

Delft University of Technology

Cryptosystems for Secure and Efficient Cloud Services
From Key Management, Secure Computing, and Search Functionality
Chen, H.

DOI
10.4233/uuid:6846fff3-cfff-4cf8-8636-4ffc7087a93b
Publication date
2025
Document Version
Final published version
Citation (APA)
Chen, H. (2025). Cryptosystems for Secure and Efficient Cloud Services: From Key Management, Secure
Computing, and Search Functionality. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:6846fff3-cfff-4cf8-8636-4ffc7087a93b

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:6846fff3-cfff-4cf8-8636-4ffc7087a93b
https://doi.org/10.4233/uuid:6846fff3-cfff-4cf8-8636-4ffc7087a93b

CRYPTOSYSTEMS FOR SECURE AND EFFICIENT
CLOUD SERVICES

FROM KEY MANAGEMENT, SECURE COMPUTING, AND SEARCH
FUNCTIONALITY

CRYPTOSYSTEMS FOR SECURE AND EFFICIENT
CLOUD SERVICES

FROM KEY MANAGEMENT, SECURE COMPUTING, AND SEARCH
FUNCTIONALITY

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus [titles, name]
chair of the Board for Doctorates

to be defended publicly on
Wednesday 3 September 2025 at 10:00 o’clock

by

Huanhuan CHEN

Master of Science in Pure Mathematics,
Nankai University, China,

born in Nanyang, Henan Province, China

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof.dr.ir. R.L. Lagendijk, Delft University of Technology, promotor
Dr. K. Liang, Delft University of Technology, copromotor

Independent members:

Prof. dr.ir. F.A. Kuipers Delft University of Technology
Prof. dr. C.A. Boyd Norwegian University of Science and Technology, Norway
Prof. dr. L. Chen University of Surrey, United Kingdom
Dr.ir. J.H. Weber Delft University of Technology
Prof. dr. G. Smaragdakis Delft University of Technology

(reserve member)

Keywords: Lattice-Based Encryption, Updatable Encryption, Fully Homomorphic
Encryption, Searchable Encryption

Printed by: Ipskamp Printing

Cover by: Huanhuan Chen & Xiaodan Zhang. Original image from Canva.com

Copyright © 2025 by H. Chen

ISBN 978-94-6473-510-9

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.

https://repository.tudelft.nl/

To my beloved wife.

CONTENTS

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Three Advanced Encryption Schemes . 2
1.2 Challenges in UE, FHE, and SE . 6
1.3 Problem Statement . 10
1.4 Contributions of the Thesis . 12

1.4.1 Lists of EXCLUDED PUBLICATIONS . 14

2 Equivalence of Updatable Encryption 25
2.1 Introduction . 26
2.2 Updatable Encryption . 28

2.2.1 Leakage Sets . 30
2.2.2 Trivial Win Conditions . 35

2.3 Relations among Security Notions . 36
2.3.1 Relations among Confidentiality Notions 37
2.3.2 Relations among Integrity Notions . 43

2.4 Conclusion . 44

3 CCA-1 Secure Updatable Encryption with Adaptive Security 47
3.1 Introduction . 49

3.1.1 Related Work . 50
3.1.2 Our Approaches . 53
3.1.3 Summary of Contributions . 55

3.2 Preliminaries . 56
3.2.1 Updatable Encryption . 56
3.2.2 Gaussians and Lattices . 59

3.3 New Confidentiality Notions for Updatable Encryption 60
3.3.1 UE Schemes with No-Directional Key Updates 61
3.3.2 A Simplified Confidentiality Notion . 62
3.3.3 A Stronger Confidentiality Notion . 65
3.3.4 Firewall Techniques . 69

3.4 A CCA-1 Secure PKE Scheme . 71
3.4.1 A New PKE Scheme . 71
3.4.2 Correctness and Security . 73

3.5 A CCA-1 Secure Updatable Encryption Scheme 74
3.5.1 Construction . 74

VII

VIII CONTENTS

3.5.2 Correctness . 76
3.5.3 Security Proof . 79
3.5.4 A Packing UE . 88

3.6 Conclusion and Future Work . 90

4 Batch Programmable Bootstrapping, within A Polynomial Modulus 95
4.1 Introduction . 96

4.1.1 Our Result . 97
4.1.2 Related Works . 99

4.2 Preliminaries . 99
4.2.1 Algebraic Number Theory . 99
4.2.2 FHEW-like Cryptosystems . 100
4.2.3 Batch Bootstrapping . 102

4.3 Batch Evaluations of Arbitrary Function within A Polynomial Modulus . . . 105
4.3.1 Batch PBS . 105
4.3.2 Applications . 110

4.4 Large Precision . 111
4.4.1 Decomposition and Removal . 111
4.4.2 Decomposition and Reconstruction . 116

4.5 Conclusion . 117

5 Volume and Access Pattern Leakage-Abuse SE Attack 123
5.1 Introduction . 124
5.2 Preliminaries . 126

5.2.1 Searchable Encryption . 126
5.2.2 Notation . 127

5.3 Models . 127
5.3.1 Leakage Model . 127
5.3.2 Attack Model . 128

5.4 The Proposed Attack . 129
5.4.1 Main Idea . 129
5.4.2 Leaked Knowledge . 130
5.4.3 Our Design . 130
5.4.4 Countermeasure Discussions . 135

5.5 Evaluation . 138
5.5.1 Experimental Setup . 138
5.5.2 Experimental Results . 139
5.5.3 Countermeasure Performance . 140
5.5.4 Discussion on Experiments . 142

5.6 Related Work . 143
5.7 Conclusion . 144

6 File-Injection Attacks on SE, Based on Binomial Structures 149
6.1 Introduction . 150
6.2 Preliminaries . 151

6.2.1 Searchable Encryption . 151

CONTENTS IX

6.2.2 File Injection Attack . 152
6.2.3 FST-Attack . 152

6.3 A New File-injection Attack . 154
6.3.1 Increment [r,n]-Set . 154
6.3.2 Construction of Increment [r,n]-Set . 155
6.3.3 Binomial-Attack . 156
6.3.4 Performance under Different Thresholds 158

6.4 File-injection Attacks on SE Schemes with Keyword Padding 159
6.4.1 Calculating the Effects . 160
6.4.2 Visualising the Effects . 161

6.5 Adopted Binomial-Attack . 165
6.5.1 Removing the (n,n)-Set . 165
6.5.2 Results after the Mitigation . 165

6.6 Discussion . 166
6.7 Future work . 166
6.8 Conclusion . 167

7 Discussion 173
7.1 Updatable Encryption . 173
7.2 Fully Homomorphic Encryption . 177
7.3 Searchable Encryption . 179
7.4 Conclusion . 181

Acknowledgements 185

Curriculum Vitæ 189

List of Publications 191

SUMMARY

Big data is generated daily from diverse sources and devices, significantly transform-
ing our lives through machine learning. However, it also presents major challenges,
particularly for individuals and organizations with limited storage and computational
resources. As a result, cloud services have gained increasing popularity over the past
decades, enabling users to outsource storage and complex analysis tasks while focusing
on data utilization. However, due to the potential curiosity of cloud servers and exter-
nal attackers, directly uploading private data to the cloud is not a viable option. Instead,
sensitive data must be encrypted before being outsourced.

This thesis investigates cryptographic solutions for secure and efficient cloud services,
addressing key challenges in security, efficiency, and functionality. We focus on three
core areas: updatable encryption (UE) to ensure long-term security for stored data, fully
homomorphic encryption (FHE) for efficient computation over encrypted data, and search-
able encryption (SE) to maintain search functionality over outsourced encrypted data.

For UE schemes, we bridge existing gaps by clarifying the relationship among various
security notions. We also extend prior work by improving adaptive security, CCA-1 secu-
rity, and post-quantum security. Additionally, we introduce a novel packing technique,
enabling the simultaneous encryption and update of multiple messages, significantly
reducing token generation overhead.

For FHE, we enhance its efficiency and applicability by developing new batch boot-
strapping techniques that optimize both noise growth and computational costs. Our
work introduces a basic batch programmable bootstrapping method that evaluates ar-
bitrary univariate functions over multiple ciphertexts while refreshing noise. We further
improve this technique with two homomorphic decomposition algorithms, facilitating
computations with higher precision.

In the area of SE, we identify two efficient attacks leveraging background knowledge
and leakage to recover private information using both passive and active methods. Our
passive attack utilizes access and volume leakage patterns to retrieve document and key-
word matches with minimal leaked data. Our active attack, performed through file injec-
tion, achieves a 100% query recovery rate with fewer injected files compared to current
state-of-the-art methods.

While this research primarily addresses secure cloud services, its findings also extend
to related cryptographic primitives, such as identity-based encryption, attribute-based
encryption, and proxy re-encryption, as well as privacy-preserving machine learning
and multi-party computation. Ultimately, our work contributes to advancing the state-
of-the-art in cryptography for secure and efficient cloud computing.

XI

SAMENVATTING

Big data wordt dagelijks gegenereerd vanuit diverse bronnen en apparaten, wat ons le-
ven aanzienlijk verandert door middel van machine learning. Het brengt echter ook
grote uitdagingen met zich mee, vooral voor individuen en organisaties met beperkte
opslag- en rekencapaciteiten. Als gevolg hiervan zijn cloudservices de afgelopen decen-
nia steeds populairder geworden, waarmee gebruikers hun opslag- en complexe ana-
lysetaken kunnen uitbesteden en zich kunnen concentreren op het gebruik van data.
Echter, vanwege de nieuwsgierigheid van cloudservers en externe aanvallers, is het niet
mogelijk om privédata direct naar de cloud te uploaden. In plaats daarvan moeten ge-
voelige gegevens worden versleuteld voordat ze worden uitbesteed.

Dit proefschrift onderzoekt cryptografische oplossingen voor veilige en efficiënte cloud-
services, met nadruk op de belangrijkste uitdagingen op het gebied van veiligheid, effi-
ciëntie en functionaliteit. We richten ons op drie kerngebieden: updatable encryption
(UE) voor de waarborging van de langetermijnbeveiliging van opgeslagen gegevens, fully
homomorphic encryption (FHE) voor efficiënte berekeningen over versleutelde gege-
vens en searchable encryption (SE) om de zoekfunctionaliteit van uitbestede versleu-
telde gegevens te behouden.

Voor UE-schema’s overbruggen we bestaande hiaten door de relatie tussen verschil-
lende beveiligingsconcepten te verduidelijken. We breiden ook eerder werk uit door de
adaptieve beveiliging, CCA-1-beveiliging en post-quantumbeveiliging te verbeteren. Bo-
vendien introduceren we een nieuwe verpakkingsmethode waarmee meerdere berich-
ten gelijktijdig kunnen worden versleuteld en bijgewerkt, wat de overhead bij het gene-
reren van tokens aanzienlijk vermindert.

Voor FHE verbeteren we de efficiëntie en toepasbaarheid door nieuwe batch bootstrapping-
technieken te ontwikkelen die zowel de groei van ruis als de rekenkosten optimaliseren.
Ons werk introduceert een basismethode voor batch-gewijs programmeerbare bootstrap-
ping waarmee willekeurige univariate functies over meerdere ciphertexts kunnen wor-
den geëvalueerd, terwijl de ruis wordt ververst. We verbeteren deze techniek verder met
twee homomorfe decompositie-algoritmen, waardoor berekeningen met hogere preci-
sie mogelijk worden.

Op het gebied van SE identificeren we twee efficiënte aanvallen die gebruik maken van
achtergrondkennis en lekken om privé-informatie te herstellen via zowel passieve als ac-
tieve methoden. Onze passieve aanval maakt gebruik van toegang- en volume-lekken
om documenten en trefwoordovereenkomsten te achterhalen met minimale gelekte ge-
gevens. Onze actieve aanval, uitgevoerd via bestandinjectie, bereikt een 100

Hoewel dit onderzoek zich primair richt op veilige cloudservices, strekt de bevindin-
gen zich ook uit naar verwante cryptografische primitieve, zoals identity-based encryp-
tion, attribute-based encryption en proxy re-encryption, evenals privacy-preservende
machine learning en multi-party computation. Uiteindelijk draagt ons werk bij aan de

XIII

XIV SAMENVATTING

vooruitgang van de stand van zaken in cryptografie voor veilige en efficiënte cloud com-
puting.

1
INTRODUCTION

In the era of big data, massive amounts of data are being created every day. That
boosts the popularity of cloud services in our daily lives. When we use cloud
services, such as Dropbox, Google, and Microsoft, we can delegate the management
of our data and concentrate solely on using it. Those cloud services support a wide
range of activities, including but not limited to data storage, computing and data
analysis, collaborating with other authorized users and sharing, etc.

However, concerns are growing about the potential privacy leakages of personal
data stored in the cloud, such as financial records, private images, and videos.
Attackers could be external hackers or insiders within the cloud services themselves.
This thesis aims to propose cryptographic schemes that enable cloud clients to
securely use cloud services without having to trust the cloud providers.

1

1

2 1. INTRODUCTION

1.1. THREE ADVANCED ENCRYPTION SCHEMES
To prevent the leakage of raw data to attackers, cloud users encrypt their messages
using a secret key through cryptographic techniques, and then send the encrypted
data to the cloud. Cryptographic systems ensure two key security properties for
the encrypted messages: Confidentiality and Integrity [1]. Confidentiality ensures
that the encrypted data is indistinguishable from random noise to anyone who does
not possess the secret key. Only the data owner holds the corresponding key to
decrypt the stored encryption and recover the original messages. Integrity ensures
that adversaries cannot modify the encrypted data without detection.

Cryptography can be classified into symmetric-key encryption and asymmetric-key
encryption (also known as public key encryption, or PKE). In symmetric-key
encryption, the same key is used for both encryption and decryption, and the
security level depends on the length of the secret key. In contrast, asymmetric-key
encryption uses different keys for encryption and decryption, with security relying
on the hardness of mathematical problems, such as the discrete logarithm problem
or integer factorization problem. In the past decade, rapid advancements in
quantum computing have raised the possibility of attacks based on Grover’s and
Shor’s algorithms in the near future. These algorithms can efficiently solve the hard
problems underlying PKE, posing a significant threat to the security of public-key
cryptography, including RSA [2], ECDSA [3], and EdDSA [4]. As a result, there is
an urgent need to redesign cryptosystems that are resilient to quantum attacks.
In fact, NIST has recently announced plans to completely phase out the use of
these three schemes by 2035 [5]. Therefore, it is crucial to develop quantum-secure
cryptographic schemes for cloud services.

This thesis mainly focuses on three key research topics in advanced cryptography
for the secure and efficient use of cloud services:

• Updatable Encryption (UE): This addresses the challenge of long-term data
storage on the cloud. Regularly updating encryption keys through UE reduces
the risk of key compromise and enhances security.

• Fully Homomorphic Encryption (FHE): FHE enables secure computation over
encrypted data stored in the cloud, allowing service providers to perform
operations without exposing the underlying data.

• Searchable Encryption (SE): SE is a cryptographic solution that preserves
the search functionality of encrypted data without revealing the queried
information to the cloud.

In this thesis, we will analyze the security notions related to updatable encryption
and propose a quantum-secure UE scheme that meets these security requirements.
For FHE, we will present efficient schemes that enable service providers to perform
secure and efficient computations over large encrypted datasets. For SE, we propose
an efficient passive attack and an efficient active attack to recover private information
about underlying keywords and documents.

Our UE and FHE constructions are based on lattice-based cryptosystems, which
rely on the presumed hardness of lattice problems such as the Shortest Vector

1.1. THREE ADVANCED ENCRYPTION SCHEMES

1

3

Problem (SVP). SVP is an NP-hard problem that involves finding the shortest
non-zero vector in a lattice. Other related lattice problems, including the Closest
Vector Problem (CVP), the Shortest Independent Vectors Problem (SIVP), and
Decisional Approximate SVP (GapSVP), also remain difficult to solve efficiently, even
with quantum computers, and therefore ensure the lattice-based cryptosystem to be
quantum-resistant [6].

UPDATABLE ENCRYPTION.

The privacy of encrypted messages stored in the cloud is guaranteed by the
security of cryptography systems. An observation is that this privacy is based on
the assumption that the user’s private key is not compromised. However, such
assumption probably fails to exist for a long-time data storage, as the exposure of a
key over an extended period increases the risk of it being compromised. Therefore, a
more secure approach for long-term data storage is to periodically change the secret
key used to protect the data, and to update the corresponding ciphertext stored in
the cloud from the old key to the new one, without altering the plaintext. A similar
strategy is employed by TU Delft, which requires all students to change their NetID
password every nine months.

Updatable encryption (UE), introduced by Boneh et al. [7], provides a practical
solution for periodic key rotation. A naive approach to updating the key would
involve downloading the data, decrypting it with the old key, re-encrypting it with
the new key, and then re-uploading the new ciphertext. However, this process is
computationally expensive for large datasets. In contrast, UE allows a cloud user
to generate a short token that enables the cloud service to update the data on
their behalf. Unlike standard symmetric or asymmetric cryptography, which only
involves encryption and decryption algorithms, a UE scheme includes two additional
algorithms related to token generation and ciphertext updating. Depending on how
the token is generated, there are two types of UE: ciphertext-independent (c-i) UE
and ciphertext-dependent (c-d) UE, as shown in Fig. 1.1.

Figure 1.1: An overview of ciphertext-independent UE and ciphertext-dependent UE.

For ciphertext-independent updatable encryption [8–14], the token is independent
of the ciphertexts to be updated, meaning a single token can be used to update all
old ciphertexts. This approach enables the cloud user to generate the token without
downloading any ciphertext from the cloud. The token depends only on the old and
new encryption keys. An example of c-i UE, as presented in [8], is shown below:

1

4 1. INTRODUCTION


Enc(k1,m) = (π(N ||m||0))k1

TokenGen(k1,k2) = k2/k1

Update(∆,c1) = c∆1

(1.1)

In this scheme, the encryption function applies a permutation π over the input,
which consists of a nonce N , a message m, and a zero string. The term ∆ in the
update algorithm Update represents the token generated by the token generation
algorithm TokenGen. (For simplicity, we omit the decryption algorithm here to focus
on the update process.) With the help of a single token ∆, the cloud service can
update all ciphertexts that were encrypted under the old key k1.

Similar to this example, many existing ciphertext-independent UE mechanisms
leverage the homomorphic properties of exponentiation during the update process.
As a result, the primary computational cost arises from performing exponentiation
operations.

For ciphertext-dependent UE [7, 15–17], the token is related to the ciphertext that
needs updating, and a small part of the ciphertext, called the ciphertext header, must
be downloaded during the token generation process. In this model, a token can only
be used to update a single ciphertext. Prior constructions of c-d UE schemes mainly
use key-homomorphic pseudorandom functions (KH-PRFs) [7]. An example of such
a scheme, presented in [15], is as follows:

Enc(k1,m) := (ĉ1,c1) = (
AE.Enc(k1,kprf1),F (kprf1, i)+mi

)
TokenGen(k1,k2, ĉ1) :


kprf1 ←AE.Dec(k1, ĉ1)

kup
prf ← kprf2 −kprf1

ĉ2 ←AE.Enc(k2,kprf2)

Update
(
(kup

prf , ĉ2), (ĉ1,c1)
)
=

(
ĉ2,F (kup

prf , i)+c1

)
.

. (1.2)

In this scheme, AE represents an authenticated encryption scheme, and F is a
KH-PRF. To update an old ciphertext, its ciphertext header ĉ1 is downloaded to
recover the PRF key kprf1 used in the encryption. The token is computed as the
difference between the new PRF key and the old one. The key-homomorphic
property guarantees the correctness of the update algorithm as follows:

F (kprf2 −kprf1, i)+F (kprf1, i)+mi = F (kprf2, i)+mi

where (m1, · · · ,ml) ←Encode(m) and 1 ≤ i ≤ l .
We will analyze the challenges in defining and constructing secure updatable

encryption in Section 1.2. Intuitively, the tokens and keys should not reveal any
useful information to the adversary, and the scheme must also remain secure even if
partial keys and tokens are leaked.

FULLY HOMOMORPHIC ENCRYPTION.

Fully Homomorphic Encryption (FHE) allows the cloud to perform arbitrary
computations on encrypted data without the need to decrypt it. This capability

1.1. THREE ADVANCED ENCRYPTION SCHEMES

1

5

enables the cloud to offer its computing power as a service while simultaneously
protecting the privacy of sensitive information in the outsourced data. FHE has a
wide range of applications, including privacy-preserving machine learning [18–20]
and multi-party computation [21–23]. Many FHE schemes have been efficiently
implemented in various libraries, such as OpenFHE [24], SEAL [25], Concrete [26],
HElib [27], and HEaaN [28]. Our goal is to explore FHE’s potential and limitations in
these contexts.

In more detail, given encryptions Enc(m1), · · · ,Enc(mr), the cloud can compute
an encryption of f (m1, · · · ,mr) via FHE without gaining access to the secret key of
the input ciphertexts. The security of FHE schemes relies on the hardness of the
Learning With Errors (LWE) problem and its generalizations (to be defined later),
where a ciphertext contains an error term that ensures its security. The decryption
of a ciphertext is correct as long as this error term remains small. However,
as homomorphic operations are performed, the error increases, which limits the
number of homomorphic operations that can be performed on a ciphertext.

The bootstrapping technique, introduced by Gentry [29], is known as the unique
method to achieve unbounded FHE. This technique leverages the homomorphic
properties of the scheme to evaluate the decryption function over the ciphertext.
The result is still an encryption of the original plaintext, but with reduced error,
effectively refreshing the ciphertext for further computations. However, the original
bootstrapping construction was impractical, requiring up to half an hour to bootstrap
a single bit. Since then, many FHE schemes have been proposed to enhance
performance and reduce the time required for bootstrapping.

The second-generation Fully Homomorphic Encryption schemes, such as BGV [30]
and its variants [31–34], allow multiple messages to be refreshed simultaneously,
achieving a very low amortized cost per message. However, these schemes have a
downside: the bootstrapping process often leads to quasipolynomial error growth,
which necessitates relatively large parameters, such as a superpolynomial size
modulus. As a result, these schemes require stronger security assumptions and
slower bootstrapping procedures compared to third-generation FHE schemes.

The third-generation FHE schemes, including GSW [35], FHEW [36], and TFHE
[37], are collectively referred to as FHEW-like cryptosystems in [38]. These schemes
significantly simplify the bootstrapping process, enabling it to be performed within
a few milliseconds on a personal computer. Moreover, the bootstrapping process
incurs only polynomial noise growth, resulting in weaker security assumptions for
lattice-based problems compared to BGV. However, the limitation is that these
schemes have a high amortized cost, as a single message can be bootstrapped at
a time. In Section 1.2, we will discuss the challenges in proposing an efficient,
amortized FHEW-like cryptosystem.

LATTICE-BASED CRYPTOSYSTEM.

The constructions of lattice-based encryption are primarily based on two types of
lattice hard problems: the Short Integer Solution (SIS) problem and the Learning
With Errors (LWE) problem. The Short Integer Solution problem was introduced
by Ajtai [39] and forms the basis for various lattice-based cryptographic primitives,

1

6 1. INTRODUCTION

including hash functions, digital signatures, and one-way functions. Specifically, the
SIS problem involves finding a short nonzero vector x such that Ax = 0, where A is a
uniformly random integer matrix.

The Learning With Errors problem, proposed by Regev [40] in 2005, asks to find
an integer vector s from the pair (A,As+e mod q), where A is a matrix and e is an
error vector sampled from a particular error distribution.

Under certain parameter settings, the SIS and LWE problems, along with their
ring-based variants, are proven to be as hard as solving worst-case lattice problems
such as the Shortest Independent Vector Problem (SIVP) and the Gap Shortest
Vector Problem (GapSVP) [41–45]. Therefore, cryptographic schemes based on SIS
and LWE are considered quantum-secure, assuming that worst-case lattice problems
cannot be efficiently solved by quantum computers. Our constructions of Updatable
Encryption and Fully Homomorphic Encryption are based on various instantiations
of the SIS/LWE problems.

SEARCHABLE ENCRYPTION.

Searchable Encryption (SE) enables a client to outsource private data to an
untrusted cloud while preserving the search functionality over encrypted data and
keeping the queried information hidden from the cloud. An SE scheme consists
of five polynomial-time algorithms: key generation, encryption, decryption, query
generation, and search. The key generation and encryption algorithms are run by
the user to encrypt a set of documents, which are then stored as ciphertexts on the
cloud. The query generation algorithm is also run by the user to create a query for a
specific target keyword. The search algorithm, which is deterministic, is run by the
cloud using a query from the user. It searches the encrypted documents and returns
all (encrypted) documents containing the keyword related to the query. The client
can then decrypt the ciphertexts to recover the original documents. Since the initial
work by Song et al. [46], many SE schemes have been proposed [47–54]. Today, SE
schemes are deployed in various real-world applications, including ShadowCrypt [55]
and Mimesis Aegis [56].

As defined in an SE scheme, the interaction typically involves the client sending a
query to the server, which then responds with the matching documents. However,
this interaction is vulnerable to eavesdropping by an attacker. For example, messages
can be intercepted if transmitted over an unsecured channel, or the attacker could
be the cloud service provider itself, with access to all search requests and responses.
The attacker might attempt to match the query with specific keywords to infer
the information stored on the server. This communication of query and response
constitutes what is referred to as leakage. We will analyze the various attacks on SE
schemes based on different leakage levels.

1.2. CHALLENGES IN UE, FHE, AND SE
There are many challenges in both Updatable Encryption and Fully Homomorphic
Encryption that must be addressed to enhance the security and efficiency of cloud
services. In this section, we analyze the security requirements for UE and examine

1.2. CHALLENGES IN UE, FHE, AND SE

1

7

the maximum capabilities an adversary can have. This thesis closes the gap
of clarifying the relationships among all existing security notions for UE, which
is essential for proposing meaningful constructions and enabling a meaningful
comparison of existing UE schemes. Additionally, this thesis is the first to propose
stronger adaptive security and post-quantum security for ciphertext-dependent UE.
Regarding FHE, this section explores the challenges of combining the advantages of
the two types of bootstrapping discussed earlier. Furthermore, this thesis extends the
goal of optimizing FHE from message space, functionality, and amortized complexity
perspectives.

CONFIDENTIALITY FOR UE.

The basic confidentiality one expects from updatable encryption is semantic security,
meaning that the ciphertext should not allow an adversary to learn any partial
information about the underlying plaintext. Lehmann and Tackmann [11] proposed
two confidentiality notions to capture this requirement. The first, denoted as
IND-Enc, asks an adversary to distinguish between the ciphertexts of two different
plaintexts. They observed that the plaintext can be leaked not only through the
encryption algorithm but also through the update algorithm. To address this, they
introduced a second notion, IND-Upd, which asks the adversary to submit two
ciphertexts and tell which ciphertext the resulting ciphertext was updated from.

However, Boyd et al. [8] demonstrated that neither IND-Enc nor IND-Upd
(even in combination) can prevent the leakage of ciphertext ‘age’. They captured
this security by introducing IND-UE, which guarantees that an adversary cannot
distinguish between a fresh encryption and an updated ciphertext. In other words,
ciphertexts produced by the encryption algorithm should be indistinguishable from
those produced by the update algorithm. They showed that IND-UE is strictly
stronger than the combinations of IND-Enc and IND-Upd.

We observe that there are eight variants of IND-UE for UE schemes, based on
the direction of key updates and ciphertext updates (see below). However, the
relationships among these variants are not fully clear in the literature, and this gap
needs to be addressed.

DIRECTION OF UPDATE.

Consider the UE scheme in Eq. (1.1) as an example to explain the direction of
updates from the perspectives of ciphertexts and keys.

Direction of Ciphertext Updates. In UE schemes, the primary goal is to upgrade
ciphertexts encrypted with old keys to ciphertexts encrypted with new keys using
tokens. However, tokens can also potentially downgrade ciphertexts from new keys
to old keys, as shown by the relationship c1/∆

2 = c1 in Eq. (1.1). If such downgrading
is possible, the UE scheme is termed bi-directional ciphertext updates. Otherwise,
if only upgrading is supported, the UE scheme is called uni-directional ciphertext
updates.

Direction of Key Updates. Note that the token is generated by two successive epoch
keys via the token generation algorithm, as shown by the expression ∆= k2/k1 in
Eq. (1.1). This means that the token could potentially allow an adversary to derive

1

8 1. INTRODUCTION

one of the two keys from the other. Jiang [9] proposed three kinds of key update
directions: bi-directional key updates, where both the old key and the new key can
be derived from each other; uni-directional key updates, where only the new key can
be derived from the old key but not vice versa; and non-derivable key updates, where
neither key can be derived from the other. Additionally, Nishimaki [12] introduced
a new type of uni-directional key update called backward-leak uni-directional key
updates, where the update direction is reversed compared to the uni-directional key
update in Jiang’s work. In this case, the previous key can be inferred from the
new key, but not vice versa. This is referred to as the backward-leak uni-directional
key update, in contrast to the forward-leak uni-directional key update described in
Jiang’s framework.

The directions of ciphertext updates and key updates significantly influence the
information leakage to an adversary, thereby impacting the security notions of a UE
scheme. Understanding the relationships among these directions is critical, as it
clarifies which update direction provides stronger security guarantees. Establishing
these relationships is essential before constructing secure and effective UE schemes.

INTEGRITY.

Klooß et al. [10] provided the notions of ciphertext (IND-CTXT) and plaintext
(IND-PTXT) integrity for UE schemes: IND-CTXT requires that an adversary
cannot produce a valid ciphertext that was not derived during the security game
and IND-PTXT ensures the adversary cannot work out a valid ciphertext whose
underlying message is not queried in the security game.

VARIOUS VARIANTS.

Overall, the set of confidentiality and integrity notions for updatable encryption
is CIS := {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA,
IND-CTXT, IND-PTXT}, where det/rand means the update algorithm is deterministic
or randomized, respectively. For each security notion in CIS, there are eight variants

(kk,cc)-notion,

where kk represents the four ways of key update directions {bi,b-uni, f-uni,no} and cc
denotes the two ways of ciphertext update directions {bi,uni}. We need to investigate
the relationships among all those security notions so that we can have a clear goal
of UE constructions and a fair comparison among UE schemes.

LIMITATIONS OF C-D UE.

The security of UE should still hold even under the leakage of some tokens and
keys, which may be lost during the usage of cloud services. However, prior works
on c-d UE [15–17] only capture selective security, where certain keys and tokens
are provided to the adversary in the start of the security game. It is needed to
consider that the adversary can adaptively corrupt keys and tokens throughout the
experiment, i.e., the adaptive security for c-d UE should be considered.

1.2. CHALLENGES IN UE, FHE, AND SE

1

9

Additionally, we observe that the encryption algorithm of UE has to be randomized
to ensure the confidentiality, but the update algorithm can be either randomized or
deterministic. However, prior security notions for c-d UE only apply to randomized
update algorithms. It is reasonable to consider both types of ciphertext updates.

Furthermore, current UE constructions based on the Decision Diffie-Hellman
(DDH) assumption are vulnerable to attacks by powerful quantum computers. It is
crucial to deploy UE schemes with post-quantum security while ensuring the desired
security requirements.

BATCH BOOTSTRAPPING.

One of the key challenges in fully homomorphic encryption is developing a novel
bootstrapping technique that combines the advantages of the two existing types of
bootstrapping. Specifically, the goal is to achieve low noise growth, which ensures
efficient ciphertext refreshment under weaker assumptions, while also maintaining a
low amortized cost, enabling the simultaneous processing of multiple messages.

The first amortized FHEW bootstrapping was introduced by Micciancio and
Sorrell [57], enabling the refreshment of n ciphertexts using O(3ρ ·n1+1/ρ) FHE
multiplications. This approach reduced the amortized cost per message from O(n)
to O(3ρ ·n1/ρ) for a parameter ρ > 2, while still keeping polynomial noise growth.
Subsequent work by Guimarães et al. [58] further reduced the amortized cost to
O(ρ ·n1/ρ) FHE operations per ciphertext. More recently, Liu and Wang significantly
improved these techniques within a polynomial modulus, achieving an amortized
cost of Õ(n0.75) in [59] and nearly optimal Õ(1) in [60].

However, the batch bootstrapping techniques by Liu and Wang are currently
limited to binary message spaces, leaving their practicality for larger message spaces
uncertain. Moreover, the third-generation FHE schemes is also called programmable
bootstrapping [61, 62], enabling the evaluation of univariate functions during the
bootstrapping process. It remains an open question whether the batch bootstrapping
methods in [59, 60] can support this programmable property while maintaining only
polynomial noise growth.

ATTACKS ON SE.

In recent years, it has been shown that there are various attacks on SE schemes
that exploit SE leakages to recover the information about keywords, using partial
information about the documents or the keywords in the documents. The objectives
of SE attackers are typically divided into query recovery which denotes matching
the the underlying keywords related to the queries that are enquired, and document
recovery which is to recover the relationship between plaintext documents and
encrypted documents. According to the attacker power, SE attacks can be divided
into passive and active attacks.

For passive attacks, the adversary uses leaked queries and their response with
auxiliary knowledge to perform query recovery and document recovery. Islam et al.
[63] laid the groundwork for passive attacks on SE schemes. They demonstrated that,
with adequate auxiliary knowledge, a co-occurrence matrix could be constructed for
both the observed leakage and the auxiliary data. This matrix enables the mapping

1

10 1. INTRODUCTION

of queries to keywords by identifying the closest match based on minimal distance.
Cash et al. [64] later proposed an attack that matches queries to specific keywords
by analyzing their total occurrences in the leaked documents. Blackstone et al. [65]
developed the SubgraphVL attack, which achieves a relatively high query recovery
rate even with a small subset of leaked documents. This attack matches keywords
by leveraging unique document volumes, treating them as response patterns. Ning
et al. [66] later introduced the LEAP attack, which combines existing techniques,
such as co-occurrence analysis and unique occurrence counts. LEAP relies on
unique occurrences in the matched documents to achieve this. It effectively utilizes
the unique count from the Count attack [64], a co-occurrence matrix from the IKK
attack [63], and unique patterns to match keywords and documents.

The active attack, also known as a file-injection attack, involves the attacker
selecting specific documents and sending them to the client for injection. The client
then encrypts these documents and stores the resulting ciphertexts on the server.
Through keyword searches, the attacker can observe the results corresponding to
the queries. For example, an attacker could inject files into a user’s system by
sending special emails. The attacker then observes the returned files, particularly
the ones they injected, in response to queries made through the search algorithm.
By analyzing the returned (previously injected) files, the attacker can achieve the
goal of recovering the queried information. The first file-injection attack is proposed
by Zhang et al. [67], which leverages the binary search concept. Each injected file
contains exactly half of the keywords from the injected keyword universe K , resulting
in a maximum file size of ⌈log |K |⌉. By analyzing the presence or absence of specific
keywords in the returned files, the attacker can determine the queried keyword with
100% accuracy. Based on finite set theory, Wang et al. [68] further enhanced the
work in [67] to address the countermeasures involving a threshold for the maximum
number of keywords in each file. Their attack requires fewer injected files than the
previous one while still achieving a 100% query accuracy rate.

Existing SE attacks have the following limitations. Passive approaches typically
exploit only a single leakage pattern, either assess pattern or volume pattern,
whereas multiple leakage patterns are possible in SE schemes. In addition to
this, the state-of-the-art LEAP attack utilizes the access pattern but does not fully
exploit its matching techniques. Additionally, active attacks are less practical in
real-world scenarios, particularly when countermeasures like thresholds and padding
are implemented to thwart their success. This is especially true when the number of
keywords in the dataset is very large.

1.3. PROBLEM STATEMENT

Cloud technology has become an essential tool in modern society. This thesis aims
to address challenges in secure cloud services over encrypted data, focusing on
aspects of security, efficiency, and functionality. The research questions of this thesis
are presented in this section and involve three cryptosystems: updatable encryption,
fully homomorphic encryption, and searchable encryption.

Our work primarily focuses on applications to cloud services, but it is possible to

1.3. PROBLEM STATEMENT

1

11

extend our results on UE to other cryptosystems that involve a similar process of
transferring ciphertexts, such as proxy re-encryption [69, 70], identity-based encryption
[71], and attribute-based encryption [72]. Additionally, our FHE techniques can be
applied to privacy-preserving machine learning and secure multi-party computation.
Below, we list our research questions.

UPDATABLE ENCRYPTION.

The primary security requirement for UE schemes is that security should be
maintained even under the leakage of some keys and tokens. However, certain
combinations of leaked information might enable the adversary to trivially win the
security game. Thus, some trivial win conditions must be checked at the end of
the game. For example, in the CCA security game of a public key encryption (PKE)
scheme, it is necessary to verify whether the adversary queries the decryption oracle
on the challenge ciphertext. In UE schemes, both the direction of ciphertext updates
and key updates affect the information leaked to the adversary, and different security
notions involve various types of trivial win conditions. It is challenging to clarify
the relationships among all existing security notions across different update settings.
Existing work has only explored the relationships among a subset of these notions.
Therefore, our first research question is:

Q1: What are the relationships among all existing security notions for updatable
encryption schemes?

Additionally, we consider potential improvements for ciphertext-dependent updat-
able encryption (c-d UE) schemes. In a c-d UE scheme, an adversary may adaptively
corrupt keys and tokens at any point during the game. It is necessary to “maximize”
the adversary’s capabilities to fully capture adaptive security. From an efficiency
standpoint, c-d UE schemes require downloading a small part of the ciphertext (the
ciphertext header) to generate the update token, and each token can only be used
to update a single message. A meaningful improvement would allow a single token
to update multiple messages, even in the ciphertext-dependent setting. Therefore,
our second research question is:

Q2: How can we design a more secure and more efficient ciphertext-dependent
updatable encryption scheme?

FULLY HOMOMORPHIC ENCRYPTION.

It is desirable to construct a bootstrapping technique that achieves the low amortized
cost per message of second-generation FHE schemes while also maintaining the
low polynomial noise growth characteristic of third-generation schemes. The
state-of-the-art work [59, 60] on batch FHEW-like bootstrapping partially achieves
this goal but is limited to a binary message space. Extending this technique to
support a larger message space without increasing noise growth or amortized cost is
a critical challenge.

1

12 1. INTRODUCTION

Furthermore, FHEW-like bootstrapping offers a programmable property, enabling
the evaluation of a univariate function simultaneously with ciphertext refreshing.
Incorporating this property into batch FHEW-like bootstrapping techniques is
essential. These considerations lead to our third research question:

Q3: Can we design a batch programmable bootstrapping technique for a large
message space, within a polynomial modulus?

SEARCHABLE ENCRYPTION.

We aim to address the limitations in prior works on both passive and active SE
attacks, as stated in Section 1.2. Our fourth and fifth questions are summarized as
follows:

Q4: Can we design a passive SE attack by fully exploiting both the volume and access
patterns to capture a high recovery rate?

Q5: Can we design an active SE attack that is more practical when considering the
threshold countermeasure?

1.4. CONTRIBUTIONS OF THE THESIS
This thesis consists of three independent technical chapters, each based on an
individual research paper. Since Chapters 2 and 3 are largely based on published
works on Updatable Encryption, and Chapters 5 and 6 on Searchable Encryption, so
there may be some overlap in the background and related work sections. We include
additional detailed proofs and accessible examples that were previously omitted due
to page limitations of publication. The thesis is organized as follows:

CHAPTER 2

EQUIVALENCE OF UPDATABLE ENCRYPTION SCHEMES.

In this chapter, we address the research question Q1 and analyze the relations of
all existing security notions. Our main technique is to analyze the relations of the
trivial win conditions for each security notion in different key update settings. As
in other semantic security definitions, the adversary in the security game for UE
is provided access to different oracles to capture realistic attack models. However,
it may lead to a trivial win if the adversary queries some combinations of oracles.
Therefore, the bookkeeping technique was developed in [10, 11] that tracks the
leakage information of tokens, keys, and ciphertexts known to the adversary during
the game and checks if those leakages may lead the adversary to trivially win after
the adversary submits its guessing bit. The direction of key update affects the
computation of leakage information and thus, we analyze the relations among UE
schemes by analyzing the relations of trivial win conditions in different key update
directions. Our main result presents a surprising finding: for each security notion,
no-directional key update UE schemes, which were previously believed to be strictly

1.4. CONTRIBUTIONS OF THE THESIS

1

13

stronger than other directional key update schemes, are actually equivalent to those
with backward-leak uni-directional key updates.

This chapter is based on the published paper, with minor additions of examples
and proofs “No-Directional and Backward-Leak Uni-Directional Updatable Encryption
Are Equivalent" by Chen, H., Fu, S. and Liang, K. in European Symposium on
Research in Computer Security (2022).

CHAPTER 3

CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY.

In this chapter, we address the research question Q2 and make three significant
contributions to ciphertext-dependent updatable encryption: First, we introduce
stronger security notions compared to previous work, addressing adaptive security
and considering the decryption capability of the adversary under adaptive corruption.
Second, we propose a novel c-d UE scheme that satisfies these security notions,
employing a token generation technique distinct from the traditional Dec-then-Enc
structure, while still preventing key leakage. This UE scheme is based on lattice hard
problems, ensuring that it achieves quantum security. Finally, we develop a packing
technique that enables the encryption and updating of multiple messages within a
single ciphertext, reducing the cost of c-d UE by minimizing the need to download
partial ciphertexts during token generation.

This chapter is based on the published paper with detailed proofs “CCA-1 Secure
Updatable Encryption with Adaptive Security” by Chen, H., Galteland, Y.J. and Liang,
K. in International Conference on the Theory and Application of Cryptology and
Information Security (2023)

CHAPTER 4

BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS.

In this chapter, we address the research question Q3 and work on the improvement
of the efficiency of fully homomorphic encryption. First, we introduce a novel batch
bootstrapping technique within a polynomial modulus that enables noise refreshment
over a general message space extending beyond one bit, while maintaining the same
amortized cost and noise overhead as the work by Liu and Wang (EUROCRYPT
2023). This batch bootstrapping is also programmable, allowing the evaluation of a
univariate function simultaneously with noise refreshment. Second, our approach
overcomes a key limitation of third-generation FHE schemes, which require the
evaluated function to be negacyclic. In contrast, our method supports arbitrary
functions. Additionally, we propose two homomorphic decomposition algorithms,
further extending our batch programmable bootstrapping to support larger message
spaces. Third, we enhance practicality by demonstrating the evaluation of commonly
used activation functions in Convolutional Neural Networks (CNNs), such as ReLU,
sign, and max.

This work was partially conducted during a visit to the University of Padua.

1

14 1. INTRODUCTION

CHAPTER 5

VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK.

In this chapter, we address the research question Q4 and present three contributions
to passive SE attacks. First, in addition to exploiting the access pattern, we also
leverage volume pattern leakage. By combining both leakage patterns, we match
documents based on a unique combination of volume and the number of keywords,
enabling us to match nearly all leaked documents to server documents. Second,
beyond matching keywords in the identified files, we utilize all leaked documents to
analyze unique keyword occurrences, enhancing the keyword matching technique
from the LEAP attack. This allows us to maximize keyword matches using the unique
occurrence pattern. Third, we evaluate our attack on three different datasets to
assess performance, and the results are exceptional, with nearly all leaked documents
and a significant number of leaked keywords successfully matched.

This section is based on the published paper “VAL: Volume and Access Pattern
Leakage-Abuse Attack with Leaked Documents” by Lambregts, S., Chen, H., Ning, J.
and Liang, K. in European Symposium on Research in Computer Security (2022).

CHAPTER 6

FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES.

In this chapter, we address the research question Q5 and present two contributions
to active SE attacks. First, we introduce a novel file-injection attack on searchable
encryption schemes by leveraging the binomial search concept, which is based on
our new definition of a subset family of a finite set. Compared to previous work,
this new subset family allows us to include more keywords in the injected files,
thereby significantly reducing the number of files required for injection. Second, we
propose a mitigation strategy that performs better under a scheme using padding,
with minimal trade-offs.

This section is based on the published paper “File-Injection Attacks on Searchable
Encryption, Based on Binomial Structures” by Langhout, T., Chen, H., and Liang K.
in European Symposium on Research in Computer Security (2024).

CHAPTER 7

DISCUSSION.

This chapter concludes the thesis and discusses the research questions in detail. We
propose future work and directions to address the limitations of the work presented
in this thesis.

1.4.1. LISTS OF EXCLUDED PUBLICATIONS
In the following, we list the papers published during the Ph.D. period that are not
included in the thesis.

• Tjiam, K., Wang, R., Chen, H. and Liang, K. Your smart contracts are not
secure: investigating arbitrageurs and oracle manipulators in Ethereum. In
Proceedings of the 3rd Workshop on Cyber-Security Arms Race (2021).

1.4. CONTRIBUTIONS OF THE THESIS

1

15

• Ho, B., Chen, H., Shi, Z. and Liang, K. Similar Data is Powerful: Enhancing
Inference Attacks on SSE with Volume Leakages. In European Symposium
on Research in Computer Security (ESORICS 2024). File-Injection Attacks on
Searchable Encryption, Based on Binomial Structures. InEuropean Symposium
on Research in Computer Security (ESORICS 2024).

• Zhang, M., Shi, Z., Chen, H. and Liang, K. Inject Less, Recover More: Unlocking
the Potential of Document Recovery in Injection Attacks Against SSE. In
Computer Security Foundations Symposium (CSF 2024).

• Wang, R., Wang, X., Chen, H., Decouchant, J., Picek, S., Laoutaris, N. and
Liang, K. MUDGUARD: Taming Malicious Majorities in Federated Learning
using Privacy-Preserving Byzantine-Robust Clustering. In ACM SIGMETRICS
(2025).

REFERENCES

[1] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition.
CRC Press, 2014. ISBN: 9781466570269. URL: https://www.crcpress.
com/Introduction- to- Modern- Cryptography- Second- Edition/Katz-
Lindell/p/book/9781466570269.

[2] R. L. Rivest, A. Shamir, and L. M. Adleman. “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”. In: Commun. ACM 21.2 (1978),
pp. 120–126. DOI: 10.1145/359340.359342.

[3] D. Johnson, A. Menezes, and S. A. Vanstone. “The Elliptic Curve Digital
Signature Algorithm (ECDSA)”. In: Int. J. Inf. Sec. 1.1 (2001), pp. 36–63. DOI:
10.1007/S102070100002.

[4] S. Josefsson and I. Liusvaara. “Edwards-Curve Digital Signature Algorithm
(EdDSA)”. In: RFC 8032 (2017), pp. 1–60. DOI: 10.17487/RFC8032.

[5] NIST. Transition to Post-Quantum Cryptography Standards: Initial Public
Draft. Tech. rep. NIST IR 8547. U.S. Department of Commerce, 2024. URL:
https://nvlpubs.nist.gov/nistpubs/ir/2024/NIST.IR.8547.ipd.pdf.

[6] C. Peikert. “A Decade of Lattice Cryptography”. In: Found. Trends Theor.
Comput. Sci. 10.4 (2016), pp. 283–424. DOI: 10.1561/0400000074.

[7] D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan. “Key homomorphic
PRFs and their applications”. In: CRYPTO 2013, Part I. Ed. by R. Canetti and
J. A. Garay. Vol. 8042. LNCS. Heidelberg: Springer, 2013, pp. 410–428. DOI:
978-3-642-40041-4_23.

[8] C. Boyd, G. T. Davies, K. Gjøsteen, and Y. Jiang. “Fast and Secure
Updatable Encryption”. In: CRYPTO 2020, Part I. Ed. by D. Micciancio
and T. Ristenpart. Vol. 12170. LNCS. Springer, 2020, pp. 464–493. DOI:
10.1007/978-3-030-56784-2_16.

[9] Y. Jiang. “The direction of updatable encryption does not matter much”. In:
ASIACRYPT 2020, Part III. Ed. by S. Moriai and H. Wang. Vol. 12493. LNCS.
Springer. Heidelberg, 2020, pp. 529–558. DOI: 10.1007/978-3-030-64840-
4_18.

[10] M. Klooß, A. Lehmann, and A. Rupp. “(R)CCA secure updatable encryption
with integrity protection”. In: EUROCRYPTO 2019, Part I. Ed. by Y. Ishai
and V. Rijmen. Vol. 11476. LNCS. Springer. Heidelberg, 2019, pp. 68–99. DOI:
10.1007/978-3-030-17653-2_3.

17

https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/S102070100002
https://doi.org/10.17487/RFC8032
https://nvlpubs.nist.gov/nistpubs/ir/2024/NIST.IR.8547.ipd.pdf
https://doi.org/10.1561/0400000074
https://doi.org/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-030-64840-4_18
https://doi.org/10.1007/978-3-030-64840-4_18
https://doi.org/10.1007/978-3-030-17653-2_3

1

18 REFERENCES

[11] A. Lehmann and B. Tackmann. “Updatable encryption with post-compromise
security”. In: EUROCRYPT 2018, Part III. Ed. by J. B. Nielsen and V.
Rijmen. Vol. 10822. LNCS. Springer. Heidelberg, 2018, pp. 685–716. DOI:
10.1007/978-3-319-78372-7_22.

[12] R. Nishimaki. “The Direction of Updatable Encryption Does Matter”. In:
PKC 2022. Ed. by G. Hanaoka, J. Shikata, and Y. Watanabe. Vol. 13178.
LNCS. Cham: Springer, 2022, pp. 194–224. ISBN: 978-3-030-97131-1. DOI:
10.1007/978-3-030-97131-1_7.

[13] D. Slamanig and C. Striecks. Puncture ’Em All: Updatable Encryption with
No-Directional Key Updates and Expiring Ciphertexts. Cryptology ePrint Archive,
Paper 2021/268. https://eprint.iacr.org/2021/268. 2021.

[14] Y. J. Galteland and J. Pan. “Backward-Leak Uni-Directional Updatable
Encryption from (Homomorphic) Public Key Encryption”. In: PKC 2023, Part
II. Ed. by A. Boldyreva and V. Kolesnikov. Vol. 13941. LNCS. Springer, 2023,
pp. 399–428. DOI: 10.1007/978-3-031-31371-4_14.

[15] D. Boneh, S. Eskandarian, S. Kim, and M. Shih. “Improving Speed and Security
in Updatable Encryption Schemes”. In: ASIACRYPT 2020, Part III. Ed. by
S. Moriai and H. Wang. Vol. 12493. LNCS. Cham: Springer, 2020, pp. 559–589.
ISBN: 978-3-030-64840-4. DOI: 10.1007/978-3-030-64840-4_19.

[16] L. Chen, Y. Li, and Q. Tang. “CCA Updatable Encryption Against Malicious
Re-encryption Attacks”. In: ASIACRYPT 2020, Part III. Ed. by S. Moriai
and H. Wang. Vol. 12493. LNCS. Springer, 2020, pp. 590–620. DOI:
10.1007/978-3-030-64840-4_20.

[17] A. Everspaugh, K. Paterson, T. Ristenpart, and S. Scott. “Key rotation for
authenticated encryption”. In: CRYPTO 2017, Part III. Ed. by J. Katz and
H. Shacham. Vol. 10403. LNCS. Springer. Heidelberg, 2017, pp. 98–129. DOI:
10.1007/978-3-319-63697-9_4.

[18] K. Cong, D. Das, J. Park, and H. V. L. Pereira. “SortingHat: Efficient Private
Decision Tree Evaluation via Homomorphic Encryption and Transciphering”.
In: CCS 2022. Ed. by H. Yin, A. Stavrou, C. Cremers, and E. Shi. ACM, 2022,
pp. 563–577. DOI: 10.1145/3548606.3560702.

[19] R. A. Mahdavi, H. Ni, D. Linkov, and F. Kerschbaum. “Level Up: Private Non-
Interactive Decision Tree Evaluation using Levelled Homomorphic Encryption”.
In: CCS 2023. Ed. by W. Meng, C. D. Jensen, C. Cremers, and E. Kirda. ACM,
2023, pp. 2945–2958. DOI: 10.1145/3576915.3623095.

[20] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. “Fast Homomorphic
Evaluation of Deep Discretized Neural Networks”. In: CRYPTO 2018, Part
III. Ed. by H. Shacham and A. Boldyreva. Vol. 10993. LNCS. Springer, 2018,
pp. 483–512. DOI: 10.1007/978-3-319-96878-0_17.

[21] N. P. Smart. “Practical and Efficient FHE-Based MPC”. In: Cryptography
and Coding - 19th IMA International Conference, IMACC 2023, London, UK,
December 12-14, 2023, Proceedings. Ed. by E. A. Quaglia. Vol. 14421. LNCS.
Springer, 2023, pp. 263–283. DOI: 10.1007/978-3-031-47818-5_14.

https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-030-97131-1_7
https://eprint.iacr.org/2021/268
https://doi.org/10.1007/978-3-031-31371-4_14
https://doi.org/10.1007/978-3-030-64840-4_19
https://doi.org/10.1007/978-3-030-64840-4_20
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/3576915.3623095
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-031-47818-5_14

REFERENCES

1

19

[22] A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart. “Between a
Rock and a Hard Place: Interpolating between MPC and FHE”. In: ASIACRYPT
2013, Part II. Ed. by K. Sako and P. Sarkar. Vol. 8270. LNCS. Springer, 2013,
pp. 221–240. DOI: 10.1007/978-3-642-42045-0_12.

[23] P. Mukherjee and D. Wichs. “Two Round Multiparty Computation via Multi-key
FHE”. In: EUROCRYPT 2016, Part II. Ed. by M. Fischlin and J. Coron. Vol. 9666.
LNCS. Springer, 2016, pp. 735–763. DOI: 10.1007/978-3-662-49896-5_26.

[24] A. A. Badawi, A. Alexandru, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio, C.
Pascoe, Y. Polyakov, I. Quah, S. R.V., K. Rohloff, J. Saylor, D. Suponitsky,
M. Triplett, V. Vaikuntanathan, and V. Zucca. OpenFHE: Open-Source Fully
Homomorphic Encryption Library. Cryptology ePrint Archive, Paper 2022/915.
https://eprint.iacr.org/2022/915. 2022.

[25] Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL. Microsoft
Research, Redmond, WA. Jan. 2023.

[26] Zama. Concrete: TFHE Compiler that converts python programs into FHE
equivalent. https://github.com/zama-ai/concrete. 2022.

[27] S. Halevi and V. Shoup. “Design and implementation of HElib: a homomorphic
encryption library”. In: IACR Cryptol. ePrint Arch. (2020), p. 1481. URL:
https://eprint.iacr.org/2020/1481.

[28] CryptoLab. HEAAN: Homomorphic Encryption for Arithmetic of Approximate
Numbers. URL: https://heaan.it/.

[29] C. Gentry. “Fully homomorphic encryption using ideal lattices”. In: ACM
STOC 2009. Ed. by M. Mitzenmacher. ACM, 2009, pp. 169–178. DOI:
10.1145/1536414.1536440.

[30] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “(Leveled) fully homomorphic
encryption without bootstrapping”. In: ITIC 2012. Ed. by S. Goldwasser. ACM,
2012, pp. 309–325. DOI: 10.1145/2090236.2090262.

[31] Z. Brakerski. “Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP”. In: CRYPTO 2012. Ed. by R. Safavi-Naini and R. Canetti.
Vol. 7417. LNCS. Springer, 2012, pp. 868–886. DOI: 10.1007/978-3-642-
32009-5_50.

[32] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “(Leveled) Fully Homomorphic
Encryption without Bootstrapping”. In: ACM Trans. Comput. Theory 6.3 (2014),
13:1–13:36. DOI: 10.1145/2633600.

[33] Z. Brakerski, C. Gentry, and S. Halevi. “Packed Ciphertexts in LWE-Based
Homomorphic Encryption”. In: PKC 2013. Ed. by K. Kurosawa and G. Hanaoka.
Vol. 7778. LNCS. Springer, 2013, pp. 1–13. DOI: 10.1007/978-3-642-36362-
7_1.

[34] J. Fan and F. Vercauteren. “Somewhat Practical Fully Homomorphic
Encryption”. In: IACR Cryptol. ePrint Arch. (2012), p. 144. URL: http:
//eprint.iacr.org/2012/144.

https://doi.org/10.1007/978-3-642-42045-0_12
https://doi.org/10.1007/978-3-662-49896-5_26
https://eprint.iacr.org/2022/915
https://github.com/Microsoft/SEAL
https://github.com/zama-ai/concrete
https://eprint.iacr.org/2020/1481
https://heaan.it/
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144

1

20 REFERENCES

[35] C. Gentry, A. Sahai, and B. Waters. “Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based”. In:
CRYPTO 2013, Part I. Ed. by R. Canetti and J. A. Garay. Vol. 8042. LNCS.
Springer, 2013, pp. 75–92. DOI: 10.1007/978-3-642-40041-4_5.

[36] L. Ducas and D. Micciancio. “FHEW: Bootstrapping Homomorphic Encryption
in Less Than a Second”. In: EUROCRYPT 2015, Part I. Ed. by E. Oswald
and M. Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 617–640. DOI:
10.1007/978-3-662-46800-5_24.

[37] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. “Faster Packed
Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE”. In:
ASIACRYPT 2017, Part I. Ed. by T. Takagi and T. Peyrin. Vol. 10624. LNCS.
Springer, 2017, pp. 377–408. DOI: 10.1007/978-3-319-70694-8_14.

[38] D. Micciancio and Y. Polyakov. “Bootstrapping in FHEW-like Cryptosystems”. In:
WAHC 2021. WAHC@ACM, 2021, pp. 17–28. DOI: 10.1145/3474366.3486924.

[39] M. Ajtai. “Generating hard instances of lattice problems”. In: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing. 1996, pp. 99–
108. URL: https://eccc.weizmann.ac.il/eccc- reports/1996/TR96-
007/index.html.

[40] O. Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: ACM 2005. Ed. by H. N. Gabow and R. Fagin. ACM, 2005,
pp. 84–93. DOI: 10.1145/1060590.1060603.

[41] D. Micciancio and O. Regev. “Worst-Case to Average-Case Reductions Based
on Gaussian Measures”. In: SIAM J. Comput. 37.1 (2007), pp. 267–302. DOI:
10.1137/S0097539705447360.

[42] D. Aharonov and O. Regev. “Lattice problems in NP cap coNP”. In: J. ACM 52.5
(2005), pp. 749–765. DOI: 10.1145/1089023.1089025.

[43] D. Micciancio and C. Peikert. “Hardness of SIS and LWE with Small Parameters”.
In: CRYPTO 2013, Part I. Ed. by R. Canetti and J. A. Garay. Vol. 8042. LNCS.
Springer, 2013, pp. 21–39. DOI: 10.1007/978-3-642-40041-4_2.

[44] C. Peikert. “Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract”. In: STOC 2009. Ed. by M. Mitzenmacher. ACM,
2009, pp. 333–342. DOI: 10.1145/1536414.1536461.

[45] D. Micciancio and P. Mol. “Pseudorandom Knapsacks and the Sample
Complexity of LWE Search-to-Decision Reductions”. In: CRYPTO 2011.
Ed. by P. Rogaway. Vol. 6841. LNCS. Springer, 2011, pp. 465–484. DOI:
10.1007/978-3-642-22792-9_26.

[46] D. X. Song, D. A. Wagner, and A. Perrig. “Practical Techniques for Searches
on Encrypted Data”. In: IEEE S&P 2000. IEEE, 2000, pp. 44–55. DOI:
10.1109/SECPRI.2000.848445.

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1145/3474366.3486924
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-007/index.html
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-007/index.html
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1145/1089023.1089025
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1109/SECPRI.2000.848445

REFERENCES

1

21

[47] R. Bost, B. Minaud, and O. Ohrimenko. “Forward and Backward Private
Searchable Encryption from Constrained Cryptographic Primitives”. In: ACM
CCS 2017. Ed. by B. Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM,
2017, pp. 1465–1482. DOI: 10.1145/3133956.3133980.

[48] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. “Dynamic Searchable Encryption in Very-Large Databases: Data
Structures and Implementation”. In: NDSS 2014. The Internet Society, 2014.
DOI: 10.14722/ndss.2014.23264.

[49] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.
“Highly-Scalable Searchable Symmetric Encryption with Support for Boolean
Queries”. In: CRYPTO 2013, Part I. Ed. by R. Canetti and J. A. Garay. Vol. 8042.
LNCS. Springer, 2013, pp. 353–373. DOI: 10.1007/978-3-642-40041-4_20.

[50] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. “Searchable symmetric
encryption: improved definitions and efficient constructions”. In: ACM CCS
2006. Ed. by A. Juels, R. N. Wright, and S. D. C. di Vimercati. ACM, 2006,
pp. 79–88. DOI: 10.1145/1180405.1180417.

[51] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. “Public Key
Encryption with Keyword Search”. In: EUROCRYPT 2004. Ed. by C. Cachin
and J. Camenisch. Vol. 3027. LNCS. Springer, 2004, pp. 506–522. DOI:
10.1007/978-3-540-24676-3_30.

[52] R. Zhang and H. Imai. “Combining Public Key Encryption with Keyword
Search and Public Key Encryption”. In: IEICE Trans. Inf. Syst. 92-D.5 (2009),
pp. 888–896. DOI: 10.1587/transinf.E92.D.888.

[53] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,
G. Neven, P. Paillier, and H. Shi. “Searchable Encryption Revisited: Consistency
Properties, Relation to Anonymous IBE, and Extensions”. In: CRYPTO 2005.
Ed. by V. Shoup. Vol. 3621. LNCS. Springer, 2005, pp. 205–222. DOI:
10.1007/11535218_13.

[54] Q. Zheng, S. Xu, and G. Ateniese. “VABKS: Verifiable attribute-based keyword
search over outsourced encrypted data”. In: IEEE INFOCOM 2014. IEEE, 2014,
pp. 522–530. DOI: 10.1109/INFOCOM.2014.6847976.

[55] W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song. “ShadowCrypt: Encrypted
Web Applications for Everyone”. In: ACM CCS 2014. Ed. by G. Ahn, M. Yung,
and N. Li. ACM, 2014, pp. 1028–1039. DOI: 10.1145/2660267.2660326.

[56] B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva. “Mimesis
Aegis: A Mimicry Privacy Shield-A System’s Approach to Data Privacy on Public
Cloud”. In: USENIX 2014. Ed. by K. Fu and J. Jung. USENIX Association, 2014,
pp. 33–48. URL: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/lau.

[57] D. Micciancio and J. Sorrell. “Ring Packing and Amortized FHEW Bootstrap-
ping”. In: ICALP 2018. Ed. by I. Chatzigiannakis, C. Kaklamanis, D. Marx,
and D. Sannella. Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018, 100:1–100:14. DOI: 10.4230/LIPICS.ICALP.2018.100.

https://doi.org/10.1145/3133956.3133980
https://doi.org/10.14722/ndss.2014.23264
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1587/transinf.E92.D.888
https://doi.org/10.1007/11535218_13
https://doi.org/10.1109/INFOCOM.2014.6847976
https://doi.org/10.1145/2660267.2660326
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/lau
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/lau
https://doi.org/10.4230/LIPICS.ICALP.2018.100

1

22 REFERENCES

[58] A. Guimarães, H. V. L. Pereira, and B. V. Leeuwen. “Amortized Bootstrapping
Revisited: Simpler, Asymptotically-Faster, Implemented”. In: ASIACRYPT 2023,
Part VI. Ed. by J. Guo and R. Steinfeld. Vol. 14443. LNCS. Springer, 2023,
pp. 3–35. DOI: 10.1007/978-981-99-8736-8_1.

[59] F. Liu and H. Wang. “Batch Bootstrapping I: - A New Framework for SIMD
Bootstrapping in Polynomial Modulus”. In: EUROCRYPT 2023, Part III. Ed. by
C. Hazay and M. Stam. Vol. 14006. LNCS. Springer, 2023, pp. 321–352. DOI:
10.1007/978-3-031-30620-4_11.

[60] F. Liu and H. Wang. “Batch Bootstrapping II:” in: EUROCRYPT 2023, Part III.
Ed. by C. Hazay and M. Stam. Vol. 14006. LNCS. Springer, 2023, pp. 353–384.
DOI: 10.1007/978-3-031-30620-4_12.

[61] I. Chillotti, D. Ligier, J. Orfila, and S. Tap. “Improved Programmable
Bootstrapping with Larger Precision and Efficient Arithmetic Circuits for TFHE”.
In: ASIACRYPT 2021, Part III. Ed. by M. Tibouchi and H. Wang. Vol. 13092.
LNCS. Springer, 2021, pp. 670–699. DOI: 10.1007/978-3-030-92078-4_23.

[62] I. Chillotti, M. Joye, and P. Paillier. “Programmable Bootstrapping Enables
Efficient Homomorphic Inference of Deep Neural Networks”. In: CSCML 2021.
Ed. by S. Dolev, O. Margalit, B. Pinkas, and A. A. Schwarzmann. Vol. 12716.
LNCS. Springer, 2021, pp. 1–19. DOI: 10.1007/978-3-030-78086-9_1.

[63] M. S. Islam, M. Kuzu, and M. Kantarcioglu. “Access Pattern disclosure
on Searchable Encryption: Ramification, Attack and Mitigation”. In: NDSS
2012. The Internet Society, 2012. URL: https://www.ndss-symposium.
org/ndss2012/access- pattern- disclosure- searchable- encryption-
ramification-attack-and-mitigation.

[64] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. “Leakage-Abuse Attacks Against
Searchable Encryption”. In: ACM CCS 2015. Ed. by I. Ray, N. Li, and C. Kruegel.
ACM, 2015, pp. 668–679. DOI: 10.1145/2810103.2813700.

[65] L. Blackstone, S. Kamara, and T. Moataz. “Revisiting Leakage Abuse Attacks”.
In: NDSS 2020. The Internet Society, 2020. DOI: 10.14722/ndss.2020.23103.

[66] J. Ning, X. Huang, G. S. Poh, J. Yuan, Y. Li, J. Weng, and R. H. Deng.
“LEAP: Leakage-Abuse Attack on Efficiently Deployable, Efficiently Searchable
Encryption with Partially Known Dataset”. In: ACM CCS 2021. Ed. by
Y. Kim, J. Kim, G. Vigna, and E. Shi. ACM, 2021, pp. 2307–2320. DOI:
10.1145/3460120.3484540.

[67] Y. Zhang, J. Katz, and C. Papamanthou. “All Your Queries Are Belong to Us: The
Power of File-Injection Attacks on Searchable Encryption”. In: USENIX 2016.
Ed. by T. Holz and S. Savage. USENIX Association, 2016, pp. 707–720. URL:
https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/zhang.

[68] G. Wang, Z. Cao, and X. Dong. “Improved File-injection Attacks on Searchable
Encryption Using Finite Set Theory”. In: Comput. J. 64.8 (2021), pp. 1264–1276.
DOI: 10.1093/COMJNL/BXAA161.

https://doi.org/10.1007/978-981-99-8736-8_1
https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.1007/978-3-031-30620-4_12
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-78086-9_1
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.14722/ndss.2020.23103
https://doi.org/10.1145/3460120.3484540
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://doi.org/10.1093/COMJNL/BXAA161

REFERENCES

1

23

[69] E. Kirshanova. “Proxy Re-encryption from Lattices”. In: PKC 2014. Ed. by
H. Krawczyk. Vol. 8383. LNCS. Springer, 2014, pp. 77–94. DOI: 10.1007/978-
3-642-54631-0_5.

[70] K. Sakurai, T. Nishide, and A. Syalim. “Improved proxy re-encryption scheme
for symmetric key cryptography”. In: IWBIS, 2017. IEEE, 2017, pp. 105–111.
DOI: 10.1109/IWBIS.2017.8275110.

[71] S. Yamada. “Adaptively Secure Identity-Based Encryption from Lattices with
Asymptotically Shorter Public Parameters”. In: EUROCRYPT 2016, Part II.
Ed. by M. Fischlin and J. Coron. Vol. 9666. LNCS. Springer, 2016, pp. 32–62.
DOI: 10.1007/978-3-662-49896-5_2.

[72] Y. Hsieh, H. Lin, and J. Luo. “Attribute-Based Encryption for Circuits of
Unbounded Depth from Lattices”. In: FOCS 2023. IEEE, 2023, pp. 415–434.
DOI: 10.1109/FOCS57990.2023.00031.

https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1109/IWBIS.2017.8275110
https://doi.org/10.1007/978-3-662-49896-5_2
https://doi.org/10.1109/FOCS57990.2023.00031

2
EQUIVALENCE OF UPDATABLE

ENCRYPTION

Updatable encryption (UE) enables the cloud server to update the previously sourced
encrypted data to a new key with only an update token received from the client. Two
interesting works have been proposed to clarify the relationships among various UE
security notions. Jiang (ASIACRYPT 2020) proved the equivalence of every security
notion in the bi-directional and uni-directional key update settings and further,
the security notion in the no-directional key update setting is strictly stronger than
the above two. In contrast, Nishimaki (PKC 2022) proposed a new definition
of uni-directional key update that is called the backward-leak uni-directional key
update, and showed the equivalence relation by Jiang does not hold in this setting.
We present a detailed comparison of every security notion in the four key update
settings and prove that the security in the backward-leak uni-directional key update
setting is actually equivalent to that in the no-directional key update setting. Our
result reduces the hard problem of constructing no-directional key update UE schemes
to the construction of those with backward-leak uni-directional key updates.

This chapter is based on the paper “No-Directional and Backward-Leak Uni-Directional Updatable
Encryption Are Equivalent” by Chen, H., Fu, S., and Liang, K. in ESORICS (1) 2022: 387-407

25

2

26 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

2.1. INTRODUCTION

When a client stores encrypted data on a cloud server, a good way of key
management is to change keys periodically, so as to resist the risk of key leakage.
This process is referred to as key rotation, in which the core of the update relies
on how to update the previous encrypted data to be decryptable by a new key. A
possible way is to download and decrypt the encrypted data with the old key, and
then encrypt the data with the new key and upload the new encrypted data again.
But the download and upload process would be extremely expensive if there exists a
considerable amount of data.

Updatable encryption (UE) [1] provides a practical solution to the above dilemma.
Its core idea is that the client offers the cloud server the ability to update ciphertexts
by the update tokens, with a requirement that the update token should not leak any
information about the data. There are two flavors of UE depending on if ciphertexts
are needed in the generation of the update token. One is called ciphertext-dependent
UE [1–4], in which clients need to download partial components of the encrypted
data, called ciphertext header, from the cloud to generate the update token, and
the token can only update the corresponding ciphertext. The other, more practical
than the previous one, is known as ciphertext-independent UE [5–10], in which the
token only depends on the old and the new keys, and a single token can update all
existing ciphertexts. In this work, we only focus on the latter.

Security Notions. The security of UE schemes should be maintained even under a
temporary corruption of keys and update tokens. The original UE construction and
its security model against passive adversaries were proposed by Boneh et al. [1],
where the adversary in the security game should specify the epoch keys it wishes
to know before sending queries to the challenger. The confidentiality notions were
further strengthened by [5, 7, 8], which attempts to capture the practical abilities of
the adaptive attacker. The adversary can corrupt epoch keys and updated tokens at
any time during the game as long as it does not trigger the trivial win conditions,
which will be checked after the adversary submits its guessing bit (more details can
be found in Section 2.2). A summary of existing confidentiality notions and their
major difference is presented in Fig. 2.1.

Challenge Input Challenge Output
IND-Enc-notion [8] (m̄0,m̄1) (Enc(m̄0),Enc(m̄1))
IND-Upd-notion [8] (c̄0, c̄1)

(
Upd(c̄0),Upd(c̄1)

)
IND-UE-notion [5] (m̄0, c̄1)

(
Enc(m̄0),Upd(c̄1)

)
Figure 2.1: A summary of confidentiality notions, where notion ∈ {CPA,CCA}. The

adversary in each confidentiality game provides two challenge inputs
based on the oracles it has access to and tries to distinguish the challenge
outputs.

Boyd et al. [5] proved that IND-UE-notion is strictly stronger even than the
combination of the prior two (in Fig. 2.1) defined in [8]. They further proposed an

2.1. INTRODUCTION

2

27

integrity notion called IND-CTXT. Jiang [6] defined another integrity notion called
IND-PTXT. In the CTXT game, the adversary tries to provide a valid ciphertext
that is different from the ciphertexts obtained during the game by the challenger;
while in the PTXT game, the adversary needs to provide a valid ciphertext, whose
underlying plaintext has not been queried during the game. Those two integrity
notions are similar to the integrity notions of symmetric encryption schemes, but
the adversary is provided with oracles specified in UE and trivial win conditions are
also checked after the adversary submits its forgery.

Hereafter by security notions, we mean the set of all confidentiality and
integrity notions in [5] and [6]: {detIND-UE-CPA,randIND-UE-CPA,detIND-UE-CCA,
randIND-UE-CCA, IND-CTXT, IND-PTXT}, where det/rand denotes the ciphertext
updates are deterministic or randomized, respectively.

Key Update Directions. The update token is generated by two successive epoch
keys via the token generation algorithm, i.e., ∆e,e+1 =TokenGen(ke,ke+1) (defined in
Section 2.2); therefore the adversary may derive one of the two successive keys from
the other if the update token is known. Jiang [6] investigated three key update
directions: bi-directional key updates in which both the old key ke and the new
key ke+1 can be derived from the other, uni-directional key updates in which only
the new key ke+1 can be derived from the old key ke but ke cannot be derived
from ke+1, and no-directional key updates in which no keys in the two successive
epoch keys can be derived from the other. The direction of key update affects the
computation of leakage information known to the adversary, which in turn affects
the computation of trivial win conditions as well as security notions. However, the
main result in [6] shows that the security notions in the bi-directional key update
setting and in the uni-directional key update setting are equivalence, while the
security notions in the no-directional key update setting are strictly stronger.

Nishimaki [9] recently introduced a new definition of uni-directional key update
that is called the backward-leak uni-directional key update for distinction, where the
update direction is the opposite of the original uni-directional key update in [6]
(called the forward-leak uni-directional key update for distinction). That is, the old
key ke can be derived from the new key ke+1, but ke+1 cannot be derived from ke.
Nishimaki [9] demonstrated a contrasting conclusion that the security notions in the
backward-leak uni-directional key update setting are not equivalent to those in the
bi-directional directional key update setting.

But the relations among UE schemes in the four kinds of keys update settings
have not been fully investigated yet. Thus, a natural interesting open problem that
should be clear before any valuable constructions is as follows:

What are the relations among UE schemes in the bi-directional, forward-leak
uni-directional, backward-leak uni-directional, and no-directional key update

settings?

Our Contributions. At first glance, one may think that UE schemes with
no-directional key updates should be strictly strong than UE with all the other three
key update directions, just as proved in [6] that no-directional key updates setting

2

28 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

leaks less information about keys, tokens and ciphertexts than the bi-directional
and forward-leak uni-directional key updates. However, our main result provides
a surprising result that, for each security notion, no-directional key update UE
schemes, which were believed to be strictly stronger than the other directional key
update schemes, are actually equivalent to those with backward-leak uni-directional
key updates.

Our main technique is to analyze the relations of the trivial win conditions for
each security notion in different key update settings. As in other semantic security
definitions, the adversary in the security game for UE is provided access to different
oracles to capture realistic attack models. However, it may lead to a trivial win if
the adversary queries some combinations of oracles. Therefore, the bookkeeping
technique was developed in [7, 8] that tracks the leakage information of tokens, keys,
and ciphertexts known to the adversary during the game and checks if those leakages
may lead the adversary to trivially win after the adversary submits its guessing bit.
The direction of key update affects the computation of leakage information and
thus, we analyze the relations among UE schemes by analyzing the relations of
trivial win conditions in different key update directions, especially the backward-leak
uni-directional key update which was not covered by [6].

Based on our result, when analyzing the security notions, we can treat UE
schemes with no-directional key updates as those with backward-leak uni-directional
key updates. Currently, there are only two no-directional key update UE schemes
in the literature: one is built on Ciphertext Puncturable Encryption [10] and the
other is built on one-way functions and indistinguishability obfuscation [9]. Our
result can eliminate the need for constructing UE schemes with no-directional key
dates while also keeping security, since it is sufficient to construct UE schemes
with backward-leak uni-directional key updates, which is much easier than the former.

Related Work UE schemes can be built from various cryptographic primitives.
The seminal UE scheme BLMR was proposed by [1] as an application of almost
key homomorphic pseudorandom functions, which satisfies IND-ENC instead of
IND-UPD. An ElGamal-based scheme RISE was introduced by [8] to achieve both
security definitions. To provide integrity protection, Klooß et al. [7] constructed
two generic schemes based on Encrypt-and-MAC and the Naor-Yung transform
[11]. Boyd et al. [5] designed three IND-UE-CPA secure schemes, called SHINE,
based on the random-looking permutation. Jiang [6] provided a quantum-resistant
scheme based on the decisional LWE [12]. The first UE scheme with backward
uni-directional key was presented in Nishimaki [9] based on the Regev PKE scheme,
in which a scheme with no-directional key updates is also constructed based on
one-way functions [13] and indistinguishability obfuscation [14]. Slamanig and
Striecks presented a pairing backward uni-directional scheme and a pairing-based
no-directional scheme from ciphertext puncturable encryption [10].

2.2. UPDATABLE ENCRYPTION

We review the syntax of UE and the confidentiality and integrity definitions.

2.2. UPDATABLE ENCRYPTION

2

29

Definition 2.2.1 ([7]). A UE scheme includes a tuple of PPT algorithms {UE.KG,
UE.Enc, UE.Dec, UE.TG, UE.Upd} that operate in epochs, starting from 0.

• UE.KG(1λ): the key generation algorithm outputs an epoch key ke.

• UE.Enc(ke,m): the encryption algorithm takes as input an epoch key ke and a
message m and outputs a ciphertext ce.

• UE.Dec(ke,ce): the decryption algorithm takes as input an epoch key ke and a
ciphertext ce and outputs a message m′.

• UE.TG(ke,ke+1): the token generation algorithm takes as input two epoch keys
ke and ke+1 and outputs a token ∆e+1.

• UE.Upd(∆e+1,ce): the update algorithm takes as input a token ∆e+1 and a
ciphertext ce and outputs a ciphertext ce+1.

Correctness for UE means that any valid ciphertext and its updates should be
decrypted to the correct message under the appropriate epoch key. The definitions
of confidentiality and integrity for UE are given in Definition 2.2.2 and Definition
2.2.3, respectively. In general, the adversary in each security game is provided with
access to different oracles, which enables it to obtain information about epoch keys,
update tokens and ciphertexts from the challenger. In the challenge phase of the
confidentiality game, the adversary submits a challenge message m̄ and a challenge
ciphertext c̄ according to the information it already has and receives a ciphertext
from the challenger, and its goal is to guess the received ciphertext is an encryption
of the message of m̄ or an update of c̄. Then the adversary can continue to query
the oracles and eventually provides a guessing bit. In the integrity game, the goal
of the adversary is to forge a new valid ciphertext. In both security games, some
combinations of oracles may lead to a trivial win of the game for the adversary,
so the challenger will check if those trivial win conditions are triggered during the
game by a bookkeeping technique developed in [8].

An overview of the oracles that the adversary has access to is shown in Fig. 2.4,
how to compute the leakage set and its extension are described in Section 2.2.1, and
the trivial win conditions in different security games are presented in Section 2.2.2.

Definition 2.2.2 (Confidentiality, [5]). Let UE = {UE.KG, UE.Enc, UE.Dec} be an
updatable encryption scheme. For notion ∈ {detIND-UE-CPA, randIND-UE-CPA,
detIND-UE-CCA, randIND-UE-CCA}, the notion advantage of an adversary A

is defined as: Advnotion
UE,A (1λ) =

∣∣∣Pr[Expnotion-1
UE,A = 1]−Pr[Expnotion-0

UE,A = 1]
∣∣∣, where the

experiment Expnotion-b
UE,A is given in Fig. 2.2 and Fig. 2.4, and det and rand denote the

ciphertext update procedure is deterministic and randomized, respectively. We say a
UE scheme is notion secure if Advnotion

UE,A (1λ) ≤ negl(λ).

Definition 2.2.3 (Integrity, [5, 6]). Let UE= {UE.KG,UE.Enc,UE.Dec} be an updatable
encryption scheme. For notion ∈ {INT-CTXT, INT-PTXT}, the notion advantage of an

adversary A is defined as: Advnotion
UE,A (1λ) =

∣∣∣Pr[Expnotion
UE,A = 1]

∣∣∣, where the experiment

2

30 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

ExpxxIND-UE-atk-b
UE,A :

1 : do Setup;phase← 0

2 : b′ ←A O (1λ)

3 : if
(
(K ∗∪C ∗ ̸= ;) or (xx = det and

4 : (ẽ ∈T ∗ or O .Upd(c̄) is required))
)

then

5 : twf ← 1

6 : if twf = 1 then

7 : b′ $← {0,1}

8 : return b′

Figure 2.2: Generic description of the confidentiality experiment ExpxxIND-UE-atk-b
UE,A

for xx ∈ {rand,det}, atk ∈ {CPA,CCA} and b ∈ {0,1}. The flag phase ∈ {0,1}
denotes whether or not A has queried the O .Chall oracle, and
twf tracks if the trivial win conditions are triggered, and O =
O .{Enc,Next,Upd,Corr,Chall,UpdC̃} is the set of oracles A can access to,
which are defined in Fig. 2.4. When atk=CCA, the decryption oracle
O .Dec is also added to O . The computation of K ∗,T ∗,C ∗ are discussed
in Section 2.2.1.

Expnotion
UE,A is given in Fig. 2.3 and Fig. 2.4. We say a UE scheme is notion secure if

Advnotion
UE,A (1λ) ≤ negl(λ).

ExpIND-atk
UE,A :

1 : do Setup;win← 0

2 : A O (1λ)

3 : if twf = 1 then

4 : win← 0

5 : return win

Figure 2.3: Generic description of the confidentiality experiment ExpIND-atk
UE,A for

atk ∈ {CTXT,PTXT}. The flag win tracks whether or not A provided a
valid forgery, twf tracks if the trivial win conditions are triggered, and
O = O .{Enc,Next,Upd,Corr,Try} is the set of oracles A can access to,
which are defined in Fig. 2.4.

2.2.1. LEAKAGE SETS

In security games of UE, the adversary is provided access to various oracles as
shown in Fig. 2.4, so it can learn some information about update keys, epoch tokens
and ciphertexts during the query phase. Moreover, it can extend the information via

2.2. UPDATABLE ENCRYPTION

2

31

Setup(1λ):

k0
$←UE.KG(1λ)

∆0 ←⊥;e,c,twf ← 0

L ,L̃ ,C ,K ,T ←;

O .Enc(m):

c ← c +1

c $←UE.ENC(ke,m))

L ←L ∪ {(c,c,e;m)}

return c

O .Dec(c):

m′ or ⊥←UE.Dec(ke,c)

if
(
(xx = det and (c,e) ∈ L̃ ∗) or

(xx = rand and (m′,e) ∈ Q̃∗)
)

then

twf ← 1

return m′ or ⊥

O .Next():

e← e+1

ke
$←UE.KG(1λ)

∆e ←UE.TG(ke−1,ke)

if phase= 1 then

c̃e ←UE.Upd(∆e, c̃e−1)

O .Corr(inp, ê)

if ê> e then

return ⊥
if inp= key then

K ←K ∪ {ê}

return kê
if inp= token then

T ←T ∪ {ê}

return ∆ê

O .Upd(ce−1):

if (j ,ce−1,e−1;m) ̸∈L then

return ⊥
ce ←UE.Upd(∆e,ce−1)

L ←L ∪ {(j ,ce,e;m)}

O .Chall(m̄, c̄)

if phase= 1 then

return ⊥
phase← 1; ẽ← e
if (·, c̄,e−1;m̄1) ̸∈L then

return ⊥
if b= 0 then

c̃ẽ ←UE.Enc(kẽ,m̄)

else

c̃ẽ ←UE.Upd(∆ẽ, c̄)

C ←C ∪ {ẽ}

L̄ ← L̄ ∪ {(c̃ẽ, ẽ)}

return c̃ẽ

O .UpdC̃
if phase ̸= 1 then

return ⊥
C ←C ∪ {e}

L̄ ← L̄ ∪ {(c̃e,e)}

return c̃e

O .Try(c̃)

m′ or ⊥←UE.Dec(ke, c̃)

if
(
e ∈K ∗ or (atk=CTXT and (c̃,e) ∈L ∗) or

(atk=PTXT and (m′,e) ∈ Q̃∗)
)

then

twf ← 1

if m′ ̸= ⊥ then

win← 1

Figure 2.4: Oracles in the UE security games, where the message m1 is the
underlying message of the challenge input ciphertext c̄. The leakage sets
L ,L̃ ,L ∗,L̃ ∗,C ,K ,K ∗,T ,T ∗,Q,Q∗,Q̃∗ are defined in Section 2.2.1.

2

32 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

its known tokens, and the extension depends on the direction of key update and
the direction of ciphertext update. We start by describing the leakage sets in [7, 8],
and then show how to compute the extended leakage sets in different key update
direction settings.

Epoch Leakage Sets. We record the following epoch sets related to epoch keys,
update tokens, and challenge-equal ciphertexts.

• K : Set of epochs in which the adversary corrupted the epoch key from O .Corr.

• T : Set of epochs in which the adversary corrupted the update token from
O .Corr.

• C : Set of epochs in which the adversary learned a challenge-equal ciphertext
(the ciphertext related to the challenge inputs) from O .Chall or O .UpdC̃.

The adversary can use its corrupted tokens to extend K , T , C to infer more
information. We use K ∗,K̂ ∗,T ∗,C ∗ as the extended sets respectively, and how to
compute K ∗,K̂ ∗,T ∗,C ∗ are shown later.

Information Leakage Sets. We record the following sets related to ciphertexts known
to the adversary.

• L : Set of non-challenge equal ciphertexts (c,c,e;m) the adversary learned from
O .Enc or O .Upd.

• L̃ : Set of challenge-equal ciphertexts (c̃e,e) the adversary learned from O .Chall
or O .UpdC̃.

The adversary can also use its corrupted tokens to extend L ,L̃ to infer more
information about ciphertexts. In the deterministic update setting, we denote
L ∗, L̃ ∗ as the extended sets of L and L̃ , respectively.

In randomized UE schemes, we use Q∗, Q̃∗ to denote respectively the extended
sets of L ,L̃ :

• Q∗: Set of plaintexts (m,e). The adversary learned in the query phase or could
create a ciphertext of m in the epoch e.

• Q̃∗: Set of challenge plaintexts {(m̄,e), (m̄1,e)}, where (m̄, c̄) is the query input
of O .Upd and m̄1 is the plaintext of c̄. The adversary learned in the query
phase or could create a ciphertext of m̄ or m̄1 in the epoch e.

Inferred Leakage Sets. The adversary can infer more information from K , L and
C via its corrupted tokens, which are computed as follows.

Key Leakage. Since the update tokens are generated from two successive epoch keys
by ∆e+1 =UE.TG(ke,ke+1), one epoch key in {ke,ke+1} may be inferred by the other
via the known token ∆e+1.

2.2. UPDATABLE ENCRYPTION

2

33

• No-directional key updates: K ∗
no = K . The adversary does have more

information about keys except K , since tokens cannot be used to derive keys.

• Forward-leak uni-directional key updates:

K ∗
f-uni = {e ∈ {0, . . . , l } |CorrK(e) = true},

where true ← CorrK(e) ⇐⇒ (e ∈ K)∨ (CorrK(e−1)∧e ∈ T). The adversary can
infer more keys from corrupted tokens and keys in the previous epoch.

• Backward-leak uni-directional key updates:

K ∗
b-uni = {e ∈ {0, . . . , l } |CorrK(e) = true}, (2.1)

where true ← CorrK(e) ⇐⇒ (e ∈ K)∨ (CorrK(e+1)∧ e+1 ∈ T). Keys can be
inferred from corrupted tokens and keys in the next epoch.

• Bi-directional key updates:

K ∗
bi = {e ∈ {0, . . . , l } |CorrK(e) = true}, (2.2)

where true←CorrK(e) ⇐⇒ (e ∈K)∨ (CorrK(e−1)∧e ∈T)∨ (CorrK(e+1)∧e+1 ∈
T). Besides the corrupted keys K , the adversary can infer more keys both
from key upgrades and downgrades, i.e., K ∗

bi =K ∗
f-uni ∪K ∗

b-uni.

In the integrity game, a set K̂ is defined to check if the adversary can trivially forge
a valid ciphertext as follows.

K̂ ∗ = {i ∈ {0, . . . , l } | ForgK(i) = true}

true ← ForgK(i) ⇐⇒ (i ∈K)∨ (CorrK(e−1)∧e ∈T) (2.3)

Token Leakage. The adversary knows a token by either corrupting or inferring from
two successive keys. Then we have

T ∗
kk = {e ∈ {0, . . . , l } | (e ∈T)∨ (e ∈K ∗

kk ∧e−1 ∈K ∗
kk}, (2.4)

for kk ∈ {no, f-uni,b-uni,bi}.

Ciphertext Leakages. Different from the direction of key update, ciphertexts should
always be upgraded but are not necessarily downgraded by tokens, so there are only
two types of ciphertext directions.

• Uni-directional ciphertext updates:

C ∗
kk,uni = {e ∈ {0, . . . , l } |ChallEq(e) = true}, (2.5)

where ChallEq(e) = true ⇐⇒ (e ∈ C)∨ (ChallEq(e−1)∧ e ∈ T ∗
kk). Besides the

learned ciphertext C , the adversary can infer more ciphertexts from corrupted
tokens and ciphertexts in the previous epoch.

2

34 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

• Bi-directional ciphertext updates:

C ∗
kk,bi = {e ∈ {0, . . . , l } |ChallEq(e) = true}, (2.6)

where ChallEq(e) = true ⇔ (e ∈ C)∨ (ChallEq(e−1)∧ e ∈ T ∗
kk)∨ (ChallEq(e+1)∧

e+1 ∈ T ∗
kk). Besides the learned ciphertext C , the adversary can infer more

ciphertexts both from key upgrades and downgrades.

Remark 2.2.4. From the definition, the leakage sets have the following relations,

• (c̃e,e) ∈ L̃ ⇐⇒ e ∈C ,

• (c̃e,e) ∈ L̃ ∗ ⇐⇒ e ∈C ∗ ⇐⇒ {(m̄,e), (m̄1,e)} ∈ Q̃∗.

Example. An example is given in Fig. 2.5 to show how to compute leakage sets. We
assume the adversary corrupts epoch keys in epochs in K = {e−5, e−4, e−3, e−1} and
corrupts tokens in T = {e−4, e−3, e−1,e}, and queries a non-challenge ciphertext,
say ce−5, in epoch e−5.

In the no-directional key update setting, the adversary cannot infer extra keys
and tokens, i.e., K ∗

no =K and T ∗
no =T . However, it can infer ciphertexts in epoch

e−4,e−3 by using ce−5 and tokens in epochs e−4 and e−3, but cannot infer the
ciphertexts in epochs from e−2 to e, because the token in epoche−2 is unknown to
the adversary in the no-directional key update setting.

Epoch e−5 e−4 e−3 e−2 e−1 e

K ✓ ✓ ✓ × ✓ ×
T × ✓ ✓ × ✓ ✓

K ∗
no ✓ ✓ ✓ × ✓ ×

T ∗
no × ✓ ✓ × ✓ ✓

K ∗
b-uni ✓ ✓ ✓ ✓ ✓ ×

T ∗
b-uni × ✓ ✓ ✓ ✓ ✓

K ∗
f-uni ✓ ✓ ✓ × ✓ ✓

T ∗
f-uni × ✓ ✓ × ✓ ✓

Figure 2.5: Example of leakage sets. Marks ✓ and × indicate if an epoch key or
epoch token is corrupted. The green mark ✓ indicates an epoch key or
epoch token can be inferred from other corrupted keys and tokens.

In the backward uni-directional key update setting, the adversary can infer the
key in epoch e−2 from the known token and key in epoch e−1, and further infer
the token in the epoch e−2, since the key in epoch e−3 is also corrupted, i.e.,

2.2. UPDATABLE ENCRYPTION

2

35

K ∗
b-uni = {e−5, . . . ,e−1} and T ∗

b-uni = {e−4, . . . ,e}. Moreover, it can infer the ciphertexts
in epoch from e−4 to e by ce−5 and T ∗

b-uni.
In the forward uni-directional key update setting, the adversary cannot infer the

token in epoch e−2, since the key in epoch e−2 is unknown to it. But it can
infer the key in epoch e via the known key in e−1 and the known token in e, i.e.,
K ∗

f-uni =K ∪ {e} and T ∗
f-uni =K ∗. The ciphertext it can learn is the same as that in

the no-directional key update setting.

2.2.2. TRIVIAL WIN CONDITIONS

In the security games of UE, the leaked information probably leads the adversary
to trivially win the game. The challenger will check if any trivial win condition is
triggered at the end of the game. A summary of trivial win conditions is described
in Fig. 2.6, which follows from the analysis in [5–8].

notion K
∗ ∩C

∗ ̸= ;

ẽ ∈
T
∗ or

O
.Upd

(c̄)
is

querie
d

(c,
e) ∈

L̃
∗

(m
′ ,e)

∈ Q̃
∗

e ∈
ˆ

K
∗

(c̃,
e) ∈

L
∗

(m
′ ,e)

∈Q
∗

detIND-UE-CPA ✓ ✓ × × × × ×
randIND-UE-CPA ✓ × × × × × ×
detIND-UE-CCA ✓ ✓ ✓ × × × ×
randIND-UE-CCA ✓ × × ✓ × × ×
IND-CTXT × × × × ✓ ✓ ×
IND-PTXT × × × × ✓ × ✓

Figure 2.6: Trivial win conditions in different security games for updatable encryption.
✓ and × indicate whether the security notion considers the corresponding
trivial win conditions or not. ẽ is the challenge epoch, i.e., the epoch the
adversary queries O .Chall, and e represents the current epoch.

We give a detailed explanation for the trivial win conditions in each security
game. If K ∗∩C ∗ ̸= ;, then there is an epoch i that the adversary knows the
epoch key ki and a challenge-equal ciphertext ci in the same epoch. Then the
adversary can decrypt the challenge-equal ciphertext ci with its known key ki and
get the underlying message of ci . Thus, it can trivially win the game by comparing
the underlying message of ci with the challenge input message m̄. This condition
should be checked in all confidentiality games.

For deterministic UE schemes, if ẽ ∈T ∗ or O .Upd(c̄) is queried, then the adversary

2

36 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

can obtain the updated ciphertext c1 of the challenge input ciphertext c̄, and
therefore trivially win the game by comparing c1 with the ciphertext it receives from
its challenger.

In the CCA attack, the adversary has the access to the decryption oracle. For
deterministic UE schemes, if (c,e) ∈ L̃ ∗, the adversary can query the decryption
oracle on the challenge-equal ciphertext c and receive its underlying message. For a
randomized UE, it should also be prohibited if the decryption returns a message m′
such that m′ = m0 or m1, which is checked by (m′,e) ∈ Q̃∗.

If the adversary knows a ciphertext ce0 in epoch e0 and all tokens from epoch e0

to e, it can forge a valid ciphertext in epoch e by updating ce0 via the tokens from e0

to e. It should be checked in both integrity games if e ∈ K̂ ∗ which is defined as Eq.
(2.3). The challenger should also check if c̃ is a new ciphertext in the CTXT game,
and if the adversary knows a ciphertext of m′ in the CTXT game.

We now review some properties of leakage sets as follows.

Definition 2.2.5 (Firewall, [5–8]). An insulated region with firewalls fwl and fwr,
denoted by FW , is the consecutive sequence of epochs (fwl, . . . , fwr) for which:

• no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;

• the tokens ∆fwl and ∆fwr+1 are not corrupted;

• all tokens {∆fwl+1, . . . ,∆fwr} are corrupted.

Denote the union of all firewalls as IR :=⋃
(fwl,fwr)∈FW {fwl, . . . , fwr}. The following

lemma shows that IR is the complementary set of K ∗
bi .

Lemma 2.2.6 (Lemma 3.1, [6]). For any K ,T ∈ {0, . . . , l }, we have K ∗
bi = {0, . . . , l }\IR,

where l is the maximal number of updates.

Corollary 2.2.7. Since K ∗
bi = K ∗

f-uni ∪K ∗
b-uni by definition, we have {0, . . . , l } =

IR∪K ∗
f-uni ∪K ∗

b-uni.

Remark 2.2.8. For an epoch e ∈K ∗
f-uni, it holds that either e ∈K or there exists an

epoch ef before e, such that ef ∈ K and {ef , . . . ,e} ∈ T ; for an epoch e ∈ K ∗
b-uni, it

holds that either e ∈ K or there exists an epoch eb after e, such that eb ∈ K and
{e, . . . ,eb} ∈T . That follows directly from the definition.

2.3. RELATIONS AMONG SECURITY NOTIONS
To capture the security for UE schemes with kk-directional key updates and
cc-directional ciphertext updates, we consider the (kk,cc)-variant of each security
notion as defined in [6] (where kk ∈ {bi, f-uni,b-uni,no} and cc ∈ {uni,bi}), and then
compare the relations among all the variants of each security notion.

Definition 2.3.1 ((kk,cc)-variant of confidentiality, [6]). Let UE = {UE.KG, UE.Enc,
UE.Dec} be an updatable encryption scheme. For notion ∈ {detIND-UE-CPA,

2.3. RELATIONS AMONG SECURITY NOTIONS

2

37

randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}, the (kk,cc)-notion advantage
of an adversary A is defined as

Adv(kk,cc)-notion
UE,A (1λ) =

∣∣∣Pr[Exp(kk,cc)-notion-1
UE,A = 1]−Pr[Exp(kk,cc)-notion-0

UE,A = 1]
∣∣∣ ,

where the experiment Exp(kk,cc)-notion-b
UE,A is the same as the experiment Expnotion-b

UE,A (see
Fig. 2.2 and Fig. 2.4), except all leakage sets are computed in the kk-directional key
update setting and cc-directional ciphertext update setting (see Section 2.2.1).

Definition 2.3.2 ((kk,cc)-variant of integrity, [6]). Let UE= {UE.KG, UE.Enc, UE.Dec}
be an updatable encryption scheme. For notion ∈ {INT-CTXT, INT-PTXT}, the
(kk,cc)-notion advantage of an adversary A is defined as

Adv(kk,cc)-notion
UE,A (1λ) =

∣∣∣Pr[Exp(kk,cc)-notion
UE,A = 1]

∣∣∣ ,

where the experiment Exp(kk,cc)-notion
UE,A is the same as the experiment Expnotion

UE,A (see Fig.
2.3 and Fig. 2.4), except all leakage sets are computed in the kk-directional key update
setting and cc-directional ciphertext update setting (see Section 2.2.1).

A general idea to analyze the relation of any two out of the eight variants of each
security notion is to construct a reduction B, which runs the security experiment of
one variant while simulating all the responses to the queries made by the adversary
A in the security experiment of the other variant and forwards the guess result
from A to its challenger. Recall that if a trivial win condition is triggered, the
adversary will lose the game. Therefore, if the reduction B does not trigger trivial
win conditions (when A does not), the advantage of the reduction B will be larger
than that of the adversary A . Thus, the relation of the two variants depends on the
relation of trivial win conditions in each update direction setting.

2.3.1. RELATIONS AMONG CONFIDENTIALITY NOTIONS

The relations of eight variants of confidentiality are shown in Fig. 2.7. We mainly
prove the equivalence of each confidentiality notion in the bi-directional key update
setting and backward-leak uni-directional key update setting, i.e., (no,bi)-notion
⇐⇒ (b-uni,bi)-notion and (no,uni)-notion⇐⇒ (b-uni,uni)-notion. Then the rest of the
relations in Fig. 2.7 can easily follow from the prior work in [6].

The following two lemmas show UE schemes with bi-directional key updates leak
more information than those with backward uni-directional key updates, which
further leaks more information than those with no-directional key updates.

Lemma 2.3.3. For any sets K ,T ,C and any cc ∈ {uni,bi}, we have K ∗
no ⊆

K ∗
b-uni ⊆K ∗

bi , T ∗
no ⊆T ∗

b-uni ⊆T ∗
bi , C ∗

no,cc ⊆C ∗
b-uni,cc ⊆C ∗

bi,cc, L̃ ∗
no,cc ⊆ L̃ ∗

b-uni,cc ⊆ L̃ ∗
bi,cc,

Q̃∗
no,cc ⊆ Q̃∗

b-uni,cc ⊆ Q̃∗
bi,cc, L ∗

no,cc ⊆L ∗
b-uni,cc ⊆L ∗

bi,cc and Q∗
no,cc ⊆Q∗

b-uni,cc ⊆Q∗
bi,cc.

Proof. For any cc ∈ {uni,bi}, the adversary infers more information in the bi-directional
key update setting than in the backward uni-directional key update setting. For any
K ,T ,C , the inferred leakage sets K ∗

b-uni and K ∗
bi are computed by Eq. (2.1), (2.2),

2

38 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

(bi,uni)-notion (b-uni,uni)-notion (no,uni)-notion

(bi,bi)-notion (b-uni,bi)-notion (no,bi)-notion

(f-uni,uni)-notion

(f-uni,bi)-notion

Thm. 2.3.16

[6]

\

Thm. 2.3.16

Thm. 2.3.15

Thm. 2.3.16

Thm. 2.3.15

[6]

[6]

Thm. 2.3.10

\Thm. 2.3.16

Thm. 2.3.16

\[6]

[6]

Figure 2.7: Relations among the eight variants on confidentiality for notion ∈
{detIND-UE-CPA,randIND-UE-CPA,detIND-UE-CCA,randIND-UE-CCA}.

then we have K ∗
no ⊆K ∗

b-uni ⊆K ∗
bi . By Eq. (2.4), (2.5), (2.6), we have T ∗

no ⊆T ∗
b-uni ⊆T ∗

bi
and C ∗

no,cc ⊆ C ∗
b-uni,cc ⊆ C ∗

bi,cc. Then we obtain L̃ ∗
no,cc ⊆ L̃ ∗

b-uni,cc ⊆ L̃ ∗
bi,cc and

Q̃∗
no,cc ⊆ Q̃∗

b-uni,cc ⊆ Q̃∗
bi,cc by Remark 2.2.4. We compute L ∗ and Q∗ from L and Q

with T ∗, and then we have L ∗
no,cc ⊆L ∗

b-uni,cc ⊆L ∗
bi,cc and Q∗

no,cc ⊆Q∗
b-uni,cc ⊆Q∗

bi,cc,
which follows from T ∗

no ⊆T ∗
b-uni ⊆T ∗

bi .

Lemma 2.3.4. For any sets K ,T ,C and any kk ∈ {b-uni,bi}, we have C ∗
kk,uni ⊆C ∗

kk,bi,

L̃ ∗
kk,uni ⊆ L̃ ∗

kk,bi, Q̃∗
kk,uni ⊆ Q̃∗

kk,bi, L ∗
kk,uni ⊆L ∗

kk,bi and Q∗
kk,uni ⊆Q∗

kk,bi.

Proof. This follows similarly as in Lemma 2.3.3 and thus we omit the details.

(bi,bi)-notion⇐⇒ (b-uni,bi)-notion.

We prove the equivalence of (bi,bi)-variant and the (b-uni,bi)-variant in Theorem
2.3.10, which is based on the equivalence of trivial win conditions in Lemmas 2.3.5,
2.3.6, 2.3.8 and 2.3.9. We compare the relations of trivial win conditions in the two
settings one by one (see Section 2.2.2).

Lemma 2.3.5. For any sets K ,T ,C , we have K ∗
bi∩C ∗

bi,bi ̸= ;⇐⇒K ∗
b-uni∩C ∗

b-uni,bi ̸= ;.

Proof. From Lemma 2.3.3, we know that K ∗
b-uni ⊆ K ∗

bi and C ∗
b-uni,bi ⊆ C ∗

bi,bi,
so K ∗

b-uni ∩C ∗
b-uni,bi ⊆ K ∗

bi ∩C ∗
bi,bi. It is sufficient to prove K ∗

bi ∩C ∗
bi,bi ̸= ; ⇒

K ∗
b-uni ∩C ∗

b-uni,bi ̸= ;. If the adversary never queries any challenge-equal ciphertext
in an epoch in {0, . . . , l } \ IR, it will not obtain any challenge-equal ciphertext
in this set even in the bi-directional ciphertext update setting by Eq. (2.6), i.e.,
C ∗

bi,bi ∩ {0, . . . , l } \IR =;. This contradicts K ∗
bi ∩C ∗

bi,bi ̸= ;, since K ∗
bi = {0, . . . , l } \IR

by Lemma 2.2.6. There exists an epoch e′ ∈ {0, . . . , l } \ IR, in which the adversary
queries a challenge-equal ciphertext, i.e., e′ ∈C ∩K ∗

bi .

2.3. RELATIONS AMONG SECURITY NOTIONS

2

39

Note that K ∗
bi =K ∗

b-uni∪K ∗
f-uni. If e′ ∈K ∗

b-uni, then e′ ∈K ∗
b-uni∪C ⊆K ∗

b-uni∪C ∗
b-uni,bi,

so K ∗
b-uni ∪C ∗

b-uni,bi ̸= ;. If e′ ∈ K ∗
f-uni, then there exists a smaller epoch e′′ than

e′ such that e′′ ∈ K and the set {e′′, . . . ,e′} ⊆ T by Remark 2.2.8. Hence, the
adversary can degrade the message from e′ to e′′ to know c̃e′′ in the bi-directional
ciphertext update setting. Therefore, we have e′′ ∈K ∩C ∗

b-uni,bi ⊆K ∗
b-uni ∩C ∗

b-uni,bi, so
K ∗

b-uni ∪C ∗
b-uni,bi ̸= ;.

Lemma 2.3.6. For any set K ,T ,C , suppose K ∗
kk ∩C ∗

kk,bi =; for kk ∈ {bi,b-uni}, then
ẽ ∈T ∗

bi ⇐⇒ ẽ ∈T ∗
b-uni.

Proof. From Lemma 2.3.3, we know that T ∗
b-uni ⊆T ∗

bi , so if ẽ ∈T ∗
b-uni, then ẽ ∈T ∗

bi . It
is sufficient to prove ẽ ∈T ∗

bi ⇒ ẽ ∈T ∗
b-uni. Because the adversary queries the challenge

ciphertext in epoch ẽ (i.e., ẽ ∈C ⊆C ∗
bi,bi) and K ∗

bi ∩C ∗
bi,bi =;, we have ẽ ̸∈K ∗

bi . ∆ẽ
cannot be inferred from the successive keys in epochs ẽ−1 and ẽ. Therefore, if
ẽ ∈T ∗

bi , it must be obtained via corrupting, that is ẽ ∈T . Since T ⊆T ∗
b-uni, we have

ẽ ∈T ∗
b-uni.

Remark 2.3.7. Note that O .Upd(c̄) is queried or not is independent of the direction
of key and ciphertext updates. Thus it will be the same whether this trivial win
condition is triggered or not in all variants.

Lemma 2.3.8. For any set K ,T ,C , suppose K ∗
kk ∩C ∗

kk,bi =; for kk ∈ {bi,b-uni}, then

(c,e) ∈ L̃ ∗
bi,bi ⇐⇒ (c,e) ∈ L̃ ∗

b-uni,bi.

Proof. By Remark 2.2.4 and Lemma 2.3.3, we know that (c,e) ∈ L̃ ⇐⇒ e ∈ C ∗ and
C ∗

b-uni,bi ⊆ C ∗
bi,bi. So if (c,e) ∈ L ∗

b-uni,bi, then e ∈ C ∗
b-uni,bi ⊆ C ∗

bi,bi. Thus, we have
(c,e) ∈L ∗

bi,bi.

If (c,e) ∈ L̃ ∗
bi,bi, that is e ∈ C ∗

bi,bi, then we know e ∈ IR by the assumption
K ∗

bi ∩C ∗
bi,bi =; and the fact that K ∗

bi = {0, . . . , l } \ IR from Lemma 2.2.6. Suppose
{fwl, . . . ,e} is the last insulated region. If the adversary never queries the
challenge-equal ciphertext in the epoch in this set, then it cannot infer any
challenge-equal ciphertext in epoch e, which contradicts e ∈ C ∗

bi,bi. Therefore we

assume the adversary queries a challenge-equal ciphertext in epoch e′, where
e′ ∈ {fwl, . . . ,e}. Since {fwl, . . . ,e} ⊆ T even in the backward uni-directional update
setting, the adversary can update challenge-equal ciphertext from epoch e′ to e, i.e.,
e ∈C ∗. So (c,e) ∈ L̃ ∗

b-uni,bi.

Lemma 2.3.9. For any set K ,T ,C , suppose K ∗
kk ∩C ∗

kk,bi =; for kk ∈ {bi,b-uni}, then

(m′,e) ∈ Q̃∗
bi,bi ⇐⇒ (m′,e) ∈ Q̃∗

b-uni,bi.

Proof. By Remark 2.3.3, we know that (m′,e) ∈ Q̃ ⇐⇒ e ∈ C ∗. And the rest of the
proof is similar to that of Lemma 2.3.8.

Theorem 2.3.10. Let UE be an updatable encryption scheme and confidentiality
notion ∈ {detIND-UE-CPA,randIND-UE-CPA,detIND-UE-CCA,randIND-UE-CCA}. For

2

40 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

any (bi,bi)-notion adversary A against UE, there exists a (b-uni,bi)-notion adversary
B1 against UE such that

Adv(bi,bi)-notion
UE,A (1λ) =Adv(b-uni,bi)-notion

UE,B1
(1λ).

Proof. We construct a reduction B1 who runs the (b-uni,bi)-notion experiment and
simulates all responses of the queries made by (bi,bi)-notion adversary A . The
reduction B1 works by sending all the queries of A to its own challenger and
returning the responses to A . At last, B1 sends the guessing result received from
A to its own challenger. The challenger will check whether the reduction wins or
not. If the reduction triggers the trivial win conditions, it will lose the game. The
reduction also forwards the experiment result to A .

Notice that Lemmas 2.3.5, 2.3.6, 2.3.8, 2.3.9, and Remark 2.3.7 exactly include all
the trivial win conditions in the confidentiality game (see Fig. 2.6). Thus, we can
conclude that the trivial win conditions in the (bi,bi)-notion and (b-uni,bi)-notion
games are equivalent. If no trivial conditions are triggered by A , there will be
no trivial win conditions triggered by B. But if a condition is triggered in the
(bi,bi)-notion, the same condition will also be triggered in the (b-uni,bi)-notion.
Therefore, the reduction perfectly simulates the (bi,bi)-notion game to A . Then
Adv(bi,bi)-notion

UE,A (1λ) =Adv(b-uni,bi)-notion
UE,B1

(1λ).

(b-uni,uni)-notion⇐⇒ (no,uni)-notion.

We further prove the equivalence of (b-uni,uni)-variant and the (b-uni,uni)-variant
in Theorem 2.3.15, which is based on the equivalence of trivial win conditions in
Lemmas 2.3.11, 2.3.12, 2.3.13 and 2.3.14.

Lemma 2.3.11. For any set K ,T ,C , we have K ∗
b-uni∩C ∗

b-uni,uni ̸= ;⇐⇒K ∗
no∩C ∗

no,uni ̸=
;.

Proof. From Lemma 2.3.3, we know that K ∗
no ⊆ K ∗

b-uni and C ∗
no,uni ⊆ C ∗

b-uni,uni, so
K ∗

no ∩C ∗
no,uni ⊆ K ∗

b-uni ∩C ∗
b-uni,uni. It is sufficient to prove K ∗

b-uni ∩C ∗
b-uni,uni ̸= ;⇒

K ∗
no ∩C ∗

no,bi ̸= ;.
Suppose there exists an epoch e ∈K ∗

b-uni ∩C ∗
b-uni,uni. From e ∈K ∗

b-uni and Remark
2.2.8, there is an epoch eb after e, satisfying eb ∈ K and {e, . . . ,eb} ∈ T . From
e ∈C ∗

b-uni,uni and the definition of C ∗
b-uni,uni in Eq. (2.5), we know that there exists an

epoch ec before e such that the adversary asks for the challenge ciphertext in epoch
ec (i.e., ec ∈C) and {ec, . . . ,e} ∈T ∗

b-uni. If the set {ec, . . . ,e} ⊆T , then we can upgrade
the ciphertext from epoch ec to epoch eb even in the no-directional key update
setting, since ec ∈C and {ec, . . . ,e, . . . ,eb} ∈T . Therefore, we have eb ∈K ∗

no ∩C ∗
no,bi.

If not every epoch in the set {ec, . . . ,e} is in T (i.e., there is an epoch es ∈T ∗
b-uni \T),

then by Eq. (2.4), we know that es −1 and es are in K ∗
b-uni. Moreover, we have

es −1 ∈K , because the epoch key in es −1 cannot be inferred from the key in es −1
in the backward uni-directional key update setting as es ̸∈ T and the adversary
can only learn the epoch key in es −1 from querying the corruption oracle. If
{ec, . . . ,es −1} ∈ T , we can upgrade ciphertexts from epoch ec to epoch es −1 even
in the no-directional key update setting, that is es −1 ∈K ∗

no ∩C ∗
no,bi. Otherwise, we

2.3. RELATIONS AMONG SECURITY NOTIONS

2

41

repeat this step, substitute es −1 with a smaller epoch es − j in the next iteration for
some j > 1 such that es − j ∈K and {ec, . . . ,es − j } ∈T ∗

b-uni, and check if all epochs
in {ec, . . . ,es − j } are in T . Since the epoch length is limited, we will stop at an
epoch, say es −k, for some k > 1 such that es −k ∈ K and {ec, . . . ,es −k} ∈ T . We
can upgrade ciphertext from epoch ec to epoch es −k even in the no-directional key
update setting, that is es −k ∈K ∗

no ∩C ∗
no,bi, so K ∗

no ∩C ∗
no,bi ̸= ;.

Lemma 2.3.12. For any set K ,T ,C , suppose K ∗
kk ∩C ∗

kk,uni =; for kk ∈ {b-uni,no},
then ẽ ∈T ∗

b-uni ⇐⇒ ẽ ∈T ∗
no.

Proof. The proof is similar to that of Lemma 2.3.6. From Lemma 2.3.3, we know
that T ∗

no ⊆T ∗
b-uni, so if ẽ ∈T ∗

no, then ẽ ∈T ∗
b-uni. Notice that ẽ ̸∈K ∗

b-uni, because the
adversary queries the challenge ciphertext in the epoch ẽ and K ∗

b-uni ∩C ∗
b-uni,bi =;.

Then ∆ẽ cannot be inferred from the successive keys in epochs ẽ−1 and ẽ. Therefore,
if ẽ ∈T ∗

b-uni, then it must be obtained from corrupting, that is ẽ ∈T . Since T =T ∗
no,

we have ẽ ∈T ∗
no.

Lemma 2.3.13. For any set K ,T ,C , suppose K ∗
kk ∩C ∗

kk,uni =; for kk ∈ {b-uni,no},

then (c,e) ∈ L̃ ∗
b-uni ⇐⇒ (c,e) ∈ L̃ ∗

no.

Proof. The proof is similar to that of Lemma 2.3.8. By Remark 2.2.4 and Lemma
2.3.3 , we know that (c,e) ∈ L̃ ⇐⇒ e ∈C ∗ and C ∗

no,uni ⊆C ∗
b-uni,uni. So if (c,e) ∈L ∗

no,uni,

then e ∈C ∗
no,uni ⊆C ∗

b-uni,uni. Thus, we have (c,e) ∈ L̃ ∗
b-uni.

If (c,e) ∈ L̃ ∗
b-uni, then e ∈ C ∗

b-uni,uni ⊆ IR. From the definition of C ∗
b-uni,uni in Eq.

(2.5), we know that there is an epoch ec before e, satisfying the adversary queries the
challenge ciphertext in epoch ec (i.e., ec ∈ C) and {ec, . . . ,e} ∈ T ∗

b-uni, which implies
{ec, . . . ,e} ∈ C ∗

b-uni. From the assumption that K ∗
b-uni ∩C ∗

b-uni,uni = ;, then we have
{ec, . . . ,e} ̸∈K ∗

b-uni. To meet the condition {ec, . . . ,e} ∈T ∗
b-uni, all tokens in epochs in

{ec, . . . ,e} can only be obtained by corrupting, that is {ec, . . . ,e} ∈ T = T ∗
no. We can

upgrade the ciphertext from epoch ec to epoch eb even in the no-directional key
update setting. Therefore, we have e ∈C ∗

no,uni ⊆IR and further (c,e) ∈ L̃ ∗
no.

Lemma 2.3.14. For any set K ,T ,C , suppose K ∗
kk ∩C ∗

kk,uni =; for kk ∈ {b-uni,no},

then (m′,e) ∈ Q̃∗
b-uni,uni ⇐⇒ (m′,e) ∈ Q̃∗

no,uni.

Proof. By Remark 2.2.4, we know that (m′,e) ∈ Q̃ ⇐⇒ e ∈C ∗. The rest of the proof is
similar to that of Lemma 2.3.13.

Theorem 2.3.15. Let UE be an updatable encryption scheme and confidentiality
notion ∈ {detIND-UE-CPA,randIND-UE-CPA,detIND-UE-CCA, randIND-UE-CCA}. For
any (b-uni,uni)-notion adversary A against UE, there exists a (no,uni)-notion adversary
B2 against UE such that

Adv(b-uni,uni)-notion
UE,A (1λ) =Adv(no,uni)-notion

UE,B2
(1λ)

2

42 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

Proof. The proof is similar to that of Theorem 2.3.10. We construct a reduction
B2 who runs the (b-uni,uni)-notion experiment and simulates all responses of the
queries made by (no,uni)-notion adversary A . The reduction B2 works by sending
all the queries of A to its own challenger and forwarding its received responses
to A . In the end, B2 sends the guessing result from A to its own challenger.
The challenger will check if the reduction wins. The reduction also forwards the
experiment result to A . If the trivial win conditions were triggered, the reduction
will be regarded as losing the game.

From Lemmas 2.3.11, 2.3.12, 2.3.13, 2.3.14 and Remark 2.3.7, we obtain the
trivial win conditions in the (b-uni,uni)-notion and (no,uni)-notion games are
equivalent. If there is a trivial win condition that is triggered by A , then the
same trivial win condition will be triggered by B, and vice versa. Therefore,
the reduction perfectly simulates the (no,uni)-notion game to A . Then, we have
Adv(b-uni,uni)-notion

UE,A (1λ) =Adv(no,uni)-notion
UE,B2

(1λ).

Theorem 2.3.16. For notion ∈ {detIND-UE-CPA,randIND-UE-CPA,detIND-UE-CCA,
randIND-UE-CCA}, Fig. 2.7 is the relations among the eight variants on the same
confidentiality notion.

Proof. We conclude the relations among the eight variants on confidentiality from
Theorems 2.3.10 and 2.3.15, together with the previous conclusions in [6], which
proved that a UE scheme with bi-directional key updates is equivalent to the one
with forward-leak uni-directional key updates, shown in Fig. 2.8.

(bi,uni)-notion (no,uni)-notion

(bi,bi)-notion (no,bi)-notion

(f-uni,uni)-notion

(f-uni,bi)-notion

\
\

Figure 2.8: Relations among the six variants of confidentiality for notion ∈
{detIND-UE-CPA,randIND-UE-CPA,detIND-UE-CCA,randIND-UE-CCA}
in [6].

Thus, we have the relations among the eight variants on confidentiality in Fig.
2.7 by the equivalences: (bi,bi)-notion ⇐⇒ (b-uni,bi)-notion from Theorem 2.3.10 and
(b-uni,uni)-notion⇐⇒ (no,uni)-notion from Theorem 2.3.15 and Fig. 2.8.

2.3. RELATIONS AMONG SECURITY NOTIONS

2

43

2.3.2. RELATIONS AMONG INTEGRITY NOTIONS

The relations of the eight variants on integrity are illustrated in Fig. 2.9. We first
prove two equivalence of trivial win conditions in Lemmas 2.3.17, 2.3.19 and 2.3.21.

(bi,uni)-notion (b-uni,uni)-notion (no,uni)-notion

(bi,bi)-notion (b-uni,bi)-notion (no,bi)-notion

(f-uni,uni)-notion

(f-uni,bi)-notion

Thm. 2.3.22

[6]
Thm. 2.3.22

Thm. 2.3.22

Thm. 2.3.22
Thm. 2.3.22

[6]

[6]

[6]

Figure 2.9: Relations among the eight variants of integrity for notion ∈
{IND-CTXT, IND-PTXT}.

Lemma 2.3.17. For any set K ,T ,C , we have e ∈ K̂ ∗
b-uni ⇐⇒ e ∈ K̂ ∗

kk for
kk ∈ {f-uni,bi,no}.

Proof. From Eq. (2.3), we know that the computation of the extended set K̂ ∗ is
independent of the direction of key updates.

Lemma 2.3.18 ([6], Lemma 3.11). For any set K ,T ,C , suppose e ̸∈ K̂ ∗, then we have
(c,e) ∈L ∗

kk,cc ⇐⇒ (c,e) ∈L ∗
kk′,cc′ for any kk,kk′ ∈ {f-uni,bi,no} and cc,cc′ ∈ {uni,bi}.

Lemma 2.3.19. For any set K ,T ,C , suppose e ̸∈ K̂ ∗, then (c,e) ∈L ∗
b-uni,cc ⇐⇒ (c,e) ∈

L ∗
kk′,cc′ for any kk′ ∈ {f-uni,b-uni,bi,no} and cc,cc′ ∈ {uni,bi}.

Proof. It follows directly from Lemma 2.3.18 and L ∗
no,cc ⊆L ∗

b-uni,cc ⊆L ∗
bi,cc by Lemma

2.3.3 for any cc ∈ {uni,bi}.

Lemma 2.3.20 ([6], Lemma 3.12). For any set K ,T ,C , suppose e ̸∈ K̂ ∗, then we have
(m′,e) ∈ Q̃∗

kk,cc ⇐⇒ (m′,e) ∈ Q̃∗
kk′,cc′ for any kk,kk′ ∈ {f-uni,bi,no} and cc,cc′ ∈ {uni,bi}.

Lemma 2.3.21. For any set K ,T ,C , suppose e ̸∈ K̂ ∗, then we have (m′,e) ∈
Q̃∗

b-uni,cc ⇐⇒ (m′,e) ∈ Q̃∗
kk′,cc′ for any kk′ ∈ {f-uni,b-uni,bi,no} and cc,cc′ ∈ {uni,bi}.

Proof. It follows directly from Lemma 2.3.20 and Q∗
no,cc ⊆Q∗

b-uni,cc ⊆Q∗
bi,cc by Lemma

2.3.4 for any cc ∈ {uni,bi}.

Theorem 2.3.22. Let UE be an updatable encryption scheme, the integrity notion
notion ∈ {INT-CTXT, INT-PTXT}. For any (b-uni,cc)-notion adversary A against UE,
there exists a (kk′,cc′)-notion adversary B4 against UE such that

Adv(b-uni,cc)-notion
UE,A (1λ) =Adv(kk′,cc′)-notion

UE,B4
(1λ)

2

44 2. EQUIVALENCE OF UPDATABLE ENCRYPTION

for any kk′ ∈ {f-uni,b-uni,bi,no} and cc,cc′ ∈ {uni,bi}.

Proof. The proof is similar to that of Theorem 1. We construct a reduction B4

which runs the (kk′,cc′)-notion game and simulates all responses to the queries
made by the (b-uni,cc)-notion adversary A . If there is a trivial win condition that is
triggered by A , the same trivial win condition will be triggered by B, and vice versa,
which follows from Lemmas 2.3.17, 2.3.19 and 2.3.21. Thus, the reduction perfectly
simulates the game to A, and the advantages are equal.

Theorem 2.3.23. For notion ∈ {INT-CTXT, INT-PTXT}, Fig. 2.9 shows the relations
among the eight variants on the same integrity notion.

Proof. We conclude the relations from Theorem 2.3.22, together with the
previous conclusions in [6] that (kk,cc)-notion ⇐⇒ (no,cc′)-notion for notion ∈
{IND-CTXT, IND-PTXT}, kk ∈ (bi, f-uni) and cc,cc′ ∈ (bi,uni).

2.4. CONCLUSION
The relations among various security notions for UE should be clearly investigated
before any valuable constructions. We provided a detailed comparison of every
security notion in the four key update settings, and our results showed that the UE
schemes in the no-directional key update setting, which were believed to be strictly
stronger than others, are equivalent to those in the backward-leak uni-directional
key update setting. As future work, we intend to develop an efficient UE scheme
with backward-leak uni-directional key updates.

REFERENCES

[1] D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan. “Key homomorphic
PRFs and their applications”. In: CRYPTO 2013, Part I. Ed. by R. Canetti and
J. A. Garay. Vol. 8042. LNCS. Heidelberg: Springer, 2013, pp. 410–428. DOI:
978-3-642-40041-4_23.

[2] D. Boneh, S. Eskandarian, S. Kim, and M. Shih. “Improving Speed and Security
in Updatable Encryption Schemes”. In: ASIACRYPT 2020, Part III. Ed. by
S. Moriai and H. Wang. Vol. 12493. LNCS. Cham: Springer, 2020, pp. 559–589.
ISBN: 978-3-030-64840-4. DOI: 10.1007/978-3-030-64840-4_19.

[3] L. Chen, Y. Li, and Q. Tang. “CCA Updatable Encryption Against Malicious
Re-encryption Attacks”. In: ASIACRYPT 2020, Part III. Ed. by S. Moriai
and H. Wang. Vol. 12493. LNCS. Springer, 2020, pp. 590–620. DOI:
10.1007/978-3-030-64840-4_20.

[4] A. Everspaugh, K. Paterson, T. Ristenpart, and S. Scott. “Key rotation for
authenticated encryption”. In: CRYPTO 2017, Part III. Ed. by J. Katz and
H. Shacham. Vol. 10403. LNCS. Springer. Heidelberg, 2017, pp. 98–129. DOI:
10.1007/978-3-319-63697-9_4.

[5] C. Boyd, G. T. Davies, K. Gjøsteen, and Y. Jiang. “Fast and Secure
Updatable Encryption”. In: CRYPTO 2020, Part I. Ed. by D. Micciancio
and T. Ristenpart. Vol. 12170. LNCS. Springer, 2020, pp. 464–493. DOI:
10.1007/978-3-030-56784-2_16.

[6] Y. Jiang. “The direction of updatable encryption does not matter much”. In:
ASIACRYPT 2020, Part III. Ed. by S. Moriai and H. Wang. Vol. 12493. LNCS.
Springer. Heidelberg, 2020, pp. 529–558. DOI: 10.1007/978-3-030-64840-
4_18.

[7] M. Klooß, A. Lehmann, and A. Rupp. “(R)CCA secure updatable encryption
with integrity protection”. In: EUROCRYPTO 2019, Part I. Ed. by Y. Ishai
and V. Rijmen. Vol. 11476. LNCS. Springer. Heidelberg, 2019, pp. 68–99. DOI:
10.1007/978-3-030-17653-2_3.

[8] A. Lehmann and B. Tackmann. “Updatable encryption with post-compromise
security”. In: EUROCRYPT 2018, Part III. Ed. by J. B. Nielsen and V.
Rijmen. Vol. 10822. LNCS. Springer. Heidelberg, 2018, pp. 685–716. DOI:
10.1007/978-3-319-78372-7_22.

[9] R. Nishimaki. “The Direction of Updatable Encryption Does Matter”. In:
PKC 2022. Ed. by G. Hanaoka, J. Shikata, and Y. Watanabe. Vol. 13178.
LNCS. Cham: Springer, 2022, pp. 194–224. ISBN: 978-3-030-97131-1. DOI:
10.1007/978-3-030-97131-1_7.

45

https://doi.org/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-64840-4_19
https://doi.org/10.1007/978-3-030-64840-4_20
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-030-64840-4_18
https://doi.org/10.1007/978-3-030-64840-4_18
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-030-97131-1_7

2

46 REFERENCES

[10] D. Slamanig and C. Striecks. Puncture ’Em All: Updatable Encryption with
No-Directional Key Updates and Expiring Ciphertexts. Cryptology ePrint Archive,
Paper 2021/268. https://eprint.iacr.org/2021/268. 2021.

[11] M. Naor and M. Yung. “Public-Key Cryptosystems Provably Secure against
Chosen Ciphertext Attacks”. In: STOC 1990. Ed. by H. Ortiz. Baltimore,
Maryland, USA: ACM, 1990, pp. 427–437. DOI: 10.1145/100216.100273.

[12] O. Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: ACM 2005. Ed. by H. N. Gabow and R. Fagin. ACM, 2005,
pp. 84–93. DOI: 10.1145/1060590.1060603.

[13] O. Goldreich, S. Goldwasser, and S. Micali. “How to Construct Random
Functions”. In: J. ACM 33.4 (1986), pp. 792–807. ISSN: 0004-5411. DOI:
10.1145/6490.6503.

[14] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. “On the (im)possibility of obfuscating programs”. In: J. ACM 59.2
(2012), pp. 1–48. DOI: 10.1145/2160158.2160159.

https://eprint.iacr.org/2021/268
https://doi.org/10.1145/100216.100273
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/2160158.2160159

3
CCA-1 SECURE UPDATABLE

ENCRYPTION WITH ADAPTIVE

SECURITY

Updatable encryption (UE) enables a cloud server to update ciphertexts using
client-generated tokens. There are two types of UE: ciphertext-independent (c-i) and
ciphertext-dependent (c-d). In terms of construction and efficiency, c-i UE utilizes a
single token to update all ciphertexts. The update mechanism relies mainly on the
homomorphic properties of exponentiation, which limits the efficiency of encryption
and updating. Although c-d UE may seem inconvenient as it requires downloading
parts of the ciphertexts during token generation, it allows for easy implementation of
the Dec-then-Enc structure. This methodology significantly simplifies the construction
of the update mechanism. Notably, the c-d UE scheme proposed by Boneh et al.
(ASIACRYPT’20) has been reported to be 200 times faster than prior UE schemes based
on DDH hardness, which is the case for most existing c-i UE schemes. Furthermore,
c-d UE ensures a high level of security as the token does not reveal any information
about the key, which is difficult for c-i UE to achieve. However, previous security
studies on c-d UE only addressed selective security; the studies for adaptive security
remain an open problem.

In this study, we make three significant contributions to ciphertext-dependent
updatable encryption (c-d UE). Firstly, we provide stronger security notions compared
to previous work, which capture adaptive security and also consider the adversary’s
decryption capabilities under the adaptive corruption setting. Secondly, we propose a
new c-d UE scheme that achieves the proposed security notions. The token generation
technique significantly differs from the previous Dec-then-Enc structure, while still
preventing key leakages. At last, we introduce a packing technique that enables the

This chapter is based on the paper “CCA-1 Secure Updatable Encryption with Adaptive Security” by
Chen, H., Galteland, Y.J., and Liang, K. in ASIACRYPT (5) 2023: 374-406

47

3

48 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

simultaneous encryption and updating of multiple messages within a single ciphertext.
This technique helps alleviate the cost of c-d UE by reducing the need to download
partial ciphertexts during token generation.

3.1. INTRODUCTION

3

49

3.1. INTRODUCTION

Regularly changing encryption keys is widely recognized as an effective approach
to mitigate the risk of key compromise, especially when outsourcing encrypted
data to a semi-honest cloud server. Updatable encryption (UE), introduced by
Boneh et al. [1], offers a practical solution to this challenge. In UE schemes, in
addition to the usual KG,Enc,Dec algorithms, two core algorithms, TokenGen and
Update, are employed. Essentially, TokenGen takes the old and new encryption
keys, along with possibly a small fraction of the ciphertext, and generates an update
token on the client side. This token is then sent to the cloud server, which
utilizes the Update algorithm to convert ciphertexts from the old keys to the new keys.

c-d/c-i UE. Depending on if a part of ciphertext (called ciphertext header) is
needed in the token generation algorithm TokenGen, UE schemes have two variants:
ciphertext-independent (c-i) UE [2–7] and ciphertext-dependent (c-d) UE [1, 8–10]. In
the former, tokens are independent of ciphertexts, and a single update token is used
to update all old ciphertexts. In the latter, update tokens depend on the specific
ciphertext to be updated and a tiny part of the ciphertexts is downloaded by the
client when generating the update tokens.

In this paper, we specifically focus on ciphertext-dependent UE (c-d UE) due
to its notable advantages in terms of efficiency and security. First of all, c-d UE
schemes have been reported to be more efficient than ciphertext-independent (c-i)
constructions. For instance, the nested c-d UE construction presented in [8], which
relies solely on symmetric cryptographic primitives, approaches the performance of
AES. In contrast, c-i UE schemes imply the use of public key encryption, as proven
by Alamati et al. [11], and most c-i constructions require costly exponentiation
operations to update ciphertexts. With regard to UE security, Jiang [3] demonstrated
that there are no c-i UE schemes stronger than those with no-directional key
updates, as defined in Section 3.3. However, constructing such schemes remains
an open problem, primarily due to the requirement that update tokens should not
reveal any information about either the old key or the new key. Consequently,
only two c-i UE schemes with no-directional key updates have been proposed thus
far. One is presented by Slamanig [7], which is based on the SXDH assumption,
thus necessitating expensive exponential operations. The other is introduced by
Nishimaki [6], relying on the existence of indistinguishability obfuscation, but
remains purely theoretical. On the other hand, for c-d UE, the construction of
no-directional key update schemes is considerably easier and practical. In fact, the
token generation algorithm in all existing c-d UE constructions [1, 8–10] benefits
from a “Dec-then-Enc” process. This involves decrypting the ciphertext header using
the old key to recover the secret information, and then computing the token by
encrypting the secret information using the new key. As a result, the old key remains
independent of the token, while the new key is safeguarded by the underlying
encryption scheme. The update token does not divulge any information about the
old and new keys.

Security Notions (c-d UE). The primary security objective of UE is to ensure the

3

50 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

confidentiality of ciphertexts even when the keys are exposed. Extensive research on
this topic has been conducted in [8–10]. Previous security models provide guarantees
that adversaries cannot differentiate between a freshly generated ciphertext in the
current epoch and an updated ciphertext rotated to the current epoch. In practical
scenarios, this property safeguards the confidentiality of the age of ciphertext, i.e.,
the number of times it has been updated, from being leaked to an adversary. For
instance, consider a situation where a client stores its encrypted medical records
with a cloud provider. The existing security notions ensure that the adversary
observing the records cannot determine which records are new and which ones are
old, thereby preserving the sort of privacy.

Limitation. Unfortunately, prior work on c-d UE has the following limitations:

1. The current security notions for c-d UE solely capture selective security, where
the adversary is provided with certain keys at the beginning of the security
experiment. It is needed to introduce a stronger notion of adaptive security,
which guarantees security in the model where the adversary can corrupt keys
throughout the experiment.

2. Prior notions for c-d UE only apply to randomized ciphertext updates (see
Sect. 3.2.1 for details), whereas the ciphertext update procedure can be also
deterministic1, which can be seen in our construction in Sect. 3.5.1. It is
still an open problem how could we capture confidentiality for both types of
ciphertext updates.

3. The current security notions for c-d UE are complex, requiring multiple
simulations of oracles that the adversary has access to in the security analysis.
A simpler and more compact notion can help one simplify the proof.

3.1.1. RELATED WORK

CONSTRUCTIONS OF UE.

Since the introduction of updatable encryption by Boneh et al. [1], various
constructions have been proposed. All c-d UE schemes in [1, 8–10] benefit from a
Dec-then-Enc structure in token generation, whether they are treated in a symmetric
manner to deploy double encryption or rely on key-homomorphic PRFs. As a
consequence, tokens only contain the ciphertext under the new key, avoiding the
issue of leaking neither old nor new key.

By comparison, all c-i UE schemes in [2, 4, 5] are based on the DDH or SXDH
assumption and rely on the homomorphic properties of exponentiation to rotate
ciphertexts. Tokens are the division of the new key and the old key; therefore, one of
the two successive keys key can be inferred if the other is leaked. Such a leakage
limitation is also applied to the scheme proposed by Jiang [3], because tokens are

1Note this case does not require the server to generate randomness for ciphertext updates, which is
required in the former case.

3.1. INTRODUCTION

3

51

Sc
h

em
es

D
ir

.
K

ey
s/

a
P

ro
b.

E
n

c.
To

ke
n

G
en

.
U

p
d

at
e

c-
i

U
E

*S
H

IN
E

[2
]

b
i

a
D

D
H

1
ex

p.
1

d
iv

is
io

n
1

ex
p.

LW
E

U
E

[3
]

b
i

a
LW

E
(n

,m
,l

)
1

su
b

tr
ac

t.
(n

,m
,l

)

UN
IU

E
[1

2]
b

k.
a

LW
E

(n
,m

,l
)×

l e
l e

su
b

tr
ac

t.
(n

,m
,l

)×
l e

N
is

h
im

ak
i

[6
]

b
k.

a
LW

E
(1

,m
,l

)
(n

k
,m

,n
+l

)
(1

,m
,n

+l
)

N
is

h
im

ak
i

[6
]

n
o

a
IO

,
O

W
F

−
−

−
SS

[7
]

n
o

a
SX

D
H

−
−

−

c-
d

U
E

K
SS

[1
0]

n
o

s
Sy

m
m

et
ry

1
A

E
.E

n
c

1
A

E
.E

n
c

1
ve

ct
.

ad
d

it
io

n

R
eC

ry
p

t
[1

0]
n

o
s

K
H

-P
R

F
1

K
H

-P
R

F
1

K
H

-P
R

F
1

K
H

-P
R

F

R
eC

ry
p

t+
[9

]
n

o
s

H
o

m
H

as
h

1
H

o
m

H
as

h
1

H
o

m
H

as
h

1
H

o
m

H
as

h

N
es

te
d

[8
]

n
o

s
Sy

m
m

et
ry

1
A

E
.E

n
c

1
A

E
.E

n
c

1
A

E
.E

n
c

B
E

K
S

[8
]

n
o

s
K

H
-P

R
F

1
K

H
-P

R
F

1
A

E
.E

n
c

1
K

H
-P

R
F

TD
UE

(3
.5

.1
)

n
o

a
LW

E
(1

,n
,m̄

+2
l)

m̄
+2

l
sa

m
p

li
n

g
(1

,m̄
+2

l,
m̄

+2
l)

Pa
ck

in
g

U
E

(3
.5

.4
)

n
o

a
LW

E
(1

,n
,m̄

+
l+

N
l)

m̄
+l

+N
l

sa
m

p
li

n
g

(1
,m̄

+l
+N

l,
m̄

+l
+N

l)

F
ig

u
re

3.
1:

A
co

m
p

ar
is

o
n

o
f

c-
i

U
E

w
h

ic
h

ca
n

av
o

id
th

e
le

ak
ag

e
o

f
“c

ip
h

er
te

xt
ag

e”
an

d
al

l
ex

is
ti

n
g

c-
d

U
E

.

3

52 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

the subtraction of new and old keys, even though this scheme avoids the expensive
exponentiation but is instead lattice-based.

Two promising c-i UE schemes have been proposed to overcome this leakage
limitation. Nishimaki [6] presented a construction that utilizes indistinguishability
obfuscation (IO) for an update circuit, which operates as a Dec-then-Enc process
taking a ciphertext as input. This scheme relies on an assumption that there exists
a practical IO. Slamanig and Striecks [7] gave a pairing-based scheme and defined
an expiry model: each ciphertext is associated with an expiry epoch, after which
the updated ciphertext cannot be decrypted anymore. Their scheme consumes
expensive group operations and moreover, the key size increases linearly to the
maximum number of updates.

In Fig. 3.1, we provide a comparison of UE schemes in terms of security and
efficiency. The second column set states the direction of key updates, achieved
security, and the underlying assumptions, where bk. stands for the backward
directional key updates, s and a represent the selective and adaptive security,
respectively, and KH-PRF, IO, OWF, HomHash represent key-homomorphic PRF,
indistinguishability obfuscation, one-way function, and homomorphic hash function
respectively. The third column set shows the computational efficiency in terms of
the most expensive cost of encryption, token generation, and update for one-block
ciphertext ([6] and [7] are omitted here as the first is theoretical and the second
is built on a different expiry model). For lattice-based schemes, (a,b,c) denotes
the major computation cost by the multiplication of two matrices of size a ×b and
b × c, and m and n denote the size of the matrix generated on Zq in the setup, for
which m =O(nk), k = ⌈q⌉, message bit length l = nk, m̄ =O(nk), and the maximum
number of updates le . In our UE schemes, tokens are generated with multiple calls
to a preimage sampling oracle, and N is a power of 2 that defines the associated
cyclotomic ring. AE represents authenticated encryption, [9] instantiates HomHash
from DDH groups, and KH-PRFs are constructed from the Ring-LWE problem in [8].

Our c-d UE constructions offer several advantages compared to c-i UE schemes.
Regarding security, we achieve no-directional key updates to protect keys being
derived by tokens, in comparison to the difficulty in constructing such c-i UE, as
discussed above. In terms of efficiency, we utilize lattice encryption to circumvent
expensive group operations that are used in [2, 7]. Compared to lattice-based c-i
UE Schemes, our works are the first to achieve CCA-1 security, and TDUE exhibits
equivalent complexity to that of [6] for both the encryption and update algorithms,
an improvement by a factor n over the algorithms in [3]2. Our packing UE further
reduces the encryption and update algorithms’ complexity of TDUE by a factor N ,
leading to more efficient encryption and update compared to [3, 6, 12]. Nevertheless,
it is worth noting that [3] provides the most efficient token generation using a
simple vector subtraction. In comparison with c-d UE schemes, our constructions
ensure the confidentiality that hides ciphertext age, whereas [9, 10] only capture
message confidentiality and re-encryption indistinguishability. Note that Boneh et
al. [8] demonstrated that, for c-d UE, even the combination of the above two

2Note that, for lattice-based schemes, the cost is determined by the multiplication of two matrices,
which takes O(nml) for matrices of size n ×m and m × l by a naive multiplication, for example.

3.1. INTRODUCTION

3

53

notions cannot prevent the leakage of ciphertext age (see Fig. 3.3 for more details).
Moreover, our schemes are the first c-d UE schemes to achieve adaptive security.

RELATIVE PRIMITIVES.

Proxy Re-encryption (PRE) and Homomorphic Encryption (HE) are two highly related
primitives to updatable encryption.

Proxy Re-encryption (PRE) enables a ciphertext to be decryptable by the new key
after re-encryption. Compared to UE, it does not necessarily require the updated
ciphertext to be indistinguishable from fresh encryption, thereby not covering the
confidentiality requirement inherent in UE. However, PRE schemes have served as a
source of inspiration for the construction of UE due to the similar ciphertext update
process, for example, the ElGamal-based proxy re-encryption scheme is adapted to
RISE [5] and Sakurai et al.[13] to SHINE [2].

The PRE scheme proposed by Kirshanova [14] is based on lattices and only uses
the old secret key (serving as the trapdoor) to sample a matrix as the update token
to rotate ciphertexts, which are LWE samples. Such a matrix leaks neither the old
nor the new keys, since it does not involve any function of old and new key (recall
the key leakage caused the division or subtraction of two keys in the token of c-i
UE schemes). However, Fan and Liu [15] pointed out a mistake in the security proof
of [14] that the simulated game in the proof is not indistinguishable from the real
game. In this work, a new UE scheme that leverages a part of the techniques in [14]
is constructed with a detailed reduction proof.

Fully Homomorphic Encryption (FHE) develops a key-switching technique [16, 17]
that takes as input the old ciphertext and the encryption of the old key under
the new key (called the key-switching key) and outputs a new ciphertext that
is decryptable by the new key. Such a technique has been used in [4, 12] to
construct UE schemes with so-called backward directional key updates. In our UE
construction, the matrix in the token is called a key-switching matrix as it achieves
the same functionality as the key-switching key in FHE.

3.1.2. OUR APPROACHES

We propose new UE schemes that achieve the new confidentiality notion. To
achieve this, we first build a new PKE scheme inspired by [18] that utilizes lattice
trapdoor techniques as the underlying encryption scheme. For the UE construction,
we leverage the “re-encryption key generation” process in [14] to generate a
key-switching matrix, which is used to update ciphertexts from the old to the
new key. However, the key-switching matrix alone is not sufficient to achieve our
confidentiality notion, which will be discussed later in this section. A detailed proof
of our construction is presented in Sect. 3.5.3.

A New PKE Scheme. This scheme is based on lattice trapdoor techniques. The
public key is a 1×3 block matrix Aµ = [A0 | A0R+HµG | A1] ∈Zm̄+2nk where A0 and
A1 are two random matrices, and Hµ is an invertible matrix. The secret key is
the trapdoor R for the first two block matrices of Aµ, which allows for an efficient

3

54 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

algorithm for inverting LWE samples related to Aµ (see Sect. 3.4.1 for more details).
The ciphertext is a tuple c = (Hµ,b) where b is a LWE sample as follows:

bt = st Aµ+ (e0,e1,e2)t + (0, 0,encode(m))t mod q, (3.1)

for a proper encoding algorithm encode, error items (e0,e1,e2), and integer q .
To decrypt a ciphertext, one first recovers s and (e0,e1) from the first two
blocks of b using the trapdoor R and an inversion algorithm. Then m and
e2 are recovered from the last block of b with the recovered s and the inverse of encode.

Key-switching Matrix. The key-switching matrix enables the transition of a ciphertext
in Eq. (3.1) to a new ciphertext with the same form, denoted as c ′ = (

Hµ,b′), where

b′t = st A′
µ+e′t + (0,0,encode(m))t mod q, (3.2)

for new public matrix A′
µ and new error items e′. This matrix is essentially the

transition matrix from Aµ to A′
µ, with the last row block matrix [0 0 I], i.e.,

Aµ ·M = A′
µ. The old ciphertext c is updated by multiplying bt and M, that is

bt M = st Aµ ·M+et ·M+ (0,0,encode(m))t ·M

= st A′
µ+e′t + (0,0,encode(m))t mod q.

which matches the desired form in Eq. (3.2). The matrix M can be efficiently
generated by the trapdoor (secret key) R and the preimage sampling algorithm, as
presented in Sect 3.2.2.

Challenges and a New UE Scheme. We state that there are two technical
challenges in directly using the key-switching matrix as the update token to construct
a secure UE scheme satisfying our confidentiality notion, which requires the
indistinguishability between “fresh" and updated ciphertexts. The first observation
is that Hµ, as part of the ciphertext, is never rotated in the update process. The
adversary can distinguish the challenge ciphertexts by comparing Hµ extracted from
the challenge output and input. Beyond that, s is also never changed during the
update process. With the known s used in the challenge input ciphertext, the
adversary may attempt to decrypt the challenge output (note that the last step in the
decryption algorithm in PKE only requires s). If it fails, then the adversary knows the
challenge output is a fresh encryption of the challenge input message. Otherwise,
that is an update of the challenge input ciphertext.

Our solution to address the challenges is to change the invertible matrix Hµ and
the variable s in each update. Specifically, a new invertible matrix H′

µ and a fresh
encryption of message 0 under the new key with H′

µ, denoted by b0, are generated in
the token generation algorithm to improve the randomness. In summary, the update
token is a triple ∆= (M,b0,H′

µ), and the update of ciphertext c = (Hµ,b) works by

multiplying b by M and then adding b0. That is, c ′ = (
H′

u ,b′), where

(b′)t = bt ·M+bt
0

= [
st Aµ+et + (0, 0,encode(m))t]M+ (s′)t A′

µ+ (e′)t

= (s+s′)t A′
µ+

(
et M+ (e′)t)+ (0, 0,encode(m))t mod q.

3.1. INTRODUCTION

3

55

Thus, the updated ciphertext shares the same form as the old ciphertext, but has a
new independent invertible matrix and new random factor s+s′, thereby avoiding
the two problems mentioned above. Note that even if an adversary corrupts the
update token and the old key (or new key), it can only recover A′

µ (or Aµ, resp.)
that is actually public. Therefore, the UE scheme does not leak any information
about secret keys, and its token generation process is different from the previously
commonly used Dec-then-Enc method.

Regarding the CCA-1 security, at a high level, the decryption procedure allows the
adversary to recover at most Aµ before the challenge phase, while ensuring that
the secret key R (i.e., the trapdoor) remains statistically hidden from the adversary.
We state that the scheme cannot achieve CCA-2 security as the decryption of a
challenge ciphertext with extra small noise, which is also a valid ciphertext, reveals
the information of the challenge plaintext.

A Packing UE. Our packing UE scheme allows for the simultaneous encryption and
update of multiple messages in a single ciphertext. It is based on our UE scheme
with the main difference in the encoding algorithm as follows:

encode(m0, . . . ,mN−1) = encode(m0)+encode(m1)X +·· ·+encode(mN−1)X N−1,

for messages m0, . . . ,mN−1, where the encode in the right side is the same as that in
the PKE scheme. Multiple messages blocks are encrypted into one single ciphertext,
which can then be recovered degree by degree. This packing scheme enhances
efficiency by requiring only one ciphertext header to be downloaded during the
update process.

3.1.3. SUMMARY OF CONTRIBUTIONS

We strengthen the confidentiality notions for c-d UE to address the above limitations
1-3 of existing work and provide efficient UE schemes that achieve the confidentiality
we define. First, we simplify the description of the confidentiality model by reducing
the number of oracles available to the adversary, while maintaining the same level of
security. This simplification facilitates the security analysis of UE schemes. Our new
definition “maximizes” the capability of the adversary, including the ability to corrupt
keys in an adaptive manner and gain access to the decryption oracle, thus providing
a stronger security than prior work. We then propose a new construction that is the
first c-d UE to achieve adaptive security under the LWE assumption. It is built on
our lattice-based PKE scheme, and rotates ciphertext with a key-switching matrix,
which differs from the Dec-then-Enc structure used in existing c-d UE schemes. We
also propose a new packing method to further enhance the efficiency of c-d UE. Our
approach enables multiple messages to be encrypted and updated simultaneously,
reducing the overhead associated with downloading ciphertext headers during the
update process.

3

56 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

3.2. PRELIMINARIES
We use upper-case and lower-case bold letters to denote matrices and column
vectors, respectively. For a vector x, we denote the 2-norm of x by ∥x∥ and the
infinity norm by ∥x∥∞. The largest singular value of a matrix B is denoted by
s1(B) := max

u
∥Bt u∥, where the maxima is taken over all unit vectors u and Bt is the

transpose of B. For two matrices A and B, [A | B] denotes the concatenation of the
columns of A and B. We also use standard asymptotical notations such as ω, Ω and
O.

3.2.1. UPDATABLE ENCRYPTION

We briefly review the syntax of ciphertext-dependent UE and prior confidentiality
notions for c-d UE.

Definition 3.2.1 ([1, 8, 10]). A ciphertext-dependent UE scheme includes a tuple of
PPT algorithms {KG, Enc, Dec, TokenGen, Update} that operate in epochs starting
from 0.

• KG(1λ): the key generation algorithm outputs an epoch key ke.

• Enc(ke,m): the encryption algorithm takes as input an epoch key ke and a
message m and outputs a ciphertext header ĉte and a ciphertext body cte, i.e.,
ct= (ĉte,cte).

• Dec(ke, (ĉte,cte)): the decryption algorithms takes as input an epoch key ke and
a ciphertext (ĉte,cte) and outputs a message m′ or ⊥.

• TokenGen(ke,ke+1, ĉte): the token generation algorithm takes as input two epoch
keys ke and ke+1 and a ciphertext header ĉte, and outputs an update token
∆e+1,ĉte or ⊥.

• Update(∆e+1,ĉte , (ĉte,cte)): the update algorithm takes as input a token
∆e+1,ĉt related to the ciphertext (ĉte,cte), and outputs an updated ciphertext
(ĉte+1,cte+1) or ⊥.

In an updatable encryption scheme, there are two ways to generate a ciphertext:
either via the encryption algorithm to produce the fresh ciphertext, or via the update
algorithm to produce an updated ciphertext. The correctness of a UE scheme requires
both types of ciphertexts to decrypt correctly to the underlying message, except with
a low failure probability.

Prior Notions of Confidentiality. To capture the security under key leakage, the
challenger in prior confidentiality games [8, 10] provides the adversary some selective
keys in the setup phase. In the query phase, the adversary is given access to
query the algorithms involved in UE schemes, including {Enc, TokenGen, Update},
to obtain the encryption of messages, update tokens, and updates of ciphertexts,
respectively. The adversary then submits two challenge inputs in the challenge
phase based on the information it has acquired and receives the challenge output

3.2. PRELIMINARIES

3

57

from the challenger. The goal of the adversary is to guess which challenge input
the challenge output is related to (encrypted or updated from). The adversary can
continue querying those oracles as long as the combination of queries would not
lead to a trivial win, and eventually submits a guess bit.

Prior confidentiality notions have three variants with the only difference in
challenge inputs: UP-IND [10] has inputs of two messages (m̄0,m̄1) to capture the
security of fresh encryptions, UP-REENC [10] uses inputs of two ciphertexts (c̄0, c̄1)
to protect the confidentiality after updating, and Confidentiality [8], which is stronger
the former two, takes one message and one ciphertext as input (m̄0, c̄1) to protect
against the leakage of the age of ciphertext, i.e., the number of update times, to the
adversary. We rewrite the confidentiality game of Confidentiality in Fig. 3.2 with two
modifications.

First, we describe oracles that operate in consecutive epochs {. . . , e−1, e, e+1,
. . . }, which is more consistent with the practical periodic updating of ciphertexts and
differs from the node-based oracles originating from proxy re-encryption in prior
work. Second, we introduce a new lookup table in the game to track non-challenge
ciphertexts (as defined in Definition 3.2.2) to address the insufficient analysis of
trivial win conditions for deterministic UE schemes in prior work [1, 8–10]. Our
main observation is that for UE schemes with deterministic updates, the adversary
should be prevented from querying OUpdate and OTokenGen on the challenge input
ciphertext in the challenge epoch before querying the challenge oracle, as this would
enable the adversary to know one of the possible challenge output ciphertexts in
advance due to the determinism of the update. Such conditions are not analyzed in
prior notions, which are therefore only applicable to UE with randomized updates;
however, the update algorithm can be deterministic as in our construction, even
though the encryption algorithm must be randomized.

Definition 3.2.2. A ciphertext is called challenge-equal ciphertext, if the adversary
learns it via querying the challenge oracle OChall, or obtains it by updating the
challenge ciphertext using OUpdate or tokens acquired from OTokenGen. Any ciphertext
that is not obtained through these methods is referred to as a non-challenge ciphertext.

The functionalities and restrictions of oracles used in the Confidentiality game in
Fig. 3.2 are as follows.

- OEnc: returns an encryption of a message.

- OUpdate: returns an update of a valid (lines 1-3) ciphertext, recorded by
TCchall (line 9) or TCnon (line 12) according to the input. But the update of
challenge-equal ciphertexts in epochs with known epoch keys is not allowed
(line 6).

- OTokenGen: returns a token related to a valid ciphertext, and updates TCchall
(line 7) or TCnon (line 11). But tokens related to challenge-equal ciphertexts in
epochs with known epoch keys are not allowed to be acquired (lines 1-2).

- OChall: returns the challenge output, either a fresh encryption of the input
message or an update of input valid ciphertext (lines 2-4). However, this oracle

3

58 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

ExptConfidentiality
UE (λ, l ,A ,b) :

1 : k1, . . . ,kl ←KG(1λ)

2 : b′ ←A O (K)

3 : return b′ = b

OEnc(e,m) :

1 : (ĉt,ct) ←Enc(ke,m)

2 : TCnon[e, ĉt] ← ct
3 : return (ĉt,ct)

OUpdate(e, (ĉt,ct)) :

1 : if TCchall[e−1, ĉt] =⊥ and

2 : TCnon[e−1, ĉt] =⊥ then

3 : return ⊥
4 : ∆e,ĉt ←TokenGen(ke−1,ke, ĉt)

5 : if TCchall[e−1, ĉt] ̸=⊥ then

6 : if e ∈K return ⊥
7 : else ct←TCchall[e−1, ĉt]

8 : (ĉt′,ct′) ←Update(∆e,ĉt, (ĉt,ct))

9 : TCchall[e, ĉt′] ← ct′

10 : else ct←TCnon[e−1, ĉt]

11 : (ĉt′,ct′) ←Update(∆e,ĉt, (ĉt,ct))

12 : TCnon[e, ĉt′] ← ct′

13 : return (ĉt′,ct′)

OTokenGen(e, ĉt) :

1 : if e ∈K and TCchall[e−1, ĉt] ̸=⊥
2 : return ⊥
3 : ∆e,ĉt ←TokenGen(ke−1,ke, ĉt)

4 : if e ̸∈K and TCchall[e−1, ĉt] ̸=⊥
5 : ct←TCchall[e−1, ĉt]

6 : (ĉt′,ct′) ←Update(∆e,ĉt, (ĉt,ct))

7 : TCchall[e, ĉt′] ← ct′

8 : elseif TCnon[e−1, ĉt] ̸=⊥
9 : ct←TCnon[e−1, ĉt]

10 : (ĉt′,ct′) ←Update(∆e,ĉt, (ĉt,ct))

11 : TCnon[e, ĉt′] ← ct′

12 : else return ⊥
13 : return ∆e,ĉt

OChall(e,m, (ĉt,ct)) :

1 : if e ∈K return ⊥
2 : (ĉt′0,ct′0) ←Enc (ke,m)

3 : if (ĉt′0,ct′0) =⊥ or TCnon[e−1, ĉt] ̸= ct
4 : return ⊥
5 : ∆e,ĉt ←TokenGen

(
ke−1,ke, ĉt

)
6 : (ĉt′1,ct′1) ←Update(∆e,ĉt, (ĉt,ct))

7 : if |ĉt′0| ̸= |ĉt′1| or
∣∣ct′0

∣∣ ̸= ∣∣ct′1
∣∣

8 : return ⊥
9 : if (xx = det and TCnon[e, ĉt′1] = ct′1)

10 : return ⊥
11 : TCchall[e, ĉt′b] ← ct′b
12 : return (ĉt′b ,ct′b)

Figure 3.2: Security game for Confidentiality. The adversary in the startup is provided
with selective keys whose epochs are recorded by the set K , and the
other keys are kept private from the adversary. Initially set to be
empty, the table Tchall (or Tnon) maps an epoch and challenge-equal (or
non-challenge, respectively) ciphertext header pair to the corresponding
challenge-equal (or non-challenge, respectively) ciphertext body. xx = det
means the update algorithm is deterministic.

3.2. PRELIMINARIES

3

59

should not be queried in epochs with known epoch keys (line 1), and for
deterministic UE, the input ciphertext should not be updated in advance (lines
9-10).

In fact, the adversary may infer more ciphertexts, tokens, and keys from corrupted
information, aside from the recorded sets, and the extended leakages cannot be
tracked (but can be computed) by look-up tables. For example, a token can be
inferred if two successive epoch keys are known. We will show in theorems 3.3.4,
3.3.6 and 3.3.7 that trivial win conditions on recorded leakages and extended leakages
are actually the same for no-directional UE (Def. 3.3.1). Therefore, it is sufficient to
check the above restrictions on recorded look-up tables to avoid trivial win.

3.2.2. GAUSSIANS AND LATTICES

Given a matrix A ∈Zn×m
q , we first review the Learning With Errors (LWE) and Short

Integer Solution (SIS) problems as follows:

• LWEq,α: for arbitrary s ∈Zn
q and error e from the discrete Gaussian distribution

DZm ,αq (Def. 3.2.6), let bt = st A+et mod q ∈Zm
q . The sear ch-LWEq,α is to find

s and e from (A,b); the deci si on-LWEq,α is to distinguish between b and a
uniformly random sample from Zm

q .

• SISq,β: find a nonzero x ∈Zm such that Ax = 0 mod q and ∥x∥ ≤β.

When A is a uniformly random matrix, solving the above two problems is
computationally intractable under some parameter settings [19, 20]. However, for a
random matrix A with a G-trapdoor (Def. 3.2.3), those two problems can be solved
immediately (Lemma 3.2.4 and Lemma 3.2.5).

For the rest of the paper, let q ≥ 2 be an integer modulus with k = ⌈log2 q⌉, and G
is defined as G := In ⊗gt ∈Zn×nk

q , i.e.,

G = di ag (gt , . . . ,gt),

where gt = [1 2 4 . . . 2k−1] ∈Z1×k
q and integer n ≥ 1.

Definition 3.2.3 (G-trapdoor). Let A ∈Zn×m
q for some m ≥ nk ≥ n. A G-trapdoor for A

is a matrix R ∈Z(m−nk)×nk
q such that A

[
R
I

]= HG for some invertible matrix H ∈Zn×n
q .

As an example in [18], R is a G-trapdoor for a random matrix A = [A0|−A0R+HG],
where A0 is a uniform matrix in Zn×m

q , H ∈ Zn×n
q is an invertible matrix and R is

chosen from a distribution over Zm×nk
q .

Lemma 3.2.4 ([18], Theorem 5.4). Given a G-trapdoor R for A ∈Zn×m
q and an LWE

instance bt = st A+et , if
∥∥[Rt I] ·e

∥∥∞ ≤ q/4 , then there is an efficient algorithm called

InvertO (R,A,H,b) that recovers s and e from the bt = st A+et .

Lemma 3.2.5 ([18], Theorem 5.5). Given a G-trapdoor R for A ∈Zn×m
q with invertible

matrix H and any u ∈Zn
q , there is an efficient algorithm called SampleDO (R,A,H,u, s)

3

60 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

that samples a Gaussian vector x from DZm ,s such that Ax = u, where s can be

as small as
√

s1(R)2 +1 ·√s1(
∑

G)+1 ·ω(
√

logn) and s1(
∑

G) is a constant for given
G(equal to 4 if q is a power of 2, and 5 otherwise).

Definition 3.2.6 ([21]). For a positive real s, the discrete Gaussian distribution over a
countable set A is defined by the density function

D A,s (x) := ρs (x)∑
y∈A ρs (y)

,

where ρs (x) = exp
(−π∥x∥2/s2

)
.

Lemma 3.2.7 ([22], Lemma 1.5). Let c ≥ 1,C = c ·exp
((

1− c2
)

/2
)
. For any real s > 0

and any integer n ≥ 1, we have that

Pr
e←DZn ,s

[
∥e∥ ≥ cs

√
n

2π

]
≤C n .

In particular, letting c =p
2π and C < 1/4 , we have

Pr
e←DZn ,s

[∥e∥ ≥ s
p

n
]< 2−2n

Lemma 3.2.8 ([18], Lemma 2.9). Let X ∈ Rn×m be a δ-subgaussian random matrix
with parameter s. There exists a universal constant C > 0 such that for any t ≥ 0, we
have s1(X) ≤C · s · (

p
m +p

n + t) except with probability at most 2exp(δ)exp
(−πt 2

)
.

Lemma 3.2.9 ([23], Fact 6). For any m,n, s > 0, let R ∈ Dn×m
Z,s , we have

s1(R) ≤ s ·O(
p

n +p
m), except with probability 2−Ω(n+m).

The following lemma bounds the maximal singular value of the product and
addition of two matrices, which follows directly from the definition.

Lemma 3.2.10. Let A ∈ Rm×n , B ∈ Rn×m , then s1(AB) ≤ s1(A)s1(B) and s1(A+B) ≤
s1(A)+ s1(B).

Lemma 3.2.11 (Leftover Hash Lemma). Let P be a distribution over Zn
q with

min-entropy k. For any ϵ> 0 and l ≤ (k−2log(1/ϵ)−O(1))/ log(q), the joint distribution

of (C,Cs) is ϵ-close to the uniform distribution over Zl×n
q ×Zl

q , where C
$←Zl×n

q and
s ←P .

Lemma 3.2.12 ([24], Fact 2.2). Let X1, . . . , Xn be independent mean-zero subgaussian
random variables with parameter s, and let u ∈ Rn be arbitrary. Then

∑
k (ak Xk) is

subgaussian with parameter s∥u∥.

3.3. NEW CONFIDENTIALITY NOTIONS FOR UPDATABLE

ENCRYPTION
To simplify the security notion given in [8], we define a new confidentiality notion
called sConfidentiality, where we replace OTokenGen and OUpdate in the security game

3.3. NEW CONFIDENTIALITY NOTIONS FOR UPDATABLE ENCRYPTION

3

61

with a single OsUpd that returns both the update token and updated ciphertext to
the adversary simultaneously. We prove in Theorem 3.3.3 that sConfidentiality and
Confidentiality are equal for UE schemes with no-directional key updates.

Meanwhile, to provide the adversary with maximum power, we introduce a new
stronger confidentiality notion than sConfidentiality, called xxIND-UE-atk3, where the
adversary is given extra access to ODec and OCorr, which enables it to corrupt epoch
keys at any time during the game. To avoid making the security game trivial, we fully
analyze the conditions for any trivial win in this game model. A brief comparison of
the proposed notions with those of prior work is presented in Fig. 3.3.

Notions Oracles Key
Challenge

Input
Update

UP-IND [10] OEnc,OTokenGen,OUpdate S. (m̄0,m̄1) rand

UP-REENC [10] OEnc,OTokenGen,OUpdate S. (c̄0, c̄1) rand

Confidentiality [8] OEnc,OTokenGen,OUpdate S. (m̄0, c̄1) rand

sConfidentiality Sect. 3.3.2 OEnc,OsUpd S. (m̄0, c̄1) rand

xxIND-UE-CPA Sect. 3.3.3 OEnc,OsUpd,OCorr, A. (m̄0, c̄1) xx

xxIND-UE-CCA Sect. 3.3.3 OEnc,OsUpd,OCorr,ODec A. (m̄0, c̄1) xx

Figure 3.3: A summary of confidentiality notions, where xx ∈ {rand,det} represents
the update procedure can be either randomized or deterministic. The
abbreviations ’S.’ and ’A.’ represent the methods of key compromising,
specifically ’selective’ and ’adaptive,’ respectively. The adversary in each
confidentiality game provides two challenge inputs based on the oracles it
has access to and tries to distinguish the challenge outputs. Confidentiality
is proven stronger than both UP-IND and UP-REENC in [8], and OsUpd is
defined in Sect. 3.3.2. Chen et al. [9] proposed strengthened UP-IND and
UP-REENC to capture malicious update security, with the modification
in the oracle OUpdate that enables the adversary to query the update
of maliciously generated ciphertexts, instead of only honestly generated
ciphertexts as in [10].

3.3.1. UE SCHEMES WITH NO-DIRECTIONAL KEY UPDATES

In c-i UE schemes, update tokens are generated by two successive epoch keys:
∆ = TokenGen(ke,ke+1), e.g., ∆ = ke+1/ke in [2] or ∆ = ke+1 −ke in [3]); therefore,

3The same notion for the c-i UE scheme was proposed in [2]. We aim to unify the notions for
c-i/c-d UE that both capture adaptive security and prevent the leakage of ciphertext age. Note that,
as analyzed in the introduction, there are intrinsic differences between c-i UE and c-d UE. The
disparity is evident in the confidentiality notion, specifically in the approach to recording leakage
sets.

3

62 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

one key may be derived by the other if the token is known by the adversary.
However, in c-d UE schemes, tokens are also determined by the ciphertext header:
∆ = TokenGen(ke,ke+1, ĉte), so keys may not be derived via corrupted tokens. We
generalize the definition of no-directional key updates from c-i UE to c-d UE as
follows.

Definition 3.3.1. A UE scheme, either ciphertext-independent or ciphertext-dependent,
is said to have no-directional key updates if epoch keys cannot be inferred from
known tokens.

Jiang [3] proposed the open problem of constructing no-directional c-i UE schemes.
However, all known c-d UE schemes in [1, 8–10] (as well as our construction in Sect.
3.5) have no-directional key updates, which benefit from a Dec-then-Enc process as
discussed in the introduction. In contrast, there are only two c-i UE schemes with
no-directional key update: one is not practical [4] and the other is less efficient [7].
In the following, we focus on c-d UE schemes with no-directional key updates.

3.3.2. A SIMPLIFIED CONFIDENTIALITY NOTION

Based on our refinement on Confidentiality, we now define a new simplified
confidentiality notion by substituting the oracles OTokenGen and OUpd in the
Confidentiality game with a single OsUpd that returns both the token and update
simultaneously. We call this new notion sConfidentiality. In Theorem 3.3.3, we prove
sConfidentiality is equivalent to Confidentiality for UE schemes with no-directional
key updates, as defined in [8].

Definition 3.3.2 (sConfientiality). Let UE = {KG,Enc,Dec,TokenGen,Update} be an
updatable encryption scheme. For a security parameter λ, an integer l , an
adversary A , and a binary bit b ∈ {0,1}, we define the confidentiality experiment
ExptsConf

UE (λ, l ,A ,b) and oracles O = {
OEnc,OsUpd,OChall

}
as described in Fig. 3.4. The

experiment maintains two look-up tables TCnon and TCchall that record non-challenge
and challenge-equal ciphertexts known to the adversary, respectively, and an epoch set
K in which epoch keys are provided to the adversary in setup.

We say that an updatable encryption scheme UE satisfies sConfidentiality if there
exists a negligible function negl(λ) such that for all K ⊆ [0, . . . , l] and efficient
adversaries A , we have∣∣∣Pr

[
ExptsConf

UE (λ, l ,A ,0) = 1
]
−Pr

[
ExptsConf

UE (λ, l ,A ,1) = 1
]∣∣∣≤ negl(λ).

Theorem 3.3.3. Let UE= (KG,Enc,Dec,TokenGen,Update) be an updatable encryption
scheme with no-directional key updates. For any sConfidentiality adversary A against
UE, there is a Confidentiality adversary B against UE such that

AdvsConf
UE,A (1λ) ≤AdvConf

UE,B(1λ). (3.3)

In addition, for any Confidentiality adversary B against UE, there is a sConfidentiality
adversary A against UE such that

AdvConf
UE,B(1λ) =AdvsConf

UE,A (1λ).

3.3. NEW CONFIDENTIALITY NOTIONS FOR UPDATABLE ENCRYPTION

3

63

ExptsConf
UE (λ, l ,A ,b) :

1 : k1, . . . ,kl ←KG(1λ)

2 : b′ ←A O (K)

3 : return b′ = b

OsUpd(e, (ĉt,ct)) :

1 : if TCchall[e−1, ĉt] =⊥ and

2 : TCnon[e−1, ĉt] =⊥ then

3 : return ⊥
4 : ∆e,ĉt ←TokenGen(ke−1,ke, ĉt)

5 : if TCchall[e−1, ĉt] ̸=⊥ then

6 : if e ∈K return ⊥
7 : else ct←TCchall[e−1, ĉt]

8 : (ĉt′,ct′) ←Update(∆e,ĉt, (ĉt,ct))

9 : TCchall[e, ĉt′] ← ct′

10 : else ct←TCnon[e−1, ĉt]

11 : (ĉt′,ct′) ←Update(∆e,ĉt, (ĉt,ct))

12 : TCnon[e, ĉt′] ← ct′

13 : return (∆e,ĉt, (ĉt′,ct′))

OEnc(e,m) :

1 : (ĉt,ct) ←Enc(ke,m)

2 : TCnon[e, ĉt] ← ct
3 : return (ĉt,ct)

OChall(e,m, (ĉt,ct)) :

1 : if e ∈K return ⊥
2 : (ĉt′0,ct′0) ←Enc (ke,m)

3 : if (ĉt′0,ct′0) =⊥ or TCnon[e−1, ĉt] ̸= ct
4 : return ⊥
5 : ∆e,ĉt ←TokenGen

(
ke−1,ke, ĉt

)
6 : (ĉt′1,ct′1) ←Update(∆e,ĉt, (ĉt,ct))

7 : if |ĉt′0| ̸= |ĉt′1| or
∣∣ct′0

∣∣ ̸= ∣∣ct′1
∣∣

8 : return ⊥
9 : if (xx = det and TCnon[e, ĉt′1] = ct′1)

10 : return ⊥
11 : TCchall[e, ĉt′b] ← ct′b
12 : return (ĉt′b ,ct′b)

Figure 3.4: Security game for sConfidentiality in Definition 3.3.2.

Figure 3.5: Reductions in the proof of Theorem 3.3.3. When the adversary makes
queries to specific oracles, indicated above the arrow, the reduction
forwards to the adversary the corresponding responses from its own
challenger, marked below the arrow.

Proof. In general, we construct a reduction that runs the Confidentiality (or
sConfidentiality) game and simulates all responses to the queries of the adversary in

3

64 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

the sConfidentiality (or Confidentiality game, respectively), as shown in Fig. 3.5. The
details are presented as follows.

We provide reductions for both sConfidentiality and Confidentiality games. For any
sConfidentiality adversary A , we construct a reduction B that runs the Confidentiality
game and simulates all responses to the queries of A as the first line shown in Fig.
3.5. The reduction sends all its known keys to A , and all A ’s queries except OsUpd
to its challenger, and returns the challenger’s responses to A .

When A queries the oracle OsUpd on some input, the reduction B submits the
same input to OTokeGen. If the response of the challenger is ⊥, B also sends ⊥ to
A ; otherwise, B calculates the updated ciphertext by the received update token and
forwards the update token, together with the updated ciphertext, to the adversary
A . At last, B forwards A ’s guess to its challenger.

We check the trivial win conditions of A and B one by one. Suppose A does not
query an update of challenge-equal ciphertext in an epoch in which it knows the key
(via OsUpd). From the proof of Lemma 3.3.4, then we know TCchall[0] =TC∗

chall[0], and
therefore the epochs in which A knows a challenge-equal ciphertext are the same
as B. Therefore, B will not query the token related to challenge-equal ciphertexts
in epochs in which it knows the epoch key (since A and B have the same known
keys). There are no additional restrictions for randomized UE. For deterministic UE,
the adversary should not learn the update of challenge input ciphertext in advance
before the challenge. Note that the look-up table TCnon for A and B is the same.
If A does not query OsUpd(ē, (ĉt,ct)) before querying the challenge oracle, the same
applies to B (recall the ciphertexts acquired before the challenge are all recorded in
TCnon). Therefore, ⊥ will also not be returned from the challenger of B when A

does not trigger trivial win conditions. Thus B has at least the same advantage as
A , i.e., the Inequality (3.3).

Similarly, for any Confidentiality adversary B, we construct a reduction A that
runs the sConfidentiality game and simulates all the responses to the queries of the
given B as shown in the second line of Fig. 3.5. The reduction A sends all its known
keys to B and all B’s queries except those on OTokenGen and OUpd to its challenger,
and returns its challenger’s responses to B. When B queries the oracle OTokenGen
(or OUpd) on some input, the reduction A submits the same input to the OsUpd
oracle, and returns the update token (or updated ciphertext, respectively) received
from its challenger to B if the response is not ⊥; otherwise, A returns ⊥ to B.

Therefore, the reduction A simulates all responses to B’s queries. Suppose B

does not query an update of challenge-equal ciphertext in an epoch in which it
knows the epoch key. By proof of Lemma 3.3.4 again, we know A does not query
OsUpd in an epoch in which it knows the epoch key. In addition, the analysis for
deterministic is almost the same as above. We omit the details. Thus, we have

AdvConf
UE,B(1λ) ≤AdvsConf

UE,A (1λ).

In combination with (3.3), we conclude the advantage of A is equal to that of B.

3.3. NEW CONFIDENTIALITY NOTIONS FOR UPDATABLE ENCRYPTION

3

65

3.3.3. A STRONGER CONFIDENTIALITY NOTION

We now provide a stronger confidentiality notion, called xxIND-UE-atk for c-d UE in
Definition 3.3.8, which provides the adversary with more power than the notion of
sConfidentiality in Sect. 3.3.2. All available oracles that the adversary has access to are
described in Fig. 3.8. The stronger notion allows the adversary to corrupt keys at any
time during the game by querying OCorr, instead of selecting the compromised keys in
the setup phrase. In addition, the adversary is provided with an extra ability to query
the decryption oracle compared with sConfidentiality. Prior to defining xxIND-UE-atk,
we first analyze the conditions that lead the adversary to trivially win the game
through a combination of queries, which therefore should be excluded from the game.

Leakage Information. To track the information leaked to the adversary, we similarly
record two look-up tables TCnon and TCchall as defined in Sect. 3.3.2, and an
epoch set K in which the epoch key is corrupted via OCorr. We define TCchall[0]
as the set of epochs in which the adversary learns a challenge-equal ciphertext, and
T as the set of epochs in which the adversary learns a token corresponding to a
challenge-equal ciphertext, which are exactly the epochs stored in TCchall and ∆e,ĉt,
respectively. A summary of notations is shown in Table 3.1.

Table 3.1: Summary of leakage set notations

Notations Descriptions

TCnon Look-up table recording leaked non-challenge ciphertexts

TCchall Look-up table recording leaked challenge-equal ciphertexts

TCchall[0] Set of epochs in which a challenge-equal ciphertext is learned

K Set of epochs in which the adversary learned the epoch key

T Set of epochs in which a token w.r.t. a challenge-equal ct is learned

Leakage Extension. Note that the adversary possibly extends its corrupted
information TCnon,TCchall,K via corrupted tokens, and the former leakages may
also in turn help to corrupt more tokens. We denote TC∗

chall[0],K ∗,T ∗ as the
extended sets of TCchall[0],K ,T , respectively. Following the analysis in [5], the
extended leakage sets are computed as follows:

K ∗ =K (no-directional key updates), (3.4)

T ∗ = {e ∈ {0, . . . , l } | (e ∈T)∨ (e ∈K ∗∧e−1 ∈K ∗}, (3.5)

TC∗
chall[0] = {e ∈ {0, . . . , l } | (e ∈TCchall[0])∨ (e−1 ∈TCchall[0]∧e ∈T ∗)∨

(e+1 ∈TCchall[0]∧e+1 ∈T ∗)}. (3.6)

3

66 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

An example is shown in Fig. 3.6. Assume the adversary queries OsUpd only in epoch
e−5 and corrupts epoch keys in epochs e−5 and e−4. Even though it cannot learn
the token in epoch e−4 by OsUpd, it can infer that token via corrupted keys in e−5
and e−4, which further infers the ciphertexts in e−4.

Epoch . . . e−5 e−4 . . .

TCchall[0] ✓ ×
K ✓ ✓

T ✓ ×

TC∗
chall[0] ✓ ✓

K ∗ ✓ ✓

T ∗ ✓ ✓

Figure 3.6: Example of leakage sets. Marks ✓ and × indicate if an epoch key/token
is corrupted. The green mark ✓ indicates an epoch key/token can be
inferred from other corrupted keys and tokens.

Trivial Win Conditions. We follow the analysis of trivial win conditions for c-i UE in
[2–5], as shown in Fig. 3.7. Our analysis for c-d UE in theorems 3.3.4, 3.3.6 and 3.3.7
shows that it is sufficient to check trivial win conditions on recorded leakages
K ,TCchall,T , eliminating the need to calculate extended leakages K ∗,TC∗

chall,T
∗

and check trivial win conditions on them.
I. Trivial win by keys and ciphertexts
If the adversary knows the epoch key and a valid challenge-equal ciphertext in

the same epoch, it can recover the underlying message by a direct decryption
with its corrupted key and therefore win the game. Namely, we should ensure
K ∗ ∩TC∗

chall[0] = ;. The following lemma shows this condition is equal to
K ∩TCchall[0] =; for c-d UE with no-directional key updates.

Lemma 3.3.4. For c-d UE schemes with no-directional key updates, we have
K ∗∩TC∗

chall[0] =;⇐⇒K ∩TCchall[0] =;.

Proof. By the definition of no-directional key updates, we have K ∗ = K . In
addition, we have TCchall[0] ⊆ TC∗

chall[0]. Therefore, we only need to prove
TCchall[0] =TC∗

chall[0] when K ∩TCchall[0] =;.
Suppose TCchall[0] =∪{est ar t , . . . ,eend }. We prove that the adversary cannot learn a

challenge-equal ciphertext in epoch eend+1 either by querying or inferring. First, the
adversary cannot learn a challenge-equal ciphertext in epoch eend+1 via querying
OsUpd, since eend is the last epoch in the epoch continuum; otherwise the received

3.3. NEW CONFIDENTIALITY NOTIONS FOR UPDATABLE ENCRYPTION

3

67

Abilities Trivial Win Conditions

Keys and
ciphertexts

K ∗∩TC∗
chall[0] ̸= ;

Updates
rand-UE : −
det-UE : ē ∈T ∗ or OsUpd(ē, (ĉt,ct)) is queried (line 8-9 of OChall)

Decryptions
rand-UE : e ∈TC∗

chall[0] and (m′ =m or m1) (line 3-4 of ODec)

det-UE : TC∗
chall[e, ĉt] = ct (line 2 of ODec)

Figure 3.7: A summary of trivial win conditions, where ē is the challenge epoch,
(ĉt,ct) is the challenge input ciphertext whose underlying message is m1,
m is the challenge input message, and m′ is the returned message of
decryption algorithm. Oracles are given in Fig. 3.8.

updated ciphertext will be recorded in the table TCchall, which conflicts with the
condition that eend is the last epoch in the epoch continuum. Alternatively, it
can update challenge-equal ciphertext in epoch eend with its inferred token as Eq.
(3.6). But from K ∩TCchall[0] =;, we know the epoch key kend is unknown to the
adversary, which is needed to infer the token in eend+1 (see Eq. (3.5)).

The proof is the same for the challenge-equal ciphertext in epoch est ar t . Therefore,
the adversary cannot learn a challenge-equal ciphertext in any epoch outside of the
set TCchall[0], which implies that TCchall[0] =TC∗

chall[0].

Remark 3.3.5. Lemma 3.3.4 shows that the adversary cannot infer a challenge-
equal ciphertext in an epoch that is not recorded in the look-up table, i.e.,
TCchall[0] = TC∗

chall[0]. But that does not mean all the ciphertexts known to the
adversary are stored in the table TCchall, or equally TCchall = TC∗

chall, which is only
true for deterministic UE. For randomized UE schemes, the adversary can create an
arbitrary number of valid challenge-equal ciphertexts in any epoch in TCchall[0] by
performing the update with its known ciphertexts and tokens.

II. Trivial win by updates
For UE schemes with randomized updates, there are no restrictions on the update

oracle. However, for UE schemes with deterministic updates, the adversary can learn
one of the possible challenge outputs by querying the oracle OsUpd on the challenge
input (ĉt,ct), or infer the update of (ĉt,ct) if ē ∈T ∗, in advance before the challenge
phase. In the first case, all known ciphertext leakages before the challenge are
recorded by TCnon, so that we can set lines 8-9 in challenge oracle to check for this,
as shown in Fig. 3.8. In the second case, if ē ∈T (⊆T ∗), i.e., the token is learned
by querying OsUpd, it goes back to the first case (OsUpd also returns the updated

3

68 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

ciphertext, which is recorded in TCnon). If ē ∈T ∗\T , the following lemma shows
the impossibility.

Lemma 3.3.6. For c-d UE schemes with no-directional key updates, if K ∩TCchall[0] =
;, then the challenge epoch ē ̸∈T ∗\T .

Proof. Note that since the adversary queries the challenge oracle in ē, then
ē ∈TCchall[0]. Due to K ∩TCchall[0] =;, we know the epoch key kē is unknown to
the adversary, which is necessary to infer ∆ē,ĉt (see Eq. (3.5)).

OEnc(e,m) :

1 : (ĉt,ct) ←Enc(ke,m)

2 : TCnon[e, ĉt] ← ct
3 : return (ĉt,ct)

OsUpd(e, (ĉt,ct)) :

1 : if TCchall[e−1, ĉt] =⊥ and

2 : TCnon[e−1, ĉt] =⊥ then

3 : return ⊥
4 : ∆e,ĉt ←TokenGen(ke−1,ke, ĉt)

5 : (ĉt′,ct′) ←Update(∆e,ĉt, (ĉt,ct))

6 : if TCchall[e−1, ĉt] ̸=⊥
7 : TCchall[e, ĉt′] ← ct′

8 : else TCnon[e, ĉt′] ← ct′

9 : return (∆e,ĉt, (ĉt′,ct′))

OCorr(e) :

1 : K =K ∪ {e}

2 : return ke

ODec(e, (ĉt,ct)) :

1 : m′ or ⊥←Dec(ke, (ĉt,ct))

2 : if (xx = det and TCchall[e, ĉt] = ct) or

3 :
(
(xx = rand and e ∈TCchall[0]) and

4 : (m′ =m or m1)
)

then

5 : return ⊥
6 : return Dec

(
ke, (ĉt,ct)

)

OChall(ē,m, (ĉt,ct)) :

1 : (ĉt′0,ct′0) ←Enc (kē,m)

2 : if (ĉt′0,ct′0) =⊥ or TCnon[ē−1, ĉt] ̸= ct
3 : return ⊥
4 : ∆¯̄e,ĉt ←TokenGen

(
kē−1,kē, ĉt

)
5 : (ĉt′1,ct′1) ←Update(∆ē,ĉt, (ĉt,ct))

6 : if |ĉt′0| ̸= |ĉt′1| or
∣∣ct′0

∣∣ ̸= ∣∣ct′1
∣∣

7 : return ⊥
8 : if (xx = det and TCnon[ē, ĉt′1] = ct′1)

9 : return ⊥
10 : TCchall[ē, ĉt′b] ← ct′b
11 : return (ĉt′b ,ct′b)

Figure 3.8: An overview of the oracles that the adversary has access to in Definition
3.3.8. In the decryption oracle, m is the challenge input message and m1

is the underlying message of the challenge input ciphertext.

III. Trivial win by decryptions
Table TC∗

chall records all the challenge-equal ciphertexts known to the adversary in
the game. By remark 3.3.5, we first have the following lemma.

3.3. NEW CONFIDENTIALITY NOTIONS FOR UPDATABLE ENCRYPTION

3

69

Lemma 3.3.7. For c-d UE schemes with no-directional key updates, if K ∩TCchall[0] =
;, then TC∗

chall = TCchall for deterministic UE, and TC∗
chall[0] = TCchall[0] for

randomized UE.

For UE schemes with deterministic ciphertext updates, table TCchall records all
leaked challenge-equal ciphertexts in the game. The adversary can trivially win the
game by querying the decryption oracle on the challenge-equal ciphertexts recorded
on the table TCchall (line 2 in ODec, Fig. 3.8).

For UE schemes with randomized ciphertext updates, the epoch set TCchall[0]
records all the epochs in which the adversary can generate a valid challenge-equal
ciphertext. The adversary can trivially win the game if the returned message of the
decryption oracle in epochs in TCchall[0] is the challenge message or the plaintext of
the challenge input ciphertext (lines 3-4).

In summary, the above analysis shows trivial win conditions for c-d UE can
be checked immediately based on the recorded leakages during the confidentiality
game, without the need for extra calculations and further checks of the extended
leaked sets of keys, tokens and ciphertext as in previous work for c-i UE in [2, 3,
5]. After all the queries, if ⊥ is not returned, only one condition remains to be
checked: K ∩TCchall[0] =;. This advantage is due to both the no-directional key
update setting and the proper ways of recording leakage information via look-up
tables. Finally, we introduce the definition of xxIND-UE-atk.

Definition 3.3.8 (xxIND-UE-atk). Let UE = (KG,Enc,Dec,TokenGen,Update) be a
ciphertext-dependent updatable encryption scheme with no-directional key updates.
For an adversary A and b ∈ {0,1}, we define the confidentiality experiment
ExpxxIND-UE-atk-b

UE,A in Fig. 3.9 for xx ∈ {det,rand} and atk ∈ {CPA,CCA-1,CCA}.
We say UE meets the xxIND-UE-atk confidentiality if there is a negligible function

negl(λ) such that AdvxxIND-UE-atk
UE,A (λ) ≤ negl(λ), where

AdvxxIND-UE-atk
UE,A (λ) =

∣∣∣Pr
[

ExpxxIND-UE-atk-1
UE,A = 1

]
−Pr

[
ExpxxIND-UE-atk-1

UE,A = 0
]∣∣∣ .

Future Extensions. In our security model, the adversary is only allowed to query the
update oracle with “correctly" generated ciphertexts throughout the experiment. An
interesting future work is to investigate security notions that capture both adaptive
security and protection against malicious update.

3.3.4. FIREWALL TECHNIQUES

Firewall Technique. In c-i UE, the firewall technique was developed in [4, 5] to
facilitate the security proof by separating epochs into different regions. Inside an
insulated region, the simulation in the proof should appropriately respond to the
queries of the adversary, since it corrupts all tokens within this region. While outside,
the simulation can generate tokens and epoch keys freely.

In c-d UE, we similarly define the insulated region, inside which all tokens related
to challenge-equal ciphertexts (called challenge-equal tokens) are corrupted but no
epoch key is corrupted.

3

70 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

ExpxxIND-UE-atk-b
UE,A :

1 : (m, (ĉt,ct)) ←A O1 (1λ) // setup phase

2 : A queries Ochall on (m, (ĉt,ct)) // challenge phase

3 : b′ ←A O2 (1λ) // response phase

4 : if (K ∩TCchall[0] ̸= ;) then

5 : b′ $← {0,1}

6 : return b′

Figure 3.9: The confidentiality game ExpxxIND-UE-atk-b
UE,A where xx ∈ {det,rand} indicates

the type of UE scheme (deterministic or randomized) and atk ∈
{CPA,CCA-1,CCA} indicates the type of attack model. In the game, the
adversary is given access to a set of oracles, denoted by O1 and O2

which are shown in Fig. 3.8 and Fig. 3.10. During the setup phase, the
adversary generates a challenge plaintext and a challenge ciphertext using
the oracles in O1, and submits them to the challenger in the challenge
phase. The adversary continues to query the oracles in O2 and eventually
provides a guess bit. The only condition for the adversary to lose the
game is K ∩TCchall[0] ̸= ;.

atk O1 O2

CPA OEnc,OsUpd,OCorr OEnc,OsUpd,OCorr

CCA-1 OEnc,OsUpd, ODec ,OCorr OEnc,OsUpd,OCorr

CCA OEnc,OsUpd, ODec ,OCorr OEnc,OsUpd, ODec ,OCorr

Figure 3.10: Oracles that the adversary has access to before and after the challenge
phase in the confidentiality game for different attacks. It can corrupt
keys at any time during the game in all attacks via querying OCorr, but
is not allowed to query the decryption oracle in the CPA attack, limited
to query the decryption oracle before the challenge in the CCA-1 attack,
and free to query the decryption oracle in the CCA attack.

Definition 3.3.9 (Firewall). In ciphertext-dependent UE schemes, an insulated region
with firewalls fwl and fwr, denoted by FW , is a consecutive sequence of epochs
(fwl, . . . , fwr) for which:

• no key in the sequence of epochs {fwl, . . . , fwr} is corrupted;

• no challenge-equal tokens in epochs fwl and fwr+1 is corrupted;

• all challenge-equal tokens in epochs {fwl+1, . . . , fwr} are corrupted.

3.4. A CCA-1 SECURE PKE SCHEME

3

71

Suppose an xxIND-UE-atk adversary A queries the challenge oracle in the
epoch ē and does not trigger trivial win conditions in the game, and
TCchall[0] = ∪{est ar t , . . . ,eend }. The proof of Lemma 3.3.4 shows A cannot update
a ciphertext from the epoch eend to the start epoch e′st ar t of the next continuum.
Thus, we have TCchall[0] = {est ar t , . . . ,eend }, meaning that the epoch set in which A

knows a challenge-equal ciphertext is only a consecutive continuum starting from
the challenge epoch (est ar t = ē), and ending in the epoch eend , the last epoch that
the adversary queries the update oracle OsUpd on the challenge-equal ciphertext.
The epoch keys and tokens in the epoch in TCchall[0] have the following properties.

• A does not know the challenge-equal token in epochs est ar t and eend +1,
following from the proof of Lemma 3.3.4;

• A knows all challenge-equal tokens in epochs in {est ar t +1, . . . ,eend }, obtained
when A queries the updates of challenge-equal ciphertexts via OsUpd;

• A does not know any key in epochs in {est ar t , . . . ,eend }, as K ∩TCchall[0] =;;

We thus have the Lemma 3.3.10, following from the discussion above, and Lemma
3.3.11, as a corollary of Lemma 3.3.10, both of which provide important tools in the
confidentiality proof for c-d UE.

Lemma 3.3.10. Let UE = (KG,Enc,TokenGen,Update,Decrypt) be a c-d UE scheme
with no-directional key updates, and xx ∈ {det,rand} and atk ∈ {CPA,CCA-1,CCA}. For
an xxIND-UE-atk adversary A against UE, the set of epochs in which A knows
a challenge-equal ciphertext is an insulated region (Def. 3.3.9), starting from the
challenge epoch and ending at the last epoch in which the adversary queries the
OsUpd.

Lemma 3.3.11. For a c-d UE with no-directonal key updates, if the xxIND-UE-atk
adversary knows a challenge-equal ciphertext in epoch e, then e must be in an
insulated region.

3.4. A CCA-1 SECURE PKE SCHEME
In this section, we propose a new PKE scheme called TDP, which is based on the
lattice trapdoor techniques. We will use this scheme in Sect. 3.5 as the underlying
encryption scheme to build our UE scheme.

3.4.1. A NEW PKE SCHEME

Our overall idea is to construct a 1×3 block matrix Aµ in the encryption algorithm,
with the secret key serving as the trapdoor for the first two blocks of Aµ to ensure
the correctness of decryption.

We introduce some parameters involved in the construction in Fig. 3.11, where
we use standard asymptotic notations of O,Ω,ω. Let λ be the security parameter,
ω(

√
logn) is a fixed function that grows asymptotically faster than

√
logn, and Λ(Gt)

is the lattice generated by Gt .

3

72 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

Notations Functionalities

G =Zn×nk
q (Sect. 3.2.2)

k = ⌈log2 q⌉ =O(logn),

q = poly(λ)

Make oracles InvertO and SampleDO efficient

for the random matrix with a G-trapdoor

m̄ =O(nk),

D = D
Zm̄×nk ,ω(

p
logn)

Ensure (A,AR) is negl(λ)-far from uniform for

A
$←Zn×m̄

q and R ←D, due to leftover hash lemma

encode : {0,1}nk →Λ(Gt) by

encode(m) = Bm ∈Znk , and

B is any basis of Λ(Gt)

Ensure an efficient decoding for decryption

LWE error rate α such that :

1/α= 4 ·O(nk) ·ω(
√

logn)
Control the magnitude of error in ciphertext

Figure 3.11: A summary of notations used in PKE construction and their
functionalities.

The PKE scheme TDP is described as follows. On a first reading, we suggest
readers to neglect the error parameter settings that are used to control the error
bound within the decryption capability, in order to have a simpler view at a high
level.

• TDP.KG(1λ): choose A0
$← Zn×m̄

q , R1, R2
$← D and let A = [A0 | A1 | A2] = [A0 |

−A0R1 | −A0R2] ∈Zn×m
q where m = m̄ +2nk. The public key is pk = A and the

secret key is sk= R1.

• TDP.Enc(pk = A,m ∈ {0,1}nk): choose an invertible matrix Hµ ∈ Zn×n
q , and let

Aµ = [A0 | A1 +HµG | A2]. Choose a random vector s ∈Zn
q and an error vector

e = (e0,e1,e2) ∈ DZm̄ ,αq×DZnk ,d×DZnk ,d where d 2 = (∥e0∥2+m̄ ·(αq)2)·ω(
√

logn)2.
Let

bt = st Aµ+et + (0, 0,encode(m))t mod q, (3.7)

where the first 0 has dimension m̄ and the second has dimension nk. Output
the ciphertext c = (Hµ, b). Notice that R1 is a trapdoor for [A0 | A1 +HµG].

• TDP.Dec(sk = R1,c = (Hµ,b)): let Aµ = [A0 | A1 +HµG | A2]. The decryption first
recovers s from the first two blocks via the invert algorithm and then the

3.4. A CCA-1 SECURE PKE SCHEME

3

73

message m from the third block by decoding (when s is known):

(b0,b1,b2)t =st [A0 | A1 +HµG | A2]

+ (e0,e1,e2)t + (0, 0,encode(m))t mod q.

1. If c or b does not parse, or Hµ = 0, output ⊥. Otherwise parse
bt = (b0,b1,b2)t .

2. Recover s. Call InvertO (R1, [A0 | A1 +HµG], [b0,b1], Hµ) by Lemma 3.2.4,
which returns s and (e0,e1) such that

(b0,b1)t = st [A0 | A1 +HµG]+ (e0,e1)t mod q.

If InvertO fails, output ⊥. Invert bt
2 − st A2 again and find the unique

solution u,e2 to the equation

bt
2 −st A2 = ut G+et

2 mod q,

3. If ∥e0∥ ≥ αq
p

m̄ or
∥∥e j

∥∥ ≥ αq
p

2m̄nk ·ω(
√

logn) for j = 1,2, output ⊥
(Lemma 3.2.7).

4. Recover the plaintext. Output the following result

encode−1 (
bt

2 −st A2 −et
2

) ∈Znk
2 ,

if it exists, otherwise output ⊥.

3.4.2. CORRECTNESS AND SECURITY

We provide a full proof of the correctness (Lemma 3.4.1) and security (Lemma 3.4.2)
of the updatable encryption scheme TDUE in Sect. 3.5, which is based on TDP as a
subcase of TDUE.

Lemma 3.4.1. Our TDP decrypts correctly except with 2−Ω(n) failure probability.

Proof. The proof is the same as that of Lemma 3.5.1, except the bound for the
error vectors. The secret key R serves as the trapdoor for the first two blocks of
Aµ, which ensures the proper recovery of s in Step 2 as long as the error bound is
within the capability of Invert. That is

∥∥et (R
I)

∥∥ ≤ q/4 by Lemma 3.2.4. By Lemma

3.2.9, we have s1(R) =ω(
√

logn) ·O(
p

nk). By Lemma 3.2.7, we have ∥e0∥ ≤αq
p

m̄
and ∥ei∥ ≤αq

p
2m̄nk ·ω(

√
logn) for j = 1,2, except with negligible probability 2−Ω(n),

where m̄ =O(nk). Therefore,∥∥∥∥∥
(

e0

e1

)t [
R
I

]∥∥∥∥∥∞ ≤
∥∥∥∥∥
(

e0

e1

)t [
R
I

]∥∥∥∥∥
≤ ∥et

0R∥+∥e1∥
≤αq ·O(nk) ·ω(

√
logn)

which is further smaller than q/4 since 1/α= 4 ·O(nk) ·ω(
√

logn), and ∥e2∥∞ ≤ q/4
for the same reason, which ensures the correct recovery of s, u and m.

3

74 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

Lemma 3.4.2. Our PKE scheme TDP is CCA-1 secure if the LWE problem is hard.

Proof. We provide a detailed CCA-1 proof for our UE scheme in Theorem 3.5.2.
Note that, if the adversary is disallowed to query the token generation and update
algorithm, the CCA-1 game for UE is exactly the standard CCA-1 game for the
underlying PKE. Therefore, CCA-1 security of TDP follows from Theorem 3.5.2.

3.5. A CCA-1 SECURE UPDATABLE ENCRYPTION SCHEME
Based on our PKE scheme in Sect. 3.4, we construct a new UE scheme, which is
IND-UE-CCA-1 secure under the assumption of the LWE hardness.

3.5.1. CONSTRUCTION

Our UE scheme uses the same encryption and decryption algorithm in TDP, i.e., the
ciphertext of a plaintext m is of the form (ĉt,ct) = (Hµ,st Aµ+et + (0,0,encode(m)t).
To update a ciphertext, at a high level, the update algorithm first generates a
key-switching matrix M with the last row block matrix [0 0 I], such that AµM = A′

µ

for the aimed A′
µ in the new ciphertext. This step is feasible since the secret key is

the trapdoor for the first two blocks of Aµ, ensuring an efficient preimage sampling
algorithm (Lemma 3.2.5). To increase the randomness of s, then we add a fresh
encryption of message 0 to the ciphertext. Fig. 3.12 shows an overview of the
ciphertext update.

(Hµ, st Aµ+et + (0,0,encode(m)t)

(H′
µ, st A′

µ+e′t + (0,0,encode(m)t)

(H′
µ, s′′t A′

µ+e′′′t + (0,0,encode(m)t)

Multiplied by M
(generated by Lemma 3.2.5)

Add s′t A′
µ+e′′t ,

an encryption of 0

Figure 3.12: An overview of ciphertext update in our UE construction. The first step
mainly updates Aµ to A′

µ, and the second step refreshes the randomness
s.

We use the same parameters as in Sect. 3.4.1 except the following. We also suggest
readers on the first reading to neglect the parameter setting for error items which
are used to control the updated error bound.

• 1/α= 4l ·ω(
√

logn)2l+2O(
p

nk)3l+3 where l is the maximal number of update
that the scheme can support.

3.5. A CCA-1 SECURE UPDATABLE ENCRYPTION SCHEME

3

75

• τ=
√

s1(R)2 +1 ·√s1(
∑

G)+1 ·ω(
√

logn) is smallest Gaussian parameter for the
discrete Gaussian distribution from which the sampling algorithm SampleDO

can sample vectors, where s1(
∑

G) = 5 by Theorem 3.2.4.

The UE scheme TDUE is described as follows.

• TDUE.KG(1λ): output TDP.KG(1λ).

• TDUE.Enc(pk= A,m ∈ {0,1}nk): output TDP.Enc(A,m).

• TDUE.Dec(sk= R1,c = (Hµ,b)): output TDP.Dec(R1, (Hµ,b)).

• TDUE.TokenGen(pk,sk,pk′,Hµ): parse pk = [A0 | A1 | A2] = [A0 | −A0R1 | −A0R2],
sk= R1, and pk′ = [A′

0 |A′
1 | A′

2].

1. Generate a random invertible matrix H′
µ and let A′

µ = [A′
0 | A′

1 +H′
µG | A′

2].
We first generate a transition matrix M for which AµM = A′

µ in the
following steps 2, 3, 4, and then compute the encryption of the message
0 under A′

µ in step 5.

2. Call SampleO (R1, [A0 | −A0R1 +HµG],Hµ,A′
0,τ) (Lemma 3.2.5 and R1 is a

trapdoor for [A0 | −A0R1 +HµG]), which returns an (m̄ +nk)× m̄ matrix,
parsed as X00 ∈Zm̄×m̄ and X10 ∈Znk×m̄ with Gaussian entries of parameter
τ, satisfying

[
A0 | −A0R1 +HµG

][
X00

X10

]
= A′

0. (3.8)

3. Call SampleO (R1, [A0 | −A0R1 +HµG],Hµ,A′
1 +H′

µG,τ
p

m̄/2), which returns

X01 ∈Zm̄×nk
q and X11 ∈Znk×nk

q with Gaussian entries of parameter τ
p

m̄/2
such that

[A0 | −A0R1 +HµG]

[
X01

X11

]
= A′

1 +H′
µG. (3.9)

4. Continue calling the sample oracle SampleO (R1, [A0 | −A0R1 +HµG],H1,

A′
2 −A2,τ

p
m̄/2) and obtain X02 ∈Zm̄×nk

q and X12 ∈Znk×nk
q with Gaussian

entries of parameter τ
p

m̄/2 such that

[A0 | −A0R1 +HµG]

[
X02

X12

]
= A′

2 −A2. (3.10)

Let M be the key-switching matrix as follows:

M =
X00 X01 X02

X10 X11 X12

0 0 I

 . (3.11)

3

76 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

Note that Aµ = [A0 | A1+HµG | A2]. Then we have AµM = A′
µ from Equations

(3.8) to (3.10).

5. Let b0 be the ciphertext of message m = 0 under the public key pk′ with
the invertible matrix H′

µ generated in step 1. That is,

bt
0 = (s′)t A′

µ+ (e′)t mod q.

6. Output the update token ∆= (M,b0,H′
µ).

• TDUE.Update(∆,c = (Hµ,b)): parse ∆= (M,b0,H′
µ) and compute

(b′)t = bt ·M+bt
0 mod q,

and output c ′ = (H′
µ,b′).

No-directional Key Updates. TDUE has no-directional key updates since one can
only learn from the update token about the value of A′

µ (or Aµ) through AµM = A′
µ

even if sk (or sk′, resp.) is corrupted, whereas A′
µ and Aµ are random due to the

leftover hash lemma and the distribution of the secret key. Therefore, the adversary
cannot infer any information about the secret key from the update tokens.

3.5.2. CORRECTNESS

We prove that the decryption algorithm in our scheme can perform correctly
with overwhelming probability. Note that the second component in the ciphertext
generated by the update algorithm (updated ciphertext) is as follows:

(b′)t = bt ·M+bt
0

= [
st Aµ+et + (0, 0,encode(m))t]M+ (s′)t A′

µ+ (e′)t

= (s+s′)t A′
µ+

(
et M+ (e′)t)+ (0, 0,encode(m))t mod q. (3.12)

The third equation holds because AµM = A′
µ and the last nk rows in M is [0 0 I].

Therefore the item (0, 0, encode(m))t stays the same when multiplied by M. Then the
updated ciphertext shares the same form with the fresh ciphertext (generated by the
encryption algorithm), except that the update algorithm enlarges the error terms by
et M+ (e′)t , which may cause the failure in the invert algorithm InvertO and further
influence the correctness of the decryption algorithm. In the following, we show
that the decryption algorithm can tolerate the accumulated errors in the updated
ciphertexts by choosing an appropriate value for the parameter α.

Lemma 3.5.1. Our UE scheme TDUE decrypts correctly except with 2−Ω(n) failure
probability.

Proof. Since the decryption on the fresh ciphertext (from Enc) is a subcase of that
on the updated ciphertext (from Update), we choose to prove that the decryption

3.5. A CCA-1 SECURE UPDATABLE ENCRYPTION SCHEME

3

77

algorithm can output a correct plaintext after performing l updates from epoch 0,
where l is the maximum update number.

Let
(
pke,ske = Re

)
0≤e≤l ← KG(1n) be the public and secret key in epoch e. For a

random plaintext m ∈ {0,1}nk , let ce be the ciphertext of m in epoch e, which is
updated from c0 =Enc(m) = (Hµ,0,st

0Aµ,0 +et
0 + (0, 0, encode(m))t). For 1 ≤ i ≤ l , let the

token in epoch i be ∆i = (Mi ,b0,i ,Hµ,i), where b0,i is the fresh ciphertext of message
0 in epoch i , i.e., bt

0,i = st
i Aµ,i +et

i in which Aµ,i = [A0,i | A1,i +Hµ,i G | A2,i]. Iteratively
by Eq. (3.12), we know the updated ciphertext of m in epoch l is cl = (Hµ,l ,bl) where

bt
l =

(
l∑

i=0
si

)t

Aµ,l +
l∑

i=0

(
et

i

l∏
j=i+1

M j

)
+ (0,0,encode(m))t .

Let
∑l

i=0(et
i

∏l
j=i+1 M j) = (e(l)

0 ,e(l)
1 ,e(l)

2)t = (e(l))t . In the end of the proof, we provide

the upper bound for the error e(l) such that∥∥∥(e(l)
0 ,e(l)

1 ,e(l)
2)t ·

[Rl
I
0

]∥∥∥
∞

< q/4 and
∥∥∥e(l)

2

∥∥∥∞ < q/4, (3.13)

except with probability 2−Ω(n) via the appropriate parameter selection for the
scheme. Let bt

l = (b(l)
0 ,b(l)

1 ,b(l)
2)t . Then by Lemma 3.2.4, the call to InvertO made by

Dec(skl , (Hµ,l ,bl)) returns s (=
∑l

i=0 si) and (e(l)
0 ,e(l)

1) correctly, for which

(b(l)
0 ,b(l)

1)t = st [A0,l | A1,l +Hµ,l G]+ (e(l)
0 ,e(l)

1)t mod q.

It follows that
(b(l)

2)t −st A2,l = (e(l)
2)t +encode(m)t , (3.14)

where
∥∥∥e(l)

2

∥∥∥ < q/4 by Inequality (3.13) and encode(m)t = ut G for some u ∈ Znk
q by

the definition of encode. Inverting (b(l)
2)t −st A2,l , we can find the unique solution e(l)

2
and u to Eq. (3.14). Finally, we have

encode−1 (
(ut G)t)= encode−1 (encode(m)) = m.

Therefore, the decryption algorithm Dec outputs m as desired.
Proof of Inequality (3.13). We start from the error e0 generated in the fresh

encryption in epoch 0 and estimate the bound on et
0 ·

∏l
j=1 M j . Errors generated

in the update algorithm in later epochs have the same distribution as e0, but are
multiplied fewer times than e0 by the transition matrix {M j }.

Step 1. Let et
0 = (e0,0,e1,0,e2,0)t and M(s) be the s products of {M j }s

j=1, denoted as

follows:

M(s) =
s∏

t=1
Mt =

X(s)
00 X(s)

01 X(s)
02

X(s)
10 X(s)

11 X(s)
12

0 0 I

 and M j =
X00, j X01, j X02, j

X10, j X11, j X12, j

0 0 I

 ,

for s ∈ {1, . . . , l }.

3

78 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

We first estimate the bound on the maximal singular values of M j and

M(s). For any j ∈ {1, . . . , l }, we have s1(Xkt , j) ≤ τ ·O(
p

nk) for kt ∈ {00,10}, and

s1(Xkt , j) ≤ τpm̄/2 ·O(
p

nk) for kt ∈ {01,11,02,12} by Lemma 3.2.9. Let µ=p
m̄/2. For

s = 2, since X(2)
00 = X00,1 ·X00,2 +X01,1 ·X10,2, we have

s1(X(2)
00) ≤ s1(X00,1) · s1(X00,2)+ s1(X01,1) · s1(X10,2)

≤ τ2(1+µ) ·O(
p

nk)2,

by Lemma 3.2.10. Similarly, we give the bound on the maximal singular value of
other block matrices in M(2) (except the last nk rows, which equal [0, 0, I] for all M)
as follows (element-wise comparison):[

s1(X(2)
00) s1(X(2)

01) s1(X(2)
02)

s1(X(2)
10) s1(X(2)

11) s1(X(2)
12)

]
≤

[
τ2(1+µ) τ2µ(1+µ) τ2µ[(1+µ)+1]
τ2(1+µ) τ2µ(1+µ) τ2µ[(1+µ)+1]

]
· O(

p
nk)2.

Iteratively, we have the bound on the maximal singular value of each block matrix
in M(l), which is[

s1(X(l)
00) s1(X(l)

01) s1(X(l)
02)

s1(X(l)
10) s1(X(l)

11) s1(X(l)
12)

]

≤
[
τl (1+µ)l−1 τlµ(1+µ)l−1 τlµ

∑l−1
k=0(1+µ)k

τl (1+µ)l−1 τlµ(1+µ)l−1 τlµ
∑l−1

k=0(1+µ)k

]
· O(

p
nk)l . (3.15)

Now we can estimate the bound on the updated e0 in the last epoch. Notice that

et
0 ·M(l) ·

[
R1,l

I
0

]
= (e0,0,e1,0,e2,0)t

[
X(l)

00 X(l)
01 X(l)

02

X(l)
10 X(l)

11 X(l)
12

0 0 I

][
R1,l

I
0

]
= (et

0,0X(l)
00 +et

1,0X(l)
10)R1,l +et

0,0X(l)
01 +et

1,0X(l)
11 . (3.16)

By Lemma 3.2.7, we have
∥∥e0,0

∥∥ < αq
p

m̄ and ∥ei∥ < αq
p

2m̄nk ·ω(
√

logn) for
ei ∈ {e1,0,e2,0}, except with probability 2−Ω(n). Combining this conclusion with Eq.
(3.15), we obtain

∥∥∥et
0,0X(l)

00 R1,l

∥∥∥≤ ∥∥e0,0
∥∥ · s1(X(l)

00) · s1(R1,l) <αq
p

m̄ ·τl (1+µ)l−1O(
p

nk)l ·σ,∥∥∥et
1,0X(l)

10 R1,l

∥∥∥< (αq
p

2m̄nk ·ω(
√

logn)) ·τlµ(1+µ)l−1O(
p

nk)l ·σ,∥∥∥et
0,0X(l)

01

∥∥∥<αq
p

m̄ ·τlµ(1+µ)l−1O(
p

nk)l ,∥∥∥et
1,0X(l)

11

∥∥∥< (αq
p

2m̄nk ·ω(
√

logn)) ·τlµ(1+µ)l−1O(
p

nk)l ,

(3.17)

where σ is the upper bound for s1(R1,l) by Corollary 3.2.9, i.e., σ :=ω(
√

logn)·O(
p

nk).

3.5. A CCA-1 SECURE UPDATABLE ENCRYPTION SCHEME

3

79

Substituting σ, τ and µ in Inequality (3.17), we get the upper bound for the norm
of the updated et

0 in Eq.(3.16) by the triangle inequality as follows:∥∥∥(et
0,0X(l)

00 +et
1,0X(l)

10)R1,l +et
0,0X(l)

01 +et
1,0X(l)

11

∥∥∥<αqω(
√

logn)2l+2O(
p

nk)3l+3, (3.18)

and similarly, the bound for the norm of the last nk coordinates of et
0 ·M(l) is∥∥∥et

0,0X(l)
02 +et

1,0X(l)
12 +et

2,0

∥∥∥<αqω(
√

logn)2l+1O(
p

nk)3l+2. (3.19)

Since the infinity norm is smaller than the 2-norm, we have∥∥∥∥∥∥(et
0 ·

l∏
j=1

M j)

R1,l 0
I 0
0 I

∥∥∥∥∥∥
∞

≤αqω(
√

logn)2l+2O(
p

nk)3l+3, (3.20)

by combining the Inequality (3.18) and Inequality (3.19).
Step 2. Errors generated from epoch 1 to l −1 have the same distribution with e0,

but are multiplied fewer times by the key-switching matrices {M j }, which therefore
yields a lower bound than e0.

Step 3. For el , it is not multiplied by any transition matrix. Let et
l = (e0,l ,e1,l ,e2,l).

Then we have

et
l ·

R1 0
I 0
0 I

= (et
0,l R1 +et

1,l ,et
0,l R2 +et

2,l).

The bound on updated e0 in Inequality (3.20) also holds for el .
Finally, we conclude that the upper bound on the infinity norm of the sum of

updated errors is αqlω(
√

logn)2l+2O(
p

nk)3l+3 by triangle inequality, except with
probability 2−Ω(n). That is∥∥∥∥∥∥

l∑
i=0

(et
i ·

l∏
j=i+1

M j) ·
R1,l 0

I 0
0 I

∥∥∥∥∥∥
∞

≤αqlω(
√

logn)2l+2O(
p

nk)3l+3.

Since 1/α = 4lω(
√

logn)2l+2O(
p

nk)3l+3, we have the desired property of error
vectors, i.e., the Inequality (3.13).

3.5.3. SECURITY PROOF

In this section, we show that our scheme is IND-UE-CCA-1 secure under the
hardness assumption of LWE.

Theorem 3.5.2. For any IND-UE-CCA-1 adversary A against TDUE, there exists an
adversary B against LWEn,q,α such that

AdvIND-UE-CCA-1
TDUE,A (1λ) ≤ 2(l +1)3 ·

[
(l +2) ·negl(λ)

+ (nDec +nsUpd) ·2−Ω(n) +AdvLWE
n,q,α(B)

]
,

3

80 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

where l is the maximum number of ciphertext updates that the scheme TDUE
supports, and nDec and nsUpd are the number of queries to the oracles ODec and
OsUpd, respectively.

Step Process

Step 1
epochHi :

i
real ct random ct

Step 2
epochGi :

i
real ct

fwl
random ct

fwr

Step 3

Game 1: Simulate epoch keys and tokens in {fwl, . . . , fwr}

Game 2: Simulate the challenge-equal ciphertexts

Game 3: A reduction solving LWE and simulating Game 2

Figure 3.13: Steps in the security proof of TDUE. Within an insulated region, the
reduction should appropriately respond to all the queries made by the
adversary. Outside the region, the reduction can generate epoch keys
and tokens freely. ct is the abbreviation of ciphertext.

Proof. In general, we take three steps, see Fig. 3.13, to bound the advantage of the
adversary. In the first step, we build a hybrid game Hi for each epoch i , following
[3, 6]. To the left of i , the game Hi returns the real challenge-equal ciphertexts
and real generated tokens to respond to OChall and OsUpd queries; while, to the
right of i , Hi returns random ciphertexts and tokens as responses. To distinguish
games Hi and Hi+1, we assume the adversary queries a challenge-equal ciphertext
in epoch i , otherwise the response of both games will be the same. Therefore, the
epoch i must be in an insulated region by Lemma 3.3.11. In Step 2, we then set
up a modified game of Hi , called Gi that is the same as Hi except for the two
randomly chosen epochs fwr, fwl to simulate the insulated region around epoch i : if
the adversary queries keys inside the region [fwr, · · · , fwl] or challenge-equal tokens
in epochs fwr or fwl+1, Gi aborts. In the last step, we play three games to bound
the advantage of distinguishing games Gi and Gi+1. In Game 1, we simulate keys
inside the insulated region, which are unknown to the adversary, and show how to
simulate the response to queries on challenge-equal and non-challenge ciphertexts
with the simulated keys. We then simulate the challenge-equal ciphertext in the
second game, which allows for the construction of a reduction that solves the LWE
by simulating the second game to the adversary. The details are provided as follows.

Denote the challenge input as (m̄, c̄). We proceed via the following three steps.
Step 1. Consider a sequence of hybrid experiments H b

0 , . . . , H b
l+1 for b ∈ {0,1}. The

3.5. A CCA-1 SECURE UPDATABLE ENCRYPTION SCHEME

3

81

game H b
i is the same as the IND-UE-CCA-1 game except when the adversary queries

a challenge-equal ciphertext via OChall or OsUpd in epoch j :

• if j < i , return an honestly generated challenge-equal ciphertext to OChall.
That is, return the encryption Enc(pk j ,m̄) if b = 0, or the updated ciphertext
Upd(∆ j , c̄) if b = 1. For the query to OsUpd, return the real generated token and
the true update of challenge-equal ciphertexts.

• if j ≥ i , return a random ciphertext to OChall. For the query to OsUpd, return a
randomly generated token and the update of ciphertext by TDUE.Update.

We see that H b
l+1 is the same as ExpIND-UE-CCA-1-b

UE,A , and H 0
0 = H 1

0 since all challenge
responses are the same. Then we have

AdvIND-UE-CCA-1-b
UE,A (1λ) = ∣∣Pr

[
H 1

l+1 = 1
]−Pr

[
H 0

l+1 = 1
]∣∣

≤
l∑

i=0

∣∣Pr
[
H 1

i+1 = 1
]−Pr

[
H 1

i = 1
]∣∣

+
l∑

i=0

∣∣Pr
[
H 0

i+1 = 1
]−Pr

[
H 0

i = 1
]∣∣.

Our goal is to prove
∣∣Pr

[
H b

i+1 = 1
]−Pr

[
H b

i = 1
]∣∣≤ negl(λ) for any i and b.

Step 2. Since the responses in all epochs except i will be the same in both games
H b

i+1 and H b
i for b ∈ {0,1}, we assume the adversary who tries to distinguish the two

games asks for a challenge-equal ciphertext in epoch i . Therefore, there exists an
insulated region [fwl, fwr] around epoch i such that no epoch keys in (fwl, . . . , fwr)
and no tokens related to challenge-equal ciphertexts in epochs fwl and fwr+1 are
corrupted by Lemma 3.3.11.

We then define a new game G b
i which is the same as H b

i except that the game
chooses two random numbers fwl, fwr← {0, . . . , l }. If the adversary corrupts any epoch
keys in [fwl, fwr], or any token related to challenge-equal ciphertexts in epochs fwl
and fwr+1, the game aborts. The guess is correct with probability 1/(l +1)2. Then
we have ∣∣∣Pr

[
H b

i+1 = 1
]
−Pr

[
H b

i = 1
]∣∣∣≤ (l +1)2 ·

∣∣∣Pr
[
G b

i+1 = 1
]
−Pr

[
G b

i = 1
]∣∣∣.

Our next goal is to prove
∣∣Pr

[
G b

i+1 = 1
]−Pr

[
G b

i = 1
]∣∣≤ negl(λ) for any i and b.

Step 3. For b ∈ {0,1} let Ai be an adversary who tries to distinguish G b
i+1 from G b

i .
To provide an upper bound for the advantage of Ai , we define a sequence of games
as follows, and w.l.o.g. we assume i = fwl.

Game 0:
For a random number d

$← {0,1}, if d = 0 the game plays G b
i to Ai ; otherwise it

plays G b
i+1 to Ai . Denote E j be the event that the adversary succeeds in guessing d

in the Game j for j ∈ {0,1,2,3}. Then we have

Pr[E0] =
∣∣∣Pr

[
G b

i+1 = 1
]
−Pr

[
G b

i = 1
]∣∣∣.

3

82 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

Game 1:
We consider a modified game, which is the same as Game 0, except the way that

the epoch keys and tokens are generated in epochs from i to fwr. The overall idea to
change the key in epoch i with a special form that ensures the embedding of LWE
samples to the challenge ciphertexts in epoch i . But this form of the public key in
epoch i may cause the failure to generate tokens in epochs from i +1 to fwr. We will
show how to simulate tokens in epochs from i +1 to fwr.

1. At the start of the game, we pre-generate random invertible matrices
{H∗

µ, j }fwr
j=i ∈Zn×n

q that will be used to generate ∆ j and pk j .

2. We generate all keys from 0 to l as Game 0 by running the key generation
algorithm, except for pki , . . . ,pkfwr.

3. Public key in epoch i . We choose random A0,i ∈Zn×m̄
q and secret key R1,i ∈D,

and let the public key be

pki =
[

A0,i | −A0,i R1,i −H∗
µ,i G | −A0,i R2,i

]
.

Notice that pki is still negl(λ)-far from the uniform for any choice of H∗
µ,i .

This design is to generate challenge ciphertexts of the form in the following
Eq. (3.24) and further facilitate the simulation of challenge-equal ciphertext in
epoch i in Game 2.

Public key in epoch i+1. In epoch i+1, we choose two matrices X00,i+1 ∈Zm̄×nk
q

and X10,i+1 ∈Znk×nk
q from a Gaussian distribution with parameter τ and let

A0,i+1 = [A0,i | −A0,i R1,i] ·
[

X00,i+1

X10,i+1

]
, (3.21)

which is still a negl(λ)-far from the uniform. Then we choose a random
matrix R1,i+1 ∈Zm̄×nk whose entry equals to 0 with probability 1/2 and ±1 with
probability 1/4 each, and two random matrices X02,i+1,X12,i+1 ∈Zm̄×nk

q ×Znk×nk
q

with Gaussian entries of parameter τ
p

m̄/2. Compute

A1,i+1 = [A0,i | −A0,i R1,i]

[
X00,i+1

X10,i+1

]
·R1,i+1, (3.22)

A2,i+1 = [A0,i | −A0,i R1,i]

[
X02,i+1

X12,i+1

]
−A2,i , (3.23)

where A2,i =−A0,i R2,i . Let the public key in epoch i +1 be

pki+1 = [A0,i+1 | A1,i+1 −H∗
µ,i+1G | A2,i+1],

and secret key be ski+1 = R1,i+1, where H∗
µ,i+1 is generated in process 1.

Remark 3.5.3. By Lemma 3.2.11, we know (A0,i+1,A0,i+1R1,i+1) is negl(n)-close
to the uniform if m̄ ≥ n log(q)+2log(nk/δ) for some small δ= negl(n).

3.5. A CCA-1 SECURE UPDATABLE ENCRYPTION SCHEME

3

83

Remark 3.5.4. Every entry of
[

X00,i+1
X10,i+1

]
·R1,i+1 is an inner product of a m̄-vector

from a Gaussian distribution with parameter τ and a {0,1,−1}m̄ vector with
half of the coordinates equal to 0, which is therefore a vector from a Gaussian
distribution with parameter τ

p
m̄/2 by Lemma 3.2.12, i.e., the same distribution

as the second-column block matrix of the token in Game 0, which is the same
distribution as in the real game.

Remark 3.5.5. We do not require the last block matrix A2,i+1 to be presented in
the form of A0,i+1R2,i+1 for some matrix R2,i+1 as in the real game. However, we
will show this does not affect the responses to the queries.

Public key in epochs from i +2 to fwr. For any epoch j in {i +2, . . . , fwr},
we iteratively generate the public key pk j and secret key sk j in a way as
generating pki+1 and ski+1, respectively.

4. Simulating challenge-equal queries. An overview of the oracles that the
adversary has access to, related to challenge-equal ciphertexts, are summarised
in Fig. 3.14. We should respond to the update of and token w.r.t
challenge-equal ciphertexts in epochs from i to fwr, but do not need to answer
decryption queries on challenge-equal ciphertexts.

Ciphertext. For challenge-equal ciphertexts in epoch i , notice that a
random invertible matrix should be generated when updating ciphertexts and
encrypting messages; here we use the special pre-generated invertible matrix
H∗
µ,i in both of the two algorithms, which is randomly generated in process 1

and is unknown to the adversary conditioned on the public keys we sampled
in process 3. Then the challenge ciphertext in epoch i generated either from
updating or from fresh encryption is in the form ci = (H∗

µ,i ,bi) where (for

simplicity, we skip the modular arithmetic operation in the ciphertexts)

bt
i = st [A0,i | (−A0,i R1,i −H∗

µ,i G)+H∗
µ,i G | −A0,i R2,i]+et + (0, 0,encode(mb))t

= st [A0,i | −A0,i R1,i | −A0,i R2,i]+et + (0, 0,encode(mb))t , (3.24)

for some s,e and b ∈ {0,1}, where m0 = m̄ and m1 is the plaintext of
the challenge ciphertext c̄. Similarly, we use the pre-generated invertible
matrix H∗

µ, j in the update algorithm for epoch j ∈ {i +1, . . . , fwr}. And the

challenge-equal ciphertext is in the form c j = (H∗
µ, j ,b j) where

bt
j = st [A0, j | (−A0, j R1, j −H∗

µ, j G)+H∗
µ, j G | A2, j]+et + (0, 0,encode(mb))t

= st [A0, j | −A0, j R1, j | A2, j]+et + (0, 0,encode(mb))t , (3.25)

for some s,e.

Token. For challenge-equal tokens in epoch i +1, we set[
X01,i+1

X11,i+1

]
=

[
X00,i+1

X10,i+1

]
·R1,i+1, (3.26)

3

84 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

Simulation

Challenge-equal

i i +1

Public Key

A0,i A0,i+1

−A0,i R1,i −H∗
µ,i G −A0,i+1R1,i+1 −H∗

µ,i+1G

−A0,i R2,i A2,i+1

Enc/Aµ

A0,i A0,i+1

−A0,i R1,i −A0,i R1,i+1

−A0,i R2,i A2,i+1

Dec − −

TokenGen Eq. (3.28)

Update bt
i+1 = bt

i∆i+1 +bt
0

Figure 3.14: Simulation of the responses to the queries on challenge-equal ciphertexts.
When the adversary queries the oracle OsUpd, the simulation returns
the output of TokenGen and Update simultaneously. Public keys and
ciphertexts (only Aµ is shown) are represented by the block matrices.

and

Mi+1 =
X00,i+1 X01,i+1 X02,i+1

X10,i+1 X11,i+1 X12,i+1

0 0 I

 , (3.27)

and b0,i+1 is the ciphertext of message 0 under pki+1 with the invertible matrix
H∗
µ,i+1, i.e., b0,i+1 = st Aµ,i+1 +et for some s and e. Based on Equations (3.21)

to (3.23), we know that Mi+1 is the key-switching matrix from epoch i to
i +1: Aµ,i Mi+1 = Aµ,i+1, and moreover has the distribution negl(n)-far from the
distribution of the token in Game 0 by Remark 3.5.4. Then we have

∆i+1 = (Mi+1,b0,i+1,H∗
µ,i+1), (3.28)

3.5. A CCA-1 SECURE UPDATABLE ENCRYPTION SCHEME

3

85

is a valid challenge-equal token in epoch i + 1. Similarly, we generate
challenge-equal tokens in epochs from i +2 to fwr.

5. Simulating non-challenge queries. An overview of the oracles that the
adversary has access to on non-challenge ciphertexts is summarised in Fig.
3.15. We should respond to the queries on the encryption, update, and
decryption in all epochs. Since keys outside the insulated region are truly
generated in process 2, we focus on the simulation inside the region.

Simulation

Non-challenge

i i +1

Public Key

A0,i A0,i+1

−A0,i R1,i −H∗
µ,i G −A0,i+1R2,i+1 −H∗

µ,i+1G

−A0,i R2,i A2,i+1

Enc/Aµ

A0,i A0,i+1

−A0,i R1,i −H∗
µ,i G+Hµ,i G −A0,i+1R1,i+1 −H∗

µ,i+1G+Hµ,i+1G

−A0,i R2,i A2,i+1

Dec SimDec

TokenGen ∆i+1 =TokenGen()

Update bt
i+1 = bt

i∆i+1 +bt
0

Figure 3.15: Simulation of the queries on non-challenge ciphertexts. The algorithm
SimDec is defined below, which has the same decryption ability as
TDUE.Dec if Hµ, j ̸= H∗

µ, j for j ∈ {i +1, fwr}. When the adversary queries

the oracle OsUpd, the simulation returns the output of TokenGen and
Update simultaneously.

Ciphertext. For non-challenge ciphertexts in epoch i , we perform the
encryption and update algorithm as Game 0 by generating random invertible
matrices Hµ,i . The resulting non-challenge ciphertexts in epoch i are in the

3

86 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

form ci = (Hµ,i ,bi) where

bt
i = st [A0,i | (−A0,i R1,i −H∗

µ,i G)+Hµ,i G | −A0,i R2,i]

+et + (0, 0,encode(m))t , (3.29)

for some s,e. Similarly, for non-challenge ciphertexts in any epoch
j ∈ {i +1, . . . , fwr}, we randomly generate invertible matrices Hµ, j in the update
algorithm and the encryption algorithm. The ciphertext is in the form
c j = (Hµ, j ,b j) where

bt
j = st [A0, j | (−A0, j R1, j −H∗

µ, j G)+Hµ, j G | A2, j]

+et + (0, 0,encode(m))t . (3.30)

Decryption. To aid with update and decryption queries, we choose an arbitrary
(not necessarily short) R̂i ∈Zm̄×nk

q such that −A0,i R̂i =−A0,i R1,i −H∗
µ,i G. Then

we know R̂i is a trapdoor for Aµ,i ,01 = [A0,i | (−A0,i R1,i −H∗
µ,i G)+Hµ,i G]. We use

the algorithm SimDec described below to simulate the decryption algorithm
for non-challenge ciphertexts in epoch i , and the simulated decryption algo-
rithm can also be applied to non-challenge ciphertexts in epoch from i+1 to fwr.

• SimDec(sk= R1,i ,c = (Hµ,i ,b)) :

1. If c or b does not parse, or Hµ,i = 0 or H∗
µ,i , output ⊥. Otherwise

parse bt = (b0,b1,b2)t .

2. Call InvertO (R̂i ,Aµ,i ,01, (b0,b1) mod q, Hµ,i) to get z and et = (e0,e1)t

such that (b0,b1)t = zt Aµ,i ,01+(e0,e1)t mod q (Lemma 3.2.4). If InvertO
fails, output ⊥.

3. Let u,e2 be the unique solution to the equation

bt
2 −zt A2,i = ut G+et

2 mod q,

if they exist; otherwise output ⊥. Let m = encode−1(ut G mod q).

4. If ∥e0∥ ≥αq
p

m̄ or
∥∥e j

∥∥≥αq
p

2m̄nk ·ω(
√

logn) for j = 1,2, output ⊥.
Otherwise output m.

Whenever Hµ,i ̸= H∗
µ,i which is the case with probability 2−Ω(n), the call to the

invert algorithm returns z and u properly if they exist, and SimDec has the
same decryption ability as TDUE.Dec.

Token. By construction, the matrix R̂i is the trapdoor for the [A0,i |
(−A0,i R1,i −H∗

µ,i G)+Hµ,i G]. We can use the real token generation algorithm to

generate matrices {Xi ,00,Xi ,01,Xi ,02,Xi ,10,Xi ,11,Xi ,12} with the same distributions
as in Game 0 by calling the invert algorithm on [A0,i | (−A0,i R1,i −H∗

µ,i G)+Hµ,i G]

3.5. A CCA-1 SECURE UPDATABLE ENCRYPTION SCHEME

3

87

with the trapdoor R̂i such that

[A0,i | (−A0,i R1,i −H∗
µ,i G)+Hµ,i G | A2,i]

X00,i+1 X01,i+1 X02,i+1

X10,i+1 X11,i+1 X12,i+1

0 0 I


= [A0,i+1 | (−A0,i+1R1,i+1 −H∗

µ,i+1G)+Hµ,i+1G | A2,i+1]. (3.31)

Let b0,i+1 be the ciphertext of message 0 under pki+1 with the random
invertible matrix Hµ,i , Mi+1 be the transition matrix from Aµ,i to Aµ,i+1 in Eq.
(3.31), and ∆i+1 = (Mi+1,b0,i+1,H∗

µ,i+1). Based on Equations (3.29) to (3.31), we

know that ∆i+1 is a valid non-challenge token in epoch i +1. Since this process
only requires the property that R̂i is a trapdoor, it can be applied to any epoch
j ∈ {i +1. . . fwr} by choosing an matrix R̂ j with the same property, which works
as long as Hµ, j ̸= H∗

µ, j .

Overall, we conclude that Game 1 and Game 0 are indistinguishable, which follows
from

|Pr[E1]−Pr[E0]| ≤ (nDec +nsUpd) ·Pr
[
H = H∗]+negl(λ) · (l +1)

= (nDec +nsUpd) ·2−Ω(n) +negl(λ) · (l +1),

where nDec and nsUpd are the number of queries to decryption and update,
respectively. Pr[H = H∗] is the probability that two random invertible matrices are
equal, and l +1 is the maximum length of the firewall.

Game 2:
Compared to Game 1, we only change challenge-equal ciphertexts in epoch from i

to fwr, while keeping the other simulations the same, especially the challenge-equal
token. In epoch i , we modify the last two nk-coordinates of the challenge ciphertext
and keep the first m̄ coordinates unchanged. That is,

bt
0 = st A0,i + êt

0,

bt
1 =−bt

0 ·R1,i + êt
1,

bt
2 =−bt

0 ·R2,i + êt
2 +encode(mb)t ,

where s ←Zn
q , ê0 ← DZm̄ ,αq and ê1, ê2 ← D

Znk ,αq
p

m·ω(
p

logn). By substitution, we have

bt
1 =−st A0,i ·R1,i − êt

0 ·R1,i + êt
1. According to the Corollary 3.10 in [20], the distribution

of −êt
0 ·R1,i + êt

1 is negl(n)-far from DZnk ,d where d 2 = (∥e0∥2 + m̄ ·αq) ·ω(
√

logn)2,
which is the error distribution of b1 in Game 1. Therefore, the distribution of b1

is within negl(n)-distance from that in Game 1. The same applies to b2. Then
we change the ciphertext in epoch i +1 by updating (H∗

µ,i , (b0,b1,b2)) using the

challenge-equal token in Eq. (3.28), which is therefore a valid token, and similarly
change challenge-equal ciphertexts in epochs from i +2 to fwr. Thus, we have
|Pr[E2]−Pr[E1]| ≤ negl(λ).

3

88 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

Game 3:
We consider a modified game that is the same as Game 2, except that we change

the first m̄ coordinates of the challenge ciphertext in epoch i , letting it be the
challenge ciphertext to the adversary Ai : either uniformly random or st A0,i + êt

0,
which should be hard to distinguish under the LWEn,q,α problem. Then we also
update this modified challenge-equal ciphertext and change the ciphertext in epochs
from i +1 to fwr as in Game 2 to make sure that the challenge-equal tokens still
serve as valid tokens. Thus, we have |Pr[E3]−Pr[E2]| ≤AdvLWE

n,q,α.
The rest we need to prove now is that |Pr[E3]| = 1/2. It follows from

(A0,i ,b0,b0 ·R1,i ,b0 ·R2,i) is negl(λ)-far from uniform by the leftover hash lemma for
random A0,i ∈Zn×m̄

q , b0 ∈Zm̄
q , and R1,i , R2,i ∈D.

We thus complete the proof.

3.5.4. A PACKING UE
We now introduce a packing method to further improve the efficiency of c-d UE,
which allows us to encrypt multiple messages into one ciphertext and execute
ciphertext updates simultaneously.

Let N be a power of 2, R = Z[X]/(X N +1), and Rq = R/(qR) be the residue
ring of R modulo q . Any polynomial p(X) in R can be represented by
p(X) =∑N−1

i=0 pi X i with degree less than N , which is associated with its coefficient

vector {p0, . . . , pN−1} ∈ZN . For a distribution X , when we say p(X)
$←X , we mean

the coefficient of p(X) is chosen from X . We use the same notations as in Sect.
3.5.1

Encoding. Prior to the packing construction, we first present an efficient encoding
algorithm that encodes multiple messages m0, . . . , mN−1 ∈Znk

2 as an element in Rq

with coefficients in Λ(Gt) as follows:

encode(m0, . . . ,mN−1) = B · (m0 +m1x +·· ·+mN−1xN−1) ,

where B ∈Znk×nk is any basis of Λ(Gt). Note that it can be efficiently decoded.
At a high level, multiple message blocks are encrypted in the following form:

(b0,b1,b2(x))t = st [A0 | A0R+HµG | A2(x)]

+ (e0,e1,e2(x))t + (0, 0,encode(m0, . . . ,mN−1))t mod q. (3.32)

Compared to TDUE, the major modification in this approach is in the third block
that uses polynomial matrices and vectors. The secret key R is still the trapdoor for
[A0 | A0R+HµG]. Therefore, the decryption procedure is able to properly recover s
from the first two blocks in Eq. (3.32) as TDUE.Dec, and then call InvertO over
b2(x)− st A2(x) degree by degree to recover every message. Moreover, the token
generation is feasible due to a generalized preimage sampling algorithm in Lemma
3.5.6.

3.5. A CCA-1 SECURE UPDATABLE ENCRYPTION SCHEME

3

89

Lemma 3.5.6. Given a G-trapdoor R for A ∈ Zn×m
q with invertible matrix H

and any polynomial vector u(X) ∈ Rn
q , there is an efficient algorithm called

GSampleDO (R,A,H,u(X), s) that samples a Gaussian polynomial vector p(X) ∈ Rm
q

with coefficients from DZ,s such that A ·p(X) = u(X), where s is the smallest Gaussian
parameter defined in Lemma 3.2.5.

Proof. Calling the oracle SampleDO on each coefficient vector of u(X) returns a
vector pi such that

Api = ui ,

for 0 ≤ i ≤ N and u(X) = ∑N−1
i=0 ui X i . Denote p(X) = ∑N−1

i=0 pi X i , then we know
Ap(X) = u(X).

Packing UE. Our packing UE scheme is described as follows.

• KG(1λ): choose A0
$← Zn×m̄

q , R1, R2(X)
$← D and let A = [A0 | A1 | A2] = [A0 |

−A0R1 | −A0R2(X)] ∈Rn×m
q where m = m̄ +2nk. The public key is pk = A and

the secret key is sk= R1.

• Enc(pk = A,m0, . . . ,mN−1 ∈ {0,1}nk): choose an invertible matrix Hµ ∈Zn×n
q , and

let Aµ = [A0 | A1 +HµG | A2]. Choose a random vector s ∈ Zn
q and an error

vector e = (e0,e1,e2(X)) ∈ DZm̄,αq ×DZnk ,d ×DZnk ,d where d 2 = (∥e0∥2 +m̄ · (αq)2) ·
ω(

√
logn)2. Let

bt = st Aµ+et + (0, 0,encode(m0, . . . ,mN−1)t mod q, (3.33)

where encode(m0, . . . ,mN−1) = B · (m0 +m1X +·· ·+mN−1X N−1).

• Dec(sk = R1,c = (Hµ,b)): Recover s as the steps 1 to 3 in the decryption
algorithm of TDP. Parse bt = (b0,b1,b2(X))t , invert b2(X)t − st A2 degree by
degree, and find the unique solution ui ,e2,i to the equation

bt
2,i −st A2,i = ut

i G+et
2,i mod q,

by Lemma 3.2.4 if they exist, where b2(X) =∑
b2,i X i and A2 =∑

A2,i X i . Output
the following result as mi if it exists,

encode−1 (
(ut

i G)t) ∈Znk
2 ,

for 0 ≤ i ≤ N −1, otherwise output ⊥.

• TokenGen(pk,sk,pk′,Hµ): Generate block matrices M00, M01, M10, M11 of M as

in steps 2 and 3 of TDUE.TokenGen, and call the algorithm GSampleDO in
Lemma 3.5.6 to find M02(X) ∈Rm̄×nk

q ,M12(X) ∈Rnk×nk
q such that

[A0 | −A0R1 +HµG]

[
M02(X)
M12(X)

]
= A′

2 −A2.

3

90 3. CCA-1 SECURE UPDATABLE ENCRYPTION WITH ADAPTIVE SECURITY

Generate b0 a fresh encryption of message 0. Output the update token
∆= (M,b0,H′

µ).

• TDUE.Update(∆,c = (Hµ,b)): parse ∆= (M,b0,H′
µ) and compute

(b′)t = bt ·M+bt
0 mod q,

and output c ′ = (H′
µ,b′).

Remark. The correctness and IND-UE-CCA-1 security of packing UE is analogous to
those of TDUE (as shown in Lemma 3.5.1 and Theorem 3.5.2). We omit the details.
For a message of bit length N nk, packing UE, compared to TDUE, reduces the
number of ciphertexts by a factor of N , and only one ciphertext header is required
to be downloaded in the token generation procedure.

3.6. CONCLUSION AND FUTURE WORK
In this paper, we propose a stronger confidentiality notion than prior work
for ciphertext-dependent updatable encryption, which captures adaptive security
and is applied to both types of UE schemes: deterministic and randomized
updates. We also provide a new public key encryption scheme, based on which
we construct our updatable encryption scheme. Moreover, we propose a cost-
effective packing UE scheme that is able to execute ciphertext updates simultaneously.

Future Work. The first FHE scheme introduced by Gentry [25] and all its subsequent
works require a “circular security” assumption, namely that it is safe to encrypt old
secret keys with new keys. Such an idea has inspired the UE construction with
backward directional key updates. In turn, we suggest an open problem that if no-
directional updatable encryption, which is able to update ciphertext without revealing
old and new keys, can be used to construct FHE that does not rely on the assumption.

REFERENCES

[1] D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan. “Key homomorphic
PRFs and their applications”. In: CRYPTO 2013, Part I. Ed. by R. Canetti and
J. A. Garay. Vol. 8042. LNCS. Heidelberg: Springer, 2013, pp. 410–428. DOI:
978-3-642-40041-4_23.

[2] C. Boyd, G. T. Davies, K. Gjøsteen, and Y. Jiang. “Fast and Secure
Updatable Encryption”. In: CRYPTO 2020, Part I. Ed. by D. Micciancio
and T. Ristenpart. Vol. 12170. LNCS. Springer, 2020, pp. 464–493. DOI:
10.1007/978-3-030-56784-2_16.

[3] Y. Jiang. “The direction of updatable encryption does not matter much”. In:
ASIACRYPT 2020, Part III. Ed. by S. Moriai and H. Wang. Vol. 12493. LNCS.
Springer. Heidelberg, 2020, pp. 529–558. DOI: 10.1007/978-3-030-64840-
4_18.

[4] M. Klooß, A. Lehmann, and A. Rupp. “(R)CCA secure updatable encryption
with integrity protection”. In: EUROCRYPTO 2019, Part I. Ed. by Y. Ishai
and V. Rijmen. Vol. 11476. LNCS. Springer. Heidelberg, 2019, pp. 68–99. DOI:
10.1007/978-3-030-17653-2_3.

[5] A. Lehmann and B. Tackmann. “Updatable encryption with post-compromise
security”. In: EUROCRYPT 2018, Part III. Ed. by J. B. Nielsen and V.
Rijmen. Vol. 10822. LNCS. Springer. Heidelberg, 2018, pp. 685–716. DOI:
10.1007/978-3-319-78372-7_22.

[6] R. Nishimaki. “The Direction of Updatable Encryption Does Matter”. In:
PKC 2022. Ed. by G. Hanaoka, J. Shikata, and Y. Watanabe. Vol. 13178.
LNCS. Cham: Springer, 2022, pp. 194–224. ISBN: 978-3-030-97131-1. DOI:
10.1007/978-3-030-97131-1_7.

[7] D. Slamanig and C. Striecks. Puncture ’Em All: Updatable Encryption with
No-Directional Key Updates and Expiring Ciphertexts. Cryptology ePrint Archive,
Paper 2021/268. https://eprint.iacr.org/2021/268. 2021.

[8] D. Boneh, S. Eskandarian, S. Kim, and M. Shih. “Improving Speed and Security
in Updatable Encryption Schemes”. In: ASIACRYPT 2020, Part III. Ed. by
S. Moriai and H. Wang. Vol. 12493. LNCS. Cham: Springer, 2020, pp. 559–589.
ISBN: 978-3-030-64840-4. DOI: 10.1007/978-3-030-64840-4_19.

[9] L. Chen, Y. Li, and Q. Tang. “CCA Updatable Encryption Against Malicious
Re-encryption Attacks”. In: ASIACRYPT 2020, Part III. Ed. by S. Moriai
and H. Wang. Vol. 12493. LNCS. Springer, 2020, pp. 590–620. DOI:
10.1007/978-3-030-64840-4_20.

91

https://doi.org/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-030-64840-4_18
https://doi.org/10.1007/978-3-030-64840-4_18
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-030-97131-1_7
https://eprint.iacr.org/2021/268
https://doi.org/10.1007/978-3-030-64840-4_19
https://doi.org/10.1007/978-3-030-64840-4_20

3

92 REFERENCES

[10] A. Everspaugh, K. Paterson, T. Ristenpart, and S. Scott. “Key rotation for
authenticated encryption”. In: CRYPTO 2017, Part III. Ed. by J. Katz and
H. Shacham. Vol. 10403. LNCS. Springer. Heidelberg, 2017, pp. 98–129. DOI:
10.1007/978-3-319-63697-9_4.

[11] N. Alamati, H. Montgomery, and S. Patranabis. “Symmetric Primitives
with Structured Secrets”. In: CRYPTO 2019, Part I. Ed. by A. Boldyreva
and D. Micciancio. Vol. 11692. LNCS. Springer, 2019, pp. 650–679. DOI:
10.1007/978-3-030-26948-7_23.

[12] Y. J. Galteland and J. Pan. “Backward-Leak Uni-Directional Updatable
Encryption from (Homomorphic) Public Key Encryption”. In: PKC 2023, Part
II. Ed. by A. Boldyreva and V. Kolesnikov. Vol. 13941. LNCS. Springer, 2023,
pp. 399–428. DOI: 10.1007/978-3-031-31371-4_14.

[13] K. Sakurai, T. Nishide, and A. Syalim. “Improved proxy re-encryption scheme
for symmetric key cryptography”. In: IWBIS, 2017. IEEE, 2017, pp. 105–111.
DOI: 10.1109/IWBIS.2017.8275110.

[14] E. Kirshanova. “Proxy Re-encryption from Lattices”. In: PKC 2014. Ed. by
H. Krawczyk. Vol. 8383. LNCS. Springer, 2014, pp. 77–94. DOI: 10.1007/978-
3-642-54631-0_5.

[15] X. Fan and F. Liu. “Proxy Re-Encryption and Re-Signatures from Lattices”. In:
ACNS 2019. Ed. by R. H. Deng, V. Gauthier-Umaña, M. Ochoa, and M. Yung.
Vol. 11464. LNCS. Springer, 2019, pp. 363–382. DOI: 10.1007/978-3-030-
21568-2_18.

[16] Z. Brakerski and V. Vaikuntanathan. “Efficient Fully Homomorphic Encryption
from (Standard) LWE”. In: FOCS, 2011. Ed. by R. Ostrovsky. IEEE Computer
Society, 2011, pp. 97–106. DOI: 10.1109/FOCS.2011.12.

[17] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “(Leveled) fully homomorphic
encryption without bootstrapping”. In: ITIC 2012. Ed. by S. Goldwasser. ACM,
2012, pp. 309–325. DOI: 10.1145/2090236.2090262.

[18] D. Micciancio and C. Peikert. “Trapdoors for lattices: Simpler, tighter,
faster, smaller”. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 2012, pp. 700–718. DOI:
10.1007/978-3-642-29011-4_41.

[19] M. Ajtai. “Generating hard instances of lattice problems”. In: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing. 1996, pp. 99–
108. URL: https://eccc.weizmann.ac.il/eccc- reports/1996/TR96-
007/index.html.

[20] O. Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: ACM 2005. Ed. by H. N. Gabow and R. Fagin. ACM, 2005,
pp. 84–93. DOI: 10.1145/1060590.1060603.

https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-030-26948-7_23
https://doi.org/10.1007/978-3-031-31371-4_14
https://doi.org/10.1109/IWBIS.2017.8275110
https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1007/978-3-030-21568-2_18
https://doi.org/10.1007/978-3-030-21568-2_18
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-642-29011-4_41
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-007/index.html
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-007/index.html
https://doi.org/10.1145/1060590.1060603

REFERENCES

3

93

[21] S. Agrawal, C. Gentry, S. Halevi, and A. Sahai. “Discrete Gaussian Leftover
Hash Lemma over Infinite Domains”. In: ASIACRYPT 2013, Part I. Ed. by
K. Sako and P. Sarkar. Vol. 8269. LNCS. Springer, 2013, pp. 97–116. DOI:
10.1007/978-3-642-42033-7_6.

[22] W. Banaszczyk. “New bounds in some transference theorems in the geometry
of numbers”. In: Mathematische Annalen 296.1 (1993), pp. 625–635.

[23] L. Ducas and D. Micciancio. “Improved Short Lattice Signatures in the Standard
Model”. In: CRYPTO 2014, Part I. Ed. by J. A. Garay and R. Gennaro. Vol. 8616.
LNCS. Springer, 2014, pp. 335–352. DOI: 10.1007/978-3-662-44371-2_19.

[24] J. Alwen and C. Peikert. “Generating Shorter Bases for Hard Random Lattices”.
In: Theory Comput. Syst. 48.3 (2011), pp. 535–553. DOI: 10.1007/s00224-010-
9278-3.

[25] C. Gentry. “Fully homomorphic encryption using ideal lattices”. In: ACM
STOC 2009. Ed. by M. Mitzenmacher. ACM, 2009, pp. 169–178. DOI:
10.1145/1536414.1536440.

https://doi.org/10.1007/978-3-642-42033-7_6
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/s00224-010-9278-3
https://doi.org/10.1007/s00224-010-9278-3
https://doi.org/10.1145/1536414.1536440

4
BATCH PROGRAMMABLE

BOOTSTRAPPING, WITHIN A
POLYNOMIAL MODULUS

To improve the efficiency of fully homomorphic encryption (FHE), Liu and Wang
(EUROCRYPT 2023) proposed a bootstrapping technique within a polynomial modulus
that refreshes n ciphertexts at once with an asymptotic cost of Õ(n0.75) FHE
multiplications in amortization. Despite the low amortized cost, it remains unclear
whether their technique is practical for larger message spaces beyond a single
bit. In this work, we introduce a novel batch bootstrapping technique within a
polynomial modulus that enables noise refreshment over a general message space
extending beyond one bit, while maintaining the same amortized cost and noise
overhead. Our batch bootstrapping is also programmable, enabling the evaluation
of a univariate function simultaneously with noise refreshment. Furthermore, our
approach overcomes a key limitation of third-generation FHE schemes, which require
the evaluated function to be negacyclic; in contrast, our method supports arbitrary
functions. Additionally, we propose two homomorphic decomposition algorithms,
extending our batch programmable bootstrapping to support larger message spaces.
To further enhance practicality, we demonstrate the evaluation of commonly used
activation functions in Convolutional Neural Networks (CNNs), such as ReLU,sign,
and max.

95

4

96 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

4.1. INTRODUCTION

Fully homomorphic encryption (FHE) enables arbitrary computation over encrypted
data without the need to decrypt it. Currently, Gentry’s bootstrapping technique [1]
is known as the unique method to achieve FHE, refreshing ciphertexts after multiple
homomorphic computations and allowing further operations. Recent advancements
in FHE have reduced bootstrapping time to milliseconds, inspiring numerous
applications like privacy-preserving machine learning and multiparty computation.
However, some open problems still limit the application of FHE, which we discuss
below according to two primary bootstrapping techniques.

The first type of bootstrapping is represented by BGV and its variants [2–5],
designed to reduce the amortized bootstrapping cost per message by refreshing
multiple messages at once. This approach supports single instruction multiple
data (SIMD) operations. However, its major limitation lies in quasi-polynomial
noise growth, necessitating large storage for homomorphic evaluation due to the
requirement of a quasi-polynomial modulus. Additionally, its security is based on
a stronger assumption of worst-case lattice problems (i.e., with superpolynomial
approximation factors).

The second simpler one is FHEW-like bootstrapping [6–9], which encrypts a
single message into a ciphertext. These works require only tens of milliseconds
for bootstrapping, and they attain only a polynomial noise. Thus they achieve a
polynomial size modulus and the ideal assumption of the worst-case lattice problem
(i.e., with polynomial approximation factors). FHEW-like bootstrapping is also often
called programmable bootstrapping (PBS) [10, 11], which means that a univariate
function can be evaluated during the bootstrapping procedure. However, they refresh
one single ciphertext each bootstrapping, which results in a higher amortized cost
than the above. Moreover, the function to be evaluated should be negacyclic (to be
defined later).

Recent works aim to combine the advantages of both types of bootstrapping.
Micciancio and Sorrell [12] proposed the first amortized FHEW bootstrapping
technique capable of bootstrapping n FHEW ciphertexts using O(3ρ ·n1+1/ρ) FHE
multiplications. This results in an amortized cost of O(3ρ ·n1/ρ) FHE operations per
ciphertext, where 1/ρ is a small parameter close to 0. Subsequently, Guimarães et
al. [13] further improved this approach, reducing the amortized cost to O(ρ ·n1/ρ)
FHE operations. Liu and Wang [14] achieved even greater improvement, attaining an
amortized cost of Õ(n0.75).

Two nearly optimal batched bootstrapping techniques were proposed by [15] and
[16], both achieving an asymptotic cost of Õ(1) homomorphic multiplications per
ciphertext. However, Liu and Wang [15] utilized the SIMD feature of BFV/BGV for
evaluating the decryption of packed LWE ciphertexts, leading to superpolynomial
approximation factors, despite supporting arbitrary function evaluation.

Regarding the work by Liu and Wang [14, 16], their work is limited by its binary
message space, rendering it impractical for applications such as privacy-preserving
machine learning, where inputs, such as handwritten images, typically have higher
bit depths, such as 8 bits. It remains unclear whether this work is practical for larger
message spaces and whether it supports the homomorphic evaluation of functions

4.1. INTRODUCTION

4

97

over such spaces. We present a comparison to previous schemes in Fig. 4.1.
We refer to this bootstrapping procedure, which evaluates a univariate function

over multiple ciphertexts simultaneously while refreshing the noise, as batch
programmable bootstrapping.

Schemes Amortized Cost
Approximation

Factors
Programmable

FHEW-like [6, 7] O(n) Poly Yes

MS18 [12] Õ(3ρ ·n1/ρ) Poly No

GPV23 [13] O(ρ ·n1/ρ) Poly Yes

LW23 [14] Õ(n0.75) Poly No

LW23 [16] Õ(1) Poly No

LW23 [15] Õ(1) Superpoly Yes

Our work Õ(n0.75) Poly Yes

Figure 4.1: Comparison of batch bootstrapping schemes. The columns represent the
amortized bootstrapping running time per ciphertext (n is the number
of ciphertexts), approximation factors for the based worst-case lattice
problems, and whether the scheme is programmable, respectively.

4.1.1. OUR RESULT

In this paper, we make two contributions to batch programmable bootstrapping
(batch PBS). Firstly, we propose a basic batch PBS over a more general message
space Zt for t > 2, which incurs only a polynomial noise growth. It eliminates the
requirement of negacyclicity for the function to evaluate compared to PBS, resulting
in a precision one bit more than that in PBS (limited to 4-5 bits). Secondly,
we optimize the basic batch PBS by introducing two homomorphic decomposition
algorithms, which allow us to homomorphically decompose a large plaintext into
several ciphertexts encrypting small chunks of the input plaintext. For each chunk,
we are able to evaluate arbitrary functions by making use of the basic batch
PBS as a black box, leading to a further improvement of the precision. As an
application, we show an accurate evaluation of the activation functions commonly
used in Convolutional Neural Networks, involving Sign,ReLU, and max in a batch way.

Basic Batch PBS. We split the evaluation of a univariate function over multiple
ciphertexts into a linear and nonlinear step, the former of which corresponds to
linear operation in the decryption algorithm, such as subtraction and inner product,
and the latter deals with nonlinear parts, including division and rounding. We
reflect the target function into a look-up table, which will be evaluated during
bootstrapping with no additional cost. Various techniques are provided to optimize
the performance.

4

98 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

• We reduce the amortized cost of the homomorphic inner product by adopting
the packing technique in [14]. Roughly, this requires Õ(n) FHE multiplication
for O(n1/4) ciphertexts, resulting in an amortized cost of Õ(n0.75) compared to
O(n) for the naive way. This is the major computation cost in our batch PBS
method.

• To eliminate the need for negacyclicity in function to bootstrap, we work with
ciphertexts in the general cyclotomic rings, instead of cyclotomic rings of two’s
power used by PBS [6, 7]. We observe that this limitation comes from the fact
that xm+N =−xm for any message m over the power-of-two cyclotomic ring

Z[x]/(xN +1). However, ξi
q ,ξ j

q in prime cyclotomic ring Z[ξq] are independent
for i ̸= j , overcoming the limitation. Our general cyclotomic ring uses Z[ξq] for
a subring. For more details, please refer to Section 4.3.1.

• We designed a new look-up table that is suitable for our batch PBS mechanism,
especially in the setting of general cyclotomic rings. We embed this look-up
table in the beginning (instead of at the end) of the first step, leading to a
noise growth independent of the look-up table, by taking advantage of the
asymmetric error growth of GSW (defined later) ciphertexts.

Decomposition. Eliminating the need for negacyclicity enables our batch PBS to
support one more bit of precision compared to PBS, which is at most 5 bits. However,
our batch PBS technique suffers from the same limitation as PBS that the run time
complexity increases linearly with the ciphertext modulus. For higher precisions, we
provide two decomposition algorithms to construct batch PBS methods that scale
logarithmically with the ciphertext modulus, using the basic batch PBS as a black
box.

• Decomposition and Removal. This algorithm works for evaluating functions
like Sign, where the value of the function is determined by only a few most
significant bits of the message. Take the Sign function for an example, its
value is equal to the most significant bit of a message. The high-level idea
decomposition and removal algorithm is adopted from [17] decomposing a
large-precision ciphertext into digits and constructing a HomFloor algorithm
which is repeatedly executed to clear the last digit until the modulus is small
enough that we can directly use the basic PBS. The most efficient HomFloor
algorithm in [17] requires 2 invocations of PBS to homomorphically clear
the last digit of a single ciphertext. We provide a more efficient HomFloor
algorithm that requires only 1 invocation of basic PBS to homomorphically
clear the last digit of multiple ciphertexts.

• Decomposition and Reconstruction. This algorithm is more suitable for
functions whose value is not determined by only a few bits. The first step is
still a decomposition of a large-precision ciphertext into small digits. Instead
of removing the last digit, we repeatedly evaluate a newly designed function
related to the target function via batch PBS and reconstruct the function value
over input plaintext by summing all the evaluations on each last digit. Take

4.2. PRELIMINARIES

4

99

m = ∑
m j ·B j with basis B as an example, we homomorphically evaluate a

new function f̃ j : x → f (x ·B j) over the last digit m j and reconstruct f (m) by

summing f̃ j (m j).

4.1.2. RELATED WORKS

To reduce the limitation of negacyclicity, Chillotti et al. [10] developed a
programmable bootstrapping technique without padding. This approach requires
two invocations of programmable bootstrapping and an additional LWE ciphertext
multiplication to refresh an encryption of a message without padding. In contrast,
our method can refresh multiple such messages with a single invocation of our
batch programmable bootstrapping.

Summary of Contributions. We propose a batch programmable bootstrapping
method within a polynomial modulus, which requires an amortized cost of Õ(n0.75)
FHE multiplications per ciphertext and supports large precision evaluation in
practice. Our scheme eliminates the need for negacyclicity in function to be
evaluated, which is required by programmable bootstrapping schemes.

4.2. PRELIMINARIES
In this work, column vectors and matrices are denoted by lower-case and upper-case
bold letters, respectively. For a vector x, we denote ∥x∥ as the 2-norm of x,
∥x∥∞ as the infinity norm, and we use non-boldface letters to refer to its entries:
x = (x1, · · · , xn). For a matrix A, we use A⊤ to denote its transpose.

4.2.1. ALGEBRAIC NUMBER THEORY

In this section, we provide a brief overview of the algebraic number theory concepts
necessary for understanding the batch bootstrapping procedure outlined in [14].
Additional details can be found in [18, 19].

Cyclotomic Number Fields. For a positive integer m, let ξm = e2πi /m be an mth root
of unity, and let K =Q(ξm) be the mth cyclotomic field, obtained by adjoining ξm to
Q. Since the minimal polynomial of ξm over Q has degree n =φ(m) [18], where φ

is Euler’s totient function, we can view K as an n-dimensional vector space with a
basis 1,ξm , · · · ,ξn−1

m . The ring of integers of the field K is Z[ξm].
It is known that K = Q(ξm) is a Galois extension over Q, and the set of

automorphisms of K that fix every element of Q forms a group under composition,
called the Galois group of K , denoted by Gal(K /Q). It can be expressed as [20]:

Gal(K /Q) = {σi : gcd(i ,m) = 1},

where σi is defined by σi (ξm) = ξi
m ∈C. We observe that σi is the complex conjugate

of σm−i : σi =σm−i . Then, the canonical embedding σ : K →Cφ(m) is defined as [19]:

σ(a) = {σi (a)}i∈Z∗
m

,

4

100 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

and the Q-linear trace function Tr = TrK /Q : K →Q is defined as [19]:

Tr(a) = ∑
σ∈Gal(K /Q)

σ(a) =∑
i
σi (a),

for a ∈ K . Moreover, we have

Tr(a ·b) =∑
i
σi (a) ·σi (b) = 〈σ(a),σ(b)〉.

which is a symmetric bilinear form that enables us to define duality as follows:

Duality. For any Q-basis B = {bi } of K , its dual basis is denoted by BV = {bV
i },

characterized by Tr(bi ·bV
j) = 1 if i = j , and 0 otherwise.

The trace function and duality can be defined similarly over any Galois extension
[E : F]. For a prime number m, the extension field Q(ξm) has the following properties.

Lemma 4.2.1 ([18], Proposition 4.2.5). When m is a prime, then n = m −1, and the
minimal polynomial of ξm over Q is given by Φm(x) = 1+x +·· ·+xm−1.

Corollary 4.2.2. For a prime m, the integer solutions to the equation (1,ξm , · · · ,ξm−1
m) ·

x⊤ = 0 are only of the form x = (a, a, · · · , a) for a ∈Z.

4.2.2. FHEW-LIKE CRYPTOSYSTEMS

Micciancio and Polyakov [9] refer to FHEW [6, 21] and TFHE [7, 22] collectively as
FHEW-like cryptosystem. The bootstrapping procedure in FHEW-like cryptosystem
requires to work with LWE ciphertext, and RLWE and RGSW ciphertexts in the
power-of-two cyclotomic ring R =Z[x]/(xN +1) where N is a power of 2. We define
the quotient ring RQ :=R/QR for the modulus Q and give a review of FHEW-like
cryptosystem below.

• LWE. Let t , n and q be three positive integers, X the key distribution over Zn
q ,

and X ′ the error distribution over Zq . The LWE encryption of a message µ ∈Zt

under the secret key s ∈X is defined as LWEs,q (µ) = (b,a) = (〈a,s〉+e+⌊ q
t ·µ⌉,a),

where a is a random vector from Zn
q and the error e is sampled from X ′.

• RLWE. The set of RLWE encryptions of a polynomial message µ ∈Rt is defined
as

RLWEs,Q (µ) :=
{(

sa +e +
⌊

Q

t

⌉
µ, a

)
∈R2

Q

}
,

where the polynomial a is sampled uniformly from RQ and the secret key s
(e, resp.) is from a key distribution D (error distribution D′, resp.) over RQ .

• RGSW. Use the same notations as in RLWE, and assume that Q = B
dg
g for a base

Bg and some integer dg . Denote the gadget vector as g⊤ = (1,Bg , · · · ,B
dg −1
g)

4.2. PRELIMINARIES

4

101

and the gadget matrix as G = g⊤⊗ I2. The set of RGSW ciphertexts encrypting a
message µ ∈R is given by:

RGSWs,Q (µ) :=
{(sat +et

at

)
+µG ∈R2×2l

Q

}
,

where the polynomial vector a is random in R2l
Q , and the secret key s and

polynomial error vector e are sampled from D and D′, respectively.

FHEW-like Bootstrapping. The bootstrapping procedure is based on the so-called
external product ⊙ :

⊙ : RLWE×RGSW → RLWE,

which takes as input a RLWE encryption of a polynomial µ1 and a RGSW encryption
of a polynomial µ2, and outputs a RLWE encryption of µ1 ·µ2.

FHEW-like bootstrapping is often called programmable bootstrapping [11], noted
as PBS, meaning that a univariate function f : Zt →Zt can be evaluated at the same
time as the noise is reduced at the bootstrapping procedure. The function f is
encoded as look-up table (LUT) in a so-called test polynomial testP ∈R (of degree
N), whose coefficients are as follows

f (0), . . . , f (0)︸ ︷︷ ︸
N /2t elements

, f (1), . . . , f (1)︸ ︷︷ ︸
N /t elements

, . . . , f (t −1), . . . , f (t −1)︸ ︷︷ ︸
N /t elements

, f (0), . . . , f (0)︸ ︷︷ ︸
N /2t elements

)

︸ ︷︷ ︸
t+1 chunks

The goal of bootstrapping procedures is to output the correct element in the above
LUT, and it works by first blindly rotating the table (since the table is encrypted),
and then extract the aimed value from the encrypted rotated table as follows:

• BlindRotate. This algorithm initializes a noiseless RLWE ciphertext, called
accumulator and noted as acc0 = (0, x−b · testP), and updates the accumulator
by computing

acci = acci−1 ⊙
(
(xai −1) ·BKi)

)+acci−1, (4.1)

for i ∈ [1,n], where the bootstrapping key is a RGSW encryption of the binary
secret key s of the LWE ciphertext (b,a) to be evaluated, i.e., BKi =RGSWsk,Q (si).
The final accumulator should be accn ∈RLWEsk,Q (testP · x−b+〈a,s〉).

• Extract. This algorithm extracts a LWE encryption of the constant item of the
polynomial testP · x−b+〈a,s〉 from accn−1, that is the aimed LWE(f (m)).

PBS is very efficient compared to the second generation FHE, but has limitations:

1. PBS is not SIMD. Only one message can be bootstrapped each time.

2. PBS is only efficient for messages with a small precision (limited to 4-5 bits).
For higher precision, the run time increases exponentially with ciphertext
modulus bit size, as noted by Liu, Micciancio and Polyakov [17].

3. The univariate function f to be evaluated has to be negacyclic, i.e.,
f (x +q/2) =− f (x) as noted by Micciancio and Polyakov [9]. Then the most
significant bit of the message has to be zero or at least known [10]. More
discussion will be given in Section 4.3.1.

4

102 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

4.2.3. BATCH BOOTSTRAPPING

Liu and Wang [14, 16] addressed the above limitation 1 of PBS by providing an
efficient batch framework that supports the bootstrapping of multiple ciphertexts,
simultaneously. They worked with a general cyclotomic ring R (instead of
power-of-two) and presented the batch homomorphic computation based on the
decomposability of the ring R : R = R1 ⊗R2 ⊗R3. The first ring R1 is the
message space, and the other two rings R2,R3 are designed for packing computations.

Notations. For an integer m = qρ′τ′ for co-prime integers q,ρ′,τ′, let mth cyclotomic
field K : =Q(ξm) ∼=Q(ξq)⊗Q(ξρ′)⊗Q(ξτ′) : = K1 ⊗K2 ⊗K3. The prime q is equal to the
modulus of the LWE ciphertext to be bootstrapped, and ρ′,τ′ are powers of constant

primes: ρ′ = pd1
1 ,τ′ = pd2

2 . Let ρ =φ(ρ′), τ=φ(τ′).
Denote K12 and K13 as K1 ⊗K2 and K1 ⊗K3, respectively. Let R,R1,R2,R3, R12,

R13 be the rings of integers of fields K ,K1,K2,K3,K12,K13, respectively. It follows
from [18] that

R =Z[ξm],R1 =Z[ξq],R2 =Z[ξρ′],R3 =Z[ξτ′]

R ∼=R1 ⊗R2 ⊗R3,R12
∼=R1 ⊗R2,R13

∼=R1 ⊗R3

ρ and τ are the degrees of the rings R2 and R3, respectively.

(4.2)

Let (v1, · · · ,vρ) and (w1, · · · ,wτ) be the Z-bases of R2 and R3, respectively. Denote

their corresponding Z-bases of the dual space RV
2 and RV

3 as (vV
1 , · · · ,vV

ρ) and

(wV
1 , · · · ,wV

τ). Liu and Wang [14] chose short enough basis {vi }i∈ρ and {wi }i∈τ such
that

• ∥vi∥∞ = 1, and ∥wi∥∞ = 1,

•
∥∥vV

i

∥∥
∞ ≤ 2(p1 −1)/ρ′, and

∥∥wV
i

∥∥
∞ ≤ 2(p2 −1)/τ′.

Denote the trace function over Galois extensions [K : K12] and [K : K13] as

TrK /K12 : K → K12 and TrK /K13 : K → K13.

An important conclusion is that TrK /K12 (f ·g ·wi wV
j) = δ j

i · f ·g and TrK /K13 (f ·vi vV
j ·h) =

δ
j
i · f ·h for any f ∈R1, g ∈R2,h ∈R3, where δ

j
i = 1 if i = j or 0 else. In the rest of

the work, we use the same notations as above.

RLWE/RGSW Ciphertexts. Liu and Wang [14] presented the RLWE and RGSW
encryption schemes as in Section 4.2.2 by moving the setting of algebraic structure
from power-of-two to the general cyclotomic ring R. They also described a similar
product ⊡ between RGSW ciphertexts, as well as an external product ⊠ between a
RLWE and a RGSW ciphertext, with a refined analysis of the error behavior. For
more details, we refer to [14].

Ciphertexts Packing. Based on the above tensor decomposition of rings, Liu and
Wang [14] showed how to pack RGSW and RLWE ciphertexts and how to perform

4.2. PRELIMINARIES

4

103

batch homomorphic computation over packed ciphertexts. For r GSW ciphertexts
{Ci =RGSWs (µi) ∈R2×2l }1≤i≤r where µi ∈R1 and r = mi n(ρ,τ) the maximal number
of packing, the RGSW ciphertexts packing algorithm RGSW-pack has four options of
packing models:

• “R12”: output
∑

i Ci ·vi ∈R2×2l , that is a RGSW encryption of
∑

i µi ·vi
1;

• “R13”: output
∑

i Ci ·wi ∈R2×2l , that is a RGSW encryption of
∑

i µi ·wi ;

• “R12 → R13”: output
∑

i Ci · vV
i wi ∈ (R1 ⊗RV

2 ⊗R3)2×2l , that is a RGSW

encryption of
∑

i µi ·vV
i wi ;

• “R13 → R12”: that is
∑

i Ci · vi wV
i ∈ (R1 ⊗R2 ⊗RV

3)2×2l , that is a RGSW

encryption of
∑

i µi ·vi wV
i ;

The index of the model is also attached in the packing output, i.e. the packing output
is (C,mode). Similarly, there is a RLWE ciphertext packing algorithm RLWE-pack that
takes as input r RLWE ciphertexts {ci =RLWEs (µi) ∈R2}1≤i≤r and the aimed mode
mode, and outputs (c,mode).

Packing Operations. We now describe how to homomorphically perform the batch
computation over packed ciphertexts, using a homomorphic evaluation of the trace
function in Lemma 4.2.3, denoted as Eval-Tr.

• Add: For two packed RGSW ciphertexts (Cx ,mode), (Cy ,mode) of the
message vectors x = (x1, · · · , xr) ∈Rr

1 and y = (y1, · · · , yr) ∈Rr
1, respectively, then

(Cx +Cy ,mode) is a packed RGSW ciphertext of the message vector x+y with
the same mode. The conclusion is the same for two packed RLWE ciphertexts.

• Batch-Mult: For two packed RGSW ciphertexts (Cx ,modex), (Cy ,modey) of the
message vectors x ∈ Rr

1 and y ∈ Rr
1, respectively, then Batch-Mult outputs a

packed RGSW encryption of the message vector (x1 y1, · · · , xr yr) in two cases:
If modex = “R12”, modey = “R12 → R13” or vice versa, the output ciphertext
is Eval-TrK /K13 (Cx ⊡Cy) and the output mode is “R12”; If modex = “R13”,
modey = “R13 →R12” or vice versa, the output is Eval-TrK /K12 (Cx ⊡Cy) with
mode “R12”. For other cases, output ⊥.

• Ext-Prod: For a packed RGSW ciphertext (Cx ,modex) of the message vector
x ∈Rr

1 and a packed RLWE ciphertext (cy ,modey) of the message vector y ∈Rr
1,

then Ext-Prod outputs a packed RLWE encryption of the message vector
(x1 y1, · · · , xr yr) in two cases as Batch-Mult, and only the multiplication Cx ⊡Cy

in Batch-Mult should be changed to Cx ⊠cy

• UnPacki : For a packed RGSW ciphertext (Cx ,modex) of the message vector
x ∈ Rr

1, output Ci ∈ RGSW(xi) for 1 ≤ i ≤ r . If modex = “R12”, then output

Eval-TrK /K13 (Cx ·vV
i). If modex = “R13”, then output Eval-TrK /K12 (Cx ·wV

i). The
conclusion is the same for a packed RLWE ciphertext.

1We can see that it is necessary to choose short bases as above, to reduce the noise growth caused
by multiplication with bases.

4

104 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

Lemma 4.2.3 (Eval-Tr). Given evaluation key evk as input, the homomorphic trace
algorithm Eval-Tr transforms a RLWE ciphertext c = RLWEs (µ) ∈ (R1 ⊗Rv

2 ⊗R3)2 of
a message m ∈R1 ⊗Rv

2 ⊗R3 into a RLWE encryption of c ′ ∈RLWEs (TrK /K13 (µ)) with
error Err(c ′) =TrK /K13 (Err(c))+e ′ where

∥∥e ′
∥∥∞ is a fresh noise independent with c and

bounded by a sub-Gaussian with parameter 3dB.

Thus, one can check the correctness of Ext-Prod:

Eval-TrK /K13 (Cx ⊠cy) =Eval-TrK /K13

(
RLWE(

∑
(xi ·vi) ·∑(yi ·vV

i wi))
)

=RLWE
(
Eval-TrK /K13 (

∑
(xi ·vi) ·∑(yi ·vV

i wi))
)

=RLWE(
∑

(xi yi ·wi))

and the same for Batch-Mult.

Batch FHEW-like Bootstrapping. Given r LWE ciphertexts {(bl ,al) ∈Zn+1
q }1≤l≤r under

the same key s to be bootstrapped, the batch bootstrapping introduced by Liu and
Wang [14] mainly consists of the following two steps:

• Batch-BR. This batch blind rotation algorithm initializes an accumulator acc0

as a packed noiseless RLWE ciphertext2:

acc0 =RLWE-pack
(
(0,ξ−b1

q), · · · , (0,ξ−bl
q),“R′′

12

)
=RLWE

(∑
j
ξ
−b j
q ·v j

)
,

and updates the accumulator by computing

acci =Ext-Prod
(
acci−1,

∑
j

(
(ξ

ai
j

q −1) ·BKi +G
)
·vV

j w j

)

=Ext-Prod
(
acci−1,RGSW

(∑
j
ξ

ai
j ·s j

q ·vV
j w j

))
,

for odd i ∈ [0,n −1], and for even i , the item vV
j w j should be changed to

v j wV
j , in order to support a successive external product. The bootstrapping

key BKi is also a RGSW encryption of the binary secret key s like FHEW-like
Bootstrapping, i.e., BKi = RGSWsk,Q (si). The final accumulator should be

accn ∈RLWEsk,Q (
∑

j ξ
−b j +〈a j ,s〉
q ·v j) =RLWEsk,Q (

∑
j ξ

− q
2 ·µ j +e j

q ·v j) 3.

• Batch-Extract. This algorithm constructs a test polynomial testP with
coefficients as

0,1,0,1 · · · ,1,0︸ ︷︷ ︸
q elements

,

and extracts a RLWE encryption RLWE(
∑
µ j · v j) from RLWEsk,Q (

∑
j testP ·

ξ
− q

2 ·µ j +e j
q ·v j) by Lemma 4.2.4.

2We omit some constants for simplicity of presentation. Moreover, recall that (1,ξq , · · · ,ξ
q−1
q) is a basis

of R1.
3We assume n is even without loss of generality.

4.3. BATCH EVALUATIONS OF ARBITRARY FUNCTION WITHIN A POLYNOMIAL MODULUS

4

105

Lemma 4.2.4. For any ζ= ξz
q , we have 1+ζ+ζ2+·· ·+ζq−1 = q if z = 0 mod q, or 0 else,

where q is a prime and z ∈Zq . Since TrK /K23 (ζ) = ζ+ζ2 +·· ·+ζq−1, we furthermore
have 1+TrK /K23 (ζ) = q if z = 0, or 0 otherwise.

The batch FHEW-like bootstrapping [14] overcomes limitation 1 and enables to
fresh multiple messages by a single bootstrapping, reducing the cost of amortized
cost per message. However, it also suffers from limitation 2 and even worse, since it
only supports binary messages. Moreover, it is unclear whether it is programmable,
meaning that it allows a univariate function to be evaluated during bootstrapping. If
so, are there any restrictions on the function, such as negacyclicity, as in limitation 3
for PBS? Our work in Section 4.3 addresses these questions.

4.3. BATCH EVALUATIONS OF ARBITRARY FUNCTION WITHIN

A POLYNOMIAL MODULUS

In this section, we overcome the above-mentioned limitations of PBS and Batch
Bootstrapping. First, we generalize the batch bootstrapping so that it can evaluate
messages in Zt instead of only one bit. Furthermore, we proposed a Batch PBS
that can evaluate an arbitrary function, not limited to being negacyclic, during
bootstrapping, thus overcoming limitation 3 in a batch way. Therefore, our approach
does not require the MSB of messages to be zero and is practical when messages
are 5-6 bits (compared to 4-5 bits for PBS). As an application, we propose a batch
decomposition of multiple messages from a single ciphertext into several ciphertexts
encrypting small chunks of input messages.

4.3.1. BATCH PBS
Given r LWE ciphertexts {(b j ,a j) ∈ LWE(µ j) : b j = 〈a j ,s〉+e j +⌊ q

t ·µ j ⌉ and µ j ∈Zt }i∈[r]

and a function f : Zq → Zq , our goal is to simultaneously compute ciphertexts
c ′j ∈ LWE(f (µ j)) with polynomial noise overhead. We use the same notations

as instantiations in Section 4.2.3, and without loss of generality, we assume the
dimension of LWE ciphertexts is even.

Recall that the decryption algorithm on a LWE ciphertext LWEs(b,a) is as follows:

Decs(b,a) :=
⌊

t

q
· (b −〈a,s〉)

⌉
.

Therefore, the homomorphic evaluation of the decryption circuit contains two steps:
(1) batch inner product and subtraction, and (2) division and rounding. Our final
goal is to compute a LWE encryption of f (µ), so we need to carefully design
a look-up table related to the function f , which is rotated during the batch
bootstrapping and output the correct element in the table in the final.

Batch Inner Product and Subtraction. To compute b j −〈a j ,s〉 for j ∈ [r], we adopt

4

106 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

the batch blind rotation in [14]. We compute:

acc0 =RLWE-pack
(
(0,ξ−b1

q), · · · , (0,ξ−br
q),“R′′

12

)
B1 =RGSW-pack

((
(ξ

a1
1

q −1) ·BK1 +G
)
, · · · ,

(
(ξ

a1
r

q −1) ·BK1 +G
)
,“R12 →R′′

13

)
B2 =RGSW-pack

((
(ξ

a2
1

q −1) ·BK2 +G
)
, · · · ,

(
(ξ

a2
r

q −1) ·BK2 +G
)
,“R13 →R′′

12

)
...

Bn =RGSW-pack
((

(ξ
an

1
q −1) ·BKn +G

)
, · · · ,

(
(ξ

an
r

q −1) ·BKn +G
)
,“R12 →R′′

13

)
(4.3)

where the bootstrapping key BKi is a RGSW encryption of the i -th entry of the
secret key s. The packing mode is changed between “R13 →R′′

12 and “R12 →R′′
13

alternatively in order to support the successive external product Ext-prod between
packed RLWE and RGSW ciphertexts4. We update the accumulator by

acci =Ext-Prod(acci−1,Bi),

for 1 ≤ i ≤ n. For each i , (ξ
ai

j
q −1) ·BKi +G is a RGSW sample of message ξ

ai
j ·si

q ,
which can be verified by replacing si with values 0 and 1. Thus, Bi is packed RGSW
ciphertext of message vector

(ξ
ai

1·si
q ,ξ

ai
2·si

q , · · · ,ξ
ai

r ·si
q).

Since the external products in fact compute the point-wise multiplication, the final
accumulator accn is a packed RLWE encryption of message vector

(ξ−b1+〈a1,s〉
q ,ξ−b2+〈a2,s〉

q , · · · ,ξ−br +〈ar ,s〉
q),

i.e., accn ∈RLWE
(∑

j ξ
−b j +〈a j ,s〉
q ·w j

)
.

Look-up Table. We embed the division and rounding process in decryption circuit,
as well as the the target function f , into the following look-up table

f

(⌊
t

q
·0

⌉)
, f

(⌊
t

q
·1

⌉)
, f

(⌊
t

q
·2

⌉)
, · · · , f

(⌊
t

q
· (q −1)

⌉)
︸ ︷︷ ︸

q elements

, (4.4)

by setting the so-called test polynomial testP = ∑
y∈Zq f

(⌊
t
q · y

⌉)
·ξy

q . Multiplying

testP with accn , we have a packed RLWE encryption of

∑
j

∑
y∈Zq

[
f

(⌊
t

q
· y

⌉)
·ξy

q ·ξ−b j +〈a j ,s〉
q

]
·w j .

4Recall Ext-prod only supports two ciphertexts with modes (“R′′
12, “R12 → R′′

13), or (“R′′
13,

“R13 →R′′
12)

4.3. BATCH EVALUATIONS OF ARBITRARY FUNCTION WITHIN A POLYNOMIAL MODULUS

4

107

For each j ∈ [r], the constant item of
∑

y∈Zq

[
f
(⌊

t
q · y

⌉)
·ξy

q ·ξ−b j +〈a j ,s〉
q

]
is

f
(⌊

t
q · (b j −〈a j ,s〉)

⌉)
, which is exactly equal to the aimed f (µi). We extract

this constant item by the homomorphic trace algorithm Eval-Tr as on line 7 in
Algorithm 1.

Enhancement. Directly multiplying testP with accn will increase the noise in the
resulting ciphertext by a factor of

∥∥ f
∥∥∞. Therefore, we instead set acc0 ← testP ·acc0,

which does not affect the correctness but leads to an error in accn independent of
f , following from the asymmetric noise growth property of the external product
Ext-Prod between the packed RLWE ciphertext acc0 and the RGSW ciphertext B1. We
now present our batch PBS in Algorithm 1 and its analysis in Theorem 4.3.1.

Algorithm 1: Batch PBS

Input: An arbitrary non-constant function f :Zq →Zq ,
r LWE samples (bi ,ai) ∈ LWEs(µi) with the same secret key s for i ∈ [r],

Bootstrapping key: {BKi ∈RGSWQ
s′ (si)} of the secret key s = (s1, · · · , sn),

Evaluation key evk for the homomorphic trace Eval-Tr (see Lemma 4.2.3)
Output: A packed RLWE ciphertext of message vector (f (µ1), · · · , f (µr))

1 Let testP=∑
y∈Zq f

(⌊
t
q · y

⌉)
·ξy

q and B1, . . . ,Bn be as defined in Eqs. (4.4) and (4.3),

respectively.

2 Let acc0 = testP ·RLWE-pack
(
(t−1ξ

−b1
q ,0), · · · , (t−1ξ

−br
q ,0),“R′′

12

)
3 for k = 1 to n do
4 acck ←Ext-Prod(acck−1,Bk)
5 end

6 Set d =
(∑

j∈[r] t−1 ·
[∑

y∈Zq f
(⌊

t y
q

⌉)
·w j

]
,0

)
7 return c = d+Eval-TrK /K23 (accn)

Theorem 4.3.1. Let (bi ,ai) be the LWE encryption of message µi ∈ Zt for i ∈ [r].
Then Algorithm 1 outputs a fresh packed encryption c in RLWEQ,s′ (

∑
f (µi) ·wi)

Moreover, ∥Err(c)∥∞ is bounded by a sub-Gaussian variable with parameter O(γ)
with γ≤ r nN

√
N logQE, where E is the upper bound of errors in all Bootstrapping

and evaluation keys, and the amortized complexity per input ciphertext is Õ(n0.75)
external products.

Proof. Correctness. We first analyze the correctness of our batch programmable
bootstrapping algorithm. On line 2, we initialize the accumulator to be a trivial

(noiseless) RLWE encryption of testP ·∑ j∈[r] q−1 ·ξb j
q · v j

5. By the correctness of
Ext-Prod, we know that the final accumulator Accn on line 5 is a packed RLWE

encryption of testP ·∑ j∈[r] q−1 · ξb j −〈a j ,s〉
q ·w j . Note that, due to corollary 4.2.2,

5Note that the RLWE ciphertext (t−1m,0) = (q/t ·q−1m,0), therefore (t−1m,0) is a noiseless encryption
of q−1m, due to the scaling factor q/t in the encryption. The same applies to d on line 6 of the
algorithm.

4

108 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

testP ̸≡ 0 under our assumption that f is not a constant function. Then we compute
the output ciphertext in the last line by substituting d,test, and Accn :

c = d+Eval-Tr(testP ·Accn)

=RLWE
(∑

j∈[r]
q−1 ·

[∑
y∈Zq

f (⌊t y/q⌉)

]
·w j

)
+RLWE

(
Tr(testP · ∑

j∈[r]
q−1ξ

b j −
〈

a j ,s
〉

q ·w j)

)

=RLWE
(∑

j∈[r]
q−1 ·

[∑
y∈Zq

f (⌊t y/q⌉)+Tr(testP ·ξb j −
〈

a j ,s
〉

q)

]
·w j

)

=RLWE
(∑

j∈[r]
q−1 ·

[∑
y∈Zq

(
f (⌊t y/q⌉)+ f (⌊t y/q⌉) ·Tr(

∑
y∈Zq

ξ
−y
q ·ξb j −

〈
a j ,s

〉
q)

)]
·w j

)

=RLWE
(∑

j∈[r]
q−1 ·

[∑
y∈Zq

f (⌊t y/q⌉) · (1+Tr(ξ−y
q ·ξb j −

〈
a j ,s

〉
q))

]
·w j

)
, (4.5)

where the second equality holds due to the correctness of Eval-Tr. By Lemma

4.2.4, we have 1+Tr(ξ−y
q ·ξbi−〈ai ,s〉

q) = q if bi −〈ai ,s〉 = y for some y , or 0 otherwise.
Therefore, we know the polynomial factor in the above underlying messages is

∑
y∈Zq

f (⌊t y/q⌉) · (1+Tr(ξ−y
q ·ξb j −

〈
a j ,s

〉
q)) = f (⌊t/q · (b j −〈a j ,s)⌉) ·q. (4.6)

Substituting it into Eq. (4.5), we finally get

c =RLWE
(∑

j∈[r]
q−1 · f (⌊t/q · (b j −〈a j ,s)⌉) ·q ·w j

)

=RLWE
(∑

j∈[r]
q−1 · f (µi) ·q ·w j

)

=RLWE
(∑

j∈[r]
f (µi) ·w j

)
. (4.7)

Noise Overhead. We begin by proving, by induction on k, that the accumulator
exhibits the same noise growth as that in the batch bootstrapping of [14]. For k = 0,
this is obvious since Acc0 in both works are error-less ciphertexts. For each k ≥ 1, we
note from the definition that the Ext-Prod in the for loop calls the external product
of RGSW encryption of sk · (−ai k) and Acck−1, i.e., Acck = Eval-Tr(BKk ·g−1(Acck−1))
by definition.

Let ek be the error of Acck , mk the message of BKk , and e ′k the noise from
key-switching procedure in Eval-Tr. By Lemma 4.2.3, we have

ek = e ′k +Tr(BKk ·g−1(Acck−1))

= e ′k +Tr(Err(BKk) ·g−1(Acck−1))+Tr(mk ·ek−1). (4.8)

4.3. BATCH EVALUATIONS OF ARBITRARY FUNCTION WITHIN A POLYNOMIAL MODULUS

4

109

The key-switching error e ′k is independent of the message of BKk and Acck−1. In
addition, by Fact 12 in FHEW [6], the error of Err(BKk) ·g−1(Acck−1) is a subgaussian

of parameter O(Err(BKk) ·Bg

√
N dg l) where l is the number of bootstrapping keys.

Obviously, this error is also independent of the message of Acck−1, which is the main
difference between [14] and our work. Then, we conclude that Accn has the same
noise growth as that in [14], which is bounded by a subgaussian with parameter less
than O(nr 3

√
N logQE) by the proof of Theorem 6.2 in [14].

In the last step of Algorithm 1, the Eval-Tr procedure is applied, which increases
the error by q at most. So we conclude that the final error is bounded by a
subgaussian with parameter less than O(nr 3q

√
N logQE) = O(r nN

√
N logQE) due

to the parameter setting N = r 2q . Let β= r nN
√

N logQE for simplicity.

Amortized Cost. We compare the efficiency of batch evaluation of arbitrary
functions with the batch technique in [14]. Notice that bootstrapping r ciphertexts
in both works requires n Batch-Upd and 1 homomorphic trace evaluation, resulting
in the same amortized cost. That is, Õ(λ0.75) external products per input
ciphertext when we use the same parameter setting as [14]: security parameter λ,
n =O(λ), q = Õ(

p
n), N =O(n), and r ≈√

N /q =O(λ1/4−o(1)).

Remark 4.3.2. Compared Batch PBS to PBS, it shall be noticed that

(1) negacyclicity. PBS works with the power-of-two cyclotomic ring Z[x]/(xN +1), in
which 1+xN = 0. Therefore, we have(

x
q
p ·m+e +x

q
p ·(m+ p

2

)+e
)
· testP= 0, (4.9)

for any message m since q = 2N . Recall that the extraction process in PBS

extracts the constant term of the polynomial x
q
p ·m+e · testP, which equals

f (m). Thus, the constant term in Eq. (4.9) is f (m)+ f
(
m + p

2

)
. Conse-

quently, we have f (m)+ f
(
m + p

2

)= 0 as a restriction on the function to bootstrap.

Arbitrary. However, in our setting as R1 = Z[ξq], we know from Lemma

4.2.1 that ξi
q , ξ

j
q are independent for i ̸= j . Therefore we conclude that

testP ·ξ q
t ·µi+e and testP ·ξ q

t ·µ j +e are independent for two different messages
µi ,µ j , unless testP = 0. That means f (µi) and f (µ j) are independent for
µi ̸= µ j . Therefore, the target function in batch PBS can be arbitrary. Recall

testP=∑
y∈Zq f

(⌊
t
q · y

⌉)
·ξy

q , the only restriction is that f cannot be a constant

function, i.e., f ̸≡ c for some constant c; otherwise, testP≡ 0 by Corollary 4.2.2.

Thus, we solve Limitation 3. On one hand, it enables our scheme to be efficient
over one bit more than the precision of PBS, up to 6 bits. On the other
hand, we will show its advantage in application in Section 4.4. To evaluate
a complex function by PBS, one needs to carefully design negacyclic functions,
and normally requires multiple invocations of PBS. However, it is quite direct

4

110 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

and efficient by using batch PBS.

(2) complexity. For Limitation 1, we note that our batch PBS reduces the amortized
cost per ciphertext from O(n) to O(n0.75).

We write Batch-Boot[f](ct1,ct2, · · · ,ctr) as the result of batch-bootstrapping a
given integer function f over ciphertexts (ct1,ct2, · · · ,ctr). The output model of the
Batch-Boot can also be “R13" if we pack those error less RLWE ciphertext on line
2 with model “R13". We use Batch-Boot[f](c,model) to emphasize the output with
model.

For a constant function f : Zq → Zq , we know testP = 0 by Lemma 4.2.1, which
leads to an encryption of 0 if we directly use Batch-Boot to evaluate f over any
ciphertexts. Instead, we can evaluate f by adding the evaluation of functions
f1, and f2: Batch-Boot[f1]+Batch-Boot[f2], where f1(x) = f (x) except at x = 0 and
f2(x) = f (x) only when x = 0.

4.3.2. APPLICATIONS

We can now efficiently batch-evaluate activation functions in CNNs using Batch-Boot
from Algorithm 1. Activation functions like Sign, ReLU, and max are not polynomials.
Typically, these functions are approximated by polynomials, which can degrade
accuracy when applying FHE to privacy-preserving CNNs. We demonstrate how to
exactly evaluate them, particularly in a batch manner.

Batch-HomSign. Let us formally define this problem. Given LWE encryptions of
messages {µi } as input, the goal of Batch-HomSign is to obtain an RLWE encryption
of {

∑
i Sign(mi) ·wi }. The key observation here is that Sign is an integer function,

Sign :Zt → {1,0},

which has a value 1 if mi ≥ 1 or 0 otherwise. Therefore, we can directly apply the
result from Section 4.3.1, yielding Batch-HomSign=Batch-Boot[sign].

Batch-HomReLU. Taking LWE encryptions c = (ci)i∈[r] of messages {mi } as input,
Batch-HomReLU aims to produce an RLWE encryption of

∑
i ReLU(mi) ·wi where vi

is the basis of R2. The ReLU function ReLU(x) is defined as:

ReLU(x) =
{

x if x > 0

0 else.

Since ReLU is also an integer function over the message space, we can directly uti-
lize Algorithm 1 to evaluate the ReLU function, thus Batch-ReLU=Batch-Boot[ReLU].

Batch-HomMax. Given two sequences of LWE encryptions c0 = (c0i)i∈[r] and
c1 = (c1i)i∈[r] of messages {m0,i } and {m1,i }, respectively, the objective of

4.4. LARGE PRECISION

4

111

Batch-HomMax is to obtain an RLWE encryption of
∑

i max(m0,i ,m1,i) ·wi . The max
function can be decomposed as follows:

max(x, y) = x + y

2
+

∣∣x − y
∣∣

2
.

To evaluate the max function, we homomorphically compute each part of this
equation separately, i.e., evaluating f1(µ) = µ/2 over c0 +c1 and f2(µ) = ∣∣µ∣∣/2 over
c0 −c1, and then sum the evaluations. Therefore, we have:

Batch-HomMax(c0,c1) =Batch-Boot[f1](c0 +c1)+Batch-Boot[f2](c0 −c1).

The correctness of this approach can be easily verified.

4.4. LARGE PRECISION
In this section, we present approaches to batch homomorphically evaluate the
sign functions over large-precision ciphertexts. The challenge is that due to the
requirement that the modulo of LWE ciphertext to bootstrap should be equal to the
order of polynomial ring R1, the computation complexity increases linearly with the
ciphertext modulus, similar to Limitation 2 for PBS.

We reduce the runtime complexity to be logarithmical with the ciphertext modulus,
thus supporting large precision in practice. Our techniques adopt the idea of Liu,
Micciancio and Polyakov in [17] but incorporate two improvements as discussed
later. We also generalize this procedure to the evaluation of ReLU/Max over
large-precision.

4.4.1. DECOMPOSITION AND REMOVAL

First, let us formally define this problem and its solution by PBS in [17]. Given a
LWE ciphertext (b,a) with modulus Q larger than the modulus q supported by PBS,
we want to obtain an LWE encryption LWE.Enc(sign(µ)) ∈Zn+1

Q . Recall that PBS takes
a LWE ciphertext (b,a) with modulus q and a negacyclic function f as input, and
outputs a ciphertext LWE.Enc(f (µ)) with modulus Q and fresh error β. We denote
Boot[f](b,a) as the procedure of PBS.

PBS Technique [17]. To evaluate the sign function is to find the most significant
bit (MSB) of an encrypted message. Over large precision, Liu et al. [17] develop
a homomorphic floor function that clears the least significant digits (LSB) from a
ciphertext by using PBS, as shown in Fig. 4.2, followed by modulus switching that
reduces the ciphertext modulus Q but keeps MSB unchanged. Iteratively repeating
this procedure until the modulus is smaller than q , then the sign function can be
evaluated by a primal FHEW-like bootstrapping.

• HomFloor. As shown in Fig. 4.2, let c1 be the input LWE ciphertext of message
µ with modulus Q. Assume error e1 < β≤α/4. The ciphertext c2 := c1 mod q
computes an encryption of the log q − logα least significant bits of µ, denoted

4

112 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

c1 :
logQ log q logα 0

0 e1

µ

c2 ← c1 mod q

c2 :
log q logα 0

e2µ2

c3 ← c2 −PBS.Boot[f1](c2)−q/4

c3 :
log q logα 0

e3µ30

c4 ← PBS.Boot[f2](c3)

c4 :
logQ log q logα 0

e4µ40

c5 ← c1 − c4

c5 :
logQ log q logα 0

e5µ5

Figure 4.2: Workflow of HomFloor algorithm, where the blue-marked and red-marked
bits represent messages and errors, respectively, the unmarked bits are 0,
and f1, f2 is defined in Eq. (4.10).

as µ2. Since c2 has the modulus q , we can evaluate a negacyclic function f1

by PBS over it, resulting in a ciphertext with modulus Q.

f1(x) =
{
−q/4 if 0 ≤ x < q/2

q/4 else
and f2(x) =

{
x if x < q/2

q/2−x else
(4.10)

Let c3 = c2−PBS.Boot[f1](c2)−q/4 mod q , we get a LWE encryption of µ3 which
clears the most significant of µ2. This can be verified by checking the two
possible values for MSB of µ2, 0 and 1. Since µ3 < q/2, the evaluation of
the negacyclic function f2 over ct3 outputs a LWE ciphertext ct4 of message
µ4 = µ3, since f2(x) is the identity function over x ∈ [0, q/2). Then subtracting
ct4 from the original ciphertext ct1 results in an encryption of µ5 which equals
to µ1 except the log(q/α) least significant bits are 0.

For simplicity of presentation, we omit the additions with constants in the
procedure and the maximal error generated in it is bounded by 2β, which

4.4. LARGE PRECISION

4

113

is smaller than α/2 based on the assumption that β≤α/4, guaranteeing the
validity of those ciphertexts.

• Modulus Switching and Iteration. Denote the log(Q/q) MSB of µ5 as µ′
5 and

ct5 = (b5,a5) with secret key s. Since

b −〈a,s〉 =α ·µ+e5 = q ·µ′
5 +e5,

the ciphertext ct5 can be viewed as a valid encryption of µ′
5, as e5 <α/2 < q/2.

Using Modulus Switching in Lemma 4.4.1, we can switch ct5 to a smaller
modulus Q/(q/α), obtaining an encryption of the message µ′

5 with a scaling

factor of Q/(q/α)
Q/q =α. After ⌈ logQ−log q

log(q/α) ⌉ iterations, the modulus Q will reduce to
at most q , enabling the direct computation of the message’s sign using PBS.

Lemma 4.4.1. [6] For any s ∈ Zn
q , µ ∈ Zt and ciphertext c ∈ LWEs,Q (m) with

subgaussian error of parameter σ, there exists an efficient modulus switching
algorithm, which outputs a LWEs,q (m) ciphertext with subgaussian error of parameter√

(qσ/Q)2 +2π(∥s∥2 +1).

c1 :
logQ ⌊log q⌋ logα 0

0 e1

µ

c2 ← c1 mod q

c2 :
⌊log q⌋ logα 0

e2µ2

c3 ←Batch-Boot[Id](c2)

c3 :
logQ ⌊log q⌋ logα 0

e3µ3

c4 ← c1 −c3

c4 :
logQ ⌊log q⌋ logα 0

e4µ4

Figure 4.3: Workflow of Batch-HomFloor algorithm

Batch PBS Technique. We propose a batch homomorphic floor function in Fig 4.3
that only requires one invocation of bootstrapping per chunk, compared to the best
performance of [17] requiring two bootstrapping as shown in Fig 4.2, and moreover

4

114 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

enables us to deal with multiple ciphertexts at the same time, while [17] only
support one ciphertext at a time by comparison. This benefits from the property
that our batch bootstrapping procedure can evaluate arbitrary functions even limited
to negacyclic ones.

• Batch-HomFloor. As shown in Fig 4.3, denote the input as r LWE ciphertexts
c1 := {(bi ,ai) ∈ Zn+1

Q }i∈[r] which encrypts a message µi with modulus Q
respectively. We make the same assumption as in [17] that e < β≤α/4 where
e is the error for input LWE ciphertexts and β is the fresh noise generated
after the batch bootstrapping. The following operation c1 mod q computes a
ciphertext set c2 that encrypts values µi modulo q . We then evaluate the
identity function Id over c2,

Id(x) = x for x ∈Zq , (4.11)

resulting in a packed ciphertext c3 encrypting the last ⌊log q⌋ least significant
bits of (µ1, · · · ,µr). Then the ciphertext c3 is unpacked into r LWE ciphertexts
by UnPack and subtracted from the input LWE ciphertexts; thus we get the
aimed r LWE ciphertexts. We provide our Batch-HomFloor procedure in
Algorithm 2 and its analysis in Lemma 4.4.2.

• Modulus Switching and Iteration. We iteratively use the Batch-HomFloor
algorithm as a subroutine to clear the LSBs of messages and switch the
ciphertext modulus to a smaller one until smaller than q . Then the sign
function can be evaluated directly by Batch-Sign in Section 4.3.2. The full
procedure is shown in 3 Algorithm with analysis in Lemma 4.4.3.

For simplicity of presentation, given a message µ, we define f l (µ) the floored
message of µ as:

f l (µ) =
⌊
α

q
·µ

⌉
· q

α
, (4.12)

This operation scales the message µ by the factor α
q , rounds the result to the nearest

integer, and then scales it back by multiplying by q
α . The outcome is a version of µ

where the log(q)− log(α) least significant bits are set to zero.

Lemma 4.4.2. Algorithm 2 outputs LWE ciphertexts of messages { f l (µ1), · · · , f l (µr)}
with the error bounded by a Gaussian with parameter 2β, under the same assumption
as [17] that the error in each LWE ciphertext ei <β<α/4.

Proof. Recall that a LWE can be decrypted correctly only if its error is smaller than
Q/(2q) =α/2 for message space Zq and ciphertext modulus ZQ . For each i , denote
(bi ,ai) = (bi ,〈ai , s〉+αµi +ei) for some error |ei | <β. Let µi = ms(µi)+l s(µi) for which
l s(µi) is ⌊log(q)⌋− log(α) LSBs of µi and ms(µi) = 2⌊log(q)⌋−log(α) ·µ′ for some µ′ is the
remaining MSBs of µi . Then we have αµi + ei =α · l s(µi)+ ei mod q, and therefore,
(ci ,di) in line 1 is valid ciphertext of l s(µi) with error ei since |ei | <β<α/4 by our
assumption.

4.4. LARGE PRECISION

4

115

Algorithm 2: Batch-HomFloor(c)

Input: Identity function Id :Zq →Zq ,

r LWE ciphertexts c = {(bi ,ai) ∈Zn+1
Q }i∈[r] of messages µi , resp.

Bootstrapping and evaluation keys for Batch-Boot.
Output: LWE ciphertexts of message { f l (µi)}i∈[r], as defined in Eq. (4.12).

1 (ci ,di) ← (bi ,ai) mod 2⌊log(q)⌋ for i ∈ [r]

2 (ci ,di) ←Batch-Booti
unpk [Id]{(ci ,di)}

3 (ei , fi) ← (bi ,ai)− (ci ,di) for i ∈ [r]
4 return (ei , fi)

In line 2, evaluating the identity function over {(ci ,di)} gives a packed RLWE
encryption (c,d) of message vectors {l s(µ1), l s(µ2), · · · , l s(µr)} with modular Q and
noise β. For each i ∈ [r], we then unpack (c,d) to get LWE encryption of µi under
the original secret key s. The whole process is Batch-Booti

unpk in line 2. We know
each result (ci ,di) has the same noise level as (c,d), i.e., subguassian with parameter
β.

Subtracting (ci ,di) from (ai ,bi) in line 3, we finally get a LWE encryption of ms(µi)
with error bounded by

eβ+β< 2β<α/2,

by our assumption, which is a valid ciphertext.

Algorithm 3: Batch-HomSignQ (c)

Input: r LWE ciphertexts c = (ci ∈Zn+1
Q)i∈[r] =

(
(bi ,ai)

)
of messages µi , respectively.

Output: A packed RLWE ciphertext of message vector (Sign(µi))
1 if Q > q then
2 (ci ,di) ←Batch-HomFloor(Q,c)
3 (bi ,ai) ←⌈ α

2⌊log q⌋ · (ci ,di)⌋
4 Q ←αQ/2⌊log q⌋
5 c ← (

(bi ,ai)
)

6 end
7 (bi ,ai) ← (q/Q) · (bi ,ai)
8 (c,d) ←Batch-HomSign((bi ,ai)) (modQ)
9 return (c,d)

Lemma 4.4.3. For LWE ciphertexts {ci } with modulus Q, Batch-HomSignQ outputs

a packed RLWE ciphertext of message vector {sign(µi)} after ⌊ logQ
log(q/α) ⌋+1 calls to

Batch-Boot.

Proof. By Lemma 4.4.2, Batch-HomFloor in line 2 computes an encryption of
message vector (f l (µ1), · · · , f l (µr)) with error bounded by 2β. Lines 3-4 switch the

4

116 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

ciphertext modulus from Q to αQ/q and returns LWE encryptions of the same
message vector (f l (µ1), · · · , f l (µr)) ∈Zr

Q/q , with the error bounded by

(α/q)2β+ (β+1)/2 <β<α/4,

where the first inequality holds since β> 2 and q > 4α.
We can repeat this procedure until Q < q and switch the module back to q in line

7. Then the sign can be batched evaluated directly by Batch-HomSign in line 8 to
return a packed RLWE encryption of message vector {Sign(µ1), · · · ,Sign(µr)}.

4.4.2. DECOMPOSITION AND RECONSTRUCTION

In this section, we extend the idea of decomposition and removal in Sect. 4.4.1 to
the evaluation of arbitrary linear functions over Q/α. The goal is the following. Given
LWE ciphertexts (ci ,di) encrypting message µi ∈ZQ/α and an arbitrary linear function
f :ZQ/α→ZQ/α, we should compute a RLWE ciphertext encrypting

∑
i f (µi) ·vi .

Note that for each message µi ∈ Q/α, the following digit decomposition of µi

holds:
µi = (−1)MSB(µ) ·∑

j
µi j · (2⌊log q⌋/logα) j . (4.13)

Our high-level idea is to decompose messages {µi }i∈[r] into digits {µi j } which
are less than q and then batch evaluate {µi j }i∈[r] with a new function
f̃ j (x) : = f

(
x · (2⌊log q⌋/logα) j

)
, followed by the reconstruction step that adds the

evaluations of f̃ j together. The full algorithm is shown in Alg. 4.
Even though we have already shown in Section 4.4.1 how to evaluate the MSB over

large precisions, here we assume the MSB of each message µi is 0 for two reasons:
(1) one single bit is negligible compared to a large precision, (2) the evaluation of
each digit returns a packed RLWE ciphertext. In order to reconstruct the evaluation
over input messages, we should multiply the evaluation of MSB with the evaluation
of other digits. Then a scheme switching technique in [23] should be adopted
to transfer RLWE ciphertexts into equivalent RGSW ones and then perform the
external product between RGSW and RLWE ciphertexts, since there does not exist
direct multiplication between two RLWE ciphertexts. It obviously requires relatively
expensive operations. Then the correctness of Alg. 4 follows from∑

j
f̃ j (µi j) =∑

j
f
(
µi j · (2⌊log q⌋/logα) j)

= f
(∑

j
µi j · (2⌊log q⌋/logα) j)

= f (µi)

where the second equality holds because f is linear and the homomorphic extraction
of each digit µi j is the same to the second step in Fig. 4.2 and Fig. 4.3.

Lemma 4.4.4. For LWE ciphertexts (ci) with modulus Q, Batch-HomSignQ outputs a

packed RLWE ciphertext of message vector (µi) after ⌊ logQ
log(q/α) ⌋+2 calls to Batch-Boot.

4.5. CONCLUSION

4

117

Algorithm 4: Batch-BootQ [f](c)

Input: Linear function f :Zq →Zq ,

r LWE ciphertexts c = (ci ∈Zn+1
Q)i∈[r] =

(
(bi ,ai)

)
of messages µi , respectively,

Boostrapping and evaluation keys for Batch-Boot.
Evaluation functions f̃ j :µ→ f (µ · (2⌊log q⌋/a) j)

Output: A packed RLWE ciphertext of message vector { f (µi)}
1 j ← 0,(c,d) ← (0,0)
2 if Q > q then
3 (ci ,di) ← (bi ,ai) mod 2⌊log(q)⌋ for i ∈ [r]

4 (c,d) ← (c,d)+Batch-Boot[f̃ j]((ci ,di))

5 (ei , fi) ←Batch-HomFloor(Q,c)
6 (bi ,ai) ←⌈ α

2⌊log q⌋ · (ei , fi)⌋
7 Q ←αQ/2⌊log q⌋
8 c ← {(bi ,ai)}
9 j ← j +1

10 end
11 c ← (q/Q) ·c

12 (l ,m) ←Batch-Boot
[

f̃ j
]
(c) (modQ)

13 (c,d) ← (c,d)+ (l ,m)
14 return (c,d)

Proof. We use the same notation as Eq. (4.13). At j -th iteration, line 3 by Lemma
4.4.2 computes LWE encryptions of the message (µ1 j ,µ2 j , · · · ,µr j) with noise bounded
by a sub-gaussian with parameter β. Line 4 first calls the Batch-Boot to compute
an encryption of (f̃ j (µ1 j), f̃ j (µ2 j), · · · , f̃ j (µr j)), which are accumulated to (c,d), an

encryption of
∑ j

k=0µi k · (2⌊log q⌋/loga)k . Similar to Alg. 3, lines 5-7 return ciphertexts
of messages that are equal to (µ1, · · · ,µr) except clearing the j -th ⌊log q⌋− log(α) bits.

After the if loop, the length of remain message is smaller than q and switched to
q in line 11. The most significant bits are evaluated in line 12, which are then added
to (c,d), resulting in the evaluation of f over all digits.

Regarding the error, the error of (c,d) in line 14 is accumulated by N1 = ⌊ logQ
log(q/α) ⌋+1

callings to Batch-Boot in the if loop and 1 calling to Batch-Boot in line 12, which
therefore results in subgaussian error with parameter (N1 +1) ·β in the final output
in line 13. That is

(⌊ logQ
log(q/α) ⌋+2) ·β, (4.14)

Then the output is a valid ciphertext only if the error in Eq. 4.14 is assumed to be
smaller than α/2.

4.5. CONCLUSION
In this paper, we propose a novel batch bootstrapping technique for FHE, enabling
the homomorphic evaluation of arbitrary functions over n ciphertexts within a
polynomial modulus, using Õ(n0.75) FHE multiplications. As an application,

4

118 4. BATCH PROGRAMMABLE BOOTSTRAPPING, WITHIN A POLYNOMIAL MODULUS

we demonstrate how to evaluate common activation functions in CNNs, further
extending the capability to batch processing. An interesting avenue for future work
is to design a novel bootstrapping method that achieves the same goal with an
optimal amortized cost of Õ(1) FHE multiplications.

REFERENCES

[1] C. Gentry. “Fully homomorphic encryption using ideal lattices”. In: ACM
STOC 2009. Ed. by M. Mitzenmacher. ACM, 2009, pp. 169–178. DOI:
10.1145/1536414.1536440.

[2] Z. Brakerski. “Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP”. In: CRYPTO 2012. Ed. by R. Safavi-Naini and R. Canetti.
Vol. 7417. LNCS. Springer, 2012, pp. 868–886. DOI: 10.1007/978-3-642-
32009-5_50.

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “(Leveled) Fully Homomorphic
Encryption without Bootstrapping”. In: ACM Trans. Comput. Theory 6.3 (2014),
13:1–13:36. DOI: 10.1145/2633600.

[4] Z. Brakerski, C. Gentry, and S. Halevi. “Packed Ciphertexts in LWE-Based
Homomorphic Encryption”. In: PKC 2013. Ed. by K. Kurosawa and G. Hanaoka.
Vol. 7778. LNCS. Springer, 2013, pp. 1–13. DOI: 10.1007/978-3-642-36362-
7_1.

[5] J. Fan and F. Vercauteren. “Somewhat Practical Fully Homomorphic
Encryption”. In: IACR Cryptol. ePrint Arch. (2012), p. 144. URL: http:
//eprint.iacr.org/2012/144.

[6] L. Ducas and D. Micciancio. “FHEW: Bootstrapping Homomorphic Encryption
in Less Than a Second”. In: EUROCRYPT 2015, Part I. Ed. by E. Oswald
and M. Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 617–640. DOI:
10.1007/978-3-662-46800-5_24.

[7] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. “Faster Packed
Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE”. In:
ASIACRYPT 2017, Part I. Ed. by T. Takagi and T. Peyrin. Vol. 10624. LNCS.
Springer, 2017, pp. 377–408. DOI: 10.1007/978-3-319-70694-8_14.

[8] C. Gentry, A. Sahai, and B. Waters. “Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based”. In:
CRYPTO 2013, Part I. Ed. by R. Canetti and J. A. Garay. Vol. 8042. LNCS.
Springer, 2013, pp. 75–92. DOI: 10.1007/978-3-642-40041-4_5.

[9] D. Micciancio and Y. Polyakov. “Bootstrapping in FHEW-like Cryptosystems”. In:
WAHC 2021. WAHC@ACM, 2021, pp. 17–28. DOI: 10.1145/3474366.3486924.

[10] I. Chillotti, D. Ligier, J. Orfila, and S. Tap. “Improved Programmable
Bootstrapping with Larger Precision and Efficient Arithmetic Circuits for TFHE”.
In: ASIACRYPT 2021, Part III. Ed. by M. Tibouchi and H. Wang. Vol. 13092.
LNCS. Springer, 2021, pp. 670–699. DOI: 10.1007/978-3-030-92078-4_23.

119

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1007/978-3-030-92078-4_23

4

120 REFERENCES

[11] I. Chillotti, M. Joye, and P. Paillier. “Programmable Bootstrapping Enables
Efficient Homomorphic Inference of Deep Neural Networks”. In: CSCML 2021.
Ed. by S. Dolev, O. Margalit, B. Pinkas, and A. A. Schwarzmann. Vol. 12716.
LNCS. Springer, 2021, pp. 1–19. DOI: 10.1007/978-3-030-78086-9_1.

[12] D. Micciancio and J. Sorrell. “Ring Packing and Amortized FHEW Bootstrap-
ping”. In: ICALP 2018. Ed. by I. Chatzigiannakis, C. Kaklamanis, D. Marx,
and D. Sannella. Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018, 100:1–100:14. DOI: 10.4230/LIPICS.ICALP.2018.100.

[13] A. Guimarães, H. V. L. Pereira, and B. V. Leeuwen. “Amortized Bootstrapping
Revisited: Simpler, Asymptotically-Faster, Implemented”. In: ASIACRYPT 2023,
Part VI. Ed. by J. Guo and R. Steinfeld. Vol. 14443. LNCS. Springer, 2023,
pp. 3–35. DOI: 10.1007/978-981-99-8736-8_1.

[14] F. Liu and H. Wang. “Batch Bootstrapping I: - A New Framework for SIMD
Bootstrapping in Polynomial Modulus”. In: EUROCRYPT 2023, Part III. Ed. by
C. Hazay and M. Stam. Vol. 14006. LNCS. Springer, 2023, pp. 321–352. DOI:
10.1007/978-3-031-30620-4_11.

[15] Z. Liu and Y. Wang. “Amortized Functional Bootstrapping in less than 7ms,
with Õ(1) polynomial multiplications”. In: ASIACRYPT 2023, Part III. Ed. by
J. Guo and R. Steinfeld. Vol. 14443. LNCS. Springer, 2023, pp. 353–384. DOI:
10.1007/978-981-99-8736-8_1.

[16] F. Liu and H. Wang. “Batch Bootstrapping II:” in: EUROCRYPT 2023, Part III.
Ed. by C. Hazay and M. Stam. Vol. 14006. LNCS. Springer, 2023, pp. 353–384.
DOI: 10.1007/978-3-031-30620-4_12.

[17] Z. Liu, D. Micciancio, and Y. Polyakov. “Large-Precision Homomorphic Sign
Evaluation Using FHEW/TFHE Bootstrapping”. In: ASIACRYPT 2022, Part II.
Ed. by S. Agrawal and D. Lin. Vol. 13792. LNCS. Springer, 2022, pp. 130–160.
DOI: 10.1007/978-3-031-22966-4_5.

[18] A. C. David. Galois Theory. Hoboken, NJ: John Wiley & Sons, 2004. ISBN:
978-0-521-46713-1.

[19] V. Lyubashevsky, C. Peikert, and O. Regev. “A Toolkit for Ring-LWE
Cryptography”. In: EUROCRYPT 2013. Ed. by T. Johansson and P. Q. Nguyen.
Vol. 7881. LNCS. Springer, 2013, pp. 35–54. DOI: 10.1007/978-3-642-38348-
9_3.

[20] K. Conrad. “Cyclotomic Extensions”. In: (2013). URL: https://kconrad.math.
uconn.edu/blurbs/galoistheory/cyclotomic.pdf.

[21] J. Alperin-Sheriff and C. Peikert. “Faster Bootstrapping with Polynomial Error”.
In: CRYPTO 2014, Part I. Ed. by J. A. Garay and R. Gennaro. Vol. 8616. LNCS.
Springer, 2014, pp. 297–314. DOI: 10.1007/978-3-662-44371-2_17.

[22] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. “Faster Fully
Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds”. In:
ASIACRYPT 2016, Part I. Ed. by J. H. Cheon and T. Takagi. Vol. 10031. LNCS.
2016, pp. 3–33. DOI: 10.1007/978-3-662-53887-6_1.

https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.4230/LIPICS.ICALP.2018.100
https://doi.org/10.1007/978-981-99-8736-8_1
https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.1007/978-981-99-8736-8_1
https://doi.org/10.1007/978-3-031-30620-4_12
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://kconrad.math.uconn.edu/blurbs/galoistheory/cyclotomic.pdf
https://kconrad.math.uconn.edu/blurbs/galoistheory/cyclotomic.pdf
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-53887-6_1

REFERENCES

4

121

[23] G. D. Micheli, D. Kim, D. Micciancio, and A. Suhl. “Faster Amortized FHEW
Bootstrapping Using Ring Automorphisms”. In: PKC 2024, Part IV. Ed. by
Q. Tang and V. Teague. Vol. 14604. LNCS. Springer, 2024, pp. 322–353. DOI:
10.1007/978-3-031-57728-4_11.

https://doi.org/10.1007/978-3-031-57728-4_11

5
VOLUME AND ACCESS PATTERN

LEAKAGE-ABUSE SE ATTACK

Searchable Encryption schemes provide secure search over encrypted databases while
allowing admitted information leakages. Generally, the leakages can be categorized
into access and volume pattern. In most existing SE schemes, these leakages
are caused by practical designs but are considered an acceptable price to achieve
high search efficiency. Recent attacks have shown that such leakages could be easily
exploited to retrieve the underlying keywords for search queries. Under the umbrella
of attacking SE, we design a new Volume and Access Pattern Leakage-Abuse Attack
(VAL-Attack) that improves the matching technique of LEAP (CCS ’21) and exploits
both the access and volume patterns. Our proposed attack only leverages leaked
documents and the keywords present in those documents as auxiliary knowledge and
can effectively retrieve document and keyword matches from leaked data. Furthermore,
the recovery performs without false positives. We further compare VAL-Attack with two
recent well-defined attacks on several real-world datasets to highlight the effectiveness
of our attack and present the performance under popular countermeasures.

This chapter is based on the paper “VAL: Volume and Access Pattern Leakage-Abuse Attack with
Leaked Documents” by Lambregts, S., Chen, H., Ning, J. and Liang, K. in ESORICS (1) 2022: 653-676

123

5

124 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

5.1. INTRODUCTION

In practice, to protect data security and user privacy (e.g., under GDPR), data owners
may choose to encrypt their data before outsourcing to a third-party cloud service
provider. Encrypting the data enhances privacy and gives the owners the feeling that
their data is stored safely. However, this encryption relatively restricts the searching
ability. Song et al. [1] proposed a Searchable Encryption (SE) scheme to preserve
the search functionality over outsourced and encrypted data. In the scheme, the
keywords of files are encrypted, and when a client wants to query a keyword, it
encrypts the keyword as a token and sends it to the server. The server then searches
the files with the token corresponding to the query, and afterwards, it returns the
matching files. Since the seminal SE scheme, many research works have been
presented in the literature, with symmetrical [2–5] and asymmetrical encryption
[6–9]. Nowadays, SE schemes have been deployed in many real-world applications
such as ShadowCrypt [10] and Mimesis Aegis [11].

Leakage. In an SE scheme, an operational interaction is usually defined as a
client sending a query to the server and the server responding to the query with
the matching files. Nevertheless, this interaction could be eavesdropped on by
an attacker. The messages could be intercepted because they are sent over an
unprotected channel, or the attacker is the cloud service provider itself, who stores
and accesses all the search requests and responses. The attacker may choose to
match the query with a keyword such that he can comprehend what information is
present on the server. The query and response here are what we may call leakage.
In this work, we consider two main types of leakage patterns: the access pattern,
the response from the server to a query, and the search pattern, which is the
frequency a query is sent to the server. Besides these types, we also consider the
volume pattern as leakage. This pattern is seen as the size of the stored documents
on the server. The leakage patterns can be divided into four levels, by Cash et
al. [12]. In this work, we consider our leakage level to be L2, which equals the
fully-revealed occurrence pattern, together with the volume pattern to create a new
attack on the SE scheme. Note that a formal definition of the leakages is given in
Section 5.3.1.

Attacks on SE. There exist various attacks on SE that work and perform differently.
Most of these attacks take the leaked files as auxiliary knowledge. Islam et al. [13]
presented the foundation for several attacks on SE schemes. They stated that, with
sufficient auxiliary knowledge, one could create a co-occurrence matrix for both
the leakage and the knowledge so that it can easily map queries to the keywords
based on the lowest distance. Cash et al. [12] later proposed an attack where
the query can be matched to a particular keyword based on the total occurrence
in the leaked files. These attacks with knowledge about some documents are
known as passive attacks with pre-knowledge. Blackstone et al. [14] developed
a SubgraphVL attack that provides a relatively high query recovery rate even with
a small subset of the leaked documents. The attack matches keywords based
on unique document volumes as if it is the response pattern. Ning et al. [15]

5.1. INTRODUCTION

5

125

later designed the LEAP attack. LEAP combines the existing techniques, such as
co-occurrence and the unique number of occurrences, to match the leaked files
to server files and the known keywords to queries based on unique occurrences
in the matched files. It makes good use of the unique count from the Count
attack [12], a co-occurrence matrix from the IKK attack [13] (although LEAP inverts
it to a document co-occurrence matrix) and finally, unique patterns to match key-
words and files. Note that we give related work and general comparison in Section 5.6.

Limitations. The works in [12–15] explain their leakage-abusing methods, but they
only abuse a single leakage pattern, while multiple are leaked in SE schemes.
Besides the leakage patterns, the state-of-the-art LEAP attack abuses the access
pattern but does not exploit its matching techniques to the full extent. In addition
to extending their attack, a combination of leakage can be used to match more
documents and queries.

We aim to address the issue of matching keywords by exploiting both the access
pattern and volume pattern. The following question arises naturally:

Could we match queries and documents in a passive attack by exploiting the volume
and access patterns to capture a high recovery rate against popular defences?

Contributions. We answer the above research question by designing an attack that
matches leaked files and keywords. Our attack expands the matching techniques
from the LEAP attack [15] and exploits the volume pattern to match more
documents. The attack improves the LEAP attack by fully exploring the leakage
information and combining the uniqueness of document volume to match more
files. These matches can then be used to extract keyword matches. All the matches
found are correct, as we argue that false positives are not valuable in real-world
attacks.

• Besides exploiting the access pattern, we also abuse volume pattern
leakage. We match documents based on a unique combination of volume and
number of keywords with both leakage patterns. We can match almost all
leaked documents to server documents using this approach.

• We match keywords using their occurrence pattern in matched files.

• Besides matching keywords in matched files, we use all leaked documents for
unique keyword occurrence, expanding the keyword matching technique from
the LEAP attack. We do this to get the maximum amount of keyword matches
from the unique occurrence pattern.

• We run our attack against three different datasets to test the performance,
where we see that the results are outstanding as we match almost all
leaked documents and a considerable amount of leaked keywords. Finally,
we compare our attack to the existing state-of-the-art LEAP and SubgraphVL

attacks.

5

126 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

Our attack performs great in revealing files and underlying keywords. In particular,
it surpasses the LEAP attack, revealing significantly more leaked files and keywords.
VAL-Attack recovers almost 98% of the known files and above 93% of the keyword
matches available to the attacker once the leakage percentage reaches 5%. When
10% of the Enron database is leaked, which is 3,010 files with 4,962 keywords, we
match 2,950 files and 4,909 queries, respectively, corresponding to 98% and 99%.
VAL-Attack can still compromise encrypted information, e.g., over 90% recovery (with
10% leakage) under volume hiding in Enron and Lucene, even under several popular
countermeasures. We note that our proposed attack is vulnerable to a combination
of padding and volume hiding.

5.2. PRELIMINARIES

5.2.1. SEARCHABLE ENCRYPTION

In a general SE scheme, a user encrypts her data and uploads the encrypted
data to a server. After uploading the data, the user can send a query containing
an encrypted keyword to the server, and the server will then respond with
the corresponding data. We assume the server is honest-but-curious, meaning
that it will follow the protocol but will try to retrieve as much information as possible.

The scheme. At a high level, an SE scheme consists of three polynomial-time
algorithms: ENC, QUERYGEN and SEARCH [5, 16–19]. Definition 5.2.1 shows the
scheme in more detail. The client runs the algorithm ENC and encrypts the plaintext
documents and the corresponding keywords before uploading them to the server.
ENC outputs an encrypted database EDB , which is sent to the server. QUERYGEN,
run by the user, requires a keyword and outputs a query token that can be sent to
the server. The function SEARCH is a deterministic algorithm that is executed by the
server. A query q is sent to the server; the server takes the encrypted database EDB
and returns the corresponding identifiers of the files EDB(q). After it has retrieved
the file identifiers, the user has to do another interaction with the server to retrieve
the actual files.

Definition 5.2.1. A searchable encryption scheme includes three algorithms {Enc,
QueryGen, Search} that operate as follows:

• Enc(K ,F): the encryption algorithm takes a master key K and a
document set F = {F1, ...,Fn} as input and outputs the encrypted database
EDB := {Enck (F1), ...,EncK (Fn)};

• Quer yGen(w): the query generation algorithm takes a keyword w as input and
outputs a query token q.

• Sear ch(q,EDB): the search algorithm takes a query q and the encrypted
database EDB as input and outputs a subset of the encrypted database EDB,
whose plaintext contains the keyword corresponding to the query q.

5.3. MODELS

5

127

Leakage. A query and the server response are considered the access pattern.
The documents passed over the channel have their volume; this information is
considered the volume pattern. In Section 5.3.1, we will explain the leakage in
more detail.

5.2.2. NOTATION

In the VAL-Attack, we have m′ keywords (w) and m queries (q), and n′
leaked-documents and n server documents, denoted as di and edi , respectively; for
a single document, similarly for wi and qi . Note wi may not be the underlying
keyword for query qi , equal for di and edi . The notations are given in Table 5.1.

Table 5.1: Notation Summary

F Plaintext document set, F = {d1, ...,dn} F ′ Leaked document set, F ′ = {d1, ...,dn′ }

E Server document set, E = {ed1, ...,edn} W Keyword universe, W = {w1, ..., wm}

W ′ Leaked keyword set, W ′ = {w1, ..., wm′ } Q Query set, Q = {q1, ..., qm}

A m′×n′ matrix of leaked documents B m ×n matrix of server documents

M ′ n′×n′ co-occurrence matrix of F ′ M n ×n co-occurrence matrix of E

vi Volume (bit size) of document i |di | Number of keywords in document i

C Set of matched documents R Set of matched queries

5.3. MODELS
In an ideal situation, there is no information leaked from the encrypted database,
the queries sent, or the database setup. Unfortunately, such a scheme is not practical
in real life as it costs substantial performance overheads [20]. The attacker and the
leakage are two concerns in SE schemes, and we will discuss them both in the
following sections, as they can vary in different aspects.

5.3.1. LEAKAGE MODEL

Leakage is what we define as information that is (unintentionally) shared with the
outer world. In our model, the attacker can intercept everything sent from and to
the server. The attacker can intercept a query that a user sends to the server and the
response from the server. It then knows which document identifiers correspond to
which query. This query → document identifier response is what we call the access
pattern. The leakage is defined as [14]:

Definition 5.3.1 (access pattern). The function access pattern (AP) = (APk,t)k,t∈N :
F (k)×W t (k) → [2[n]]t , such that APk,t (D, w1, ..., wt) = D(w1), ...,D(wt).

5

128 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

As discussed earlier, we assume the leakage level is L2 [12], where the attacker does
not know the frequency or the position of the queried keywords in the document
response.

The volume pattern is leakage that tells the size of the document. It is relevant
to all response leaking encryption schemes [3, 5, 16, 21–23] and ORAM-based SE
schemes [24]. The leakage is defined formally as follows [14]:

Definition 5.3.2 (volume pattern). The function volume pattern (Vol) = (V olk,t)k,t∈N :
F (k)×W t (k) → Nt , such that V olk,t (D, w1, ..., wn) = ((|d |w)d∈D(w1), ..., (|d |w)d∈D(wn)),
where | · |w represents the volume in bytes.

Figure 5.1: Technical Framework of Existing Attacks

5.3.2. ATTACK MODEL

The attacker in SE schemes can be a malicious server that stores encrypted data.
Since the server is honest-but-curious [14], it will follow the encryption protocol but
wants to learn as much as possible. Therefore, the attacker is passive but still eager
to learn about the content present on the server. Our attacker has access to some

5.4. THE PROPOSED ATTACK

5

129

leaked plaintext documents, keeps track of the access and volume pattern and
tries to reveal the underlying server data. Fig. 5.1 shows a visualization of our attack
model. We assume that the attacker has access to all the queries and responses
used in the SE scheme. This number of queries is realistic because if one waits
long enough, all the queries and results will eventually be sent over the user-server
channel. The technical framework delineates the LEAP, SubgraphVL and our designed
attack.

The attacker in our model has access to some unencrypted files stored on the
server. This access can be feasible because of a security breach at the setup phase
of the scheme, where the adversary can access the revealed files. Another scenario is
if a user wants to transfer all of his e-mails from his unencrypted mail storage to
an SE storage server. The server can now access all the original mail files, but new
documents will come as new e-mails arrive. Therefore, the adversary has partial
knowledge about the encrypted data present on the server. The attacker has no
access to any existing query to keyword matches and only knows the keywords
present in the leaked files. With this information, the attacker wants to match as
many encrypted document identifiers to leaked documents and queries to keywords
such that he can understand what content is stored on the server.

The passive attacker is less potent than an active attacker, who can upload
documents, with chosen keywords, to the server to match queries to keywords [25].
Furthermore, the attacker has no access to the encryption or decryption oracle.
Because the attacker relies on the access and volume pattern countermeasures
that hide these patterns will reduce the attack performance.

5.4. THE PROPOSED ATTACK

5.4.1. MAIN IDEA

At a high level, our attack is built from the LEAP attack [15] by elevating the
keyword matching metric to increase the number of keyword matches. Furthermore,
each document is labelled with its document volume and number of keywords, and
VAL-attack matches using the uniqueness of this label, improving the recovery rate.
We first extend the matching technique from LEAP. The approach does not consist
of only checking within the matched documents but also keeping track of the
occurrence in the unmatched files. This method results in more recovered keywords
for the improvement of LEAP that provides a way to match rows that do not
uniquely occur in the matched files. We expand the attack by exploiting the volume
pattern since the document size is also leaked from response leaking encryption
schemes, as described in Section 5.3.1. We can extend the comprehensive attack by
matching documents based on the volume pattern. Our new attack fully explores
the leakage information and matches almost all leaked documents. We increase the
keyword matches with the maximal file matches to provide excellent performance.

5

130 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

5.4.2. LEAKED KNOWLEDGE

The server stores all the documents in the scheme. There are a total of n plaintext
files denoted as the set F = {d1, ...,dn}, with in total m keywords, denoted as the set
W = {w1, ..., wm}. We assume the attacker can access:

• The total number of leaked files (i.e. plaintext files) is n′ with in total m′
keywords. Suppose F ′ = {d1, ...,dn′ } is the set of documents known to the
attacker and W ′ = {w1, ..., wm′ } is the corresponding set of keywords that are
contained in F ′. Note that n′ ≤ n and m′ ≤ m.

• The set of encrypted files, denoted as, E = {ed1, ...,edn} and corresponding
query tokens, Q = {q1, ..., qm} with underlying keyword set W .

• The volume of each server observed document or leaked file is denoted as
vx for document dx or server document edx . The number of keywords or
tokens is represented as the size of the document |dx | or |edx | for the same
documents, respectively.

The attacker can construct an m′×n′ binary matrix A, representing the leaked
documents and their corresponding keywords. A[dx][wy] = 1 iff. keyword wy occurs
in document dx . The dot product of A is denoted as the symmetric n′×n′ matrix
M ′, whose entry is the number of keywords that are contained in both document dx

and document dy . We give an example of the matrices with known documents in
Fig. 5.2.

After observing the server’s files and query tokens, the attacker can construct an
m ×n binary matrix B , representing the encrypted files and related query tokens.
B [edx][qy] = 1 iff. query qy retrieved document edx . The dot product of B is denoted
as the symmetric n ×n matrix M , whose entry is the number of query tokens that
retrieve files edx and edy from the server. We give an example of the matrices with
observed encrypted documents in Fig. 5.3.

Figure 5.2: Matrix A and M ′ Example Figure 5.3: Matrix B and M Example

5.4.3. OUR DESIGN

The basis of the attack is to recursively find row and column mappings between
the two created matrices, A and B , where a row mapping represents the underlying
keyword of a query sent to the server, and a column mapping indicates the match
between a server document identifier and a leaked plaintext file. Note that each

5.4. THE PROPOSED ATTACK

5

131

Figure 5.4: Matrix Ac and Bc Example Figure 5.5: Matrix Ar and Br Example

Figure 5.6: An Example of Extended Matrix A

leaked document is still present on the server, meaning that n′ ≤ n and there is a
matching column in B for each column in A. Similarly to the rows, each known
keyword corresponds to a query, so m′ ≤ m as we could know all the keywords, but
we do not know for sure. In theory, there is a correct row mapping for each row in
A to a row in B . The goal of the VAL-Attack is to find as many correct mappings as
possible.

We divide the process of finding as many matches as possible into several steps.
The first step is to prepare the matrices for the rest of the process. The algorithm
then maps columns based on unique column-sum, as they used in the Count attack
[12], but instead of using it on keywords, we try to match documents here. Another
step is matching documents based on unique volume and the number of keywords
or tokens. As this combination can be a unique pattern, we can match many
documents in this step. The matrices M and M ′ are used to match documents based
on co-occurrence. Eventually, we can pair keywords on unique occurrences in the
matched documents when several documents are matched. This technique is used
in the Count attack [12], but we ’simulate’ our own 100% knowledge here. With the
matched keywords, we can find more documents, as these will give unique rows in
matrices A and B that can be matched. We will introduce these functions in detail
in the following paragraphs.

Initialization. First, we initialize the algorithm by creating two empty dictionaries,
to which we eventually add the correct matches. We create one dictionary for
documents and the other for the matched keywords, C (for column) and R (for
row). Next, as we want to find unique rows in the matrices A and B , we must
extend matrix A. It could be possible that not all underlying keywords are known

5

132 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

beforehand, in which case n′ < n, and we have to extend matrix A to find equal
columns. Therefore we extend matrix A to an m ×n′ matrix that has the first m′
rows equal to the original matrix A and the following m −m′ rows of all 0s. See
Fig. 5.6 for an example. The set {wm′+1, ..., wm} represents the keywords that do not
appear in the leaked document set F ′.

Number of keywords. Now that the number of rows in A and B are equal, we can
find unique column-sums to match documents. This unique sum indicates that
a document has a unique number of keywords and can thus be matched based
on this unique factor. Similar to the technique in the Count attack [12], we sum
the columns, here representing the keywords in A and B . The unique columns
in B can be matched to columns in A, as they have to be unique in A as well.
If a column j -sum of B is unique and column j ′-sum of A exists, we can match
documents ed j and d j ′ because they have the same unique number of keywords.

Volume and keyword pattern. The next step is matching documents based on
volume and keyword pattern. If there is a server document ed j with a unique
combination of volume v j and number of tokens |ed j | and there is a document
d j ′ with the same combination, we can match document ed j to d j ′ . However, if
multiple server documents have the same pattern, we need to check for unique
columns with the already matched keywords between these files. Initially, we will
have no matched keywords, but we will rerun this step later in the process. Fig. 5.7
shows a concrete example, and Algorithm 5 describes our method.
Co-occurrence. When having some matched documents, we can use the
co-occurrence matrices M and M ′ to find other document matches. For an
unmatched server document edx , we can try an unmatched leaked document
dy . If Mx,k and M ′

y,k ′ are equal for each matched document pair (edk ,dk ′)

and no other document dy ′ has the same results, then we have a new docu-
ment match between edx and dy . The algorithm for this step is shown in Algorithm 6.

Keyword matching. We match keywords using the matched documents. To this end,
we create matrices Bc and Ac by taking the columns of matched documents from
matrices B and A. Note that these columns will be rearranged to the order of the
matched documents, such that column Bc j is equal to column Ac j ′ for document

match (ed j ,d j ′). Matrices Bc and Ac are shaped m × t and m′× t , respectively, for t
matched documents. We give the algorithm for this segment in Algorithm 7 and a
simple example in Fig. 5.4.

A row in the matrices indicates in which documents a query or keyword appears.
If a rowi in Bc is unique, rowi is also unique in B , similar to Ac and A. Hence, for
rowi in Bc , that is unique, and if there is an equal row j in Ac , we can conclude that
the underlying keyword of qi is w j .

Nevertheless, if rowi is not unique in Bc , we can still try to match the keyword to
a query. A keyword can occur more often in the unmatched documents than their
query candidates; thus, they will not be valid candidates. We create a list Bx with for
each similar rowi in Bc the sum of rowi in B ; similar for list Ax , with rowi in Ac and

5.4. THE PROPOSED ATTACK

5

133

(a) Multiple documents with the same pattern of volume and number of keywords/tokens.

Leaked files · · · d4 d6 d8 · · · dn′

Volume · · · 120 120 120 · · · 120

#Keywords · · · 15 15 15 · · · 18

Server files · · · ed6 ed9 ed10 · · · edn

Volume · · · 120 120 120 · · · 150

#Tokens · · · 20 15 15 · · · 15

(b) With the already matched keywords, create unique columns to match documents. Here
d6 and ed8 can be matched, as well as d9 and ed15.

Figure 5.7: Document matching on volume and number of keywords. Given multiple
candidates, match on a unique column with the already matched
keywords.

the sum of rowi in A. Next, if the highest value of Ax , which is Ax j , is higher than
the second-highest value of Bx , we can conclude that keyword w j corresponds to
the highest value of Bx , i.e. Bx j , which means that w j matches with q j . We put an
example in Fig. 5.8.

Keyword order in documents. We aim to find more documents based on unique
columns given the query and keyword mappings. First, we create matrices Br and
Ar with the rows from the matched keywords in R. Br and Ar are submatrices of
B and A, respectively, with rearranged row order. Br and Ar are shaped t ×n and
t ×n′, respectively, for t matched keywords. Note that we show an example in Fig.
5.5. If any column j of Br is unique and there exists an equal column j ′ in Ar , we
know that ed j is a match with d j ′ .

The next step is to set the rows of the matched keywords to 0 in B and A. Then,

5

134 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

Algorithm 5: matchByVolume(R, A,B)

Input: R: set of matched rows,
A: m ×n′ matrix representing document features,
B : m ×n matrix representing encrypted document features.

Output: C ′: a mapping of matched documents between A and B .
1 Function matchByVolume(R, A,B):
2 Initialize C ′ ← {}
3 Extract patterns ← {(v j , |ed j |) | v j is volume, |ed j | is #tokens of ed j }

4 for p ∈ patterns do
5 enc_docs← [ed j | pattern p]

6 if |enc_docs| = 1 then
7 ed j ← enc_docs[0]

8 C ′[ed j] ← d j ′ with pattern p

9 end
10 else if |R| > 0 then
11 docs← [d j ′ | pattern p]

12 BC R ← enc_docs columns and R rows of B
13 AC R ← docs columns and R rows of A
14 for column j ∈ BC R that is unique do
15 C ′[ed j] ← d j ′ with column j ∈ AC R

16 end
17 end
18 end
19 return C ′

Figure 5.8: Example of matching keywords in matched documents. Query q3 has a
unique row and therefore matches with keyword w1. Queries q1, q2 and
keywords w2, wm′ have the same row. However, keyword wm′ occurs
more often in A than w2 and query q2 in B . Therefore q1 matches with
wm′ .

similar to before, we use the technique from the Count attack [12]; we sum the
updated columns in A and B and try to match the unique columns in B to columns
in A. If a column j -sum of B is unique and an equal column j ′-sum in A exists, we
can match document ed j and d j ′ .

The complete algorithm of our VAL-attack is in Algorithm 8.

5.4. THE PROPOSED ATTACK

5

135

Algorithm 6: coOccurrence(C , M , M ′, A,B)

Input: C : current set of matches,
M : n ×n co-occurrence matrix for encrypted documents,
M ′: n′×n′ co-occurrence matrix for plain documents,
A: m ×n′ matrix representing document features,
B : m ×n matrix representing encrypted document features.

Output: C : updated set of matches.
1 while C is increasing do
2 foreach d j ′ ∉C do
3 sum j ′ ← column j ′ -sum of A

4 candidates ← {ed j ∉C | column j -sum of B = sum j ′ }

5 foreach ed j ∈ candidates do
6 foreach (edk ,dk ′) ∈C do
7 if M j ,k ̸= M ′

j ′,k ′ then

8 candidates ← candidates \{ed j }

9 end
10 end
11 end
12 if |candidates| = 1 then
13 ed j ← candidates[0]

14 C [ed j] ← d j ′

15 end
16 end
17 end
18 return C

5.4.4. COUNTERMEASURE DISCUSSIONS

Some countermeasures have been proposed to mitigate leakage-abuse attacks [12,
13, 26, 27]. The main approaches are padding and obfuscation. Below, we have
some discussions on the countermeasures.

The IKK attack [13] and the Count attack [12] discussed a padding countermeasure,
where they proposed a technique to add fake document identifiers to a query
response. These false positives could then later be removed by the user. This
technique is also called Hiding the Access Pattern [28].

The LEAP attack [15] crucially relies on the number of keywords per document,
and if the scheme adds fake query tokens to documents on the server, they will
not be able to match with their known documents. However, they also proposed a
technique that describes a modified attack that is better resistant to padding. This
technique, which is also used in the Count attack [12], makes use of a window to
match keywords. But this will give false positives and thus reduce the performance
of the attack.

The SubgraphVL attack [14] depends on the volume of each document. Volume-
hiding techniques from Kamara et al. [29] reduce the attack’s performance, but it is
not clear if they completely mitigate the attack.

5

136 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

Algorithm 7: matchKeywords(C , A,B)

Input: C : set of columns for matching,
A: m ×n′ matrix representing document features,
B : m ×n matrix representing encrypted document features.

Output: R: a mapping of matched keywords between A and B .
1 Function matchKeywords(C , A,B):
2 Initialize R ← {}
3 Bc ←C columns of B
4 Ac ←C columns of A
5 for rowi ∈ Bc do
6 if rowi is unique in Bc then
7 if rowi ′ ∈ Ac = rowi then
8 R[qi] ← wi ′
9 end

10 end
11 else

// Match based on occurrence in (server) files
12 end
13 docs← {i ′ ∈ Ac | Ac [i ′] = rowi }
14 e_docs← { j ∈ Bc | Bc [j] = rowi }
15 Bx ← sum of rows in B [e_docs], sorted descending
16 Ax ← sum of rows in A[docs], sorted descending
17 if Bx [1] < Ax [0] < Bx [0] then
18 ix ← index of Bx [0] ∈ e_docs
19 jx ← index of Ax [0] ∈ docs
20 R[qix] ← w jx

21 end
22 end
23 return R

A padding technique that will make all documents of the same size, i.e. adding
padding characters, will reduce the uniqueness in matching based on the volume of
a document. If the padding technique can be extended such that false positives are
added to the access pattern, we have no unique factor in matching documents
based on the number of keywords per file. Therefore, a combination of the two may
decrease the performance of the VAL-Attack.

5.4. THE PROPOSED ATTACK

5

137

Algorithm 8: Attack(A,B , M ′, M)

Input: A: m′×n′ matrix, B : m ×n matrix,
M ′: n′×n′ co-occurrence matrix for plain documents,
M : n ×n co-occurrence matrix for encrypted documents.

Output: R: matched rows, C : matched columns.
1 C ← {},R ← {}// Initialization
2 A ← A where rows are extended with zeros to size m ×n′
3 vectorA ,vectorB ← []// Initialize column sums for matching
4 for j ∈ [n] do
5 vectorB [j] ← sum of column B j

6 end
7 for j ′ ∈ [n′] do
8 vectorA[j ′] ← sum of column A j ′

9 end
10 foreach vectorB j ∈ vectorB that is unique do

11 if vectorA j ′ = vectorB j then

12 C [ed j] ← d j ′

13 end
14 end
15 C ←C ∪matchByVolume(R, A,B)// Match documents with unique volume
16 C ←C ∪coOccurrence(C , M , M ′, A,B)// Match documents based on co-occurrence
17 while R or C is increasing do
18 R ← R ∪matchKeywords(C , A,B)// Match keywords in matched documents
19 Br ← R rows of B
20 Ar ← R rows of A
21 foreach column j ∈ Br that is unique do
22 if column j ′ ∈ Ar = column j then
23 C [ed j] ← d j ′

24 end
25 end
26 C ←C ∪matchByVolume(R, A,B)
27 Set row B j ← 0 if q j ∈ R// Reset matched rows in B

28 Set row A j ′ ← 0 if k j ′ ∈ R// Reset matched rows in A

29 for j ∈ [n] where ed j ̸∈C do
30 vectorB [j] ← sum of column B j

31 end
32 for j ′ ∈ [n′] where d j ′ ̸∈C do
33 vectorA[j ′] ← sum of column A j ′

34 end
35 foreach vectorB j ∈ vectorB that is unique and ed j ̸∈C do

36 if vectorA j ′ = vectorB j and d j ′ ̸∈C then

37 C [ed j] ← d j ′

38 end
39 end
40 C ←C ∪coOccurrence(C , M , M ′, A,B)

41 end
42 return R,C

5

138 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

5.5. EVALUATION
We set up the experiments to run the proposed attack to evaluate the performance.
Furthermore, we compare the file and query recovery of the VAL-Attack with the
results from the LEAP [15] and SubgraphVL attack [14]. We notice that the LEAP
attack is not resistant to the test countermeasures, and Blackstone et al. [14] argue
for their SubgraphVL attack that it is not clear whether volume-hiding constructions
may mitigate the attack altogether. From this perspective, we only discuss the
performance of VAL-Attack against countermeasures in Section 5.5.3. It would be
an interesting problem to test the countermeasures on the LEAP and SubgraphVL

attacks, but that is orthogonal to the focus of this work.

5.5.1. EXPERIMENTAL SETUP

We used the Enron dataset [30] to run our comparison experiments. We leveraged
the _sent_mail folder from each of the 150 users from this dataset, resulting in
30,109 e-mails from the Enron corporation. The second dataset we used is the
Lucene mailing list [31]; we specifically chose the "java-user" mailing list from the
Lucene project for 2002-2011. This dataset contains 50,667 documents. Finally, we
did the tests on a collection of Wikipedia articles. We extracted plaintext documents
from Wikipedia in April 2022 using a simple wiki dump1 and used the tool from
David Shapiro [32] to extract plaintext data, resulting in 204,737 files. The proposed
attack requires matrices of size n ×n; therefore, we limited the number of Wikipedia
files to 50,000. We used Python 3.9 to implement the experiments and run them on
machines with different computing powers to improve running speed.

To properly leverage those data from the datasets for the experiments, we first
extracted the information of the Enron and Lucene e-mail content. The title’s
keywords, the names of the recipients or other information present in the e-mail
header were not used for queries. NLTK corpus [33] in Python is used to get a list
of English vocabulary and stopwords. We removed the stopwords with that tool and
stemmed the remaining words using Porter Stemmer [34]. We further selected the
most frequent keywords to build the keyword set for each document. For each
dataset, we extracted 5,000 words as the keyword set W . Within the Lucene e-mails,
we removed the unsubscribe signature because it appears in every e-mail.

The server files (n) and keywords (m) are all files from the dataset and 5,000
keywords, respectively. The leakage percentage determines the number of files (m′)
known to the user. The attacker only knows the keywords (n′) leaked with these
known documents. The server files and queries construct a matrix B of size m ×n;
while the matrix A of size m′×n′ is constructed with the leaked files. We took the
dot product for both matrices and created the matrices M and M ′, respectively. Note
that the source code to simulate the attack and obtain our results is available here:
https://github.com/StevenL98/VAL-Attack.

Because our attack does not create false positives, the accuracy of the retrieved
files and keywords is always 100%. Therefore, we calculated the percentage of files

1 https://dumps.wikimedia.org/simplewiki/20220401/simplewiki-20220401-pages-meta-cur
rent.xml.bz2

https://github.com/StevenL98/VAL-Attack
https://github.com/StevenL98/VAL-Attack
https://dumps.wikimedia.org/simplewiki/20220401/simplewiki-20220401-pages-meta-current.xml.bz2
https://dumps.wikimedia.org/simplewiki/20220401/simplewiki-20220401-pages-meta-current.xml.bz2

5.5. EVALUATION

5

139

and keywords retrieved from the total leaked files and keywords. Each experiment is
run 20 times to calculate an average over the simulations. We chosen 0.1%, 0.5%,
1%, 5%, 10%, 30% as leakage percentages. The lower percentages are chosen to
compare with the results from the LEAP attack [15], and the maximum of 30% is
chosen because of the stagnation in query recovery.

5.5.2. EXPERIMENTAL RESULTS

The results tested with the different datasets are given in Fig. 5.9a and Fig. 5.9b,
which show the number and percentage of files and keywords recovered by our
attack. The solid line is the average recovery in those plots, and the shades are the
error rate over the 20 runs.

We can see that the VAL-attack recovers almost 98% of the known files and above
93% of the keywords available to the attacker once the leakage percentage reaches
5%. These percentages are based on the leaked documents. When 10% of the Enron
database is leaked, which is 3,010 files with 4,962 keywords, we can match 2,950 files
and 4,909 queries, corresponding to 98% and 99%, respectively. The Lucene dataset
is more extensive than Enron, and therefore we have more files available for each
leakage percentage. One may see that we can recover around 99% of the leaked
files and a rising number of queries, starting from 40% of the available keyword set.
The Wikipedia dataset does not consist of e-mails but rather lengthy article texts.
We reveal fewer files than the e-mail datasets, but we recover just below 90% of
the leaked files, and from 1% leakage, we recover more available keywords than the
other datasets. This difference is probably because of the number of keywords per
file since the most frequent keywords are chosen.

With the technique we proposed, one can match leaked documents to server
documents for almost all leaked documents. Next, the algorithm will compute the
underlying keywords to the queries. It is up to the attacker to allow false positives
and improve the number of (possible) correctly matched keywords, but we decided
not to include it.
Comparison. We compare the performance of VAL-Attack to two attacks with the
Enron dataset. One is the LEAP attack [15] (which is our cornerstone), while the
other is the SubgraphVL attack [14] (as they use the volume pattern as leakage). We
divide the comparison into two parts: the first is for recovering files, and the second
is for queries recovery.

As shown in Fig. 5.10, we recover more files than the LEAP attack, and the gap
in files recovered expands as the leakage percentage increases, see Fig. 5.10a.i.
The difference in the percentage of files recovered is stable, as VAL-Attack recovers
about eight percentage points more files than the LEAP attack, see Fig. 5.10a.ii.
The comparison outcome for recovered queries can be seen in Fig. 5.10b. We can
see that the recovered queries do not show a significant difference with the LEAP
attack as that attack performs outstandingly in query recovery. The most significant
difference is around 5% leakage, where VAL-Attack retrieves around 100 queries more
than the LEAP attack, which could influence a real-world application. Compared
to the SubgraphVL, we see in Fig. 5.10b.ii that the combination of the access
pattern and the volume pattern is a considerable improvement; we reveal about

5

140 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

(a) Exact number and relative percentage of recovered files

(a.i) #Files recovered (a.ii) %Files recovered

(b) Exact number and relative percentage of recovered queries

(b.i) #Queries recovered (b.ii) %Queries recovered

Figure 5.9: Results for VAL-Attack, with the actual number and the percentage of
recovered files and queries for different leakage percentages.

60 percentage points more of the available queries.

5.5.3. COUNTERMEASURE PERFORMANCE

As discussed in Section 5.4.4, there are several options for countermeasures against
attacks on SE schemes. Moreover, since our attack exploits both the access and
volume pattern, countermeasures must mitigate both leakage patterns. The former
can be mitigated by padding the server result, while the latter may be handled using
volume-hiding techniques. However, these approaches may come with impractical
side effects. Padding the server response requires more work on the client-side to
filter out the false positives. This padding can cause storage and reading problems
because the user has to wait for the program to filter out the correct results. The
volume-hiding technique [29] may easily yield significant storage overhead and could

5.5. EVALUATION

5

141

(a) Comparison with LEAP [15] based on the number and percentages of files recovered

(a.i) #Files recovered (a.ii) %Files recovered

(b) Comparison with LEAP [15] and SubgraphVL [14] based on the number and percentages
of queries recovered

(b.i) #Queries recovered (b.ii) %Queries recovered

Figure 5.10: Comparison of VAL-Attack

therefore not be practical in reality. Luckily, Patel et al. [35] illustrated how to reduce
this side effect whilst mitigating the attack.

It is possible to mitigate our attack theoretically by using a combination of padding
and volume hiding. We tested the VAL-attack’s performance with padding, volume
hiding and further a combination, but we did not examine by obfuscation due to
hardware limitations.

We padded the server data using the technique described by Cash et al. [12]. Each
query returned a multiplication of 500 server files, so if the original query returned
600 files, the server now returned 1,000. Padding is done by adding documents to
the server response that to done contain the underlying keyword. These documents
can then later be filtered by the client, but will obfuscate the client’s observation.
We took the naïve approach from Kamara et al. [29] for volume hiding, where we
padded each document to the same volume. By adding empty bytes to a document,
it will grow in size. If done properly, all files will eventually have the same size that

5

142 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

can not be distinguished from the actual size.
We ran the countermeasure experiments on the Enron and the Lucene dataset.

We did not perform the test on the Wikipedia dataset, but we can predict that
the countermeasures may affect the attack performance. We predict that a single
countermeasure will not entirely reduce the attack effectiveness, but a combination
may do.

Because of the exploitation of the two leakage patterns, we see in Table 5.2 that
our attack can still recover files and underlying keywords against only a single
countermeasure. Under a combination of padding and volume hiding, our attack
cannot reveal any leaked file or keyword.

Table 5.2: Performance of VAL-Attack with countermeasures

Table 5.2 is read as follows: The number below the countermeasure is the exact
number of retrieved files or queries, with the relative percentage between brackets.
So for 0.1% leakage under the padding countermeasure, we revealed, on average, 25
files, which was 83.7% of the leaked files. Each experiment ran 20 times. Due to
runtime and hardware limitations, we did not run the experiment with 30% leakage
on the Lucene dataset. However, since we have the results for 10% leakage and
the results for the Enron dataset, we can predict the outcome for 30%. Similar to
the Enron dataset, the recovered data in Lucene increases as the leakage percentage
grows. Therefore, we predict that 30% leakage results in the Lucene dataset is a bit
higher than the 10% leakage.

5.5.4. DISCUSSION ON EXPERIMENTS

We chose specific parameters in the experiments and only compared our attack with
two popular attacks [14, 15]. We give more discussions below.

Parameters. We used 5,000 high selectivity keywords, i.e. keywords that occur
the most in the dataset. This number is chosen because a practical SE application
will probably not have just a few search terms in a real-world scenario. Other
attacks [12–14] have experimented with only 150 query tokens and 500 keywords,
and we argue that this may not be realistic. Our attack is able to recover almost all

5.6. RELATED WORK

5

143

underlying keywords for an experiment with 500 keywords because the number of
files is still equal, but a slight variation in keyword occurrence.

We cut the number of Wikipedia files to 50,000. We did this to better present the
comparison with the Enron and Lucene datasets. The attack may also take longer
to run when all Wikipedia files are considered. The results will also differ as the
number of files leaked increases similarly. The percentage of files recovered will
probably be the same because of keyword distribution among the files.

If we ran the experiments with a higher leakage percentage, the attack would
eventually recover more files, as more are available, but we would not recover more
keywords. As with 30% leakage, we see that we have recovered all 5,000 keywords.

Our attack performs without false positives. And we did so because they would
not improve the performance, and an attacker cannot better understand the data if
he cannot rely on it. If we allowed the attack to return false positives, we would
have 5,000 matches for underlying keywords, of which not all are correct. The attack
performance will not change since we will only measure the correct matches, which
we already did.

Attack comparison. In Fig. 5.10a, we only compared our attack with the LEAP
attack rather than the SubgraphVL attack. We did so because the latter does not
reveal encrypted files and thus cannot be compared. If we choose to compare the
attack to ours, we would have to rebuild their attack using their strategy, which is
out of the scope of this work.

We used the Enron dataset to compare the VAL-Attack to the LEAP and the
SubgraphVL. In their work [14, 15], they used the Enron dataset to show their
performance. If we used the Lucene or Wikipedia dataset instead to present the
comparison, we would have no foundation in the literature to support our claim. A
comparison of all the datasets would still show that our attack surpasses the attacks
since, in theory, we exploit more.

We discussed other attacks, like the IKK and the Count attack, but we did
not compare their performance with ours. While these attacks exploit the same
leakage, we could still consider them. However, since LEAP is considered the most
state-of-the-art attack and it has already been compared with the other attacks in
[15], we thus only have to compare the LEAP attack here. Accordingly, a comparison
with all attacks would not affect the results and conclusion of this paper.

5.6. RELATED WORK
The Count attack [12] uses the number of files returned for the query as their
matching technique; The SubgraphVL [14] matches keywords based on unique
document volumes as if it is the response pattern, and the LEAP attack [15] uses
techniques from previous attacks to match leaked documents and keywords with
high accuracy. Besides the attacks that exploit similar leakage to our proposed
attack, we may also review those attacks that do not. An attack that leverages
similar documents as auxiliary knowledge, called Shadow Nemesis, was proposed by
Pouliot et al. [36]. They created a weighted graph matching problem in the attack
and solved it using Path or Umeyama. Damie et al. [37] presented the Score attack,

5

144 5. VOLUME AND ACCESS PATTERN LEAKAGE-ABUSE SE ATTACK

requiring similar documents, and they matched based on the frequency of keywords
in the server and auxiliary documents. Both attacks use co-occurrence matrices to
reveal underlying keywords. The Search attack by Liu et al. [38] matches based on
the search pattern, i.e. the frequency pattern of queries sent to the server. Table 5.3
briefly compares the attacks based on leakage, auxiliary knowledge, false positives
and exploiting techniques. The reviewed attacks described above are not mainly
relevant to our proposed attack; thus, we did not put them in the comparison in
Section 5.

Table 5.3: Comparison of Different Attacks. A: Access Pattern, S: Search Pattern, V:
Volume Pattern.

Attack Leakage Auxiliary Data False
Positive

IKK [13] A Docs, Queries ✓

Shadow Nemesis [36] A Similar ✓

Score [37] A Similar, Queries ✓

Search14 [38] S Search Freq. ✓

ZKP [25] A All Keywords ×
Count [12] A Docs ✓

SubgraphVL [14] V Docs ✓

LEAP [15] A Docs ×
VAL-Attack A, V Docs ×

5.7. CONCLUSION
We proposed the VAL-attack to improve the matching technique from the LEAP
attack, leveraging the leakage from the access pattern and the volume pattern
which is a combination that has not been exploited before. We showed that our
attack provides excellent performance, and we compared it to the LEAP attack and
the subgraphVL attack. The number of matched files is with more remarkable
improvement than the number of queries recovered compared to the LEAP attack.
The attack recovers around 98% of the leaked documents and above 90% for query
recovery with very low leakage. Since the proposed attack uses both the document
size and the response per query, it requires strong (and combined) countermeasures
and thus, is more harmful than existing attacks.

REFERENCES

[1] D. X. Song, D. A. Wagner, and A. Perrig. “Practical Techniques for Searches
on Encrypted Data”. In: IEEE S&P 2000. IEEE, 2000, pp. 44–55. DOI:
10.1109/SECPRI.2000.848445.

[2] R. Bost, B. Minaud, and O. Ohrimenko. “Forward and Backward Private
Searchable Encryption from Constrained Cryptographic Primitives”. In: ACM
CCS 2017. Ed. by B. Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM,
2017, pp. 1465–1482. DOI: 10.1145/3133956.3133980.

[3] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. “Dynamic Searchable Encryption in Very-Large Databases: Data
Structures and Implementation”. In: NDSS 2014. The Internet Society, 2014.
DOI: 10.14722/ndss.2014.23264.

[4] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.
“Highly-Scalable Searchable Symmetric Encryption with Support for Boolean
Queries”. In: CRYPTO 2013, Part I. Ed. by R. Canetti and J. A. Garay. Vol. 8042.
LNCS. Springer, 2013, pp. 353–373. DOI: 10.1007/978-3-642-40041-4_20.

[5] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. “Searchable symmetric
encryption: improved definitions and efficient constructions”. In: ACM CCS
2006. Ed. by A. Juels, R. N. Wright, and S. D. C. di Vimercati. ACM, 2006,
pp. 79–88. DOI: 10.1145/1180405.1180417.

[6] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. “Public Key
Encryption with Keyword Search”. In: EUROCRYPT 2004. Ed. by C. Cachin
and J. Camenisch. Vol. 3027. LNCS. Springer, 2004, pp. 506–522. DOI:
10.1007/978-3-540-24676-3_30.

[7] R. Zhang and H. Imai. “Combining Public Key Encryption with Keyword
Search and Public Key Encryption”. In: IEICE Trans. Inf. Syst. 92-D.5 (2009),
pp. 888–896. DOI: 10.1587/transinf.E92.D.888.

[8] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,
G. Neven, P. Paillier, and H. Shi. “Searchable Encryption Revisited: Consistency
Properties, Relation to Anonymous IBE, and Extensions”. In: CRYPTO 2005.
Ed. by V. Shoup. Vol. 3621. LNCS. Springer, 2005, pp. 205–222. DOI:
10.1007/11535218_13.

[9] Q. Zheng, S. Xu, and G. Ateniese. “VABKS: Verifiable attribute-based keyword
search over outsourced encrypted data”. In: IEEE INFOCOM 2014. IEEE, 2014,
pp. 522–530. DOI: 10.1109/INFOCOM.2014.6847976.

145

https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.14722/ndss.2014.23264
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1587/transinf.E92.D.888
https://doi.org/10.1007/11535218_13
https://doi.org/10.1109/INFOCOM.2014.6847976

5

146 REFERENCES

[10] W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song. “ShadowCrypt: Encrypted
Web Applications for Everyone”. In: ACM CCS 2014. Ed. by G. Ahn, M. Yung,
and N. Li. ACM, 2014, pp. 1028–1039. DOI: 10.1145/2660267.2660326.

[11] B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva. “Mimesis
Aegis: A Mimicry Privacy Shield-A System’s Approach to Data Privacy on Public
Cloud”. In: USENIX 2014. Ed. by K. Fu and J. Jung. USENIX Association, 2014,
pp. 33–48. URL: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/lau.

[12] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. “Leakage-Abuse Attacks Against
Searchable Encryption”. In: ACM CCS 2015. Ed. by I. Ray, N. Li, and C. Kruegel.
ACM, 2015, pp. 668–679. DOI: 10.1145/2810103.2813700.

[13] M. S. Islam, M. Kuzu, and M. Kantarcioglu. “Access Pattern disclosure
on Searchable Encryption: Ramification, Attack and Mitigation”. In: NDSS
2012. The Internet Society, 2012. URL: https://www.ndss-symposium.
org/ndss2012/access- pattern- disclosure- searchable- encryption-
ramification-attack-and-mitigation.

[14] L. Blackstone, S. Kamara, and T. Moataz. “Revisiting Leakage Abuse Attacks”.
In: NDSS 2020. The Internet Society, 2020. DOI: 10.14722/ndss.2020.23103.

[15] J. Ning, X. Huang, G. S. Poh, J. Yuan, Y. Li, J. Weng, and R. H. Deng.
“LEAP: Leakage-Abuse Attack on Efficiently Deployable, Efficiently Searchable
Encryption with Partially Known Dataset”. In: ACM CCS 2021. Ed. by
Y. Kim, J. Kim, G. Vigna, and E. Shi. ACM, 2021, pp. 2307–2320. DOI:
10.1145/3460120.3484540.

[16] S. Kamara, C. Papamanthou, and T. Roeder. “Dynamic searchable symmetric
encryption”. In: ACM CCS 2012. Ed. by T. Yu, G. Danezis, and V. D. Gligor.
ACM, 2012, pp. 965–976. DOI: 10.1145/2382196.2382298.

[17] B. Minaud and M. Reichle. Dynamic Local Searchable Symmetric Encryption.
arXiv preprint. 2021. arXiv: 2201.05006. URL: https://arxiv.org/abs/2201.
05006.

[18] J. Li, X. Niu, and J. S. Sun. “A Practical Searchable Symmetric Encryption
Scheme for Smart Grid Data”. In: IEEE ICC 2019. IEEE, 2019, pp. 1–6. DOI:
10.1109/ICC.2019.8761599.

[19] I. Demertzis and C. Papamanthou. “Fast Searchable Encryption With
Tunable Locality”. In: ACM SIGMOD 2017. Ed. by S. Salihoglu, W. Zhou,
R. Chirkova, J. Yang, and D. Suciu. ACM, 2017, pp. 1053–1067. DOI:
10.1145/3035918.3064057.

[20] Z. Gui, K. G. Paterson, and S. Patranabis. Rethinking Searchable Symmetric
Encryption. Cryptology ePrint Archive, Paper 2021/879. 2021. URL: https:
//eprint.iacr.org/2021/879.

[21] R. Bost. “
∑

oϕoς: Forward Secure Searchable Encryption”. In: ACM CCS 2016.
Ed. by E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi.
ACM, 2016, pp. 1143–1154. DOI: 10.1145/2976749.2978303.

https://doi.org/10.1145/2660267.2660326
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/lau
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/lau
https://doi.org/10.1145/2810103.2813700
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://doi.org/10.14722/ndss.2020.23103
https://doi.org/10.1145/3460120.3484540
https://doi.org/10.1145/2382196.2382298
https://arxiv.org/abs/2201.05006
https://arxiv.org/abs/2201.05006
https://arxiv.org/abs/2201.05006
https://doi.org/10.1109/ICC.2019.8761599
https://doi.org/10.1145/3035918.3064057
https://eprint.iacr.org/2021/879
https://eprint.iacr.org/2021/879
https://doi.org/10.1145/2976749.2978303

REFERENCES

5

147

[22] M. Chase and S. Kamara. “Structured Encryption and Controlled Disclosure”.
In: ASIACRYPT 2010. Ed. by M. Abe. Vol. 6477. LNCS. Springer, 2010,
pp. 577–594. DOI: 10.1007/978-3-642-17373-8_33.

[23] S. Kamara and C. Papamanthou. “Parallel and Dynamic Searchable Symmetric
Encryption”. In: FC 2013. Ed. by A. Sadeghi. Vol. 7859. LNCS. Springer, 2013,
pp. 258–274. DOI: 10.1007/978-3-642-39884-1_22.

[24] Q. Ma, J. Zhang, Y. Peng, W. Zhang, and D. Qiao. “SE-ORAM: A Storage-Efficient
Oblivious RAM for Privacy-Preserving Access to Cloud Storage”. In: IEEE
CSCloud 2016. Ed. by M. Qiu, L. Tao, and J. Niu. IEEE Computer Society, 2016,
pp. 20–25. DOI: 10.1109/CSCloud.2016.24.

[25] Y. Zhang, J. Katz, and C. Papamanthou. “All Your Queries Are Belong to Us: The
Power of File-Injection Attacks on Searchable Encryption”. In: USENIX 2016.
Ed. by T. Holz and S. Savage. USENIX Association, 2016, pp. 707–720. URL:
https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/zhang.

[26] G. Chen, T. Lai, M. K. Reiter, and Y. Zhang. “Differentially Private Access
Patterns for Searchable Symmetric Encryption”. In: IEEE INFOCOM 2018. IEEE,
2018, pp. 810–818. DOI: 10.1109/INFOCOM.2018.8486381.

[27] Z. Shang, S. Oya, A. Peter, and F. Kerschbaum. “Obfuscated Access and Search
Patterns in Searchable Encryption”. In: NDSS 2021. The Internet Society,
2021. URL: https://www.ndss-symposium.org/ndss-paper/obfuscated-
access-and-search-patterns-in-searchable-encryption/.

[28] Y. Kortekaas. Access Pattern Hiding Aggregation over Encrypted Databases. Oct.
2020. URL: http://essay.utwente.nl/83874/.

[29] S. Kamara and T. Moataz. “Computationally Volume-Hiding Structured
Encryption”. In: EUROCRYPT 2019, Part II. Ed. by Y. Ishai and V. Rijmen.
Vol. 11477. LNCS. Springer, 2019, pp. 183–213. DOI: 10.1007/978-3-030-
17656-3_7.

[30] C. William W. Cohen MLD. Enron Email Datasets. 2015. URL: https:
//www.cs.cmu.edu/~enron/.

[31] Apache. Mail Archieves of Lucene. 1999. URL: https://mail-archives.
apache.org/mod_mbox/#lucene.

[32] D. Shapiro. Convert Wikipedia database dumps into plaintext files. 2021. URL:
https://github.com/daveshap/PlainTextWikipedia.

[33] S. Bird, E. Klein, and E. Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. O’Reilly Media, Inc, 2009.

[34] M. F. Porter. “An algorithm for suffix stripping”. In: Program 40 (1980),
pp. 211–218.

[35] S. Patel, G. Persiano, K. Yeo, and M. Yung. “Mitigating Leakage in Secure
Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps via Hashing”.
In: ACM SIGSAC 2019. Ed. by L. Cavallaro, J. Kinder, X. Wang, and J. Katz.
ACM, 2019, pp. 79–93. DOI: 10.1145/3319535.3354213.

https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1109/CSCloud.2016.24
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://doi.org/10.1109/INFOCOM.2018.8486381
https://www.ndss-symposium.org/ndss-paper/obfuscated-access-and-search-patterns-in-searchable-encryption/
https://www.ndss-symposium.org/ndss-paper/obfuscated-access-and-search-patterns-in-searchable-encryption/
http://essay.utwente.nl/83874/
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1007/978-3-030-17656-3_7
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
https://mail-archives.apache.org/mod_mbox/#lucene
https://mail-archives.apache.org/mod_mbox/#lucene
https://github.com/daveshap/PlainTextWikipedia
https://doi.org/10.1145/3319535.3354213

5

148 REFERENCES

[36] D. Pouliot and C. V. Wright. “The Shadow Nemesis: Inference Attacks on
Efficiently Deployable, Efficiently Searchable Encryption”. In: ACM SIGSAC
2016. Ed. by E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi. ACM, 2016, pp. 1341–1352. DOI: 10.1145/2976749.2978401.

[37] M. Damie, F. Hahn, and A. Peter. “A Highly Accurate Query-Recovery Attack
against Searchable Encryption using Non-Indexed Documents”. In: USENIX
2021. Ed. by M. Bailey and R. Greenstadt. USENIX Association, 2021, pp. 143–
160. URL: https://www.usenix.org/conference/usenixsecurity21/
presentation/damie.

[38] C. Liu, L. Zhu, M. Wang, and Y. Tan. “Search pattern leakage in searchable
encryption: Attacks and new construction”. In: Information Sciences 265 (2014),
pp. 176–188. ISSN: 0020-0255. DOI: 10.1016/j.ins.2013.11.021.

https://doi.org/10.1145/2976749.2978401
https://www.usenix.org/conference/usenixsecurity21/presentation/damie
https://www.usenix.org/conference/usenixsecurity21/presentation/damie
https://doi.org/10.1016/j.ins.2013.11.021

6
FILE-INJECTION ATTACKS ON SE,

BASED ON BINOMIAL STRUCTURES

One distinguishable feature of file-inject attacks on searchable encryption schemes is
the 100% query recovery rate, i.e., confirming the corresponding keyword for each
query. The main efficiency consideration of file-injection attacks is the number of
injected files. In the work of Zhang et al. (USENIX 2016), | log2 |K || injected files are
required, each of which contains |K |/2 keywords for the keyword set K . Based on
the construction of the uniform (s,n)-set, Wang et al. need fewer injected files when
considering the threshold countermeasure. In this work, we propose a new attack that
further reduces the number of injected files where Wang et al. needs up to 38% more
injections to achieve the same results. The attack is based on an increment (s,n)-set,
which is also defined in this paper.

This chapter is based on the paper “File-Injection Attacks on Searchable Encryption, Based on
Binomial Structures” by Langhout, T., Chen, H., and Liang K. in ESORICS (3) 2024: 424-443

149

6

150 6. FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES

6.1. INTRODUCTION

Ensuring exclusive data access remains a paramount concern, often necessitating
external cloud servers due to limited user storage capacity. To enable efficient data
searches, these servers must implement search-over-plaintext methods for speed and
efficacy.

Song et al. [1] were pioneers in proposing a cryptographic scheme tailored to
address the challenge of searching encrypted data, particularly enabling controlled
and concealed keyword searches. This general searchable encryption (SE) framework
entails the storage of an index and database on the server. Each keyword
within a file undergoes independent encryption, alongside the encryption of the
file as a whole. Retrieval of files containing specific keywords involves the user
generating a token by encrypting the desired keyword, which is then matched
against all encrypted keywords stored on the server. Upon a match, the entire
encrypted file is returned to the user for decryption. Since the introduction of
this foundational scheme, numerous researchers have proposed diverse variants of
SE schemes [2–8]. These schemes offer varying levels of file and keyword privacy,
with the ORAM scheme emerging as the most secure, effectively concealing access
pattern leakage [8]. However, schemes with minimal leakage patterns tend to be
computationally intensive and impractical. Alternatively, other proposed schemes,
while computationally less burdensome, permit a marginally higher degree of
leakage. Cash et al. [9] categorized these schemes into distinct leakage levels:
L1, L2, L3, and L4, each revealing different degrees of information about keyword
occurrences. Subsequent studies have demonstrated the potential exploitation of
even minimal leakage to extract significant information from databases, emphasizing
the critical role of prior knowledge in facilitating successful attacks [10–13]. Recovery
of keywords involves retrieving the keyword associated with the queried token,
representing an encrypted keyword of a file.

Attacks on SE schemes may manifest as either passive or active. Passive attacks
entail the observation of leakage patterns to construct keyword-query matches [11,
14–16]. These attacks refrain from interfering with protocols and leverage preexisting
knowledge to execute their strategies. Passive attacks typically target weaker
schemes exhibiting higher leakage levels (L2-L4) and often necessitate external or
prior knowledge for execution. Conversely, active attacks involve servers injecting
files into a user’s database to glean insights. Injection attacks leverage either file
access patterns or volume patterns [9, 12, 17–20]. This paper will be based on
file-injections with the use of file access pattern leakage. Active attacks, typically
assuming L1 leakage or less, necessitate minimal prior knowledge, contrasting with
the requirements of passive attacks. Successful recovery of keywords in active attacks
is consistently achieved with 100% accuracy, with the performance metric being the
number of injections required for a successful attack.

Cash et al. [9] were among the first to introduce an active attack wherein the server
sends files to the client, subsequently encrypted and stored by the client. These
attacks typically assume L2-L3 leakage, akin to passive attacks. Attackers construct
files of their choosing and transmit them to users, compelling the application of
the scheme to the received file, thereby enabling the observation of ciphertext by

6.2. PRELIMINARIES

6

151

the server. Zhang et al. [17] categorized such attacks as file-injection attacks and
introduced the Binary-attack, premised on L1 leakage and injecting half of the
keyword universe per injection, akin to binary search methodologies. Note that there
have been other types of attacks on SE systems, e.g., [21–24], and also interesting
secure solutions, such as [25, 26]. We refer interested readers to these research
works.

Countermeasures such as thresholds and padding are implemented to impede
the success of attacks. Thresholds impose limits on the number of keywords a
file can contain, while padding obscures actual results by introducing additional
files alongside queried files. Wang et al. [18] proposed an alternative approach to
injection attacks based on finite set theory, offering superior performance compared
to previous methods. This approach, known as the FST-attack, necessitates fewer
injections than the Binary-attack under certain conditions, leveraging so-called
(s,n)-sets to enhance attack efficacy. Despite these advancements, the FST-attack’s
reliance on complete (s,n)-sets for all identified keywords represents a notable
limitation.

Organization of the paper. The organization of the rest of the paper goes as
follows. In Chapter 6.2, the description of the SSE scheme, file-injection, thresholds,
and the latest state-of-the-art full file-injection attack on SSE schemes are given. In
Chapter 6.3, our Binomial-attack is explained in detail, together with how it can
easily be applied under any threshold and dataset size, and the performances of
our attack compared to previous file-injection attacks are visualised. In Chapter 6.4,
we show the consequences of padding on our attack and compare these with the
consequences on the FST-attack. In Chapter 6.5, a mitigation is proposed to perform
better under a scheme that uses padding, with minimal trade-off. In Chapter 6.6
and 6.7 the results and untouched topics of the paper are debated. Finally, the paper
is summarized in Chapter 6.8.

6.2. PRELIMINARIES

6.2.1. SEARCHABLE ENCRYPTION

A searchable encryption (SE) scheme has three algorithms: encryption, search, and
update (only for dynamic) algorithms.

The encryption algorithm takes as input a set of files F = {F1, · · · ,Fn} and a secret
key from the data owner, and outputs the encrypted files. These ciphertexts are then
stored on the cloud server. The search algorithm takes a secret key and a keyword
k as input, and outputs a query(token) t , which allows the cloud server to search
the files that contain the corresponding keyword k among the encrypted files. The
data owner can then decrypt the returned documents from the server and identify
all related files to the keyword k. The update algorithm only applies to the dynamic
SE schemes, which outputs updated files, given a secret key and a set of files.

6

152 6. FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES

6.2.2. FILE INJECTION ATTACK

One of the goals of the attacker is called query recovery. The attack attempts to
recover the underlying keywords to queries, which threatens query privacy and file
privacy. We focus on file-injection attacks in this paper.

Instead of passive attacks, the attacker in file-injection attacks is active by sending
to the data owner some proper documents, which are then encrypted by the latter
and also stored on the cloud according to the SE schemes. As an example, one can
inject files to a user by sending designed emails in the email system. The attacker
then observes the returned files, especially its own injected files, corresponding to
the queries through the search algorithm. According to the returned (previously
injected) files, the attacker can achieve the goal of query recovery.

The first file-injection attack is proposed by Cash et al.[9] and further improved by
Zhang et al.[17]. We show an example of the binary-search attack in Table 6.1 that
injects log2(|K |) files and achieves a 100% query recovery, where |K | is the size of
the keyword set. In this example, if returned files corresponding to a query t are F1

and F3, then we know its underlying keyword is k2. Analogously, other keywords can
also be matched according to different combinations of returned files.

Files k1 k2 k3 k4 k5 k6 k7 k8

F1 1 1 1 1 0 0 0 0
F2 1 0 1 0 1 0 1 0
F3 1 1 0 0 1 1 0 0

Table 6.1: An example of the binary-attack file with a keyword universe of 8.
Keywords are assigned into files: F1, F2, F3, where 1 denotes the presence
of the corresponding keyword and 0 indicates its absence.

In this work, our file-injection attack is based on the same assumption in [9,
17] that the attacker knows the file access pattern (i.e., knowing the returned files
according to queries) and also can identify the files on the cloud corresponding to
its injected files. One distinguishable feature of file-inject attacks is the 100% query
recovery rate, so we evaluate the efficiency of such attacks from the number of
injected files.

Wang et al.[18] further improved the work [17] to deal with the countermeasures
of a threshold of a maximal number of keywords in each file.

6.2.3. FST-ATTACK

In this section, we review the definition of a uniform (s,n)-set and how the
FST-attack works [18], based on the uniform (s,n)-set. The method to construct a
uniform (s,n)-set of a finite set is presented by Liu and Cao [27].

Definition 6.2.1 (Uniform (s,n)-set [18]). Let a set A = {d1,d2, · · · ,dm} and the subsets
A1, A2, · · · , An ⊂ A be called a uniform (s,n)-set of A (m ≥ (n

s−1

)
) if the following three

conditions are satisfied:

6.2. PRELIMINARIES

6

153

• |A1| = |A2| = · · · = |An |;

• For any s subsets Ai1 , · · · , Ais ∈ {A1, · · · , An}, there is
s⋃

j=1
Ai j = A;

• For any s −1 subsets Ai1 , · · · , Ais−1 ∈ {A1, · · · , An} there is
s−1⋃
j=1

Ai j = A\{di }.

Where n denotes the number of injected files, |Ai | the size of each injected file, and m
the keyword universe.

A uniform (s,n)-set for a finite set with size m has the following properties, when
we choose m = (n

s−1

)
.

Lemma 6.2.2 ([18]). Let (A1, A2, · · · , An) be a uniform (s,n)-set, then we have

• Size. The size of each file Ai is |Ai | =
(n −1

s −1

)
for 1 ≤ i ≤ n.

• Intersection. Let r = n − s +1, then the size of the intersection of arbitrary r files
is only 1: |∩r

j=1 Ai j | = 1.

Based on the uniform (s,n)-set, Wang et al. [18] present a file-injection attack to
SE. We assume the keyword set K= {k1,k2, · · · ,km}.

Their basic attack is to first construct a uniform (s,n)-set {A1, A2, · · · , An} based
on the technique presented by Liu and Cao [27] for the keyword set K such
that

(n
s−1

)≥ m it means the maximal number of keywords in the uniform (s,n)-set
is greater than the keyword size m), and then generate a file set of size n:
{D1,D2, · · · ,Dn}, where the file Di contains the same keyword in the Ai for 1 ≤ i ≤ n.
Those files are then injected into the SE scheme, and the attack recovers the keyword
corresponding to a token by the returned n − s +1 files. The correctness of the basic
attack is guaranteed by Lemma 6.2.2, i.e., there only exists one keyword in the
intersection of n − s +1 files.

When the threshold countermeasure is taken into consideration, that is the number
of keywords in each file should be smaller than a threshold T , they proposed an
advanced file-injection attack, aiming at obtaining a minimum n, the number of files
that should be injected. Towards this goal, they choose the minimum n such that

(
n −1

s −1

)
≤ T(

n

s −1

)
≥ m.

(6.1)

Moreover, they present look-up tables to determine the optimal s and n
corresponding to the threshold T and the number of keywords in different intervals.

As an example of recovering 23 keywords {k1,k2, · · · ,k23} with threshold 7, we solve
the Eq. (6.1) for T = 7 and m = 23 and then get a minimum n = 8 and s = n −1 = 7.
The corresponding injected files according to a uniform (7,8)-set are shown in Table

6

154 6. FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES

6.2. Note that some parts in files {D1, · · · ,D8} are left as blank since the number of
keywords in these files has reached 23. Each keyword can be matched by n− s+1 = 2
returned files. For example, if files D1 and D2 are returned after a query to a token
t , we know the corresponding keyword to t is k1.

(7,8)-set

Files Col1 Col2 Col3 Col4 Col5 Col6 Col7

F1 k22 k23

F2 k16 k17 k18 k19 k20 k21

F3 k11 k12 k13 k14 k15 k21

F4 k7 k8 k9 k10 k15 k20

F5 k4 k5 k6 k10 k14 k19

F6 k2 k3 k6 k9 k13 k18

F7 k1 k3 k5 k8 k12 k17 k23

F8 k1 k2 k4 k7 k11 k16 k22

Table 6.2: An example of recovering 23 keywords with threshold T =7 by the uniform
(7,8)-set.

This example also explains our major motivation: a single uniform (s,n)-set of
the keyword set may not maximize the ability of a file injection attack, or in other
words, the number of injected files n is not optimal. The reason is the number of
keywords in injected files may be far from reaching the threshold.

6.3. A NEW FILE-INJECTION ATTACK

In this chapter, we present our new file-injection attack on searchable encryption
schemes. It is based on our new definition of a subset family of a finite set, called
increment [r,n]-set. Our main technique is to construct an increment [r,n]-set of the
keyword set. Compared to the uniform (s,n)-set used in [18], the increment [r,n]-set
enables us to put more keywords in the injected files, thus significantly reducing the
number of injected files.

6.3.1. INCREMENT [r,n]-SET

The main idea of the increment [r,n]-set is to optimize the available space in the
injected files, which are defined as follows.

Definition 6.3.1 (Increment [r,n]-set). Let A be a set, then the subsets
A1, A2, · · · , An ⊂ A are called an increment [r,n]-set of A if the following conditions are
satisfied:

• |A1| = |A2| = · · · = |An−r+1|;

6.3. A NEW FILE-INJECTION ATTACK

6

155

• Elements in A1, A2, · · · , An are separated into r blocks such that the i -th
(1 ≤ i ≤ r) block of A1, A2, · · · , An forms a uniform (n − i +1,n)-set of the union
set of the i -th block of A1, A2, · · · , An .

An (s,n)-set is here a single block and the increment [r,n]-set consists out of
multiple (s,n)-sets (blocks), where the r is increased per block. Recall that for a
uniform (s,n)-set, a keyword can be uniquely recovered by r = n− s+1 returned files.
Therefore, the keywords in the i -th block of an increment [r,n]-set are determined
by n − (n − i +1)+1 = i files, since the i -th block is a uniform (n − i +1,n)-set by
definition. That is, the keywords in the 1st block can be represented by 1 file, the
keywords in the 2nd block by 2 files, and so on. This is what we call an increment.
We refer to Table 6.3 for a visual example.

We denote the i -th block of A j by Ai
j for 1 ≤ j ≤ n, and then we get the following

corollary which follows from Lemma 6.2.2.

Corollary 6.3.2. If (A1, A2, · · · , An) is an increment [r,n]-set of A, then we have

|Ai
j | =

(n −1
n − i

)
,

for 1 ≤ i ≤ r,1 ≤ j ≤ n.

Therefore, we know that the size of A j is |A j | =∑s
i=1

(n−1
n−i

)
for 1 ≤ j ≤ n. The main

idea of our basic file-injection attack is to construct an increment [r,n]-set, instead
of completely independent (s,n)-sets spread over different chunks of files, as FST
does. We are aiming at reducing the total number of injected files n to as few
files as possible. Keywords are recovered according to the different combinations of
returned files (details are present in Section [6.3.2]).

We give an example of an increment [r,n]-set of the keyword set {k1,k2, · · · ,k23}
with threshold seven for a comparison to the example in Table 6.2. We compute r
and the minimum n such that 

r∑
i=1

(
n −1

n − i

)
≤ 7

r∑
i=1

(
n

n − i

)
≥ 23,

(6.2)

and then we get r = 3 and n = 6. The increment [3,6]-set of the aimed keyword
set is shown in Table 6.3. Compared to Example 6.2.3, it reduces the number of
injected files from 8 to 6! Every space in these files is filled with keywords, while still
controlling the total number of keywords within the threshold.

6.3.2. CONSTRUCTION OF INCREMENT [r,n]-SET

In this section, we present a way to construction of increment [r,n]-set of a finite
set, which uses the method of constructing uniform (s,n)-set as a subroutine (we
also provide a new construction of uniform (s,n)-set in the full version [28]).

6

156 6. FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES

(6,6)-set (5,6)-set (4,6)-set

Files Col1 Col2 Col3 Col4 Col5 Col6 Col7

F1 k1 k7 k10 k13 k15 k19 k22

F2 k2 k7 k11 k14 k16 k20 k22

F3 k3 k8 k11 k13 k17 k21 k22

F4 k4 k8 k12 k14 k18 k19 k23

F5 k5 k9 k12 k15 k17 k20 k23

F6 k6 k9 k10 k16 k18 k21 k23

Table 6.3: An example of recovering 23 keywords with threshold T =7 by an increment
[3,6]-set, which is divided into 3 blocks. Keywords in the 1st, 2nd, and 3rd
block can be recovered by 1, 2, and 3 returned files, respectively.

Given as input the size of the keyword m and threshold of the number of keywords
in a file T , we aim to construct an increment [r,n]-set of the keyword set with
the minimum n such that (1) the size of each file should not be greater than the
threshold T , and (2) the maximal number of keywords that those files can recover is
at least m. To maximize the recovery ability under condition (1), our overall idea is
to construct r uniform (n − i +1,n)-sets for 1 ≤ i ≤ r and return the first T columns
as the aimed set. Then by Lemma 6.2.2, we know the first r −1 blocks take

∑r−1
i=1

(n−1
n−i

)
columns and can recover

∑r−1
i=1

(n
n−i

)
keywords in total. The last block takes the rest

T −∑r−1
i=1

(n−1
n−i

)
columns and allows to recover ⌊n/r · [T −∑r−1

i=1

(n−1
n−i

)
]⌋ keywords. Then

the condition (2) is equal to

r−1∑
i=1

(
n

n − i

)
+

⌊
n

r
·
[

T −
r−1∑
i=1

(
n −1

n − i

)]⌋
≥ m. (6.3)

We proceed in the discussion of r starting from 1 to T . For each r , we record all the
possible n to the Inequality 6.3, with the minimum one as the optimal solution. For
simplicity of exposition, we denote N K (r,n) as the left part of the above inequality.
The whole process of constructing an increment [r,n]-set is present in Algorithm 9.

Going back to Example 6.2.3, we compute the Inequality 6.3 to get
candi d ate = [(2,7), (3,6), (4,7)]. Then we know the optimal increment [r,n]-set is
r = 3, and n = 6.

6.3.3. BINOMIAL-ATTACK

Given the keyword universe K= {k1,k2, · · · ,km} and the threshold T as the maximal
number of keywords in each file, we present our file injection attack in Algorithm
10, which is based on the increment [r,n]-set of the K.

Now that the structure of the attack is understood, we can proceed to calculate
the required number of injections to achieve the desired number of identifiable
keywords. There are multiple formulas to calculate the required number of injections.

6.3. A NEW FILE-INJECTION ATTACK

6

157

Algorithm 9: Construction of Increment [r,n]-Set

Input: Number of keywords m, threshold T .
Output: An increment [r,n]-set of the keyword set {k1,k2, · · · ,km }.

1 Initialize an empty candidate set: candi d ate ← []
2 for r = 1 to T do
3 Solve n from N K (r,n) ≥ T and denote the minimum n as n0
4 Append (r,n0) to candi d ate

5 end
6 Find (r,n0) with the minimum n0 and corresponding r from candi d ate
7 for i = 1 to r do
8 Construct a uniform (n0 − i +1,n0)-set of keywords with index from

9
∑i−1

j=1

(n0−1
n0− j

)
to

∑i
j=1

(n0−1
n0− j

)
using the technique proposed in [28]

10 end
11 return the first T columns of the created files

Algorithm 10: Binomial-Attack

Input: Keyword set K= {k1,k2, · · · ,km }, threshold T , a query token t .
Output: Keyword corresponding to the token t .

1 Generate an increment [r,n]-set A1, A2, · · · , An of K with threshold T using Algorithm 9
2 for j = 1 to n do
3 Create a file D j containing the same keywords as A j

4 end
5 Inject files {F1,F2, · · · ,Fn } into the SE scheme
6 return the corresponding keyword to t based on the returned i files (1 ≤ i ≤ r)

The appropriate formula to utilize depends on at which (n−r +1,n)-set the threshold
will limit the attack from injecting more combinations.

DECIDING THE NUMBER OF INJECTIONS.

The attack always starts with r = 1 and progresses incrementally from there on forth.
At some point within an (n − r +1,n)-set, the threshold will limit the number of
keywords it can inject. Refer to Table 6.3 for a visual representation.

By Eq. 6.3 we know the number of keywords an (n − r +1,n)-set can utilize for
a certain threshold, under a specific r . When the threshold is reached in the
(n−1,n)-set, where r = 2 the equation can be written in terms of n like the following:

F2(K ,T) = 2K

T +1
(6.4)

Similarly to the (n −2,n)-set, where r = 3, the equation becomes:

F3(K ,T) = −(3+2T)+
√

(3+2T)2 +24K

2
(6.5)

The formulas F4(K ,T) and beyond are only of relevance when the threshold is a
significant portion of the number of keywords that need to be injected.

6

158 6. FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES

DECIDING THE INJECTION FORMULAS.

The next step involves determining the appropriate utilization of each formula for
different scenarios.

To determine the appropriate value for r in the increment [r,n]-set, we must
assess whether the threshold allows for additional keywords in the files following a
uniform (n−r +1,n)-set. This evaluation must be conducted for each r , commencing
at r = 2. By Lemma 6.2.2 we know the first two blocks utilize a total of n columns.
Therefore if T > n, the (n −2,n)-set can also be used. However, the value of n
remains unknown at this stage. To address this uncertainty, we substitute n = T into
F2. This yields the threshold at which both the (n − r +1,n)-sets in the increment
[2,n]-set become uniform and precisely meet the threshold. If the keyword universe
exceeds this value, the attack will require more than T injections. Conversely, if
the keyword universe falls below this value, fewer than T injections are required.
Consequently, there will be residual space in the injected files for (at least) the
(n −2,n)-set. The minimum value of K to only be able to build up to an Increment
[2,n]-set is outlined as follows:

Mi nF2 (T) = 1

2
T 2 + 1

2
T (6.6)

F2 should be applied when the outcome of Mi nF2 (T) ≤ K . Alternatively, the formula
of Mi nF3 determines whether F3 or F4 should be utilized. Following the same
procedures as before, we get:

Mi nF3 (T) = 2+T

3
· 1+p

8T −7

2
+ T −1

3
(6.7)

These formulas already hold an improvement over FST, since FST had a lookup
table with overlapping values and no clear points to choose from. Using our previous
example 6.2.3, we see Mi nF2 (7) > 23 and Mi nF3 (7) < 23. This means we need to use
F3, which results in F3(23,7) = 6 files.

6.3.4. PERFORMANCE UNDER DIFFERENT THRESHOLDS

The results consistently demonstrate the superiority of the Binomial-attack over the
FST-attack across various thresholds and dataset sizes.

The Binomial-attack consistently outperforms the FST-attack with at least one
injected file, regardless of the dataset size. With a threshold of 200, the most
substantial disparity occurs in datasets ranging from 7 200 to 7 400 keywords, where
the FST-attack requires 33 more injections compared to the Binomial-attack. This
represents a 38% increase in injections needed by the FST-attack for equivalent
results. In previous studies, the Enron dataset [29] served as a benchmark for attack
performance. When applied to the Enron dataset, the FST-attack requires 83 files to
cover the entire keyword universe, whereas the Binomial-attack accomplishes this
with only 65 files. Thus, in this real dataset scenario, the FST-attack necessitates 28%
more injections than the Binomial-attack.

6.4. FILE-INJECTION ATTACKS ON SE SCHEMES WITH KEYWORD PADDING

6

159

To provide a comprehensive overview of these differences, Fig. 6.1 illustrates the
comparative performance of the Binary-, FST-, and Binomial-attack across various
thresholds, with datasets ranging up to 20 000 keywords.

(a) T=100. (b) T=200.

(c) T=300.

Figure 6.1: Performance of different injection attacks under different thresholds.

6.4. FILE-INJECTION ATTACKS ON SE SCHEMES WITH

KEYWORD PADDING

Keyword padding serves as a countermeasure within the SE scheme aimed at
obscuring query results by returning more files than necessary. In addition to the
files containing the queried keyword, the scheme also includes random files from the
dataset in its response. In this chapter, we delve into the consequences of padding
and compare the implications between the FST- and Binomial-attack methodologies.
Previous studies, such as the FST- and Binary-attack, explored this topic assuming a
file dataset of 30 109 files and a keyword universe of 5 050 keywords. The scheme
adopts a threshold of 200, and on average, a query yields matches on 560 files, with
an additional 60% of random files included (336 files). Section 6.4.1 delves into the
quantitative effects of padding, while Section 6.4.2 presents a visual exploration of
these effects.

6

160 6. FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES

6.4.1. CALCULATING THE EFFECTS

To assess the impact, three key steps are necessary. Firstly, we must determine
the average number of additional injected files returned as a consequence of their
selection for padding. Subsequently, we can proceed to determine the average
number of keyword combinations we can generate. These combinations represent
distinct file arrangements utilized for the unique identification of a single keyword,
collectively referred to as the candidate set for a query. Finally, the last step entails
re-executing the attack on the candidate set to pinpoint the specific keyword utilized.

INJECTED FILES FROM PADDING.

To calculate the average number of injected files chosen during padding, we
can utilize the hypergeometric distribution function. Our population size is
30109−560 = 29549, since the matched files for the query can not be chosen for
the padding. The number of successes will be F 3(5050,200) = 64.8 ≈ 65 files, minus
the average injected file response, leaving 65−3 = 62 successes. The sample size
is 336. We can calculate the probabilities for all possible numbers of successes
in the sample and then multiply each probability by the corresponding number
of successes. The results are then summed to determine the average number of
injected files (p) chosen in the padding:

p =
62∑

n=1

(62
n

)(29549−62
336−n

)(29549
336

) (6.8)

AVERAGE CANDIDATE SET SIZE.

The average candidate set size is determined by three key factors associated with
each (n−r +1,n)-set used to identify keywords. The first factor considers the number
of possible combinations within the given (n − r +1,n)-set when r +p injected files
are returned. The second factor accounts for the ratio of combinations utilized in
that (n − r +1,n)-set compared to its total possible combinations. The third factor
represents the ratio of identifiable keywords in the (n − r +1,n)-set to the total
number of identifiable keywords. Multiplying these three factors together yields
the average candidate set size per (n − r +1,n)-set. Summing the results across all
(n − r +1,n)-sets provides the overall average candidate set size:

R∑
r=1

(
r +p

r

)
· |Kr |2(n

r

) · |KR |
(6.9)

NUMBER OF EXTRA INJECTIONS NEEDED.

A straightforward method to determine the number of extra injections required is
to analyze on a per-query basis. By considering the average candidate set size per
query, we can execute our attack specifically for that particular candidate set to
recover the searched keyword. While this approach is not optimal, it suffices for
comparison purposes with the FST-attack.

6.4. FILE-INJECTION ATTACKS ON SE SCHEMES WITH KEYWORD PADDING

6

161

6.4.2. VISUALISING THE EFFECTS

This section will demonstrate the effects of padding on both FST and the
Binomial-attack. While the Binomial-attack may not always appear significantly
better based solely on the average candidate set size per query, it’s important to
consider that FST is generally less efficient, requiring more injections to cover the
same candidate set. Here, we present the results for a scheme with a threshold of
200 in Fig. 6.2. Results for different thresholds are available in Figures 6.4, 6.5, 6.6,
6.7, 6.8.

Figure 6.2: Candidate set size per query,
T=200.

Figure 6.3: Extra injection size per query,
T=200.

TARGETING THE WHOLE DATASET.

In Fig. 6.2, we see the average sizes of candidate sets for different dataset sizes. The
corresponding number of extra injections required for the candidate sets is illustrated
in Fig. 6.3. While there is a small dataset size range where the Binomial-attack
requires one more injection than the FST-attack, FST generally performs worse for
all other dataset sizes.

TARGETING A SUBSET OF THE DATASET.

When targeting a subset of the keyword universe, fewer injections are required to
cover the target set, benefiting both attacks. However, not every query relates to
a keyword in the target set. When combined with padding, this may not pose an
issue if we assume a consistent average number of injected files in the padding. For
instance, if two injected files are returned and the average padding injection is also
two, it suggests a search for a keyword not in the target set. However, if a return of
two injected files could also indicate a search for a keyword occurring once or twice,
all searches become candidate sets. While these candidate sets may not contain
actual keywords from the target set, distinguishing beforehand is impossible. The
only option is to re-perform the attack on the candidate set.

In this scenario, our attack performs notably worse. This is because the
Binomial-attack initiates with an (n,n)-set. FST does not follow this approach,

6

162 6. FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES

(a) T=100. (b) T=200.

(c) T=300.

Figure 6.4: Candidate set sizes per query when padding is applied, under different
thresholds, where the target set is the full keyword universe, for the
standard Binomial-attack.

6.4. FILE-INJECTION ATTACKS ON SE SCHEMES WITH KEYWORD PADDING

6

163

(a) T=100.

(b) T=200.

(c) T=300.

Figure 6.5: Extra injection sizes per query
when padding is applied, un-
der different thresholds, where
the target set is the full key-
word universe, for the standard
Binomial-attack.

(a) T=100.

(b) T=200.

(c) T=300.

Figure 6.6: Candidate set sizes per query
that is not in the target set
when padding is applied, under
different thresholds, where the
target set is a subset of the
full keyword universe, for the
standard Binomial-attack.

6

164 6. FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES

(a) T=100.

(b) T=200.

(c) T=300.

Figure 6.7: Candidate set sizes per query
that is not in the target set
when padding is applied, under
different thresholds, where the
target set is a subset of the
full keyword universe, for the
adopted Binomial-attack.

(a) T=100.

(b) T=200.

(c) T=300.

Figure 6.8: Extra injection sizes per query
that is not in the target set
when padding is applied, under
different thresholds, where the
target set is a subset of the
full keyword universe, for the
adopted Binomial-attack.

6.5. ADOPTED BINOMIAL-ATTACK

6

165

resulting in fewer potential combinations when all preceding (n − r +1,n)-sets are
included in the candidate set. Figure 6.9 illustrates the number of extra injections
required when searching for a keyword that is not in the target set.

6.5. ADOPTED BINOMIAL-ATTACK
When the target set is a subset of the dataset, searches for keywords outside the
target set result in additional candidate sets. To mitigate the size of these extra
candidate sets, adjustments to the attack methodology are necessary. This chapter
outlines the modifications required to minimize candidate size while maintaining
effectiveness. Despite the trade-off, the attack consistently requires fewer initial
injections than FST.

6.5.1. REMOVING THE (n,n)-SET

In the Binomial-attack, the lowest value for r is always one. While this minimizes the
space occupied in injected files, it also leads to greater overlap with keywords spread
across multiple injected files. Conversely, higher values of r in the (n − r +1,n)-sets
for all keywords result in smaller candidate sets per query. To reduce the size
of candidate sets, keywords should not be identified with only one injected file,
meaning the attack starts from (n −1,n) instead of (n,n). This frees up space that
can be allocated to a different (n − r +1,n)-set.

6.5.2. RESULTS AFTER THE MITIGATION

The number of identifiable keywords decreases by either n
2 or 2n

3 , depending on
which (n − r +1,n)-set the attack terminates due to the threshold. Refer to Table 6.4
for a visual representation of this transformation.

In Fig. 6.10, the difference in extra injections required between the FST- and
adopted Binomial-attack is illustrated. FST consistently requires an equal or greater
number of injections to recover candidate sets.

(5,6)-set (4,6)-set

Files Col1 Col2 Col3 Col4 Col5 Col6 Col7

F1 k1 k4 k7 k9 k13 k16 k19

F2 k1 k5 k8 k10 k14 k16 k18

F3 k2 k5 k7 k11 k15 k16 k18

F4 k2 k6 k8 k12 k13 k17 k18

F5 k3 k6 k9 k11 k14 k17 k19

F6 k3 k4 k10 k12 k15 k17 k19

Table 6.4: Distribution of an Increment [3,6]-set, without (6,6)-set, T=7.

6

166 6. FILE-INJECTION ATTACKS ON SE, BASED ON BINOMIAL STRUCTURES

Figure 6.9: Extra injection sizes per query
that is not in the target set,
T=200.

Figure 6.10: Extra injection sizes per query
that is not in the target set,
T=200, for the adopted attack.

6.6. DISCUSSION

In addition to padding, there exist other countermeasures aimed at increasing the
difficulty of attacks. One such countermeasure involves the creation of clusters of
keywords, as described in [11]. When a search query is initiated for one of the
keywords within a cluster, all files containing keywords from the same cluster are
returned. This approach not only obscures the specific keyword being searched for,
but also introduces ambiguity regarding the association of injected files with specific
keywords. Due to the potential for multiple combinations of keywords within the
returned files, the attacker may be compelled to employ higher (n − r +1,n)-sets,
necessitating a greater number of injected files. It is important to note, that this
countermeasure assumes a static keyword universe and may require modification to
accommodate dynamic searchable encryption scenarios.

Despite its theoretical appeal, searchable encryption has yet to achieve widespread
adoption in practical applications and can vary significantly in its configurations,
including the implementation of countermeasures. Consequently, predicting the exact
characteristics of a searchable encryption scheme in practice remains challenging.
Nevertheless, there is value in speculating on the potential implications of different
settings and attempting to assess the scheme’s security under various conditions,
even if these scenarios remain largely theoretical at present. This makes it harder to
determine how big the safety issues of the schemes are.

6.7. FUTURE WORK

The additional injections required to neutralize candidate sets are primarily utilized
to compare the attack against FST. However, the method itself is far from optimal.
As presented in this paper and the FST paper, each keyword necessitates multiple
additional injections. This approach may result in a greater number of injections
than initially required for the attack. A more efficient strategy involves combining
candidate sets and reusing earlier injections, thereby reducing the overall number

6.8. CONCLUSION

6

167

of additional injections required. However, the optimal method for achieving this
remains to be determined.

This attack is an active attack that makes no use of leakage apart from the
returned injected files. In contrast, other attacks combine active and passive
methods [19]. If Binary- or FST-attack methods are employed, they could be
enhanced by incorporating the Binomial-attack. Revisiting these attacks may reveal
potential improvements. We also note that further exploration into fields such as
coding theory and combinatorics using our increment [r,n]-set could yield relevant
connections and contributions and vice-versa.

6.8. CONCLUSION
The Binomial-attack represents a significant advancement over existing active attack
methods. It maximizes the storage of keywords within a limited number of injected
files by employing an Increment [r,n]-set to identify keywords. This approach
iterates through all possible combinations of an (n − r +1,n)-set starting from r = 1,
progressing with r = r +1 until no additional space is available in the files. The
adopted Binomial-attack starts at r = 2 to decrease the candidate set size for a query
when the SE scheme uses padding as a countermeasure.

Our findings demonstrate that, regardless of the presence or absence of a
threshold, the Binomial-attack consistently outperforms both the Binary- and
FST-attack methods. However, when padding is introduced, there are specific
threshold and dataset size combinations where FST requires fewer additional
injections on average. It remains uncertain whether this advantage would persist
with the implementation of a more efficient keyword recovery method.

REFERENCES

[1] D. X. Song, D. A. Wagner, and A. Perrig. “Practical Techniques for Searches
on Encrypted Data”. In: IEEE S&P 2000. IEEE, 2000, pp. 44–55. DOI:
10.1109/SECPRI.2000.848445.

[2] R. Bost, B. Minaud, and O. Ohrimenko. “Forward and Backward Private
Searchable Encryption from Constrained Cryptographic Primitives”. In: ACM
CCS 2017. Ed. by B. Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM,
2017, pp. 1465–1482. DOI: 10.1145/3133956.3133980.

[3] D. Cash and S. Tessaro. “The Locality of Searchable Symmetric Encryption”.
In: EUROCRYPT 2014. Ed. by P. Q. Nguyen and E. Oswald. Vol. 8441. LNCS.
Springer, 2014, pp. 351–368. DOI: 10.1007/978-3-642-55220-5_20.

[4] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili. “New
Constructions for Forward and Backward Private Symmetric Searchable
Encryption”. In: CCS 2018. Ed. by D. Lie, M. Mannan, M. Backes, and X. Wang.
ACM, 2018, pp. 1038–1055. DOI: 10.1145/3243734.3243833.

[5] S. Kamara and T. Moataz. “Boolean Searchable Symmetric Encryption with
Worst-Case Sub-linear Complexity”. In: EUROCRYPT 2017, Part III. Ed. by
J. Coron and J. B. Nielsen. Vol. 10212. LNCS. 2017, pp. 94–124. DOI:
10.1007/978-3-319-56617-7_4.

[6] S. Patel, G. Persiano, and K. Yeo. Symmetric Searchable Encryption with
Sharing and Unsharing. Ed. by J. López, J. Zhou, and M. Soriano. 2018. DOI:
10.1007/978-3-319-98989-1_11.

[7] S. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and S. Nepal.
“Practical Backward-Secure Searchable Encryption from Symmetric Puncturable
Encryption”. In: CCS 2018. Ed. by D. Lie, M. Mannan, M. Backes, and X. Wang.
ACM, 2018, pp. 763–780. DOI: 10.1145/3243734.3243782.

[8] M. Naveed. “The Fallacy of Composition of Oblivious RAM and Searchable
Encryption”. In: IACR Cryptol. ePrint Arch. 2015 (2015), p. 668. URL:
https://api.semanticscholar.org/CorpusID:11042885.

[9] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. “Leakage-Abuse Attacks Against
Searchable Encryption”. In: ACM CCS 2015. Ed. by I. Ray, N. Li, and C. Kruegel.
ACM, 2015, pp. 668–679. DOI: 10.1145/2810103.2813700.

[10] M. S. Islam, M. Kuzu, and M. Kantarcioglu. “Access Pattern disclosure
on Searchable Encryption: Ramification, Attack and Mitigation”. In: NDSS
2012. The Internet Society, 2012. URL: https://www.ndss-symposium.
org/ndss2012/access- pattern- disclosure- searchable- encryption-
ramification-attack-and-mitigation.

169

https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-319-98989-1_11
https://doi.org/10.1145/3243734.3243782
https://api.semanticscholar.org/CorpusID:11042885
https://doi.org/10.1145/2810103.2813700
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation

6

170 REFERENCES

[11] C. Liu, L. Zhu, M. Wang, and Y. Tan. “Search pattern leakage in searchable
encryption: Attacks and new construction”. In: Information Sciences 265 (2014),
pp. 176–188. ISSN: 0020-0255. DOI: 10.1016/j.ins.2013.11.021.

[12] L. Blackstone, S. Kamara, and T. Moataz. “Revisiting Leakage Abuse Attacks”.
In: NDSS 2020. The Internet Society, 2020. DOI: 10.14722/ndss.2020.23103.

[13] J. Ning, X. Huang, G. S. Poh, J. Yuan, Y. Li, J. Weng, and R. H. Deng.
“LEAP: Leakage-Abuse Attack on Efficiently Deployable, Efficiently Searchable
Encryption with Partially Known Dataset”. In: ACM CCS 2021. Ed. by
Y. Kim, J. Kim, G. Vigna, and E. Shi. ACM, 2021, pp. 2307–2320. DOI:
10.1145/3460120.3484540.

[14] D. Pouliot and C. V. Wright. “The Shadow Nemesis: Inference Attacks on
Efficiently Deployable, Efficiently Searchable Encryption”. In: ACM SIGSAC
2016. Ed. by E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi. ACM, 2016, pp. 1341–1352. DOI: 10.1145/2976749.2978401.

[15] S. Oya and F. Kerschbaum. “Hiding the Access Pattern is Not Enough:
Exploiting Search Pattern Leakage in Searchable Encryption”. In: USENIX 2021.
Ed. by M. D. Bailey and R. Greenstadt. USENIX Association, 2021, pp. 127–142.

[16] M. Damie, F. Hahn, and A. Peter. “A Highly Accurate Query-Recovery Attack
against Searchable Encryption using Non-Indexed Documents”. In: USENIX
2021. Ed. by M. Bailey and R. Greenstadt. USENIX Association, 2021, pp. 143–
160. URL: https://www.usenix.org/conference/usenixsecurity21/
presentation/damie.

[17] Y. Zhang, J. Katz, and C. Papamanthou. “All Your Queries Are Belong to Us: The
Power of File-Injection Attacks on Searchable Encryption”. In: USENIX 2016.
Ed. by T. Holz and S. Savage. USENIX Association, 2016, pp. 707–720. URL:
https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/zhang.

[18] G. Wang, Z. Cao, and X. Dong. “Improved File-injection Attacks on Searchable
Encryption Using Finite Set Theory”. In: Comput. J. 64.8 (2021), pp. 1264–1276.
DOI: 10.1093/COMJNL/BXAA161.

[19] X. Zhang, W. Wang, P. Xu, L. T. Yang, and K. Liang. “High Recovery with
Fewer Injections: Practical Binary Volumetric Injection Attacks against Dynamic
Searchable Encryption”. In: USENIX Security 2023. Ed. by J. A. Calandrino and
C. Troncoso. USENIX Association, 2023, pp. 5953–5970.

[20] R. Poddar, S. Wang, J. Lu, and R. A. Popa. “Practical Volume-Based Attacks on
Encrypted Databases”. In: IEEE European Symposium on Security and Privacy,
EuroS&P 2020. IEEE, 2020, pp. 354–369. DOI: 10.1109/EUROSP48549.2020.
00030.

[21] H. Nie, W. Wang, P. Xu, X. Zhang, L. T. Yang, and K. Liang. “Query Recovery
from Easy to Hard: Jigsaw Attack against SSE”. In: 33rd USENIX Security
Symposium, USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024.
Ed. by D. Balzarotti and W. Xu. USENIX Association, 2024. URL: https:
//www.usenix.org/conference/usenixsecurity24/presentation/nie.

https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.14722/ndss.2020.23103
https://doi.org/10.1145/3460120.3484540
https://doi.org/10.1145/2976749.2978401
https://www.usenix.org/conference/usenixsecurity21/presentation/damie
https://www.usenix.org/conference/usenixsecurity21/presentation/damie
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://doi.org/10.1093/COMJNL/BXAA161
https://doi.org/10.1109/EUROSP48549.2020.00030
https://doi.org/10.1109/EUROSP48549.2020.00030
https://www.usenix.org/conference/usenixsecurity24/presentation/nie
https://www.usenix.org/conference/usenixsecurity24/presentation/nie

REFERENCES

6

171

[22] M. Zhang, Z. Shi, H. Chen, and K. Liang. “Inject Less, Recover More: Unlocking
the Potential of Document Recovery in Injection Attacks Against SSE”. In: IACR
Cryptol. ePrint Arch. (2024), p. 515. URL: https://eprint.iacr.org/2024/
515.

[23] B. Ho, H. Chen, Z. Shi, and K. Liang. “Similar Data is Powerful: Enhancing
Inference Attacks on SSE with Volume Leakages”. In: IACR Cryptol. ePrint Arch.
(2024), p. 516. URL: https://eprint.iacr.org/2024/516.

[24] J. Ning, J. Xu, K. Liang, F. Zhang, and E. Chang. “Passive Attacks
Against Searchable Encryption”. In: IEEE Trans. Inf. Forensics Secur. 14.3
(2019), pp. 789–802. DOI: 10.1109/TIFS.2018.2866321. URL: https:
//doi.org/10.1109/TIFS.2018.2866321.

[25] T. Chen, P. Xu, S. Picek, B. Luo, W. Susilo, H. Jin, and K. Liang. “The
Power of Bamboo: On the Post-Compromise Security for Searchable Symmetric
Encryption”. In: 30th Annual Network and Distributed System Security
Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023.
The Internet Society, 2023. URL: https://www.ndss-symposium.org/ndss-
paper/the-power-of-bamboo-on-the-post-compromise-security-for-
searchable-symmetric-encryption/.

[26] D. Liu, W. Wang, P. Xu, L. T. Yang, B. Luo, and K. Liang. “d-DSE: Distinct
Dynamic Searchable Encryption Resisting Volume Leakage in Encrypted
Databases”. In: 33rd USENIX Security Symposium, USENIX Security 2024,
Philadelphia, PA, USA, August 14-16, 2024. Ed. by D. Balzarotti and W. Xu.
USENIX Association, 2024. URL: https://www.usenix.org/conference/
usenixsecurity24/presentation/liu-dongli.

[27] R. Liu and Z. F. Cao. “Two new methods of distributive management of
cryptographic key”. In: J. Commun., 8, 1987, pp. 10–14.

[28] T. Langhout, H. Chen, and K. Liang. “File-Injection Attacks on Searchable
Encryption, Bases on Binomial Structures”. In: IACR Cryptol. ePrint Arch.
(2024). URL: https://eprint.iacr.org/2024/1000.

[29] C. William W. Cohen MLD. Enron Email Datasets. 2015. URL: https:
//www.cs.cmu.edu/~enron/.

https://eprint.iacr.org/2024/515
https://eprint.iacr.org/2024/515
https://eprint.iacr.org/2024/516
https://doi.org/10.1109/TIFS.2018.2866321
https://doi.org/10.1109/TIFS.2018.2866321
https://doi.org/10.1109/TIFS.2018.2866321
https://www.ndss-symposium.org/ndss-paper/the-power-of-bamboo-on-the-post-compromise-security-for-searchable-symmetric-encryption/
https://www.ndss-symposium.org/ndss-paper/the-power-of-bamboo-on-the-post-compromise-security-for-searchable-symmetric-encryption/
https://www.ndss-symposium.org/ndss-paper/the-power-of-bamboo-on-the-post-compromise-security-for-searchable-symmetric-encryption/
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-dongli
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-dongli
https://eprint.iacr.org/2024/1000
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/

7
DISCUSSION

With the rapid development of the big data industry, the volume of data generated
every day is explosively increasing, raising the challenge of big data storage and
usage. A perfect way to deal with this challenge is by outsourcing the huge data
storage and complicated computation tasks to a cloud, such as Google, Amazon, and
Microsoft. This eliminates the expensive cost of purchasing hardware and software;
however, it increases concerns about data privacy, considering the curiosity of cloud
servers and potential attacks from external sources. To alleviate these concerns,
users should encrypt the data with a secret key before uploading it to the cloud.

The security of cryptographic systems ensures the privacy of data stored on the
cloud. However, practical challenges arise when working with encrypted cloud
data, such as key management for long-term storage, computations over encrypted
data, the usage of encrypted data, encrypted cloud migration, and ensuring
quantum security. This thesis investigates three main research topics: updatable
encryption, fully homomorphic encryption and searchable encryption, to address the
security of long-term stored data, computing over encrypted data, and the search
functionality on encrypted data, respectively. Additionally, we propose constructions
for quantum-secure UE and FHE schemes.

In this chapter, we present our findings, discuss their limitations, and propose
potential future work. We will address the challenges presented in Section 1.2
and the research questions listed in Section 1.3. Our research is organized into
three topics: Updatable Encryption, Fully Homomorphic Encryption, and Searchable
Encryption.

7.1. UPDATABLE ENCRYPTION

In this section, we explain the first two research questions related to updatable
encryptions and our contributions in Chapters 2 and 3. Firstly, we investigate all the
existing work on security notions for UE schemes and provide a clear relationship
among those notions. Secondly, we introduce a stronger notion of adaptive
security for ciphertext-dependent UE schemes and propose a quantum-secure UE
construction with the desired security.

173

7

174 7. DISCUSSION

CIPHERTEXT-INDEPENDENT UPDATABLE ENCRYPTION

In Chapter 2, we address the following question:

Q1: What are the relations among all existing security notions for updatable
encryption schemes?

In each security game, the adversary has access to various oracles, allowing it
to corrupt information about epoch keys, update tokens, and ciphertexts from the
challenger. In the confidentiality game, the adversary submits a challenge message
and a challenge ciphertext based on its available information. It then receives a
ciphertext from the challenger and must determine whether it is an encryption of
the challenge message or an update of the challenge ciphertext. The adversary can
continue querying oracles before providing its final guess.

In the integrity game, the adversary’s objective is to forge a valid ciphertext. In
both security games, some combinations of oracles may lead to a trivial win for
the adversary. Therefore, the challenger will check if those trivial win conditions
are triggered during the game using a bookkeeping technique developed in [1]. We
present the confidentiality game in Fig. 7.1.

To analyze the relationship between any two of the eight variants of each security
notion, we construct a reduction B. The reduction runs the security experiment of
one variant while simulating responses to the adversary A ’s queries in the security
experiment of the other variant and forwards A ’s guess to its own challenger. If
A does not trigger any trivial win conditions, neither will B, ensuring that B’s
advantage is at least as large as A ’s. Therefore, the relationship between the two
variants depends on the relation of trivial win conditions in each update direction
setting.

Our result clarifies the relations of UE in different update directions and shows
a surprising finding: UE schemes with no-directional key updates are actually
equivalent to those with backward-leak uni-directional key updates. At first glance,
one may think that UE schemes with no-directional key updates should be strictly
stronger than those with any of the other three key update directions, just as it
was proved in [2] that no-directional key updates leak less information about keys,
tokens, and ciphertexts than bi-directional and forward-leak uni-directional key
updates. Based on our result, when analyzing the security notions, we can treat UE
schemes with no-directional key updates as those with backward-leak uni-directional
key updates.

LIMITATIONS AND FUTURE WORK

We theoretically provide detailed comparisons among different security notions, but
the efficient construction of the strongest no-directional c-i UE remains an open
problem. The difficulty arises from the requirement that update tokens should not
reveal any information about either the old key or the new key, yet they must allow
for updating all ciphertexts under the old key. Currently, only two c-i UE schemes
with no-directional key updates have been proposed. One is presented by Slamanig
[3], which is based on the SXDH assumption, thus requiring expensive exponential

7.1. UPDATABLE ENCRYPTION

7

175

Figure 7.1: The confidentiality game for UE schemes. During the query phase, the
adversary is provided with various oracles to infer secret information
about the scheme. The goal of the adversary is to distinguish between
the fresh encryption and the updated ciphertext. Trivial win conditions
are checked at the end of the game.

operations. The other is introduced by Nishimaki [4], which relies on the existence
of indistinguishability obfuscation but remains purely theoretical.

Another promising direction for future work is to extend the analysis techniques
for security notions developed in this thesis to other cryptographic primitives,
such as proxy re-encryption, identity-based encryption (IBE), and attribute-based
encryption (ABE). In the security definitions of these schemes, they share a similar
challenge game, as shown in Fig. 7.1. The adversary is provided with oracles related
to the syntax of each scheme and aims to distinguish between two ciphertexts
(confidentiality game) or provide a valid ciphertext (integrity game). Moreover,
these schemes all have a similar syntax that transforms ciphertexts from one key to
another, or one node to another. Therefore, the techniques and insights developed
here could inspire stronger and more comprehensive security notions for proxy
re-encryption, IBE, and ABE.

7

176 7. DISCUSSION

CIPHERTEXT-DEPENDENT UPDATABLE ENCRYPTION

In Chapter 3, we address the following question:

Q2: How to build a more secure and more efficient ciphertext-dependent updatable
encryption scheme?

Existing works of c-d UE are not sufficient in analyzing the maximal ability of the
adversary. It is reflected in two aspects: the decryption ability of the adversary is not
considered in the confidentiality notions, resulting in a CPA-like confidentiality, not
CCA security; meanwhile, the adversary is only allowed to select some epoch keys to
corrupt in the start of the security game, rather than corrupting private information
at any time during the game, which thus leads to only selective security, not adaptive
security. Moreover, the quantum security of UE schemes is not considered in prior
works on c-d UE.

In our work, we overcome the above limitations by proposing a lattice-based c-d
UE scheme. To achieve this, we first build a new CCA-1 PKE scheme inspired by
[5], which is based on the lattice trapdoor techniques and serves as the underlying
encryption scheme for our UE scheme. The PKE ciphertext contains an invertible
matrix as the header part and a LWE sample as the payload part, with the former
of which the plaintext can be decrypted correctly from the latter. Its security is
based on the hardness of LWE problems. We state that the PKE scheme cannot
achieve CCA-2 security as other LWE encryption schemes, as the decryption of a
challenge ciphertext with extra small noise, which is also a valid ciphertext, reveals
the information of the challenge plaintext.

For the UE construction, our goal is to transform our PKE ciphertext from one key
to another key. We propose a new update methodology by generating a so-called
key-switching matrix. Directly multiplying such matrix with the old ciphertext
would result in a new PKE ciphertext under the new key. This matrix can only
be generated for the data owner who holds the old key, which is the trapdoor
for some blocks of the ciphertext and is used to solve an LWE problem in the
matrix generation. However, the key-switching matrix alone is not sufficient to
achieve our confidentiality notion for UE, since the ciphertext unlinkability cannot
be satisfied. We showed two improvements to tackle this: first, we improve a new
random invertible matrix as the header of the new ciphertext, instead of using
the same header as the old ciphertext; second, we improve the randomness used
for encrypting plaintext in the ciphertext payload by adding a fresh encryption of
message 0. We provide a detailed reduction proof of the security for our UE scheme.

We furthermore provide a packing technique that allows for the simultaneous
encryption and update of multiple messages in a single ciphertext. By doing so,
we alleviate the cost of downloading the ciphertext header required in the token
generation process, cause only one ciphertext header needs to be downloaded
during this process. Compared to the basic UE scheme, we provide a new encoding
algorithm that encodes multiple messages into a polynomial ring. We show that
messages can be decrypted degree by degree and we also generalize the token
generation procedure in the polynomial ring setting.

7.2. FULLY HOMOMORPHIC ENCRYPTION

7

177

LIMITATIONS AND FUTURE WORK.

Our PKE and UE schemes suffer from the same limitation as other LWE encryption
schemes in that they cannot achieve CCA-2 security and integrity. This results from
the fact that adding any small error to a ciphertext still results in a valid ciphertext,
which obviously breaks the integrity. Additionally, querying the decryption oracle on
the challenge ciphertext with an additional small error helps the adversary recover
the underlying message, thus winning the CCA-2 game.

For PKE, this limitation can be efficiently addressed by using the Naor-Yung (NY)
transform [6] or the Fujisaki-Okamoto (FO) transform [7], which is capable of turning
a CPA-secure scheme into a CCA-2 secure one. This is also how Kyber works, which
is one of the finalists in the NIST post-quantum cryptography project [8]. Kyber first
designs a CPA-secure PKE, which is then used to apply the FO-transform to obtain a
CCA-secure KEM. However, it is not straightforward to apply the NY/FO-transform
to turn a CPA-secure UE scheme into a CCA-2 secure one. The difficulty lies in the
proper design of the update algorithm such that it can be suitably adapted to the
transform.

We conclude the research on UE with a challenging work. The first FHE scheme
introduced by Gentry [9] and all its subsequent works require a “circular security”
assumption, namely that it is safe to encrypt old secret keys with new keys. Such an
idea has inspired the UE construction with backward directional key updates in [4].
In turn, we suggest an open problem that if no-directional updatable encryption,
which is able to update ciphertext without revealing old and new keys, can be used
to construct FHE that does not rely on the assumption.

7.2. FULLY HOMOMORPHIC ENCRYPTION
In this section, we discuss our contributions in Chapter 4 to address the following
question:

Q3: Can we build a batch programmable bootstrapping over large message space,
within a polynomial modulus?

Recent works aim to improve the efficiency of FHE through batch bootstrapping,
which combines the advantage of low amortized cost from second-generation FHE
and low noise growth from third-generation FHE. However, such schemes also
inherit the limitations of third-generation FHE schemes, namely that they support
only very small precision (limited to 4-5 bits). On the other hand, another
advantage of third-generation FHE, called the programmable property, is missing in
state-of-the-art works. Programmable bootstrapping (PBS) allows us to evaluate a
univariate function simultaneously while refreshing the ciphertexts. It is therefore
desirable to develop methods for large-precision batch bootstrapping with the
programmable property. Moreover, it is also interesting to explore whether we can
overcome the long-standing limitation of programmable bootstrapping, namely, the
requirement that the function to be evaluated must be negacyclic.

In Chapter 4, we make two contributions to batch programmable bootstrapping

7

178 7. DISCUSSION

(batch PBS). Firstly, we propose a basic batch PBS over a more general message
space Zt for t > 2, which incurs only polynomial noise growth while maintaining the
amortized cost as in state-of-the-art schemes. This method allows the evaluation of
a univariate function over multiple ciphertexts simultaneously while refreshing the
noise. The overall idea is to design a new look-up table suitable for our batch
bootstrapping mechanism. This table is blindly rotated during noise refreshing, and
the aimed value from the encrypted rotated table will be efficiently extracted in
the final step. To overcome the negacyclicity requirement of PBS, we observe that
this limitation arises from the polynomial setting. We solve this by working with
ciphertexts in general cyclotomic rings, instead of the cyclotomic rings of powers of
two used in PBS [10, 11]. This results in one more bit of precision than that in PBS,
but it is still not practical for direct application. As an application, we demonstrate
accurate evaluation of activation functions commonly used in Convolutional Neural
Networks, including Sign, ReLU, and max in a batch setting.

Secondly, we optimize the basic batch PBS by introducing two homomorphic
decomposition algorithms, which allow us to homomorphically decompose a large
plaintext into several ciphertexts encrypting smaller chunks of the input plaintext.
For each chunk, we can evaluate arbitrary functions using the basic batch PBS as
a black box, leading to further improvements in precision. The first decomposition
algorithm works for evaluating functions like Sign, where the value of the function
is determined by only a few most significant bits of the message. The second
algorithm is more suitable for functions whose value is not determined by only a few
bits. These two decomposition algorithms further extend our batch programmable
bootstrapping to support larger message spaces.

LIMITATIONS AND FUTURE WORK.

In practice, a client can delegate a complex computational task to a cloud service,
which performs FHE operations on the encrypted data. After the computation, the
client receives the encrypted result, decrypts it using their secret key, and obtains
the value of the target function evaluated on their private data.

This scenario is promising but has two limitations in practice. Firstly, how can the
client be convinced that the computation is correct, or in other words, how can
we ensure the integrity of FHE? As summarized in [12], there are three techniques
to construct verifiable FHE: Message Authentication Codes, Zero-Knowledge Proofs,
and Trusted Execution Environments. However, these techniques are only useful
if the verification process is lightweight for cloud clients, considering they have
limited computational resources. Therefore, the construction of efficient verifiable
FHE is an interesting direction. Secondly, this scenario only allows secure computing
over private data from a single client. In practice, it is often necessary to process
encrypted data from various sources, as the data can be encrypted by different
clients with different keys. In such cases, we should use a generalized notion of HE,
called Multi-key Homomorphic Encryption (MKHE). Several MKHE schemes have
been proposed in the literature, such as multi-key TFHE [13, 14], multi-key BFV [15],
and multi-key NTRU [16]. The difficulty lies in designing a hybrid product between
a single-key ciphertext and a multi-key ciphertext. The single-key ciphertext serves

7.3. SEARCHABLE ENCRYPTION

7

179

as the bootstrapping or key-switching key of a single party. The construction of
more efficient multi-key homomorphic encryption, in terms of computational costs,
ciphertext length, and bootstrapping key size, is a promising direction for future
work.

The research in this thesis investigates two topics separately: updatable encryption
and fully homomorphic encryption, to address two different application scenarios:
long-term storage and computing over encrypted data. It is natural to consider
combining these two schemes to provide broader applications. At first glance, key
switching techniques in FHE could be applied to update ciphertexts, and FHE itself
allows secure computation. However, a deeper investigation into the security and
efficiency of this idea is necessary, which we leave for future work.

7.3. SEARCHABLE ENCRYPTION

In this section, we explain the research questions 4 and 5 related to searchable
encryption and our contributions in Chapters 5 and 6. Firstly, our passive attack
expands the matching techniques of the state-of-the-art LEAP attack [17] and further
leverages the volume pattern to match a greater number of documents. Secondly,
we propose a new active attack on SE to tackle the threshold countermeasures.

PASSIVE SE ATTACKS.

In Chapter 5, the following question is addressed.

Q4: Can we design a passive SE attack by fully exploiting both the volume and access
patterns to capture a high recovery rate?

At a high level, our attack builds on the LEAP attack [17] by enhancing the keyword
matching metric to increase the number of keyword matches. Each document is
labeled with its document volume and the number of keywords it contains. Our
attack leverages the uniqueness of this label for matching, significantly improving
the recovery rate.

In detail, we first extend LEAP’s matching technique by not only checking within
the matched documents but also tracking occurrences in unmatched files. This
approach recovers more keywords by addressing rows that do not uniquely occur
in the matched files, thereby improving LEAP’s performance. Additionally, we
expand the attack by exploiting the volume pattern, as document sizes are leaked in
response-leaking encryption schemes. By incorporating the volume pattern into our
matching strategy, our attack becomes more comprehensive, enabling the matching
of nearly all leaked documents.

This enhanced approach maximizes both document matches and keyword
matches, fully utilizing the available leakage information to deliver excellent
performance. Experimental results show that our new attack recovers approximately
eight percentage points more files compared to the LEAP attack.

7

180 7. DISCUSSION

ACTIVE SE ATTACKS.

In Chapter 6, the following question is addressed.

Q5: Can we design an active SE attack that is more practical when considering the
threshold countermeasure?

Countermeasures like thresholds and padding are employed to mitigate the success
of attacks. Thresholds set a limit on the number of keywords a file can contain,
while padding masks actual results by adding extra files alongside the queried files.
Wang et al. [18] introduced a new approach to injection attacks, based on finite set
theory, which outperforms earlier methods. Known as the FST-attack, this approach
requires fewer injections than the Binary-attack under specific conditions by utilizing
a so-called uniform (s,n)-sets to improve attack effectiveness, where integers s,n are
parameters to balance the threshold and efficiency. However, a key limitation of the
FST-attack is it is less practical under a large volume of keywords in the threshold
setting.

We introduce a new file-injection attack on searchable encryption schemes,
leveraging our novel definition of a subset family of a finite set, referred to as an
increment [r,n]-set. The core technique involves constructing an increment [r,n]-set
from the keyword set. Unlike the uniform (s,n)-set used in [18], the increment
[r,n]-set allows for the inclusion of more keywords in the injected files, significantly
reducing the required number of file injections. A high-level explanation of the
difference between a uniform (s,n)-set and an increment [r,n]-set is that the latter
consists of a sequence of (si ,n)-sets, where si is an increasing integer from a
predefined set {si }. Visually, the former attack can be imagined as filling a bottle
with a fixed number of balls of uniform size, while our approach starts with the
largest ball and gradually reduces its radius until it fits within the threshold. The
experiment shows our attack reduces the number of injected files by up to 38%
compared to the work by Wang et al. [18].

LIMITATIONS AND FUTURE WORK.

We present an efficient passive and active attack against searchable encryption, but
the efficient construction of SE schemes that resist the proposed attacks remains an
open problem. Although the padding technique, which ensures all documents are
of the same size by adding padding characters, can mitigate both our passive and
active attacks, it increases the workload on the client side, as it requires filtering out
false positives. Additionally, padding can lead to storage and performance issues, as
the user must wait for the program to identify and return the correct results.

Another promising area for future research in searchable encryption is the efficient
construction of asymmetric searchable encryption (ASE). Note that in this thesis, we
primarily focused on symmetric SE, where the query is generated using the same
key that encrypts the document. However, a more practical scenario in applications
is asymmetric SE (ASE), where the data owner encrypts the document using a public
key, and the query is generated using the corresponding secret key. Constructing
ASE with post-quantum security is an interesting research topic.

7.4. CONCLUSION

7

181

7.4. CONCLUSION
Big data is generated daily from various sources and devices. To utilize big data
effectively, two key actions are essential: storage and analysis. Over the past decades,
cloud services have gained increasing popularity by enabling users to outsource
these complex tasks, allowing them to focus solely on leveraging the data. However,
this relies on trust in the cloud server. One way to securely use a cloud server
without relying on trust in the cloud is through encryption.

In this thesis, we explored cloud-related cryptographic schemes and addressed
several open problems concerning security, efficiency, and functionality. Our work
covers three research topics: updatable encryption, fully homomorphic encryption,
and searchable encryption. First, we analyzed the existing security notions
for ciphertext-dependent UE schemes and provided a clear relationship among
all of these notions. Second, we overcame the limitations of prior work on
ciphertext-dependent UE schemes by addressing adaptive security, CCA-1 security,
and post-quantum security. We also introduced a packing technique that allows
for the simultaneous encryption and update of multiple messages, alleviating the
downloading cost in the token generation process.

In order to improve the efficiency and applicability of FHE, we then explored
how to propose a batch bootstrapping technique that combines the advantages
of different generations of FHE in terms of noise growth and computation cost.
We first proposed a basic batch programmable bootstrapping technique, which
allows the evaluation of an arbitrary univariate function over multiple ciphertexts
simultaneously while refreshing the noise. We further optimized the basic batch
programmable bootstrapping by introducing two homomorphic decomposition
algorithms to support larger precision.

Finally, we investigated both passive and active attacks on searchable encryption
schemes. We first proposed an efficient passive attack that recovers around 98%
of the leaked documents and over 90% of queries with very low leakage. Since
the proposed attack utilizes both the document size and the response per query, it
requires stronger countermeasures than existing attacks. Additionally, we presented
a file-injection attack based on the binomial search structure, making a significant
advancement over existing active attack methods. This approach maximizes the
storage of keywords within a limited number of injected files by using a new notion
in finite set theory to identify keywords.

Our work focuses on the secure use of cloud services, but it can be applied to
related cryptographic primitives and protocols, such as identity-based encryption,
attribute-based encryption, proxy re-encryption, privacy-preserving machine learning,
and multi-party computation.

REFERENCES

[1] A. Lehmann and B. Tackmann. “Updatable encryption with post-compromise
security”. In: EUROCRYPT 2018, Part III. Ed. by J. B. Nielsen and V.
Rijmen. Vol. 10822. LNCS. Springer. Heidelberg, 2018, pp. 685–716. DOI:
10.1007/978-3-319-78372-7_22.

[2] Y. Jiang. “The direction of updatable encryption does not matter much”. In:
ASIACRYPT 2020, Part III. Ed. by S. Moriai and H. Wang. Vol. 12493. LNCS.
Springer. Heidelberg, 2020, pp. 529–558. DOI: 10.1007/978-3-030-64840-
4_18.

[3] D. Slamanig and C. Striecks. Puncture ’Em All: Updatable Encryption with
No-Directional Key Updates and Expiring Ciphertexts. Cryptology ePrint Archive,
Paper 2021/268. https://eprint.iacr.org/2021/268. 2021.

[4] R. Nishimaki. “The Direction of Updatable Encryption Does Matter”. In:
PKC 2022. Ed. by G. Hanaoka, J. Shikata, and Y. Watanabe. Vol. 13178.
LNCS. Cham: Springer, 2022, pp. 194–224. ISBN: 978-3-030-97131-1. DOI:
10.1007/978-3-030-97131-1_7.

[5] D. Micciancio and C. Peikert. “Trapdoors for lattices: Simpler, tighter,
faster, smaller”. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 2012, pp. 700–718. DOI:
10.1007/978-3-642-29011-4_41.

[6] M. Naor and M. Yung. “Public-Key Cryptosystems Provably Secure against
Chosen Ciphertext Attacks”. In: STOC 1990. Ed. by H. Ortiz. Baltimore,
Maryland, USA: ACM, 1990, pp. 427–437. DOI: 10.1145/100216.100273.

[7] E. Fujisaki and T. Okamoto. “Secure Integration of Asymmetric and
Symmetric Encryption Schemes”. In: J. Cryptol. 26.1 (2013), pp. 80–101. DOI:
10.1007/S00145-011-9114-1. URL: https://doi.org/10.1007/s00145-
011-9114-1.

[8] NIST. NIST Releases First 3 Finalized Post-Quantum Encryption Standards. Ac-
cessed: 2024-11-30. 2024. URL: https://www.nist.gov/news- events/
news / 2024 / 08 / nist - releases - first - 3 - finalized - post - quantum -
encryption-standards.

[9] C. Gentry. “Fully homomorphic encryption using ideal lattices”. In: ACM
STOC 2009. Ed. by M. Mitzenmacher. ACM, 2009, pp. 169–178. DOI:
10.1145/1536414.1536440.

183

https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-030-64840-4_18
https://doi.org/10.1007/978-3-030-64840-4_18
https://eprint.iacr.org/2021/268
https://doi.org/10.1007/978-3-030-97131-1_7
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1145/100216.100273
https://doi.org/10.1007/S00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://doi.org/10.1145/1536414.1536440

7

184 REFERENCES

[10] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. “Faster Packed
Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE”. In:
ASIACRYPT 2017, Part I. Ed. by T. Takagi and T. Peyrin. Vol. 10624. LNCS.
Springer, 2017, pp. 377–408. DOI: 10.1007/978-3-319-70694-8_14.

[11] L. Ducas and D. Micciancio. “FHEW: Bootstrapping Homomorphic Encryption
in Less Than a Second”. In: EUROCRYPT 2015, Part I. Ed. by E. Oswald
and M. Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 617–640. DOI:
10.1007/978-3-662-46800-5_24.

[12] A. Viand, C. Knabenhans, and A. Hithnawi. “Verifiable Fully Homomorphic
Encryption”. In: arXiv preprint arXiv:2301.07041 (2023). URL: https :
//arxiv.org/abs/2301.07041.

[13] H. Chen, I. Chillotti, and Y. Song. “Multi-Key Homomorphic Encryption from
TFHE”. In: Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part II. Ed. by S. D.
Galbraith and S. Moriai. Vol. 11922. LNCS. Springer, 2019, pp. 446–472. DOI:
10.1007/978-3-030-34621-8_16.

[14] Y. Akin, J. Klemsa, and M. Önen. “A Practical TFHE-Based Multi-Key
Homomorphic Encryption with Linear Complexity and Low Noise Growth”.
In: Computer Security - ESORICS 2023 - 28th European Symposium on
Research in Computer Security, The Hague, The Netherlands, September
25-29, 2023, Proceedings, Part I. Ed. by G. Tsudik, M. Conti, K. Liang,
and G. Smaragdakis. Vol. 14344. LNCS. Springer, 2023, pp. 3–23. DOI:
10.1007/978-3-031-50594-2_1.

[15] H. Chen, W. Dai, M. Kim, and Y. Song. “Efficient Multi-Key Homomorphic
Encryption with Packed Ciphertexts with Application to Oblivious Neural
Network Inference”. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November
11-15, 2019. Ed. by L. Cavallaro, J. Kinder, X. Wang, and J. Katz. ACM, 2019,
pp. 395–412. DOI: 10.1145/3319535.3363207.

[16] B. Xiang, J. Zhang, K. Wang, Y. Deng, and D. Feng. NTRU-based Bootstrapping
for MK-FHEs without using Overstretched Parameters. Cryptology ePrint Archive,
Paper 2024/1898. 2024. URL: https://eprint.iacr.org/2024/1898.

[17] J. Ning, X. Huang, G. S. Poh, J. Yuan, Y. Li, J. Weng, and R. H. Deng.
“LEAP: Leakage-Abuse Attack on Efficiently Deployable, Efficiently Searchable
Encryption with Partially Known Dataset”. In: ACM CCS 2021. Ed. by
Y. Kim, J. Kim, G. Vigna, and E. Shi. ACM, 2021, pp. 2307–2320. DOI:
10.1145/3460120.3484540.

[18] G. Wang, Z. Cao, and X. Dong. “Improved File-injection Attacks on Searchable
Encryption Using Finite Set Theory”. In: Comput. J. 64.8 (2021), pp. 1264–1276.
DOI: 10.1093/COMJNL/BXAA161.

https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-662-46800-5_24
https://arxiv.org/abs/2301.07041
https://arxiv.org/abs/2301.07041
https://doi.org/10.1007/978-3-030-34621-8_16
https://doi.org/10.1007/978-3-031-50594-2_1
https://doi.org/10.1145/3319535.3363207
https://eprint.iacr.org/2024/1898
https://doi.org/10.1145/3460120.3484540
https://doi.org/10.1093/COMJNL/BXAA161

ACKNOWLEDGEMENTS

Throughout my Ph.D. journey, I have been fortunate to receive tremendous support,
encouragement, and understanding from colleagues, friends, and family. You are the
ones who made this journey enjoyable and helped me persevere through the difficult
times. I sincerely thank all of you for being by my side every step of the way.

Foremost, my deepest gratitude goes to my daily supervisor, Dr. Kaitai Liang, and my
promoter, Prof. Inald Lagendijk. Kaitai, I’m truly thankful for your constant support, pa-
tience, and encouragement throughout this journey. Our weekly meetings significantly
influenced my research mindset—you’ve shown me how to approach problems inde-
pendently and critically, which I hold in high regard. I also deeply value the professional
growth I’ve gained through your guidance—whether by introducing me to others at con-
ferences or encouraging me to pursue topics that spark my curiosity. To my promoter,
Prof. Inald Lagendijk, I find great inspiration in your professionalism and greatly appre-
ciate the valuable suggestions, ideas, and thoughtful discussions you’ve shared with me
during this time. I’ll carry your advice forward as I work toward my long-term goals—and
I promise to let you know when they come true.

Furthermore, I sincerely thank the committee members—Prof. Liqun Chen, Prof. Colin
Boyd, Prof. Fernando Kuipers, Dr. Jos H. Weber, and Prof. George Smaragdakis—for tak-
ing the time to review my thesis, providing insightful and constructive comments, and
participating in my defense ceremony.

Next, I would like to thank all the wonderful colleagues I had the pleasure of working
with during my Ph.D. Dear George, I’m grateful for the thoughtful suggestions and sup-
port you provided as I developed my academic career. I will never forget the light from
your office shining in the dark. I sincerely hope that one day, I can become a researcher
like you. Dear Mauro, thank you for supporting my academic visit to Padova and giving
me the valuable opportunity to present my work among master’s students. I was always
touched to receive your emails, even late at night.

Dear Jelle, it has been a privilege to meet you and to share so many research interests.
I’m especially thankful for your kindness in introducing your friends in our field to me
during RWC in Sofia. I would also like to express my sincere thanks to Lilika. I learned
a great deal from you while co-supervising master’s students—it was a truly valuable ex-
perience. Dear Alexios, I appreciate your kindness in sharing your experience with paper
submissions—it encouraged me greatly. Dear Stjepan, thank you for your kind support
during the summer school. Dear Sicco, thanks for welcoming me so warmly to Thursday
drink activities. Dear Sandra, I truly appreciate the way you always provide clear and
detailed information to help me solve problems. Dear Zeki, thanks for the opportunity
to be the teaching assistant for your course—it was a rewarding experience. Dear Jor-
rit, thank you for thoughtfully organizing group activities—they helped strengthen our
Ph.D. group’s connection. Your smile always brings light and warmth to our days. Dear

185

186 ACKNOWLEDGEMENTS

Stefanos, thanks for making our office a more supportive and pleasant place to work. I’m
especially thankful to all the other members of the CYS family—Harm, Daniël, Clinton,
Florine, Marina, Azade, Marwan, Yuqian, Maarten, Tjitske, Murtuza, Jesús and Misha.
Our exchanges of ideas have been remarkably thought-provoking—your perspectives
expanded my thinking and enriched my academic development. Thanks so much for
your support.

This work would not have been possible without the collaborations with several es-
teemed researchers and outstanding master’s students, from whom I have learned im-
mensely. Dear Yao Jiang Galteland, I still vividly remember the feedback you gave me on
my first article. You generously shared your research skills, writing advice, and more—your
support left a lasting impact on me as a beginner and continues to guide me today.
After our joint work, you also shared your job-hunting experience and offered practi-
cal suggestions, which I am sincerely grateful for. I also thank the excellent master’s
students I worked with: Steven, Björn, Hakan, Jeroen, Tjard, Manning, Lesley, Nicolas,
Ken, Richard, Viraj and Peijie. Your curiosity, dedication, and fresh perspectives not only
made our collaborations productive and enjoyable but also helped me grow as a mentor
and researcher. I’m grateful to Dr. Chaoyun Li and Chunlei Li, whose mentorship and
guidance helped me avoid many detours and saved me from unnecessary struggles.

Now, I also would like to express my gratitude to my dear friends. Dear Rui, from the
moment I arrived in Delft until now, through daily life’s ups and downs, I’ve always felt
your support. I truly appreciate it from the bottom of my heart. Dear Tianyu, thank
you for organizing so many wonderful gatherings for our friends, for generously sharing
your room with us, and for always taking care of things—like cleaning the dishes after
we left. Dear Huimin, it is my greatest honor to be your paranymph. I am deeply grateful
for the help you’ve given to my family, and it means a great deal to me during those
difficult times. I wish you the best in Darmstadt. Dear Dazhuang, thank you for your
excellent ideas and insightful suggestions that helped me tackle complex issues over the
past two years. Dear Yanqi, thank you for the unforgettable moments we shared while
preparing for TMB. Dear Jing and Jinke, thank you for all the joy we shared during our
outings, gatherings, and gaming sessions. Those moments brought so much happiness
and are memories I’ll always treasure. Dear Zeshun, thank you for the fantastic dinner
event and for giving me a ride while we explored places together in the Netherlands and
Germany—it was full of fun and great memories. Dear Shihui and Hao, I am truly grateful
to both of you for introducing me to such enriching concepts in cryptography. Your
guidance has greatly deepened my interest in the subject.

Dear Qian, Anton and Lelie, your presence made this unfamiliar land feel like home.
Crossing paths with you has been one of the gentlest gifts this journey has given me. I
wish you all the best in everything ahead. Dear Jiang Bei, Qin Qin and Andy, I will never
forget what it means to have someone I can always rely on. Your support has been a
great source of comfort and strength throughout my journey. Dear Dingyang, Sijia and
Jiahe, thank you for the lovely time we shared with the little ones. I wish them all the
best as they grow up strong and happy. To all my basketball friends, Liu Zhengxuan, Li
Bo, Huang Ruopeng, Shan Xu, and Xu Zhiyuan, it is my great pleasure to become friends
with you. In the end, I’m grateful for meeting you all at Eurocrypt 2025: Liu Xiang, Zhang
Zhou, Wang Yunhao, Feng Yansong, and Ding Xiaohui and for the joyful time we spent

187

in Madrid. May your talents continue to flourish in all that you pursue.
Lastly, I wish to convey my deepest appreciation to my wife, Xiaodan. Without you,

I could not have completed this dissertation. Thank you for all the contributions you
made to our family, especially during the times when I couldn’t be there. Your steady en-
couragement and heartfelt devotion have given me the strength to pursue my dreams—and
the wings to fly even higher. This dissertation is dedicated to you. To Yi, I will do my best
to be a good role model for you. I remain forever grateful to my loving family and my
parents for their constant, unwavering support.

To the maple tree by the library—thank you for witnessing my seasons, and for listen-
ing in stillness when I needed it most.

Thank you all for walking this journey with me. In the words of Queen Elizabeth II: We
are just passing through. Our purpose here is to observe, to learn, to grow, to love... and
then we return home.

CURRICULUM VITÆ

Huanhuan Chen was born in Nanyang, Henan Province, China. He obtained his bach-
elor’s degree in Mathematics and Applied Mathematics from Heilongjiang University,
Harbin, China, in 2015. He then earned his master’s degree in Pure Mathematics from
Nankai University, China, in 2018.

Since June 2021, he has been pursuing a Ph.D. in the Cyber Security research group at
the Faculty of Electrical Engineering, Mathematics and Computer Science at Delft Uni-
versity of Technology, the Netherlands. His Ph.D. research is supervised by Dr. Kaitai
Liang and Prof. dr.ir. R.L. Lagendijk. His research interests include post-quantum (lattice-
based) cryptography, applied cryptography, and fully homomorphic encryption.

189

LIST OF PUBLICATIONS

CONFERENCE AND WORKSHOP

8. Wang, R., Wang, X., Chen, H., Decouchant, J., Picek, S., Laoutaris, N. and Liang, K. MUD-
GUARD: Taming Malicious Majorities in Federated Learning using Privacy-Preserving Byzantine-
Robust Clustering. In ACM SIGMETRICS (2025), ACM, pp. 1–41.

7. Zhang, M., Shi, Z., Chen, H. and Liang, K. Inject Less, Recover More: Unlocking the Potential
of Document Recovery in Injection Attacks Against SSE. In CSF (2024), IEEE, pp. 311–323.

6. Langhout, T.J., Chen, H. and Liang, K. File-Injection Attacks on Searchable Encryption,
Based on Binomial Structures. In ESORICS (2024), vol. 14984 of Lecture Notes in Computer
Science, Springer, pp. 424–443.

5. Ho, B., Chen, H., Shi, Z. and Liang, K. Similar Data is Powerful: Enhancing Inference Attacks
on SSE with Volume Leakages. In ESORICS (2024), vol. 14985 of Lecture Notes in Computer
Science, Springer, pp. 105–126.

4. Chen, H., Galteland, Y.J., and Liang, K. CCA-1 Secure Updatable Encryption with Adaptive
Security. In ASIACRYPT (2023), vol. 14442 of Lecture Notes in Computer Science, Springer,
pp. 374–406

3. Lambregts, S., Chen, H., Ning, J. and Liang, K. VAL: Volume and Access Pattern Leakage-
Abuse Attack with Leaked Documents. In ESORICS (2022), vol. 13554 of Lecture Notes in
Computer Science, Springer, pp. 653–676.

2. Chen, H., Fu, S., and Liang, K. No-Directional and Backward-Leak Uni-Directional Updat-
able Encryption Are Equivalent. In ESORICS (2022), vol. 13554 of Lecture Notes in Computer
Science, Springer, pp. 387–407.

1. Tjiam, K., Wang, R., Chen, H. and Liang, K. Your smart contracts are not secure: investigat-

ing arbitrageurs and oracle manipulators in Ethereum. In Proceedings of the 3rd Workshop

on Cyber-Security Arms Race (2021), ACM, pp. 25–35.

PREPRINT

1. Chen, H., CONTI, M., Giannetsos, T. and Liang, K. Batch Programmable Bootstrapping,

within A Polynomial Modulus. In submission.

191

	Contents
	Summary
	Samenvatting
	Introduction
	Three Advanced Encryption Schemes
	Challenges in UE, FHE, and SE
	Problem Statement
	Contributions of the Thesis
	Lists of EXCLUDED PUBLICATIONS

	Equivalence of Updatable Encryption
	Introduction
	Updatable Encryption
	Leakage Sets
	Trivial Win Conditions

	Relations among Security Notions
	Relations among Confidentiality Notions
	Relations among Integrity Notions

	Conclusion

	CCA-1 Secure Updatable Encryption with Adaptive Security
	Introduction
	Related Work
	Our Approaches
	Summary of Contributions

	Preliminaries
	Updatable Encryption
	Gaussians and Lattices

	New Confidentiality Notions for Updatable Encryption
	UE Schemes with No-Directional Key Updates
	A Simplified Confidentiality Notion
	A Stronger Confidentiality Notion
	Firewall Techniques

	A CCA-1 Secure PKE Scheme
	A New PKE Scheme
	Correctness and Security

	A CCA-1 Secure Updatable Encryption Scheme
	Construction
	Correctness
	Security Proof
	A Packing UE

	Conclusion and Future Work

	Batch Programmable Bootstrapping, within A Polynomial Modulus
	Introduction
	Our Result
	Related Works

	Preliminaries
	Algebraic Number Theory
	FHEW-like Cryptosystems
	Batch Bootstrapping

	Batch Evaluations of Arbitrary Function within A Polynomial Modulus
	Batch PBS
	Applications

	Large Precision
	Decomposition and Removal
	Decomposition and Reconstruction

	Conclusion

	Volume and Access Pattern Leakage-Abuse SE Attack
	Introduction
	Preliminaries
	Searchable Encryption
	Notation

	Models
	Leakage Model
	Attack Model

	The Proposed Attack
	Main Idea
	Leaked Knowledge
	Our Design
	Countermeasure Discussions

	Evaluation
	Experimental Setup
	Experimental Results
	Countermeasure Performance
	Discussion on Experiments

	Related Work
	Conclusion

	File-Injection Attacks on SE, Based on Binomial Structures
	Introduction
	Preliminaries
	Searchable Encryption
	File Injection Attack
	FST-Attack

	A New File-injection Attack
	Increment [r, n]-Set
	Construction of Increment [r,n]-Set
	Binomial-Attack
	Performance under Different Thresholds

	File-injection Attacks on SE Schemes with Keyword Padding
	Calculating the Effects
	Visualising the Effects

	Adopted Binomial-Attack
	Removing the (n,n)-Set
	Results after the Mitigation

	Discussion
	Future work
	Conclusion

	Discussion
	Updatable Encryption
	Fully Homomorphic Encryption
	Searchable Encryption
	Conclusion

	Acknowledgements
	Curriculum Vitæ
	List of Publications

