k
m

(6.120)

Hdamping(s) =
1

s2 + c
m
s+ k

m

(6.121)

The function pzmap in Matlab gives a pole-zero map of a transfer function. A pole-zero

map is a graphical representation of the poles and zeros of a transfer function. The location

of the poles and zeros gives information of the behavior of the system. In the figures below,

the pole-zero maps for the transfer functions stated in Equation 6.120 and 6.121 are given.

(a) Hnodamping(s) (b) Hdamping(s)

Figure 6.1: Pole-zero maps of both transfer functions

Above figures show that the poles of the transfer functions lie in the complex plane. This

means that the dynamic behavior of the system is periodic. As can be seen in Figure 6.1a

the poles of the undamped system lie on the imaginary axis. A pole lying on the imaginary

axis generates an oscillatory component with a constant amplitude determined by the initial

conditions, which is the case for an undamped mass spring system as showed in Figure 4.2

(Understanding Poles and Zeros n.d.). Figure 6.1b shows that the poles for the damped

CHAPTER 6. LAPLACE TRANSFORMS 42

system lie in the left-half plane. The real parts of the poles are negative, which causes an

oscillation decaying over time. By looking at Figure 4.4, it can be concluded that adding a

damper indeed decreases the amplitude over time.

Figure 6.2 shows the relation between the poles of the transfer function and the eigenfre-

quency and damping ratio of a system.

Figure 6.2: A visualization of the relation between the pole location, eigenfrequency and
damping ratio (Thompson, 2014)

The eigenfrequency equals the magnitude of the complex poles (Aghajanian et al., 2014).

The imaginary part of the pole is the damped eigenfrequency, while the real part of the pole

sets the rate at which the oscillation decays (Thompson, 2014).

Chapter 7

Two-degree-of-freedom mass-spring

system

In this chapter, the first model is extended to a two spring-coupled mass system. In real life,

this model could for example represent the upper and lower part of the bus door. On the

one side, the second point mass is attached to the first mass using a spring. On the other

side, the point mass is connected to a wall through a third spring. Using two masses brings

the model a little closer to the real-life situation. This could represent for example the upper

and lower part of the bus door. The analytical solution and numerical solution are plotted

in Julia such that the obtained solutions can be verified as correct. The code is included

in Appendix E.

7.1 No external forces

The first model does not include damping or external forces. Also, the two masses are

restricted to only moving in the x-direction. It is still assumed that the masses slide over a

frictionless table, so there is still no gravity. The vector u⃗(t) exists of the displacement of

mass 1 and the displacement of mass 2. The equilibrium positions for mass 1 and mass 2 are

denoted, respectively, by x01 and x02 A visualization of this model is presented in the figure

below.

43

CHAPTER 7. TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 44

k1
m1

x01

k2
m2

x02

k3

y

xu1 u2

Figure 7.1: A visualization of an undamped two spring-coupled mass system without external
forces

The equations of motion for this system are as followsm1ü1 = −(k1 + k2)u1 + k2u2

m2ü2 = k2u1 − (k2 + k3)u2

(7.1)

The above equation can also be written as a matrix vector system.[
m1 0

0 m2

][
ü1(t)

ü2(t)

]
+

[
k1 + k2 −k2

−k2 k2 + k3

][
u1(t)

u2(t)

]
=

[
0

0

]
(7.2)

M⃗̈u(t) +Ku⃗(t) = 0⃗ (7.3)

To solve these differential equations, the same method is used as in Chapter 4. A solution

is guessed of the form [
u1(t)

u2(t)

]
=

[
a1

a2

]
eiωt = a⃗eiωt (7.4)

CHAPTER 7. TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 45

[
m1 0

0 m2

]
· −ω2

[
a1

a2

]
eiωt +

[
k1 + k2 −k2

−k2 k2 + k3

][
a1

a2

]
eiωt =

[
0

0

]
(7.5)[

−m1ω
2 0

0 −m2ω
2

][
a1

a2

]
eiωt +

[
k1 + k2 −k2

−k2 k2 + k3

][
a1

a2

]
eiωt =

[
0

0

]
(7.6)[

−m1ω
2 + (k1 + k2) −k2

−k2 −m2ω
2 + (k2 + k3)

][
a1

a2

]
eiωt =

[
0

0

]
(7.7)[

−m1ω
2 + (k1 + k2) −k2

−k2 −m2ω
2 + (k2 + k3)

][
a1

a2

]
=

[
0

0

]
(7.8)

If both sides of Equation 7.8 are multiplied by the inverse of the obtained matrix, the values

of a1 and a2 can be found. This leads to the solution

[
a1

a2

]
=

[
0

0

]
, which is obviously a

solution. The masses are just holding still. However, a nontrivial solution that actually

contains motion is preferred. If both a1 and a2 do not equal zero, it can be concluded

that the inverse of the matrix from Equation 7.8 does not exists, which implies that the

determinant of the specific matrix equals zero (Nicholson, 2020). The determinant of the

matrix is calculated as follows ∣∣∣∣∣−m1ω
2 + (k1 + k2) −k2

−k2 −m2ω
2 + (k2 + k3)

∣∣∣∣∣ = 0 (7.9)

(−m1ω
2 + (k1 + k2))(−m2ω

2 + (k2 + k3))− (−k2 · −k2) = 0 (7.10)

m1m2ω
4 − (m1(k1 + k3) +m2(k1 + k2))ω

2 + (k1 + k2)(k2 + k3)− k2
2 = 0 (7.11)

m1m2ω
4 − (m1(k1 + k3) +m2(k1 + k2))ω

2 + k1k2 + k1k3 + k2k3 = 0 (7.12)

(7.13)

With the help of the quadratic formula the two natural frequencies, ω
(1)
0 and ω

(2)
0 can be

found.

CHAPTER 7. TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 46

ω2
0
(1) =

1

2
(
(k1 + k2)m2 + (k2 + k3)m1

m1m2

) +
1

2
[(
(k1 + k2)m2 + (k2 + k3)m1

m1m2

)2 (7.14)

− 4

√
(k1 + k2)(k2 + k3)− k2

2

m1m2

]

ω2
0
(2) =

1

2
(
(k1 + k2)m2 + (k2 + k3)m1

m1m2

)− 1

2
[(
(k1 + k2)m2 + (k2 + k3)m1

m1m2

)2 (7.15)

− 4

√
(k1 + k2)(k2 + k3)− k2

2

m1m2

]

Thus one of the requirements of the solution u⃗(t) is found and can be written as

(−ω2
0
(1,2)M +K)⃗a = 0 (7.16)

M−1Ka⃗ = ω2
0
(1,2)a⃗ (7.17)

However, M−1K is not a symmetric matrix. For efficiency, symmetry is preferred (Turtel-

laub, n.d.). The inverse of the square root of matrix M is used, which is defined as follows

M− 1
2 =

[
1√
m1

0

0 1√
m2

]
(7.18)

Let b⃗ = M
1
2 a⃗ to obtain

(−ω2
0
(1,2)M +K)M− 1

2 b⃗ = 0 (7.19)

(−ω2
0
(1,2)MM− 1

2 +KM− 1
2)⃗b = 0 (7.20)

M− 1
2 (−ω2

0
(1,2)MM− 1

2 +KM− 1
2)⃗b = 0 (7.21)

(−ω2
0
(1,2)I2 +M− 1

2KM− 1
2)⃗b = 0 (7.22)

(−ω2
0
(1,2)I2 + K̂)⃗b = 0 (7.23)

K̂b⃗ = ω2
0
(1,2)⃗b (7.24)

Notice that K̂ is a symmetric matrix, which means that the matrix is orthogonally diag-

onalizable (Nicholson, 2020). In Julia, the eigenvalues and eigenvectors of the matrix K̂

are found and normalized. The normalized eigenvectors are plugged in a matrix P . P is

called the model matrix of this system (Adhikari and Phani, 2007). Recall that the inverse

of an orthogonal matrix equals the transposed of that matrix (Nicholson, 2020). Λ is a

diagonal matrix with the corresponding eigenvalues on the diagonal. Thus K̂ can be written

CHAPTER 7. TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 47

as P TΛP . Now, transform the system by substituting q⃗(t) = M
1
2 u⃗(t) and ⃗̈q(t) = M

1
2 ⃗̈u(t).

MM− 1
2 q̈(t) +KM− 1

2 q(t) = 0 (7.25)

M− 1
2MM− 1

2 ⃗̈q(t) +M− 1
2KM− 1

2 q⃗(t) = 0⃗ (7.26)

I2⃗̈q(t) + K̂q⃗(t) = 0⃗ (7.27)

(7.28)

Now a second transformation takes place, namely q⃗(t) = P r⃗(t) and ⃗̈q(t) = P⃗̈r(t). This gives

I2P⃗̈r(t) + K̂P r⃗(t) = 0⃗ (7.29)

P T I2P⃗̈r(t) + P T K̂P r⃗(t) = 0⃗ (7.30)

I2⃗̈r(t) + Λr⃗(t) = 0⃗ (7.31)

(7.32)

From Equation 7.32 a new system of equations can be derived, namely:

⃗̈
r1(t) + ω2

n
(1) ⃗r1(t) = 0⃗ (7.33)

⃗̈
r2(t) + ω2

n
(2) ⃗r2(t) = 0⃗ (7.34)

(7.35)

Now, the multiple degree of freedom system is uncoupled into two differential equations and

can treated as a collection of single degree-of-freedom systems, which are described in Section

4.1. Thus the following solution is obtained[
r1(t)

r2(t)

]
=

c1 cos(ω(1)
0 t
)
+ c2 sin

(
ω
(1)
0 t
)

c3 cos
(
ω
(2)
0 t
)
+ c4 sin

(
ω
(2)
0 t
) (7.36)

The initial conditions are of the same form as in Section 4.1, so

[
c1

c3

]
= P TM

1
2 u⃗0 and[

c2

c4

]
= P TM

1
2

 v0,1

ω
(
01)
v0,2

ω
(
02)

. However, this is a solution for r⃗(t) and not for u⃗(t). To obtain a

solution for u⃗(t), the solution for r⃗(t) has to be transformed back to the original system.

The used transformations are u⃗(t) = M− 1
2 q⃗(t) and q⃗(t) = P r⃗(t). So u⃗(t) = M− 1

2P r⃗(t). So

CHAPTER 7. TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 48

the solution for Equation 7.1 is as follows[
u1(t)

u2(t)

]
= M− 1

2P

c1 cos(ω(1)
0 t
)
+ c2 sin

(
ω
(1)
0 t
)

c3 cos
(
ω
(2)
0 t
)
+ c4 sin

(
ω
(2)
0 t
) (7.37)

where the values of the ci’s are described above. As can see in the figure below, this solution

is correct.

Figure 7.2: A graph of the analytical and numerical solution of the displacement of both
masses for the undamped situation without external forces

7.1.1 Damped system without external forces

Three dampers are added to the system described in Section 7.1. The new situation is

visualized in the figure below.

k1

c1 m1

x01

k2

c2

k3

c3m2

x02

u1 u2

y

x

Figure 7.3: A diagram of a damped two spring-coupled mass system without external forces

CHAPTER 7. TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 49

Adding dampers to the system gives the following equations of motionm1ü1 = −(c1 + c2)u̇1 + c2u̇2 − (k1 + k2)u1 + k2u2

m2ü2 = c2u̇1 − (c2 + c3)u̇2 + k2u1 − (k2 + k3)u2

(7.38)

This equation can be rewritten in the following matrix vector system[
m1 0

0 m2

][
ü1(t)

ü2(t)

]
+

[
c1 + c2 −c2

−c2 c2 + c3

][
u̇1(t)

u̇2(t)

]
+

[
k1 + k2 −k2

−k2 k2 + k3

][
u1(t)

u2(t)

]
=

[
0

0

]
(7.39)

M⃗̈u(t) + C⃗̇u(t) +Ku⃗(t) = 0⃗ (7.40)

In this section, a distinction is made between the classically damped situation and the non-

classically damped situation.

Classically damped

Firstly, the assumption is made that the system is classically damped. The same transfor-

mations are used as in Section 7.1 to obtain the following equation

I2 ¨⃗r(t) + P TM− 1
2CM− 1

2P ˙⃗r(t) + Λr(t) = 0⃗ (7.41)

Since classical damping is assumed, P TM− 1
2CM− 1

2P is a diagonal matrix. Rayleigh showed

that a system is classically damped if the damping matrix is a linear combination of the

mass matrix and stiffness matrix (Adhikari and Phani, 2007). Thus Equation 7.41 can be

written in the following form

⃗̈
r1(t) + β1ṙ1(t) + ω(1)

n
⃗r1(t) = 0⃗ (7.42)

⃗̈
r2(t) + β2ṙ2(t) + ω(2)

n
⃗r2(t) = 0⃗ (7.43)

(7.44)

From Section 4.1.1, it is known that the solution is of the form

⃗̈
r1(t) + 2ζ1ωiṙ1(t) + ω2

n
(1) ⃗r1(t) = 0⃗ (7.45)

⃗̈
r2(t) + 2ζ2ωiṙ2(t) + ω2

n
(2) ⃗r2(t) = 0⃗ (7.46)

(7.47)

CHAPTER 7. TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 50

Figure 7.4: A graph of the analytical and numerical solution of the displacement of both
masses for the undamped situation without external forces

where ζi is defined as βi

2ω
(i)
0

. Now, the solution for the two degree-of-freedom situation can be

copied from Section 4.1.1. The solution for r(t) is

[
r1(t)

r2(t)

]
=

e−ω
(1)
0 ζ1t(α1 cos

(
ω
(1)
0

√
1− ζ21 t

)
+ α2 sin

(
ω
(1)
0

√
1− ζ21 t

)
)

e−ω
(2)
0 ζ2t(α3 cos

(
ω
(2)
0

√
1− ζ22 t

)
+ α4 sin

(
ω
(2)
0

√
1− ζ22 t

)
)

 (7.48)

The values for the αi’s in the above equation are comparable to the previously found val-

ues.

[
α1

α3

]
= P TM

1
2 u⃗0 and

[
α2

α4

]
= P TM

1
2

v0,1+u0,1ω
(1)
0 ζ1

ω
(1)
0

√
1−ζ21

v0,2+u0,2ω
(2)
0 ζ2

ω
(2)
0

√
1−ζ22

 To obtain a solution for the

displacement of the two masses, the solution is transformed back. Thus a solution is[
u1(t)

u2(t)

]
= M− 1

2P

e−ω
(1)
0 ζ1t(α1 cos

(
ω
(1)
0

√
1− ζ21 t

)
+ α2 sin

(
ω
(1)
0

√
1− ζ21 t

)
)

e−ω
(2)
0 ζ2t(α3 cos

(
ω
(2)
0

√
1− ζ22 t

)
+ α4 sin

(
ω
(2)
0

√
1− ζ22 t

)
)

 (7.49)

The graph below shows that this solution is correct.

CHAPTER 7. TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 51

Figure 7.5: A graph of the analytical and numerical solution of the displacement of both
masses for the classically damped situation without external forces

Non-classically damping

There are situations that cannot be accurately analyzed by the classical damping model.

These situations are defined as non-classically damped. The modal equations of motion of

non-classically damped structures are coupled by off-diagonal terms in the modal damping

matrix (Xu and Igusa, 1991). In fact, experimental modal testing suggests that no physical

system is strictly classically damped. In the analysis of non-classically damped systems, a

common approximation is to ignore the off-diagonal elements of the modal damping matrix.

This is called the ”decoupling approximation”. Multiple studies were done whether the

approximation could be improved. However, it turned out that the one that minimizes the

error bound of the decoupling approximation is the modal damping matrix with omitted

off-diagonal elements (Adhikari, 2001). Suppose D = P TM− 1
2CM− 1

2P , then the equations

of motion equal

⃗̈r(t) +D⃗̇r(t) + Λr⃗(t) = 0⃗ (7.50)

The modal damping matrix is split such thatD = Dd+Do. Dd is a diagonal matrix composed

of the diagonal elements of D, and Do is matrix with zero diagonal elements and whose off-

diagonal elements coincide with those in D. The decoupling approximation amounts to simply

neglecting Do and thus replacing D by Dd (Morzfeld, Ajavakom, and Ma, 2009). Now, the

equations of motion are decoupled and the method described in Section 7.1.1 can be used.

The solutions for the decoupled equations would be close to the exact solution of the coupled

equations if the non-classical damping terms are sufficiently small (Adhikari, 2001). To get

an idea of the error, the numerical solution of a non-classically damped system is plotted,

CHAPTER 7. TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 52

Figure 7.6: A graph of the analytical and numerical solution of the displacement of both
masses for the non-classically damped situation without external forces

together with the analytical solution of the non-classically damped system using the method

described above.

Chapter 8

Single point mass in two spatial

dimensions mass-spring system

In the previous models, the point masses’ movements were restricted to one spatial direc-

tion. This chapter describes a model that allows the point mass to move in both the x- and

y-direction, which is also the case in the practical situation. First, an undamped system is

considered excluding external forces. Afterwards, dampers are added to the system. Lastly,

the situations including a constant external force and a periodic force are taken into consid-

eration. All the analytically found solutions for the displacement in the x- and y-direction

are plotted against each other in Julia. The code can be found in Appendix F, including

the initial conditions.

8.1 No external forces

A point mass of mass m is in the middle of two walls and connected to the walls by means

of two springs with spring constants k1 and k2. Gravity is still not included in the system.

No external forces are applied, so the movement of the mass depends on the initial position

of the mass, which is denoted by u⃗0. (x0, y0) represents the equilibrium position of the

mass. The initial position u⃗0 consists of an intial x- and y-postion (u0,x, u0,y). The same

holds for the initial velocity, denoted v⃗0. u⃗(t) is the displacement of the mass from the

equilibrium position and exists of the displacement in the x-direction and in the y-direction.

The situation is visualized below.

53

CHAPTER 8. SINGLE POINTMASS IN TWO SPATIAL DIMENSIONSMASS-SPRING SYSTEM54

k1

m

(x0, y0)

k2ux

uy

y

x

Figure 8.1: A diagram of an undamped mass-spring system without external forces moving
in both the x- and y-direction

First, the spring force is divided in the force resulting from the right and left spring.[
Fspring,x

Fspring,y

]
=

[
F

(1)
spring,x + F

(2)
spring,x

F
(1)
spring,y + F

(2)
spring,y

]
(8.1)[

Fspring,x

Fspring,y

]
=

[
−k1xux − k2xux

−k1yuy − k2yuy

]
(8.2)[

Fspring,x

Fspring,y

]
=

[
−(k1x + k2x) 0

0 −(k1y + k2y)

][
ux

uy

]
(8.3)

(8.4)

Now, the equations of motion can easily be obtained.

müx + (k1x + k2x)ux = 0 (8.5)

müy + (k1y + k2y)uy = 0 (8.6)

The equations of motion can be written as a matrix vector system.[
m 0

0 m

][
üx

üy

]
+

[
(k1x + k2x) 0

0 (k1y + k2y)

][
ux

uy

]
= 0⃗ (8.7)

M⃗̈u+Ku⃗ = 0⃗ (8.8)

The same guess solution is used as in the previous chapter,u⃗(t) = a⃗eiωt and is plugged into

CHAPTER 8. SINGLE POINTMASS IN TWO SPATIAL DIMENSIONSMASS-SPRING SYSTEM55

the equations of motion, which gives the following expressions[
m 0

0 m

]
− ω2

[
a1

a2

]
eiωt +

[
(k1x + k2x) 0

0 (k1y + k2y)

][
a1

a2

]
eiωt = 0⃗ (8.9)[

−mω2 0

0 −mω2

][
a1

a2

]
eiωt ++

[
(k1x + k2x) 0

0 (k1y + k2y)

][
a1

a2

]
eiωt = 0⃗ (8.10)[

−mω2 + (k1x + k2x) 0

0 −mω2 + (k1y + k2y)

][
a1

a2

]
= 0⃗ (8.11)

This system also has two eigenfrequencies, namely one for the x-direction and one for the y-

direction. By setting the determinant of above matrix equal to zero, the natural frequencies

of the system can be found.∣∣∣∣∣−mω2 + (k1x + k2x) 0

0 −mω2 + (k1y + k2y)

∣∣∣∣∣ = 0 (8.12)

(−mω2 + (k1x + k2x))(−mω2 + (k1y + k2y)) = 0 (8.13)

(8.14)

These equation are of exact the same form as Equation 4.4. Thus the eigenfrequencies can

easily be obtained by substituting k = k1x + k2x or k = k1y + k2y into the eigenfrequency

found in Section 4.1.

ω
(x)
0 =

√
k1x + k2x

m
(8.15)

ω
(y)
0 =

√
k1y + k2y

m
(8.16)

Thus one of the requirements of the solution is

(−ω2
0
(x,y)M +K)⃗a = 0 (8.17)

M−1Ka⃗ = ω2
0
(x,y)a⃗ (8.18)

Now, Equation 8.8 is multiplied by M−1 to obtain the following equations

M−1M⃗̈u+M−1Ku⃗ = 0⃗ (8.19)

I2⃗̈u+ Λu⃗ = 0⃗ (8.20)

where Λ is a diagonal matrix with ω2
0
(x) and ω2

0
(y) on the diagonal. This gives the following

CHAPTER 8. SINGLE POINTMASS IN TWO SPATIAL DIMENSIONSMASS-SPRING SYSTEM56

system of equations

üx + ω2
0
(x)ux = 0 (8.21)

üy + ω2
0
(y)uy = 0 (8.22)

These equations are comparable with Equation 4.1 and the same calculations can be done

to obtain the solution [
ux(t)

uy(t)

]
=

c1 cos(ω(x)
0 t
)
+ c2 sin

(
ω
(x)
0 t
)

c3 cos
(
ω
(y)
0 t
)
+ c4 sin

(
ω
(y)
0 t
) (8.23)

The values for the ci’s are also the same as described in Section 4.1, so

[
c1

c3

]
=

[
u0,x

u0,y

]
and[

c2

c4

]
=

 v0,x

ω
(x)
0

v0,y

ω
(y)
0

 A plot in Julia, which is presented below, shows us that this is the right

solution for the equations of motion.

Figure 8.2: A visualization of an undamped mass-spring system without external forces
moving in both x- and y-direction

8.1.1 Damped system without external forces

Two dampers, with damping constant c1 and c2, are added to the system described in Section

??. This gives the following situation

CHAPTER 8. SINGLE POINTMASS IN TWO SPATIAL DIMENSIONSMASS-SPRING SYSTEM57

k1 k2

c1 c2m

(x0, y0)

ux

uy

y

x

Figure 8.3: A diagram of a damped mass-spring system without external forces moving in
both the x- and y-direction

Thus a damping force has to be added to the equations of motion. The damping force

is also divided in the damping force resulting from the left damper and the damping force

resulting from the right damper.[
Fdamper,x

Fdamper,y

]
=

[
F

(1)
damper,x + F

(2)
damper,x

F
(1)
damper,y + F

(2)
damper,y

]
(8.24)[

Fdamper,x

Fdamper,y

]
=

[
−c1xu̇x − c1xu̇x

−c1yu̇y − c2yu̇y

]
(8.25)[

Fdamper,x

Fdamper,y

]
=

[
−(c1x + c2x) 0

0 −(c1y + c2y)

][
u̇x

u̇y

]
(8.26)

This leads to the following equations of motion

müx + (c1x + c2x)u̇x + (k1x + k2x)ux = 0 (8.27)

müy + (c1y + c2y)u̇y + (k1y + k2y)uy = 0 (8.28)

The equations of motion can be written as a matrix vector system.[
m 0

0 m

][
üx

üy

]
+

[
(c1x + c2x) 0

0 (c1y + c2y)

][
u̇x

u̇y

]
+

[
(k1x + k2x) 0

0 (k1y + k2y)

][
ux

uy

]
= 0⃗

(8.29)

M⃗̈u+ C⃗̇u+Ku⃗ = 0⃗

(8.30)

The same guess solution as used before is plugged into the equations of motion, which gives

CHAPTER 8. SINGLE POINTMASS IN TWO SPATIAL DIMENSIONSMASS-SPRING SYSTEM58

the following expressions[
m 0

0 m

]
· −ω2

[
a1

a2

]
eiωt +

[
(c1x + c2x) 0

0 (c1y + c2y)

]
· iω

[
a1

a2

]
eiωt+ (8.31)[

(k1x + k2x) 0

0 (k1y + k2y)

][
a1

a2

]
eiωt = 0⃗[

−mω2 0

0 −mω2

][
a1

a2

]
eiωt +

[
(c1x + c2x)iω 0

0 (c1y + c2y)iω

][
a1

a2

]
eiωt+ (8.32)[

(k1x + k2x) 0

0 (k1y + k2y)

][
a1

a2

]
eiωt = 0⃗[

−mω2 + (c1x + c2x)iω + (k1x + k2x) 0

0 −mω2 + (c1y + c2y)iω + (k1y + k2y)

][
a1

a2

]
= 0⃗

(8.33)

The determinant of the above matrix is set equal to zero.∣∣∣∣∣−mω2 + (c1x + c2x)iω + (k1x + k2x) 0

0 −mω2 + (c1y + c2y)iω + (k1y + k2y)

∣∣∣∣∣ = 0 (8.34)

(−mω2 + (c1x + c2x)iω + (k1x + k2x))(−mω2 + (c1y + c2y)iω + (k1y + k2y)) = 0 (8.35)

These equations are of the same form as Equation 4.13 and thus the eigenfrequencies can be

obtained by substitution.

w(x)
n = ω

(x)
0 (iζx +

√
(1− ζ2x)) (8.36)

w(y)
n = ω

(y)
0 (iζy +

√
(1− ζ2y)) (8.37)

where ζx = c1x+c2x

2
√

(k1x+k2x)m
and ζy = c1y+c2y

2
√

(k1y+k2y)m
. Now, Equation 8.30 is multiplied by the

inverse of the mass matrix to obtain the following

M−1M⃗̈u+M−1C⃗̇u+M−1Ku⃗ = 0⃗ (8.38)

I2⃗̈u+Θ⃗̇u+ Λu⃗ = 0⃗ (8.39)

Λ is the same matrix as described in Section 7.1. Θ is a diagonal matrix with the values

2ζxω
(x)
0 and 2ζyω

(y)
0 on the diagonal. This gives us the following equations of motion for the

CHAPTER 8. SINGLE POINTMASS IN TWO SPATIAL DIMENSIONSMASS-SPRING SYSTEM59

x- and y-direction

üx + 2ζxω
(x)
0

⃗̇ux + ω2
0
(x)u⃗x = 0 (8.40)

üy + 2ζyω
(y)
0
⃗̇uy + ω2

0
(y)u⃗y = 0 (8.41)

These equations are comparable with Equation 4.10 and the same calculations can be done

to obtain the solution[
ux(t)

uy(t)

]
=

e−ω
(x)
0 t(α1 cos

(
ω
(x)
0

√
1− ζ2x

)
+ α2 sin

(
ω
(x)
0

√
1− ζ2x

)
)

e−ω
(y)
0 t(α3 cos

(
ω
(y)
0

√
1− ζ2y

)
+ α4 sin

(
ω
(y)
0

√
1− ζ2y

)
)

 (8.42)

The αi’s are of the same form described in Section 4.1.1. Thus

[
α1

α3

]
=

[
u0,x

u0,y

]
and

[
α2

α4

]
=v0,x+u0,xω

(x)
0 ζx

ω
(x)
0

√
1−ζ2x

v0,y+u0,yω
(y)
0 ζx

ω
(y)
0

√
1−ζ2y

 A plot in Julia, which is presented below, shows us that this is the right

solution for the equations of motion.

Figure 8.4: A visualization of a damped mass-spring system without external forces moving
in both x- and y-direction

8.2 Constant external force in the y-direction

An advantage of this model is that an external force in one direction can be included. In

this section, a constant external force, F , is included in the y-direction. This means that the

equation of motion for the displacement in the x-direction does not change. However, the

CHAPTER 8. SINGLE POINTMASS IN TWO SPATIAL DIMENSIONSMASS-SPRING SYSTEM60

Figure 8.5: A visualization of a damped mass-spring system including constant external force
moving in both x- and y-direction

external force is included in the equation of motion for the displacement in the y-direction.

müx + (c1x + c2x)u̇x + (k1x + k2x)ux = 0 (8.43)

müy + (c1y + c2y)u̇y + (k1y + k2y)uy = F (8.44)

The solution for Equation 8.43 is already found in the previous section. Also, a particular

solution for Equation 8.44 has already been found in Section 4.2.1. By substituting the right

values for the spring and damping constant, the following solution can be obtained.

[
ux(t)

uy(t)

]
=

 e−ω
(x)
0 t(α1 cos

(
ω
(x)
0

√
1− ζ2x

)
+ α2 sin

(
ω
(x)
0

√
1− ζ2x

)
)

e−ω
(y)
0 ζyt(α3 cos

(
ω
(y)
0

√
(1− ζ2y)t

)
+ α4 sin

(
ω
(y)
0

√
(1− ζ2y)t

)
) + F

k1y+k2y

 (8.45)

α1 and α2 do have the same value as described above. For this situation, α3 = u0,y − F
k1y+k2y

and α4 =
v0,y+ω

(y)
0 ζyα3

w
(y)
0

√
1−ζ2y

. From Figure 8.5 it can be concluded that the found solution is correct.

8.3 Periodic external force in the y-direction

Now, a periodic external force in the y-direction is included. This external force has an

amplitude F and angular frequency ω. Once again, this does not change the equation of

motion for the displacement in the x-direction and this solution can simply be copied from

before. The equation of motion for the displacement in the y-direction does differ from

CHAPTER 8. SINGLE POINTMASS IN TWO SPATIAL DIMENSIONSMASS-SPRING SYSTEM61

Figure 8.6: A visualization of a damped mass-spring system including periodic external force
moving in both x- and y-direction

before. The equations of motion are

müx + (c1x + c2x)u̇x + (k1x + k2x)ux = 0 (8.46)

müy + (c1y + c2y)u̇y + (k1y + k2y)uy = F cos(ωt) (8.47)

The equation of motion for the displacement in the y-direction is of the same form as the

equation of motion analyzed in Section 4.3.1. Thus the particular solution of Equation 8.47

can be found, using the previously found solution and substitution. The solutions for the

equations of motion are

ux(t)

uy(t)

 =


e−ω

(x)
0 t(α1 cos

(
ω
(x)
0

√
1− ζ2x

)
+α2 sin

(
ω
(x)
0

√
1− ζ2x

)
)

e−ω
(y)
0 ζyt(α3 cos

(
ω
(y)
0

√
(1− ζ2y)t

)
+α4 sin

(
ω
(y)
0

√
(1− ζ2y)t

)
)

+ −mω2F+F (k1y+k2y)

(mω2−(k1y+k2y)2+(c1y+c2y)2ω2 cos(ωt) + F (c1y+c2y)ω

(mω2−(k1y+k2y)2+(c1y+c2y)2ω2 sin(ωt)


The values of α1 and α2 are still the same as described as described above. However,

the values of α3 and α4 are not the same as before. In the above equation, α3 = u0,y −

−mω2F+F (k1y+k2y)

(mω2−(k1y+k2y))2+(c1y+c2y)2ω2 and α4 =
v0,y+ζω0α3−

F (c1y+c2y)ω2

(mω2−(k1y+k2y))2+(c1y+c2y)2ω2

ω
(y)
0

√
1−ζ2

. Since the analytical

and numerical solution coincide, as showed in Figure 8.6, the analytical solution is correct.

Chapter 9

A two dimensional two spring-coupled

masses system

In this chapter, the models described in Chapter 7 and Chapter 8 will be combined. The

two spring-coupled masses from Chapter 7 have the possibility to move both in the x- and

y-direction. As a result, the displacement vector u⃗(t) consists of four functions depending

time.

u⃗(t) =

[
u⃗1(t)

u⃗2(t)

]
=


u1x(t)

u1y(t)

u2x(t)

u2y(t)

 (9.1)

Since this chapter is only combining previously found solution, the undamped situation is

skipped. The first situation that is taken into consideration is the damped system. The

solution is verified in Julia and can be found in Appendix

9.1 Damped without external forces

As mentioned above, the model from Chapter 7 will be extended to two spatial dimensions.

The components of the displacement vector u⃗(t) are visualized in Figure 9.1. Also, the

equilibrium position of the two masses are displayed.

62

CHAPTER 9. A TWO DIMENSIONAL TWO SPRING-COUPLED MASSES SYSTEM63

k1

c1
m1

(x01, y01)

k2

c2

k3

c3
m2

(x02, y02)

u1x

u1y

u2y

u2y
y

x

Figure 9.1: A diagram of a damped two spring-coupled mass system without external forces
moving in both x- and y-direction

Combining the equations of motion from the previous chapters, the equations of motion

for this situations can be obtained

m1ü1x = −(c1x + c2x) ˙u1x + c2x ˙u2x − (k1x + k2x)u1x + k2xu2x

m1ü1y = −(c1y + c2y) ˙u1y + c2y ˙u2y − (k1y + k2y)u1y + k2yu2y

m2ü2x = c2x ˙u1x − (c2x + c3x) ˙u2x + k2xu1x − (k2x + k3x)u2x

m2ü2y = c2y ˙u1y − (c2y + c3y) ˙u2y + k2yu1y − (k2y + k3y)u2y

(9.2)

Writing the above system of equation in matrix vector form gives
m1 0 0 0

0 m2 0 0

0 0 m1 0

0 0 0 m2



ü1x

ü2x

ü1y

ü2y

+


(c1x + c2x) −c2x 0 0

−c2x (c2x + c3x) 0 0

0 0 (c1y + c2y) −c2y

0 0 −c2y (c2y + c3y)



u̇1x

u̇2x

u̇1y

u̇2y


(9.3)

+


(k1x + k2x) −k2x 0 0

−k2x (k2x + k3x) 0 0

0 0 (k1y + k2y) −k2y

0 0 −cky (k2y + k3y)



u1x

u2x

u1y

u2y

 = 0⃗

(9.4)

M ¨⃗u+ C ˙⃗u+Ku⃗ = 0⃗ (9.5)

From the above equation, the same problem as in Section 7.1.1 is recognized. Thus in the

CHAPTER 9. A TWO DIMENSIONAL TWO SPRING-COUPLED MASSES SYSTEM64

same manner, this problem can be solved and a solution is


u1x

u2x

u1y

u2y

 = M− 1
2P


e−ω

(1x)
0 ζ1xt(α1x cos

(
ω
(1x)
0

√
1− ζ21xt

)
+ α2x sin

(
ω
(1x)
0

√
1− ζ21xt

)
)

e−ω
(2x)
0 ζ2xt(α3x cos

(
ω
(2x)
0

√
1− ζ22xt

)
+ α4x sin

(
ω
(2x)
0

√
1− ζ22xt

)
)

e−ω
(1y)
0 ζ1yt(α1y cos

(
ω
(1y)
0

√
1− ζ21yt

)
+ α2y sin

(
ω
(1y)
0

√
1− ζ21yt

)
)

e−ω
(2y)
0 ζ2yt(α3y cos

(
ω
(2y)
0

√
1− ζ22yt

)
+ α4y sin

(
ω
(2y)
0

√
1− ζ22yt

)
)

 (9.6)

The values of the αi’s are defined as follows

[
α1x

α3x

]
= P TM

1
2 u⃗x0,

[
α1y

α3y

]
= P TM

1
2 u⃗y0,

[
α2x

α4x

]
=

P TM
1
2

vx0,1+ux0,1ω
(1x)
0 ζ1x

ω
(1x)
0

√
1−ζ21x

vx0,2+ux0,2ω
(2x)
0 ζ2x

ω
(2x)
0

√
1−ζ22x

 and

[
α2y

α4y

]
= P TM

1
2

vy0,1+uy0,1ω
(1y)
0 ζ1y

ω
(1y)
0

√
1−ζ21y

vy0,2+uy0,2ω
(2y)
0 ζ2y

ω
(2y)
0

√
1−ζ22y

. The equations can be

verified with the help of Julia.

(a) Displacement of the masses in the
x-direction

(b) Displacement of the masses in the
y-direction

Figure 9.2: Both the analytical and numerical solution of the displacement of the masses in
a damped system

Chapter 10

Conclusion

A single-degree-freedom mass-spring system was introduced and several situations are con-

sidered. For every situation, the equation of motion is analyzed and a solution for the

displacement of the mass is found. By doing an analysis of Ventura’s test data and the

simplified models, several similarities can be found. Using these similarities and Fourier

analysis, estimations for the spring constant and damping constant for the simplified model

were made. It can be concluded that the spring constant equals approximately 344531.52 N
m

and the damping constant equals approximately c = 670. Afterward, the solution for the

displacement of the mass was found using the Laplace transform method. There is a con-

nection between the transfer function and the characteristics of a mass-spring system. In

the following chapter, the bus door is regarded as two separate parts connected by a spring.

The solutions for the displacement of the masses are found. The third model that is intro-

duced consists of one mass connected to two walls through springs. Now, the mass can move

in both x- and y-direction. Lastly, two models are combined to obtain two spring-coupled

masses system moving in both x- and y-direction. This model is the closest to the real-life

situation of all mentioned models. The solution for the displacements in both directions of

the masses is found when no external forces are included. Unfortunately, there was no time

left to include a constant and periodic external force. As a result, there is no analysis done

on this model. This could be done in further research.

65

Bibliography

Adhikari, Sondipon (2001). “Damping models for structural vibration”. PhD thesis. Citeseer.

Adhikari, Sondipon and A Srikantha Phani (2007). “Rayleigh’s classical damping revisited”.

In: International Conference on Civil Engineering in the New Millennium: Opportunities

and Challenges.

Aghajanian, Saeid et al. (June 2014). “Optimal Control of Steel Structures by Improved

Particle Swarm”. In: International Journal of Steel Structures 14, pp. 223–230. doi:

10.1007/s13296-014-2003-3.

Bauchau, Olivier Andre (2011). Flexible multibody dynamics. Vol. 176. Springer.

Braun, M. (1991). Differential Equations and Their Applications. Springer.

Cochran, W.T. et al. (1967). “What is the fast Fourier transform?” In: Proceedings of the

IEEE 55.10, pp. 1664–1674. doi: 10.1109/PROC.1967.5957.

COMSOL (2018). Eigenfrequency Analysis. url: https://www.comsol.com/multiphysics/

eigenfrequency-analysis. (accessed: 25.04.2022).

Daud, Nariman Haji, Siti Nurul Huda Romli, and Nor Aishah Ahmad (2021). LAPLACE

TRANSFORM.

Dmitrochenko, Oleg (2008). “Finite elements using absolute nodal coordinates for large-

deformation flexible multibody dynamics”. In: Journal of Computational and Applied

Mathematics 215.2, pp. 368–377.

Eberhard, P. (n.d.). Flexible Multibody Systems. University of Stuttgart. url: https://www.

itm.uni- stuttgart.de/en/research/flexible_multibody_systems/. (accessed:

21.06..2022).

Flores, Paulo (Mar. 2015). “Kinematic Constraint Equations”. In: vol. 168. isbn: 978-3-319-

16189-1. doi: 10.1007/978-3-319-16190-7_7.

Gottlieb, M. and R. Pfeiffer (2013). Lecture 24 Resonance. Ed. by California Institute of

Technology. url: https://www.feynmanlectures.caltech.edu/I_23.html. (accessed:

29.04..2022).

66

BIBLIOGRAPHY 67

Gufler, Veit, Erich Wehrle, and Andreas Zwölfer (2021). “A review of flexible multibody

dynamics for gradient-based design optimization”. In: Multibody System Dynamics 53.4,

pp. 379–409.

Haberman, Richard (2013). Applied partial differential equations: with Fourier series and

boundary value problems. Pearson Education.

Hamper, Martin B et al. (2012). “Use of finite element and finite segment methods in mod-

eling rail flexibility: a comparative study”. In: Journal of computational and nonlinear

dynamics 7.4.

Kazem, Saeed (2013). “Exact solution of some linear fractional differential equations by

Laplace transform”. In: International Journal of nonlinear science 16.1, pp. 3–11.

Lahaye, Domenico (n.d.). “Master Thesis Assignment: The Computational Structural Me-

chanics of Driving Busses and Vibrating Doors”. In: Delft Institute of Applied Mathemat-

ics (DIAM) - TU Delft ().

Logan, D.L. (2007). A First Course in the Finite Element Method. University of Wiscon-

sin–Platteville.

Luo, Shihao, Youhua Fan, and Naigang Cui (2021). “Application of absolute nodal coordinate

formulation in calculation of space elevator system”. In: Applied Sciences 11.23, p. 11576.

Morzfeld, Matthias, N Ajavakom, and F Ma (2009). “Diagonal dominance of damping and

the decoupling approximation in linear vibratory systems”. In: Journal of Sound and

Vibration 320.1-2, pp. 406–420.

Nada, AA et al. (2010). “Use of the floating frame of reference formulation in large deforma-

tion analysis: experimental and numerical validation”. In: Proceedings of the Institution

of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 224.1, pp. 45–58.

Nicholson, W Keith (2020). “Linear algebra with applications”. In.

Olsder, G.J. et al. (2011). Mathematical Systems Theory. VSSD.

Shabana, Ahmed A (1997). “Flexible multibody dynamics: review of past and recent devel-

opments”. In: Multibody system dynamics 1.2, pp. 189–222.

— (2003). Dynamics of multibody systems. Cambridge university press.

Sindy, F., A. Zandbergen, and M. van Zon (2021). “Mathematical Modeling of Bus Doors”.

Unpublished project. TU Delft.

Systems, Ventura (n.d.). about us.

Teixeira, Ricardo, Sérgio Moreira, and Sérgio Tavares (Dec. 2015a). “Multibody Dynamics

Simulation of an Electric Bus”. In: Procedia Engineering 114, pp. 470–477. doi: 10.

1016/j.proeng.2015.08.094.

Teixeira, Ricardo R, Sérgio RDS Moreira, and SMO Tavares (2015b). “Multibody dynamics

simulation of an electric bus”. In: Procedia Engineering 114, pp. 470–477.

BIBLIOGRAPHY 68

Thompson, Marc T. (2014). Intuitive Analog Circuit Design. Elsevier. doi: 10.1016/C2012-

0-03027-X.

Turtellaub, S (n.d.). Modal Analysis for free vibration of undamped Multiple Degree of Free-

dom. (accessed: 15.06..2022).

Understanding Poles and Zeros (n.d.). MASSACHUSETTS INSTITUTE OF TECHNOL-

OGY. url: https://web.mit.edu/2.14/www/Handouts/PoleZero.pdf. (accessed:

15.06..2022).

Vaxman, A. (2018). Lecture VI: Constraints and Controllers.

Xu, Kangming and Takeru Igusa (1991). “Dynamic characteristics of non-classically damped

structures”. In: Earthquake engineering & structural dynamics 20.12, pp. 1127–1144.

Yamamoto, Yutaka, Kaoru Yamamoto, and Masaaki Nagahara (2016). “Tracking of signals

beyond the Nyquist frequency”. In: 2016 IEEE 55th Conference on Decision and Control

(CDC). IEEE, pp. 4003–4008.

Appendix A

Python Code Used in Chapter 3 and 5

1 # import numpy for elementary functions and constants

2 import numpy as np

3 # import fftpack for numerically computing the Fourier transform

4 from scipy.fftpack import fft , ifft

5 # import matplotlib for plotting

6 import matplotlib.pyplot as plt

7 import pandas as pd

8 from scipy.signal import butter , lfilter , freqz , find_peaks , chirp ,

peak_widths

9 from math import exp , cos , sin , sqrt , pi

10 import sympy as sym

11 from sympy.plotting import plot

12 from scipy.misc import derivative

13

14

15 #Obtain data from Excel

16 df = pd.read_csv (r'C:\Users\liset\Documents\Lisette\Year 3\BEP\FFT\dummy.

csv')
17 numpy_array = df.to_numpy ()

18 time=numpy_array [:,0]

19 y_values=numpy_array [:, [2, 5,8]]

20 bus_y=y_values [:,0]

21 left_y=y_values [:,1]

22 right_y=y_values [:,2]

23

24 #Define function for low -passfilter

25

26 def butter_lowpass(cutoff , fs , order):

27 b, a = butter(order , cutoff , btype='low', analog=False)

28 return b, a

69

APPENDIX A. PYTHON CODE USED IN CHAPTER 3 AND 5 70

29

30 def butter_lowpass_filter(data , cutoff , fs , order):

31 b, a = butter_lowpass(cutoff , fs , order)

32 y = lfilter(b, a, data)

33 return y

34

35 #Perform FFT

36

37 Fs = 256 #sampling frequency (Hz)

38 T = 1/Fs; #sampling period

39 L = 52.836*256 #length of signal

40 t = np.arange(0,L)*T #time vector;

41 f =np.arange(0,L+2)*Fs #the frequency domain

42

43 #Left data

44 n=len(left_y)

45 Yleft=fft(left_y) #perform fft of data

46 P2left=abs(Yleft/L) #two -sided spectrum

47 P1left=P2left [:int((n/2+1))] #single -sided spectrum

48 P1left [1:]=2* P1left [1:]

49

50 #Right data

51 Yright=fft(right_y) #perform fft of data

52 P2right=abs(Yright/L) #two -sided spectrum

53 P1right=P2right [:int((n/2+1))] #single -sided spectrum

54 P1right [1:]=2* P1right [1:]

55

56 xf=np.arange (0,(Fs/2),Fs/n)

57

58 #Filter

59

60 cutoff =0.1 #Adviced by Ventura

61 order=4

62 yleft = butter_lowpass_filter(P1left , cutoff , Fs, order)

63 yright = butter_lowpass_filter(P1right , cutoff , Fs , order)

64

65

66 # plot the frequency content

67 plt.plot(xf , yleft[:int(n/2)],linewidth =1)

68 plt.title("Left")

69 plt.xlabel(r"Frequency [s^{-1}]")
70 plt.ylabel(r"Transformed signal in |g| [$\frac{m}{s^2}$]")
71 plt.show()

APPENDIX A. PYTHON CODE USED IN CHAPTER 3 AND 5 71

72 plt.plot(xf , yright [:int(n/2)],linewidth =1)

73 plt.title("Right")

74 plt.xlabel(r"Frequency [s^{-1}]")
75 plt.ylabel(r"Transformed signal in |g| [$\frac{m}{s^2}$]")
76 plt.show()

77

78 indexleft=np.where(yleft [:int(n/2)]==np.amax(yleft [:int(n/2)]))

79 eigenfreqleft=xf[indexleft]

80 indexright=np.where(yright [:int(n/2)]==np.amax(yright [:int(n/2)]))

81 eigenfreqright=xf[indexright]

82 eigenfreq =(eigenfreqleft+eigenfreqright)/2

83

84 #..set mass of point mass

85 m = 80

86 #..set spring constant of spring

87 k=m*(2*pi*eigenfreq)**2 #=344531.52293809

88 #..set damping constant

89 c= 670

90

91 idxleft = np.where(yleft[:int(n/2)]==np.max(yleft[:int(n/2)][(xf >0)&(xf <5)

]))[0][0]

92 freqroadleft=xf[idxleft]

93 idxright = np.where(yright [:int(n/2)]==np.max(yright [:int(n/2)][(xf >0)&(xf

<5)]))[0][0]

94 freqroadright=xf[idxright]

95 freqroad =(freqroadleft+freqroadright)/2

96

97 w0=sqrt(k/m)

98 zeta=c/(2* sqrt(k*m))

99 wd=w0*sqrt(1-zeta **2)

100 w= 2*pi*freqroad #10.730746216426404

101 F= 25

102 #..set initial position and velocity

103 u0 = 0.035

104 v0 = 0.0

105 #..set time begin and end forward

106 q=(m*w**2-k)**2+c**2*w**2

107 p=(-m*w**2*F+F*k)/q

108 b=F*c*w/q

109 c1=u0 -p

110 c2=(v0+zeta*w0*c1 -w*b)/wd

111

112 tspan=np.linspace (0 ,10 ,100)

APPENDIX A. PYTHON CODE USED IN CHAPTER 3 AND 5 72

113

114 #Define functions for position , velocity and acceleration

115 def u(t):

116 return np.exp(-zeta*w0*t)*c1*np.cos(wd*t)+np.exp(-zeta*w0*t)*c2*np.sin

(wd*t)+p*np.cos(w*t)+b*np.sin(w*t)

117

118 def v(t):

119 return -w0*zeta*np.exp(-zeta*w0*t)*u(t)+np.exp(-zeta*w0*t)*wd*(-c1*np.

sin(wd*t)+c2*np.cos(wd*t))-p*w*np.sin(w*t)+w*b*np.cos(w*t)

120

121 def a(t):

122 return -(k/m)*u(t)-(c/m)*v(t)

123

124 def a_in_g(t):

125 return a(t)/9.80665

126

127 #Verify a(t)

128

129 def u_ver(t):

130 return exp(-zeta*w0*t)*c1*cos(wd*t)+exp(-zeta*w0*t)*c2*sin(wd*t)+p*cos

(w*t)+b*sin(w*t)

131

132 # calculating its derivative

133 def v_ver(t):

134 return derivative(u, t)

135

136 def a_ver(t):

137 return derivative(v,t)

138

139 def a_ver_in_g(t):

140 return a_ver(t)/9.80665

141

142 plt.plot(tspan ,a_in_g(tspan))

143 plt.plot(tspan ,a_in_g(tspan))

144 plt.ylim (-0.1 ,0.1)

145 plt.show()

146

147

148 #Perform FFT on acceleration

149 a_t=a_in_g(t)

150 na=len(a_t)

151 Ya=fft(a_t)

152 P2a=abs(Ya/L) #two -sided spectrum

APPENDIX A. PYTHON CODE USED IN CHAPTER 3 AND 5 73

153 P1a=P2a[:int((na /2+1))] #single -sided spectrum

154 P1a [1:]=2* P1a [1:]

155 xfa=np.arange (0,(Fs/2),Fs/na)

156

157 plt.plot(xfa ,P1a[:int(na /2+1)])

158 plt.title("FFT performed on acceleration simple model")

159 plt.xlim (0,20)

160 plt.xlabel("Frequency (in Hz)")

161 plt.ylabel("Transformed signal")

162 plt.show()

163

164 indexmodel=np.where(P1a[:int(n/2)]==np.amax(P1a[:int(n/2)]))

165 eigenfreqmodel=xfa[indexmodel]

166

167 #Estimate c

168 plt.plot(xf , yleft[:int(n/2)],linewidth=1,label="Left")

169 plt.plot(xf , yright [:int(n/2)],linewidth=1,label="Right")

170 plt.plot(xfa ,P1a[:int(na /2+1)],linewidth=1,label="Simplified model with c

=670")

171 plt.xlim (0,60)

172 plt.title("FFTs of the acceleration data")

173 plt.xlabel(r"Frequency [s^{-1}]")
174 plt.ylabel(r"Transformed signal in |g| [$\frac{m}{s^2}$]")
175 plt.legend ()

176 plt.show()

Listing A.1: Code used to visualize Ventura’s data and to perform FFTs

Appendix B

Laplace Transform Table

Figure B.1: Laplace transform table (Daud, Romli, and Ahmad, 2021)

74

Appendix C

Matlab Code Used in Chapter 6

1 syms w c m k

2

3 %Finding the alpha 's for the undamped system with external force in the

4 %x-direction

5 A_external_x =[1 -1 0;

6 0 0 -1;

7 k/m 0 0];

8 b_external_x =[0;

9 0;

10 1];

11 alpha_external_x=linsolve(A_external_x ,b_external_x);

12

13 %Finding the alpha 's for the damped system with external force in the

14 %x-direction

15 A_damped_external_x =[1 -1 0;

16 c/m 0 -1;

17 k/m 0 0];

18 b_damped_external_x =[0;

19 0;

20 1];

21 alpha_damped_external_x=linsolve(A_damped_external_x ,b_damped_external_x);

22

23 %Finding the alpha 's for the undamped system with external force in the

24 %y-direction

25 A_external_y =[1 0 -1 0;

26 0 1 0 -1;

27 k/m 0 -w^2 0;

28 0 k/m 0 -w^2];

29 b_external_y =[0;

30 (-k/m +w^2);

75

APPENDIX C. MATLAB CODE USED IN CHAPTER 6 76

31 1;

32 0];

33 alpha_external_y=linsolve(A_external_y ,b_external_y);

34

35 %Finding the alpha 's for the damped system with external force in the

36 %y-direction

37 A_damped_external_y =[1 0 -1 0;

38 c/m 1 0 -1;

39 k/m c/m -w^2 0;

40 0 k/m 0 -w^2];

41 b_damped_external_y =[-c/m;

42 (-k/m +w^2);

43 1;

44 0];

45 alpha_damped_external_y=linsolve(A_damped_external_y ,b_damped_external_y);

Listing C.1: Code to solve the systems of equation to be able to apply the Laplace inverse

1 m=80;

2 k=344531.52293809;

3 c=870;

4

5 %No damping

6 H=tf(1,[1 0 (k/m)]);

7 [p,z] = pzmap(H);

8 figure (1);

9 fig1=zplane(z,p)

10 hm = findobj(gca , 'Type', 'Line'); % Handle To 'Line ' Objects

11 hm(2).MarkerSize = 14; % Zero Marker

12 grid on

13 saveas(fig1 ,'pzmapnodamping.png','png')
14

15 %Damping

16 H=tf(1,[1 (c/m) (k/m)]);

17 [p,z] = pzmap(H);

18 figure (2);

19 fig2=zplane(z,p)

20 hm = findobj(gca , 'Type', 'Line'); % Handle To 'Line ' Objects

21 hm(2).MarkerSize = 14; % Zero Marker

22 grid on

23 saveas(fig2 ,'pzmapdamping.png','png')

Listing C.2: Code to plot the pole-zero map of the transfer functions

Appendix D

Julia Code Used in Chapter 4

1 using LinearAlgebra

2 using DifferentialEquations

3 using SparseArrays

4 using Plots

5 using Calculus

6

7

8 #..set mass of point mass

9 m = 80

10 #..set spring constant of spring

11 k = 344531.52293809

12 w0=sqrt(k/m)

13

14 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

15 function mass_system !(du,u,p,t)

16 # solve m \ddot{u} + k u = 0 or \ddot{u} = -(k/m) u

17 ddu = -(k/m)*u

18 end

19

20 #..set initial position and velocity

21 u0 = 3.0

22 v0 = 0.0

23 #..set time begin and end forward

24 tspan = (0.0 ,1)

25

26 #.. solution found analytically

27 u(t)=u0*cos(sqrt(k/m)*t)+(v0/w0)*sin(sqrt(k/m)*t)

28

29 #.. define ODE problem to be solved

77

APPENDIX D. JULIA CODE USED IN CHAPTER 4 78

30 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

31

32 #..solve ODE problem

33 sol = solve(prob)

34

35 #..plot solution of velocity and position as function of time

36

37 plot(sol ,vars=2, linewidth=3,label="Numerical solution",yaxis="Displacement

(in m)",xaxis="Time (in s)")

38 plot!(u,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,label="Analytical

solution")

39 savefig("noexternalforcesnodamping")

Listing D.1: Code to plot both the analytical and numerical solution for the undamped

system without external forces

1 #Damped free motion

2

3 #..set mass of point mass

4 m = 80

5 #..set spring constant of spring

6 k = 344531.52293809

7 #..set damping constant

8 c= 870

9

10 w0=sqrt(k/m)

11 zeta=c/(2* sqrt(k*m))

12 wd=w0*sqrt(1-zeta ^2)

13

14

15 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

16 function mass_system !(du,u,p,t)

17 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

18 ddu = -(k/m)*u - (c/m)*du

19 end

20

21 #..set initial position and velocity

22 u0 = 3.0

23 v0 = 0.0

24 #..set time begin and end forward

25 tspan = (0.0 ,1.0)

26 c1=u0

27 c2=(v0+u0*w0*zeta)/wd

APPENDIX D. JULIA CODE USED IN CHAPTER 4 79

28

29 u(t)=exp(-zeta*w0*t)*c1*cos(wd*t)+exp(-zeta*w0*t)*c2*sin(wd*t)

30

31 #.. define ODE problem to be solved

32 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

33

34 #..solve ODE problem

35 sol = solve(prob)

36

37 #..plot solution of velocity and position as function of time

38 #How greater the damping the less the two solutions correspond?

39

40 plot(sol ,vars=2, linewidth=3,label="Numerical solution")

41 plot!(u,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,label="Analytical

solution")

42 savefig("noexternalforcesdamping")

Listing D.2: Code to plot both the analytical and numerical solution for the damped system

without external forces

1 #Undamped external force in x-direction

2

3 #..set mass of point mass

4 m = 80

5 #..set spring constant of spring

6 k = 344531.52293809

7

8

9 w0=sqrt(k/m)

10 F=3000

11

12 #..set imposed acceleration on the door

13 function f(t)

14 return F

15 end

16

17 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

18 function mass_system !(du,u,p,t)

19 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

20 ddu = -(k/m)*u + F/m

21 end

22

23 #..set initial position and velocity

APPENDIX D. JULIA CODE USED IN CHAPTER 4 80

24 u0 = 3.0

25 v0 = 0.0

26 c1=u0 -(F/k)

27 c2=v0/w0

28

29 #..set time begin and end forward

30 tspan = (0.0 ,1.0)

31

32 u(t)= c1*cos(w0*t)+c2*sin(w0*t)+(F/k)

33

34

35 #.. define ODE problem to be solved

36 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

37

38 #..solve ODE problem

39 sol = solve(prob)

40

41 #..plot the source term

42 tvec = Vector (0.:0.001:1.)

43 fvec = f.(tvec)

44 #p1 = plot(tvec ,fvec ,label =" External force ")

45

46 #..plot solution of velocity and position as function of time

47 plot(sol ,vars=2, linewidth=3,label="Numerical solution",yaxis="Displacement

(in m)",xaxis="Time (in s)")

48 plot!(u,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,label="Analytical

solution")

49 savefig("exxnodamping")

Listing D.3: Code to plot both the analytical and numerical solution for the undamped

system including an external force in the x-direction

1 #Damped with external force in x-direction

2

3 #..set mass of point mass

4 m = 80

5 #..set spring constant of spring

6 k = 344531.52293809

7 #..set damping constant

8 c=870

9

10

11 w0=sqrt(k/m)

12 zeta=c/(2* sqrt(k*m))

APPENDIX D. JULIA CODE USED IN CHAPTER 4 81

13 wd=w0*sqrt(1-zeta ^2)

14 F=3000

15

16 function f(t)

17 return F

18 end

19

20 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

21 function mass_system !(du,u,p,t)

22 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

23 ddu = -(k/m)*u - (c/m)*du +f(t)/m

24 end

25

26 #..set initial position and velocity

27 u0 = 3.0

28 v0 = 0.0

29 #..set time begin and end forward

30 tspan = (0.0 ,1.0)

31 c1=u0 -(F/k)

32 c2=(v0+w0*zeta*c1)/wd

33

34 u(t)=exp(-zeta*w0*t)*c1*cos(wd*t)+exp(-zeta*w0*t)*c2*sin(wd*t)+(F/k)

35

36 #.. define ODE problem to be solved

37 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

38

39 #..solve ODE problem

40 sol = solve(prob)

41

42 #..plot the source term

43 tvec = Vector (0.:0.01:10.)

44 fvec = f.(tvec)

45 #p1 = plot(tvec ,fvec ,label =" External force",yaxis ="Force (in N)",xaxis ="

Time (in s)")

46

47 #..plot solution of velocity and position as function of time

48

49 plot(sol ,vars=2, linewidth=3,label="Numerical solution",yaxis="Displacement

(in m)",xaxis="Time (in s)")

50 plot!(u,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,label="Analytical

solution")

APPENDIX D. JULIA CODE USED IN CHAPTER 4 82

51 savefig("exxdamped")

Listing D.4: Code to plot both the analytical and numerical solution for the damped system

including an external force in the x-direction

1 #Undamped external force in y-direction

2

3

4 #..set mass of point mass

5 m = 80

6 #..set spring constant of spring

7 k = 344531.52293809

8 w0=sqrt(k/m)

9 w=60

10 F=3000

11 #..set imposed acceleration on the door

12 function f(t)

13 return F*cos(w*t)

14 end

15

16 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

17 function mass_system !(du,u,p,t)

18 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

19 ddu = -(k/m)*u + f(t)/m

20 end

21

22 #..set initial position and velocity

23 u0 = 3.0

24 v0 = 0.0

25 c1=u0 -(F/(m*(w0^2-w^2)))

26 c2=v0/w0

27

28 #..set time begin and end forward

29 tspan = (0.0 ,1.0)

30

31 u(t)= c1*cos(w0*t)+c2*sin(w0*t)+(F/(m*(w0^2-w^2)))*cos(w*t)

32

33

34 #.. define ODE problem to be solved

35 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

36

37 #..solve ODE problem

38 sol = solve(prob)

APPENDIX D. JULIA CODE USED IN CHAPTER 4 83

39

40 #..plot the source term

41 tvec = Vector (0.:0.001:1.)

42 fvec = f.(tvec)

43 #p1 = plot(tvec ,fvec ,label =" External force ")

44

45 #..plot solution of velocity and position as function of time

46 plot(sol ,vars=2, linewidth=3,label="Numerical solution")

47 plot!(u,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,label="Analytical

solution")

48 savefig("exynodamping")

Listing D.5: Code to plot both the analytical and numerical solution for the undamped

system including an external force in the y-direction

1 #Undamped external force in y-direction as w=w0

2

3 #..set mass of point mass

4 m = 80

5 #..set spring constant of spring

6 k = 344531.52293809

7 w0=sqrt(k/m)

8 w=w0

9 F=3000

10

11

12

13 #..set imposed acceleration on the door

14 function f(t)

15 return F*cos(w*t)

16 end

17

18 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

19 function mass_system !(du,u,p,t)

20 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

21 ddu = -(k/m)*u + f(t)/m

22 end

23

24 #..set initial position and velocity

25 u0 = 3.0

26 v0 = 0.0

27 c1=u0

28 c2=v0/w0

APPENDIX D. JULIA CODE USED IN CHAPTER 4 84

29

30 #..set time begin and end forward

31 tspan = (0.0 ,1.0)

32

33 u(t)= c1*cos(w0*t)+c2*sin(w0*t)+(F/(2*w*m))*t*sin(w0*t)

34

35

36 #.. define ODE problem to be solved

37 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

38

39 #..solve ODE problem

40 sol = solve(prob)

41

42 #..plot the source term

43 tvec = Vector (0.:0.01:1.)

44 fvec = f.(tvec)

45 #p1 = plot(tvec ,fvec ,label =" External force",yaxis ="Force (in N)",xaxis ="

Time (in s)")

46

47 #..plot solution of velocity and position as function of time

48 plot(sol ,vars=2, linewidth=3,label="Numerical solution",yaxis="Displacement

(in m)",xaxis="Time (in s)")

49 plot!(u,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,label="Analytical

solution")

50 savefig("exynodampingw0eqw")

Listing D.6: Code to plot both the analytical and numerical solution for the undamped

system including an external force in the y-direction with ω = ω0

1 #Damped motion with external force in the y-direction

2

3

4 #..set mass of point mass

5 m = 80

6 #..set spring constant of spring

7 k = 344531.52293809

8 #..set damping constant

9 c = 870

10

11 w0=sqrt(k/m)

12 zeta=c/(2* sqrt(k*m))

13 wd=w0*sqrt(1-zeta ^2)

14 w=60

15 F=3000

APPENDIX D. JULIA CODE USED IN CHAPTER 4 85

16

17 function f(t)

18 return F*cos(w*t)

19 end

20

21 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

22 function mass_system !(du,u,p,t)

23 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

24 ddu = -(k/m)*u - (c/m)*du +f(t)/m

25 end

26

27 #..set initial position and velocity

28 u0 = 3.0

29 v0 = 0.0

30 #..set time begin and end forward

31 tspan = (0.0 ,1.0)

32 q=(m*w^2-k)^2+c^2*w^2

33 p=(-m*w^2*F+F*k)/q

34 b=F*c*w/q

35 c1=u0 -p

36 c2=(v0+zeta*w0*c1 -w*b)/wd

37

38 u(t)=exp(-w0*zeta*t)*c1*cos(wd*t)+exp(-w0*zeta*t)*c2*sin(wd*t)+p*cos(w*t)+

b*sin(w*t)

39

40 #.. define ODE problem to be solved

41 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

42

43 #..solve ODE problem

44 sol = solve(prob)

45

46 #..plot the source term

47 tvec = Vector (0.:0.001:1.)

48 fvec = f.(tvec)

49 #p1 = plot(tvec ,fvec ,label =" External force",yaxis ="Force (in N)",xaxis ="

Time (in s)")

50

51 #..plot solution of velocity and position as function of time

52

53 plot(sol ,vars=2, linewidth=3,label="Numerical solution",yaxis="Displacement

(in m)",xaxis="Time (in s)")

54 plot!(u,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,label="Analytical

APPENDIX D. JULIA CODE USED IN CHAPTER 4 86

solution")

55 savefig("exydamping")

Listing D.7: Code to plot both the analytical and numerical solution for the damped system

including an external force in the y-direction

Appendix E

Julia Code Used in Chapter 7

1 using LinearAlgebra

2 using DifferentialEquations

3 using SparseArrays

4 using Plots

5 using Calculus

6

7 #Undamped no external force

8

9 #Define the spring constants

10 k1 = 10000

11 k2 = 20000

12 k3 = 10000

13

14 #Define the masses

15 m1=40

16 m2=40

17

18 #Define the needed matrices

19 K = [(k1+k2) -k2

20 -k2 (k2+k3)]

21 M=[m1 0

22 0 m2]

23 Ktau=M^(-.5)*K*M^(-.5)

24

25 #Find eigenvectors and eigenvalues (they are already normalized ?)

26 eigenvectors=eigvecs(Ktau)

27 wn_1 ,wn_2=eigvals(Ktau)

28

29

30 #Create two orthogonal eigenvectors and create matrix P

87

APPENDIX E. JULIA CODE USED IN CHAPTER 7 88

31 eigenvector1=eigenvectors [:,1]

32 eigenvector2 =[- eigenvector1 [2]

33 eigenvector1 [1]]

34 P=[eigenvector1 eigenvector2]

35

36

37

38 function mass_system !(du,u,p,t)

39 # solve m \ddot{u} + k u = 0 or \ddot{u} = -(k/m) u

40 ddu = (inv(M)*-K)*u

41 end

42

43

44 #..set time begin and end forward

45 tspan = (0.0 ,1.0)

46 #Define initial conditions

47 u0 = [3

48 0]

49 v0= [1

50 0]

51

52 r0=transpose(P)*M^(0.5)*u0

53 r_dot_0=transpose(P)*M^(0.5)*v0

54 c1=r0[1]

55 c2=r_dot_0 [1]/ sqrt(wn_1)

56 c3=r0[2]

57 c4=r_dot_0 [2]/ sqrt(wn_2)

58 r(t)=[c1*cos(sqrt(wn_1)*t)+c2*sin(sqrt(wn_1)*t)

59 c3*cos(sqrt(wn_2)*t)+c4*sin(sqrt(wn_2)*t)]

60

61 u(t)=M^(-0.5)*P*r(t)

62 u1(t)=u(t)[1]

63 u2(t)=u(t)[2]

64

65 #.. define ODE problem to be solved

66 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

67

68

69 #..solve ODE problem

70 sol = solve(prob)

71

72 #..plot solution of velocity and position as function of time

73 plot(sol ,vars =[3,4], linewidth=3,label=["Numerical solution for mass 1" "

APPENDIX E. JULIA CODE USED IN CHAPTER 7 89

Numerical solution for mass 2"],yaxis="Displacement in the x-direction

[m]",xaxis="Time [s]")

74 plot!(u1 ,tspan[1], tspan[2],vars=2,ls=:dash ,color=:yellow ,label="Analytical

solution for mass 1")

75 plot!(u2 ,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,color=:green ,label=

"Analytical solution for mass 2")

76 savefig("2DOFnoexternalforcesnodamping")

Listing E.1: Code to plot both the analytical and numerical solution for the undamped

system without external forces

1 #Damped no external force

2

3 #Define the spring constants

4 k1 = 10000

5 k2 = 20000

6 k3 = 10000

7 c1 = 100

8 c2 = 300

9 c3 = 100

10

11 #Define the masses

12 m1=40

13 m2=40

14 #Define the needed matrices

15 K = [(k1+k2) -k2

16 -k2 (k2+k3)]

17 C = [(c1+c2) -c2

18 -c2 (c2+c3)]

19 M=[m1 0

20 0 m2]

21 Ktau=M^(-.5)*K*M^(-.5)

22 Ctau=M^(-.5)*C*M^(-.5)

23

24 #Find eigenvectors and eigenvalues (they are already normalized ?)

25 eigenvectors=eigvecs(Ktau)

26 ev1 ,ev2=eigvals(Ktau)

27

28

29 #Create two orthogonal eigenvectors and create matrix P

30 eigenvector1=eigenvectors [:,1]

31 eigenvector2 =[- eigenvector1 [2]

32 eigenvector1 [1]]

33 P=[eigenvector1 eigenvector2]

APPENDIX E. JULIA CODE USED IN CHAPTER 7 90

34

35 K_new=transpose(P)*Ktau*P

36 C_new=transpose(P)*Ctau*P

37 dampingratio1=C_new [1]/(2* sqrt(ev1))

38 dampingratio2=C_new [4]/(2* sqrt(ev2))

39

40

41 wd1=sqrt(ev1)*sqrt(1- dampingratio1 ^2)

42 wd2=sqrt(ev2)*sqrt(1- dampingratio2 ^2)

43

44 function mass_system !(du,u,p,t)

45 # solve m \ddot{u} + k u = 0 or \ddot{u} = -(k/m) u

46 ddu = inv(M)*-C*du -(inv(M)*K)*u

47 end

48

49

50 #..set time begin and end forward

51 tspan = (0.0 ,1.0)

52 #Define initial conditions

53 u0 = [3

54 0]

55 v0= [1

56 0]

57

58 r0=transpose(P)*M^(0.5)*u0

59 r_dot_0=transpose(P)*M^(0.5)*v0

60 c1=r0[1]

61 c2=(r_dot_0 [1]+r0[1]* sqrt(ev1)*dampingratio1)/sqrt(ev1)

62 c3=r0[2]

63 c4=(r_dot_0 [2]+r0[2]* sqrt(ev2)*dampingratio2)/sqrt(ev2)

64 print(ev1)

65 print(ev2)

66 r(t)=[exp(-dampingratio1*sqrt(ev1)*t)*(c1*cos(wd1*t)+c2*sin(wd1*t))

67 exp(-dampingratio2*sqrt(ev2)*t)*(c3*cos(wd2*t)+c4*sin(wd2*t))]

68

69 u(t)=M^(-0.5)*P*r(t)

70 u1(t)=u(t)[1]

71 u2(t)=u(t)[2]

72

73 #.. define ODE problem to be solved

74 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

75

76

APPENDIX E. JULIA CODE USED IN CHAPTER 7 91

77 #..solve ODE problem

78 sol = solve(prob)

79

80 #..plot solution of velocity and position as function of time

81 plot(sol ,vars =[3,4], linewidth=3,label=["Numerical solution for mass 1" "

Numerical solution for mass 2"],yaxis="Displacement in x-direction [m]"

,xaxis="Time [s]")

82 plot!(u1 ,tspan[1], tspan[2],vars=2,ls=:dash ,color=:yellow ,label="Analytical

solution for mass 1")

83 plot!(u2 ,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,color=:green ,label=

"Analytical solution for mass 2")

84 savefig("2DOFnoexternalforcesclasdamped")

Listing E.2: Code to plot both the analytical and numerical solution for the classically

damped system without external forces

1 #Damped no external force

2

3 #Define the spring constants

4 k1 = 10000

5 k2 = 30000

6 k3 = 10000

7 c1 = 200

8 c2 = 230

9 c3 = 300

10

11 #Define the masses

12 m1=40

13 m2=40

14 #Define the needed matrices

15 K = [(k1+k2) -k2

16 -k2 (k2+k3)]

17 C = [(c1+c2) -c2

18 -c2 (c2+c3)]

19 M=[m1 0

20 0 m2]

21 Ktau=M^(-.5)*K*M^(-.5)

22 Ctau=M^(-.5)*C*M^(-.5)

23

24 #Find eigenvectors and eigenvalues (they are already normalized ?)

25 eigenvectors=eigvecs(Ktau)

26 ev1 ,ev2=eigvals(Ktau)

27

28

APPENDIX E. JULIA CODE USED IN CHAPTER 7 92

29 #Create two orthogonal eigenvectors and create matrix P

30 eigenvector1=eigenvectors [:,1]

31 eigenvector2 =[- eigenvector1 [2]

32 eigenvector1 [1]]

33 P=[eigenvector1 eigenvector2]

34

35 K_new=transpose(P)*Ktau*P

36 C_new=transpose(P)*Ctau*P

37 dampingratio1=C_new [1]/(2* sqrt(ev1))

38 dampingratio2=C_new [4]/(2* sqrt(ev2))

39

40 print(C_new)

41 wd1=sqrt(ev1)*sqrt(1- dampingratio1 ^2)

42 wd2=sqrt(ev2)*sqrt(1- dampingratio2 ^2)

43

44 function mass_system !(du,u,p,t)

45 # solve m \ddot{u} + k u = 0 or \ddot{u} = -(k/m) u

46 ddu = inv(M)*-C*du -(inv(M)*K)*u

47 end

48

49

50 #..set time begin and end forward

51 tspan = (0.0 ,1.0)

52 #Define initial conditions

53 u0 = [3

54 0]

55 v0= [1

56 0]

57

58 r0=transpose(P)*M^(0.5)*u0

59 r_dot_0=transpose(P)*M^(0.5)*v0

60 c1=r0[1]

61 c2=(r_dot_0 [1]+r0[1]* sqrt(ev1)*dampingratio1)/sqrt(ev1)

62 c3=r0[2]

63 c4=(r_dot_0 [2]+r0[2]* sqrt(ev2)*dampingratio2)/sqrt(ev2)

64 print(ev1)

65 print(ev2)

66 r(t)=[exp(-dampingratio1*sqrt(ev1)*t)*(c1*cos(wd1*t)+c2*sin(wd1*t))

67 exp(-dampingratio2*sqrt(ev2)*t)*(c3*cos(wd2*t)+c4*sin(wd2*t))]

68

69 u(t)=M^(-0.5)*P*r(t)

70 u1(t)=u(t)[1]

71 u2(t)=u(t)[2]

APPENDIX E. JULIA CODE USED IN CHAPTER 7 93

72

73 #.. define ODE problem to be solved

74 prob = SecondOrderODEProblem(mass_system!,v0 ,u0 ,tspan)

75

76

77 #..solve ODE problem

78 sol = solve(prob)

79

80 #..plot solution of velocity and position as function of time

81 plot(sol ,vars =[3,4], linewidth=3,label=["Numerical solution for mass 1" "

Numerical solution for mass 2"],yaxis="Displacement in x-direction [m]"

,xaxis="Time [s]")

82 plot!(u1 ,tspan[1], tspan[2],vars=2,ls=:dash ,color=:yellow ,label="Analytical

solution for mass 1")

83 plot!(u2 ,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,color=:green ,label=

"Analytical solution for mass 2")

84 savefig("2DOFnoexternalforcesnonclasdamped")

Listing E.3: Code to plot both the analytical and numerical solution for the non-classically

damped system without external forces

Appendix F

Julia Code Used in Chapter 8

1 #Undamped free motion

2

3 m = 80

4 #..set spring constant of spring

5 k1x = 1.0

6 k1y = 3.0

7 k2x = 2.0

8 k2y = 1.0

9

10 K= [k1x+k2x 0

11 0 k2x+k2y]

12 M=[m 0

13 0 m]

14 wx=sqrt((k1x+k2x)/m)

15 wy=sqrt((k1y+k2y)/m)

16

17 #..set imposed acceleration on the door

18 function f(t)

19 #return exp(-(t-2) ^2/0.01)

20 #return t>=2

21 return 0

22 end

23

24 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

25 function mass_system2 !(ddu ,du,u,p,t)

26 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

27 ddu[1] = -((k1x+k2x)/m)*u[1] + f(t)

28 ddu[2] = -((k1y+k2y)/m)*u[2] + f(t)

29 end

94

APPENDIX F. JULIA CODE USED IN CHAPTER 8 95

30

31 #..set initial position and velocity

32 u0 = [2.0, 1.0]

33 v0 = [1.0, 0.0]

34 #..set time begin and end forward

35 tspan = (0.0 ,20.0)

36

37 #.. define ODE problem to be solved

38 prob = SecondOrderODEProblem(mass_system2!,v0 ,u0 ,tspan)

39

40 #..solve ODE problem

41 sol = solve(prob)

42

43 #..plot the source term

44 tvec = Vector (0.:0.01:10.)

45 fvec = f.(tvec)

46

47 #Define analytical solution

48 u(t)=[u0[1]* cos(wx*t)+(v0[1]/wx)*sin(wx*t)

49 u0[2]* cos(wy*t)+(v0[2]/wy)*sin(wy*t)]

50 u1(t)=u(t)[1]

51 u2(t)=u(t)[2]

52

53

54 p1 = plot(sol ,vars =(3 ,4),linewidth=2,label="Numerical solution")

55 xlabel !("Displacement in x-direction [m]")

56 ylabel !("Displacement in y-direction [m]")

57

58 #..plot solution of velocity and position as function of time

59 plot(p1)

60 plot!(u1 ,u2 ,tspan[1], tspan[2],ls=:dash ,linewidth=2,label="Analytical

solution")

61 savefig("2dimnoexternalforcesnodamping")

Listing F.1: Code to plot both the analytical and numerical solution for the undamped

system without external forces

1 m = 80

2 #..set spring constant of spring

3 k1x = 8000

4 k1y = 9000

5 k2x = 5000

6 k2y = 1000

7 c1x = 200

APPENDIX F. JULIA CODE USED IN CHAPTER 8 96

8 c2x = 100

9 c1y = 200

10 c2y = 100

11

12 #..set damping constant

13 wx=sqrt((k1x+k2x)/m)

14 wy=sqrt((k1y+k2y)/m)

15 zetax=(c1x+c2x)/(2* sqrt((k1x+k2x)*m))

16 zetay=(c1y+c2y)/(2* sqrt((k1y+k2y)*m))

17 wdx=wx*sqrt(1-zetax ^2)

18 wdy=wy*sqrt(1-zetay ^2)

19

20 #..set imposed acceleration on the door

21 function f(t)

22 #return exp(-(t-2) ^2/0.01)

23 #return t>=2

24 return 0

25 end

26

27 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

28 function mass_system2 !(ddu ,du,u,p,t)

29 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

30 ddu[1] = -((c1x+c2x)/m)*du[1]-((k1x+k2x)/m)*u[1] + f(t)

31 ddu[2] = -((c1y+c2y)/m)*du[2]-((k1y+k2y)/m)*u[2] + f(t)

32 end

33

34 #..set initial position and velocity

35 u0 = [2.0, 1.0]

36 v0 = [1.0, 0.0]

37 #..set time begin and end forward

38 tspan = (0.0 ,10.0)

39

40 #.. define ODE problem to be solved

41 prob = SecondOrderODEProblem(mass_system2!,v0 ,u0 ,tspan)

42

43 #..solve ODE problem

44 sol = solve(prob)

45

46 #..plot the source term

47 tvec = Vector (0.:0.01:10.)

48 fvec = f.(tvec)

49 c1=u0[1]

APPENDIX F. JULIA CODE USED IN CHAPTER 8 97

50 c3=u0[2]

51 c2=(v0[1]+u0[1]*wx*zetax)/wdx

52 c4=(v0[2]+u0[2]*wy*zetay)/wdy

53

54

55 #Define analytical solution

56 u(t)=[exp(-wx*zetax*t)*(c1*cos(wdx*t)+c2*sin(wdx*t))

57 exp(-wy*zetay*t)*(c3*cos(wdy*t)+c4*sin(wdy*t))]

58 u1(t)=u(t)[1]

59 u2(t)=u(t)[2]

60

61 p1 = plot(sol ,vars =(3 ,4),linewidth=2,label="Numerical solution")

62 xlabel !("Displacement in x-direction [m]")

63 ylabel !("Displacement in y-direction [m]")

64

65 #..plot solution of velocity and position as function of time

66 plot(p1)

67 plot!(u1 ,u2 ,tspan[1], tspan[2],ls=:dash ,linewidth=2,label="Analytical

solution")

68 savefig("2dimnoexternalforcesdamping")

Listing F.2: Code to plot both the analytical and numerical solution for the damped system

without external forces

1 m = 80

2 #..set spring constant of spring

3 k1x = 8000

4 k1y = 9000

5 k2x = 5000

6 k2y = 1000

7 c1x = 200

8 c2x = 100

9 c1y = 200

10 c2y = 100

11

12 #.. external force

13 F=200

14

15 #..set damping constant

16 wx=sqrt((k1x+k2x)/m)

17 wy=sqrt((k1y+k2y)/m)

18 zetax=(c1x+c2x)/(2* sqrt((k1x+k2x)*m))

19 zetay=(c1y+c2y)/(2* sqrt((k1y+k2y)*m))

20 wdx=wx*sqrt(1-zetax ^2)

APPENDIX F. JULIA CODE USED IN CHAPTER 8 98

21 wdy=wy*sqrt(1-zetay ^2)

22

23 #..set imposed acceleration on the door

24 function f(t)

25 #return exp(-(t-2) ^2/0.01)

26 #return t>=2

27 return 0

28 end

29

30 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

31 function mass_system2 !(ddu ,du,u,p,t)

32 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

33 ddu[1] = -((c1x+c2x)/m)*du[1]-((k1x+k2x)/m)*u[1]

34 ddu[2] = -((c1y+c2y)/m)*du[2]-((k1y+k2y)/m)*u[2] + F/m

35 end

36

37 #..set initial position and velocity

38 u0 = [2.0, 1.0]

39 v0 = [1.0, 0.0]

40 #..set time begin and end forward

41 tspan = (0.0 ,10.0)

42

43 #.. define ODE problem to be solved

44 prob = SecondOrderODEProblem(mass_system2!,v0 ,u0 ,tspan)

45

46 #..solve ODE problem

47 sol = solve(prob)

48

49 #..plot the source term

50 tvec = Vector (0.:0.01:10.)

51 fvec = f.(tvec)

52 c1=u0[1]

53 c3=u0[2]-F/(k1y+k2y)

54 c2=(v0[1]+u0[1]*wx*zetax)/wdx

55 c4=(v0[2]+u0[2]*wy*zetay*c3)/wdy

56

57

58 #Define analytical solution

59 u(t)=[exp(-wx*zetax*t)*(c1*cos(wdx*t)+c2*sin(wdx*t))

60 exp(-wy*zetay*t)*(c3*cos(wdy*t)+c4*sin(wdy*t))+F/(k1y+k2y)]

61 u1(t)=u(t)[1]

62 u2(t)=u(t)[2]

APPENDIX F. JULIA CODE USED IN CHAPTER 8 99

63

64 p1 = plot(sol ,vars =(3 ,4),linewidth=2,label="Numerical solution")

65 xlabel !("Displacement in x-direction [m]")

66 ylabel !("Displacement in y-direction [m]")

67

68 #..plot solution of velocity and position as function of time

69 plot(p1)

70 plot!(u1 ,u2 ,tspan[1], tspan[2],ls=:dash ,linewidth=2,label="Analytical

solution")

71 savefig("2dimexxdamping")

Listing F.3: Code to plot both the analytical and numerical solution for the damped system

including constant external force

1 m = 80

2 #..set spring constant of spring

3 k1x = 8000

4 k1y = 9000

5 k2x = 5000

6 k2y = 1000

7 c1x = 200

8 c2x = 100

9 c1y = 200

10 c2y = 100

11

12 #.. external force

13 F=200

14 w=10

15

16 #..set damping constant

17 wx=sqrt((k1x+k2x)/m)

18 wy=sqrt((k1y+k2y)/m)

19 zetax=(c1x+c2x)/(2* sqrt((k1x+k2x)*m))

20 zetay=(c1y+c2y)/(2* sqrt((k1y+k2y)*m))

21 wdx=wx*sqrt(1-zetax ^2)

22 wdy=wy*sqrt(1-zetay ^2)

23

24 #..set imposed acceleration on the door

25 function f(t)

26 #return exp(-(t-2) ^2/0.01)

27 #return t>=2

28 return 0

29 end

30

APPENDIX F. JULIA CODE USED IN CHAPTER 8 100

31 #.. define the right -hand side of the ordinary differential equation of the

equation of motion

32 function mass_system2 !(ddu ,du,u,p,t)

33 # solve \ddot{u} = -(k/m) u - (c/m) \dot u + f(t)

34 ddu[1] = -((c1x+c2x)/m)*du[1]-((k1x+k2x)/m)*u[1]

35 ddu[2] = -((c1y+c2y)/m)*du[2]-((k1y+k2y)/m)*u[2] + F*cos(w*t)/m

36 end

37

38 #..set initial position and velocity

39 u0 = [2.0, 1.0]

40 v0 = [1.0, 0.0]

41 #..set time begin and end forward

42 tspan = (0.0 ,10.0)

43

44 #.. define ODE problem to be solved

45 prob = SecondOrderODEProblem(mass_system2!,v0 ,u0 ,tspan)

46

47 #..solve ODE problem

48 sol = solve(prob)

49

50 p=(-m*w^2*F+F*(k1y+k2y))

51 q=(m*w^2-(k1y+k2y))^2+(c1y+c2y)^2*w^2

52 #..plot the source term

53 tvec = Vector (0.:0.01:10.)

54 fvec = f.(tvec)

55 c1=u0[1]

56 c3=u0[2]-p/q

57 c2=(v0[1]+u0[1]*wx*zetax)/wdx

58 c4=(v0[2]+u0[2]*wy*zetay*c3 -(F*(c1y+c2y)*w^2)/q)/wdy

59

60

61 #Define analytical solution

62 u(t)=[exp(-wx*zetax*t)*(c1*cos(wdx*t)+c2*sin(wdx*t))

63 exp(-wy*zetay*t)*(c3*cos(wdy*t)+c4*sin(wdy*t))+p/q*cos(w*t)+(F*(c1y+c2y)*w

)/q*sin(w*t)]

64 u1(t)=u(t)[1]

65 u2(t)=u(t)[2]

66

67 p1 = plot(sol ,vars =(3 ,4),linewidth=2,label="Numerical solution")

68 xlabel !("Displacement in x-direction [m]")

69 ylabel !("Displacement in y-direction [m]")

70

71 #..plot solution of velocity and position as function of time

APPENDIX F. JULIA CODE USED IN CHAPTER 8 101

72 plot(p1)

73 plot!(u1 ,u2 ,tspan[1], tspan[2],ls=:dash ,linewidth=2,label="Analytical

solution")

74 savefig("2dimexydamping")

Listing F.4: Code to plot both the analytical and numerical solution for the damped system

including periodic external force

Appendix G

Julia Code Used in Chapter 8

1 #Damped no external force

2

3 #Define the spring constants

4 k1x = 8000

5 k1y = 9000

6 k2x = 5000

7 k2y = 1000

8 k3x = 8000

9 k3y = 9000

10 c1x = 200

11 c2x = 100

12 c1y = 200

13 c2y = 100

14 c3x =200

15 c3y =200

16

17 #Define the masses

18 m1=40

19 m2=40

20 #Define the needed matrices

21 Kx = [(k1x+k2x) -k2x

22 -k2x (k2x+k3x)]

23 Cx = [(c1x+c2x) -c2x

24 -c2x (c2x+c3x)]

25 Ky = [(k1y+k2y) -k2y

26 -k2y (k2y+k3y)]

27 Cy = [(c1y+c2y) -c2y

28 -c2y (c2y+c3y)]

29 M=[m1 0

30 0 m2]

102

APPENDIX G. JULIA CODE USED IN CHAPTER 8 103

31 Ktaux=M^(-.5)*Kx*M^(-.5)

32 Ctaux=M^(-.5)*Cx*M^(-.5)

33 Ktauy=M^(-.5)*Ky*M^(-.5)

34 Ctauy=M^(-.5)*Cy*M^(-.5)

35

36 #Find eigenvectors and eigenvalues (they are already normalized ?)

37 eigenvectorsx=eigvecs(Ktaux)

38 ev1x ,ev2x=eigvals(Ktaux)

39

40 eigenvectorsy=eigvecs(Ktauy)

41 ev1y ,ev2y=eigvals(Ktauy)

42

43 #Create two orthogonal eigenvectors and create matrix P

44 eigenvector1x=eigenvectorsx [:,1]

45 eigenvector2x =[- eigenvector1x [2]

46 eigenvector1x [1]]

47 Px=[eigenvector1x eigenvector2x]

48

49 eigenvector1y=eigenvectorsy [:,1]

50 eigenvector2y =[- eigenvector1y [2]

51 eigenvector1y [1]]

52 Py=[eigenvector1y eigenvector2y]

53

54 K_newx=transpose(Px)*Ktaux*Px

55 C_newx=transpose(Px)*Ctaux*Px

56 K_newy=transpose(Py)*Ktauy*Py

57 C_newy=transpose(Py)*Ctauy*Py

58

59

60

61 dampingratio1x=C_newx [1]/(2* sqrt(ev1x))

62 dampingratio2x=C_newx [4]/(2* sqrt(ev2x))

63 dampingratio1y=C_newy [1]/(2* sqrt(ev1y))

64 dampingratio2y=C_newy [4]/(2* sqrt(ev2y))

65

66

67 wd1x=sqrt(ev1x)*sqrt(1- dampingratio1x ^2)

68 wd2x=sqrt(ev2x)*sqrt(1- dampingratio2x ^2)

69 wd1y=sqrt(ev1y)*sqrt(1- dampingratio1y ^2)

70 wd2y=sqrt(ev2y)*sqrt(1- dampingratio2y ^2)

71

72 function mass_systemx !(du,u,p,t)

73 # solve m \ddot{u} + k u = 0 or \ddot{u} = -(k/m) u

APPENDIX G. JULIA CODE USED IN CHAPTER 8 104

74 ddu = inv(M)*-Cx*du -(inv(M)*Kx)*u

75 end

76

77 function mass_systemy !(du,u,p,t)

78 # solve m \ddot{u} + k u = 0 or \ddot{u} = -(k/m) u

79 ddu = inv(M)*-Cy*du -(inv(M)*Ky)*u

80 end

81

82 #..set time begin and end forward

83 tspan = (0.0 ,1.0)

84 #Define initial conditions

85 u0x = [3

86 0]

87 v0x= [1

88 0]

89

90 u0y = [3

91 0]

92 v0y= [1

93 0]

94

95

96 r0x=transpose(Px)*M^(0.5)*u0x

97 r_dot_0x=transpose(Px)*M^(0.5)*v0x

98 r0y=transpose(Py)*M^(0.5)*u0y

99 r_dot_0y=transpose(Py)*M^(0.5)*v0y

100

101 c1x=r0x [1]

102 c2x=(r_dot_0x [1]+ r0x [1]* sqrt(ev1x)*dampingratio1x)/sqrt(ev1x)

103 c1y=r0y [1]

104 c2y=(r_dot_0y [1]+ r0y [1]* sqrt(ev1y)*dampingratio1y)/sqrt(ev1y)

105

106 c3x=r0x [2]

107 c4x=(r_dot_0x [2]+ r0x [2]* sqrt(ev2x)*dampingratio2x)/sqrt(ev2x)

108 c3y=r0y [2]

109 c4y=(r_dot_0y [2]+ r0y [2]* sqrt(ev2y)*dampingratio2y)/sqrt(ev2y)

110

111 rx(t)=[exp(-dampingratio1x*sqrt(ev1x)*t)*(c1x*cos(wd1x*t)+c2x*sin(wd1x*t))

112 exp(-dampingratio2x*sqrt(ev2x)*t)*(c3x*cos(wd2x*t)+c4x*sin(wd2x*t))]

113 ry(t)=[exp(-dampingratio1y*sqrt(ev1y)*t)*(c1y*cos(wd1y*t)+c2y*sin(wd1y*t))

114 exp(-dampingratio2y*sqrt(ev2y)*t)*(c3y*cos(wd2y*t)+c4y*sin(wd2y*t))]

115

116 ux(t)=M^(-0.5)*Px*rx(t)

APPENDIX G. JULIA CODE USED IN CHAPTER 8 105

117 uy(t)=M^(-0.5)*Py*ry(t)

118

119 u1x(t)=ux(t)[1]

120 u2x(t)=ux(t)[2]

121 u1y(t)=uy(t)[1]

122 u2y(t)=uy(t)[2]

123

124 #.. define ODE problem to be solved

125 probx = SecondOrderODEProblem(mass_systemx!,v0x ,u0x ,tspan)

126 proby = SecondOrderODEProblem(mass_systemy!,v0y ,u0y ,tspan)

127

128

129 #..solve ODE problem

130 solx = solve(probx)

131 soly = solve(proby)

132

133 #..plot solution of velocity and position as function of time

134 #plot(solx ,vars=[3,4], linewidth =3,label =[" Numerical solution for mass 1" "

Numerical solution for mass 2"],yaxis =" Displacement in the x-direction

[m]",xaxis ="Time [s]")

135 #plot!(u1x ,tspan [1],tspan [2],vars=2,ls=:dash ,color =:yellow ,label ="

Analytical solution for mass 1")

136 #plot!(u2x ,tspan [1],tspan [2],vars=2,ls=:dash ,linewidth =2,color =:green ,

label =" Analytical solution for mass 2")

137

138 plot(soly ,vars =[3,4], linewidth=3,label=["Numerical solution for mass 1" "

Numerical solution for mass 2"],yaxis="Displacement in the y-direction

[m]",xaxis="Time [s]")

139 plot!(u1y ,tspan[1], tspan[2],vars=2,ls=:dash ,color=:yellow ,label="

Analytical solution for mass 1")

140 plot!(u2y ,tspan[1], tspan[2],vars=2,ls=:dash ,linewidth=2,color=:green ,label

="Analytical solution for mass 2")

141

142 #plot(sol ,vars=[3,4], linewidth =3,label =[" Numerical solution for mass 1" "

Numerical solution for mass 2"],yaxis =" Displacement (in m)",xaxis ="Time

(in s)")

143 #plot!(u1,tspan [1],tspan [2],vars=2,ls=:dash ,color =:yellow ,label ="

Analytical solution for mass 1")

144 #plot!(u2,tspan [1],tspan [2],vars=2,ls=:dash ,linewidth =2,color =:green ,label

=" Analytical solution for mass 2")

Listing G.1: Code to plot both the analytical and numerical solution for the damped system

