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Abstract

The global energy transition towards Renewable Energy Sources (RES) introduces significant
challenges to grid stability due to the inherent intermittency of sources like solar and wind.
Hybrid Energy Storage (HES) systems, particularly those integrating Power-to-Hydrogen-to-
Power (P2H2P) technologies, are critical for mitigating these issues. However, the e�ective
planning and control of these systems depend on accurate models of both the HES components
and the Low Voltage (LV) distribution grids they support. This thesis addresses this dual
modeling challenge, which is often hindered by complex component dynamics and limited grid
data.

This research develops and validates two distinct frameworks. First, a control-oriented, hybrid
dynamic model for an Anion Exchange Membrane (AEM) electrolyzer is proposed. This model
integrates a physics-based Equivalent Circuit Model (ECM) to capture primary electrochemical
dynamics with a shallow neural network trained to correct for residual, unmodeled thermal
dynamics. Second, a complete, data-driven pipeline is developed to construct "digital twins"
of LV distribution grids from limited static data. This pipeline uses an Integer Linear
Programming (ILP) algorithm to reconstruct the most probable network topology, which is
then parameterized for power flow analysis.

The hybrid electrolyzer model was validated using operational data from a commercial Enapter
EL 2.1 unit, demonstrating high fidelity with a 92.03 % fit, drastically outperforming the 26.00%
fit of the standalone ECM. The grid modeling pipeline was validated in a case study of a 160kVA
substation in Bonaire. Despite incomplete GIS data, the resulting model accurately simulated
aggregate load profiles, achieving a low Root Mean Square Error (RMSE) of approximately
6% for both active and reactive power when compared to real-world measurements.

In synthesis, this thesis delivers a robust and validated toolset for analyzing HES-grid inter-
action: a high-fidelity, computationally e�cient model of an AEM electrolyzer and a viable
method for accurately modeling limited-data LV grids. These components enable advanced co-
simulation and control design to study the role of AEM electrolyzers in providing distribution
grid support.

Master of Science Thesis Ruben van der Horst
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Chapter 1

Introduction

1-1 The challenge of renewable energy sources

The global energy landscape is currently undergoing a profound transformation, driven by the
urgent need to mitigate climate change by transitioning away from conventional fossil fuels [1].
This shift is characterized by an increasing reliance on Renewable Energy Sources (RES), such
as solar and wind power. However, the inherent intermittency and variability of these sources
pose a significant challenge to the stability and reliability of modern electrical grids. This
variability creates a potential mismatch between variable power generation and fluctuating
consumer demand, which can threaten grid stability and security of supply [2].

To ensure a stable and reliable power system in the face of high RES penetration, advanced
technological solutions are essential. Energy Storage Systems (ESS) have emerged as a critical
enabling technology to address this challenge of intermittency. By absorbing surplus energy
during periods of high generation and dispatching it when demand exceeds supply, ESS are
indispensable for the large-scale integration of renewables [3].

1-2 Modeling of energy storage and distribution systems

Among the various storage solutions, Hybrid Energy Storage (HES) systems are particularly
promising. These systems combine two or more storage technologies to leverage their com-
plementary strengths, such as pairing the rapid response of batteries with the long-duration,
high-capacity storage of a Power-to-Hydrogen-to-Power (P2H2P) cycle [4]. The integration of
these advanced, decentralized assets, however, introduces significant new complexities for grid
management.

The e�ective planning, placement, and control of these HES systems are entirely dependent
on the availability of reliable and accurate models. This thesis addresses two primary and
interconnected modeling challenges:

Master of Science Thesis Ruben van der Horst



2 Introduction

1. Modeling the HES Components: To integrate HES systems with intermittent
renewables, the components themselves, particularly electrolyzers, must operate under
highly dynamic loads. This drives the need for accurate, e�cient, and control-oriented
dynamic models that can capture complex behaviors, such as thermal e�ects, under
variable conditions to estimate the best possible dispatching strategy. Creating such
models faces challenges due to the inherent complexity of electrochemical systems [5]
and the fact that measurement data is often scarce or noisy. These models are essential
for advanced control strategies like Model Predictive Control (MPC) [6–8].

2. Modeling the Distribution Grid: The HES systems must be integrated into the ex-
isting power grid. Therefore, a reliable model of the distribution grid itself is paramount.
Distribution Service Operators (DSO) rely on these models to perform advanced simula-
tions, assess hosting capacity for new Distributed Energy Resources (DERs) [7], and
optimize storage dispatch to prevent grid congestion [9, 10]. This task is especially
challenging in many Low Voltage (LV) networks, which often su�er from limited data,
incomplete documentation, and a lack of advanced metering infrastructure.

This research confronts both of these challenges by developing and validating advanced
modeling methodologies for both the HES components and the distribution grids they connect
to.

1-3 Research objectives and scope

Based on the challenges identified, the primary identified research gap is:

A lack of accurate, computationally tractable, and physically interpretable models

for HES system components (especially emerging tech like AEM electrolyzers)

and their interaction with the grid.

There are clear opportunities do utilize AEM electrolyzers in HES systems in an optimal
fashion with modern, model driven control strategies. These strategies have been proposed
for simple linear and piecewise a�ne models, but have not been combined with accurate grid
models.

To generate these models, the two following secondary objectives are defined:

1. To develop and validate a control-oriented, hybrid dynamic model for an Anion Exchange
Membrane (AEM) electrolyzer. This model aims to balance physical interpretability
with high predictive accuracy, specifically by capturing the complex, unmodeled thermal
dynamics that arise from variable load operation.

2. To develop and validate a complete, data-driven pipeline for modeling LV distribution
grids where data sources are limited or incomplete. The objective is to create a reliable
grid model suitable for power flow analysis and HES integration studies, based on static
GIS and asset data.

The scope of this work is centered on the development, application, and validation of these
modeling frameworks. The electrolyzer model (Chapter 2) is validated using real-world
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1-4 Research methodology and thesis outline 3

operational data from a commercial Enapter EL 2.1 AEM electrolyzer installed at the 24/7
Energy Hub at The Green Village, TU Delft. The distribution grid modeling methodology
(Chapter 3) is applied and validated in a case study of a 160kVA secondary substation in
Bonaire, using utility data from WEB Bonaire.

1-4 Research methodology and thesis outline

This thesis addresses its research objectives in distinct chapters, each structured as a self-
contained paper. While interconnected, every chapter presents its own methodology, literature
review, and results, allowing it to be read independently.

Chapter 2 proposes a hybrid modeling framework for the AEM electrolyzer. It integrates a
physics-based Equivalent Circuit Models (ECM), capturing dominant electrochemical dynamics,
with a shallow neural network. The network is trained to correct residual errors identified
as complex, unmodeled temperature-dependent dynamics, blending interpretability with
computational e�ciency.

Chapter 3 details a data-driven pipeline to model LV distribution grids. First, it reconstructs
the most probable network topology from GIS and customer data using an Integer Linear
Programming (ILP) algorithm [10]. Next, grid assets (lines, transformers, loads) are param-
eterized within the power-grid-model library [11]. The resulting model is validated by
comparing its simulated aggregate load profile against real-world power quality meter data.

Chapter 4 summarizes the findings of each research chapter, presents the overall conclusions
of this thesis, and provides recommendations for future work.

Master of Science Thesis Ruben van der Horst
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Chapter 2

Control-Oriented Hybrid Modeling of
AEM Electrolyzer via Residual Error

Correction

2-1 Introduction

Climate change and global warming, driven primarily by human activities that result in
excessive emissions of greenhouse gases such as carbon dioxide, have emerged as pressing
global challenges [12]. Accordingly, the Paris Agreement has set ambitious targets to limit
the rise in global temperatures to 1.5 °C above pre-industrial levels and significantly reduce
greenhouse gas emissions, with a particular emphasis on decarbonizing the energy and industrial
sectors [13]. Transitioning away from conventional fossil fuel-based energy production and
industrial processes necessitates the extensive deployment of renewable energy sources, such
as solar and wind power. However, the inherent intermittency and variability of renewable
energy generation pose significant challenges to ensuring the stability and reliability of modern
power systems. Accordingly, advanced technological solutions are essential to provide e�ective
renewable integration [14]. To address these challenges, robust energy storage approaches are
crucial for maintaining grid stability and securing a continuous power supply. Hybrid Energy
Storage (HES) systems particularly o�er a promising solution. More precisely, HES systems
allow to combine two or more energy storage technologies and leverage their complementary
strengths to e�ectively manage renewable energy fluctuations [15,16].

Within HES systems, green hydrogen, produced via water electrolysis powered by renewables,
is emerging as a critical energy carrier. The electrolyzer is a central component. Among
various electrolyzer technologies, the Anion Exchange Membrane (AEM) electrolyzer is gaining
traction and widely adopted [17]. To integrate AEM electrolyzers with intermittent renewable
energy sources, they must operate under highly dynamic loads, causing fluctuations in current,
temperature, and pressure. Understanding these e�ects on performance and degradation is
key to reliable design [18,19], driving the need for accurate, e�cient dynamic models.

Master of Science Thesis Ruben van der Horst



6 Control-Oriented Hybrid Modeling of AEM Electrolyzer via Residual Error Correction

E�cient use of HES in the energy transition requires advanced control and optimization
techniques, such as Model Predictive Control (MPC), which are predominantly model-based,
and thus, making the development of accurate component models essential. However, creating
such models faces significant challenges, including the inherent complexity of the electrochemical
systems [5] and the fact that measurement data is often noisy, scarce, or not su�ciently
informative. Furthermore, the resulting optimization and control needs to remain tractable,
particularly for decision-making [8, 20–22].

The modeling field for PEM and AEM electrolyzers is notably deep, evolving from simple
mathematical equivalents to sophisticated data-driven and hybrid frameworks [23–26]. Within
Equivalent Circuit Models (ECM)s, the complexity of the Resistance-Capacitance (RC) con-
figuration directly dictates the captured dynamic range [27–29]. The simplest structure is the
zero-order model, which uses only a series resistor to represent instantaneous ohmic losses,
failing to capture any transient response [27]. The first-order model adds a single parallel
RC branch to capture the fast, namely in millisecond scale, activation dynamics, improving
short-term transient accuracy [28,30]. For better representation of both fast and slow dynamic
phenomena, possibly in second scale, the double-branch RC model incorporates a second
RC branch, often dedicated to the slower concentration and di�usion losses, providing an
improved suitability for control-oriented applications [31, 32]. Higher-order models, while
o�ering incrementally higher fidelity, by adding more RC pairs or inclusin of partial di�erential
equations of electrochemical phenomena, typically su�er from increased computational cost
and parameter identifiability challenges [33–35]. One the other hand, data-driven approaches,
such as neural networks [36], have proven e�ective for capturing complex, non-linear dynamics,
for instance, in the direct operational data-driven dynamic voltage prediction of commercial
alkaline water electrolyzers [37]. Moving further into advanced machine learning, Physics-
Informed Neural Networks (PINN)s represent a critical development, as they successfully
merge deep learning with fundamental electrochemical principles. PINN ensure physical con-
sistency and interpretability, with recent applications demonstrating their power in predicting
critical variables like temperature fluctuations in PEM cells [38]. This hybrid strategy, often
implemented using residual learning [39], integrates physics-based models with neural networks
to specifically correct for unmodeled dynamics and errors [40]. Techniques like the Dynamic
Residual Learning approach [41] further improve the fidelity of physics-constrained neural
networks, o�ering more accurate models.

The literature on electrolyzer modeling reveals a fundamental trade-o� between identifiability,
predictive accuracy and computational complexity in the sense of being suitable for online
decision-making and optimization-based control strategies such as MPC. High-fidelity, multi-
dimensional models for PEM and AEM electrolyzers provide deep physical insights but
are often considerably computationally intensive for real-time control applications or with
intractable parameter estimation [42,43]. Conversely, while computationally e�cient, simplified
approaches like ECMs, often fail to capture critical non-linear dynamics, particularly thermal
e�ects crucial for performance prediction under variable loads [44,45]. Their internal structure,
such as RC configuration, is deliberately simplified, e.g., by modeling anodic and cathodic
dynamics with a single loop, to prioritize this computational speed [45]. Furthermore, Similarly,
methods based on extensive large-scale Neural Networks (NNs) face significant challenges
in real-world advanced optimization control strategies; their inherent complexity presents
a major hurdle for e�cient execution within optimization solvers, and providing technical
guarantees of stability or performance is generally not feasible for such black-box models.
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2-2 The hybrid modeling framework for electrochemical systems 7

Figure 2-1: The 24/7 energy hub located at The Green Village, TU Delft campus.

Consequently, a significant gap exists for modeling frameworks, particularly for emerging AEM
technologies, that can e�ectively balance prediction accuracy, computational e�ciency, and
physical interpretability [46].
Motivated by the aforementioned research gap, the primary contribution of this work is
a control-oriented hybrid modeling framework designed to systematically balance physical
interpretability, predictive accuracy, and computational e�ciency for real-time control. Unlike
traditional methods that embed physics into the loss function, a deliberate two-stage estimation
strategy is introduced: an interpretable, physics-based RC model is first identified to capture
dominant dynamics. A computationally e�cient, shallow neural network is then trained to
exclusively correct the remaining residual, which is identified as stemming from complex,
unmodeled temperature-dependent dynamics. This hybrid model design, for instance by
using bounded activation functions, can also ensure system-theoretic properties by quantifying
and controlling the deviation from the physics-based trend. The approach was successfully
validated using real-world operational data from a commercial AEM electrolyzer at The Green
Village, capturing these thermal e�ects without elaborate multiphysics modeling. The resulting
framework provides a high-fidelity, tractable solution that decisively outperforms baseline
physics-only and standard data-driven benchmarks

2-2 The hybrid modeling framework for electrochemical systems

Electrochemical energy systems, such as electrolyzers, fuel cells, and lithium-ion batteries,
exhibit nonlinear and multi-scale dynamics due to the intricate coupling of electrochemical,
thermal, and transport phenomena, including charge transfer kinetics, ionic and electronic
conduction, gas-liquid phase interactions, heat generation, and faradaic reactions [5]. The
interplay among the mentioned factors majorly governs the transient response and also the

Master of Science Thesis Ruben van der Horst



8 Control-Oriented Hybrid Modeling of AEM Electrolyzer via Residual Error Correction

long-term steady-state characterizations of the system, particularly under dynamic loading
conditions [5]. Consequently, to accurately capture and predict their behavior, dynamic
systems modeling frameworks are required that e�ectively encode complex interdependencies
across multiple phenomena and timescales, and are also suitable for control-oriented objectives.
Accordingly, given an appropriate sampling interval, one may employ a discrete-time state-space
representation to describe the system dynamics as

xk+1 = f(xk, uk, dk), (2-1)

where k œ Z is the discrete index of time, xk œ Rnx denotes the vector of internal system
states, uk œ Rnu represents the control inputs, e.g., current or voltage, dk œ Rnd accounts
for the vector of internal or external disturbances such as temperature fluctuations or load
changes, and, f : Rnx ◊ Rnu ◊ Rnd æ Rnx is the mathematical expression for the dynamics
of the systems. Alternatively, one may employ an input-state-output or an input-output
representation for the system. Nevertheless, the core arguments of our discussion remain
una�ected. Therefore, for streamlined exposition, the primary focus is maintained on the
input-state settings introduced above.

Let M ™ Rnx ◊ Rnu ◊ Rnd denote the set of admissible vectors of state variables, inputs,
and disturbances, and suppose a set of nD measurement data points in M , denoted by D , is
provided as

D = {(xk, uk, dk) œ M | k = 1, . . . , nD}. (2-2)

The main objective is to utilize dataset D to identify a model for the system [47], i.e., to
approximate the underlying system law f introduced in (2-1).

Following first principles and the physics of the system, one can employ a white-box modeling
approach. More precisely, considering the coupled electrochemical and physical processes
that govern the dynamics of the system, one may develop parametric models with various
components describing di�erent essential features of the system [5]. Thus, a class of physics-
based models is obtained as

F (phys) =
�

f
(phys)
◊ : M æ Rnx | ◊ œ �

 
, (2-3)

where � ™ Rn◊ represents the set of admissible parameters. Subsequently, the model identifi-
cation can be formulated in form of an optimization problem as

min
◊œ�

E
(phys)
D (◊) + R

(phys)(◊), (2-4)

where E
(phys)
D : � æ RØ0 is a suitable empirical loss indicating model fitting performance

given data set D , and R
(phys) : � æ RØ0 can be the regularization term to avoid overfitting,

or to promote specific desired properties for the parameter vectors ◊. Note that di�erent
forms of ED may be employed, including the sum of squared one-step or multi-step ahead
prediction errors, or the norm of the simulation error [47]. The elements within the model
class F (phys) are inherently interpretable and can typically capture the qualitative behavior
of the system. By employing advanced modeling techniques, one may construct F (phys) to
include high-fidelity models. However, developing such models often demands significant
domain expertise. Moreover, estimating their parameters can be computationally intensive,
particularly when the available operational data are noisy, limited, or uninformative. In
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2-2 The hybrid modeling framework for electrochemical systems 9

addition, the parameter estimation problem (2-4) is often highly nonlinear and nonconvex.
Conversely, restricting F (phys) to simplified models, while still preserving interpretability and
the ability to reproduce general system trends, often leads to inaccurate representations of the
actual dynamics.

One may employ black-box modeling frameworks, i.e., purely data-driven schemes. To this
end, a suitable parametric model class is considered as

F (BB) =
¶

f
(BB)
› : M æ Rnx | › œ �

©
, (2-5)

where › œ Rn› denotes the parameter vector and � represents the set of feasible parameters.
Subsequently, the parameters of the model are estimated using dataset D through solving an
optimization problem formulated similar to (2-4), i.e.,

min
›œ�

E
(BB)
D (›) + R

(BB)(›), (2-6)

where E
(BB)
D : � æ RØ0 and R

(BB) : � æ RØ0 are defined analogously to (2-4). The elements
of F (BB) can be characterized through various forms. For example, f

(BB)
› may be described

as a linear combination of a given set of functions Ï1, . . . , Ïn› , such as radial basis functions
(RBFs), Fourier basis functions, or a generic dictionary [48,49]. Thus, we have

f
(BB)
› (z) = ›1Ï1(z) + . . . + ›n›Ïn›(z), (2-7)

for any z œ Rnz , where z œ Rnz is the vector defined as z = [xT
, u

T
, d

T ]T and nz = nx +nu +nd

is the dimension of z. Alternatively, f
(BB)
› can be characterized as an ¸-layer neural network

parameterized by › = vec(W1, b1, W2, b2, . . . , W¸, b¸), where vec denotes a suitable vectorization
operator, and with activation functions ‡1, . . . , ‡¸. More precisely, one can define

f
(BB)
› (z) = ‡¸(W¸(. . . ‡1(W1z + b1) . . .) + b¸), (2-8)

for any z œ Rnz , where Wj , bj , and ‡j are respectively the weight matrix, the bias vector, and
the activation function in the j

th layer, for j = 1, . . . , ¸ [50]. In addition to the parametric black-
box schemes, one may employ nonparametric techniques, e.g., through Koopman operators or
generic approaches [51, 52]. Specifically, given a suitably chosen matrix-valued kernel function

: M ◊ M æ Rnz ◊Rnz , kernel-based methods or Gaussian processes regression can be used
to learn the system dynamics directly from data D [48]. While black-box models often provide
good numerical accuracy and estimation performance, they typically lack interpretability and
generalization, particularly outside the domain of the training data.

To leverage the strengths of both white-box and black-box modeling, a two-stage hybrid
approach is proposed. The core idea is to first utilize a simplified physics-based model to
capture the primary behavioral trends of the system, and subsequently, employ a black-box
approach to separately learn a model for residuals from the initial stage, which e�ectively
serves as a correction term to enhance accuracy. More precisely, within this framework, to
partially embed the physics of the system directly into the model, we first consider a class
of simplified physics-based models, as in (2-4), and a suitable set of black-box models, as in
(2-6). Accordingly a class of hybrid models is defined, denoted by F (hyb), as

F (hyb) = {f
(hyb)
(◊,›) : M æ Rnx |

f
(hyb)
(◊,›) = f

(phys)
◊ + f

(BB)
› , ◊ œ �, › œ �}.

(2-9)
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10 Control-Oriented Hybrid Modeling of AEM Electrolyzer via Residual Error Correction

+ +

λ

, λ

Figure 2-2: Schematic of the proposed hybrid modeling approach combining a physics-based RC
circuit with neural network–based residual error estimation.

Figure 2-2 schematically illustrates the hybrid models in F (hyb). Following the introduced
structure for the elements of F (hyb), the model identification problem reduces to estimating
◊ œ � and › œ �. Considering the flexibility of the black-box models, the parameter estimation
is split into two steps, i.e., a two-stage estimation problem. First, by solving (2-4), the optimal
parameter model ◊

ı for the physics-based component of the model is obtained. Thus, the
estimation residual terms r1, . . . , rnD are defined as

rk = xk+1 ≠ f
(phys)
◊ı (xk, uk, dk), (2-10)

for k = 1, . . . , nD ≠ 1, and form the residual dataset R as

R = {(xk, uk, dk, rk) œ M ◊ Rnx | k = 1, . . . , nD ≠ 1}. (2-11)

Subsequently, a suitable black-box modeling scheme is employed and obtain optimal parameter
›

ı using R and by solving an optimization problem formulated similar to (2-4). The final
resulting model is

f
(hyb)
(◊ı,›ı) = f

(phys)
◊ı + f

(BB)
›ı . (2-12)

Utilizing simplified physics-based models, in addition to promoting model interpretability
and allowing generalization beyond the range of measurement data, leads to improving the
numerical tractability of the parameter estimation problem (2-4), considering that such models
are less extensively parametrized. Additionally, the two-stage structure in the proposed
parameter estimation scheme is crucial, as it allows for employing flexible and representational-
rich classes of black-box models, while ensuring that physics-based behavior and trends of the
system are encoded in the model. More specifically, the proposed two-stage model identification
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2-3 Hybrid modeling for electrolyzers 11

scheme, for estimating a simplified physics-based model along with a learned black-box residual,
enables a balanced decomposition of the system dynamics. In the resulting model, the white-
box component captures the dominant physical trends and interpretable structure, whereas the
black-box residual accounts for unmodeled e�ects and discrepancies. Accordingly, the proposed
scheme prevents the black-box model from overfitting, absorbing the entire system behavior,
leaving the white-box model near zero, and resulting in an almost fully non-interpretable
black-box representation, which can be the case when the parameters are jointly estimated
in a single-stage approach. Thus, by separating structured knowledge from data-driven
corrections, the two-stage method preserves interpretability, improves generalization, and
provides a physically meaningful model. We can also regulate the bounds of the black-box
models used for residual learning in various cases, e.g., by employing bounded RBF networks
in (2-7), utilizing sigmoid functions for neural networks-based function representation (2-8),
particularly for shallow-nets, or applying bounded kernels within nonparametric methods.
Hence, one can quantify and control the deviation from the primary trend established by the
physics-based component. Furthermore, through right choices of activation functions, the
basis, or kernel functions, one can also establish system-theoretic guarantees and properties,
namely by obtaining specific bounds, or quantifying and control- ling the deviation from the
physics-based trend. Thus, the proposed scheme o�ers foundation for control and optimization.

Building on the proposed methodology and the preceding discussion, the next section presents
the development of a hybrid model for a real-world electrolyzer using operational measurement
data. To this end, the simplified physics-based component is modeled using RC circuits, while
a neural network is employed to capture the residual dynamics.

2-3 Hybrid modeling for electrolyzers

This section details the application of the hybrid modeling framework from Section 2-2 to the
Anion Exchange Membrane (AEM) electrolyzer. As noted in the introduction, developing a
high-fidelity, first-principles model demands significant expert knowledge [26] and, crucially,
requires access to specific characteristics like porosity or membrane thickness [53]. These
parameters are typically proprietary and not disclosed by manufacturers of commercial units,
such as the electrolyzer used in this study [54]. This makes a pure physics-based approach
infeasible and makes parameter estimation from operational data computationally challenging
[55]. Conversely, a purely data-driven model would sacrifice the physical interpretability that
is essential for robust monitoring and control [56, 57]. To address these specific challenges,
the hybrid scheme discussed in Section 2-2 and illustrated in Figure 2-2 is employed. An
interpretable, simplified physics-based model in the form of a double RC equivalent circuit
[44,45] is used to capture the dominant electrochemical dynamics. A neural network-based
black-box model is then combined with it to act as a targeted residual estimator, compensating
for the remaining nonlinearities, unmodeled dynamics (like the thermal e�ects), and parameter
uncertainties that the simplified RC model cannot capture.

2-3-1 Physics-based model component: an RC circuit

The equivalent circuit model encodes the key electrochemical processes within the AEM
electrolyzer through physically interpretable components. Specifically, the internal resistance
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R1 R2

C1 C2

Rint
Vint

i(t)

v(t)

+_

Figure 2-3: Equivalent circuit model of the AEM electrolyzer [44].

Rint models ohmic losses in the membrane during hydroxide ion transport, while the voltage
source Vint represents the reversible voltage required for water splitting [44]. Moreover, each
of the RC branches corresponds to a specific electrode reaction. More precisely, R1C1 branch
represents the cathode dynamics for hydrogen evolution, as descirbed by

2H2O + 2e≠
≠æ H2 + 2OH≠

, (2-13)

and, R2C2 branch captures the anode behavior for oxygen evolution, as expressed by

2OH≠
≠æ

1
2O2 + H2O + 2e≠

. (2-14)

The capacitances represent the electrical double-layer at each electrode interface, accounting
for the charge separation that governs transient response during current variations [58]. The
distinct time constants of the two RC branches reflect the di�erent reaction kinetics, with
typically faster hydrogen evolution at the cathode compared to oxygen evolution at the
anode [59].

2-3-2 Parameter estimation for the equivalent RC circuit

For the dynamics of the double-branch RC circuit shown in Figure 2-3, we have

d
dt

ï
VRC1(t)
VRC2(t)

ò
=
ñ
≠

1
·1

0
0 ≠

1
·2

ô ï
VRC1(t)
VRC2(t)

ò
+
ñ

R1
·1
R2
·2

ô
i(t), (2-15)

where VRC1 and VRC2 are the voltages across each RC branch, ·1 and ·2 are the time constants,
R1 and R2 are their resistances, and i(t) is the current driving the electrolyzer. Assume that
i(t) has a piece-wise constant structure with long-enough time-intervals [sj

, s
j+1). Let Ij

denote the value of i(t) during the j
th time-interval. Accordingly, one can approximate the

electrolyzer voltage at t œ [sj
, s

j+1) as

v(t) = (V (j)
0 ≠ V

(j)
ss )e≠

1
· (t≠sj) + V

(j)
ss , (2-16)

where V
(j)

0 and V
(j)

ss are the initial and steady-state voltages. Furthermore, for any t œ [sj
, s

j+1),
the following is known:

VRC1(t) = (V (j)
RC1,0 ≠ V

(j)
RC1,ss)e

≠
1

·1
(t≠sj) + V

(j)
RC1,ss, (2-17)
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VRC2(t) = (V (j)
RC2,0 ≠ V

(j)
RC2,ss)e

≠
1

·2
(t≠sj) + V

(j)
RC2,ss. (2-18)

Moreover, for any t, it is also known that

v(t) = VRC1(t) + Vint + i(t)Rint + VRC2(t), (2-19)

where Vint denotes the internal activation voltage. The time constants, resistances, and
capacitances are jointly related as

·1 = R1C1, (2-20)
·2 = R2C2, (2-21)

Rtot = Rint + R1 + R2, (2-22)

Note that (2-22) implies Rint = Rtot ≠ R1 ≠ R2, and therefore, Rint can be determined
by estimating Rtot, R1, and R2, provided that Rtot ≠ R1 ≠ R2 Ø 0. Accordingly, let ◊ =
[R1, R2, Rtot, C1, C2, Vint, ·1, ·2]T be the vector of parameters. Following the above derivations,
the function Vsim(◊, i(t)) is defined as the mathematical relation that approximately simulates
the ground-truth voltage v(t). Considering discrete-time measurements (ik, vk), the parameter
estimation problem is formulated as

min
◊œRn◊

Ø0

nkq
k=1

(Vsim(◊, ik) ≠ vk)2

s.t. Rtot ≠ R1 ≠ R2 Ø 0,

(2-20) and (2-21).

(2-23)

Since the estimation problem in (2-23) is non-convex, its solution is prone to being trapped
in local spurious minima. Consequently, to solve (2-23), an alternative tractable multi-step
approach needs to be employed, which is discussed below. First, linear regression in the
log-scale domain is used on transient data to obtain ·1 and ·2. A similar regression on the
polarization curve yields the total resistance Rtot and the internal activation voltage Vint [44].
With these parameters known, the individual branch resistances (R1, R2) can be found by
solving a simplified version of (2-23) formulated as

min
R1,R2œRØ0

nkq
k=1

(Vsim(R1, R2, ik) ≠ vk)2

s.t. Rtot ≠ R1 ≠ R2 Ø 0.

(2-24)

To provide a clear and reproducible method, the entire parameter estimation procedure,
adapted from the methodology presented by Guilbert and Vitale [44], which combines these
linear regression and numerical optimization steps, is summarized in Algorithm 1.

Algorithm 1 systematically breaks down the estimation process. Part 1 determines the
static parameters by fitting the polarization curve. Part 2 isolates the dynamic behavior by
analyzing the transient voltage response; it segments the data to distinguish between fast
and slow dynamics, applying a logarithmic transformation to linearize the exponential decay
and extract the time constants ·1 and ·2. Part 3 uses these values to solve the constrained
optimization problem from (2-24), determining the individual resistances R1 and R2. Finally,
Part 4 computes the remaining parameters, ensuring that the physical relationships in
(2-20)-(2-22) are satisfied. Considering the low dimension of the optimization variable in this
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14 Control-Oriented Hybrid Modeling of AEM Electrolyzer via Residual Error Correction

Algorithm 1 Parameter Estimation for the Double-Branch RC Model.

1: Input: Polarization dataset Dpol = {(Ik, Vk)}Npol
k=1 ; Full transient dataset Dtrans =

{(tk, Ik, Vk)}Ntrans
k=1 after a current step.

2: Output: The complete parameter set ◊ = {R1, C1, R2, C2, Rint, Vint}.
3: Û Part 1: Identify static parameters from polarization data Ù

4: Perform linear regression on Dpol to fit Vk = Ik · Rtot + Vint.
5: Obtain total resistance Rtot (slope) and reversible voltage Vint (intercept).
6: Û Part 2: Identify time constants from transient data Ù

7: Segment Dtrans into a fast transient subset Dfast and a slow transient subset Dslow.
8: function FindTau(Dsubset)
9: Determine the final steady-state voltage VŒ for the subset.

10: Create a linearized dataset Dlin = {(tk, ln(VŒ ≠ Vk))} for (tk, Vk) œ Dsubset.
11: Perform linear regression on Dlin to find the slope m.
12: return ≠1/m.
13: ·1 Ω FindTau(Dfast).
14: ·2 Ω FindTau(Dslow).
15: Û Part 3: Identify dynamic resistances via optimization Ù

16: Define an objective function J(R1, R2) which calculates the MSE between the measured
voltage from Dtrans and the voltage from a simulated RC model, Vsim(t; R1, R2).

17: Û The simulation uses known Vint, ·1, ·2 and the constraint Rint = Rtot ≠ R1 ≠ R2.
18: Solve the constrained optimization problem:
19: (Rú

1, R
ú
2) Ω arg minR1,R2 J(R1, R2)

20: subject to: R1 > 0, R2 > 0, R1 + R2 < Rtot.
21: Û Part 4: Calculate final parameters Ù

22: R
ú
int Ω Rtot ≠ R

ú
1 ≠ R

ú
2.

23: C
ú
1 Ω ·1/R

ú
1.

24: C
ú
2 Ω ·2/R

ú
2.

25: return {R
ú
1, C

ú
1 , R

ú
2, C

ú
2 , R

ú
int, Vint}.
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2-3 Hybrid modeling for electrolyzers 15

problem, it is computationally tractable despite its nonconvex nature. Standard approaches,
such as sequential quadratic programming, can e�ciently find a solution that satisfies both
the objective function and the physical constraints.

It should be noted that the parameter identification for ECMs, namely the low-order RC
models [27, 28, 30–35], regardless of the branch order, fundamentally reduces to a robust
linear constrained optimization problem, making the final V ≠ I emulation accuracy primarily
dependent on the physical fidelity of the RC structure and the dynamic content of the training
data.

2-3-3 Physics based thermal dynamics

The thermal behavior of the electrolyzer is governed by a balance of heat generation, passive
heat dissipation to the environment, and active cooling from its internal closed-loop system.
Following [60], this relationship can be represented by the di�erential equation

dT

dt
= K1Q̇gen ≠ K2Q̇loss ≠ K3Q̇cool (2-25)

where Q̇gen is the heat generated by the stack’s ine�ciency (proportional to the input power),
Q̇loss represents passive heat loss, and Q̇cool is the heat removed by the cooling system.

For control-oriented purposes, this physical relationship can be e�ectively captured by a
discrete-time linear model. The model predicts the stack temperature at the next time step
(Tk+1) based on the current temperature (Tk) and the electrical power input (P el

k ):

Tk+1 = gtempTk + ggainP
el
k + gbase (2-26)

Here, the parameters gtemp, ggain, and gbase are identified from operational data and represent
the combined e�ects of thermal inertia, heat generation, and cooling. This linear model
provides a computationally e�cient yet accurate method for dynamically estimating the
stack temperature [60]. When training on 80 % the data, the trend in temperature is very
clearly visible. While the closed loop control system in the EL could be modelled as a hybrid
model, this simple linear approximation is good enough at this time. The results are shown in
Figure 2-4.

2-3-4 Neural network for residual estimation: capturing the temperature Influence

The operational temperature significantly influences the performance of the AEM electrolyzer
by a�ecting electrochemical kinetics, the Nernst potential, and the ionic conductivity of the
membrane [61]. While our physics-based RC model provides an interpretable foundation
for the electrolyzer’s primary dynamics, its fixed-parameter nature makes it incapable of
accounting for these thermal e�ects [62].

To address this structured deficiency, a neural network (NN) is employed to estimate the
residual error, as outlined in the proposed hybrid framework. TheNN is specifically designed
to learn the complex, nonlinear relationship between the operational inputs (current and
temperature) and the error signal from the RC model. This synergy is precisely how the
hybrid approach achieves a high-fidelity representation:
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16 Control-Oriented Hybrid Modeling of AEM Electrolyzer via Residual Error Correction

Figure 2-4: The temperature model derived based on Equation (2-26).

The RC circuit preserves the model’s physical interpretability, capturing the dominant, well-
understood electrochemical behavior. The neural network acts as a targeted correction factor,
compensating only for the unmodeled, temperature-dependent dynamics that the simplified
physics-based component cannot capture.

By combining the physically-grounded structure of the RC model with the adaptive, data-
driven accuracy of the NN, the resulting hybrid model can more accurately represent the true
system behavior under real-world operating conditions. Further details on the implementation
and validation of this methodology are presented in the next section through a case study of
an electrolyzer unit installed at The Green Village research site.

2-4 Hybrid modeling results for an AEM electrolyzer

2-4-1 Electrolyzer specifications and operational conditions data

The operational data was collected from the Enapter EL 2.1 unit (specifications in Table II)
within the 24/7 energy hub, sampled at 1 Hz, i.e., � = 1 s. Analysis of the operational data
confirmed that the internal control system maintains a tight cathode pressure (mean 20.2
bar, 1.02% relative standard deviation) and near-ambient anode pressure (mean 1.74 bar). As
these pressures are stable and well-regulated, their dynamic influence on voltage is minimal.
With the goal of real-time control, e.g., implementing a suitable MPC strategy, the main focus
can be only on obtaining the dynamic model depending primarily on the externally-driven
variables, namely the fluctuating current density and the resulting slower thermal dynamics.
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2-4 Hybrid modeling results for an AEM electrolyzer 17

Table 2-1: Key parameters of the Enapter EL 2.1 AEM electrolyzer.

Parameter Value

Electrical
Supply Voltage 200–240 V AC
Nominal Power Consumption 2.4 kW
Peak Power Consumption 3.0 kW
E�ciency 4.8 kWh/Nm3 H2

Operating Conditions
Operating Temperature 5–45¶C (Ambient)
Electrolyte Temperature 55¶C (Nominal)
Production Rate Range 60–100% (of Nominal)
Nominal H2 Production 0.5 Nm3/hr
Output Pressure Up to 35 bar

Material and Inputs
Water Consumption ≥ 400 mL/hr
Max Water Conductivity < 20 µS/cm
Process Liquid 1% KOH solution

Physical
Dimensions (W ◊ D ◊ H) 482 ◊ 634 ◊ 307 mm
Weight 55 kg

2-4-2 Signal processing and time constant determination

Since the signal is relatively noisy, it is first preprocessed using a Butterworth filter, with
a cuto� frequency Ê = 0.05 rad/sample. Given that the sampling frequency is Fs = 1 Hz,
the employed cuto� frequency corresponds to 0.05 Hz. This choice e�ectively attenuates
high-frequency measurement noise while preserving the integrity of the underlying dynamics
crucial for accurate model identification. Moreover, by solving the regression problem discussed
in Section 2-3-2, the time constants can be estimated for both the fast transient and the slower
stabilizing transient as ·1 = 2.6 s and ·2 = 123.8 s, respectively.

2-4-3 Resistance and activation voltage determination

The relationships between time constants, resistances, and capacitances are explained in
equations (2-20), (2-21), (2-22). Following the discussion in Section 2-3-2, to derive the total
resistance Rtot and the internal activation voltage Vint, one can employ linear regression on
the polarization curve of the stack. Therefore, from Figure 2-5, the corresponding values for
the system can be obtained as

Rtot =1.31 � (2-27)
Vint =1.5683 V. (2-28)
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18 Control-Oriented Hybrid Modeling of AEM Electrolyzer via Residual Error Correction

Figure 2-5: Polarization curve fitting applied to the AEM electrolyzer stack.

2-4-4 Individual branch resistance calculation

Following the robust, multi-step estimation procedure from Algorithm 1, the constrained
optimization (2-24) was solved to find the individual branch resistances. This sequential
identification yields R2 = 0.197 ◊ 10≠3� and R1 = 9.32 ◊ 10≠3�. This approach ensures the
parameters retain their physical interpretability, a key advantage over monolithic or black-box
methods.

It is important to note that this sequential estimation procedure, detailed in Algorithm 1, is
key to the robustness of the identification. By first determining static parameters (Rtot, Vint)
and time constants (·1, ·2) from distinct data features, the final optimization for R1 and R2 is
low-dimensional and well-constrained. This avoids the numerical instability and local minima
pitfalls of a large-scale, all-in-one optimization, resulting in a more robust physical model.

2-4-5 Model enhancement via neural networks

The simulation results, as shown in Figure 2-6, demonstrate that the RC model successfully
captures the fundamental dynamic behavior of the electrolyzer, including the initial fast tran-
sient and the subsequent slower voltage evolution. However, a persistent and structured error
between the simulated and measured voltage is clearly visible. However, a persistent and struc-
tured error is visible in Figure 2-6. Cross-correlation analysis confirms this residual is strongly
and inversely correlated with temperature, validating the need for a targeted, temperature-
dependent corrector. Comparison with di�erent state-of-the-art modeling methodologies is
presented in the next section.
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Figure 2-6: Schematic of the proposed hybrid model architecture; comparison of the RC model
and the hybrid model for the error signal; and comparison of their voltages against the measured
voltage.

2-4-6 Results and Comparison

To validate the hybrid RC + NN(Ik, T̂k) model, its performance was rigorously benchmarked
against the baseline RC model and several other advanced modeling architectures. Performance
was quantified using the model fit percentage.

Let NT be the total number of data samples in the validation set, yk represent the measured
voltage at time step k, and ŷk be the voltage predicted by the model at the same time step.
Define the mean of the measured signal, denoted by ȳ, as

ȳ = 1
NT

NTÿ

k=1
yk (2-29)

The model fit percentage is a normalized metric that compares the model’s prediction error to
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the total variance of the data. It is calculated using as

fit (%) = 100 ◊

Ñ
1 ≠

»qNT
k=1(yk ≠ ŷk)2

»qNT
k=1(yk ≠ ȳ)2

é
(2-30)

The results from Table 2-2 are conclusive. The baseline RC model alone achieves a poor fit of
only 26.00 %, confirming its structured error makes it inadequate for high-fidelity applications.
While introducing a simple linear temperature correction (RC + Ik(– + —�T̂k)) dramatically
improves the fit to 79.76%, reinforcing that temperature is the primary source of error, the
hybrid model achieves the highest performance with a 92.03 % fit. This represents a 66%
absolute improvement over the baseline and, crucially, also outperforms other data-driven
models, including the pure black-box DNN(Ik) (52.04% fit) and the PINN(Ik) (74.91% fit).

This superior performance is a direct result of the hybrid design, which balances all key
objectives. The high accuracy is achieved with a computationally tractable model; the shallow
network structure (Table 2-2) ensures the model can be evaluated rapidly, making it ideal
for real-time, optimization-based control like MPC. This deliberate low parametrization is
a key feature of the robust learning approach, as the network is less prone to overfitting
and is focused only on learning the structured, temperature-dependent residual. Finally, the
two-stage estimation strategy employs the RC circuit as an interpretable backbone, preserving
its physical meaning, an advantage lost in the pure DNN andPINN approaches. The results
confirm that temperature fluctuations cause significant systematic errors in the RC model,
validating the necessity of a targeted hybrid correction.

Table 2-2: Performance Comparison of Modeling Approaches and Architectures

Model ID Architecture Model Fit (%)

RC model: Double RC ECM 26.00

RC + Ik(– + —�T̂k) RC and Rres(T̂ ) 79.76

RC + Ik · NN(T̂k) [10] + ReLU 87.28
here: NN(T̂k) ¥ �Rint(T̂k) [100] + ReLU 83.65

[130] + tanh 91.09

RC + NN(Ik, T̂k) [3] 74.27
[10] 92.03
[10-10] 80.93

DNN(Ik) [64, 64, 32] + tanh 52.04

PINN(Ik) [30, 30, 30] + tanh 74.91

2-4-7 Discussion

The results validate the proposed hybrid methodology as a robust, control-oriented modeling
framework. The baseline RC model’s 26.00% fit confirms it is inadequate for high-fidelity
applications, as it fails to model the large, systematic, temperature-dependent errors. The
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proposed hybrid model, by successfully training a lightweight neural network on this residual,
achieved a 92.03% fit. This result’s significance is highlighted by the benchmark in Table 2-2,
as the model decisively outperforms both a pure black-box DNN (52.04% fit) and a traditional
physics-in-loss PINN (74.91% fit).

This two-stage estimation strategy is a deliberate choice over simultaneous optimization [38],
as it locks in the interpretable RC parameters first, preventing theNN from overpowering
the physics. This methodology achieves the best of both worlds for real-time control: the
computational e�ciency and physical interpretability of the RC model, combined with the
high accuracy of a data-driven corrector, making it a compelling candidate for advanced
applications like MPC. While this 1 Hz model is highly accurate, the small remaining error
points to future work, such as online parameter estimation to account for long-term stack
degradation or modeling other unmeasured physical variables.

The findings demonstrate that the combination of physics-based and data-driven models
increases the models ability to represent electrolyzer stack dynamics, which makes the hybrid
model a compelling candidate for use in real-time estimation, diagnostic monitoring, and
control applications, especially in systems where temperature e�ects and operational variability
cannot be ignored.

2-5 Conclusion and future directions

In this paper, a novel hybrid model is successfully developed and validated for a commercial
anion exchange membrane electrolyzer using real-world operational data. It was demonstrated
that combining a double-branch Resistor-Capacitor (RC) circuit with a simple neural network
for residual estimation provides a high-fidelity representation of the electrolyzers dynamic
behavior. The key achievement of this work is the significant improvement in predictive
accuracy; the hybrid model increased the model fit by 66 % compared to the conventional
RC model alone. Our analysis revealed that this improvement is primarily due to the neural
network’s ability to e�ectively learn and compensate for systematic, temperature-dependent
dynamics that the fixed-parameter RC model could not capture. The proposed methodology
achieved a crucial balance between the physical interpretability of the RC circuit and the
accuracy of a data-driven approach, without the computational burden of complex multiphysics
models. Future work will focus on integrating this high-fidelity model into a MPC framework
for real-time optimization of the electrolyzer within the HES system. Subsequent research
will investigate extending the hybrid approach to capture faster, millisecond-scale dynamics,
which requires higher-frequency data acquisition and is relevant for grid stability studies.
Additionally, adaptive control strategies, such as switching models based on operational
regimes, will be explored to balance computational e�ciency and predictive accuracy.
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Chapter 3

Data-Driven Modeling of LV
Distribution Grids: A Case Study in

Bonaire

3-1 Introduction

The global energy landscape is undergoing a profound transformation, driven by the imperative
to mitigate climate change by transitioning away from fossil fuels [1]. This shift is characterized
by the increasing reliance on Renewable Energy Sources (RES) such as solar and wind. However,
the inherent intermittency of these sources poses a significant challenge to the stability and
reliability of electrical grids, creating a potential mismatch between variable power generation
and fluctuating consumer demand [2]. For Distribution Service Operators (DSOs), this rapid
adoption of decentralized energy generation introduces a host of new operational challenges,
including bidirectional power delivery, phase imbalance on di�erent phases, and unexpected
transformer loading [63].

To address this intermittency, Energy Storage Systems (ESS) have emerged as a critical
enabling technology, allowing for the large-scale integration of renewables by balancing energy
supply and demand [3]. Hybrid Energy Storage (HES) systems, which combine di�erent storage
types (e.g., fast-response batteries with long-duration hydrogen), are particularly promising
for enhancing grid stability [4]. However, the integration of these advanced, decentralized
assets introduces significant new complexities in control and grid interaction that must be
e�ectively managed to prevent instability [9].

This is where the importance of accurate network models becomes paramount. E�ective
planning, placement, and control of HES systems and other Distributed Energy Resources
(DER) are entirely dependent on a reliable and accurate model of the distribution grid. These
models function as "digital twins", which are essential for simulating power flows and the grid’s
response to storage operations. DSOs rely on these models to perform advanced simulations
and analyses, such as assessing the hosting capacity for new DERs [7], optimizing battery
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dispatch to prevent grid congestion [9], and evaluating and prioritizing crucial investment and
operational decisions [10].
E�ectively addressing these operational and planning challenges requires a deep understanding
of distribution grid characteristics. However, research comprehensively detailing these char-
acteristics, particularly for dynamic, DER-rich environments, remains relatively sparse, but
there are some examples in the EU and Brazil: [64], [65], and [7]. However, grid characteristics
often heavily depend on their geographical location. This is closely due to user behavior,
weather related characteristics and a di�erent customer base. In the Caribbean region, there
is not a lot of data available on these distribution loading statistics.
This paper aims to combine existing techniques into a data driven modeling pipeline which
can be used to simulate distribution grids. In section 3-2, the theoretical background is given
for the di�erent aspects of generating power models. This background is used to generate
methodology in Section 3-3, which is then applied as a case study in Section 3-4. Section 3-5
contains the results for the numerical experiments, where the simulation results are validated
against real world measurements.

3-2 Theoretical Background & Literature Review

All grid models, which are central tools for managing and planning electricity systems, require
accurate input data encompassing the grid’s structure and its electrical properties. The first
critical requirement for developing a coherent grid model is the reconstruction of the network
topology [66], which involves defining the network of nodes and interconnections (power lines)
[67]. Recent approaches to addressing data availability issues focus on deriving this topology
transparently using open data sources like OpenStreetMap (OSM), employing techniques
such as attribute-based or geometry-based abstraction. The second fundamental requirement,
electrical component modeling, involves defining the physical and electric parameters of these
network elements [67].

3-2-1 Network Topology Identification

Topology derivation approaches, often referred to as Topological Path Identification (TPI) or
Topology Identification (TI), are broadly characterized by their input data. They fall into two
main categories: methods relying only on static data (such as GIS maps) and those leveraging
dynamic measurements from an Advanced Metering Infrastructure (AMI) [10].
The first category, which is most relevant to limited-data environments, must address the
typical inaccuracies and incompleteness of static GIS data. To solve this, optimization
techniques have been introduced, such as formulating the TPI problem as an Integer Linear
Programming (ILP) algorithm [10]. Conceptually, these methods assign a ’cost’ cij (e.g., the
geographical length) to each potential line segment between nodes i and j. A binary decision
variable, xij , represents the inclusion of that segment in the final topology. The core objective
is to find a radial (tree) network that minimizes the total cost, as shown in Equation (3-1),
while adhering to known constraints, such as customer-to-transformer connections.

min
ÿ

(i,j)œE

cij · xij (3-1)
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In cases where the set of buses served by each substation is unknown, a two-step approach
may be required: first, performing bus clustering to partition the network, which can be
framed as a non-convex optimization problem solved using techniques like the Alternating
Direction Method of Multipliers (ADMM); and second, applying a TPI algorithm within those
partitioned areas [10].
In contrast, the second major category of methods relies on dynamic AMI data. These
approaches often use rigorous optimization algorithms, such as Mixed-Integer Linear Program-
ming (MILP) or Mixed-Integer Quadratic Programming (MIQP) [68], to estimate the topology
from smart meter or line sensor recordings [69]. To tackle the uncertainty caused by DERs,
hybrid frameworks have been developed that combine model banks with high-dimensional
analytics, using tools like Auto-regression (AR) and Random Matrix Theory (RMT). An
alternative "active" approach is power grid probing, where smart inverters intentionally perturb
power injections and the resulting voltage deviations are analyzed using graph algorithms to
recover the topology [66,70].
Furthermore, topology can be learned using probabilistic graphical models, where dependencies
among voltage measurements are described. This allows the topology to be found by identifying
the maximum weight spanning tree from mutual information-based correlations. For LV grids
with unmonitored "latent" nodes, a specialized Latent Tree Model (LTM) [71] can be used. This
Bayesian network employs a search algorithm guided by the Bayesian Information Criterion
(BIC) and enhanced by the Expectation-Maximization (EM) algorithm to estimate the full
topology using only end-user smart meter data.

3-2-2 Power Grid Component Modeling

Since the modeling of electrical power systems has been around for some time, di�erent
approaches are available such as copper plate models, where the topology can be neglected.
Other options include (linear) DC models: more sophisticated models that define a network of
nodes and interconnections (power lines). It uses Kirchho�’s law to determine active power
flows, which depend on the resistance (R) and maximal capacity of the power lines. Even
more accurate are AC power flow model, that also take reactance into account [67].
The development of electrical component models of the power grid often relies on physical
analogies and the application of foundational electrical engineering concepts [72]. For distribu-
tion grids, the analysis frequently uses linearized models where bus voltages are expressed as
linear functions of active (P ) and reactive (Q) power injections. This results in models like
the Linearized Distribution Flow (LDF) model, which defines nodal voltage magnitudes using
matrices (R, X) that are derived from the grid’s weighted reduced Laplacian matrices [66, 73].
However, for more accurate results, particularly when assessing reliability or vulnerability,
modern approaches integrate physical and electrical parameters into the topological models.
These enriched models use parameters such as impedance for transmission lines and power
limits for substations. When performing resilience analysis, models that incorporate physical
parameters, such as simplified direct current (DC) power flow models [72], provide a more
realistic view of how failures disrupt and spread through the system compared to purely
topological analyses. Furthermore, within high-complexity systems like integrated circuit
power/ground (P/G) networks, modeling can be sped up by using equivalent circuit modeling
to construct simplified representations of many series resistor circuits, leveraging the regularity
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(a) Simple network (b) Hypothetical paths

(c) Real paths (d) Estimated paths

Figure 3-1: TPI technique and figure adapted from [10]

(e.g., constant width) often found in these networks [74]. Since the accuracy of these component
models determines the credibility of simulation results, obtaining precise circuit parameters,
whether through experiments or theoretical calculation based on the component’s physical
characteristics, is essential.

3-3 Methodology: A Pipeline for Limited-Data Grid Modeling

3-3-1 Stage 1: Network Topology Reconstruction

A correct network topology is important to create a representative network. Accurately
identifying how customers are electrically connected (their topological paths), despite being
often not completely clear, is essential for many modern power system applications. This
knowledge forms the foundation for creating a network digital twin.

To determine the most probable electrical paths from the available static data, this work
adopts the methodology proposed by Vassallo et al. [10]. The optimization algorithm begins
with data preparation that uses only static data, such as the GIS coordinates of network
elements, their types (e.g., customer, line, junction), and the known feeder terminal junction
each customer is connected to. This raw data is used to generate a set of "hypothetical
paths". For large networks where listing all possible paths is "impractical", the method employs
an A* algorithm. This heuristic search algorithm e�ciently approximates the set of viable
hypothetical paths by exploring connections for each customer to their designated terminal
junction, respecting constraints like maximum distances. The resulting list of paths is then
converted into binary matrices (HC , HR, HT ) that serve as the main parameters for the ILP
problem. This approach is shown in Figure 3-1.

Paths are representations of the route that electricity will follow from the transformer terminal
to the customer. There are three di�erent paths considered:

The complete explanation of the algorithm can be found in [10], but for the completeness we
will consider a short overview; the algorithm goes through the following three key stages:

1. Data Preperation: the raw data is transformed into three sets: customers C, terminal
elements T , and other network elements such as lines R.
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Term Description

Hypothetical paths (H) The set of all potential sequences of network elements through
which electricity might flow to supply a customer.

Real paths (P) The set of actual sequences of network elements connecting a
customer to a specific source (e.g., an MV/LV transformer). This
is a subset of the hypothetical paths, i.e., P ™ H.

Estimated paths (P̂) The set of paths determined through estimation or modeling
techniques, intended to approximate the real paths P. This set is
also considered a subset of the hypothetical paths, i.e., P̂ ™ H.

Table 3-1: Definitions of di�erent path sets in the network, defined by [10]

2. Based on the structured element data and connectivity rules (e.g., potential connections
based on distance, radial network structure), a comprehensive set of all plausible paths
H from each customer to their designated feeder terminal junction is generated, using
the A* algorithm.

3. The problem of selecting the best estimate of the real paths (P̂) from the compatible
hypothetical paths (HI

Õ) is formulated as an ILP optimization problem.

The goal is to maximize the number of identified customer paths, with a penalty for the
number of elements assigned to terminals. This results in objective function (3-2).

max
P̂ ,TR

Ê ·

Ñ
|H

IÕ
|ÿ

k=1
P̂(k)

é
≠

|T |ÿ

m=1

|R|ÿ

n=1
TR(m,n) (3-2)

where Ê is a weight balancing path identification and element assignment.

The key constraints ensure the feasibility and logical consistency of the solution:

• Path Validity: All elements within a selected path must belong to the same terminal
(feeder junction).

• Unique Customer Path: Each customer can be associated with at most one estimated
path.

• Unique Element Assignment: Each intermediate element (R) can be assigned to at
most one terminal.

3-3-2 Stage 2: Grid Asset Parameterization

The topological graph derived in the previous Section provides the "skeleton" of the distribution
grid. To convert this static map into a dynamic grid model suitable for simulation, a precise
electrical model must be assigned to each component. This process is the core of the modeling
pipeline.
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The objective is to translate the physical properties of assets (lines, transformers, loads) into a
system of equations that can be solved for unknown variables, namely the voltage magnitude
and angle at each node. This entire framework is implemented using the power-grid-model
(PGM) library [11], which provides a robust structure for steady-state analysis. Power Grid
Model is a high-performance Python/C++ library for steady-state distribution power system
analysis, developed as an open source project hosted by the LF Energy foundation. The main
contributors are DSO’s, universities, research institutes and commercial parties [75].

Power System Analysis

The foundation of steady-state power system analysis is the linear relationship between the
vector of nodal current injections (Ibus) and the vector of nodal voltages (Vbus) through the
nodal admittance matrix, Ybus.

Ibus = Ybus · Vbus (3-3)

Where:

• Vbus (The Unknowns): A complex vector [V1, V2, ..., Vn]T , where each element Vi =
|Vi|\”i is the complex voltage at a node (bus). These are the primary variables we aim
to solve for.

• Ibus (The Inputs): A complex vector [I1, I2, ..., In]T , where each Ii is the net complex
current injected into node i. This is determined by the loads and generators.

• Ybus (The System Model): An n◊n matrix representing the grid’s physical connections
and passive properties. This is the matrix we must build by parameterizing each asset.

The Ybus matrix is assembled by applying Kirchho�’s Current Law. Each component’s
admittance (y = 1/z) is "stamped" into the matrix according to two rules:

1. Diagonal Elements (Yii): The "self-admittance" of node i. It is the sum of all
admittances of components connected to node i.

Yii =
ÿ

j ”=i

yij + yi,shunt (3-4)

2. O�-Diagonal Elements (Yij): The "mutual admittance" between nodes i and j. It is
the negative of the sum of all admittances connected between nodes i and j.

Yij = ≠

ÿ
yij (3-5)

Transformer

A transformer is a branch which connects two nodes with di�erent voltage levels. The
transformer is represented as a fi model, consisting out of two branches:
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• A series branch representing the impedance (Zseries) due to the windings’ resistance and
leakage reactance. This accounts for the voltage drop and losses when current flows
through the transformer.

• A shunt branch representing the admittance (Yshunt) across the terminals. This accounts
for the magnetization characteristics (reactance) and core losses (resistance).

Both these branches are represented as two sets of equations, which can be found in the
documentation for the transformer model in [11].

Junction

A junction is represented by a node; physically a node can be a busbar, a joint, or other similar
component. This requires no extra modeling, since the resistance and other electric e�ects are
negligible [11].

Line

A line is modelled as a branch with a specified impedance and shunt resistance. Lines connect
two nodes that are rated for the same voltage. The lines are modelled with a fi model as
well [11].

Zseries = r + jx

Yshunt = 2fifc

tan ” + j

The total resistance can be calculated using r1 = fl ú
L
A , where fl is the resistivity of copper, A

is the area of the cable and L the length.

Source

The source is representing the external network with a Thévenin’s equivalence; it reduces the
complex linear circuits back to a simple circuit with an impedance, and a voltage source. It
has an infinite voltage source with an internal impedance, which simulates the behaviour of
the higher voltage network responsible for the power delivery of the transformer [11].

Load

The load represents the power consumption of a customer, connected to the transformer.
Customers will have a active and reactive power consumption. Both active power P and
reactive power Q are constant during each timestep [11].
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3-3-3 Stage 3: Power Flow Calculations

With the network topology established (Stage 1) and the mathematical models for all compo-
nents assembled into the Ybus matrix (Stage 2), the final stage is to execute the simulation
and validate its output against real-world measurements. The power-grid-model library
is used to solve the system of non-linear power flow equations corresponding to the intervals
of the available power quality meter data.

Power Flow Calculation

The core of the simulation is solving the set of non-linear power flow equations (from Eq. 3-3),
which can be represented abstractly as:

f(x) = y (3-6)

where x is the vector of unknown voltage angles and magnitudes, x = [”, |V |]T , and y is the
vector of specified active and reactive power injections, y = [P, Q]T . The power-grid-model
library employs the robust Newton-Raphson method to solve this system iteratively. Starting
from an initial guess x(i) (a "flat start" where all |V | = 1.0 p.u. and ” = 0), the algorithm
performs the following steps until convergence:

Algorithm 2 Newton-Raphson Power Flow Solution.
1: Input: System Admittance Matrix Ybus; Specified power vector yspecified = [P, Q]T ;

Convergence tolerance ‘.
2: Output: Solved voltage vector x = [”, |V |]T ; Slack bus power Sslack.
3: Û Part 1: Initialization Ù

4: Initialize voltage vector x(0) (e.g., "flat start": |Vi| Ω 1.0, ”i Ω 0 for all i).
5: Set iteration counter k Ω 0.
6: Û Part 2: Iterative Solution Ù

7: repeat
8: Û Step 1: Calculate Mismatch Ù

9: y(k) Ω f(x(k)) Û Calculate power from current voltage x(k) using Eq. 3-3
10: �y(k) Ω yspecified ≠ y(k)
11: Û Step 2: Formulate Jacobian Ù

12: J(k) Ω

î
ˆf
ˆx

ó
x=x(k)

Û Build Jacobian matrix at current state x(k)
13: Û Step 3: Solve Linear System Ù

14: Solve J(k)�x(k) = �y(k) for �x(k) Û Typically via LU decomposition
15: Û Step 4: Update State Ù

16: x(k + 1) Ω x(k) + �x(k)
17: k Ω k + 1
18: until max(|�y(k ≠ 1)|) < ‘ Û Check if mismatch is within tolerance
19: Û Part 3: Final Calculation Ù

20: xsolved Ω x(k)
21: Calculate Sslack = Pslack + jQslack using xsolved and (3-3) at the slack bus.
22: return xsolved, Sslack.
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This iterative process is repeated until the magnitude of the mismatch vector �y(i) falls below
a predefined tolerance, indicating that a solution has been found. The resulting aggregate
power calculated at the slack bus (Psim, Qsim) provides the simulated data stream for validation
against the measured transformer data, as presented in Section 3.5.

3-4 Case Study: Secondary Substation D114, Bonaire

This modeling pipeline was put to the test in Kralendijk, Bonaire.

3-4-1 Available Data

To build and validate the model, several data sources from the utility (WEB Bonaire) were
utilized. In August 2024, a power quality meter was installed at the target secondary substation
(D114), measuring active, reactive, and apparent power over all three phases at a 10-minute
interval. This measurement data provides the ground truth for validating the aggregate load
of the final model. For this case study, a one-week subset of this data is used.

A GIS is also available, registering most of the distribution assets. However, this dataset
is incomplete and not always spatially accurate; links between customer connections and
distribution lines are often missing or imprecise. To remedy this, a 2024 study was conducted by
the distribution team in collaboration with NTCS Energy to manually notate the connections
between house connections and their corresponding transformers or distribution boxes. This
meter-transformer relationship data is a critical input for the topology reconstruction.

3-4-2 Topology Reconstruction

The foundational step of the modeling pipeline is the reconstruction of the grid’s topology. This
is a significant challenge as the available GIS data is incomplete, and the explicit connections
between customers and distribution lines are often missing. To solve this, this study implements
the optimization algorithm from Vassallo et al. [10], which is designed to identify customer
topological paths using only static GIS data and known customer-to-transformer assignments.

Hypothetical Path Generation (A*) Given the large number of elements in the envelope,
generating every possible hypothetical path (H) is computationally impractical [10]. Therefore,
the A* pathfinding algorithm was used to e�ciently generate a viable subset of hypothetical
paths (HIÕ) for each customer.

For each customer c known to be connected to D114, the A* algorithm searched for the most
plausible paths from the customer’s location to the D114 terminal junction. This search was
constrained to use only the existing elements in the GIS database and to respect certain
paramteres, such as a maximum distance for a connection.

Path Selection (ILP Optimization) The set of plausible paths from the A* algorithm was
then fed into the Integer Linear Programming (ILP) optimizer. The optimizer’s goal is to
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(a) Original GIS data from WEB Bonaire (b) Estimated network topology

Figure 3-2: The estimated topology from the original data. Secondary substation D114 is colored
Green

select one "estimated path" (P̂) for each customer from their list of hypothetical paths that
best approximates the unknown "real path" (P) [10].

The ILP problem, defined by the objective function in Equation (3-2), works to:

• Maximize the number of customers successfully connected to their correct terminal
(D114) [10].

• Enforce constraints, such as ensuring that each customer is assigned only one path and
that each network element is used by only one terminal, thereby guaranteeing a radial
network structure [10].

Results The output of the ILP algorithm is the estimated topology for the D114 subnetwork,
as visualized in Figure 3-2 in green. This reconstructed network serves as the foundational
structure for the power flow model.

In total, 60 of the 64 customers known to be connected to D114 were successfully mapped
by the algorithm. The four remaining connections could not be mapped. A diagnostic check
revealed that these customers were located too far from the nearest "line" or "junction" element
in the GIS database, making it impossible for the A* algorithm to find any hypothetical path
that satisfied the distance constraints [10].

3-4-3 Model Parameterization

The generic grid component models described in the previous section were parameterized using
the available data for substation D114.
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Transformer

The main transformer parameters were derived from its specification plate, as listed in Table
3-2.

Table 3-2: Parameters for Transformer D114

Parameter Value

u1 (Primary Voltage) 12120 V
u2 (Secondary Voltage) 400 V
sn (Rated Power) 160 kVA
uk (Short-circuit Voltage) 4.07 %
pk (Copper Losses) -
i0 (No-load Current) 0.60 %
p0 (Iron Losses) - W
windingfrom 2 (Delta)
windingto 1 (Wye)
clock 11
tapside 0 (HV)
tapmin -2
tapmax 2
tapsize 303 V
tappos 0

A primary challenge was the absence of datasheet values for the transformer’s loss parameters:
pk (short-circuit copper losses) and p0 (no-load iron losses). An initial estimate for i0 (no-load
current) of 0.60% was used. To address this uncertainty, a sensitivity analysis was conducted
to test the model’s robustness and find the optimal parameterization.

First, a physically plausible range for the no-load parameters was established based on
transformer literature [76]. This literature suggests i0 is typically 1-2% of the rating, and p0
is less than 1% of the total VA rating (i.e., < 1600W for this transformer). The model was
found to be robust, with the final RMSE remaining stable across this entire physical range.

Lines

Line parameters were estimated based on standard conductor properties, as specific cable
types were not available in the GIS data. In collaboration with the Engineers of WEB Bonaire,
the reactance was determined using the physical parameters of the line setup geometry.

The positive-sequence reactance x1 (in �/m) is given by Equation 3-7:

x1 = Ê

Å
µ0
2fi

· log GMD

GMR

ã
(3-7)

where Ê is the angular frequency (rad/s), µ0 is the magnetic constant, GMR ¥ e
≠0.25

r is the
Geometric Mean Radius (with r being the conductor radius), and GMD ¥ (dl1≠l2 · dl2≠l3 ·

dl1≠l3)1/3 is the Geometric Mean Distance between phases [77].
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The positive-sequence capacitance c1 (in F/m) is obtained using Equation 3-8:

c1 = 2fi‘0
log(GMD/r) (3-8)

where ‘0 is the permittivity of free space. The resistance r1 (in �/m) is obtained using
r1 = flcu/A, where flcu is the resistivity of copper and A is the cross-sectional area [78].

Loads

As customer-level smart meter data was unavailable, synthetic load profiles were generated. A
normalized load profile was first derived from the original aggregate power quality meter data.
This profile was then scaled by the average power consumption for each of the 64 customers.
To introduce realistic variation, each data point in the scaled profiles was used as the mean µ

for a normal distribution. A new value was then drawn from this distribution using a standard
deviation (‡) equal to 25% of the mean load at that timestep. This method creates unique,
stochastic profiles for each customer while preserving the "slow" characteristics (i.e., the daily
curve) of the original aggregate load.

External Grid (Source)

The external grid is represented as a source component. For this study, the default values
are used: uref-angle = 0, sk = 1 ◊ 1010 VA, r/x = 0.1, and z0/z1 = 1. Since the transformer is
stepping down the voltage, uref = 12 kV.

3-5 Powerflow Calculation Results and analysis

Following the parameterization of all grid assets, the complete power flow simulation was
executed. The model’s aggregated active and reactive power output at the transformer was
validated against the ground truth measurement data from the power quality meter.
A one-week period from September, a time characterized by high demand, was used for the
validation. The simulation, compensating for the 60 of 64 connected loads, produced a strong
fit with the measured data, as shown in Figure 3-3. The final error estimates are as follows:

• Active power RMSE: 6.08%

• Reactive power RMSE: 5.74%

When performing a crosscorrelation analysis, it can be concluded that the error is significantly
zero mean white noise, which is introduced in the synthetic load profile generation. This
analysis provides crucial insights into both overall transformer loading and the calculated
loading of individual lines. However, a limitation of this study is the inability to validate the
specific line loading results, as no granular measurements were available for these segments.
The overall power flow analysis is accurate, but its precision could be enhanced in the future
by incorporating real customer-level load profiles and more precise electrical parameters for
both the lines and the transformer.
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Figure 3-3: Comparison of Simulated and Measured Active and Reactive Power for one week in
September.
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3-5-1 Discussion

The power flow analysis, achieving an RMSE of ¥ 6%, validates the pipeline as a viable
method for modeling a limited-data grid. The primary insights, however, come from analyzing
the model’s limitations.

While most parameters in this study are based on the actual physical parameters of the assets,
there are still some estimations to be made. This includes power line quality, transformer
e�ciency and losses, or load profile estimations. While the topology estimation algorithm
performs well, there are still 4 missing loads. For larger areas, this can become a accumulating
error factor. Verifying the load profile dynamics with actual smart meter data will significantly
improve the accuracy of the prediction.

3-5-2 Conclusion and future work

This paper presented a complete, data-driven pipeline for modeling low-voltage distribution
grids where traditional data sources like smart meters and accurate GIS data are limited. By
combining an ILP-based topology reconstruction method with a standard power flow model, a
viable representation of a 160kVA grid in Bonaire was created.

The model was validated against real-world power quality meter data, achieving a low aggregate
error (RMSE of ¥ 6%). The contribution of this work is to show that a combination of existing
techniques can provide high quality modeling solution which can provide insight for control
and investment decisions, based on the available data. The first and most critical step is to
replace the synthetic load profiles with real smart meter data, if it becomes available. This
would isolate the error contributions from the topology and component models.

Second, the robustness of the ILP-derived topology should be tested. As suggested in the
project notes, conducting cross-validation by applying this entire pipeline to other transformers
in the distribution network would be a powerful test of the method’s generalizability.

Finally, while the current model provides a strong physical representation, machine learning
techniques, such as neural networks, could be explored to refine parameter estimation or
capture complex load behaviors not represented by the current statistical load model.
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Chapter 4

Conclusions and Recommendations

4-1 Conclusion

This thesis set out to address two primary modeling challenges for integrating Hybrid Energy
Storage (HES) systems into modern power grids. The research successfully delivered on
both objectives, providing a validated toolset for analyzing the role of AEM electrolyzers in
providing distribution grid support.

The main conclusions are twofold. First, a high-fidelity, control-oriented hybrid model for
an AEM electrolyzer was successfully developed and validated. As detailed in Chapter 2, a
conventional physics-based Equivalent Circuit Model (ECM) was insu�cient (26.00% fit). By
combining the interpretable RC model with a lightweight neural network trained to correct
for thermal dynamics, the resulting hybrid model achieved a 92.03% fit. This model balances
physical interpretability, computational e�ciency, and high accuracy, making it ideal for
advanced, model-based control applications.

Second, a complete and viable data-driven pipeline for modeling limited-data LV distribution
grids was demonstrated. As presented in Chapter 3, a reliable "digital twin" of a 160kVA
substation in Bonaire was constructed despite incomplete GIS data. By combining an ILP
algorithm for topology reconstruction with a standard power flow model, the simulation was
validated against aggregate power quality meter data, achieving a low RMSE of approximately
6% for both active and reactive power. This contribution validates that a combination
of existing techniques can produce a reliable grid model for DSOs, even in data-scarce
environments.

In synthesis, this thesis has successfully developed the two core components required to study
the interaction between emerging HES assets and LV grids: a robust model for the AEM
electrolyzer asset and a reliable model for the distribution grid it connects to.
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4-2 Recommendations

Based on the findings and models developed in this thesis, several avenues for future research
are recommended.

Integrated system co-simulation: the most exciting and logical next step is to perform an
integrated system co-simulation by integrating the AEM electrolyzer model (Chapter 2) into the
LV grid model (Chapter 3). This would enable a detailed analysis of the electrolyzer’s impact
on the grid’s voltage profile, phase balance, and line congestion in its intended grid-support
role.

Advancements in electrolyzer modeling and control: For future research, the computationally
e�cient hybrid model should be utilized within a Model Predictive Control (MPC) framework
for real-time optimization. Furthermore, incorporating online parameter estimation (e.g.,
Kalman filters) would allow the model to adapt to long-term stack degradation, while re-
validating the model with high-frequency data would allow for grid stability studies.

To enhance the distribution grid model, the largest source of uncertainty, the synthetic
load profiles, should be replaced with real smart meter data if it becomes available. In its
absence, more advanced machine learning techniques (e.g., GANs) could create more realistic
profiles. Using the existing pipeline, a cross validation against other measured transformers
or substation can be performed. This was not possible at the time of research due to lack of
measurements.

Finally, a holistic HES and techno-economic analysis should be performed. This involves
expanding the HES model to include the full Power-to-Hydrogen-to-Power (P2H2P) cycle
(i.e., hydrogen storage and a fuel cell) and conducting a comprehensive techno-economic study
to evaluate the business case for using AEM electrolyzers for grid support in locations like
Bonaire.
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Nomenclature

List of Acronyms

AEM Anion Exchange Membrane
DER Distributed Energy Resources
DNN Deep Neural Network
DSO Distribution Service Operators
ECM Equivalent Circuit Models
ESS Energy Storage Systems
HES Hybrid Energy Storage
ILP Integer Linear Programming
LV Low Voltage
NN Neural Networks
P2H2P Power-to-Hydrogen-to-Power
PEM Proton Exchange Membrane
PINN Physics-Informed Neural Networks
RC Resistance-Capacitance
RES Renewable Energy Sources
TPI Topological Path Identification
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