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Computation-In-Memory (CIM) employing Resistive-RAM
(RRAM)-based crossbar arrays is a promising solution to im-
plement Neural Networks (NNs) on hardware, such that they are
efficient with respect to consumption of energy, memory, compu-
tational resources and computation time. In this respect, Binary
NNs (BNNs), where the weights obtain single binary values, are
inherently suitable for cost-effective CIM-based NN implementa-
tions. However, RRAM devices, due to variability and reliability
issues, restrict the applicability of CIM-based NN. To address this
issue and towards a low-cost NN hardware realization, in this thesis
we: a) thoroughly investigate the impact of RRAM faults on the
inference accuracy of RRAM-based BNNs, and b) propose three
complementary fault-tolerance techniques to mitigate the impact of
RRAM faults on the BNN’s accuracy. These techniques are namely:
a) a fault-tolerant activation function, b) a redundancy and weight
range adjustment scheme, and c) a retraining technique. Evaluation
results compiled on the MNIST, Fashion-MNIST and CIFAR-10
datasets demonstrate that the proposed techniques can improve the
inference accuracy in the presence of RRAM faults by up to 20%,
40% and 80%, respectively. Moreover, comparisons with certain

related state-of-the-art fault-tolerance frameworks indicate that the proposed techniques yield competitive
results.
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Introduction 1
1.1 Motivation

Deep Neural Networks (DNNs) have shown phenomenal success in different application
domains such as speech translation, object recognition and detection, computer vision
and autonomous systems [12], [13]. In spite of their great performance characteris-
tics, the computation and resource intensive nature of DNNs, such as high storage and
bandwidth requirements, processor-centric computation and energy-consumption, hinder
their deployment on hardware [14], [15].

Moreover, the increasing demand to deploy DNNs on resource constrained platforms
such as edge devices (figure 1.1), further aggravates the challenge [16], [17]. These
challenges, mainly the data and power bottleneck problems, become even more apparent
when DNNs are implemented on von-Neumman computer architectures (the most widely
used computer architectures). According to these architectures, systems are processor-
centric, meaning that the processor is the main computing element and responsible for
controlling all operations. In order for an operation to be executed the processor first
requests all the needed data from the memory unit. This constant transaction between
the processor and the memory results in 3 architectural challenges [18]:

• the memory wall : As shown in figure 1.2, there is an increasing distance in terms
of speed between the central processor unit (CPU) and the memory. Every time
a memory instruction is issued, the processor is waiting in an idle state for the
information to be fetched from the memory unit. This gap, combined with the
the need of DNNs’ large amount of data, makes memory operations the most
contributing factor in terms of latency.

• the power wall : Apart from increasing latency, the practical power limit for cooling
is reached. This means that it is difficult to increase the CPU clock speed further.
This trend can be seen in figure 1.3 where the CPU speed is gradually plateauing
after the year of 2005.

• the Instruction Level parallelism (ILP) wall : Parallel execution using multi-thread
and multi-core systems have increased the processing throughput of computing
systems. However, figure 1.3 reveals that there is an increasing difficulty in finding
enough parallelism in software programs, resulting in a performance slowdown.

Since matrix multiplication, the core operation of DNN applications, is the major
contributor for the energy consumption and memory overhead of DNNs, Binary Neural
Networks (BNNs) have been proposed to simplify and efficiently reduce the hardware
requirements of DNNs, while achieving comparable inference accuracy [19]. BNNs use
binary representation of neural weights (i.e., ±1) instead of costly floating point weights,

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Deep learning can execute on edge devices and on cloud data centers [1].

in order to simplify the network’s operations and peripheral circuits [19, 20]. Nonethe-
less, even though BNNs simplify the costly floating point matrix-vector multiplication,
they still face the same challenges, when implemented on von-Neumman computer ar-
chitectures and used for larger and complex network architectures.

To address the above, researchers have turned to Computation-In-Memory (CIM) ar-
chitectures [14, 15, 21, 22, 23], in order to develop high-performance and energy-efficient
hardware DNN accelerators (other approaches, with which this thesis is not concerned,
include domain-specific FPGAs, CMOS, and non-CMOS based ASICs, etc. [24, 25, 26]).
In CIM, memory acts both as a storage unit and as a computing element. Due to
its inherent ability to perform computation on the stored data, CIM accelerates the
Multiply-Accumulate (MAC) operation of DNNs (in fact, matrix-vector multiplication
can be performed with O(1) complexity) and circumvents the costly data movement of
von-Neumann based systems [21]. Thus, especially when DNNs are considered, CIM
reduces latency (memory wall) and power usage (power wall), and increases paralleliz-
ability (ILP wall). Consequently, CIM facilitates the realization of DNNs on various
resource constrained platforms.
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Figure 1.2: The memory wall [2].

1.2 Problem statement

An emerging memory technology enabling CIM is Resistive RAMs (RRAMs) [7]. In
contrast to traditional memories such as DRAMs and SRAMs, in RRAM devices the
information is stored as a high or low resistance value (HRS/LRS). RRAMs possess
the following great advantages: they are non-volatile, more power-efficient and provide
higher density integration. However, RRAMs have various reliability and variability
problems that need to be overcome in order to be widely used. RRAM reliability issues
can be classified into two main categories: 1) faults induced by the RRAM device’s
non-idealities, and 2) faults derived from the structure of the RRAM devices in crossbar
arrays. The most common RRAM devices’ reliability failures include conductance drift,
read disturb, device variation etc [27, 28, 29, 30]. Permanent defects in RRAM devices,
arising for example from the manufacturing stage, can be modeled by the Stuck-at-fault
(SAF) model. In this case the device is stuck at a permanent low or high resistance
state.

When DNNs are implemented using RRAM devices, the aforementioned faults de-
grade significantly the classification accuracy [11]. Hence, it is of critical importance
to investigate fault tolerance techniques, for enabling the deployment of DNNs on CIM
RRAM-based crossbar arrays. Several software and hardware-based fault tolerance ap-
proaches have been proposed [8, 31, 32, 9, 33]. However, these solutions have various
limitations, such as significant software or hardware overhead, and need for complex map-
ping algorithms. Therefore, there is a clear need for a cost-effective and efficient fault
tolerance framework in order to deploy DNNs on RRAM-based CIM crossbar arrays.

In addition, even though, as mentioned earlier, BNNs constitute a low-cost framework
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Figure 1.3: The power and ILP wall [3].

that reduces severely the hardware requirements of DNN hardware implementations, the
literature on fault-tolerance techniques for BNN implementations on RRAM-based cross-
bar arrays remains scarce. In particular, the works in [34, 35, 36, 37] discuss implemen-
tation details of RRAM-based BNNs and do not propose any fault-tolerance techniques,
while the fault-tolerance technique proposed in [38] suffer from certain limitations, which
we thoroughly explain in Chapter 3.

The above give rise to the problem statement of the present thesis: investigate the
impact of RRAM-faults on the inference accuracy on BNNs implemented on RRAM-
based crossbar arrays, and propose corresponding low-cost and effective fault-tolerance
techniques.

1.3 Contributions

In this work we propose cost-effective and efficient fault tolerance techniques addressing
the impact of RRAM defect-induced Stuck-at-fault (SAF) and conductance variation
on the inference accuracy of Binary Neural Networks (BNNs). First, the necessity for
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fault tolerance techniques on BNNs mapped to CIM crossbar arrays is motivated, by
investigating the impact of RRAM faults and conductance variation on the inference
accuracy of BNNs. Then, three fault tolerance techniques are proposed to mitigate the
impact of RRAM faults and conductance variation on the BNN’s inference accuracy.
The first mitigation technique investigates the role of different activation functions on
suppressing the impact of RRAM faults on the BNN’s accuracy, and demonstrates how
a fault-tolerance aware activation function can help to restore the accuracy. The second
technique explores the potential of redundancy combined with a weight range adjustment
for a fault-tolerant BNN design. Finally, the third technique constitutes a retraining
method, to restore the BNN’s accuracy.

The main contributions of this work are divided into two main parts:

1. The RRAM fault impact analysis demonstrates to what extent the accuracy of
BNNs is influenced by the presence of RRAM faults (SAFs and conductance vari-
ation).

• A low-cost architectural implementation using binary RRAM devices and
BNNs is used. Compared to similar works [33, 8], where higher weight pre-
cision is assumed, the proposed architectural implementation of the RRAM
based crossbar arrays utilizes less RRAM devices, as each weight is stored in
1 RRAM device.

• A relatively large RRAM fault impact evaluation is conducted. In contrast
to other works [32, 8, 33], where one dataset is considered, in this work, three
different datasets, namely the MNIST, Fashion-MNIST and CIFAR-10 are
used. Moreover, we evaluate the sensitivity of different BNN architectures
architectures in the presence of RRAM faults.

• We analyse the impact of SAFs and conductance variation on the inference
accuracy of BNNs exclusively, as well as in a combined manner, for a variety
of fault rates.

2. A fault tolerance framework is developed consisting of three complementary low-
cost fault tolerance techniques are developed to mitigate the impact of RRAM
faults on the BNN’s inference accuracy, namely: a fault tolerant activation function,
a redundancy and weight and adjustment scheme and a retraining method.

• The fault tolerant activation function demonstrates the role of activation func-
tions from a fault tolerance point of view. In particular, switching the activa-
tion function to ReLU improves the inference accuracy of the BNN by 10%
and 15% for the MNIST [39], Fashion-MNIST [40] dataset respectively.

• In redundancy and weight range adjustment, we utilize redundant devices not
for remapping faulty devices -as previous works [31], [41] - but for extending
the set of values that each weight can hold. As a result the inference accuracy
is increased by 5% and 8% for the MNIST [39], Fashion-MNIST [40] dataset
correspondingly.

• Although similar retraining techniques have been proposed by the related
literature [32], [8], they fail to restore completely the inference accuracy back
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to the ideal value, when high number of faults occur. In this work, retraining
recovers the inference accuracy in all 3 datasets very close to their fault-free
accuracy value.

• Evaluation results show that the proposed techniques are able to achieve on
average up to 20%, 40% and 80% inference accuracy improvement of a BNN
mapped to a faulty RRAM crossbar array using the MNIST [39], Fashion-
MNIST [40] and CIFAR-10 [42] datasets, respectively, while imposing negli-
gible overhead.

1.4 Outline

The rest of the thesis is organized as follows. In chapter 2 we start by introducing basic
background information that is needed in order to follow the story-line of this work. Es-
sential information regarding Neural Networks architectures is presented, including the
working principle, different Neural Networks’ (NNs) architectures as well as applications
and challenges. Emphasis to Binary Neural Networks (BNNs) is given, which are the
target of this work. Afterwards, we discuss Computation-In-Memory (CIM) architec-
tures, used for realizing NNs on hardware, highlighting the motivation around them,
their basic operating principles, and the computational potential of realizing BNNs on
CIM architectures. We conclude this chapter by introducing RRAM devices. The ap-
plications and benefits of RRAM devices are demonstrated, along with their reliability
and variability problems.

Chapter 3 provides a thorough literature survey regarding the state-of-the-art related
fault tolerance works. The fault tolerance techniques are divided into two categories:
software and hardware based. Subsequently, advantages and limitations of each category
are specified in this chapter.

The RRAM fault impact analysis is presented in Chapter 4. First, the evaluation
setup is disussed, which is used for demonstrating the impact of RRAM faults on the
inference accuracy of BNNs. The evaluation setup includes two main parts: the archi-
tectural implementation (how BNNs are implemented on RRAM crossbar arrays) and
the simulation framework (how we simulate BNNs running on RRAM crossbar arrays
and the corresponding RRAM faults). Finally, the fault impact evaluation results are
presented.

Motivated by the fault impact analysis, our fault tolerance framework is introduced in
chapter 5. We begin by discussing the role of activation functions from a fault tolerance
point of view. Afterwards, we present a redundancy and weight range adjustment scheme.
Finally, a modified retraining method is presented.

The simulation results of the fault tolerance framework are showcased in Chapter 6.
The developed fault tolerant techniques are evaluated using the simulation framework
build in Chapter 4. A discussion regarding the benefits and drawbacks of the proposed
framework is presented, followed by a comparison with state-of-the-art works.

Finally, the work is concluded in Chapter 7, by providing an overview of the contri-
butions and setting the ground for further improvements and future work.
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In this section the background information of neural networks, CIM and RRAM ba-
sics is provided. The chapter starts with introducing basic information as well as the
applications and challenges of neural networks. After, the basics and applications of
Computation-In-Memory (CIM) based NNs is discussed. Finally, we provide essential
knowledge regarding RRAM devices, among others the working principle, fundamental
defects, assets and challenges of using them.

2.1 Neural Networks (NNs)

Neural networks are computing systems inspired by the way the human brain works.
In general, a neural network consists of a number of nodes and edges; nodes represent
the artificial neurons, whereas edges represent the way different neurons are connected
to each other (weights). As displayed in Figure 2.1a, a biological neuron consists of the
dendrites, the cell body, the axon and the axon’s terminals [43]. Dendrites are responsible
for transferring the received information from other neurons to the cell body. The cell
body receives the information and forwards it through the axon. The axon normally
ends with a number of synapses connecting to the dendrites of other neurons [44]. In the
analogy of artificial and biological neurons, the dendrites can be considered as the input
of the artificial neuron, the cell body the node, the axon the output of the artificial neuron
and lastly the synapses can be regarded as the interconnections between the neurons.
Similar to the human brain [45], an artificial neuron is the main component of a NN,
while each connection/edge, representing a brain’s synapses, transmits information from
one neuron to another (Figure 2.1b). Each artificial neuron takes a number of inputs and
process them by taking the weighted sum of the inputs and the corresponding weights.
After that, a bias term is added to the weighted sum and then passed through a non-
linear activation function. The produced output is fed into the next layer of connected
as an input [46].

2.1.1 Basics

NNs or multi-layer perceptrons, are dense networks meaning that all neurons are fully
connected and can consist of multiple cascaded layers. The number of layers as well as the
number of neurons are optimized based on the corresponding application. A vanilla class
of feed-forward NNs is the Multi-Layer Perceptron (MLP). A simple example of a 2-layer
MLP can be seen in Figure 2.2. The NN consists of 3 layers: input, hidden and output
layer. Except for the input nodes, each node is a neuron followed by a nonlinear activation
function. Its multiple layers and non-linear activation make it capable of distinguishing
data that are not linearly separable. Each edge has a weight Wji, representing that the

7
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(a) A biological neuron.

(b) An artificial neuron.

Figure 2.1: [4]

j-neuron is connected with the i-neuron through the weight Wji. The output Zj (j = 0,
...,m) of the hidden layer, is equal to the weighted sum of the input Vi (i=0,...,n) and
the corresponding weights Wji (j=0,...,m). Before applying the activation function f ,
the bias term bj is added, as it can be seen in equation 2.1. Similarly, Yi (i=0,...,k) is
the output produced by the neurons in the output layer.

Figure 2.2: A 2-layer multi-layer perceptron structure.

Zj = f(

n∑

i=0

Wji · Vi + bj) (2.1)

Yj = f(
k∑

i=0

Wji · Zi + bj) (2.2)
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Activation
function

Description Remarks Graph

Sigmoid s(x) = 1
1+e−x

• bounds: [0, 1]
• hidden layer
• smooth gradient
• non-zero centered
• vanishing gradient
• computational expensive

Tanh t(x) = ex−e−x

ex+e−x

• bounds: [-1, 1]
• hidden layer
• smooth gradient
• zero centered
• vanishing gradient
• computational expensive

ReLU r(x) = x+ = max(0, x)

• bounds: [0, +inf)
• hidden layer
• sparse
• dying relu problem
• computational efficient

Softmax s(z)i = ezi∑k
j=0 e

zj

• bounds: [0, 1]
• output layer
• multi-class problems

-

Table 2.1: Frequently used activation functions.

Activation functions are necessary, in order to add non-linearity to the network. This
non-linearity helps the NN to be trained in complex non-linear input data. Broadly used
activation functions are [47]:

• Sigmoid

• Hyperbolic Tangent (Tanh)

• Rectifier Linear Unit (ReLU)

• Softmax

Each activation function has its own features as well as exhibits different advantages
and disadvantages. Some of them are presented in Table 2.1. The first 3 functions are
mostly used for the hidden layers of the network, while softmax [46, Chapter 6.2.2.3] is
used for the output layer. The Sigmoid and Tanh functions share a lot of the advan-
tages/disadvantages, as Tanh is in fact a scaled Sigmoid function. However, Tanh is
a zero-centered function, and has a stronger gradient than the Sigmoid, a feature that
helps with the training of the network. The ReLU function is the most computationally
efficient one, as simple mathematical operations are used (i.e. thresholding) compared
to the other activation functions. Another benefit is that ReLU adds sparsity to the
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network, as some neurons might not be activated at all [48]. Therefore, ReLU makes
the training easier as well as the network lighter. Nonetheless, a major problem with
ReLU is the dying ReLU problem, which can be tackled by using a modified function,
namely Leaky ReLU [49]. Contrarily, softmax is mainly used in the output layer of the
network for multi-classification problems. The output of this function is a probability
distribution along all the corresponding categories. The outputs take values in the range
of [0, 1], with the sum of the probabilities being equal to 1. The target class of the
softmax function scores the higher probability.

2.1.1.1 Training

In a nutshell, the goal of a neural network is to approximate some function f. As stated
in [46], a feed-forward network defines a mapping y=f(x;θ) and learns the value of the
parameters θ that result in the best function approximation. NNs are proven to be
universal function approximators, meaning that they are capable of calculating any other
computable function [50].

Therefore, training is an essential process for NNs, in order to be used to perform
some meaningful tasks such as object detection and classification. There are two types
of training: supervised and unsupervised. Briefly, unsupervised learning clusters unla-
beled datasets, by discovering hidden patterns between the given data [51]. A common
algorithm for unsupervised learning is clustering. In this thesis, supervised training is
mostly discussed as unsupervised training in not relevant for this work. In supervised
training, we train the NN by presenting several examples of a chosen dataset as well
as the corresponding class that they belong to. In general, the objective of training is
to tune the parameters of the network (weights and biases), in order to achieve high
classification accuracy on a given dataset. The main algorithm used is back-propagation
(BP) using gradient descent [46]. Several modifications and improvements regarding
BP have also been proposed, such as Stochastic Gradient Descent (SGD) [52], Adam
[53] etc. In BP, the goal is to adjust the weights (Wij) and biases (bij), so that the
cost/error function (E) is minimized in each step. The cost function shows how far the
calculated output of the NN is from the target output, with respect to the corresponding
network’s parameters. In order to change the cost function with respect to the network’s
parameters, the chain rule is used, as it can be seen in equations 2.3, 2.4, 2.5, 2.6.

∂E

∂W
(1)
ij

=
∑

k

(
∂E

∂Yk
· ∂Yk
∂Zj

) · ∂Zj

∂aj
· ∂aj

∂W
(1)
ij

(2.3)

∂E

∂b
(1)
ij

=
∑

k

(
∂E

∂Yk
· ∂Yk
∂Zj

) · ∂Zj

∂aj
· ∂aj
∂b

(1)
ij

(2.4)

∂E

∂W
(2)
ij

=
∂E

∂Yk
· ∂Yk

∂W
(2)
ij

(2.5)

∂E

∂b
(2)
ij

=
∂E

∂Yk
· ∂Yk
∂b

(2)
ij

(2.6)
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Wij(t+1) = Wij(t) − η ·
∂E

∂Wij
(2.7)

bij(t+1) = bij(t) − η ·
∂E

∂bij
(2.8)

Equations 2.7, 2.8 show how the weights and biases are updated in each step of the
gradient descent, where t is the step, and η is the learning rate. The learning rate is
a hyperparameter for controlling how much the model’s parameters will change, with
respect to the estimated output error.

Before starting the training phase, the chosen dataset is divided into two subsets; the
training and testing set. Training is done using the training set, whereas the network’s
accuracy is evaluated after training, using the testing set. In each epoch, the cost function
is evaluated and the gradients with respect to the weights and biases are calculated
(forward pass) for an input-output example. The estimated output error is fed into the
network backwards and propagated layer by layer, in order to compute the corresponding
gradients in each layer. The iterations of the algorithm stop, when the cost function is
sufficiently minimized for a certain number of epochs. To avoid overfitting [54], a
method called validation-based early stopping [55] is used. In this method, the training
set is further split into a training and validation set. After each epoch the accuracy is
evaluated using the validation dataset. The training phase is stopped when the validation
error is minimized. Note that this is not an exact algorithm as it does not necessarily
find the global minimum of the cost function, for the given parameters of the network.
Therefore, different combinations of the parameters can lead to the same, near the same
or a better/worse local or a global minimum of the cost function.

2.1.1.2 Inference

After training, the network’s parameters are optimized and fixed, and the network can
be evaluated using new example data (inference). An example of a trained 2-layer NN
is displayed in Figure 2.3b. The example image is fed into the first layer as a vector
Vn (n = 0, .., 783), passes through the hidden layer by calculating the weighted sums
and applying the activation functions, as displayed in figure 2.3. In the output layer the
softmax function activates the corresponding neuron; showing the classification result, in
this case number 7. However, in the case where the network is not trained, the softmax’s
output does not distinguish any class, as shown in Figure 2.3a.

2.1.2 Neural network architectures

Neural networks are widely used for tackling a wide range of problems in different do-
mains, for instance in image classification, speech translation [56], object recognition
[57] and image segmentation [6]. There are several categories of NNs depending on their
architecture, such as Deep Neural Networks (DNNs), Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), Binary Neural Networks (BNNs) etc. In
this chapter, only relevant to this work NNs, are going to be discussed.
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(a) Untrained network.

(b) Pretrained network.

Figure 2.3: Inference using a 2-layer NN for the MNIST dataset.

2.1.2.1 Deep Neural Networks (DNNs)

A neural network that has more than 1 hidden layer is called a Deep Neural Network
(DNN). The name ’deep’ refers to the depth of the network, deriving from the number
(>1) of hidden layers. DNNs are used for tackling difficult classification problems as
they can model complex non-linear relationships. They demonstrate intelligent behavior,
based on the fact that a large number of neurons cascaded in multiple layers, thus being
able to learn more complex features [46]. Apart from having only simple fully connected
neurons as components, DNNs can also have different layers such as convolution layers,
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as described in the next subsection.

2.1.2.2 Convolutional Neural Networks (CNNs)

Convolutional neural networks is a category of NNs mainly used for image classification
tasks [58]. CNNs are regularized versions of NNs and usually consist of convolutional
layers, pooling layers and fully-connected layers. Contrary to NNs, where each neuron
in one layer is connected to all neurons in the next layer, in convolutional layers only
some neurons are connected to subsequent neurons of the network. This architectural
feature adds sparsity to the network, as well as exploits the locality of the features in
an image, i.e. that pixels closely together are more correlated than distant ones. Apart
from utilizing spatial information, CNNs have also build-in invariant properties, which
makes the network less prone to overfitting and a better approximator.

An example of a CNN is presented in Figure 2.4. The first part of the CNN’s structure
is responsible for learning and extracting the features from the corresponding example
dataset (feature extractor), whereas the second part consisting of the fully-connected
layers, is used for classifying the image in the correct category (classifier). As mentioned
the network is usually composed of:

• Convolutional layers

As the name indicates, convolutional layers perform a convolution operation be-
tween the input image and a filter (kernel). Depending on the weights of the filter,
different features can be extracted in each convolution. By sliding the filter over
the image, the dot product is computed, creating a feature map. The depth of the
feature map is equal to the number of filters used in every convolutional layer. In
order to add some non-linearity in the network, for learning non-linear data, con-
volutional layers are usually followed by an activation function, such as the ReLU
function.

• Pooling layers

Convolution layers are usually followed by a down-sampling layer, namely a pooling
layer [59], for downgrading the created feature map, without loss of information.
Different types of pooling layers can be applied, for example max, average, sum
etc. The most common is max pooling, which takes the largest element from the
created feature map, within a selected neighborhood.

• Fully-Connected (FC) layers

A fully-connected layer is a traditional multi-layer perceptron, as described in
section 2.1.1, followed by an activation function. Convolutional and pooling layers
extract high-level features of the input image. Most of the extracted features
might be suitable for getting a good classification result, however, FC layers help
the network learn also combinations of those features.

CNNs are trained similarly to multi-layer perceptrons using the back-propagation algo-
rithm. The main difference is that the filter weights have to also be optimized during
training, for scoring a good classification result. As mentioned in section 2.1.1.1, first
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Figure 2.4: A Convolutional neural network architecture [5].

the gradients of the error concerning all weights in the network are calculated. Next,
using the gradient descent method, we update all the weights and biases in such a way
that the output error is minimized.

2.1.2.3 Binary Neural Networks (BNNs)

Although traditional deep neural networks have shown great success in solving a vari-
ety of problems, their computation and resource intensive nature, requires high storage,
bandwidth and energy, in order to be used. For example, the VGG-16 network contains
about 140 million 32-bit floating-point parameters, for classifying images using the Ima-
geNet dataset [60]. The entire network occupies more than 500 megabytes of storage and
performs 1.6×1010 floating-point arithmetic operations. Thus, it is evident that DNNs
need high-performance hardware platforms to be realized, which makes them unsuitable
for embedded and battery-powered devices.

Bearing that in mind, researchers have proposed solutions for compressing and light-
ening the power-hungry nature of DNNs, namely parameter pruning [61] and quantiza-
tion [62]. Quantization is a promising solution as it leverages the costly floating-point
operations’ problem, by representing the model’s parameters with lower precision. An
extreme quantization method is binarization, where data are 1-bit values, holding a value
of +1 or -1. Using this method the weights and biases, as well as the activation functions
in some cases, are binarized, represented by 1-bit utilizing less memory. Moreover, the
high-cost matrix multiplication operations can be replaced with efficient bitwise XNOR
and Bitcount operations, when 1-bit operands are used [37]. Therefore, it is clear that,
Binary (or Binarized) Neural Networks (BNNs) as they are called, enjoy a number of
hardware-favourable properties including memory savings, energy efficiency and consid-
erable acceleration.

Due to this advantages, BNNs are suitable to be applied in various resource con-
strained computing platforms such as embedded devices. Thus, BNNs are the target
NN architecture addressed in this thesis work. A significant number of works have been
published investigating binary neural networks [63], some achieving near state-of-the-art
accuracy compared to the corresponding floating-point implementations. Specifically,
low-precision BNNs have been proposed [64], [65], [66], [36], suggesting that a precision
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Work BitWidth (W/A) Architecture Dataset Accuracy (%)

[69] 32/32
VGG-small

CIFAR-10

93.8
BNN [64] 1/1 91.7
BinaryConnect [70] 1/32 89.9
[69] 32/32

ResNet-20
92.1

CI-BCNN [71] 1/1 91.1

[69] 32/32
ResNet-50

ImageNet

76
SYQ [72] 1/8 70.6
[69] 32/32

AlexNet
57.1

[73] 1/32 56.8
TSQ [74] 1/1 58

Table 2.2: Comparison of low-precision BNNs with their corresponding floating-point
implementations.

of 8/16 bits is sufficient for training, while in inference the DNN’s parameters require
only 1 bit to be represented. Authors in [36] develop a low-cost implementation which
has x32 less memory requirements, while being x58 faster with significant power sav-
ings, compared to the corresponding floating-point network. In Table 2.2 we evaluate
the low-precision BNNs compared to their corresponding floating-point implementation.
The bit-width (W/A) refers to how many bits are used to represent the weights (W)
and activations (A). It is observed that in most cases low-precision NNs achieve high
accuracy in the CIFAR-10 dataset, while the accuracy is slightly decreased for the Im-
ageNet dataset depending on the NN implementation. Therefore, it is clear that BNNs
are capable of having accuracy results as good as full-precision networks. Nonetheless,
due to the quantazation of the weights and the activations, they suffer from a noticeable
accuracy drop in more complex datasets, such as the ImageNet [63]. Several methods
have been proposed for improving the quantazation error [67], the gradient error caused
by the STE [68] as well as optimizing the loss function [36], resulting into better accuracy
even for the ImageNet dataset.

As mentioned in [64], the first step in realizing BNNs is to decide how the weights
and biases are to be binarized. Two methods are proposed:

• Deterministic:

xbin = sign(x) =

{
−1, if x ≤ 0

1, otherwise
(2.9)

• Stochastic:

xbin =

{
+1, with probability p = σ(x)

−1, with probability 1-p
(2.10)

The σ(x) function refers to the ’hard Sigmoid’ and equals: σ(x) = clip(x+1
2 , 0, 1) =

max(0, min(1, x+1
2 ). Deterministic binarization is very straight forward and simple to
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implement, whereas stochastic binarization requires hardware to generate random bits
when quantizing.

BNNs are trained using the back-propagation algorithm similarly to full-precision
networks. However, the binarization function (e.g sign) is not always differentiable.
Therefore, the gradient of the sign function is approximated using the straight-through
estimator (STE) proposed by [75]. The STE is defined as:

clip(−1, 1) = max(−1,min(1, x))

Using the STE for estimating the gradient of the sign function enables training the
network using back-propagation as in full-precision networks.

2.1.3 Applications of neural networks

Neural networks have gained phenomenal success in various applications domains; in
computer vision tasks [58], speech recognition [56], natural language processing [76], and
others. Although NNs can solve a variety of problems, some specialization, i.e. different
architectures, is required for solving different tasks. Among others, DNNs are capable
of solving very complex problems such as image segmentation (figure 2.5 [6]) and object
recognition [57]. An emerging application that heavily depends on object recognition

Figure 2.5: An example of image segmentation using DNNs [6].

and detection is autonomous driving [77]. Another application domain that DNNs are
widely used is healthcare [78]. For example, CNNs using using deep learning are used for
medical imaging, such as classifying brain tumors [79] or assisting in Alzheimer’s disease
detection [80].

2.1.4 Challenges of neural networks

Although NNs have shown great success in tackling various problems, they still have
several limitations to be considered and overcome. Specifically, modern state-of-the-
art DNNs require a huge consumption of computational resources, computation time,
energy and memory. One reason for that is the DNNs’ need for processing and storing
huge amounts of data, in order for them to be trained correctly. A sufficient amount
of training data is of critical importance, for the network to not overfit and obtain
satisfying generalization behavior. For example, the well-known dataset ImageNet [81]
has a whopping size of 150Gb. Another reason for the aforementioned limitations of
DNNs is the big number of operations they require, in order to be trained (or infer).
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Many state-of-the-art network architectures entail millions or billions of parameters to
be optimized over thousands of epochs. For instance, DeepLab [82] , which is among the
most popular image segmentation approaches, requires more than 6000 training epochs
in order to tune millions of parameters.

In order to save computational resources, time, energy and memory, researchers have
been trying to address the two aforementioned bottlenecks (big data processing and stor-
ing, complex and numerous operations). In particular, especially for low-power devices
such as mobile phones, BNNs have been proposed [64, 65, 66, 36] (see Section 2.1.2.3),
which remove the need for costly floating-point operations and require less memory in
general. For example, in [36], a low-cost BNN implementation is developed, which has
x32 less memory requirements, while being x58 faster and significant power savings, com-
pared to the corresponding floating point network. Another solution that is currently
being explored is the use of Computation-In-Memory (CIM) computer architectures for
implementing neural networks, which severely reduce the amount of computations (e.g.
the matrix-vector multiplication can be run with O(1) complexity in certain CIM frame-
works) and the memory hardware used. CIM is thoroughly discussed in the next section.
In fact, the developments of the present thesis employ both BNNs and CIM. Finally, other
solutions that have been proposed to alleviate the aforementioned bottlenecks (some of
which can be combined with BNNs and/or CIM) include: a) hardware-specialized plat-
forms for realizing DNNs, such as ASICs (Application-specific integrated circuits, e.g.
[83]) and FPGAs (Field Programmable Gate Arrays, e.g. [84]), and b) utilizing powerful
GPUs (General Purpose Units), which are known for their high degree of data paral-
lelism and memory bandwidth [85] (although the slowdown that the single-GPU speed
scaling progress is experiencing, has shifted the focus elsewhere).

2.2 Computation-In-Memory (CIM) Binary Neural Net-
works (BNNs)

Nowadays, most computing devices are based on the von-Neumman architecture
paradigm. However, as mentioned in section 1.1, this architecture suffers from inten-
sive data movement between the processor and the memory, resulting in high energy
consumption and increased latency. This data bottleneck becomes even more critical
in data-intensive applications such as neural networks as mentioned in the above sec-
tion. Therefore, researchers have shifted their research into developing a new paradigm
where data is processed where it makes sense; in the memory unit [22], [86], namely
Computation-In-Memory (CIM). CIM architectures provide an efficient solution for im-
plementing NN applications on hardware as it avoids the data movement and requires
less power.

Among others, when designing a CIM based architecture one should consider three
factors; the computation location, memory technology, and computation parallelism [21].
As far as the memory technology is concerned various works have proposed using tra-
ditional memory cells such as DRAMs and SRAMs for running CIM-based NNs on
hardware [87]. Moreover, new emerging non-charge-based memories are also proposed,
namely memristors, because of there favorable properties, such as non-volatility, zero
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static power consumption and small cell area [18]. Memristors consist of resistive mem-
ories (e.g. Resistive Random-Access Memory (ReRAM or RRAM) [88], Phase Change
Memory (PCM) [89]) and magnetic memories (e.g. Magnetic RAM (MRAM) [90], Spin-
transfer torque MRAM (SST-MRAM) [91]).

A CIM architecture consists of the memory array and the peripheral circuits. The
crossbar architecture of the CIM memory array is shown in Figure 2.6b. The cross-
bar structure has n wordlines (input voltages). Each wordline and bitline is connected
through a bit-cell (1T1R) memristor (a RRAM device in this case) at their intersection.
CIM crossbar arrays can be used to efficiently perform Matrix-Vector Multiplication
(MVM) operations. In Figure 2.6b a MVM operation can be performed, by applying
a voltage vector V=Vj (where j∈{1, n}) to the RRAM crossbar matrix of conductance
values G=Gij (where i∈{1,m}, j∈{1, n}). At any instance, each column performs a
Vector-Vector Multiplication (VVM) or a Multiply And Accumulate (MAC) operation,
with the output current vector I, in which each element is Ii=ΣVj · Gij . Note that all
m MAC operations are performed in parallel with O(1) time complexity.

This O(1) MVM computation potential of CIM provides fast and efficient computing
power for different neural network applications, such as BNNs. Figure 2.6a shows a
simplified 2-layer BNN consisting of the input layer, hidden layer and output layer with
fully-connected neurons.Each neuron calculates the weighted sum of the input vector
and the weights, and then passes it through an activation function given in equation
(2.11). From equation (2.11) it is observed that the weighted sum operation can be
easily mapped to a RRAM based crossbar array shown in Figure 2.6b. In this case,
the input vector Vj is applied as a voltage, while the weights (Wij) are mapped on the
corresponding conductances Gij of the RRAM devices.

Zi = f(
∑

Wij · Vj) (2.11)

where Zi is the output of the neuron i, f is the activation function,
∑
Wij · Vj is the

weighted sum of the input values and their respective weights. Several works have been
proposed for implementing BNNs on CIM memristive based architectures [37], [92]. For
instance, in [37] authors propose a modified bit-cell RRAM-based crossbar array for
BNNs, where the high-precision MAC operations are replaced by efficient XNOR and
bit-counting operations.

2.3 RRAM devices

2.3.1 Basics and working principle

Resistive random-access memory is a type of non-volatile memory, also called a mem-
ristor. The working principle of RRAM devices is based on the reversible formation or
disruption of the Conductive Filament (CF) in the resistive layer leading to a high (HRS)
or low resistance state (LRS). The structure of RRAM devices and I-V curve is presented
in Figure 2.7. As shown in the figure, a RRAM device consists of a metallic oxide sand-
wiched between the two regions, i.e., the doped region (top electrode) and the undoped
region (bottom electrode). The size of the CF determines the resistance state of the
device. The typical read and write operations as in traditional memories can be applied.
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(a) Demonstration of a 2-layer neural network
mapped on a RRAM crossbar array.

(b) RRAM crossbar array structure, where Vn
is the input voltage, Gnm the RRAM’s conduc-
tance value and Im =

∑
Gnm · Vn.

Figure 2.6: RRAM crossbar array for CIM-based 2-layer NN implementation.

When a sufficiently high positive voltage (higher than the set threshold voltage, Vset)
is applied, some of the bonds between the ions break and form a conductive filament
(CF) of vacancies (represented as white circles in Figure 2.8) that can conduct current.
This increases the size of the CF, representing the low resistance state (LRS). On the
contrary, when a negative voltage (lower than reset threshold voltage, Vreset) is applied,
some ions move back into the oxide region as shown in Figure 2.8, thus reducing the
size of the CF. As a result, the device has a high resistance state (HRS). Figures 2.7(b)
and (c) show the I-V curve of an RRAM device when a unipolar and bipolar mode is
used [7]. Briefly in unipolar switching, the RRAM device switches from a LRS to a HRS
and vise-versa symmetrically when both a positive and negative voltage is applied. As
a result, a set/reset can happen at the same polarity. Contrary, in bipolar switching the
direction of the applied voltage determines the switching of the device. In order to read
the state of the RRAM device, an appropriate current is applied on the top electrode
resulting to a current that is read out by the corresponding periphery circuit.
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Figure 2.7: Schematic of MIM structure for metal–oxide RRAM, and schematic of
metal–oxide memory’s I–V curves, showing two modes of operation: (b) unipolar and
(c) bipolar [7].

Memory SRAM DRAM NAND Flash PCM STT-MRAM RRAM

Cell area >100F2 6F2 <4F2(3D) 4-20 F2 6-20 F2 <4 F2

Cell element 1T1C 1T 1T 1T(D)1R 1T1R 1T(D)1R

Read time ∼1ns ∼10ns ∼10s <10ns <10ns <10ns

Write time ∼1ns ∼10ns ∼100µs-1ms ∼50ns <5ns <10ns

Write energy (per bit) ∼fJ ∼10fJ ∼10fJ ∼10pJ ∼0.1pJ ∼0.1pJ

Retention - ∼64 ms >10years >10years >10years >10years

Endurance >1016 >1016 >104 >109 >1015 ∼106 − 1012

Non-volatility No No Yes Yes Yes Yes

Table 2.3: A comparison of different memory technologies [94].

2.3.2 Applications and benefits

RRAM devices have recently gained widespread attention due to their non-volatility, high
integration density and their ability to overcome memory bandwidth issues by executing
operations within the memory [93]. A comparison of RRAM devices with other memory
technologies is presented in table 2.3. Great advantages of RRAM devices include their
non-volatility, resulting into zero static power, small cell area, leading into high density
integration and scalability, and long lasting retention properties. Compared to tradi-
tional non-volatile memories, e.g. the NAND Flash, RRAMs are high-speed devices as
they have smaller read and write time values. These properties make RRAM attractive
for various applications ranging from non-volatile memory [95], logic based around com-
putation in memory [14, 96, 97, 98, 23], implementations of physical unclonable function
(PUF) for hardware security applications [99] and neuromorphic computing [22], [31],
[37].
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Figure 2.8: Structure of a RRAM device programmed in a low and high resistance state.

2.4 Defects in RRAM devices

Despite their significant advantages RRAM devices suffer from various reliability and
variability problems, hindering their large scale manufacturing. RRAM defects can be
broadly divided into permanent defects, defects at t=0 due to fabrication challenge or
transient defects at t>0 due to device variability and runtime issues. During operational
time, however, transient defects can also become permanent defects.

2.4.1 Permanent defects

In the case of a permanent defect, the RRAM device is stuck in either a high or low
resistance state. The RRAM device’s value can not be tuned anymore with a write oper-
ation. Root causes include overforming of the device [100] and open defects [7], such as
a permanent open switch. Apart from permanent defects originated from the manufac-
turing stage, transient defects can also become permanent. For instance, multiple read
or write operations can disturb the state of the RRAM device making it in the course
of time, get stuck at a low or high resistance state [7]. Therefore, permanent defects
include both defects induced by the manufacturing stage as well as run-time generated
issues that turn into permanent defects.

2.4.2 Transient defects

On the other hand, transient defects are dynamic, meaning that the state of the RRAM
device is not fixed in a particular resistance value, but can be tuned and changed from
time to time during run-time. These intermittent problems are linked to the inherent
properties of RRAM devices, attributed to the stochastic nature of the oxygen vacancies
and ions processes [7]. Therefore, process variation is a significant root cause of transient
defects. Variation makes the device’s resistance value differ from its ideal value and can
be cycle-to-cycle (C2C) or device-to-device (D2D). D2D variation occurs when different
RRAM devices show different resistance characteristics under identical programming
conditions [27], while C2C variation happen when a single RRAM device shows different
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Figure 2.9: All 3 RRAM devices are programmed to have the same resistance value.
Due to the random formation/disruption of the conductive filament, each device has a
different resistance value.

resistance characteristics from time to time [101]. A visual example of D2D variation is
presented in Figure 2.9. Aside from variation, the accumulated effect of large numbers
of read/write operations can lead to significant change (drift) of the resistance state of
RRAM devices [28], which can be considered a transient defect. At last, the non-linear
and asymmetric I-V characteristics of resistive memories (shown in Figure 2.8) causes
the RRAM device to deviate from its ideal value. For example, variation in the read
voltage can lead to different effective resistance ratios, causing functional errors [29].

2.5 RRAM defect modeling

RRAM defect modeling provides a layer of abstraction, for understanding the behavior
and testing easier RRAM devices. Permanent defects arising from the manufacturing
stage and can be described by the Stuck-at-fault (SAF) model. When a device is forced
to a permanent low state, suffers from a Stuck-at-One (SA-1) fault, whereas a device
stuck at a high resistance value, is described by a Stuck-at-Zero (SA-0) fault. Apart
from permanent faults originated from the manufacturing stage, SAFs can also be a
result of transient defects. For instance, multiple read or write operations can disturb
the state of the RRAM device making it in the course of time, get stuck at a low or high
resistance state [9]. As far as transient defects are concerned, variability issues as well
as resistance drift as described in section 2.4, can lead to an undefined state fault. Aside
from variation, a transient fault might be induced by a read or write operation. Read
disturbance is a phenomenon in which a RRAM device switches its state during the read
operation and depends mainly on the stress time and the initial resistance state of the
device [30]. The latter can be modeled as a read disturb fault.
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Although CIM is a fast and efficient computing paradigm for implementing neural net-
works on hardware, the RRAM fabrication and run-time induced reliability problems
described in section 2.4, have significant impact on the inference accuracy of CIM-based
neural networks. In particular, authors in [33], [32] investigate the effect of SAFs using
a simple 2-layer and 3-layer NN for the MNIST dataset. Both works highlight the nega-
tive impact of SAFs on the classification accuracy, [32] states that inserting 10% of SAFs
results in an accuracy drop of around 37%. Intermittent faults, as described in [11], [8],
[102], such as C2C variation, data retention and the asymmetry of conductance tuning,
play a key role in the degradation of the classification accuracy as well.

Aside from RRAM device related non-idealities, the crossbar array also suffers from
non-ideal characteristics. Usually, along with the crossbar array, peripheral circuits are
required such as Digital-to-Analog Converters (DACs) and Analog-to-Digital Converters
(ADCs). Due to the analog nature of computing, several non-idealities can lead to errors
in the MVM computations [100]. Crossbar array non-idealities can derive from source,
sink and wire resistances as well as access devices, selectors and sneak paths. Regarding
the periphery, a key source of non-idealities is the ADCs and DACs [103]. Authors in
[103], show that larger DNNs suffer more from non-idealities, for instance the Resnet-50
for the ImageNet dataset, shown an accuracy degradation of 32% when it was executed
on non-ideal crossbar arrays.

Therefore, it is evident that a fault tolerant neural network design is crucial for restor-
ing the classification accuracy, paving the way for unlocking the full potential of CIM
based neural networks. In this chapter, the state-of-the-art fault-tolerance techniques
are presented, focusing on RRAM-based solutions. We divide these techniques into two
categories: software and hardware based. However, it is noted that this categorization
is not exclusive, as some proposed fault-tolerance solutions combine multiple approaches
for having better results. Thus, the classification of the fault-tolerance techniques is
done, by considering what is the main contribution of each work.

3.1 Software-based solutions

RRAM reliability issues have significant impact on the inference accuracy of NNs mapped
to RRAM-based crossbar arrays, making the need of finding fault-tolerance techniques es-
sential. In this respect, software-based solutions have been developed, which can further
be classified based on their proposed solution into retraining and remapping methods.
It is noted that some works combine both retraining as well as remapping techniques in
order to further restore the accuracy.

23
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Figure 3.1: Weight changing in the neural-network retraining method: (a) pre-trained
weight; (b) fixing the weight connection; (c) after retraining; (d) in the next iteration
[8].

3.1.1 Retraining

Authors in [8], [32], [9] investigate the self-healing capabilities of the network to tolerate
SAFs and variations, via a modified re-training method. Works [8], [32] are off-line
retraining methods as they are applied once after the manufacturing stage, while the
work in [9] proposes an on-line retraining framework for tolerating RRAM faults during
run-time. An important step in the retraining method is the extraction of the RRAM
fault distribution. The failure map of the RRAM devices is obtained by utilizing a
quiescent voltage comparison method in [9], while in [32] the location of the defective
devices is acquired by chip testing.

Authors in [8] evaluate their proposed method by using a 2-layer NN on the MNIST
dataset. The network’s accuracy is restored by incorporating weight variations into the
retraining phase. In particular, weights that are mapped on RRAM devices with high
variability are gradually decreased, while non-defective weights in the near neighborhood
are increased (figure 3.1). For a low percentage of 10% SAFs and high variations, the
retraining technique recovers the accuracy up to 71%, when the original accuracy is
90%. The second offline retraining method proposed by [32], first finds the significant
and insignificant weights and evaluates the impact of SAFs on the inference accuracy.
After, the fault distribution of SAFs is extracted from chip testing. This fault map is
used as a constraint for optimizing weights that are mapped on non-defective RRAM
devices. For a fault rates up to 20% the accuracy is restored by 98.1% when a 2-layer
NN on the MNIST is evaluated.

The on-line fault-tolerance framework of [9] (figure 3.2) focuses at enabling more
accurate on-chip training. The framework consists of a fault-detection phase and a
fault-threshold training technique. If the classification accuracy is degraded sufficiently,
the fault-detection phase is used to identify the new fault map. Consequently, the fault-
threshold training technique is used to retrain the network. The threshold-training
method updates the weights only when a large update (relative to the threshold value)
is needed. Therefore, this technique aims at mitigating SAFs caused by the limited
life endurance of RRAM devices. Overall, the fault-tolerance framework improves the
lifetime of RRAMs by 15 times.
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Figure 3.2: The fault-tolerant training method with (1) a threshold-training method to
reduce the write workload, (2) an online fault detection phase to detect fault locations,
and (3) a remapping phase to avoid or reuse faulty cells. [9].

3.1.2 Remapping

Remapping algorithms aim at finding the optimal mapping between the RRAM devices
and the corresponding weights, for reducing the mapping error. Such proposals have
been widely investigated in recent literature, including row and column matching be-
tween weights and RRAM devices [8], [33] and approximation of weights with multiple
RRAM devices [31], [102]. Authors in [33], propose three matrix transformations for
fault-tolerance; a row flipping transformation, a matrix permutation and a value range
transformation. The row flipping transformation enlarges the mapping space by flipping
SA0 weights into SA1 weights and vise versa. In the matrix permutation, neurons are
permuted for mapping small (large) weights to RRAM devices with small (large) con-
ductance values in the crossbar array. A different approach is proposed in [9] where the
inherent sparsity of a neural network is exploited to tolerant SA0 faults in RRAM cells.
This is done by re-ordering the columns/rows of the weight matrix, resulting in map-
ping the zeros in the weight matrices to RRAM devices with SA0 faults. The last work
mentioned in this section is a Mapping Algorithm with inner fault-tolerance (MAO) [31].
MAO uses at least 2 RRAM devices {G+, G-} for representing positive and negative
weights. RRAM devices {G+, G-} are initialized with Gmax and Gmin respectively.
Then MAO tries to find the best pair of {G+, G-} for each weight, which minimizes
the mapping error. Without using any further fault-tolerance techniques MAO improves
the accuracy slightly from about 20% to 40% for the MNIST dataset. For restoring the
accuracy even further authors propose using redundant devices for enlarging even more
the mapping space.
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3.2 Hardware-based solutions

3.3 Redundancy

The hardware-based solutions utilize redundancy schemes to improve fault-
tolerance [102], [41], [38]. Redundancy schemes usually involve using extra rows,
columns and whole crossbar arrays for remapping. In [41], a distribution-aware and
re-configurable redundancy scheme combined with MAO is proposed, using redundant
columns or crossbar arrays, for tolerating SAFs. The number of redundant columns
or crossbars is determined when the fault distribution is being known (can be directly
post-fabrication or during run-time). When SAFs follow a non-uniform and unknown
distribution the proposed solution reduces the number of redundant RRAM cells from
more than 200% to less than 40% and 60%, respectively. When redundant columns
are used, the recognition accuracy of the MNIST dataset is recovered close to the ideal
accuracy value, with an energy overhead of 37.58%. In [38], a fault tolerance technique
for BNNs mapped on RRAM-based crossbars is proposed. First a March-type test [104]
is used to obtain the fault map of the crossbar array, followed by a modified 4T1R
(4transistor-1-Resistor) architecture for tolerating random SAF distributions. As the
authors state, this re-configurable RRAM cell guarantees 100% fault tolerance for up to
50% fault density, when the MNIST dataset is considered.

3.4 Limitations of the state-of-the-art

Although, the aforementioned fault-tolerance solutions can improve the accuracy close
to the ideal or to a great extent, their implementations still impose significant hardware
and/or software overheads.

3.4.1 Limitations of software-based solutions

Software overhead related to the retraining techniques is mainly because of the extra
retraining time. In addition, if faults cluster in a neighborhood in the weight matrix,
the accuracy cannot be restored back to the ideal value with the existing solutions. In
this case redundant devices are utilized by [8], [32], for recovering the accuracy closer
to the fault-free value. Another limitation is that the fault distribution of the crossbar
arrays should be known a-priori. If the fault map is acquired offline, then the retraining
is performed only once after fabrication. This has the disadvantage that faults might
arise during runtime which won’t be considered in the retraining technique, resulting into
accuracy degradation of the mapped network. If online training is considered as in [9],
a fault detection mechanism should be developed, adding extra hardware and software
overhead. As far as the remapping algorithms are concerned, their main limitation is the
limited flexibility in matching between the RRAM devices and the weights. So far all
solutions allocate significant software resources in finding the optimal mapping, which
is proven to be a hard problem to be solved. This is mainly because the mapping error
plays a crucial role in obtaining a good classification accuracy of the mapped NNs. While
[9], which proposes a threshold retraining method and a remapping scheme, increases
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the lifetime of the RRAM devices, it has significant software overhead for the remapping
algorithm and the fault detection phase. Overall, both approaches address limited faults
and rely on hardware redundancy to restore the accuracy when the fault rate increases.

3.4.2 Limitations of hardware-based solutions

Redundancy schemes can indeed restore the classification accuracy of NNs mapped on
RRAM based crossbar arrays, yet their main drawback is the high hardware and energy
overheads. Moreover, there is no guarantee that redundant devices are not faulty as
well as the primary ones, nullifying the benefit of remapping solutions in some cases.
The solution of [41] has an extra challenge during manufacturing stage. Due to the
fact that different number of RRAM devices are realized per column, depending on the
fault-distribution, the crossbar array requires also extra routing and modifications. A
similar challenge derives from the 4T1R architecture proposed in [38], where the array
is also modified.

Therefore, an efficient and cost-effective solution, tackling the software (mainly
caused by the mapping complexity) as well as the hardware overhead, as proposed in
this paper, is crucial in order to reliably map NNs to RRAM-based crossbar arrays.
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In this section we analyze the impact of RRAM defects on the inference accuracy of
BNNs. In the following analysis, the impact of permanent faults (Stuck-at-fault (SAF))
and intermittent faults (conductance variation) are considered, as they can aggregate
the impact of other RRAM defects as explained in section 2.4. First, the architectural
implementation and simulation framework is discussed. Next, the impact of SAFs and
variation on the BNNs’ accuracy is examined for various architectures. Lastly, overall
conclusions are drawn regarding the fault impact analysis.

4.1 Evaluation setup

The evaluation setup is divided into two subsections: the architectural implementation
and the simulation framework. The first subsection, presents how the chosen neural net-
works are realized on RRAM-based CIM crossbar arrays. Next, the simulation framework
is introduced, which includes the different neural network architectures and datasets cho-
sen for evaluation, as well as how the considered permanent and intermittent faults, are
modeled and simulated.

4.1.1 Architectural implementation

Two aspects are important in order to implement BNNs on RRAM-based CIM crossbar
arrays: a) the structure of the RRAM crossbar array and b) the NN architecture. Re-
garding the first point, in this work we consider a binary One-Transistor one-Resistor
(1T1R) bit-cell design, in which the cell can hold 2 states; HRS representing the logic
’0’ and LRS representing the logic ’1’. A great advantage of binary RRAM devices is
that they are easier to realize and program than multilevel RRAM, making them also
less prone to manufacturing and operational faults [105].

A specific category of neural networks, BNNs, is selected to study the impact of
RRAM faults and demonstrate the effectiveness of the proposed fault-tolerance tech-
niques. As described in Section 2.1.2.3, BNNs use weights that can have two values; ±1,
utilizing only 1bit. The latter matches perfectly with the architecture implementation
of having only 2 states per RRAM device. Since BNNs use binary weights, they can
easily be mapped to RRAM-based crossbar arrays, as each weight can be stored as a

29
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Figure 4.1: Implementation of selected mapping [10] on RRAM based crossbar array.
The red frame shows the added extra column (Guniti), for realizing weights = -1.
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Wi =

{
−1, if Gi = 0 (HRS)

1, if Gi = 1 (LRS)
(4.2)

It is evident though that a one-to-one mapping of the BNN’s weights (Wi = ±1) to the
conductance values (Gi = {0, 1}) is not feasible as the value of -1 has to be stored in an
RRAM cell. For this purpose, we use the mapping scheme shown in equation (4.1) [10].
This mapping is implemented by adding an extra column of RRAM cells (col ones) in
the crossbar array as shown in Figure 4.1. The col ones holds unit conductance values
(Guniti = 1). We take the weighted output sum of the crossbar array multiplied by 2,
(i.e. the term 2 · Gi · Vi in equation 4.1) and subtract from it the output of the extra
column (Guniti · Vi). This scheme allows us to map both -1 and +1 weight values to
the RRAM conductance states. The selected mapping technique has the advantage of
reduced hardware overhead, compared to other methods, such as in [8], where 2 crossbar
arrays are utilized for holding positive and negative values for the weights.

4.1.2 Simulation framework

The flow diagram of the simulation framework is presented in figure 4.2. First, the BNN
models are trained using the widely used python packages Pytorch [106] and TensorFlow
[107]. Several BNN architectures are evaluated for different datasets, for the sake of
generality and variety of test networks. Once the weights are optimized in the training
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Figure 4.2: Simulation framework for evaluating the impact of RRAM faults on the
BNN’s accuracy.

#Layer Activation function

BinarizeLinear(num inputs=784, num neurons=784) Tanh

BatchNorm1d(num neurons=784) -

BinarizeLinear(num neurons=784, 10) Softmax

Table 4.1: Architecture of a 2-layer BNN for the MNIST dataset.

phase, they are mapped on the RRAM-based crossbar array using the aforementioned
mapping algorithm. Next, in order to simulate SAFs and/or conductance variation, a
certain portion of the ideal mapped weights are transformed to defective ones, by either
fixing their values to -1 or +1 (SAF simulation) and/or adding some variation to the
weights’ values (conductance variation simulation). Finally, the defective weight matrices
are used for evaluating the inference accuracy of the network.

For the sake of generality and variety, in this simulation framework different network
architectures are evaluated. In particular, an n-layer BNN (n = 2, 3, 4), a Floating Point
2 Binary Network (FP2BIN) NN and a VGG BNN are used along with the MNIST [39],
Fashion-MNIST [40] and CIFAR-10 [42] datasets. More details regarding the architecture
of the BNNs can be seen in Table 4.1 and Table 4.2. The original inference accuracy of
the networks is displayed in Table 4.3. Details for each dataset and its corresponding
architectures, as well as more information for the fault modeling are presented below.

• MNIST dataset

– This dataset consists of 70.000 28x28 gray-scale images, which represent hand-
written decimal digits from 0 to 9. The original set is split to: 60.000 images
for training and 10.000 images for testing.

– Four different NN architectures are trained, namely FP2BIN and n-layer BNN
with n = 2, 3, 4. The n-layer BNNs are modified versions of the BNN archi-
tecture proposed in [64]. The FP2BIN is trained using floating point weights
like traditional multi-layer NNs, but after training and before inference, the
weights are binarized and obtain values of -1 or +1. In all 4 architectures
the binarization is carried out using the deterministic function mentioned in
section 2.1.2.3, which is simpler to implement on hardware.

– The number of neurons as well as the number of layers used in the network
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#Layer Layer type Details Activation function

1 C BinarizeConv2d(kernel = 3x3, stride = 1, filters = 128) -

B BatchNorm2d(128) HardTanh

2 C BinarizeConv2d(kernel = 3x3, stride = 1, filters = 384) -

P MaxPool2d(kernel = 2x2, stride=2) -

B BatchNorm2d(784) HardTanh

3 C BinarizeConv2d(kernel = 3x3, stride=1, filters = 768) -

P MaxPool2d(kernel = 2x2, stride = 2) -

B BatchNorm2d(768) HardTanh

4 C BinarizeConv2d(kernel = 3x3, stride=1, filters = 768) -

B BatchNorm2d(768) HardTanh

5 C BinarizeConv2d(kernel=3x3, stride = 1, filters = 1536) -

B BatchNorm2d(1536) HardTanh

6 C BinarizeConv2d(kernel=3x3, stride = 1, filters = 512) -

P MaxPool2d(kernel = 2x2, stride = 2) -

B BatchNorm2d(512) HardTanh

7 FC BinarizeLinear(8192, 1024) -

B BatchNorm1d(1024) HardTanh

8 FC BinarizeLinear(1024,1024) -

B BatchNorm1d(1024) HardTanh

9 FC BinarizeLinear(1024,10) -

B BatchNorm(10) LogSoftmax

Table 4.2: Architecture of the VGG BNN for the CIFAR-10 dataset, where layer type
is: C=Convolutional, B=Batch normalization, P=Pooling, FC=fully-connected.

architectures are optimized for having higher classification accuracy. In par-
ticular, figure 4.3 shows the accuracy when altering the number of neurons for
the n-layer BNN. It is observed that the highest accuracy (97.5 %) is reached
with the 4-layer BNN with 784 neurons per layer, while the 3-layer BNN with
the same amount of neurons per layers is very close with an accuracy value of
97%. For the 2-layer BNN the accuracy increases slightly, only about 0.5%,
when more neurons are used, resulting to an accuracy of 96%, for 2048 neu-
rons per layer. Thus, taking into account the trade-off between the obtained
accuracy and the number of neurons, we employed BNNs with 784 neurons
per layer, for the experiments over the MNIST dataset. Nonetheless, it must
be noted that our goal is not necessarily having the most optimized archi-
tecture for a given dataset, but mainly using a well-trained NN, which has
sufficient accuracy and can be easily implemented on crossbar arrays.

• Fashion-MNIST dataset

The Fashion-MNIST is the second dataset used for evaluating the BNNs’ accuracy.
It contains Zalando’s article images with a set of 60.000 training examples and a
test set of 10.000 example images. Each 28x28 image belongs to one of the 10
following classes: t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag
and ankle boot. In this case, the highest accuracy (88%) is achieved with a 4-
layer BNN with 784 neurons per layer. This 4-layer BNN is the only one used for
experiments over the Fashion-MNIST dataset.
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Figure 4.3: Investigating the accuracy behavior with respect to the number of neurons,
for the n-layer BNN (n = 2, 3, 4) on the MNIST dataset.

• CIFAR-10 dataset

The CIFAR-10 dataset consists of 60.000 32x32 colour images, divided into 50.000
training and 10.000 test example images. Each image is classified in 1 of the
following 10 classes: aeroplane, automobile, bird, cat, dog, frog, horse, ship and
truck. Compared to MNIST and Fashion-MNIST, it is a much more complex
dataset to be learned, requiring a deeper network. Therefore, a modified VGG
BNN architecture is used [64]. The VGG BNN has 9 layers (6 convolutional and
3 fully-connected) as shown in table 4.2. The first part of the network, which
includes the convolution layers, is responsible for extracting the relevant features
of the given dataset, while the fully-connected layers are mainly used to classify the
extracted features and combinations of the features, for each example. All filters
have a kernel size of 3x3 and, depending on the layer, different number of filters are
used. The VGG BNN has an original classification accuracy of 90.09%, as shown
in table 4.3.

• Fault modeling

In this analysis, both permanent as well as intermittent faults are considered.
Permanent faults are represented by the SAF model, and include defects generated
from the manufacturing phase as well as intermittent faults that become permanent
during run-time (described in section 2.4). SAFs are simulated by inserting them
randomly in the weights’ matrix. In particular, SA0s (HRS) are inserted as -1s and
SA1s (LRS) as 1s, according to the aforementioned mapping. The number of SAFs
injected into the network is equal to the considered percentage of SAFs multiplied
by the total number of weights.

Regarding intermittent faults, we consider the conductance drift and the conduc-
tance variation. In this investigation only device-to-device variations are consid-
ered. Device-to-device variations are simulated by replacing the ideal weights with
a random value selected from a normal distribution as shown below:

weight ∼ N (µ, σ2),
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Architecture # Layers Dataset Baseline
Accuracy (%)

FP2BIN 2
MNIST

90
n-layer BNN
(n = 2, 3, 4)

2-4 95.28, 97.1, 97.8

4-layer BNN 4 Fashion-MNIST 88

VGG BNN 9 CIFAR-10 90.09

Table 4.3: Evaluation Setup: BNNs and datasets.

where:

µ =

{
−1, if weightoriginal = −1

1, if weightoriginal = 1

and weightoriginal represents the value of the corresponding weight without the
presence of conductance drift or variation. The conductance drift and variation is
controlled by altering the σ value of the normal distribution. All fault simulations
are evaluated over 500-1000 random samples using the Monte Carlo method, in
order to obtain a statistical estimate on the inference accuracy.

4.2 SAF impact evaluation

Based on results obtained from chip testing, about 10% of SAFs are observed in a real
RRAM crossbar chip [104]. Therefore, the percentage of inserted SAFs is considered to
be up to 25%, in all test cases, including manufacturing as well as run-time produced
SAFs. The impact of SAFs is evaluated on different BNN architectures and datasets
along with different percentage ratios of SA0s and/or SA1s. In particular, only SA0s,
only SA1s and a random combination of SA0s and SA1s are simulated. Moreover, a layer-
wise fault analysis is conducted in order to determine how injecting faults in different
layers of the network affects the classification accuracy. In the rest of the section the
simulation results are presented.

4.2.1 Evaluation of n-layer BNNs

In the following figures the assumption is made that both SA0s and SA1s are injected
randomly, unless stated otherwise, similarly to [32]. Figure 4.4a shows the impact of
SAFs on shallow and deeper networks, for four different architectures of BNNs, using
the MNIST dataset. All BNNs can tolerate faults up to 5% with minimal accuracy
degradation. However, from the figure we can observe that the SAF-induced accuracy
reduction increases with increase in the network depth, i.e. the more hidden layers,
the higher the SAF impact on the network inference accuracy. The latter is clearly
evident in the BNN architecture with 4 layers, where the accuracy drops to around 30%
when 25% of SAFs are inserted. Regarding the 2-layer BNN the accuracy starts to drop
evidently after inserting more than 10% of SAFs, going down to around 65%, whereas
for the 3-layer BNN, the accuracy degradation is much sharper, reaching around 40% for
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(b) Layer-wise SAF analysis.

Figure 4.4: SAF impact evaluation on multi-layer BNN architectures for the MNIST
dataset.

SAFs = 25%. This accuracy behavior is mainly due to the fact that the layers are fully
connected, which enables faults to affect more neurons, ultimately severely harming the
accuracy of deeper BNNs. Therefore, we can safely conclude that the 2-layer BNN is a
relatively resilient architecture to SAFs compared to the deeper BNN variants.

4.2.2 Layer-wise investigation

The impact of SAFs injected in a layer-wise manner is also investigated in this work as
shown in Figures 4.4b and 4.5b. Figure 4.4b shows the accuracy reduction of a 4-layer
BNN, by applying all the faults in a single layer at a time. It is observed that faults
injected in earlier layers led to higher accuracy reduction, than faults in later stages.
In particular, for a 25 percentage of SAFs inserted only in layer 1, the accuracy falls
down by 8%, while when faults are injected only in layer3 or layer4 there is a minimal
accuracy drop of about 1%. This could be potentially due to two factors: 1) faults in
earlier stages can affect more features (e.g., in the first layer), 2) the impact of the faults
can propagate to later stages leading to higher accuracy reduction, while faults in later
stages (e.g., layer 4) affect fewer neurons.

A similar behavior is observed in figure 4.5b for the VGG BNN, especially for the
fully-connected (FC) layers. FC layer 1 is mostly affected by the insertion of SAF, while
the accuracy is almost left intact when faults are injected in FC layer 2, 3, 4. Regard-
ing the convolutional layers the impact of SAFs in the inference accuracy is somewhat
different. Each convolutional layer that is followed by a MaxPooling layer (i.e. Conv2,
Conv4, Conv6) depicts a lower accuracy drop. This can be due to the fact that the
max pooling layer can potential mask some of the faults, as it downsamples the inserted
features by half. Therefore, in the case where a fault is present in the 2x2 kernel, it has
a 50% chance of not propagating to the next layer, due to the pooling layer.
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(a) Convolutional layers (b) Fully connected (FC) layers.

Figure 4.5: SAF impact evaluation on VGG BNN architecture for the CIFAR-10 dataset.
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Figure 4.6: SAF impact evaluation on different datasets.

4.2.3 Evaluation over different datasets

In Figure 4.6 the impact of SAFs is evaluated for different datasets, namely MNIST,
Fashion-MNIST and CIFAR-10. Overall, it is observed that injecting faults in a sim-
pler BNN architecture for MNIST and in more complex BNNs for Fashion-MNIST and
CIFAR-10 datasets, impacts the classification accuracy differently. For MNIST, the ac-
curacy is reduced gradually with increasing fault rate, while it has a sharp accuracy
reduction for Fashion-MNIST and CIFAR-10 datasets as their BNNs have more layers
and neurons that are affected. For instance, for CIFAR-10, which is the most complex
dataset to be classified among the test datasets, an accuracy reduction of 25% is noted
for only 5% of SAFs. For higher fault rates the inference accuracy drops down to a very
low percentage of about 10%, which is the random nominal accuracy for this dataset.
Thus, we can argue that injecting faults in deeper and more complex BNNs impacts the
classification accuracy greatly. This observation is also inline with the accuracy reduction
of deep networks observed in Figure 4.4a.
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Figure 4.7: Different SAFs combinations on a 3-layer BNN for the MNIST dataset.

4.2.4 Evaluation of combinations of SA0s & SA1s

The independent impact of SA0 and SA1 faults is also studied separately as well as in
a combined manner as shown in Figure 4.7. The figure shows the results from different
distributions of SA0 and SA1 faults. From Figure 4.7, it is evident that when only SA0
or SA1 faults are injected, the accuracy degradation is almost uniform for both cases.
However, when both SA0 and SA1 faults are applied simultaneously, which can happen
in manufactured circuits, the accuracy reduction of the network is less than the reduction
observed when SA0 and SA1 faults are injected independently. This is mainly driven
due to the diminishing return effect, as both SA0 and SA1 can potentially cancel out
(compensate) each other leading to less severe accuracy drop.

4.3 Conductance variation impact evaluation

In this subsection the impact of conductance variation on the classification accuracy
is evaluated. As discussed in the simulation framework (section 4.1.2), the conduc-
tance variation investigation focuses on device-to-device variations, with random samples
drawn from a normal distribution. Figure 4.8 shows the impact of conductance varia-
tion (0-30%) on the inference accuracy of BNNs for the MNIST, Fashion-MNIST and
CIFAR-10 datasets, figures 4.8a, 4.8b and 4.8c, respectively. In the figures the dotted
line marks the fault-free inference accuracy in each dataset. In all cases, it is clear that
conductance variation has rather minimal impact on the inference accuracy when com-
pared to the insertion of SAFs. Notably, inserting 30% variation to the weights of the
VGG BNN, results in a mean accuracy drop of only 0.8%. Similarly, for the MNIST and
Fashion-MNIST dataset the accuracy decreases by approximately 1% when a maximum
weight variation of 30% is considered. It is also worth to mention that inserting a higher
percentage of variation to the weights causes an increasing deviation of the accuracy as
well as more outliers. This is to be expected as high percentages of variation means
that more randomness is added to the network, resulting in increasing variance from the
mean case.
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(a) 2-Layer BNN on the MNIST.
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(b) 4-layer BNN on the Fashion-MNIST.
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(c) VGG BNN on the CIFAR-10.

Figure 4.8: Impact of conductance variation on BNN’s accuracy.

4.4 Combined impact of SAFs & conductance variation

Apart from examining separately the impact of SAFs and variation, it is crucial to
investigate the combined effect of SAFs and conductance variation on the inference
accuracy of BNNs. For this purpose, the inference accuracy of the BNNs is evaluated
in the presence of both SAFs and conductance variation for the MNIST and Fashion-
MNIST. Experimental results for the CIFAR-10 dataset is not presented because the
accuracy is heavily impacted by SAFs and therefore the impact of variations won’t be
visible. Figure 4.9a shows the accuracy reduction of the MNIST dataset on a 2-layer
BNN with 15% SAFs while conductance variation is swept from 5% to 30% and figure
4.9a for a 4-layer BNN on the Fashion-MNIST dataset. It is clear that, the primary
accuracy degradation is dominated by SAFs, while conductance variation has comparably
minimum impact on the BNN’s inference accuracy in both cases.

4.5 Summary and observations

In this chapter a thorough evaluation was conducted to assess the impact of RRAM
faults on the inference accuracy of BNNs. First, we discussed about the architectural



4.5. SUMMARY AND OBSERVATIONS 39

0 5 10 15 20 25 30
Conductance variation (%)

80.0

82.5

85.0

87.5

90.0
Ac

cu
ra
cy

 (
%
)

(a) 2-Layer BNN on the MNIST.
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(b) 4-Layer BNN on the Fashion-MNIST.

Figure 4.9: Impact of variation and 15% SAFs on BNN’s inference accuracy.

implementation and the motivation of why using binary RRAM devices in combina-
tion with BNN architectures is a cost-effective hardware-friendly choice. Afterwards,
the simulation framework was discussed: the selected BNN architectures and datasets
were presented and the simulation of permanent (SAFs) as well as transient (drift and
variation) faults were explained.

From the fault impact analysis it can be concluded that SAFs significantly degrade
the accuracy of different BNN architectures (deep and shallow BNNs) for all datasets,
while the accuracy drop due to conductance variation is rather minimal. As far as the
impact of SAFs in different architectures is concerned, it is deduced that deeper BNNs
are more vulnerable to high accuracy decline when subjected to SAFs than their shallow
BNN counterparts. The same conclusion holds also for more complex datasets, such
as the CIFAR-10. Therefore, for the MNIST dataset, for which we explored different
architectures, we select the 2-layer BNN as the architecture over which we evaluate our
fault-tolerance techniques later on, since from the fault impact analysis it is concluded
that the 2-layer BNN is the most resilient architecture compared to the rest. For the
Fashion-MNIST and CIFAR-10 datasets, we employ the 4-layer BNN and the VGG BNN,
respectively.

What is more, the layer-wise investigation over both the MNIST and CIFAR-10
datasets concluded that faults injected in earlier fully-connected layers resulted in greater
accuracy degradation. Thus, one could consider designing fault-tolerance techniques
targeting only earlier stages of the fully-connected layers, as they play an important role
in the accuracy drop.

Overall, the fault impact analysis is of great importance for this work as it exposes
how RRAM faults influence the accuracy of BNNs and motivates the need for designing
fault-tolerance techniques for implementing efficiently BNNs on RRAM-based crossbars.





Proposed Fault-Tolerance
Techniques 5
In this chapter, the proposed fault-tolerance techniques are presented. The chapter
begins with Section 5.1 by introducing the overall fault-tolerant design flow. After, the
three fault-tolerance techniques are thoroughly discussed in Sections 5.2, 5.3 and 5.4
respectively.

5.1 Overall fault-tolerant design flow

Based on the analysis of the impact of RRAM defects on the inference accuracy of BNNs,
given in Section 4.2, it is imperative to develop cost-effective fault-tolerance techniques
in order to exploit the full potential of RRAM-based crossbar arrays for BNNs. For this
purpose, a fault-tolerance framework is developed applying three different fault-tolerance
techniques for RRAM-based crossbar arrays. The proposed fault-tolerant design flow is
presented in Figure 5.1. Our goal is to mitigate both permanent faults (SAFs i.e. time-
zero faults, and transient faults that become permanent) as well as transient faults which
happen during run-time. As it can be seen from the figure, three main fault tolerance
techniques are integrated, namely a fault-tolerant activation function, redundancy with
a weight range adjustment and a retraining method. The framework first determines
a fault-tolerant activation function, by evaluating different activation functions in the
presence of injected hardware faults (SAF and/or conductance variation). The outcome
of this stage (i.e., the fault-tolerant activation function) is used as a baseline activation
function for the subsequent fault-tolerance techniques. These two techniques include
a redundancy and weight range adjustment method for mitigating some of the present
hardware faults, as well as a modified retraining technique. It should be noted that
the presented techniques are orthogonal to each other, meaning that they can be ap-
plied together to guarantee higher accuracy restoration. Therefore, the main benefit of
the proposed fault-tolerance framework is, that it enables to apply different levels of
fault-tolerance techniques, allowing designers to make a trade-off between the accuracy
improvement and their associated overhead.

5.2 A fault-tolerant activation function

An activation function is an essential part of a neuron, as it introduces non-linearity
which ensures that a neural network can learn nonlinear behaviours [108, 109]. There are
several activation functions in use, and among them three activation functions are most
widely used: the Sigmoid function, the hyperbolic tangent or Tanh and the Rectified
Linear Unit, or ReLU . Each of these activation functions have their own advantages and
disadvantages from non-linearity, learning efficiency and implementation complexity, as
described in section 2.1.2.3.

41
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Figure 5.1: Fault-tolerant design flow.

Moreover, the aforementioned activation functions also have different potential in
tolerating faults in the underlying hardware. This fact is exploited to develop a design
technique, that chooses an activation function by considering its fault-tolerance potential.
Figure 5.1, presents the fault-tolerant activation function selection flow. Three pre-
trained instances of BNNs using the Sigmoid, Tanh and ReLU functions are considered,
and their fault tolerance capability is evaluated by mapping them to a faulty crossbar
array using the evaluation framework presented in section 4.1. We make the assumption
that each BNN is mapped on the same faulty crossbar array.

As mentioned in section 2.1.1 in table 2.1, both Sigmoid and Tanh functions produce
non-sparse models as their neurons almost always are activated. That is because the
produced output ranges are [0, 1] and [-1, 1], respectively, with the output not having
a zero value or having a zero with a very low probability. Table 5.1 shows the number
of active neurons, drawn from a simulation example of a 2-layer BNN trained with
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Activation function Active neurons (%)

Sigmoid 99.7

Tanh 100

ReLU 42.9

Table 5.1: The percentage of active neurons using a 2-layer BNN, when different activa-
tion functions are used.

Figure 5.2: A visual example of fault propagation, when the Sigmoid, Tanh and ReLU
activation functions are used.

the Sigmoid, Tanh and ReLU function on the MNIST dataset. The active neurons
percentage refers to how many neurons are active on layer 1, on average over 10.000 test
examples. In in the case of the BNN using the Tanh activation function all neurons are
firing (100%), while for the Sigmoid BNN, 99.7% of neurons are active. For the ReLU
BNN is is noted that around 42.9% of the neurons activate. Hence, for the Tanh and
Sigmoid BNNs, from a fault-tolerance point of view, all (and almost all) faulty neurons
fire with probability 1, fact that propagates faults to the consecutive layers. On the
other hand, the ReLU function, has the advantage of adding sparsity to the network,
resulting to a big percentage of the neurons (i.e 42.9%) to be inactive. This enables to
mask some of the faults, thus preventing them from propagating to the next layers. As a
result, it is expected that the BNN using the ReLU function to be more robust to faults
than BNNs which use the Sigmoid and Tanh functions.

In figure 5.2 a simple visual example of three BNNs, when each of the activation
functions is used, for showing how faults can propagate from one layer to the next. In this
case, for simplicity, one fault is considered to be present in the three architectures. While
the fault always propagates to the next layer when the Sigmoid and Tanh functions are
used, as neurons always activate, the BNN using the ReLU manages to mask the fault,
because the corresponding neuron remains inactive.
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(a) Fault-free case.
(b) Faulty case: 1SAF/weight (W = 0),
2SAF/weight (W = 2).

Figure 5.3: Using 2RRAM devices per weight. The weights are adjusted based on the
mapping method [11], to the set of values {-2, +2}.

Figure 5.4: The output of a neuron when 1RRAM per weight is used.

5.3 Redundancy & weight range adjustment

Redundancy is on of the common and widely used techniques for fault-tolerance. In this
mitigation technique, we propose to use hardware redundancy for tolerating faults not by
remapping the weights on secondary devices, but for increasing the range of the stored
weight, thus minimizing the impact of a defective device, as shown in Figure 5.1. In the
evaluation setup (section 4.1) it is stated that each RRAM device is used to represent
the value of one weight. If a SAF is present, the mapped weight’s value might flip from
-1 to +1 and vise versa.

To realize the redundancy and weight adjustment based fault-tolerance method, the
architecture of the crossbar is altered; from having 1T1R to 1T2R devices in parallel. As
a result, each weight is mapped to two RRAM (2RRAM) devices. It is commented here
that the devices should be connected in parallel in order for the proposed technique to
work as expected. By connecting them in this way the logical ’OR’ operation is essentially
performed between the 2RRAM devices. If the RRAM devices were connected in series
then the logical ’AND’ operation would take place which won’t mitigate any faults as
explained below. Also, more devices could theoretically be connected in parallel, i.e.
more than 2. However, the associated hardware overhead should be taken into account.
Here towards proposing a cost-effective fault-tolerance technique we demonstrate the
results only by using 2 RRAM devices per weight.

In order for the weight mapping on the RRAM crossbar to be valid, the weight’s
range is changed to {-2, +2}, as can be seen in figure 5.3. In the scenario that one SAF
exists per weight, the weight’s value of {-2, +2} will go to 0 and not {+2, -2} (figure



5.4. RETRAINING 45

Figure 5.5: The output of a neuron when 2RRAM per weight are used, for 1 fault and
2 faults per mapped weight.

5.3b). Therefore, we now have 3 possible values that the weight can hold {-2, 0, 2}.
Compared to having the weights mapped to {-1, +1}, the extra state of 0 can potential
make the faulty output sum of the neurons, closer to the fault-free result. A very simple
example of the output of 1 neuron with only 1 weight, when 1RRAM device per weight
is used is shown in figure 5.4. The output of a neuron when 2RRAM per weight are
used, is presented in figure 5.5 respectively. Of course, if a high number of devices are
faulty, the probability of having 2 SAFs per weight, is higher. In this case, the value of
the weight would flip from ± 2 to ∓2, which is the same as the 1RRAM device case.
This observation is confirmed by our experimental results presented in Figure 6.2.

5.4 Retraining

Retraining has been a widely adopted technique to compensate for the accuracy degrada-
tion of neural networks, due to various factors, such as hardware faults, transient errors,
change in input features or operation conditions [110, 111]. For neural networks with
online/on-chip learning features, retraining can restore the accuracy drop by altering
the mapped weights during training. However, the main problem with online training is
that it reduces the already limited lifetime of the RRAM devices due to multiple write
operations [9]. On the other hand, for networks using offline training, the weights are
optimized on software level and then have to be re-mapped to the RRAM crossbars. In
this case, retraining can improve the network’s accuracy significantly as shown in [32],
while avoiding deterioration of the RRAM devices.

In this work we propose to combine an offline retraining method using BNNs with
the fault-tolerance techniques presented as shown in Figure 5.1, to further enhance the
inference accuracy of BNNs that are mapped to faulty RRAM crossbars. As presented in
5.1, first we evaluate the inference accuracy of the chosen BNN in the presence of RRAM
faults. If the accuracy degradation is significant, we start the retraining procedure.
Figure 5.6 presents in a more detailed way the steps of the retraining method. The first
step of retraining is to extract the fault map of the RRAM-based crossbar arrays. In
the present thesis, the fault map extraction is not addressed; i.e. it is assumed that
the fault map is given (several methods have been proposed to extract the fault map,
e.g. see [9, 32]). This map is used to initialize the corresponding weight matrices: the
weights that are mapped to faulty devices are initialized to the corresponding fixed value.
Afterwards, the training phase starts according to the BP algorithm. The output of each
layer is computed in order to evaluate if the BNN is sufficiently trained or not. If the
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Figure 5.6: Retraining BNNs in the presence of RRAM faults.

Figure 5.7: The application of a gradient mask for freezing specific weights (wij) that
are mapped on faulty RRAM devices .

BNN does not have high classification accuracy (meaning that it needs further training),
the weights should be updated. For this purpose, before updating the weights, a mask
(namely gradient mask) is applied to the gradient of the weights ( ∂E

∂Wij
) to exclusively

focus on retraining the weights mapped to non-faulty devices (equation 5.1), while faulty
weights are ’frozen’, as shown in equation 5.2. An example of using such a gradient mask
is displayed in figure 5.7. By using this mask, it is made sure that the retraining phase
updates only the fault-free weights (equation 5.2).

gradient mask =

{
0, if weight = SAF

1, if weight = fault− free (5.1)
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Wij(t+ 1) = Wij(t)− η ·
∂E

∂Wij
(5.2)

It is noted that in most cases, the usage of the gradient mask enables the network
to converge faster as it has less parameters to update, which can be translated to faster
retraining time. Moreover, for practical considerations, due to the fact that the retraining
method can mitigate a large percentage of faults, we propose that it is implemented
periodically, every time the accuracy is considered to have degraded significantly. That
is, every time a severe accuracy degradation is detected, implying the presence of new
SAFs, inference should stop in order to re-adjust the weights and remap them to the
crossbar arrays.





Results & Discussion 6
6.1 Accuracy improvement by the proposed fault-

tolerance techniques

The effectiveness of the proposed techniques is evaluated using the architectural and
simulation framework presented in chapter 4.1. This section presents the accuracy im-
provement results of the proposed techniques. First the results of the fault tolerant
activation function are discussed, then the redundancy and retraining techniques are
applied on top of it, to further restore the inference accuracy. It is noted that, for clarity
of presentation, only the main simulation results are presented in the present section, to
demonstrate the effectiveness of the proposed techniques. More simulation results are
included in the Appendix section.

6.1.1 A fault-tolerant activation function

The fault tolerance capability of the three most commonly used activation functions,
namely ReLU , Tanh and Sigmoid is evaluated and compared using the MNIST and
Fashion-MNIST datasets as shown in Figure 6.1. As it can be seen from the plots in
Figure 6.1 for the MNIST dataset, our insight on varying fault tolerance capabilities of
different activation functions is validated from the simulation results. Figure 6.1 shows
that both the Tanh and Sigmoid function exhibit similar accuracy reduction for the
MNIST dataset across different fault rates, while the ReLU function leads to a smaller
accuracy reduction. That is, usingReLU instead of Tanh or Sigmoid can yield up to 10%
improvement without any additional fault tolerance techniques. Similarly, in the 4-Layer
BNN trained for the Fashion-MNIST dataset shown in Figure 6.1, ReLU outperforms
both Tanh and Sigmoid. In particular, for 10-25% SAF distributions the ReLU function
has a 5-10% accuracy improvement over Tanh, while the Sigmoid function’s performance
is notably worse than both Relu and Tanh. Figure 6.1 demonstrates the performance of
the ReLU function, in the presence of both SAF and conductance variation. Compared
to figure 4.9a, we observe a certain accuracy improvement. However, it appears that
this improvement is independent from the conductance varation’s magnitude.The latter
is to be expected, as inserting variation does not affect the accuracy significantly in the
first place, as discussed in section 4.4. In general, the ReLU activation function gives
better results in terms of accuracy, across a wide fault range and for varying network
architectures and evaluation datasets. Nonetheless, it should be noted that switching
the activation function in a more complex architecture, such as the VGG BNN for the
CIFAR-10 dataset, did not yield better accuracy results. The reason for that is that the
VGG BNN is severly affected by the fault injection as shown in figure 4.6, resulting in
an accuracy drop down to around 10% for 10% of SAFs. Thus, different fault-tolerance
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(b) Fashion-MNIST dataset
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(c) Conductance variation + 15% SAF on 2-layer
BNN ReLU for the MNIST dataset.

Figure 6.1: Evaluation of SAF and conductance variation impact on the inference accu-
racy using different activation functions.

techniques have to be utilized in order to efficiently restore the accuracy in such cases.

6.1.2 Redundancy & weight range adjustment

Having already chosen the fault-tolerant activation function, ReLU in this case, the
proposed redundancy and weight range adjustment is evaluated over the MNIST and
Fashion-MNIST datasets. The improved accuracy results of the redundancy technique
for the MNIST and Fashion-MNIST, are presented in Figure 6.2. For the 2-layer BNN
over the MNIST dataset (Figure 6.2(a)), redundancy led to a high accuracy (>95%),
when up to 15% SAFs are inserted. For higher SAF rates (20-30%), the accuracy is
reduced gradually, while maintaining a 5% improvement. Regarding the 4-layer BNN
over the Fashion-MNIST (Figure 6.2(b)), the accuracy enhancement of the proposed
redundancy and weight adjustment method varies depending on the rate of injected
SAFs. Specifically, for SAF = 10% the redundancy approach improves the accuracy by
≈8%. This accuracy gain drops slightly to about 5% with more than 15% SAFs. As far
as the VGG BNN is considered, the accuracy cannot be restored when this method is
used. The reason is the same as to why the fault-tolerant activation function does not
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Figure 6.2: Impact of SAFs using the redundancy and weight range adjustment tech-
nique.

perform well, as well.

6.1.3 Retraining

Table 6.1 presents the accuracy improvement results of the retraining method using the
ReLU activation function for different datasets. From the table it can be observed that
the retraining method is able to almost fully recover the accuracy back to the baseline
fault-free accuracy (SAF 0% entry in the table), for all datasets and even for high fault-
rates. In the case of the MNIST dataset for a 2-layer BNN, we can observe that even for
a fault distribution as high as 30% the accuracy can be improved to 96.8% (from 71%),
which is almost equal to the baseline accuracy (97.3%). For the Fashion-MNIST, the
retraining method is able to recover the accuracy from a very low value of 22% up to
88.5%, which is almost ideal. Similar improvement is achieved for the CIFAR-10 dataset
on VGG BNN, in spite of the complexity of the VGG BNN network.

It should also be mentioned that in some cases the accuracy achieved by the re-
training method can even surpass the fault-free accuracy. The reason for that is that
the retraining method forcefully alters the parameters of the network, since it fixes the
values of the weights that correspond to faulty devices; and since back-propagation does
not find a global minimum of the error function, implying that different parameters of
the network may lead to different accuracy results, retraining can potentially lead to
higher accuracy than the baseline one.

In order to evaluate what is the maximum fault percentage that the retraining method
could restore, additional experiments were conducted with even higher random fault
distributions, in particular up to 50%, for CIFAR-10 and Fashion-MNIST datasets, and
up to 70% for the MNIST dataset. However, because such large distributions is not so
realistic, they are not presented. It is worth mentioning, though, that the experiments
surprisingly showed that fault distributions of up to 50% over the CIFAR-10 and 70%
over the MNIST respectively could be compensated by the retraining method. This
further motivates us to propose using the retraining method to mitigate not only time-
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MNIST dataset Fashion-MNIST CIFAR
dataset dataset

SAF Accuracy (%) Accuracy (%) Accuracy (%)
distribution (%) Baseline Retrained Baseline Retrained Baseline Retrained

0 97.3 97.3 88.22 88.22 90.09 90.09

5 96 97.3 84 87.1 65 89.9

10 95.4 97 71 88 10 89.7

15 93 97.2 62 87.9 10 89.6

20 89 97.1 53 88 9 89

25 84 97.2 40 87.76 8 88.7

30 71 96.8 22 88.5 8 89

Table 6.1: Retraining with SAFs

zero faults but faults that are generated during runtime, thus being able to compensate
for higher fault rates.

6.2 Overhead analysis & discussion

The effectiveness of the proposed fault-tolerant framework was evaluated is section 6
for different BNN architectures and datasets. The main objective was to develop a
cost-effective fault-tolerant framework that would guarantee a reliable implementation
of BNNs on RRAM-based crossbar arrays. As mentioned, the fault-tolerance framework
starts by determining the activation function, ReLU , that is more robust to RRAM
faults, to be used as a baseline function. A great advantage of this technique is that
it is easy implementable in software level without adding any software or hardware
overhead to the existing design. It is also evident that it yields significantly better
results, notably an improvement of 10% and 8%, for the MNIST and Fashion-MNIST
dataset respectively. Nonetheless, it should be acknowledged that there is a possibility
that the designer wants to select a different activation function for their NN architecture;
however, from the fault-tolerance point of view using the ReLU function is suggested.

As far as the redundancy and weight range adjustment technique is concerned, extra
RRAM devices are utilized, not for remapping faulty weights as in other works, but for
enlarging the represented weights’ value set. This technique increases the accuracy by
a maximum of 8%, without adding any software overhead. Another beneficial factor of
this mitigation scheme is that it does not require any knowledge of the fault distribution,
compared to the retraining techniques as mentioned above. However, modifications
have to be made in the RRAM crossbar array in order to have 2 RRAM devices in
parallel per weight, resulting in hardware overhead compared to the 1 RRAM crossbar
implementation. Despite altering the weights from having values of {-1, +1} to {-2,
+2}, it is noted that the BNN is not needed to be retrained for the new weights values.
The only modification required is to divide each column’s sum by 2, which can be easily
realized by bit-shifting it to the left.

As discussed in section 6, the retraining technique restores the accuracy up to the
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ideal value in almost all test cases, even for a high percentage of faults. In contrast
to similar retraining proposals, such as [8], the accuracy can be recovered even when
faults cluster in a neighborhood in the RRAM crossbar. The main disadvantage of
using retraining is that the fault distribution must be a-priori known in order to fixate
the faulty weights during the back-propagation algorithm. However, certain techniques
have been proposed that derive the fault-distribution: for example, a type March test
[104], or an on-line fault detection phase [9]. Such methods could be combined with
the proposed retraining method, even online. In fact, we propose to employ retraining
in a periodic manner in order to be able to mitigate faults that occur during run-time
as well. However, it is evident that the latter adds software overhead for the training
algorithm as well as for detecting the fault distribution. In particular, the proposed
retraining method (without considering the fault detection) adds a average latency of
390 seconds, 1200 seconds and 3300 seconds, for retraining the BNNs over the MNIST,
Fashion-MNIST and CIFAR-10 datasets.

Overall, we can argue that our goal of developing a cost-effective fault-tolerance
design is accomplished. Based on figure 5.1, the designer can select one and/or all
fault-tolerant techniques depending on their accuracy requirements versus the hardware
overhead or software trade-off. The proposed framework recovers the accuracy up to
almost the ideal value for almost all test cases, while tackling one of the main limitations
of other works; which is the requirement of complex mapping algorithms of the weights on
the RRAM devices. Moreover, due to the fact that BNNs are employed instead of costly
floating-point DNNs, we reduce the number of RRAM devices required for mapping the
NN right from the start, sparing additional hardware resources.

6.3 Comparison with state-of-the-art techniques

In Table 6.2, a comparison to other state-of-the art fault tolerance techniques [32], [31],
[33] is presented. The comparison is conducted using a 2-layer NN for the MNIST
dataset, while having 20% SAFs. In the table, the term “recovered accuracy” is the
ratio of the restored accuracy divided by the baseline accuracy, and the redundancy
column (R) refers to the extra RRAM devices for representing each one of the weights.

In short, the proposed technique in [32], uses a modified retraining method to incor-
porate the RRAM faults during the training phase, similar to the technique proposed in
the present work. In [32], the authors consider the significance of the NN’s weights with
respect to the impact they have on the classification accuracy and propose to remap
significant weights that are originally mapped on faulty RRAM devices to redundant
ones, to further improve the classification accuracy. While [32] recovers the classification
accuracy up to 95.1%, our work restores the inference accuracy up to 99.8%.

Authors in [31] propose a mapping algorithm (MAO), in order to map the weights
on the RRAM based crossbar, that minimizes the mapping error. MAO recovers the
accuracy up to 43%, without any hardware overhead. However, to achieve better re-
sults a redundancy scheme is utilized (R=2), resulting in recovering the accuracy up to
96%. This redundancy scheme utilizes either whole secondary columns or entire crossbar
arrays.

In [33], three different matrix transformations are used to tackle the impact of SAFs,
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Similar Works Recovered Accuracy (%) Retraining Redundancy (R)

[32] 95.1 Yes 1

[31]
43

No
1

96 2

[33]
30.1

No
1

97.6 2

Our proposal
99.8 Yes 1
94.6 No 2

Table 6.2: Comparison with related fault tolerance techniques, using a 2-Layer NN for
the MNIST dataset, with 20% SAFs.

combined with extra RRAM devices (R=2) for the weight mapping. First, a row flipping
and a permutation transformation is used, followed by a value range transformation of
the weights. All three techniques target to maximize the NNs accuracy as well as to
minimize the mapping error between the weights and the corresponding RRAM devices,
in the presence of SAFs. When no redundancy is used, the recovered accuracy remains
low (30.1%), whereas for R=2 the accuracy is restored up to 97.6%. Both methods
[33], [31] add software overhead for implementing the mapping algorithm and the matrix
transformations, while imposing also hardware overhead (R=2), for a better accuracy
result.

Overall, our proposed fault-tolerant framework outperforms the related works, restor-
ing the accuracy up to 99.8%, with a comparatively less overhead, when the retraining
technique and the fault-tolerant activation function is applied (R=1 row in the table).
Apart from restoring significantly the classification accuracy, our approach does not use
extra costly mappings of the weights to the RRAM based crossbar arrays, by instead
using binary weights mapped on binary RRAM devices, in contrast to weights which
are of higher precision assumed in the related works [31, 32, 33] (e.g. 6/8 bit or floating
point). If the redundancy and weight adjustment technique is considered along with
the fault-tolerant function, but not the retraining technique (R=2 row in the table), we
observe that the accuracy can be restored to the satisfactory value of 94.6%. It should
be noted that our redundancy technique compared to the works of [33], [31], does not
require any additional transformations for mapping and approximating the weights with
the corresponding RRAM devices, resulting into less hardware and software expenses.
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In this Chapter we conclude the work of this thesis. First, we summarize the main
points of this work in Section 7.1. Afterwards, in Section 7.2 the contributions of our
proposed framework are discussed, followed by a discussion concerning the limitations
of the current work as well as future work in Section 7.3.

7.1 Overview

In this thesis our main goal is to develop cost-effective fault-tolerance techniques in order
to map accurately NNs on RRAM based crossbar arrays. Having already conducted a
thorough literature review in Chapter 3, regarding the state-of-the-art fault tolerance
techniques, we identified two main limitations: a) a significant software overhead con-
cerning finding the optimal mapping between the weights and the corresponding RRAM
devices, and b) significant hardware cost originating from the need for redundant devices
to achieve higher rates of fault-tolerance.

Towards developing low-cost solutions, we chose a specific class of NNs, namely
BNNs, which are lighter versions of traditional NNs as explained in Chapter 2.1.2.3.
Due to the fact that BNN’s weights can obtain either of only two values ± 1, binary
RRAM devices were also selected, for mapping each weight using 1 RRAM device. This
assumption eliminates the software overhead stemming from the complex mapping algo-
rithms as in [8], [31]. Furthermore, binary weights mapped on RRAM devices (1 RRAM
device per weight), require 8 or 6 times less hardware area to be realized, compared to
higher resolution weights of 8 or 6 bits respectively.

With the architectural implementation in place, different BNN architectures are eval-
uated using three different datasets: the MNIST, Fashion-MNIST and CIFAR-10. In the
RRAM fault impact analysis we consider SAFs originating from the manufacturing stage
and transient faults that become permanent during runtime. Apart from SAFs, vari-
ation in the RRAM devices nominal values is also considered. By taking into account
both permanent and transient issues we can simulate a large amount of RRAM defects
with the SAF model as well as with conductance variation respectively. The evaluation
results showed that deeper BNN architectures exhibit a higher inference accuracy degra-
dation due to RRAM faults, while shallower networks proved to be more fault-tolerant.
Moreover, from the fault impact analysis we observed that SAFs have a significant effect
on the accuracy of all BNNs, while variability problems do not impact the accuracy of
BNNs notably.

Motivated by the fault impact analysis, fault-tolerance solutions are developed in
Chapter 5 in order to recover the inference accuracy of BNNs. In the direction of finding
low-cost solutions, the fault tolerance framework proposes three mitigation techniques:
1) a fault tolerant activation function, 2) redundancy and weight range adjustment and,
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3) a retraining technique. The fault-tolerant activation function technique evaluates dif-
ferent activation functions (Tanh, Sigmoid and ReLU) in the presence of SAFs and
variations. As discussed in Chapter 5, the ReLU function produces sparse BNN archi-
tectures, which is beneficial from a fault-tolerance point of view. Therefore, the ReLU
function is selected as the baseline activation function. Afterwards, the redundancy and
weight range adjustment scheme is presented. This method suggests using 2 RRAM
devices per weight instead of 1 RRAM device, to enlarge the set of possible weight’s
values. The latter alleviates, to some extent, the negative impact of RRAM faults in
the inference accuracy of BNNs. Lastly, a modified retraining technique is proposed for
enhancing the fault-tolerance capabilities of the mapped BNN. In a nutshell, this method
incorporates the RRAM faults during the training phase of the BNN. For this purpose,
the fault distribution map of the RRAM based crossbar array should be known a-priori.

The results of the fault-tolerant framework are presented in Chapter 6 along with a
comparison with the state-of-the-art fault-tolerance techniques. Starting with the fault-
tolerant activation function, ReLU shows great results for the MNIST and Fashion-
MNIST datasets. In particular for the MNIST dataset, an accuracy improvement of
10% is observed compared to the Tanh and Sigmoid, when 15% SAFs are injected.
For the Fashion-MNIST, in the presence of 15% SAFs, the ReLU function improves the
accuracy by 10% and 50% respectively compared to the Tanh and Sigmoid functions.
The second fault tolerance method, for SAF = 10%, improves the accuracy by ≈ 5% and
≈ 8% for the MNIST and Fashion-MNIST datasets. Unfortunately, when it comes to
the VGG BNN for the CIFAR-10 dataset, the accuracy cannot be restored remarkably
with the first 2 fault-tolerance techniques. Therefore, a retraining method is proposed to
enhance further the fault-tolerance capabilities of the proposed framework. By using this
retraining method, all BNNs can recover their inference accuracy, in the presence of very
high fault rates (up to 30%), close to their ideal accuracy value. A great advantage of the
proposed fault-tolerant framework is that the user is free to choose which fault-tolerance
methods best suit to their case, based on the trade-off between accuracy improvement and
hardware overhead. Overall, we can argue that our fault-tolerant framework achieves its
objectives; to build cost-effective solutions that restore the inference accuracy of various
BNN architectures.

7.2 Contributions

The contributions of this work can be summarized as follows:

• An evaluation setup was developed for studying the impact of RRAM faults on
different BNN architectures and datasets. The evaluation setup is divided in two
parts:

1. We developed a low-cost architectural implementation, using binary RRAM
devices and BNNs to be executed on the RRAM-based crossbar arrays, thus
tackling the need for complex mapping algorithms, which is present in related
works [8, 31]. Moreover, our assumption utilizes 8 times less hardware area
compared to works using 8bit accuracy weights, where each weight requires
8 RRAM devices. On the other hand, in the case where multilevel RRAM
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devices are considered, e.g. 8 bit devices [112], binary RRAM devices are still
preferable because they are easier to program and less prone to faults [105].

2. The simulation framework includes the BNN architectures and datasets used
for evaluating the impact of the RRAM faults. While other related works use
one NN architecture/dataset for evaluation [8], [32], [33], in this work 3 differ-
ent datasets, namely MNIST, Fashion-MNIST and CIFAR-10, are used along
with an FP2BIN, an n-layer BNN (n=2,3,4) and a VGG BNN architecture.
A variety of SAF and variation rates were also investigated, concluding that
SAFs is the main factor affecting the accuracy of the networks. Moreover,
from the layerwise investigation we deduced that faults inserted in earlier
layers of the BNNs degrade the accuracy significantly.

Overall, the fault impact analysis provided valuable insights regarding how SAFs
and conductance variation affect the inference accuracy of a variety of BNN archi-
tectures.

• A fault tolerance framework was developed motivated by the conducted fault im-
pact analysis as well as by the limitations found in similar state-of-the-art propos-
als. To be precise, our fault tolerance framework adheres to our main goal, which
was to develop cost-effective solutions which are able to restore the inference ac-
curacy of the BNNs sufficiently. In particular:

1. The first fault-tolerance technique, the fault-tolerant activation function,
achieves to mitigate some of the RRAM faults, in a simple and inexpensive
manner in terms of hardware and software overhead. Changing only the ac-
tivation function of the network from Tanh to ReLU , improves the inference
accuracy by 10% for the MNIST and 15% for the Fashion-MNIST dataset.

2. The weight and range adjustment technique is based on using 2 RRAM de-
vices per weight, not for remapping faulty devices as previous works suggest,
but for extending the set of values that a single weight can hold. This method
improves the inference accuracy by a maximum of around 5% for the MNIST
and 8% for the Fashion-MNIST dataset. Although the accuracy is increased
with the expense of doubling the number of RRAM devices, no further trans-
formation or assumption is needed as in other related works using redundant
devices.

3. The third fault-tolerance technique, namely the retraining method, has al-
ready been explored by related works [32], [8] in a similar manner. However,
these works fail to restore the accuracy when a high number of faults cluster
near a neighborhood in the weight matrix or the fault rate is very high (≥
20%). In the present work, the retraining method recovers the inference ac-
curacy back to the ideal value for all 3 datasets and BNN architectures, even
for high fault rates of 30%. Furthermore, compared to other works, we use
retraining for mitigating both SAFs generated from the manufacturing stage
and during runtime.
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• A comparison with state-of-the-art works was also conducted, with our proposed
fault-tolerant framework yeilding better results, with lower associated overhead.

• To the best of our knowledge, the related literature on combining binary RRAM
devices and BNN architectures for better fault tolerance solutions is very scarce
[38], and the present work further contributes on that front.

7.3 Discussion and future work

Although this work has reached to some interesting results and conclusions, further
improvements should be made in order to overcome current limitations and drawbacks.

To begin with, almost all simulation results were evaluated using a high level analysis
with Python. This high level approach is dominant in most related works in the litera-
ture, mainly because of the abstraction and hence the simplicity it provides. However, it
is advised that more low/circuit level simulations are conducted, in order to have more
realistic and accurate results. Performing circuit simulations would also incorporate the
influence of the periphery (e.g. DACs, ADCs etc) when calculating the matrix-vector
multiplication results.

The faults that were considered, SAFs and variation, can model a relatively big
variety of RRAM defects. In the case of conductance variation, the model used with
the normal distribution, is abstracting the variability phenomenon occurring in RRAM
devices to a great extent. The latter is beneficial from a simplicity point if view, but
lacks on accuracy. More specifically, different models can be used for simulating device-
to-device and cycle-to-cycle variability problems as in [11], [105]. Using specific models
might capture more accurately the behavior of RRAM devices. In that respect, one could
explore more RRAM non-idealities, e.g. non-linear write operations, in greater detail as
well as non-idealities originating from the RRAM crossbar array and the corresponding
periphery. Moreover, even though the evaluation made by the present work is somewhat
thorough compared to other works, by considering many different datasets and BNN
architectures, there is still room for considering more datasets such as the ImageNet,
and different NN architectures.

Although the proposed fault-tolerance framework has indeed shown promising results,
there is still room for improvement. The fault-tolerant activation function is a simple and
efficient way to mitigate some of the RRAM faults in relatively simple multi-layer BNN
architectures. When it comes to more complex architectures such as the VGG which
involves convolutional as well as pooling layers, the result is not satisfying. This is to be
expected as even a small amount of SAFs (5%) degrades the accuracy significantly by
around 30%, whereas moving to higher faults rates renders the VGG enable of classifying
any examples, with an accuracy of ≈ 10%.

The redundancy and weight range adjustment technique that we developed requires
further circuit simulation in order to evaluate more accurately the hardware overhead
and implementation details. We proposed that the 2 RRAM devices will be connected
in parallel in each intersection of the crossbar array. As a result, the drain of the
transistor where the RRAM device is usually connected to has to be prolonged. This
implementation detail should be further investigated. In this regard, one could also
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explore the possibility of using redundant columns of RRAM devices, connected in such
a way that the weighted sum of the two columns is added. Having redundant columns
instead of RRAM devices connected in parallel, might solve the previously mentioned
implementation issue, but it will yield hardware overhead due to the extra periphery
and transistors. Furthermore, the use of more than 2 RRAM devices could also be
investigated, in order to possibly enhance the fault-tolerance capabilities of the method.
For instance, if the hardware overhead of using higher number of redundant devices (
≥ 2) is acceptable, the fault impact on more complex networks such as the VGG BNN
could also be addressed via redundancy.

The main drawback of the retraining scheme is that the fault distribution of the
RRAM based crossbar arrays must be known beforehand. The main question that arises
is: how to obtain an accurate fault map? Unfortunately, most of the related retraining
methods don’t specify how the fault map is obtained. Authors in [32] acquire the fault
distribution once by utilizing chip testing, while [9] introduces an online fault detection
scheme. In our case, we assume that the fault map can be obtained in a periodic
manner, to achieve the highest possible fault-tolerance. Thus, further research should be
conducted on how the fault detection phase should be implemented during runtime. We
could approach this problem similarly to [9], by developing a fault detection phase based
on a quiescent-voltage comparison method. Alternatively, a different approach could be
designing a Build-In-Self-Test (BIST) inside the crossbar array as in [113].
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tani, D. Dormont, S. Durrleman, N. Burgos, O. Colliot et al., “Convolutional neu-
ral networks for classification of alzheimer’s disease: Overview and reproducible
evaluation,” Medical image analysis, vol. 63, p. 101694, 2020.



BIBLIOGRAPHY 67

[81] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 2009, pp. 248–255.

[82] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[83] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr, “Ac-
celerating binarized neural networks: Comparison of fpga, cpu, gpu, and asic,” in
2016 International Conference on Field-Programmable Technology (FPT), 2016,
pp. 77–84.

[84] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu,
M. Leeser, and K. Vissers, “Finn-r: An end-to-end deep-learning framework for fast
exploration of quantized neural networks,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 11, no. 3, pp. 1–23, 2018.

[85] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp.
84–90, 2017.
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Comparison of BNN and
Floating-Point (FP)
architectures in the presence of
RRAM faults. A
In this appendix a comparison between BNN and FP architetcures is conducted, to
further motivate the use of BNNs from a fault-tolerance point of view. Computation-In-
Memory (CIM) using RRAM crossbar arrays is a promising solution to realize energy-
efficient neuromorphic hardware. In this regard, BNNs, where the weights are single
binary values, are inherently suitable for CIM-based acceleration. Along with that, we
can argue that BNNs are inherently more fault-tolerant compared to traditional FP
NN architectures. A simulation example using a 2-layer NN for the MNIST dataset is
presented, in order to evaluate the fault-tolerance in both the binary and floating-point
network. In the case of binary weights, we consider a weight to be permanent faulty if
its value is stuck-at a ± 1 (LRS/HRS) as described in section 4.2. Considering that a
SA0 and a SA1 fault occurs randomly with the same probability, there is a 50% chance
that a faulty weight has actually the correct value, which is an important advantage
from a fault-tolerance point of view. On the other hand, for a FP NN architecture,
a permanent faulty weight would mean that the weight’s value is stuck either at the
maximum or minimum value of the corresponding weight matrix, as considered also in
[8].

Figure A.1 shows the simulation accuracy result when the SAF rate spans from 0
to 25 % for the BNN and the FP NN architecture. Even for a high fault rate of 25%,
the BNN depicts significant fault-tolerant capabilities compared to the corresponding
FP NN architecture. In particular, the accuracy drops to 71%, while in the traditional
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Figure A.1: Impact of fault injection on the accuracy of a BNN and FP NN architecture.
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NN the accuracy degradation is much larger, reaching 10%. Apart from evaluating the
impact of SAFs, variation in the weights’ value is also examined in both architectures,
as shown in figure A.1b. Compared to inserting SAFs, variation does not have such a
significant impact on the NN’s accuracy in both architectures. Overall, we can claim that
using a BNN architecture on binary RRAM-based crossbars is preferable considering the
fault-tolerance aspect compared to the traditional NN architectures.



Additional experiments for
Chapter 4. B
Although, the results presented in the main text of this thesis are not considering any
pre-processing methods, here some extra experimental results showing the impact of
SAFs on the inference accuracy, when pre-processing methods are used, are presented.
The pre-processing texhnique used is Principal Component Analysis (PCA) In a nutshell,
PCA is a widely used method for reducing the input dimensionality of datasets, while
minimizing information loss. This is done by creating new uncorrelated variables [114].
In the case of BNN mapped on RRAM-based crossbar arrays, using PCA is worth to be
investigated. This is because PCA reduces the input vector, thus reducing the size of
the corresponding RRAM crossbar array. A reduced size in the RRAM crossbar, implies
that less hardware is used for realizing the BBN architecture. Moreover, the fact that
PCA transforms the input data in more re-presentable ones, reduces the training time
of the network, as it becomes lighter. Table B.1 presents the accuracy of a 2-layer BNN
over the MNIST dataset with different input feature sizes. Reducing the input size to
149 yields a accuracy of 93.2 % close to the original accuracy. Therefore, the 2-layer
BNN with 149 input features is evaluated when SAFs are injected (figure B.1).
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#Features Accuracy(%)

784 (original) 95.28

236 89.47

149 93.2

64 93

98 92

23 86

Table B.1: Comparing the classification accuracy of a 2-layer BNN over the MNIST
dataset for different features sizes.

Figure B.1: SAF impact evaluation of a 2-layer BNN consisting of 149 inoput features.
The 149 input feature BNN shows similar accuracy degradation behavior as the original
2-layer BNN with 784 input features.



Brief paper C
In this Appendix a brief paper is attached, which summarizes the present thesis and will
be submitted for publication in the near future.
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RRAM Crossbar-Based Fault-Tolerant Binary
Neural Networks (BNNs)

Abstract—Computation-In Memory (CIM) using RRAM cross-
bar array is a promising solution to realize energy-efficient
neuromorphic hardware. In this regard, Binary Neural Networks
(BNNs), where the weights are single binary values, are inherently
suitable for CIM-based acceleration. However, RRAM faults, due
to variability and endurance, restrict the applicability of CIM. To
address this issue, we propose different fault tolerance techniques
to mitigate the impact of RRAM faults and defects on the
accuracy of CIM-based BNN hardware. These techniques include
a fault tolerant activation function, redundancy and weight range
adjustment and a retraining technique to regain the BNN’s
accuracy reduction, due to RRAM faults. Evaluation results using
MNIST, Fashion-MNIST and CIFAR-10 datasets demonstrate
that the proposed techniques can improve the inference accuracy
in the presence of RRAM defects by up to 20%, 40% and 80%,
respectively.

Index Terms—Computation-In-Memory (CIM), fault tolerance,
RRAM

I. INTRODUCTION

Computation-In-Memory (CIM) using emerging Resistive
Random Access memory (RRAM), which integrates computa-
tion and storage in the same physical location, has emerged
as a promising solution to tackle the DNN challenges and
enable their deployment on resource constrained platforms [1].
However, RRAM devices have various defects and faults
such as conductance drift, read disturb and device non-
idealities which limit their widespread applicability [2]. Hence,
addressing these issues is of paramount importance to realize
reliable DNN operations on RRAM-based CIM hardware.

RRAM defects can be broadly classified as permanent
defects, defects at t=0 due to fabrication challenge or transient
defects defects at t>0 due to device variability or runtime
issues. During operational time, however, the transient defects
can become permanent defects.In order to mitigate the impact
of these defects, several software and hardware-based fault
tolerance approaches have been proposed [3], [4], [5], [6], [7],
[8], [9]. Some of the software-based solutions focus on finding
an optimal mapping between the weights and the RRAM
devices [3], [4], while other researchers focus on retraining
techniques to partially regain the accuracy reduction [5],
[6]. The failure map of the RRAM devices is obtained by
utilizing a quiescent voltage comparison method [6], while
in [5] the location of the defective devices is acquired by
chip testing.Similarly, the hardware-based solutions utilize
redundancy schemes to improve fault tolerance [7], [8], [9].
In [8], a re-configurable redundancy scheme is proposed,
using redundant columns or crossbar arrays, for tolerating
SAFs. In [9], first a March-type test [10] is used to obtain

the fault map of the crossbar, followed by a modified 4T1R
architecture for tolerating random SAF distributions. However,
these solutions have various limitations, such as significant
software or hardware overhead, and need for complex mapping
algorithms. Moreover, these techniques ignore the impact of
conductance variation. Therefore, there is a clear need for
a comprehensive, cost-effective and efficient fault tolerance
technique in order to deploy DNNs in RRAM-based CIM
crossbar array.

In this paper we propose cost-effective and efficient fault
tolerance techniques addressing the impact of RRAM defect-
induced Stuck-at fault (SAF) and conductance variation on the
inference accuracy of DNNs with binary weights commonly
referred as Binary Neural Networks (BNNs). The paper first
motivates the need for fault tolerance techniques on BNNs
mapped to CIM crossbar arrays by investigating the impact
of RRAM faults and conductance variation on the inference
accuracy of BNNs. Then, three fault tolerance techniques
are proposed to mitigate the impact of RRAM faults and
conductance variation on the BNN’s inference accuracy. The
first mitigation technique investigates the role of different
activation functions on suppressing the impact of RRAM
faults on the BNN’s accuracy, and demonstrates how a fault-
tolerance aware activation function can help to restore the
accuracy. The second technique explores the potential of
redundancy combined with a weight range adjustment for
fault-tolerant BNN design, followed by a retraining technique
to regain the RRAM fault induced accuracy reduction. The
main contributions of the paper are summarized as follows:

• Analyse the impact of SAFs on inference accuracy.
• Analyse the impact of conductance variation on inference

accuracy.
• Evaluate the sensitivity of different BNN architectures to

SAFs and conductance variation.
• Demonstrate the role of activation functions for fault

tolerance.
• Develop and demonstrate low-cost and complementary

fault tolerance techniques.

The reminder of the paper is organized as follows: Section II
presents the background of RRAM devices, basics of CIM-
based neural network implementation, and state-of-the-art
works on fault tolerance techniques. Section III demonstrates
the impact of RRAM faults on the BNN’s inference accuracy.
Section IV presents the proposed mitigation schemes followed
by the discussion on the achieved accuracy improvement results
in Section V. Finally the paper is concluded in SectionVI.



Fig. 1: Structure of a RRAM device and its working princi-
ples [19].

II. BACKGROUND

A. RRAM device basics

Resistive Random Access Memory (RRAM) devices have
recently gained widespread attention due to their non-volatility,
high integration density and their ability to overcome memory
bandwidth issues by executing operations within the mem-
ory [11]. These properties make RRAM attractive for various
applications ranging from non-volatile memory [12], logic
based around computation in memory [13], [14], [15], [16],
[17], and neuromorphic computing [18]. A RRAM device as
shown in Figure 1 is fabricated by sandwiching a metallic
oxide (commonly HfOx, or TiOx) between the two regions,
i.e., the doped region (top electrode) and the undoped region
(bottom electrode). The size of the CF determines the resistance
state of the device. When a sufficiently high positive voltage
(higher than the set threshold voltage, Vset) is applied, a CF
as shown Figure 1(a)) is formed and the device will have a
low resistance state. On the contrary, when a negative voltage
(lower than reset threshold voltage, Vreset) is applied, the CF
is broken which leads to high resistance state (Figure 1(b))
Figures 1(c) and (d) show the I-V curve of RRAM and the
most prevalent one transistor one resistor (1T1R) structure of
RRAM devices.

B. Computation-In-Memory (CIM) based NNs

In addition to their storage functionality, RRAM devices can
be used to build a computation unit by structuring them in
a crossbar array. Figure 2(a) shows a crossbar structure with
N wordlines (input voltages) and M bitlines, in which the
wordlines and bitlines are connected through a RRAM device
at their intersection. The crossbar shown in Figure 2(a) can be
used to perform Matrix-Vector Multiplication (MVM) operation
by applying a voltage vector V=Vj (where j∈{1, N}) to the
RRAM crossbar matrix of conductance values G=Gij (where
i∈{1, N}, j∈{1,M}). At any instance, each column performs
a vector-vector multiplication (VVM) or a MAC operation,
with the output current vector I , in which each element is
Ii=ΣVj ·Gij . Note that all M MAC operations are performed
with O(1) time complexity.

This O(1) MVM computation potential of CIM provides
fast and efficient computing power for different neural network
applications such as Binary Neural Networks (BNNs) kernels.
Figure 2(b) shows a simplified fully-connected 2-Layer BNN
consisting of input , hidden and output layers. The neurons in
every layer calculate the weighted sum of the input vector, and
then pass it through an activation function by adding bias value

(a) RRAM crossbar array (b) Two layer NN
Fig. 2: RRAM crossbar array for CIM-based NN (a) crossbar
structure (b) Demonstration of two layer NN mapping to RRAM
crossbar.

as shown in Equation (1). From Equation (1) we can observe
that the weighted sum operation can be efficiently accelerated
using RRAM crossbar array shown in Figure 2(a).

Oi = f(
∑

Wij · Vi + bi) (1)

where Oi is the output of the neuron i, f is the activation
function,

∑
Wij · Vi is the weighted sum of the input values

and their respective weights and bi is the bias value.

C. Defects in RRAM devices

Despite their significant advantages as described in previous
sections, RRAM devices suffer from various reliability and
variability problems, hindering their large scale manufacturing.
RRAM defects can be divided in two categories: permanent and
transient. In the case of a permanent defect, the RRAM device
is stuck in either a high or low resistance state. The RRAM
device’s value can not be tuned anymore with a write operation.
Root causes include overforming of the device [20] and open
defects, such as a permanent open switch [2]. Apart from
permanent defects originated from the manufacturing stage,
transient defects can also become permanent. For instance,
multiple read or write operations can disturb the state of the
RRAM device making it in the course of time, get stuck at a
low or high resistance state []. On the other hand, transient
defects are dynamic, meaning that the state of the RRAM
device is not fixed in a particular resistance value, but can
be tuned and changed from time to time during run-time.
Intermittent problems are linked to the inherent properties of
RRAM devices, attributed to the stochastic nature of the oxygen
vacancies and ions processes []. Therefore, process variation
is a significant root cause of intermittent defects []. Variation
makes the device’s resistance value differ from its ideal value
and can be cycle-to-cycle (C2C) or device-to-device (D2D).
D2D variation occurs when different RRAM devices show
different resistance characteristics under identical programming
conditions [21], while C2C variation happen when a single
RRAM device shows different resistance characteristics from
time to time [22]. Moreover, the accumulated effect of large
numbers of read/write operations can lead to significant change
(drift) of the resistance state of RRAM devices [23], which can
be considered an transient defect. At last, the non-linear and
asymmetric I-V characteristics of resistive memories (shown
in Figure 1) causes the RRAM device to deviate from its
ideal value. In particular, variation in a read voltage can



lead to different effective resistance ratios, causing functional
errors [24].

III. RRAM FAULTS IMPACT ANALYSIS

In this section we will analyze the impact of RRAM defects
on the inference accuracy of BNNs. In this analysis, we will
consider the impact of Stuck-at-fault (SAF) and conductance
variation only, as they can aggregate the impact other RRAM
defects. First the architectural and simulation setup is discussed.
Next, the impact of SAFs and variation on the BNNs’ accuracy
is discussed.

A. Evaluation setup

1) Architecture implementation: Two aspects are important
to implement BNNs on RRAM-based CIM crossbar arrays: a)
the structure of the RRAM crossbar array and b) the BNN
architecture. In this work we consider a binary 1T1R bit-
cell design, in which the cell can hold 2 states; HRS(0)/
LRS(1). Binary RRAMs are easier to realize and program
than multilevel RRAM, making them also less prone to
manufacturing and operational faults [25]. In this work a
specific category of Neural Networks, BNNs (with weights ±1)
is chosen to study the impact of RRAM faults and demonstrate
the effectiveness of the proposed fault-tolerance techniques.
Since BNNs use binary weights, they can easily be mapped to
RRAM-based crossbar array as, each weight can be stored as
a conductance value in one RRAM device.

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(2)

Wi =

{
−1, if Gi = 0 (HRS)

1, if Gi = 1 (LRS)
(3)

It is evident though that a one-to-one mapping of the BNN’s
weights (Wi) to the conductance values (Gi) is not feasible
as the value of -1 has to be stored in an RRAM cell. For
this purpose, we use the mapping scheme shown in equation
(2) [26], which is implemented by adding an extra column
of RRAM cells (col ones) in the crossbar array as shown
in Figure 3. The col ones holds unit conductance values
(Guniti = 1). We take the weighted output sum of the crossbar
array multiplied by 2, (i.e. the term 2 ·Gi ·Vi in equation 2) and
subtract from it the output of the extra column. This scheme
allows us to map both -1 and +1 weight values to the RRAM
conductance states. The selected mapping technique has the
advantage of reduced hardware overhead, compared to other
methods, such as in [3], where 2 crossbar arrays are utilized
for holding positive and negative values for the weights.

Fig. 3: Implementation of selected mapping [26] on RRAM
based crossbar array. The red frame shows the added extra
column (Guniti ) for realizing weights = -1.

2) Simulation setup: The simulation setup of this work
is presented in Table I. In this evaluation different network
architectures such as n-layer BNN (n=2, 3, 4), Floating Point 2
Binary network (FP2BIN) and VGG BNN are used along with
MNIST, Fashion-MNIST and CIFAR-10 datasets. As shown
in the table, different rates of SAF and conductance variation
are evaluated. We assume that SAFs are inserted randomly in
the weights’ array, as -1s (SA0s) and 1s (SA1s) based on the
aforementioned mapping. The number of faults injected in the
network is equal to the percentage of faults multiplied by the
total number of weights. In this investigation only device-to-
device variations are considered, as they have severe impact
than cycle to cycle variations. Device-to-device variations are
simulated by replacing the ideal weights with a random value
selected from a normal distribution as shown below.

weight ∼ N (µ, σ2),

where:

µ =

{
−1, if weight = −1

1, if weight = 1

Moreover, a layer-wise fault analysis is conducted in order
to determine how the injecting faults in different layers of the
network affect the classification accuracy.

B. Stuck-at-fault (SAF) impact evaluation

The impact of SAF (both SA-0 and SA-1) on the inference
accuracy is evaluated for different network architectures using

TABLE I: Evaluation Setup: BNNs, datasets and faults investi-
gated

Architecture # Layers Dataset Baseline
Accuracy (%)

FP2BIN 2 MNIST 90
n-Layer BNN
(n = 2, 3, 4) 2-4 95.28, 97.1, 97.8

4-Layer BNN 4 Fashion-MNIST 88.6
VGG BNN 9 CIFAR-10 90.09
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Fig. 4: SAF impact evaluation on different architecture of BNN and varying datasets

the MNIST, Fashion-MNIST and CIFAR-10 datasets as shown
in Figure 4. Figure 4(a) shows the impact of SAF on shallow
and deeper networks, for four different architectures, of BNNs
using the MNIST dataset. From the figure we can observe that
the SAF-induced accuracy reduction increases with increase
in the network depth, i.e. the more hidden layers, the higher
the SAF impact on the network inference accuracy. This is
mainly due to the fact that the layers are fully connected,
which enable faults to affect more neurons which ultimately
can severely harm the accuracy of deeper BNNs. Therefore,
we can safely conclude that the 2-Layer BNN is a relatively
resilient architecture to SAF than the deeper BNN variants.

The impact of SAFs injected in a layer-wise manner is also
investigated in this work as shown in Figure 4(b). The figure
shows the accuracy reduction of a 4-layer BNN, by applying
all the faults in a single layer at a time. From Figure 4(b)
we can observe that faults injected in earlier layers led to
higher accuracy reduction, than faults in the later stages. This
could be potentially due to two factors: 1) faults in earlier
stages can affect more features (e.g., in the first layer). 2) the
impact of the faults can propagate to the later stages leading
to higher accuracy reduction, while the faults in later stages
(e.g., layer 4) affect few neurons. In Figure 4(c) the impact of
the SAFs is evaluated for different datasets, namely MNIST,
Fashion-MNIST and CIFAR-10. Overall, we can observe that
injecting faults in simple BNNs for MNIST and complex
BNNs for Fashion-MNIST and CIFAR-10 datasets, impacts the
classification accuracy differently. For MNIST, the accuracy is
reduced gradually with increase in fault rate, while it has a sharp
accuracy reduction for Fashion-MNIST and CIFAR-10 datasets
as their BNNs have more layers and neurons. This observation
is inline with the accuracy reduction of deep networks observed
in Figure 4(a).

The independent impact of SA0 and SA1 faults is also
studied separately as shown in Figure 6. The figure shows
the results from different distributions of SA0 and SA1 faults.
From Figure 6, it is evident that when only SA0 or SA1 faults
are injected the accuracy degradation is almost uniform for both
cases. However, when both SA0 and SA1 faults are applied
simultaneously, which can happen in manufactured circuits, the
accuracy reduction of the network is less than the reduction

observed when SA0 and SA1 faults are injected independently.
This is mainly driven due to the diminishing return effect, as
both SA0 and SA1 can potentially cancel out (compensate)
each other leading to minimum accuracy reduction.

C. Conductance variation impact evaluation

In this subsection the conductance variation impact on the
classification accuracy is evaluated. As discussed in the setup
subsection, the conductance variation investigation focuses on
device-to-device variations using a normal distribution. Figure 5,
shows the impact of conductance variation (0-30%) on the
inference accuracy of BNNs for MNIST, Fashion-MNIST and
CIFAR-10 datasets, figures 5(a), 5(b) and 5(c), respectively.
In all cases, it is clear that conductance variation has rather
minimal impact on the inference accuracy when compared
to SAFs. Moreover, it is crucial to investigate the combined
effect of SAFs and conductance variation on the inference
accuracy of BNNs. For this purpose, the inference accuracy
of the BNNs is evaluated in the presence of both SAFs and
conductance variations. Figure 7 shows the accuracy reduction
of MNIST dataset on a 2-layer BNN with 15% SAFs while
conductance variation is swept from 5 to 30%. It is clear
that, the accuracy degradation is dominated by SAFs, while
conductance variation has comparably minimum impact on the
BNN’s inference accuracy.

Overall, it can be concluded that SAFs significantly degrade
the accuracy of different BNN architectures (deep and shallow
BNNs) for all datasets, while the accuracy drop due to
conductance variations is rather minimum. Regarding the
impact of SAFs in different architectures, we can deduce that
deeper BNNs are more vulnerable to high accuracy reduction
when subjected to SAF than their shallow BNN counterparts.
Therefore, from the fault impact analysis it can be observed
that a 2-layer BNN is relatively resilient to hardware faults.
Hence, it is used as a baseline to evaluate the fault tolerance
techniques proposed in this paper, which will be discussed in
the subsequent section.

IV. PROPOSED FAULT-TOLERANT TECHNIQUES

A. Overall fault tolerance flow

Based on the analysis of the impact of RRAM defects on
the inference accuracy of BNNs, given in Section III, it is
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Fig. 5: Impact of conductance variation on BNN’s accuracy.

imperative to develop fault tolerance techniques in order to
harness the full potential of RRAM-based crossbar arrays
for BNNs. For this purpose, we develop a fault-tolerance
framework that applies different fault tolerance techniques
for RRAM-based crossbar arrays. The proposed fault tolerance
flow is presented in Figure 8. As it can be seen from the figure,
three main fault tolerance techniques are integrated, namely
fault-tolerant activation functions, redundancy with weight
range adjustment and a retraining method. The framework first
determines a fault-tolerant activation function, by evaluating
different activation functions in the presence of injected
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Fig. 6: Different SAF distribution on a 3-Layer BNN.
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Fig. 7: Impact of variations and 15% SAFs on 2-Layer BNN.

Fig. 8: The proposed fault tolerant flow implementation of a
trained BNN.

hardware faults (SAF and/or conductance variation). The
outcome of this stage (i.e., the fault-tolerant activation function)
will be used as a baseline activation function for the other fault-
tolerance techniques. It should be noted that the presented fault
tolerance techniques are orthogonal to each other, meaning
that they can be applied together to guarantee higher accuracy.
Therefore, the main benefit of the proposed fault tolerance
framework is, that it enables to apply different levels of fault
tolerance techniques, allowing designers to make a trade-off
between accuracy improvement and their associated overhead.

B. Fault-tolerant activation function

An activation function is an essential part of a neuron, that
defines the output of the neuron, given set of inputs, by taking
the weighted sum of the input values. In addition to that, an
activation function introduces non-linearity which ensures that
a neural network can learn nonlinear behaviours [27], [28].
There are several activation functions in use, and among them
three activation functions are most widely used: the Sigmoid
function, the hyperbolic tangent or Tanh and the Rectified
Linear Unit, or ReLU . Each of these activation functions have
their own advantages and disadvantages from non-linearity,
learning efficiency and implementation complexity. Moreover,
the aforementioned activation functions also have different
potential in tolerating faults in the underlying hardware.



(a) Fault-free case. (b) Faulty case: 1SAF/weight (W
= 0), 2SAF/weight (W = 2).

Fig. 9: Using 2RRAM devices per weight. The weights are
adjusted based on the mapping method [26], to the set of values
{-2, +2}

.

Therefore, this fact is exploited to develop a design technique,
that chooses an activation function by considering its fault
tolerance potential. Figure 8(a), presents the fault-tolerant
activation function selection flow. Three pre-trained instances
of BNNs using the Sigmoid, Tanh and ReLU functions are
considered, and their fault tolerance capability is evaluated by
mapping them to a faulty crossbar array. It is noted that both
the Sigmoid and Tanh function produce non-sparse models
as their neurons almost always are activated. That is because
the produced output ranges are (0, 1) and (-1, 1), respectively,
with the output not having a zero value or having a zero with
a very low probability. Hence, from a fault-tolerance point of
view, all faulty neurons have the probability of firing, which
can propagate faults to the consecutive layers. On the other
hand, the ReLU function, has the advantage of adding sparsity
to the network, meaning that a big percentage of the neurons
are not active, enabling to mask some of the faults. As a result,
it is expected that the BNN using the ReLU function to be
more robust to faults than the BNNs which use the Sigmoid
and Tanh functions.

C. Redundancy and Weight Range Adjustment

Redundancy is on of the common and widely used techniques
for tolerating faulty devices. However, it has its own disadvan-
tages, with the energy and area overhead being the primary
drawbacks. Moreover, in some cases the redundant devices can
be faulty as well which can potentially nullify the benefits of
redundancy. In this mitigation technique, we propose to use
hardware redundancy for tolerating faults not by remapping the
weights on secondary devices, but for increasing the range of
the stored weight, minimizing the impact of a defective device,
as shown in Figure 8(b). In the evaluation setup (Section III)
it is stated that each RRAM device represents the value of one
weight. If a SAF is present, the mapped weight’s value might
flip from -1 to +1 and vise versa.

To realize the redundancy and weight adjustment based fault
tolerance method, the architecture of the crossbar is altered;
from having 1T1R to 1T2R devices in parallel. As a result,
each weight is mapped to two RRAM (2RRAM) devices. In
order for the weight mapping on the crossbar to be valid, the
weight’s range is also changed to {-2, +2}, as can be seen
in Figure 9. In the scenario that one SAF exists per weight,
the weight’s value of {-2, +2} will go to 0 and not {+2, -2}

(Figure 9b). Therefore, we now have 3 possible values that the
weight can hold {-2, 0, 2}. Compared to having the weights
mapped to {-1, +1}, the extra state of 0 makes the output sum
of the neurons, closer to the fault-free result. Of course, if
high number of devices are faulty, the probability of having
2 SAFs per weight, is higher. In this case, the value of the
weight would flip from ± 2 to ∓2, which is the same as the 1R
device case. This observation is confirmed by our experimental
results presented in Figure 11.

D. Retraining for fault-tolerance in BNNs

Retraining has been a widely adopted technique to compen-
sate for the accuracy degradation of neural networks, due to
various factors, such as hardware faults, transient errors, change
in input features or operation conditions [29], [30]. For neural
networks with online/on-chip learning features, retraining can
restore the accuracy reduction with minimal effort. On the other
hand, for networks with offline training, retraining techniques
needs additional effort as the retrained weights have to be re-
mapped to the hardware. In this case, retraining can improve
the network’s accuracy significantly, when combined with the
fault-tolerance techniques presented in this paper, as shown in
Figure 8(c). Therefore, the proposed framework exploits the
potential of retraining to enhance the inference accuracy of
BNNs mapped to faulty RRAM crossbars. In order to have
efficient retraining results, the fault distribution of the crossbar
array must be extracted and used by the retraining algorithm
to exclusively train the non-faulty weights. Thus, the first step
of retraining is to initialize the corresponding weight matrix
according to the extracted fault distribution. Then, a gradient-
mask is applied to exclusively focus on retraining the weights
mapped to non-faulty hardware as shown below.

gradient mask =

{
0, if weight = SAF

1, if weight = fault− free
By using this mask we make sure that the retraining phase

updates the fault-free weights only. The usage of the gradient
mask enables the network to converge faster as it has less
features to update, which can be translated to faster retraining
time.

V. RESULTS

The effectiveness of the proposed techniques is evaluated
using the architectural and simulation setups presented in
Section III-A. This section presents the accuracy improvement
results of the proposed techniques. First the results of the fault
tolerant activation function are discussed, then the redundancy
and retraining techniques are applied on top of it, to further
restore the inference accuracy.

A. Fault tolerant activation function

The fault tolerance capability of the three most commonly
used activation functions, namely ReLU , Tanh and Sigmoid
is evaluated and compared using the MNIST and Fashion-
MNIST datasets as shown in Figure 10. As it can be seen from
the plots in Figure 10, our insight on varying fault tolerance
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Fig. 10: Evaluation of SAF and conductance variation impact on the inference accuracy using different activation functions.
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Fig. 11: Impact of SAFs using redundancy and weight
adjustment technique

capabilities of different activation functions is validated from
the simulation results. Figure 10(a) shows that both the Tanh
and Sigmoid function exhibit similar accuracy reduction for
the MNIST dataset across different rates of injected faults,
while the ReLU function leads to a minimal accuracy reduction.
Hence, using ReLU instead of Tanh or Sigmoid functions
can yield up to 10% improvement without any additional fault
tolerance technique. Similarly, in the 4-Layer BNN running
on the Fashion-MNIST dataset shown in Figure 10(b), the
ReLU and Tanh activation functions led to comparable
accuracy reduction, while the accuracy for the Sigmoid
function drops drastically. It should be noted that, for 10-25%
SAF distributions the ReLU function has 5-10% accuracy
improvement over Tanh. In general, the ReLU activation
function gives better results in terms of accuracy, across a
wide fault range and for varying network architectures and
evaluation datasets. Figure 10(c) also demonstrated the accuracy
enhancement of the ReLU function, in the presence of SAF
and conductance variation.

B. Redundancy and Weight adjustment

The accuracy improvement potential of the proposed redun-
dancy and weight range adjustment is also evaluated using the
fault-tolerant activation function, ReLU in this case, for the
MNIST and Fashion-MNIST datasets. The improved accuracy
results of the redundancy technique for the MNIST and Fashion-
MNIST, are presented in Figure 11. For the 2-Layer BNN using
the MNIST dataset (Figure 11(a), redundancy led to a high

TABLE II: Retraining with SAFs

MNIST dataset Fashion-MNIST CIFAR
dataset dataset

SAF Accuracy (%) Accuracy (%) Accuracy (%)
distribution (%) Baseline Retrained Baseline Retrained Baseline Retrained
0 97.3 97.3 88.22 88.22 90.09 90.09
5 96 97.3 84 87.1 65 89.9
10 95.4 97 71 88 10 89.7
15 93 97.2 62 87.9 10 89.6
20 89 97.1 53 88 9 89
25 84 97.2 40 87.76 8 88.7
30 71 96.8 22 88.5 8 89

accuracy (>95%), when up to 15% SAFs are inserted. For
higher SAF rates (20-30%), the accuracy is reduced gradually,
while maintaining a 5% accuracy improvement. Regarding
the 4-Layer BNN on the Fashion-MNIST, Figure 11(b), the
accuracy enhancement of the proposed redundancy and weight
adjustment method, varies depending on the rate of injected
SAFs. Hence, for SAF = 10% the redundancy approach
improves the accuracy by ≈8% when 15% SAFs are injected.
This accuracy gain drops slightly to about 5% with more than
15% SAFs.

C. Retraining with SAF distribution

Table II presents the accuracy improvement results of the
retraining method using the ReLU activation function for
different datasets. From the table it can be observed that the
retraining method is able to almost fully recover the accuracy
back to the baseline fault-free accuracy (SAF 0% entry in the
table), for all datasets and SAF distributions. In the case of
the MNIST dataset for a 2-Layer BNN, we can observe that
even for a fault distribution as high as 30% the accuracy can
be improved from 71% to 96.8%, which is almost equal to the
baseline accuracy (97.3%) of the network with 0% SAF. For
the Fashion-MNIST, the retraining method is able to recover
the accuracy from a very low value of 22% up to 88.5%,
which is almost ideal. Similar improvement is achieved for the
CIFAR-10 dataset on VGG BNN, in spite of the complexity
of the VGG BNN network.



D. Comparison with state-of-the-art techniques

In Table III, a comparison to other state-of-the art fault
tolerance techniques [5], [4], [31] is presented. The comparison
is conducted using a 2-Layer NN for the MNIST dataset, while
having 20% SAFs. In the table, the term recovered accuracy
is the ratio obtained when the restored accuracy is divided
by the baseline accuracy, and the redundancy column (R)
refers to the extra RRAM devices for representing the weights.
The proposed technique in [5], uses a modified retraining
method to incorporate the RRAM defects during the training
phase, similar to the technique proposed in this work. While
[5] recovers the classification accuracy up to 95.1%, our
work restores the inference accuracy up to 99.8%. Authors
in [4] propose a mapping algorithm (MAO), in order to map
the weights on the RRAM based crossbar, that minimizes
the mapping error. MAO recovers the accuracy up to 43%,
without any hardware overhead. However, to achieve better
results a redundancy scheme is utilized (R=2), resulting in
recovering the accuracy up to 96%. In [31], the authors use
different matrix transformations are used to tackle the impact
of SAFs, combined with extra RRAM devices (R=2) for the
weight mapping. When no redundancy is used, the recovered
accuracy remains low (30.1%), whereas for R=2 the accuracy
is restored up to 97.6%. Both methods [31], [4] add software
overhead for implementing the mapping algorithm and the
matrix transformations, while imposing also hardware overhead
(R=2), for a better accuracy. Overall, our proposed fault
tolerance framework outperforms the related works, restoring
the accuracy up to 99.8%, with a comparatively less overhead.

TABLE III: Comparison with related fault tolerance techniques,
using a 2-Layer NN for the MNIST dataset, with 20% SAFs.

Similar Works Recovered Accuracy (%) Retraining Redundancy (R)
[5] 95.1 Yes 1

[4] 43 No 1
96 2

[31] 30.1 No 1
97.6 2

Our proposal 99.8 Yes 1

VI. CONCLUSION

RRAM crossbar array based Computation-In memory is
a promising solution to overcome the limitations of tradi-
tional computing systems and deliver high energy-efficient
computation path for emerging data and computation intensive
application segments, such as neuromorphic computing. How-
ever, the widespread applicability of CIM is limited due to
various reliability and variability challenges, and manufacturing
difficulties. In this work, we investigated the impact of RRAM
defects on the inference accuracy of BNNs and proposed
different mitigation techniques to alleviate their impact. Results
using multi-layer BNNs for the MNIST, Fashion-MNIST and
CIFAR-10 datasets demonstrated that the proposed techniques
can improve the inference accuracy in the presence of RRAM
defects by up to 20%, 40% and 80%, respectively
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