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A B S T R A C T

The water quality of the Brantas river in Indonesia is of concern to several agencies on East Java.
These agencies all measure its water quality in their own way in terms of locations, rhythms
and parameters. The goal of this thesis is to find out if these agencies measure the same and if
not, how these measurements differ. From these measurements, perspectives are constructed for
each agency with the use of Principal Component Analysis. The agencies investigated are the
Dinas Lingkungan Hidup Jawa Timur (DLH Jatim), Belai Besar Wilayah Sungai Brantas (BBWS)
and Perum Jasa Tirta I (PJT). As an addition to the PCA, a neural network model is constructed
and trained to recognize the measurement agency of a datapoint from the measurement values.

It was found that the all three agencies recognized oxygen as a dominant driver in water quality
processes. Secondary processes were mostly driven by rainfall, but the effect of this was seen
differently by the agencies. DLH Jatim distinguishes surface waste runoff separately from rain-
fall, while Perum Jasa Tirta I will see them as inherently connected. BBWS will not recognize
the surface waste runoff process as a significant factor in the water quality. These differences
found in the representation of core processes in the Brantas outline how different agencies can
have a different perspective on water quality. This was further underlined by the conclusions
from the neural network analysis. Here it was found that the author could be recognized from
the measurement values alone on 88% of agency data.
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1 I N T R O D U C T I O N

As the second largest river basin on the island of Java, the Brantas river basin provides essential
services to some 17 million Indonesians. This varies from water for household and industrial use,
to irrigation and power generation (Valiant, 2013). The Brantas basin has experienced intense
industrialization, agricultural development and rapid population growth over the past decades;
changes that bring with it a vast amount of challenges (Dueñas, 2008). Maybe the most severe of
those is the increase in pollution from these activities. Waste water from agriculture, households
and industry flows directly into the river, most of it untreated. In addition to that, lack of proper
waste management facilities has created a situation in which a lot of solid waste, most of which
plastics, is dumped into the river as well (Visser, 2019). It should be clear that this pollution is
seriously problematic for a river that is also a precious resource.

A large amount of stakeholders have an interest in good water quality management. There are
private actors such as industries and businesses or NGO’s and environmental organizations, but
maybe more importantly there are the people in the basin who depend on the Brantas for their
livelihoods for drinking water, irrigation and fishery. Just like other countries, Indonesia has a
large bureaucratic organization that makes policy for water quality management. There are the
central government’s Ministry for the Environment and the Ministry for Public Works, there are
several Basin Management Agencies, there is the Provincial Government of East Java and the
numerous city councils and local regencies that exist in the Brantas basin (Houser, 2021a). In
theory, these institutions should cooperate in deciding common goals for water quality manage-
ment, but in practice this coordination can be problematic. Many agencies find themselves in
a fragmented landscape with often overlapping activities and policy mandates (Houser, 2021a).
That is in itself not so strange as countries such as the Netherlands struggle too with good inter-
agency coordination and cooperation with regards to water quality management (Junier, 2017).
That, however, does not diminish the necessity of coordination for effective water quality policy.

One such area with an overlap of activities is monitoring of water quality. At least three agen-
cies have been identified with large scale water quality measurement campaigns in the Brantas:
a public company and two government agencies, one on the provincial level and the other on
the basin level. They will be further introduced in section 1.1. This overlap of research actions
does provide an interesting opportunity though, because this knowledge of three different mea-
surement sets from three agencies can be used in different ways. It can be assumed that all data
is complementary or that they are just duplicating each others efforts. It can also be that one
agency is ’obviousy’ right and therefore others must be wrong. All of these ideas assume that
there is a certain state of the river’s water quality and that it can be measured accurately. While
not untrue, a river is a very complicated thing and small choices like when or where exactly to
take a sample can make a big impact on the values that you are going to find. So even when
different agencies report different values, they may simply both be true. Small and unconscious
choices may seemingly have little impact, but over an entire measurement campaign, they can

10



1.1 agencies 11

add up. An agency can start to construct a story with the measurements it has done, but this
story may not be the same as the other agency that is measuring the same river, but different
values. This research is interested in these differences in the measurements and the different
stories these may create. The central questions are as follows:

• How do measurements in the same river, differ across different agencies?

• How do the measurements shape a perspective of the river?

• What are these perspectives?

Before I dive deeper into this, let me first introduce the actors.

1.1 agencies

1.1.1 Dinas Lingkungan Hidup Provinsi Jawa Timur

Dinas Lingkungan Hidup Provinsi Jawa Timur, which in English can be interpreted as Envi-
ronmental Protection Agency of East Java or EPA, as which I will refer to it, is a provincial
government agency under the governor of East Java Province and is supported by the Ministry
of Environment and Forestry of the Republic of Indonesia (KLHK). Related to water quality, its
main responsibilities are to ensure a decent water quality of the Brantas river and to enforce
regulations on discharge of pollution by industries (Visser, 2019, Annex E.5). In its 2019-2024

five year strategic plan (Houser, 2021b), the EPA outlined three main goals:

• Control the pollution in the river basin by improving the percentage of businesses with
environmental assessment documents.

• Increase the coverage of garbage and hazardous (B3) waste management services.

• Increase the water quality of river water on BOD and COD parameters.

The EPA also has the authority to enforce pollution standards on industries by handing out
fines (Visser, 2019, Annex E.5), but current law enforcement is rather weak (Houser, 2021b;
Dueñas, 2008). It seems obvious that failing to enforce industry compliance with environmental
standards would result in more non-compliance and thus increased pollution and a deteriorating
water quality. Hence, it is remarkable that the improvement of enforcement is not a key focus
point for the EPA. Enforcement of environmental standards is not trivial though and multiple
reasons can be attributed to its weak state. Most important are the lack of qualified staff to serve
as environmental enforcement officers and low budget support (Houser, 2021b).

A goal that is defined though is to increase the percentage of industries with environmental
assessment reports. One such assessment report is the PROPER program, a national govern-
ment program for which the EPA is responsible in East Java. This is a voluntary program where
businesses and industries report their pollutant discharge, which in turn is verified by the EPA.
At the end of the year, environmental labels are handed out in five different classes: black, red,
blue, green and gold, with black being the worst and gold being the best. The incentive to
improve one’s label is mostly for reputation. The program has received praise from the World
Bank (Makarim et al., 1995) for its ability to implement a large environmental monitoring pro-
gram with very limited resources and information. Additional arguments from Heyes (2000)
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also suggest that the PROPER program can be an effective tool to increase compliance with en-
vironmental standards. However, Heyes (2000) also stresses that more traditional environmental
enforcement methods should not be overlooked and that reputational incentives alone will likely
not be enough to convince every actor to comply.

1.1.2 Balai Besar Wilayah Sungai Brantas

Balai Besar Wilayah Sungai Brantas (BBWS), or Grand Office of the Brantas River Basin in En-
glish, is a river basin authority that falls under the responsibility of the General Directorate of
Water Resources (DJ SDA), a government agency of the Ministry for Public Works and Public
Housing (KPUPR). BBWS’ main task is to provide policy on water quality and quantity (Visser,
2019). According to its own website (BBWS, 2020, Organization Profile), its mission is as follows:

”The Grand Office of the River Basin has the task of carrying out the management of
water resources in the river area which includes program preparation, implementation of
construction, operation and maintenance in the context of conserving and utilizing water
resources and controlling the destructive power of water in rivers, beaches, dams, lakes, lakes,
reservoirs. and other water reservoirs, irrigation, swamps, ponds, groundwater, and raw
water as well as the management of urban main drainage.”

To summarize, BBWS is mostly concerned with policy on water resources. This includes both
water quantity and quality. Day to day management and operations technically fall under the
responsibility of BBWS, but is mostly done by Perum Jasa Tirta I (see below; Visser, 2019). For
water quantity, the goals seem quite clear: prevent flooding and optimize the use of reservoirs.
For water quality on the other hand, goals are much less clear. BBWS has a mandate to outline
policy, but implementation is left to other agencies, both for water quality and quantity. As for
now, most set policy concerns the monitoring of water quality (Houser, 2020). As for actual
management of the river itself, the target is set as ”improve water quality throughout the Bran-
tas River”. This is a very broad goal, that lacks clear indicators. This observation can be made
in general for the policy of BBWS regarding water quality. BBWS has a clear concern about
the water quality of the Brantas, but clear goals with regards to this quality are not yet avail-
able. At the moment, most efforts go to monitoring and public information campaigns (Houser,
2021a). However, with its responsibilities for the operation of major river infrastructure and
urban drainage systems, BBWS is in a good position to lay out more interventionist policies.

1.1.3 Perum Jasa Tirta I

Perum Jasa Tirta I, or Water Service Company 1, is a state owned company set up to manage
water resources in the Brantas and Bengawan Solo rivers, the two largest rivers on Java. Together
with Perum Jasa Tirta II, who is in charge of rivers on West-Java, PJT1 was established on 13

October 1999 by central government decree (PP No. 93 and PP No. 94). At the time of their
establishment, the two PJT’s were very much still an experiment to privatize water resources
management (Dueñas, 2008). PJT1 (to be further referred to as just PJT) has since then grown, as
it now also provides services in the Serayu, Bogowonto and Jratunseluna basins on Java and the
Toba Asahan basin on Sumatra (PJT1, 2022, Homepage).
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As a water service company, its main responsibility is water allocation and operation and main-
tenance of water infrastructure (Visser, 2019). Its core business is the operation of reservoirs (see
relation with BBWS) for power generation and supply of ’raw’ water to industries and drinking
water company PDAM (PJT1, 2022, segmen jasa air). With this comes also its main interest in
water quality, as it is dependent on the Brantas for the source of this untreated water. PJT thus
needs to ensure that the water quality is decent enough for industries and drinking water compa-
nies to use. It is authorized to make technical and operation policy decisions, but cannot decide
on policies with regards to basin planning or the development of new infrastructure (Dueñas,
2008). This creates a situation where PJT has a large responsibility with regard to the water qual-
ity of the Brantas, but little effective policy power to change it. This makes effective cooperation
and communication with other authorities essential to effectively conduct its business.

1.2 problem statement

Now that the three main actors have been introduced, a closer look can be taken to their water
quality monitoring. From the data they provided, a map of the Brantas was drawn up that shows
their measurement locations.

Figure 1.1: Map with measurement locations of the tree main agencies in the Brantas river basin.
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One of the first things to notice is that on this scale it is quite cluttered, especially in the northern
section. There are a lot of locations so close together that the markers overlap. This occurs mostly
in the Surabaya branch of the Brantas, but at other locations as well. Most of the locations are
measured by just a single agency, but there are plenty with two or more. As for the patterns
of each agency, PJT has many locations in the Surabaya branch, some in the Porong branch and
some in the lower sections of the Brantas. It does not do any measurements in more upstream
sections. The measured sections are not just downstream, but also heavily urbanized, featuring
most of the industry in the basin, so higher pollution loads should be expected here. The EPA
has measurement locations spread out across the Brantas. Upper, middle and lower sections
are all covered, but interestingly, locations are always in or near an urban area. This does not
necessarily say much though, because there are urban areas all along the Brantas. The larger
urban areas of Malang and Surabaya also get a bit more attention than other areas. BBWS has its
locations fairly spread out over the Brantas. However, although poorly visible on the map, many
locations are at the outflow points of some of the tributaries rather than in the main branch.
There remain plenty of measuring points in the main branch, but it is not as many as the map
would suggest. BBWS also seems much less focused on urban areas and more on the major
coalescence and bifurcation points of the major branches.

There is also the matter of frequency, as the agencies do not measure at the same times. The EPA
and PJT take monthly measurements, whereas BBWS takes its measurements quarterly. Monthly
will obviously give you more information, but that does not mean the coverage is that much
better as there is still about 29 other days and 23 other hours on that day to collect information
from. River water quality is complex enough to a point where it is not really possible to capture
all information possible, so any measurements taken are by definition a simplification. Even
with the EPA and PJT both measuring monthly, they do not necessarily take measurements on
the same day or time, so both will likely find somewhat different results.

Lastly, there is the question of what substances the agencies measure. Water quality is a generic
term, not a specific physical quantity that can be measured directly. Instead, it is explained
by a collection of physical quantities or parameters that can be measured. Which parameters
to choose from is not necessarily a trivial choice. Different priorities in policy and budget can
shape the focus of a measurement campaign as well as the methods chosen to measure certain
parameters.

All of these choices in where, when, what and how to measure can and will influence the results
that are found. It does not mean they are bad results, but it will influence the perspective those
results provide of the water quality of the river. In this research, an attempt is made to find these
perspectives or these three agencies in the situation of the Brantas.

The next chapter 2 will go over how the agency data was dissected and treated to extract these
perspectives. In the results chapter 3, an overview of the data itself is presented as well as the
results of the analyses used. Implications and limitations of the analyses results for the agency
perspectives are discussed in chapter 4. Lastly, chapter 5 will present the agency perspectives,
together with some recommendations for future monitoring.



2 M E T H O D O LO GY

The methodology will be built up as follows. First, a section on data treatment is presented. Data
treatment refers to all the actions done to create a workable dataset from the collected agency
data. In this section will also be an explanation of which parameters to move forward with. In
the next section, the meaning of these parameters in terms of water quality is briefly explained.
In the third section, the main analytic method used, principal component analysis, is explained.
This section will also go into how the principal component analysis is applied to the data. The
final section will outline the methodology of data classification with neural networks, including
why this approach is relevant in the context of this study.

2.1 data treatment

Data treatment is subdivided in three steps:

1. Treating loose datafiles and fitting them together in a composite dataset

2. Matching and harmonizing different location titles and creating a consistent system for
location information

3. selecting usable data for further analysis

2.1.1 Agency files

Water quality data was requested from all three agencies through the contacts made in the Aksi
Brantas project. Communication went through ir. Reza Pramana from whom I received the
agency files. These files do not include all water quality data from the Brantas or perhaps even
all measuring agencies, but only the ones made available to us. These data sets proved to be
useful enough though and the interest of the research is directed towards these agencies, so no
effort was taken to include additional data.

In order to fairly compare the agencies, the obtained data needed to be formatted in the same
way. The format in which the data was presented was not sufficient to be used in analysis directly
and thus some degree of treatment was necessary. This treatment was different for every agency
and sometimes even for different files within the files of one agency. In the next sections, there
will be a more detailed description of the changes made to the different data files. The common
end goal was to create a single datafile which could easily be processed in further analyses.

15
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The final datafile created will be referred to as the composite dataset. This composite dataset
contains 5240 datapoints, of which 1151 from the EPA, 1430 from BBWS and 2659 from PJT. A
datapoint is a specific time and location with one measurement value for each parameter. A
datapoint does contain information for multiple parameters.

EPA

The data from the EPA consists of 5 files for years 2013-2017. The files from 2014 and 2015 were
identical. As 2014 was referenced more often in the file than 2015, it is assumed that this data
is from 2014. No data from 2015 is thus processed. Data from the EPA is presented monthly,
so for every month with data, the file will contain a separate sheet. The data was imported
into Python and aggregated from multiple sheets. The sheets within a file tended to have a
consistent format, but the files from each year were slightly different, so this process required
a mix between manual and automatic imports. Additionally, some editing had to be done to
the datfiles in order to make them machine readable. An overview of these files and edits is
presented below.

Notes:

• 2013: Only TSS, DO, BOD, COD, TP, Fecal Coli and Total Coli measured. 30 Locations.

• 2014/15: 30 Locations. Measured is: Temperature, pH, EC, TDS, TSS, DO, BOD, COD,
NO3, NH3, free chlorine, TP, Oil and Grease, Detergents, Fecal and Total Coli, Cyanide
and hydrogen sulffide. NO2 and Phenol is noted, but never assigned a value.

• 2016: 30 Locations noted down, only 28 measured. Measured is: Temperature, pH, TDS,
TSS, EC, DO, BOD, COD, TP, NO3, NH3, NH4, various metals (Co, Cd, Cr, Cu, Fe, Pb, Mn,
Zn), cyanide, fluoride, NO2, SO4, free chlorine, hydrogen sulfide, Fecal and Total Coliform,
Oil and Grease, Detergents and Phenol.

• 2017: 24 Locations, measured only in 5 months (Jan, Feb, Oct, Nov, Dec). Measured
parameters are identical to 2016 with the exception that NH4 is not measured anymore.

• It occurred multiple times that a measurement was assigned as lower than a certain value.
This is converted to that value instead.

BBWS

The data from BBWS consists of 11 files that range annually from 2009 to 2019. BBWS measures
quarterly, so at most 4 different sheets with data per file were provided. This is why the EPA
and BBWS have a fairly similar number of datapoints despite BBWS covering a much longer
timeframe. The exact date of measurement is often missing from the BBWS data and sometimes
the month of measurement is unknown as well. Another issue, similar to the EPA data, is that
the template in which the data is presented changes constantly, making the files hard to work
with. This sometimes even occurs when going from one sheet to the other within a single file.
More detailed information is presented below.

Notes:

• In some pages of the documents, measurements were described as non-detectable. Here
they have been assumed as a value of zero. In other pages, there are instead dashes. As
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it is not clear whether the parameter was non-detectable or not measured, these have been
converted to NaN (Not a Number) values instead. An exception was made for months
that contained data at other locations for the same parameter, but not for that specific one.
Here it is deemed more likely that the parameter was measured, but the contaminant was
not detected instead of assuming no measurement was made at all. Henceforth, empty
rows are assumed to contain no data, while single empty fields are assumed to contain
zero-data.

• Missing date information of which the month is known are set to the first of the month.

• 2009: 8-12 locations measured per month. None are measured twice in a quarter. 17

parameters noted down: Temperature, pH, DO, BOD, COD, TSS, NO3, NO2, NH3, TP,
Detergents, Oil and Grease, Phenol, Cu, Cr, Fecal Coli and Total Coli.

• 2010: only has one data sheet. This contains averages of all data points measured over
the entire year. Individual values cannot be read by a computer, so the file is declared
unworkable.

• 2011: no datetime provided, only the quarter. 36 locations with 11 parameters: Tempera-
ture, TSS, TDS, Turbidity, EC, pH, DO, BOD, COD, Fecal Coli and Total Coli.

• 2012: 36 locations quarterly, months have been noted down. Same parameters as men-
tioned under 2011 with addition of NH3, NO3, NO2, TP, Cu and Cr.

• 2013: Format identical to 2012

• 2014: Format identical to 2012

• 2015: Same parameters as 2012, though Cu, Cr, Fecal Coli and Total Coli had no values.
Only quarter was mentioned, but not specific month, so first of quarter assumed. Third
quarter has only 19 of 36 locations, quarter four has the remaining 17, but not the other 19.

• 2016: Structure similar to 2012-2014. 13 parameters which are: Temperature, Turbidity, TSS,
TDS, EC, pH, DO, BOD, COD, NH3, NO3, NO2 and TP. Number of locations is either 12,
24 or 36, mostly 24, but not consistently.

• 2016: Months filled as first of quarter. Low COD values (many zeros where those would
not be expected) and many values lower than the BOD value of the same measurement
point.

• 2016: October and November have misnaming of some locations. Compared to the usual or-
der, locations appear in 5 have seemingly shifted to the left, while 3 locations have dropped
out and 3 others are observed twice, though different values are recorded. It was assumed
the author made a mistake in copying column names, so the stated locations have been
replaced by the column names in the order that they appear on other tabs and in other
files.

• 2017: Quarterly data with the 13 parameters listed under 2016. 36 locations covered with
the exception of the fourth quarter which had 24 locations covered.

• 2018: Quarterly data on the 13 parameters listed under 2016. 36 total locations covered,
but quarters 1, 2 and 4 only feature 24.

• 2019: 36 locations covered, 13 parameters as listed under 2016. Quarterly data, but first
quarter is missing.
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PJT

The PJT data consists of 10 annual files of years 2010-2019. Every file contains a new sheet
for every month with recorded dates. Because PJT has different measurement frequencies per
location, the number of measured locations varies by month. There are 20 different locations of
which 13 are recorded every month, 4 are recorded twice a month and 3 are recorded every 3

months, which is usually during the first month of the quarter. The consistency between datafiles
is decent, so some automation in imports is possible.

PJT measures a large number of parameters. All parameters mentioned are: Temperature, pH,
DO, Secchi depth, Turbidity, Discharge, BOD, COD, KMnO4, TSS, TDS, Fluorine, Chloride, NO3,
SO4, Na, Ka, Mg, Ca, Alkalinity, Acidity, NO2, NH3, Kjeldhal-N, Total PO4, TP, Dissolved PO4,
Boron, Sulfide, Hydrogen Sulfide, Cyanide, Chlorine, Phenol, Detergents, Oil and Grease, Cr6,
Ag, As, Ba, Cd, Cu, Cr, Fe, Hg, Mn, Ni, Pb, Se, Zn, Al, Co, Total Coli and Fecal Coli.

The actual amount of measured parameters is considerably lower though, as many of the data
columns remain empty. There is also a large group of parameters that do have some mea-
surements taken, but are far from complete. The most recorded parameters for PJT are water
temperature, EC, DO and COD with 2659 times measured, followed by pH with 2658 times and
TSS with 2653 times. Furthermore relatively complete are Turbidity, BOD and NO3 and NO2

(all measured 2635 times), Detergent (2612 times), NH3 (2574 times), Oil and Grease (2551 times)
and Phenol (2523 times). Less complete, but still rather decent are TP (1845 times), Fecal Coli
(1285 times), Total Coli (1276 times), Copper (1257 times) and Chromium (1253 times). All other
parameters were measured less than 1000 times.

There were some other issues with the PJT data that need mentioning. The first and probably
most annoying one was that the Excel sheets of the 2019 data had saved a lot of the measurement
values as a date rather than a numeric value. For example, a water temperature was saved as
28th of May 2020. If Excel’s tools were used to automatically convert to numeric, this would be
converted to 43979, which is obviously not a real recorded temperature. The 28th of May was
much more likely to be 28.5 °C, which was also what was visually present in the cell. This must
have been converted and saved as a date in post processing even though it clearly should not be.
This error occurred quite frequently across this file in the sheets from April to December and
on the parameters of: water temperature, pH, Dissolved Oxygen, Turbidity, Biochemical oxygen
demand and Chemical Oxygen Demand. In the end, the dates were repaired manually from the
visual number, which was a date according to Excel, to the actual number.

Another issue with the 2019 datafile occurred on the nitrate measurements. Many of the values
were in the thousands of milligrams per liter, an unrealistically high concentration. Interestingly,
there were no values between 1 and 1000 mg/L, but there were values below 1 mg/L with three
decimals. This created the suspicion that something must have gone wrong with the decimal
separators. Because this also occurred in the sheets from April to December, the sum of reasons
required this to be corrected and hence all these >1000 values were divided by 1000 to bring the
values to a more reasonable range.

The last issue worth mentioning were two locations that were only indicated with a number. In
the files of 2010 to 2014, two locations were named 4110 and 4500. These were not numbers
present on the sheet of locations or any other piece of data from PJT with location information.
Therefore some investigation was required to find out which actual locations these represent.
This occurred only on the November sheets of 2010-2014 and the December sheets of 2012-2014,
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specifically in rows 18 and 19. In sheets of other months, as well as files of other years, these
rows were usually filled with Jembatan Ciro and D/S Intake K. Pelayaran. Therefore they were
changed to represent these two locations.

The only exception in the other sheets was in December of 2011 where the spots were filled
as Jembatan Sepanjang and Bend. Gunungsari. This was odd in and of itself, because these
locations were already on that same sheet just two rows above. The date indicated that these
were measured with just 4 days in between which created extra suspicion as other locations that
were actually measured twice a month were measured with a near perfect two week interval.
Therefore, it was accepted that these two locations were duplicated incorrectly and Jembatan
Ciro and D/S Intake K. Pelayaran were the correct locations. These were thus also replaced.

2.1.2 Location matching

Figure 2.1: Measurement Locations in the Brantas. Numbers correspond to locations as seen in tables of
this annex and other figures such as in the diagrams of annex B.

Each agency had its own system of location recording and naming. If all agencies were to
measure different locations, this would not be much of an issue. It would require at most some
harmonization in the format of naming, e.g. abbreviating frequent words like ’Jembatan’ (bridge)
to ’J’. As was already seen in figure 1.1, the agencies sometimes measure in the same place. For
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these locations, it makes sense to give them the same name. Doing so was not a trivial exercise
though.

Most names either referenced the name of a bridge, ferry or outflow point of a sidebranch.
That does not mean that these names were always easily recognized. Muara Kali Kwangen and
Jembatan Perning for example, refer to the same place, but one would not notice this from just
the name. The first names it the outflow of the Kwangen river branch, the other to the bridge
going over that. Other places were even more difficult to match, like Jembatan Jrebeng and
Jembatan Legundi. Apparently these were different names for the same bridge, but it took a lot
of time to figure this out. Validating and harmonizing these locations was an intensive manual
task that required careful comparison of coordinates and names in google maps. Locations
believed to be identical were set as such. From this, figure 2.1 was drawn up and numbered
accordingly. A detailed list of locations is presented in annex A together with a larger version of
figure 2.1.

2.1.3 Parameter Selection

Across all three agencies, 43 distinct parameters were recognized. For use in further analysis, it
was decided that a parameter should meet at least the following requirements:

• They were present amongst all three agencies

• They had a significant amount of non-zero data and a low amount of zero data

The first is necessary because this research is interested in the ’hidden’ differences between
agencies and not in the obvious differences such as parameters. The second is necessary, because
this creates mathematical problems during analysis. It is also not a very useful exercise to
compare a bunch of empty values.

From the first requirement, only 17 parameters out of 43 remained. These are: TSS, DO, BOD,
COD, TP, Fecal Coli, Total Coli, Temp, pH, EC, TDS, NO3, NH3, Deterg, Cu, NO2 and Phenol.
Based on the second requirement, the parameters of Copper (3520 null values), TDS (2801 null
values), Phenol (2188 null values), Total Coli (1861 null values), Fecal Coli (1852 null values), and
Detergents (1713 null values) were dropped. The other 11 parameters all had more than 80% of
their entries filled with a numeric value and less than 1000 null values. As this was quite a large
gap between these parameters and those other ones, this is where the threshold was placed.

The parameters that have thus been selected are:

• Temperature (Temp)

• pH

• Electrical Conductivity (EC)

• Dissolved Oxygen (DO)

• Total Suspended Solids (TSS)

• Biochemical Oxygen Demand (BOD)

• Chemical Oxygen Demand (COD)

• Ammonia (NH3)
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• Nitrite (NO2)

• Nitrate (NO3)

• Total Phosphorus (TP)

What these parameters represent in terms of water quality and how they are typically measured
is elaborated upon in the next section.

2.2 selected parameters

2.2.1 Temperature

Temperature is a physical parameter. It is also important for chemical processes in water as it
speeds up the reaction speed and shifts certain chemical equilibrium’s. It is measured in situ
with a thermometer and can also easily be measured continuously.

2.2.2 pH

The pH value of a water body refers to how acidic/basic a water body is (USGS, Water Science
School, 2018). It is a logarithmic scale that refers to the concentration of H+ or OH− particles
in water. The scale goes from 0 to 14 where zero represents a concentration of 1 molar H+ and
14 represents a concentration of 1 molar OH−. Every step of 1 pH more means that the acidic
concentration drops by a tenfold and the basic concentration is increased a tenfold. At a pH of 7

the two are balanced one to one. pH is very relevant to organisms as very small fluctuations can
already make a large impact on their ability to live in it. Changes in pH can also be an indicator
of certain pollutants. To measure pH, one can measure grab samples by means of titration in a
lab, but more commonly, electronic sensors are used to measure in situ. These can suffer from
inaccuracies as the calculations used to measure pH rely on certain conditions of other water
parameters.

2.2.3 Electrical Conductivity

Electrical conductivity refers to how well water can conduct electricity. Pure water without other
ions is a very good insulator as it is poor at conducting electricity (USGS, Water Science School,
2018). The electrical conductivity rises when ions are dissolved in it. As such, EC can also be
used as a proxy for the total amount of dissolved solids as a linear relation between the two
typically exists ((Atekwana et al., 2004)). Electrical conductivity is still a physical parameter of
water quality and is usually measured in situ. It is also rather easy to measure continuously.
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2.2.4 Dissolved Oxygen

Dissolved oxygen is a chemical parameter of water quality and refers to the amount of oxygen
molecules that is dissolved in water. Oxygen in water is very important for aquatic live that
consumes it (USGS, Water Science School, 2018). The capacity of water to hold oxygen is depen-
dent on the water temperature where more oxygen can be dissolved in colder water. Dissolved
oxygen can be measured with electronic sensors as well as lab equipment.

2.2.5 Total suspended solids

Total Suspendid Solids, or TSS for short, is an umbrella term for all particles in water larger than
2 µm (United States Environmental Protection Agency, 2012c). Anything that passes through a
filter with pores of that size is considered a dissolved solid. Most common types of suspended
solids are sand, silt and clay particles, plankton, algae and organic debris. Other types of non
soluble solids are also included. TSS is commonly measured with grab samples where the
sample is filtered and weighed. This method does have its limitations and more sophisticated
methods such as acoustic doppler sensors have been under development (Wood, 2014).

2.2.6 Biochemical Oxygen Demand

Biochemical Oxygen Demand is an indicator of the amount of organic matter in a water sample.
BOD specifically refers to the amount of oxygen that can be consumed by aerobic bacteria and
other microorganisms to decompose organic matter (USGS, Water Science School, 2018). BOD
is the measure for oxygen demand that most closely represents aerobic waste treatment and
aquatic ecosystems (Boyles, 1997), but it is also the most time consuming test, with a standard
test taking five days to complete. This means you can test for historic BOD values only and
BOD measuring is not a useful tool for real time monitoring and intervention. There is also
the problem that in waters polluted by toxic substances, BOD testing is less accurate, because
microorganisms can not function properly (Boyles, 1997).

2.2.7 Chemical Oxygen Demand

Like BOD, COD is used to test the organic pollution in a water sample (Boyles, 1997). This
can and is commonly used for wastewater, but can be extended to determine organic pollution
in natural bodies of water. According to Boyles (1997), it tests for all the carbon that can be
chemically oxidized. This includes BOD, but extends to organic compounds that cannot be
oxidized by micro-organisms. It correlates with BOD on waste with constant composition, even if
waste concentration fluctuates. The main benefit of COD testing compared to BOD testing is that
results are produced in several hours as opposed to the five day period of BOD. It does usually
require the environment of a laboratory, so samples still need to be collected and delivered to a
central point.
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2.2.8 Ammonia

Ammonia is an important nutrient for plant growth, as it is an important source of nitrogen (Cal-
ifornia Waterboards, 2021). Too much nitrogen in the environment can however have negative
impacts. In surface waters, this comes mostly in the form of excessive aquatic plant and algae
growth. This can have the consequence of oxygen deprivation during composition (USGS, Wa-
ter Science School, 2018). Ammonia in the environment can exist in two forms: the un-ionized
NH3 or the ionized NH4+. The dominant form is dependent on the pH (California Waterboards,
2021). There are many different methods for testing ammonia. One can use test strips, but
more accurate measurements typically rely on optical colorimetric testing with some form of
reagent (Li et al., 2020). Because this still relies on grab samples, more direct methods such as
electrochemical sensors have been developed, but those are usually less accurate (Li et al., 2020).

2.2.9 Nitrite

Nitrite naturally occurs in the environment where it is a component of the nitrogen cycle. It
is formed through oxidization of ammonium by bacteria (Hatzenpichler, 2012). It is then con-
verted into nitrate by other bacteria (Daims et al., 2001). Nitrite is typically not as abundant as
nitrate, because that is the more stable oxidation state. Most methods to measure nitrite involve
colorimetry, which can only be done on grab samples (APHA, 1992).

2.2.10 Nitrate

Nitrate is the form of nitrogen most preferred by plants and is often an important component
of fertilizers. Much like ammonia though, overabundance of nitrates in the environment can
have damaging ecological impacts (USGS, Water Science School, 2018). A typical method used
is cadmium reduction and colorimetry, though this will lump nitrates and nitrites together and
can only be done with grab samples (United States Environmental Protection Agency, 2012b).
Nitrate probes are also available, but these are more expensive, can suffer from interference and
require careful calibration (United States Environmental Protection Agency, 2012b).

2.2.11 Total Phosphorus

Together with nitrogen, phosphorus is a very important nutrient for plant life. If both are avail-
able in environmental waters, then these are at serious risk of eutrophication and associated
environmental damage (United States Environmental Protection Agency, 2012a). In nature, el-
emental phosporus is rare and it mostly occurs as part of the phosphate molecule (PO3−

4 ) or
in organic molecules. Measuring phosphate can be tricky, because concentrations are very low
compared to other elements such as nitrate. It is still important though as those low concen-
trations can have major impacts (United States Environmental Protection Agency, 2012a). Total
orthosphosphate refers to the phosphate ion in both suspended and dissolved form and it can be
measured with the ascorbic acid method. A reagent is added to a grab sample and colorimetric
methods are then used to determine concentration.
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2.3 principal component analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique. What that means
is that it can reduce information with a lot of different, but inter-dependable parameters into a
few independent parameters (Dupont et al., 2020). By doing this, it also condenses information
into a few important pieces. In this section, the methodology of PCA is first explained as well
as some important assumptions about the underlying data. Because of those, scaling will be
required and that will be explained in the next subsection as well as how PCA is applied to the
dataset.

2.3.1 PCA Core Principles

The math behind PCA basically comes down to a change of basis for a given dataset. Provided
a dataset with m variables, PCA will create m new variables, each a linear combination of the
original variables. The weights to transform the original variables to the new variables are
provided by the eigenvectors of the covariance matrix of the original dataset.

If there is a dataset X, with dimensions m× n, where n >> m, then there is a covariance matrix of
X, defined as C = 1

n XXT (Shlens, 2014). The Principal components are the eigenvectors e of the
determinant equation |C − λI| = 0. The eigenvectors are then found by solving C ∗ ei = λ ∗ ei
for all i = 1, 2, ..., m with the additional constraint that all eigenvectors form an orthonormal
basis of size m × m. As eigenvalues are naturally orthogonal, the only extra constraint is that
for all eigenvectors: ||ei|| = 1 (Pérez-Bendito and Rubio, 1999). Once found, these eigenvectors
e represent the loadings for the principal components. The principal components are sorted
according to the size of the corresponding eigenvalue λ. The first principal component, or PC1,
is thus given by the eigenvector ei with i = argmax(λi). The relative size of λi compared to the
sum of eigenvalues equals the explained variance of the corresponding principal component.

The PCA is subject to the following assumptions about the dataset X (Shlens, 2014):

1. Linearity

2. Orthogonality

3. Large variances have important structure

The first assumes that the dataset has linear relations between parameters. PCA is a change of
basis for the dataset and the new axis will line up with the greatest variances. These are linear
axis though, so they will not be able to catch non-linear processes quite that well.

Orthogonality assumes that the relations in the dataset are orthogonal to each other. This be-
comes a problem when trying to establish multiple relations, because there is no guarantee that
these do indeed behave orthogonally.

The last assumption basically states that principal components with a large associated explained
variance also represent interesting relations in the dataset. This becomes problematic when a
dataset contains a lot of noise, relative to the actual relations. In this case, PCA will fit for noise
rather than for those actual relations. The relations found may then not represent actual relations
within a dataset.



2.3 principal component analysis 25

2.3.2 Data Preparation and Scaling

For data preparation, two things need to be done. First, the data needs to be scaled to equalize
the importance of parameters. Second, the empty values in the dataset need to be filled, because
the empty values would otherwise propagate into the principal components.

Data scaling is necessary for PCA, because otherwise parameters with large values dominate. It
is also necessary to scale outliers, because otherwise distortion from a few outlier datapoints is
very large.

As to what is the best method for scaling, a few were considered. First of all, the quite often
used method of subtracting the mean and dividing by the standard deviation. This one would
not be adequate though, because it does not consider the influence of outliers in this dataset
well enough. Outliers would then need to be dropped and that would mean that information is
lost as the outliers are not just statistical anomalies, but relevant information. Another method
would be to scale between minimum and maximum, but this would still suffer the consequences
of dramatic outliers and not properly adress that issue. From figure 3.4, it was found that
the outliers required a different method of scaling compared to the bulk of the data, as even
logarithmic scaling would not temper outliers sufficiently. Therefore it was decided that the best
method would involve capping the data between a minimum and maximum value, setting values
outside of this range to the minimum or maximum respectively and scaling the remaining data
proportionally between those points. From 3.4 it was inferred that caps around the 1st and 99th
percentile would work quite well to reduce the influence of outliers, while retaining as much
information as possible. It was decided that data between those points should be scaled linearly,
but a logarithmic version was tried as well. This, however, produced less satisfying results in
PCA analysis, so linear was picked instead. More on this in section 4.4.3 of the discussion
chapter.

All data is thus scaled linearly from 0 to 1 depending on the 1st percentile and 99th percentile
of the data, which represent the values of 0 and 1 respectively. Doing so allows outliers to still
contain value, but emphasizes on the bulk of datapoints and more general trends.

After scaling, the empty points are filled with the averages of the scaled parameters. By filling
with the averages after scaling is applied, the empty points are filled with the origin of the new
coordinate system that PCA creates. As such, these points will have no influence on the rotation
of the coordinate system. Because the empty points need to be filled with the origin or the new
reference system, it is important that filling happens after scaling. Because the mean after scaling
is different from the mean before scaling, there would exist a vector going from the new mean
to the scaled old mean. This vector would then influence the directions of the PCA. Because
empty values carry no information, their influence on analysis should be minimized. Hence, it
is important to fill after scaling.
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2.4 neural network pattern recognition

As part of the module Deep Learning for Hydrology and Water Resources Engineering of the
CIE5431 Research Skills 1 course by Dr. Riccardo Taormina, a final exercise was submitted in
which I created a neural network model that would classify the thesis dataset by agency. The
results of this were so interesting that it was worth including it in the final thesis.

The basic principle of this exercise is to train an artificial neural network to recognize datapoints
by agency. This means that the neural network is shown a datapoint from one of the three
agencies discussed before and, on the basis of just the values for the eleven parameters, has to
predict which of these three agencies took the measurement. No additional knowledge such as
location or measurement time is provided. Based on these eleven values alone, the datapoint is
thus classified as belonging to one of the agencies.

This exercise is a multi-class classification problem. Multi-class pattern classification is a tool of
neural networks that can be used for a lot of different applications such as text document classi-
fication, image object recognition or handwriting digitization. Standard classification problems
are two-class classification problems, i.e. either one class or the other. Multi-class classification
is a fundamentally more complex technique, even for just three classes (Ou and Murphey, 2007).

In the next sections, the dataset will first be prepared for use in neural networks. Then the
design process is outlined. In the final subsection, a reference model using logistic regression is
introduced. This reference model will be used to indicate the utility of neural networks for this
classification problem.

2.4.1 Preparing the dataset

To teach a neural network to classify datapoints successfully, the dataset must first be properly
prepared. Preparing the dataset requires three things need to be done. First, the missing values
need to be filled. Second, the data is split into three subsets and lastly, the data is scaled.

First of all, the missing values are filled. Because many components have a natural lower bound
at zero and a nearly limitless upper bound for positive outliers, the median is chosen as the
filling value, because for many parameters it better represents a ’standard’ value than the mean.

Secondly, the total dataset is split into three subsets: a training set, a validation set and a testing
set. This is done with a 60-20-20 ratio, i.e. 60% of data is used for training the neural network,
20% is used for validating the model and which iteration works best and a final 20% of data is
used to test performance of the dataset. The datapoints are subdivided into each class randomly,
but approximately these proportions of each agencies datapoints are present in each subset. The
specific number of datapoints in each subset per agency can be seen in figure 2.2.

Finally, in order to better train the dataset, some scaling is necessary. Overall large values in one
parameter compared to another will tend to have the neural nodes focus more on that parameter
than on others, but for this exercise it is most effective if all parameters are considered equally.
It is also necessary to demean the dataset, so the training algorithm works smoothly (Taormina
(2022), personal communication). Unlike PCA, outliers are much less influential here, so a more
simple scaling technique can be applied. All data is scaled by first subtracting the mean and then
dividing it by the standard deviation, both of the training subset. This is applied to all subsets.
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Figure 2.2: Preparation of the dataset for
use in the multi-class classifica-
tion problem. It is split ran-
domly in three parts: training
(60%), validation (20%) and test
(20%). Digit 0 matches with
the EPA, digit 1 matches with
BBWS and digit 2 matches with
PJT.

2.4.2 Designing a Neural Network Model

After dataset preparation, the next task is to construct the artificial neural network. This will
have to be done in several steps. The first is to decide on what type of neural network should
be used. For this instance, it was determined that a feed-forward network would probably work
best. Timestamp data is forgotten about for this exercise, so including time series is not an option
and this is not image data, so there is no reasonable argument to include convolutional layers
either. The final model will be a feed-forward neural network with dense layers.

The next decision is the type of activation function that will be used on each of the neurons
of the dense layers. For feed-forward neural networks it is generally recommended to use the
Rectified Linear Unit, or ReLU, activation function (Goodfellow et al., 2016, 6.1). It is worth
investigating though if this is also correct for this model. Therefore, an initial model was created
five times, each with a different activation function on the hidden layer. A hidden layer refers to
one or multiple layers that are placed between the input and the output layer. The hidden layer
consists of multiple neurons. In a dense layer, each neuron will present a new value based on a
matrix transformation of all the values in the previous layer. For the first dense layer this matrix
transformation looks as follows: h = act f un(WTx + b), in which x represents the input vector
and h represents the hidden layer. Subsequent hidden layers will just use the previous hidden
layer as input instead. The weights are represented by the weights matrix W and bias vector b.
Those are what will be trained for. The activation function needs to be decided upon as well as
the number and size of the hidden layers.

To find the most optimal activation function, these are thus tested with a single dense layer
consisting of 100 neurons. In figure 2.3 the results of training a model with these different
activation functions is shown. The output layer uses a softmax function, because that is best at
handling a probability functions with more than 2 different outcomes (Goodfellow et al., 2016,
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6.2.2). The softmax function that is tried in figure 2.3, refers to the activation function on the
hidden layer, not the output.

Figure 2.3: Comparison of different activation functions.

From figure 2.3 it can be seen that the ReLU function clearly performs best with the lowest
combined loss during training and validation as well as the best accuracy. The assumption that
this activation function would be the most optimal is thus correct.

Next, an optimal model architecture needs to be chosen. It was decided that not more than 100

total neurons should be used, so the question mostly came down to how to distribute those in
hidden layers. For this, 4 alternatives were tried. One with all neurons in a single layer, one
with neurons spread over two layers, one with 3 layers and one with 4 layers. For two layers,
neurons are split up equally with 50 neurons in both. For three layers, the first two layers
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contain 40 neurons and the third contains 20. For four layers, the neurons are divided in a 40,
30, 20, 10 order with 40 in the first and 10 in the last layer. The number of neurons per layer
is descending, the reasoning being that the network aggregates data on every layer and would
need less neurons on neurons to cover a lot of aspects for every level it passes through (Taormina,
personal communication).

Figure 2.4: Comparing different model structures, with 1, 2 or 3 hidden layers respectively.

The results of the different layer architecture are showed in figure 2.4. The single layer clearly
performs the worst. The model with two layers also does slightly worse. The models with 3 and
4 layers have very comparable results, but the model with 3 layers has more stable performance
across different iteration stations. Therefore it was decided to continue with the [40,40, 20]
structure.
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Figure 2.5: Overview of the selected ANN model for the classification problem. Param refers to the number
of parameters that can be fitted to train the model.

An overview of this model with [40, 40, 20] structure is provided in figure 2.5. It consists of an
input layer, the eleven water quality parameters, then two dense layers with 40 neurons and a
dense layer with 20 neurons and finally an output layer that uses the softmax function. This
output layer creates relative probabilities for the 3 different agencies. In the final step, the author
with the highest probability is selected as outcome.

Figure 2.6: Model Performance during training and validation. Training performance is indicated with the
blue line and validation performance is indicated with the orange line.

The model is trained using the Adam algorithm (Goodfellow et al., 2016, 8.5.3) for 100 epochs.
The accuracy and loss function of training and validation is shown in figure 2.6. For training,
the model was also given a callback and an early stopping function. Both monitor the validation
accuracy during the training progress. Callback saves the model with the highest validation
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accuracy and early stopping will stop training if no improved model is found for 50 consecutive
epochs. After training has stopped, callback will then present the model with the best validation
accuracy. Because this is not a completely unbiased selection of a model, to truly test its perfor-
mance, the model will need to see another ’fresh’ set of datapoints. This is why in the first step,
the data was separated in three different sets.

Another thing to notice in figure 2.6 is that after some 10 steps, the performance indicators for
training and validation start to diverge, so while the training keeps improving, the validation
does not keep up with this improvement. This is symptomatic of overfitting and yet another
reason to use early stopping and callback algorithms. These will select on the basis of the best
validation accuracy of the last 50 epochs, however they do not necessarily prevent from selecting
an overfitted model. Because of this small bias during selection, it is extra important to only
interpret results from the models’ performance on the test dataset, because that is the only set
of data that did not influence the selection of the best performing model.

2.4.3 Logistic Regression

In order to establish the additional value of a deep neural network model, another reference
model was created. This logistic regression model casts the input layer directly into the output
layer without any hidden layers in between. The basic layout is presented in figure 2.7.

Figure 2.7: Model Performance during training and validation

The number of weights that need to be trained (called Param in the figure) is 36. This is sig-
nificantly less than the previous ANN model that used 3003 weights. The only mathematical
operations that happen here is a matrix transformation followed by the application of the soft-
max function. The matrix transformation looks like this: z = WTx + b. In this, x is our original
datapoint with eleven parameters. W and b represent a 11 x 3 matrix and a vector of size 3 that
comprise of weights found during training. The vector z is a size 3 vector that serve as input
for the softmax function that looks like this: so f tmax(z)i = exp(zi)

∑j exp(zj)
. This is basically the same

as the final step in the neural network where the last hidden layer is cast onto the output layer,
but instead it casts the input straight into the output. The result here is that the output values
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zi that go into the softmax function are a direct linear function of the input parameters. This is
also why this approach is chosen for comparison, because it somewhat represents what a human
would be capable of given the input data. The basic assumption here is that logistic regression
should thus be able to capture most of the obvious relations between parameter values and the
agency they belong to. When in the final step, these results are compared to the neural network,
the difference represents the non-obvious relations between datapoint values and the datapoint
author.

Figure 2.8: Model Performance during training and validation

The training of the logistic regression is done in a similar manner as the neural network and
the performance of training is shown in figure 2.8. The training and validation results are
very similar, indicating that the model is not overfitting and improvement of loss and accuracy
decreases with each step. The same callback and early stopping algorithms are applied, though
they will not really do anything this time, as validation accuracy still tends to improve with
every epoch.



3 R E S U LT S

In this chapter results of analyses described in the methodology are provided with a short
interpretation. These are subdivided in four main sections. Section 3.1 describes the water
quality parameters of the Brantas in time and space. This is supported with boxplots of the
data, which can also be found in Annex B. Section 3.2 goes more into the general statistics of the
composite dataset. Principal component analysis is then presented in Section 3.3 and the chapter
is closed off with the results of the neural network classification problem in Section 3.4.

3.1 description of general water quality

Relations between measurement parameters in time, along the main stretch of the Brantas and in
its branches have been plotted using box-and-whisker plots. This resulted in a total of 33 plots,
three for every measurement parameter. They can be found in Annex B. Different boxplots are
made for every authority along the different locations in the Brantas. For the boxplots in time,
data of different authorities is aggregated together. A subplot is featured, illustrating the water
levels at the Ploso bridge as measured by PJT, location 20 in the main trajectory plots respectively.
In order to better detect more general patterns among these plots, some very large outliers have
been left out of the y-axis window. In the next segment, the main relations are described.

As can be seen in Figure B.1, water temperature is initially low at the source, but rises rather
quickly to over 25 °C near Malang and averages around 30 °C in the mid and lower sections of
the Brantas. In the branches, as displayed in Figure B.2, no noticeable fluctuations exist, but both
figures do show a pattern where the EPA seems to measure consistently lower temperatures than
BBWS in the same places. The variations of temperatures over time, as displayed in Figure B.3,
show slightly lower values during flood seasons and slightly higher values in the last quarter of
the year, but temperatures are generally quite stable.

The pH tends to float between values of 6.0 and 8.5. As for the different locations, not much
differences can be noted in Figures B.4 and B.5 other than that the pH starts off relatively low
around the source and rises very quickly to values between 8 and 8.5 around the city of Batu.
This then drops of and stabilizes between 7 and 8. More variation is found in time, as can be seen
in Figure B.6 where pH usually drops during the rainy season and rises in the dry season. This
is likely due to the fact that typical rainwater is slightly acidic. Air pollution could potentially
make this effect even more pronounced.

Electrical conductivity is tightly connected to the amount of minerals dissolved in water and as
far as the Brantas is concerned, variations in space seem to be not that large, as can be seen in
Figure B.7, with two noticeable exceptions. The first are the low values around the source where

33
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the water is still relatively unpolluted, resulting in a lower concentration of minerals and thus a
lower EC value. The other big difference in this figure is the concentrations at location 20, Cheil
Jedang ferry. This could be related to the high values for the various nitrogen components and
phosphates found here as well (Figure B.22 and B.31). In Figure B.8, there is one location that
measures exceptionally high values of electrical conductivity, that is location 60, Tlocor ferry.
This measurement location is relatively close to the sea though, in the Porong branch of the
Brantas, and seawater intrusion is likely responsible here. Variations over time in Figure B.9 are
relatively modest and most likely correlated to the rainy season as well, with low points during
this and peaks during the dry season.

Dissolved oxygen on the main Brantas stretch as portrayed in Figure 3.1 (B.10, large version)
has some interesting relations in space. It is highlighted below, because oxygen is an important
driver for many chemical processes in the river. Initially, the relatively clean water at the Brantas
source contains high concentrations of oxygen, but those are considerably lower at the next
point. Until the split between the Surabaya and Porong rivers, the oxygen content remains
relatively stable with concentrations between 6 and 8 milligrams per liter with some low outliers.
After the transition to the Surabaya river the situation gets worse, as low oxygen concentrations
become more and more common and higher concentrations become rarer. This is a trend that
is separately visible in all agencies’ data and is thus an important process in this stretch of the
river.

Figure 3.1: Dissolved oxygen concentrations along the main Brantas stretch.
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The inflow branches of the Brantas and Surabaya rivers could in part be contributing to this
drop in dissolved oxygen, as can be seen from figure 3.2 (enlarged in annex in figure B.11).
Concentrations of dissolved oxygen are pretty reasonable at the earlier inflow branches, but
much lower in the later ones. Especially the Kwangen, Tengah and Kedurus streams seem to
often deliver oxygen deprived water to the main river. These are also the streams that are located
in industrial areas which is a likely cause for this. Interestingly though, oxygen concentrations
do not seem to be very dependent on time, as can be seen in Figure B.12. There seems to be no
correlation to the river discharge variations in this sense.

Figure 3.2: Dissolved oxygen concentrations in the branches of the Brantas.

Total suspended solids in Figures B.13 and B.14 seems to be fairly constant in space with it
being slightly higher in the Surabaya river stretch and certain branches. Large drops are found
downstream of large dams such as at location 7, Karangkates bridge. Most deviations of TSS
are actually seen in time. In Figure B.15, which is also displayed below in Figure 3.3, suspended
solids have relatively low concentrations throughout the year, but can rise spectacularly with
increases in discharge during the monsoon season. This is expected as heavy rain storms will
typically cause overland flow and flush all sorts of material and debris into the river streams.
This effect is clearly visible in Figure 3.3

Variations in biochemical oxygen demand are seemingly not that dependent on location (Figure
B.16) or time (Figure B.18). High and low values can seemingly appear anywhere at any time.
That said, there are some differences when looking at some of the branches of the Brantas. In



3.1 description of general water quality 36

Figure 3.3: TSS concentrations in the Brantas over time.

Figure B.17, it is clearly visible that the Kwangen en Tengah streams, Bambe bridge is located
at the outflow of the Tengah stream, regularly produce much higher concentrations than any of
the other side branches.

Patterns in chemical oxygen demand are very similar to patterns in BOD. In the main stretch
though there is a slightly more visible one. Figure B.19 displays a slight increase in COD con-
centrations in the lower parts of the Brantas and subsequent Surabaya and Mas rivers. Figure
B.20 displays a similar pattern to Figure B.17 where the Kwangen and Tengah stretches again
display many above average values. An interesting difference here is that at Tlocor ferry there is
also a significant increase in COD that is not observed with BOD. This implies that the increased
chemical oxygen demand is mostly not of a biological nature. In Figure B.21 the variations of
COD in time are plotted and while there are some, they do not seem to be clearly linked to a
seasonal component.

The spread of various nitrogen components is visible in Figures B.22 through B.30. These compo-
nents are ammonia (NH3), nitrite (NO2) and nitrate (NO3). Along the Brantas, these rise slightly
along the trajectory with two notable exceptions. The first is at location 21, the Cheil Jedang ferry.
Here concentrations of all nitrogen components are above average with ammonia concentrations
being exceptionally high. The other is at Petekan bridge, the last point on the Mas river before it
reaches the sea. What is interesting here is that the ammonia concentrations are rather high, but
this does not seem to translate to nitrite and nitrate. A possible reason for this could be related
to the dissolved oxygen concentrations, which as can be seen from Figure 3.1, are fairly low at
this point. With a low supply of oxygen, ammonia could not be quite as easily converted to its
higher oxidation states of nitrite and nitrate.

In the branches and sidestreams of the Brantas, nitrogen components follow a similar pattern
to COD. Figure B.23 again shows high concentrations in the Kwangen and Tengah tributaries
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as well as the Kambing tributary (Carat bridge, location 51). In Figure B.26, we see this trend
continue for the Tengah and Kambing streams, but the Kwangen stream is surprisingly absent.
Nitrate concentrations in the branches are shown in Figure B.29 and are a bit more constant. The
Kwangen river however, still sees higher concentrations than elsewhere.

Figures B.24, B.27 and B.30 show the variations of these nitrogen components over time. The
general trend is that concentrations are relatively stable throughout the year, peak at some point
and then return to the stable level. For ammonia, this peak is usually reached in October and
near the end of a dry spell. Nitrite shows peaks mostly in January prior to 2015, but in later
years this is mostly November. Nitrate fluctuates a bit more year round, but with peaks falling
anywhere between January and June.

The last parameter observed is total phosphates and the spread in space is fairly similar to our
nitrogen components, as can be seen from Figure B.31, where no specific trends are seen except
for the increased concentrations again at Cheil Jedang ferry. In the branches, Figure B.32 shows
a similar pattern, where the highest concentrations are found at the outflow of the Kwangen and
Tengah tributaries. As for the time dimension, Figure B.33 shows no clear peaks, but phosphate
concentrations do seem to be lower during and at the end of the monsoon season. This indicates
that the amount of phosphate discharged into the river is fairly constant, but this mass is diluted
with more water.

3.2 data statistics

Some of the core data statistics are shown in Table 3.1. Besides minimum, maximum, mean and
standard deviation, a large array of parameter percentile values has been included as well. A
wide range of percentiles has been delivered, because most parameters do not have a uniform
distribution. For example, ammonia contains nothing but zeros in the first two percent. On the
other hand, its maximum reported value is well over three times larger than its 99.9th percentile.
This is not uncommon though among these measurements. TSS has a maximum reported value
more than six times the 99.9th percentile value. This is not the case for all such parameters
though. Electrical conductivity for example has a maximum reported value that is only about
fifty percent larger than its 99.9th percentile but this 99.9th percentile is more than ten times
larger than the 99th percentile. These distributions do not adhere to typical known statistical
distributions that can be characterized with few parameters.

In addition to this table, a distribution plot is provided in Figure 3.4. Shown here is the distri-
bution of the measurement parameters, but split by agency. With the exception of temperature,
pH and dissolved oxygen, which are plotted on linear axes, the distribution plots are produced
with a logarithmic x-axis. The 1st and 99th percentile have also been made visible by the black
and red dotted lines. The red line for the 1st percentile is not visible in the graph concerning
NO2, because it lies at the value of zero, which cannot be visualized on a logarithmic scale.

As for the distributions themselves, like was shown in Table 3.1, most are not distributed ac-
cording to a known statistical distribution. The shape of the cumulative distribution curve for a
certain parameter is also not always consistent between agencies. Nitrate for example has all au-
thorities on a fairly similar median, but in the lower percentiles, the EPA reports slightly higher
values. In the higher percentiles, this is done by BBWS. These differences are still very subtle,
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Temp pH EC DO TSS BOD COD NH3 NO2 NO3 TP

Min 7.51 3.2 5.46 0 0 0 0.1 0 -0.001 0 0.003

0.1st p 16.9 6 23 0 0.9 0.02 1 0 0 0.009 0.005

1st p 22 6.35 162 0.96 3 1.2 2 0 0.002 0.158 0.021

2nd p 24.3 6.51 207 1.3 4 1.55 3 0 0.002 0.249 0.031

5th p 26.7 6.73 277 2.15 8 2 5 0.001 0.004 0.474 0.054

10th p 27.4 6.87 316 2.92 11 2.4 6.72 0.005 0.008 0.807 0.076

Q1 28.4 7.12 380 3.7 22 3.3 9.62 0.022 0.022 1.43 0.126

Median 29.2 7.39 461 4.8 53 4.65 15 0.099 0.066 2.05 0.196

Q3 30.1 7.68 550 6.2 162 6.92 24.2 0.247 0.15 2.6 0.44

90th p 31.1 7.9 760 7.21 366 12 37.2 0.56 0.282 3.3 1.04

95th p 31.9 8.02 1148 7.53 580 17 51.9 1.19 0.448 3.81 1.51

98th p 32.6 8.19 1501 8.04 850 28 88.6 2.8 0.715 5.3 7.07

99th p 33.1 8.33 1727 8.54 1036 37.8 140 4.99 0.901 6.79 12.6
99.9th p 35 8.67 23084 10.8 1917 185 669 19.1 4.09 19.3 32.9
Max 49.5 8.8 38500 17 12639 1182 2640 73 11.1 52 53.6
AVG 29.2 7.39 591 4.92 142 7.01 23.2 0.369 0.131 2.16 0.705

SD 1.94 0.415 1327 1.72 284 20.5 58.2 1.8 0.291 1.6 2.57

Table 3.1: Statistics of the composite dataset. Included are average, standard deviation, minimum, maxi-
mum and several percentiles.

but Figure 3.4 also shows the more pronounced differences between agencies. Phosphates values
for example are shown to be distinctively higher for BBWS. The curve from BBWS here is also
not in a neat s-shape. Ammonia is another notable graph as the entire distribution of the EPA
is similar in shape to that of PJT and BBWS, but shifted to the left by a factor of almost one
hundred. In the graph of ammonia, the curve of BBWS behaves in a stair like manner. This is
due to the number of decimals that is reported. The difference between 0.01 and 0.02 looks very
large on a logarithmic axis even though the true difference is relatively small.

There are many differences though between agencies. Only for temperature and electrical con-
ductivity, the cumulative distribution functions are very close across agencies. BOD sees the
EPA and PJT measure very similar values, but BBWS has an s-curve that is less steep. Other
parameters show similar trends where the distribution curves will at some points coincide, but
gradients and averages are slightly dissimilar.

Plotted in Figure 3.5 is the correlation matrix of the dataset. Two different matrices have been
plotted, one where parameters have not been scaled and one where the same scaling algorithm
as for PCA analysis has been used. This algorithm mitigates extreme values and will therefore
emphasize relationships in the large mid-range scatter of data points, whereas the general corre-
lation matrix will be swayed more by relationships between outliers. Because most outliers are
not that correlated, most correlation coefficients are low in this diagram and relations are mostly
found with parameters that do not have very extreme outliers such as dissolved oxygen or total
phosphates. Because the one percent scaling algorithm is also applied in PCA, this correlation
matrix is slightly more interesting. Most parameters still have a strong correlation to dissolved
oxygen, but now electrical conductivity also shows some sort of correlation with a lot of differ-
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Figure 3.4: Distribution plot of measurement parameters. Parameters are split by agency. The black dotted
lines indicate the 1st and 99th percentiles. The red dotted lines correspond to the values of these
percentiles. Temperature and pH have been plotted on a linear x-axis, the other parameters are
plotted on a logarithmic x-axis.

ent parameters, most notably with COD, BOD and NH3. Another strong correlation is the one
between BOD and COD which was somewhat expected.

Some of these correlations have been outlined in Figure 3.6. A fit was made to estimate how
well one parameter can predict the other. The parameters plotted on a logarithmic axis are fitted
both by a linear relationship, as well as logarithmic one. This is according to the relationship:
log ŷ = A log x + B. This was not done for the relationship between dissolved oxygen and
temperature, because a linear axis made more sense here. The plotted relationships have been
selected, because they showed some sort of interesting correlation, not just in the correlation
matrix, but in the scatter cloud as well.

The first relationship in the top left corner of Figure 3.6 is that between BOD and COD. As both
represent some sort of oxygen demand it is not strange that they are positively correlated. While
they have a correlation coefficient of 0.61 without applying scaling algorithms, it turns out that
one is not a good predictor for the other as the coefficient of determination is only 0.368 for the
linear fit and 0.328 for the logarithmic fit. Despite these low determination coefficients, it is the
strongest relationship between two measurement parameters in this dataset.

Two relationships that are also of interest, are the ones between electrical conductivity and BOD/-
COD. These have been depicted in the top right and middle right graphs of Figure 3.6. The
relationship between COD and EC is slightly stronger than that between BOD and EC. In the
scatterplots of EC-BOD and EC-COD most points are located in a round, uncorrelated circle.
Outside of this circle extends a panhandle of points to the right and up. These are the points
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Figure 3.5: Correlation matrices of the dataset. On the left is the correlation matrix when no scaling is
applied to the data. On the right is the correlation matrix where data has been scaled between
the 1st and 99th percentile.

that drive the correlation. Apparently, for high values of EC and COD a relationship exists. This
is similar between EC and BOD, but values of BOD are only slightly above average when EC
values go above a certain threshold.

One cross plot is not set on a logarithmic axis. This is the one between temperature and dissolved
oxygen, visible in the middle left graph of Figure 3.6. For most points in this cross plot, no clear
relationship between the two exists, but a negative correlation is caused by a panhandle of low
temperatures. It appears that low temperatures nearly always coincide with a high oxygen
content around 7-8 mg/L. Between 27-33°C, oxygen concentrations are rather unpredictable.

Also depicted are the relations of EC to ammonia and total suspended solids, which are in the
bottom left and bottom right graphs of Figure 3.6 respectively. Ammonia correlates positively
with EC and suspended solids correlates negatively. They also have two things in common, the
first being that the scatter consist of multiple somewhat correlated clouds. The second is that the
logarithmic and linear fits are quite different from each other. This could either indicate poor
true correlation or that there are multiple different correlations. As there seem to be multiple
correlated clouds, this may indeed be the case.
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Figure 3.6: Cross-plot of the more interesting relationships. Except for the correlation between temperature
and oxygen, the relationships are plotted on logarithmic axes. Besides plotting the parameters
against each other, there has also been plotted a best fit. For those parameters on the logarithmic
axes a logarithmic fit has been portrayed besides a linear fit. The R2 has also been indicated.
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3.3 principal component analysis

3.3.1 PCA of composite dataset

The principal component analysis of the composite dataset has been visualized in Figure 3.7.
The results consist of two important parts. First, the capture of explained variance and second,
the loadings of principal components. The explained variance is a measure of how much of
the variance in the parameters of a measurement point can be explained along a single axis.
The principal components are ranked based on this capture of explained variance. As principal
component analysis is a dimensionality reduction technique, we want to make as small of a
selection as possible in PC’s that together capture a significant amount of variance in the dataset.

To this end, there are two breaking points that are interesting, where involving another PC would
contribute significantly less than the previous PC. This is after the third PC, as the first 3 PC’s
make up 56.2% of explained variance, or after the seventh PC as those seven make up 87.7% of
total explained variance. The next principal component, PC8 would only contribute another 4%
in explained variance.

Figure 3.7: PCA Analysis, on the left is the capture of explained variance by principal component and on
the right is the composition of said principal components, these are the loadings. Colors have
been added to emphasize the larger absolute loadings. The largest loading in absolute terms
has been defined as positive for every PC and is thus portrayed with a dark green color.

Looking at the PC loadings gives an idea of the important processes in the river. The first prin-
cipal component is dominated by oxygen. It is inversely related to electrical conductivity, BOD
and COD. The relationship between BOD/COD and oxygen is expected as BOD and COD repre-
sent the potential to consume oxygen. Higher values here will typically result in an increase of
oxygen consumption which reduces the oxygen content. For the Brantas river, this relationship is
the most powerful explainer for its water quality. What is interesting, is that electrical conductiv-
ity is also involved. While there is no direct chemical relation between EC and dissolved oxygen,
there is a relation between EC and COD as soluble matter causes water to be more conductive.
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BOD or COD can be such a form of soluble matter, though both can be of a non-conductive
nature as well. That these are highly correlated in the PCA is in line with the correlation matrix
of Figure 3.5, but not necessarily an expected outcome with regards to general knowledge about
relations between EC and BOD/COD (Van Breukelen, 2022).

The second principle component is dominated by pH and is inversely related to total suspended
solids. Figure 3.3 showed that TSS was highly variable in time and high values occurred almost
exclusively during the monsoon season. This would explain why it is related to pH, as rain
is naturally more acidic than river water, because acidic substances mostly originate from the
atmosphere and alkaline contents originate more from sediments, rocks and certain industrial
discharges (Partnership, 2022). A peak in discharge due to rainwater will thus cause the pH to
drop and the solids to increase. Additionally, due to rainwater’s relative purity, other compo-
nents in the river may get diluted. This relationship is visible in PC2 in the loadings of BOD,
COD, TP and EC. However, most rainwater in the river during the monsoon is overland flow.
This rainwater is in contact with the top soil, which not only causes increases in TSS, but can
increase the concentrations of these other components as well. This is likely why oxygen has
a positive loading, implying its levels go down with rainfall. While rainwater itself has a high
natural oxygen content, pollutants in the run-off can decrease this again. Clear relationships
between the monsoon season and oxygen content are absent in Figure B.12 which shows the
distribution of oxygen in time. This implies there are multiple mechanisms at work and hence it
is hard to say anything conclusive about the relationship between PC2 and oxygen.

The third principal component is centered on suspended solids and additionally carries heavy
weights in both BOD and COD. These were negatively related in PC2, but carry a positive
relation in PC3. This indicates that we are dealing with multiple types of suspended solids or
multiple mechanisms. PC2 is more focused on the natural flushing effect of rainwater where
PC3 is more focused on the solid waste that ends up in the river. The natural flushing effect will
happen everywhere in the delta, but the flushing of solid waste will only happen in those areas
with a lot of waste on the streets.

PC4 through 6 is loaded mostly by pH, nitrite and nitrate. The loadings often counteract and
actual correlation was also shown to be low in the correlation matrix. This implies that there
may be a large amount of variability, but this is not necessarily related. Henceforth, PC4 through
6 does not provide more significant meaning than the parameters themselves.

PC7 is dominated primarily by temperature, but furthermore independent of other parameters.
This indicates temperature as a parameter that is mostly independent and does not have many
interactions with the water quality.

3.3.2 PCA by Authority

Besides a PCA for the composite dataset, PCA’s were made for the individual authorities as well.
The results of these are seen in Figure 3.8. The graph in the top left displays the capture of
explained variance. The first principal component of the EPA captures 30.9%, that of BBWS cap-
tures 28.0% and of PJT captures 26.4%. The EPA has the most important first three components
which together account for 60.2% of explained variance. This is 53.9% and 55.0% for BBWS and
PJT respectively. The first six principal components seem to capture quite a large amount of
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explained variance. This is 83.0% for both the EPA and PJT. BBWS scores slightly lower with
only 78.7% accounted for by the first 6 principal components.

Figure 3.8: PCA of separate authorities. The top left graph depicts the capture of explained variance of the
three different PCA’s. The other 3 graphs depict the PCA loading of the specific authority.

The first principal component is relatively similar across the three agencies. Its heaviest loading
is from dissolved oxygen which is inversely related to BOD, COD and NH3. It is also inversely
related to EC, but the magnitude of this loading varies. PJT has a relatively large focus on EC
while it is not very important to the EPA.

Larger differences appear when looking at the second principal component. The dominant
loading for the EPA and PJT is total suspended solids, while it is pH for BBWS. There is also a
remarkable difference between the EPA and PJT, as the EPA only sees a major secondary loading
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from pH, while PJT has major loadings of COD and nitrate as well. Both still have an inverse
relationship with pH, which indicates that this principal component is mainly driven by rainfall.
BBWS’s second principal component has its largest loading on pH. This is still inversely related
to TSS and as such it describes the same rainfall process, but the emphasis has shifted.

The third principal component is where very large differences appear in the loadings. For PJT,
PC3 is heavily related to nitrate and not much else. BBWS has its third component dominated
by temperature, which is inversely related to phosphate and oxygen. For the relation between
temperature and oxygen it acts as a magnifying glass to PC1, but as a counterbalance for the
relation between phosphate and temperature. Therefore, attaching physical meaning to BBWS’s
PC3 becomes quite hard. PC3 is quite different though for the EPA. Here pH, oxygen, suspended
solids, BOD, COD and total phosphate all have significant, but roughly equivalent loadings. This
is likely to be the process of solid and biological waste being flushed in some areas of the river
basin in addition to the natural monsoon processes. It is subordinate to the main processes of
oxygen interaction and rainfall, but still important.

3.4 neural network reproduction

The artificial neural network was tested with a fresh part of the dataset that was not used for
training or validation. The confusion matrix of Figure 3.9 shows the performance of the model
in this test dataset. In this confusion matrix, the true class is the actual author of the datapoint.
The predicted class is the author this model thinks the datapoint is from. The datapoints that
are predicted to be from the same author as the one that they are actually from, are found on
the main diagonal. In Figure 3.9 most points are located on this diagonal. The largest group of
errors occurred with datapoints from BBWS that were interpreted to be from PJT.

Based on this confusion matrix a set of performance indicators were calculated. These are shown
in Table 3.2. The most significant performance for how well this model performed overall is
accuracy, which was found to be 0.92. This means 92% of points was correctly identified in the
right class.

precision recall f1-score support

EPA 0.90 0.95 0.93 248

BBWS 0.90 0.86 0.88 283

PJT 0.94 0.94 0.94 517

accuracy 0.92 1048

macro avg 0.91 0.92 0.91 1048

weighted avg 0.92 0.92 0.92 1048

Table 3.2: Classification report of ANN model with 40-40-20 structure.

Precision of a class is the fraction of points in a predicted class that are actually a part of that
class. In a confusion matrix like figure 3.9, this would be number of points on the diagonal
divided by the number of points in the column. For example, in figure 3.9, 518 datapoints are
in the column belonging to PJT. These are all the points the model has predicted as a datapoint
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Figure 3.9: Confusion matrix of ANN model with 40-40-20 structure.

of PJT. From these 518 points, 485 were true datapoints from PJT. These are located on the main
diagonal. The other 33 points in the PJT column were predicted as PJT, but were datapoints from
BBWS or EPA. These were misclassifications. The precision of a class like PJT, can thus be seen
as the reliabilty of the prediction PJT. In this case it is calculated as follows: 485/518 = 0.94

Recall is the fraction of datapoints from a given class that are predicted to be in that class. In the
confusion matrix of figure 3.9 this is represented as the number of points on the main diagonal
divided by the number of points in the entire row. For example, the neural network was fed 248

datapoints from the EPA. From those 248, it classified 236 correctly as EPA and 12 as BBWS or
PJT. The recall of a class like EPA, can thus be seen as how successful a model is at recognizing
the points from the class EPA. For this case, the calculation is thus as follows: 236/248 = 0.95

The F1-score is the harmonic mean of precision and recall and is calculated as: F1 = 2∗precision∗recall
precision+recall .

In this scenario we can interpret it as a measure of how good the neural network is at recognizing
the signature of a certain author.

There are two extra categories in Table 3.2, which are the macro average and the weighted
average. Macro average is the overall average of this performance indicator, e.g. the average
precision of all three classes. The weighted average is the average of this indicator weighted by
the number of samples in this class.

All performance indicators are generally very close and range between 0.86 and 0.95. The per-
formance indicators are overall slightly higher for the EPA and PJT and slightly lower for BBWS.
As such it can be concluded that this model is better at recognizing the signatures of the EPA
and PJT and slightly worse at recognizing that of BBWS.
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Just because our model has an accuracy of 92% does not mean that the model is 92% successful
at determining in which class a certain datapoint falls. We have to account for the fact that some
of the datapoints are classified correctly based solely on luck. As there are three classes, any
point has a 33% chance to accidentally be classified correctly. This model misclassifies 8% of
datapoints. Assuming that for these are points our model could not detect any signature of and
are therefore classified based on chance, then only 2 out of 3 of these datapoints will actually be
misclassified. The 8% that is misclassified is thus likely part of a group of 12% that was classified
purely based on chance. This leaves us with a group of 88% that the model could successfully
pick up a signature from.

In order to evaluate the additional effectiveness of a complex neural network, the same classifica-
tion problem was also posed to a logistic regression algorithm. The results of this are portrayed
in a confusion matrix in Figure 3.10 and a classification report in Table 3.3. The confusion matrix
clearly shows that this is significantly less effective as the cells are grayer and less black-and-
white. The poorer performance is also visible in the classification report of Table 3.3. The total
accuracy of the classification problem is just 0.76 or 76% for this logistic regression where it was
92% for the more complicated neural network. Recall and precision vary more for this classifica-
tion model as recall for the EPA is only 0.54 while it is 0.90 for PJT. Precision is highest for BBWS
at 0.85 and lowest for the EPA as well with 0.63. With an f1-score of only 0.58, this logistic regres-
sion model is thus pretty poor at recognizing the signature of the EPA. The individual scores
for BBWS and PJT are better, but in no single performance indicator is the logistic regression
competitive with the neural network.

Figure 3.10: Confusion matrix of logistic regression.

To calculate the actual success rate of the logistic regression, we need to again account for the
datapoints that are accidentally classified correctly. Instead of 8%, this time there is 24% that is
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misclassified. This means that for approximately 36%, the class was guessed and thus only 64%
of datapoints were successfully recognized as belonging to a specific author. The neural network
which was 88% successful is thus a significant improvement over the logistic regression.

precision recall f1-score support

EPA 0.63 0.54 0.58 248

BBWS 0.85 0.69 0.76 283

PJT 0.77 0.90 0.83 517

accuracy 0.76 1048

macro avg 0.75 0.71 0.73 1048

weighted avg 0.76 0.76 0.75 1048

Table 3.3: Classification report of the logistic regression model.



4 D I S C U S S I O N

In this discussion chapter the results and their implications are further analysed. This is done
in four main sections. First off, an analysis of the main physical processes is provided. This
is subsequently divided in four main elements that were recognised as important. The second
section dives into the agencies and what the data tells us about their specific view on these
processes. Section 4.3 then reviews the results of the neural network modelling that was done
and what can be learned from that in the context of this study. The final section reviews the
methodology that was used and the potential errors this could have caused.

4.1 physical processes

4.1.1 Dissolved Oxygen

Dissolved oxygen is the most important water quality parameter in this system. This was first
shown in the correlation matrix (figure 3.5), where oxygen showed high correlations with many
of the other parameters. It also shows a clear pattern over the trajectory of the river (figure
3.1), i.e. high at the source, decent in the upper and middle sections and lower in the delta.
Therefore it was not surprising to see oxygen show up as the dominant axis for the first principal
component. That this holds true, not just for the overall PCA, but for the individual PCA’s of
the separate authorities, further stresses its importance.

According to the USGS, Water Science School (2018), oxygen enters stream mainly from the
atmosphere, through groundwater discharge and through photosynthesis. It is then mainly
influenced by organic matter and by temperature. Temperature in a tropic stream like the Brantas
is fairly constant throughout the year and the main fluctuations occur near the source of the
Brantas. The PCA does show an inverse relation between DO and temperature, but it is not
particularly strong. Oxygen absorption from the atmosphere is driven by exposed surface area
and by cascades or rapids. The exposed surface area is relatively high compared to the water
volume in small streams. This is also where you tend to find natural cascades and rapids
which thus explains the very high oxygen concentrations in the upper reaches. Oxygen from
groundwater is likely not that significant for the Brantas, as according to the USGS, Water Science
School (2018), this is mostly significant in streams with a large groundwater component.

Photosynthesis is a more likely influencer of oxygen concentrations in tropic streams, but this
should be closely related to TSS concentrations as suspended solids make the water more turbid,
reducing the light available for photosynthesis. TSS is however not relevant in PC1 and therefore
we can assume that fluctuations in photosynthesis are not relevant to fluctuations in oxygen
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concentrations, or at least at the reported scale as local and day-night fluctuations can not be
accurately differentiated from this dataset. On the regional and monthly scales though, there is
no significant influence on fluctuations by photosynthesis.

Organic matter, however, is a much more relevant component to the Brantas. This is seen in the
loadings of PC1 for BOD and COD which are the main drivers in the oxygen process. Micro-
organisms can lower dissolved oxygen levels through consumption of organic matter which is
done in a BOD test (Boyles, 1997). COD is a more general measurement of the total oxidizable
organic matter in a water sample. That COD correlates more with dissolved oxygen than BOD
may look surprising at first, but could be explained by the fact that all BOD can naturally be
consumed by dissolved oxygen whereas COD contains more biochemically inert components
of organic matter. Especially in water that has not seen a recent influx of BOD, it is more
likely that BOD is removed from the system through the consumption of oxygen. Hence, BOD
concentrations go down as DO concentration goes down. The COD concentration could then
tell you more about the original BOD content and pollution. Usually though, there is more BOD
potential in the river than is actually being dissolved. A highly oxygenated river usually contains
less BOD and vice versa.

4.1.2 Rainfall

Figure 3.3 showed that high concentrations in suspended solids mainly occurred during high
flow periods, which we could also classify as the monsoon/rainy season. This relationship is
confirmed by the USGS, Water Science School (2018) as a causality. Large amounts of rainfall
typically bring with them large amounts of sediment, eroded soil and other debris. Increased
flow is additionally less likely to allow for settlement of suspended solids.

Besides TSS, pH is also a major indicator of rainfall as was demonstrated by figure B.6 where
pH too showed a seasonal component though perhaps not as clearly as TSS. This is likely due
to the nature of rain being typically acidic (Liljestrand, 1985), especially compared to river water.
This is caused by carbon dioxide concentrations in the air and can be further enhanced due to
sulfuric and nitrogen oxides. That the lower pH of rainfall can then influence the pH of a river
as well, was demonstrated by Lkr et al. (2022), Ling et al. (2017) and Ching et al. (2015).

That the second principal component resembles a rain related process can thus become clear
from the loadings for pH and TSS. From section 3.1 and annex B it would seem that TSS is
more strongly related to rainfall than pH, which would not become clear from PC2. This can
be explained as a mathematical quirk, as pH is distributed more like a normal distribution and
TSS is distributed more like a log-normal distribution. This causes pH to have relatively larger
loadings in the PCA.

Other large loadings in PC2 are those for EC, BOD and oxygen. As rainwater is typically rather
clean, it has a diluting effect on a water body and this is represented in the loadings for EC
and BOD, but this reasoning does not make sense for oxygen, as rainfall usually contains a lot
of oxygen. There exists a real correlation between dissolved oxygen and pH as was shown in
figure 3.5. According to Makkaveev (2009) and Simonsen and Harremoës (1978), this relation
is caused by the degradation of BOD, which consumes oxygen and releases carbondioxide, an
acidic substance. Thus the degradation of BOD causes a drop in both DO and pH. As PC2 is
focused more on pH than on TSS, it thus shows that it resembles not just rainfall, but this aspect
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of pH as well. A margin of error has to be considered, however, as DO has a more dominant role
in PC1, which is also a more important principal component, the loadings for dissolved oxygen
in PC2 and subsequent PC’s may also just be a mathematical fluke that is more representative
of noise in the data than of actual physical processes (Björklund, 2019). Dissolved oxygen and
TSS, for example, have pretty much no correlation (figure 3.5), but according to PC2 would be
negatively correlated.

4.1.3 Surface waste runoff

In PC3, the main role is played by TSS. As concluded previously, suspended solids play a large
role during high water levels and this thus hints at the fact that this too is a rainfall related
process. Other loadings of significant magnitude here are found to be mostly BOD and COD.
They are positively correlated with TSS whereas the relation in PC2, though weaker, was inverse.
This all suggests that high BOD and COD loadings are not typically found during rainfall, but do
occur under certain circumstances. Ching et al. (2015) found that in the Muar river in Malaysia:

Urban runoff during the flood events had increased loads of domestic wastes from the streets
and sidewalks; nutrients from untreated sewage, discharges from agro-based industries, and
manufacturing industries; leaves, grass clippings, and stormwater inputs from residential
areas, all of which had increased the oxygen demand in the river.

In short, all sorts of oxidizable pollutants can pile up on the surface and these are subsequently
washed off by rainfall. This in turn concentrates the pollution load during rainfall periods.
This relation is marked by the high loadings for BOD and COD in PC3. PC3 marks that with
suspended solids, sometimes a lot of organic material is introduced as well.

4.1.4 The role of Electrical Conductivity

Electrical conductivity plays an interesting role in these principal components. It interacts with
both PC1 and PC2, but it is more of a symptom of the processes than a driver. EC is mostly an
indicator of the total amount of dissolved solids and therefore it can say something about the
amount of pollution. We see that in PC1 it correlates strongly with BOD and COD, which is
reinforced by the correlation coefficient in the correlation matrix (figure 3.5. In PC2, the rainfall
process, it correlates negatively with total suspended solids. This indicates that during rainfall
EC values drop. This is expected as rainfall is very scarce on dissolved minerals or other soluble
substances. In PC3, which is also related to rainfall, it is absent, indicating that the increased
BOD and COD loadings, which cause higher EC values, are offset by the increased volume of
water.

In the cross-plot of EC versus COD (figure 3.6) an interesting relation between the two appeared.
It seems that for average values of EC and COD, the two are mostly uncorrelated. However,
for higher values of EC there is a large likelihood that COD values are also high. In reverse,
large COD values tend to occur nearly exclusively when EC is also significantly above average.
After investigating this a bit further, it was found that for an EC value of 1100 µS/cm, 29.0% of
the COD measures were above 100 mg/L. From all measures off COD above 100 mg/L, 88.9%
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reported an EC value above 1100 µS/cm. BOD shows a similar relation with EC, though it is
less strong.

There is one major remark though about this relationship between EC and COD specifically.
That has to do with the interference of chloride, as chloride increases EC and can cause higher
readings for COD as well. For EC, this is not that important, as it is only used to determine the
amount of Total Dissolved Solids and thus does not give a false reading, because chloride is just
one of these ions comprising dissolved solids. Especially in brackish or salty waters it will be
the main component that drives EC values. However, chloride can also interfere in COD testing
(Saral and Goncaloğlu, 2008). This is a problem as chloride is not a component that can actually
chemically oxidize oxygen and can thus artificially increase readings.

We can make an educated guess on the magnitude of this interference by looking at some of
the larger EC values. At one location, Tambangan Tlocor, EC values reach into the 10000-30000

µS/cm range. Other locations do not see values over 3000 µS/cm. In seawater, chloride is the
dominant driver in EC values. Around the Indonesian islands the typical chloride concentration
is ∼20000 mg/L (Cotruvo, 2005) and EC is typically 50000 µS/cm (Tyler et al., 2017). If we
assume a linear relationship, then at Tlocor this would correspond to chloride values around
4000-12000 mg/L and at other locations this would not exceed 1200 mg/L. According to Saral
and Goncaloğlu (2008) this would result in an additional COD measurement off 80-200 mg/L at
Tlocor and less than 25 mg/L everywhere else. From the geography it becomes clear why Tlocor
has such high EC values: it is very close to the sea and a likely target for seawater intrusion.
COD values from this location will thus have to be treated with some scepticism as it is not clear
whether chloride or organic pollution is the cause for increased COD levels.

In contrast, for other locations of the Brantas it is safe to assume that the ratio of chloride in the
total dissolved solids is much lower than in seawater. The maximum influence of 25 mg/L COD
deviation is thus probably an overestimation and hence it is safe to assume there is little to no
influence of chloride on COD measurements at any other location.

As the disturbance of chloride in COD measurements is thus limited to a single location and
the patterns between COD and EC are very similar to BOD and EC, we can safely assume that
both exist. The significance of this lies in its practical applications. Electrical Conductivity is
a parameter that can be measured in place and continuous, whereas COD takes a few hours
in a laboratory and BOD even five days. Additionally, good EC readings are relatively cheap.
This relationship in the Brantas could thus potentially be used for warning systems or targeted
monitoring as well as expanding the monitoring network in general.

4.2 agency perspectives

4.2.1 BBWS

From the explained variance distribution of BBWS (figure 3.8, top left) it can be seen that the
first principal component is relatively important and the remainder is distributed relatively flat
between the others indicating that few other principal components carry much relevance. The
first two principal components of BBWS are largely similar to the overall picture. In the first,
dissolved oxygen plays a dominant role with significant negative loadings for BOD, COD and
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EC. The second PC has a very large loading towards pH and a secondary loading for TSS. This
indicates that it is slightly more oriented towards pH than to the overall picture of rainfall as
TSS has a significantly smaller loading.

Larger differences occur in principal component 3. As opposed to TSS, it is now temperature that
drives this principal component. Other large loadings are for dissolved oxygen and phosphates.
This is not the surface waste runoff as was defined in section 4.1.3. The inverse loadings for
temperature and oxygen make sense. As water temperature increases, the capacity to hold
oxygen decreases. With BBWS measuring some of the larger fluctuations in temperature and
dissolved oxygen, mostly in the very upstream section of the Brantas, it is somewhat expected
that this would play a larger role for them. What is not expected here is the large negative
loading for phosphate concentration. No credible correlation between phosphates and either
temperature or dissolved oxygen can be found in any of the other graphs. As such it is thus
uncertain if a real relationship exists or that it is just a mathematical quirk of the data.

The surface waste runoff where large suspended solids concentrations coincide with heavy BOD
and COD loading is not found in the BBWS data. PC4 and PC5 both have large loadings for
TSS, but they don’t seem to agree on whether nitrites and nitrates have anything to do with that.
As such it can safely be said that BBWS does not recognize this pattern of heavy river pollution
through surface runoff.

4.2.2 EPA

Out of the three agencies, the EPA has the most explained variance captured in the first three
principal components. This also means that out off these agencies, the EPA has data that de-
scribes these important processes in a significant way.

Their first principal component is again mostly driven by the oxygen process. Other large load-
ings are for BOD and COD while EC receives a smaller loading in PC1 when compared to the
other agencies. Principal component 2 is mainly driven by TSS instead of pH. As TSS is more
indicative of rainy seasons than pH, this PC2 is thus also more indicative of rainy seasons. PC2

is also relatively ’clean’, i.e. few medium sized loadings for other parameters. This is useful,
because it means those parameters have more significant meaning in subsequent PC’s.

PC3 then describes the surface waste runoff. The main parameter is TSS, but it is nearly equally
divided with DO, BOD and COD. With a positive correlation between the three, we can thus see
that with the entry of suspended solids into the stream also comes a lot of organic waste, though
usually not, as this would have otherwise been represented partially in PC2. The EPA does thus
indeed recognize these as two separate processes.

4.2.3 PJT

The captured explained variance by PJT is relatively poor for the first principal component, but
better for the second and third. PC4 through PC6 then also captures a fairly significant sum of
explained variance with all three having nearly equal weights. Obviously though, the first three
are more important.
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The first principal component then, like the others is mainly driven by oxygen. Notable here is
the role for EC. In contrast to the EPA, in PJT’s data EC plays a major role in this oxygen process
in which COD and BOD are the other key players. This indicates that PJT could potentially
benefit the most from EC measurement campaigns as they are likely more indicative of high
BOD or COD values for them.

On the second principal component the main role is played by TSS, which indicates that it is a
rainfall related process. Other major loadings are for BOD and COD which correlate positively
with suspended solids and for pH and nitrate which correlate negatively with TSS. The positive
correlation between TSS and BOD/COD is an indication of the surface runoff process whereas
the inverse correlation between TSS and pH is an indication of the regular rainfall process. That
these two are combined in the same principal component shows that PJT sees the surface waste
runoff as inherent to rainfall. As their measurement sites are located in the lower Brantas and
Surabaya river branches, this indicates that the surface waste runoff occurs especially here in
these urbanized areas.

4.3 neural networks

The data classification by agency with neural networks achieved considerable success. After
training on part of the dataset and validating with a second part to select the best performing
iteration, when shown a new part of the dataset, still 92% of datapoints was selected to the right
agency. Assuming a one in three accidental hit ratio, there was still 88% of datapoints that had a
distinct enough signature for the neural network to detect the author. Compared to the logistic
regression methods, which had a accuracy of 76% corresponding to a 64% success rate, this was
a significant improvement. The logistic regression is a heavily simplified neural network with
only a single note rather than a hundred. With 36 parameters rather than the 3003 used in the
ANN, it can be compared to more traditional statistical methods for classifying data.

What was thus found is that much of the agency data is dissimilar enough to somewhat easily
be recognized as belonging to one agency or another. For many of these datapoints there is thus
a clear agency bias. When using the more sophisticated neural network classification system,
it was found that even more data contained an agency signature. As this 88% of data is such
a large portion of the total, most agency data contained a detectable signal. This signal could
cause problems when somebody wants to use exact data from these agencies together.

In addition, because there is thus a clear agency signature, it has to be assumed that these
signatures are created by some form of bias. Causes could be the locations or times measured
at, the way samples are taken, methods used or man-made mistakes. There are many different
possible causes of which it is difficult to determine what they are, let alone the magnitude.
Therefore, I will refrain from delving deeper into this. It is also not relevant as the aim of this
research is to determine the agency perspectives, not whose measurements are best. The results
of the artificial neural network classification shows that some agencies are easier to classify then
others, but this does not say anything about the independence of their data. Rather it shows that
their data is slightly easier to recognize in comparison.

Other scientific work in which neural networks or machine learning was involved to find the
author of a dataset could not be found. In order to ensure the validity of this methodology for
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this purpose of author identification and its implications, this methodology and purpose was
discussed with Taormina (2022).

4.4 methods

4.4.1 Data Editing and Imports

In between the collection of the data and its use in this report, a few steps were necessary to
prepare the datasets for analysis. The datasets were unfortunately not delivered in a shape where
they were ready for imports into Python and thus manual adjustments had to be made. These
have been explained in the Data Treatment section (section 2.1) of the methodology chapter. It
occurred several times that data points were somewhat to very ambiguous in what they actually
meant. For example, a dash could mean a value of zero, it could mean something was undetected
or it could mean that it was not measured at all. At other times mistakes were made with
assigning data to the right column or row. This also needed fixing up. Because of all these
modifications in the datafiles, a lot of interpretations on my end could have entered the datasets
that could possibly alter data into something that was not originally recorded. There is no reason
to believe this would exceed very limited cases only.

Whether or not this matters is a different question. Generally though, I find it hard to believe that
during pre-processing large parts of the data have been modified in a significant enough way to
impact later analyses. In terms of bias, one can argue that all datasets have been equal to the
same form of bias, namely mine. Hence, we can therefore also argue that the same bias applies
to all the data. As values in the data are not used as ’objectively true’ and the focus lies on
differences between agencies, an equal impact on all agencies should not create new differences
and is thus not relevant. The important sidenote here is that the agencies were sometimes more
or less neat in the way they stored their data and thus interference on my end is linked to the
cleanliness of the datafiles. This could still have caused some relevant bias, though it should be
clear from the methodology that editing happened in limited cases only and thus the influence
can be seen as rather negligible.

There are thus a few ways in which errors or bias may have entered the datasets during data
processing. The eventual analyses that were performed however treated the data as fairly robust
and focus more on comparative figures and approximate figures then precise numbers. In com-
parison to the relatively minor changes that may or may not have occurred in data processing,
the effect of these changes on the eventual analyses is thus pretty much negligible.

4.4.2 Principal Component Analysis

Principal component analysis is a mathematical simplification of a dataset, but it does rely on
a few assumptions. The relations are linear and orthogonal to each other. This is directly
derived from the mathematics that the principal components of a dataset X are represented
by the eigenvectors of the covariance matrix C = 1

n XXT . This is by definition a linear and
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orthonormal system (Shlens, 2014). In order to then get clear principal components, it relies on
the data to have linear and orthogonal correlations.

The principal components are in essence best fits of the data in a multi-dimensional field. If
data parameters that are related do not exercise a linear relation, the corresponding linear fit
will then likely be a fairly poor fit. The second issue relates to the orthogonality of PCA. If the
main processes that drive fluctuations in parameters are not orthogonal to each other, than PCA
will be unable to find them and instead prescribe a best fit that is not necessarily on par with the
principal component. Both of these issues were desribed by Shlens (2014).

As it cannot be assumed that these datasets have linear nor orthogonal processes behind them
further testing of principal components is necessary. Jackson (1993) suggests several such meth-
ods, but two of the most simplistic ones are the Kaiser-Guttman method and the Broken-stick
Method. The first assumes that an uncorrelated dataset would return equally large eigenval-
ues and the capture of explained variance by all principal components to be equal. For a PCA
with 11 parameters, this would mean that every parameter that captures more than 9.09% of
explained variance has a significant role. For our case, this would imply the first four principal
components are significant, with the fourth only barely passing the bar. This method as Jackson
(1993) explains is somewhat flawed though as random variance would cause at least half the
principal components to be above average.

The second is the broken stick method, which divides the total explained variance in 11 (for
our case) random parts. The first principal component then has to be larger than the largest
part, etc. This would result in a criterion of 27.5% for PC1, 18.4% for PC2, 13.8% for PC3 and
10.8% for PC4. A principal component in this method can only be seen as significant if all
previous components also cleared this bar. A keen eye would notice that the PCA conducted
here does not meet the requirements of the Broken-stick model. (Jackson, 1993) noted however
that the broken-stick criterion does have a tendency to underestimate the number of principal
components. Seeing as the first three are still generally close to the broken stick and clearly
larger than the Kaiser-Guttman criterion, the focus on these in this study can thus be justified.

It is therefore also paramount to not focus too much on the high loadings on parameters that
already had previous higher loadings. Due to the issues with orthogonality, these are more likely
to fit for noise than to present real correlations.

Nevertheless, these tests are much better than to select principal components on a preferred total
capture of principal components, for example 90%. In our case, this would result in the need
to explain 7 principal components, but that would barely support the goal of dimensionality
reduction we set out to achieve. With 7 significant principal components we might as well have
sticked to our original 11 parameters. This was already a fairly limited number of parameters
to begin with though. (Dupont et al., 2020) mentions a study with 6 significant principal com-
ponents, none of which capture more explained variance than the ones in this study, but the big
difference is that it used 27 total parameters for PCA. As a result of that, those six PC’s meet
the broken-stick criterion. As such, there is a possibility this data’s PCA would have met these
requirements easier had I included more parameters.
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4.4.3 Scaling Algorithm

Scaling is absolutely necessary for principal component analysis, as is the removal of outliers.
The first is important so that all parameters have equal influence on PC loadings. If not, then
principal components will be heavily biased towards those parameters with the numerically
largest standard deviations and will provide little further information. The outlier removal,
or temperance, is important because PCA is trying to optimize the squared distance from the
best fitting line. It will thus be heavily biased towards those few datapoints that present a
significant outlier. As could be seen from the distribution plot (figure 3.4) this dataset contains
some pretty intense outliers, even on a logarithmic scale. However, simply removing any points
with outliers would also remove a lot of information from the datasets, so I chose against removal.
Instead I ’tempered’ the value and thus the influence such outliers would have on PC’s by setting
them equal to the 1st and 99th percentile value of that parameter. By doing so I retained the
information that this concerned a large value for this parameter, but without caring too much
about how large the outlier actually was to prevent it from influencing the PCA too much.

Inbetween the 1st and 99th percentile a linear scaling was chosen. This does have the disad-
vantage of concentrating certain parameters close to the lower end value. Considering many
parameters in the distribution plot (figure 3.4) showed a more linear relationship on a logarith-
mic axis, it can be argued that these parameters should be scaled logarithmically instead. In
order to verify that the linear scaling was indeed the better option, this had to be tried as well.

The logarithmic scaling has been applied to the dataset on all parameters except for pH and
temperature similarly to the distribution plot. Values were still clamped between the 1st and
99th percentile as the logarithmic values still contained outliers. This gave one problem with
NH3 in particular as its 1st percentile sits at 0 and the logarithmic value of this would be −∞.
PCA does not react well to values of ∞ or −∞ and therefore these needed to be eliminated.
Instead of the 1st percentile value for NH3 the smallest numeric logarithmic value of NH3 was
chosen instead, which lies somewhere between the 1st and 2nd percentile.

The results of this logarithmic scaling can be found in annex C. While some of the loadings may
now become more pronounced, the concentration of capture of explained variance is actually
worse for this PCA both for the overall dataset as well as the individual agencies. The loadings
did not provide a significantly easier explanation of the principal components either, so I decided
to stick with the linear scaling instead.



5 C O N C L U S I O N S A N D R E C O M M E N DAT I O N S

In this research I have explored the water quality data of three different agencies operating in
the Brantas river. I specifically wanted to know how the measurements each agency took shaped
their perspective on the Brantas’ water quality. In addition, by combining the data of the agencies
a more complete view of the Brantas was presented which the individual agencies are compared
against.

This did come with a fair share of challenges. First of all, the data itself was difficult to read and
formatted differently, not just across agencies, but within the datasets of agencies themselves
too. To get all data in a single form for comparison, editing and interpretation was done on my
end. Besides problems with data integrity, the methods themselves had limitations too. Scaling
posed one of the more intricate challenges, as the more standard techniques were not adequate
and therefore more subjective methods had to be chosen. Finally, there are limitations to the
interpretation of the results, but there are still some important conclusions that can be made.

First of all, within the water quality parameters that were looked at, two to three important
driving mechanisms can be identified. The first of these is related to the oxygen content of the
river. The amount of oxygen demanded and present in the river ties in to many other parameters
including temperature, ammonia and phosphate. Moreover, there is a high correlation between
chemical oxygen demand and electrical conductivity, especially for higher values of the two. The
second mechanism is induced by rainfall, which is an important driver for the pH and suspended
solids in the river. As was found in section 3.1, high concentrations of suspended solids occurred
mostly during wet seasons. Dry seasons were a near guarantee for low concentrations. Rainfall
is also the driver behind a third mechanism, which describes what the suspended solids in the
runoff are made of. In more natural regions, this is mostly sands and dust, but in urbanized
regions all sorts of waste and pollution is swept of the streets and flushed into the river. This
will cause an increase in oxygen demand, both chemical and biochemical.

While all authorities will find these two processes of oxygen and rain, the emphasis differs
greatly. Especially the focus on solid waste varies wildly. The EPA distinguishes this rather
well in PC3, apart from PC2. PJT, however, will find a single principal component that incorpo-
rates both aspects of rainfall runoff and BBWS does not identify it in any significant principal
component. It was understood that these agencies take slightly different measurements, but the
big differences in principal components was less expected. From the principal components, it
becomes clear that with their measurements the agencies tell different stories of the river and
its processes. As a consequence, authorities will develop different perspectives of the river wa-
ter quality. All will notice the importance of oxygen, but only PJT and the EPA will notice the
importance of surface waste runoff, whereas BBWS does not. The EPA recognizes the different
types of runoff, but will not think of EC measurements as a powerful tool. PJT sees the negative
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impact of rainfall runoff on the river water quality, but also sees it as inherent to rainfall rather
than as a separate process.

As an indicator of how different the datasets are, neural networks were used to link the specific
datapoints to the original author. This specific neural network found that 88% of data has a clear
author signature. This was a significant improvement over the logistic regression which could
only detect this in 64% of datapoints. The logistic regression is understood to find the more
obvious differences, e.g. what you could also detect from the distribution plot of figure 3.4. The
neural network however detects not just the obvious differences, but the subtle differences as
well. Effectively, it proved how dissimilar the datasets from the agencies were. This dissimilarity
of 88% underlines the conclusion found from PCA that with their measurements, these agencies
write different stories of what they believe the river water quality to be.

5.1 recommendations

PJT, BBWS and the EPA all have their stakes in the water quality management of the Brantas and
hence they will run into each other when making policies. If these three are not in agreement
on the state of the river, it is hard to believe they will reach an agreement on policies concerning
it. Therefore it is paramount to share data to create mutual understanding. During this research,
data from all three was collected and compared in a single dataset. This was not a straightfor-
ward task which came with several hurdles and obstacles. Therefore I have drawn up several
recommendations to allow for better data sharing in the future.

The first and most important task is to add informative metadata to datafiles. The three essen-
tial pieces of information are time, location and method. Date was only consistently reported
by PJT, which also recorded measurement time, though this was sometimes inexplicably absent.
The EPA did often include the date on their measurements, but this was absent from a number
of sheets as well. BBWS was least clear, as measures were taken quarterly and usually only
the quarter of the measurement was recorded, which is not a very accurate recording of mea-
surement time, as it was shown that many water quality parameters can easily change in that
window. In order to compare similar measurements across different agencies, the date should
be a minimum requirement and preferably time of day is also provided.

Location is another important piece of metadata that needs to be documented well. While all
agencies did record the locations of their samples, it was usually more of a broad location and
not very specific. Usually, only a name was provided, but this name was not typically easy to
look up in resources like Google Maps. Additionally, not all three agencies used the same name
for the same place and sometimes this even varied from year to year within an agency. GPS
coordinates could be looked up though, sometimes within the document itself, sometimes in a
secondary document. The problem here was not availability, though sometimes challenging, but
the accuracy. Even though a large number of decimals was usually provided, when entering
the coordinates in the satellite view of Google Maps it was not uncommon to find the location
on land, tens of meters from the river. None of the authorities did particularly well on this
front and therefore the actual location was still often an educated guess based on additional
information such as the name of the bridge or the stream that it was measured in, the latter
being especially relevant for the outflows of tributaries. One of the agencies that performed a bit
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better on the location front was BBWS, who provided a secondary document detailing the name
of the locations with coordinates, the stream measured, a color code to the type of location, an
overview map depicting the gross location of that point and a small picture of what that location
looked like on the ground. That last thing is surprisingly useful, even for someone working from
miles away as this allows you to verify locations easily, if not in real life, then with a tool like
Street View. What this document lacked was readability for computer programs. Every part of
information that was extracted from this document had to be done by hand. Because of all the
reasons stated above, copying and verifying the locations of measurement points was a very time
consuming activity and this still resulted in only an approximate location. For true comparison
of measurements with the same location, it is crucial to know not just on what bridge you took
a measurement, but also if it was in the middle or on the side and if you took a sample from the
top of the water or from a meter of depth. Even these small differences can make big differences
in recorded values and currently there is no way to know.

The third part of metadata that was difficult to obtain were accurate descriptions of the method-
ology used to obtain samples and parameter values. Even if the same standard is used for
measuring a certain parameter, differences can be made by the type of equipment and the way
the equipment is calibrated or maintained. Just like with time and location it can be an important
reason for why your readings are not the same as another agency.

Another major obstacle during this research was the poor digitization of data. While all data
was at least digitized, i.e. there was no need to type readings from paper into Excel myself, the
way in which this was done still largely resembled the paper form. This was annoying at best
and problematic at worst. Problems ranged from excessive blank cells to temperatures being
recorded as dates and everything in between. Most time consuming though was the constantly
shifting structure. Because of this it was rarely ever possible to fully automate the import of data
from multiple files into a single file. Every file and sometimes even every single sheet needed
separate lines of code to import. Significant improvements can already be made if it is only kept
in mind that files need to be computer readable and that the Excel sheet is not the end product.
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A M E A S U R E M E N T LO C AT I O N S

ID Location Lat Lon EPA BBWS PJT
1 Arboretrum -7.754144 112.526465 y y -
2 J. Brantas -7.864163 112.526695 - y -
3 J. Pendem -7.902844 112.574287 y y -
4 J. Dinoyo -7.939556 112.611917 y - -
5 J. Gadang -8.024444 112.632889 y - -
6 J. Sengguruh -8.182012 112.546483 y y -
7 J. Karangkates -8.156556 112.434333 y - -
8 J. Brawijaya -8.171410 112.335754 - y -
9 J. Selopuro -8.166111 112.300556 y - -

10 J. Glondong -8.153333 112.217500 y - -
11 J. Trisula -8.139931 112.146111 y y -
12 T. Ngunut II -8.069417 111.983389 y - -
13 J. Ngujang -8.016528 111.925361 y - -
14 T. Maesan -7.942893 111.953021 - y -
15 J. Masjid Agung -7.827500 112.009167 y - -
16 J. Jong Biru -7.782288 112.008611 y y -
17 J. Papar -7.694722 112.075278 y - -
18 J. Lama Kertosono -7.600330 112.108677 y y -
19 T. Ngrombot -7.549491 112.122120 - y y
20 J. Ploso -7.460857 112.224536 y y y
21 T. Cheil Jedang -7.446067 112.249833 - y -
22 T. Betro Kemlagi -7.457067 112.338150 - y -
23 J. Les Padangan -7.459846 112.432012 y y y
24 T. Canggu -7.436230 112.459880 - - y
25 J. Jetis Permai -7.427729 112.473867 y y -
26 J. Perning -7.409549 112.492002 y - y
27 J. Legundi -7.387316 112.577057 y y y
28 T. Cangkir -7.363910 112.636077 y - y
29 T. Bambe -7.351130 112.663979 y - y
30 J. Sepanjang -7.344907 112.691618 - y y
31 J. Karang Pilang -7.343333 112.695167 y - -
32 B. Gunungsari -7.308404 112.718669 y - y

Table A.1: Measurement locations in the Brantas. Coordinates are the average of those provided by agen-
cies. Columns 4-6 mark which agencies have measurements at that location with ’y’.
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ID Location Lat Lon EPA BBWS PJT
33 J. Joyoboyo -7.299715 112.736669 y y -
34 J. Bungkuk Ngagel -7.296667 112.741667 - y -
35 J. Bung Tomo -7.288667 112.744167 y - -
36 J. Sono Kembang -7.272611 112.744750 y - -
37 J. Yos Sudarso -7.262376 112.746109 - y -
38 J. Pasar Besar -7.247806 112.742167 y - -
39 J. Petekan -7.222408 112.738004 y y y
40 J. Karangrejo -8.003669 111.911453 - y -
41 J. Begedheng -7.506564 112.149615 - y -
42 J. Munung -7.489369 112.168964 - y -
43 J. Pulorejo -7.462186 112.428411 - y -
44 J. Jetis IV -7.410991 112.473279 - y y
45 Muara K. Kwangen -7.406350 112.486127 - y -
46 Hulu Kali Tengah -7.365750 112.603472 y - -
47 WWG Kali Tengah -7.359917 112.627861 y - -
48 J. Bambe -7.351351 112.661987 y y y
49 Muara K. Kedurus -7.307180 112.720310 - - y
50 J. Ciro -7.426410 112.478400 - - y
51 J. Ngoro -7.494470 112.563905 - y -
52 J. Carat -7.562654 112.684461 - y y
53 J. Wonokromo -7.300320 112.739970 - y -
54 J. Nginden Intan -7.307754 112.768247 - y -
55 J. Merr II -7.310556 112.780556 y y -
56 T. Wonorejo -7.308003 112.798863 y y -
57 J. By Pass Mojokerto -7.445140 112.459201 y y -
58 B. Lengkong Baru -7.445160 112.466050 - - y
59 J. Ngrame II -7.475615 112.560213 y - -
60 J. Porong -7.545903 112.698162 y y y
61 T. Tlocor -7.545848 112.819300 y y -
62 I. Karang Pilang -7.348668 112.680082 y - y
63 I. Ngagel -7.300350 112.741300 - - y
64 I. Pelayaran -7.409350 112.529450 - - y
65 I. Tawangsari -7.351940 112.676110 - - y

Table A.2: Measurement Locations in the Brantas. Coordinates are the average from those provided by
agencies. Columns 4-6 mark which agencies have measurements at that location with ’y’.
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Figure A.1: Measurement Locations in the Brantas. Numbers correspond to locations as seen in tables of
this annex and other figures such as in the diagrams of annex B.



B PA R A M E T E R B O X P LOT S

Figure B.1: Water temperature along the main Brantas stretch.
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Figure B.2: Water temperature in the branches of the Brantas.
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Figure B.3: Water temperature in the Brantas over time.
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Figure B.4: pH values along the main Brantas stretch.
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Figure B.5: pH values in the branches of the Brantas.
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Figure B.6: pH values in the Brantas over time.



parameter boxplots 73

Figure B.7: EC values along the main Brantas stretch.
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Figure B.8: EC values in the branches of the Brantas.
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Figure B.9: EC values in the Brantas over time.
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Figure B.10: Dissolved oxygen concentrations along the main Brantas stretch.
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Figure B.11: Dissolved oxygen concentrations in the branches of the Brantas.
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Figure B.12: Dissolved oxygen concentrations in the Brantas over time.
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Figure B.13: TSS concentrations along the main Brantas stretch.
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Figure B.14: TSS concentrations in the branches of the Brantas.
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Figure B.15: TSS concentrations in the Brantas over time.
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Figure B.16: BOD concentrations along the main Brantas stretch.
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Figure B.17: BOD concentrations in the branches of the Brantas.
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Figure B.18: BOD concentrations in the Brantas over time.
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Figure B.19: COD concentrations along the main Brantas stretch.
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Figure B.20: COD concentrations in the branches of the Brantas.
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Figure B.21: COD concentrations in the Brantas over time.
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Figure B.22: NH3 concentrations along the main Brantas stretch.
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Figure B.23: NH3 concentrations in the branches of the Brantas.
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Figure B.24: NH3 concentrations in the Brantas over time.
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Figure B.25: NO2 concentrations along the main Brantas stretch.
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Figure B.26: NO2 concentrations in the branches of the Brantas.
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Figure B.27: NO2 concentrations in the Brantas over time.
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Figure B.28: NO3 concentrations along the main Brantas stretch.



parameter boxplots 95

Figure B.29: NO3 concentrations in the branches of the Brantas.
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Figure B.30: NO3 concentrations in the Brantas over time.
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Figure B.31: Phosphate concentrations along the main Brantas stretch.
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Figure B.32: Phosphate concentrations in the branches of the Brantas.
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Figure B.33: Phosphate concentrations in the Brantas over time.



C LO G A R I T H M I C P C A R E S U LT S

Figure C.1: PCA on dataset with logarithmic scaling, on the left is the capture of explained variance by
principal component and on the right is the composition of said principal components’ load-
ings.
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logarithmic pca results 101

Figure C.2: PCA of separate authorities with logarithmic scaling. The top left graph depicts the capture of
explained variance of the three different PCA’s. The other 3 graphs depict the PCA loadings
matrix of the specific authority.



D P Y T H O N S C R I P T S

List of files with scripts used to produce results used in the thesis:

• Crossplots.ipynb

• Data compile.ipynb

• Data overview.ipynb

• Import BBWS.ipynb

• Import EPA.ipynb

• Import PJT.ipynb

• Location construct.ipynb

• PCA AllData.ipynb

• PCA byAuthority.ipynb

• PCA MethodTesting.ipynb

• Statistics.ipynb

• Trajectory plots.ipynb

• PCA.py
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E DATA F I L E S

Datafiles will not be uploaded with the final thesis. The following is a list of files created:

• Composite dataset.csv

• WL PJT.csv

• BBWS/Actual locations.csv

• Composite BBWS.csv

• EPA/Actual locations.csv

• Composite EPA.csv

• PJT/Actual locations.csv

• Composite PJT.csv

And these are the files that were used to create these:

• AWLR Gadang - Malang 2014-2019.xlsx

• AWLR Jeli - dekat Kediri 2014-2019.xlsx

• AWLR Kediri 2014-2019.xlsx

• AWLR Perning - sesudah Mojokerto 2014-2019.xlsx

• AWLR Ploso - sebelum Mojokerto 2014-2019.xlsx

• AWLR Porong 2014-2019.xlsx

• BBWS 2009.xls

• BBWS 2010.xls

• BBWS 2011.xls

• BBWS 2012.xlsx

• BBWS 2013.xlsx

• BBWS 2014.xlsx

• BBWS 2015.xlsx

• BBWS 2016.xlsx

• BBWS 2017.xlsx

• BBWS 2018.xlsx

• BBWS 2019.xlsx
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data files 104

• BRANTAS WQ 2013.xlsx

• BRANTAS WQ 2014.xlsx

• BRANTAS WQ 2016.xlsx

• BRANTAS WQ 2017.xlsx

• Kualitas Air Brantas Hilir Sungai (2010).xlsx

• Kualitas Air Brantas Hilir Sungai (2011).xlsx

• Kualitas Air Brantas Hilir Sungai (2012).xlsx

• Kualitas Air Brantas Hilir Sungai (2013).xlsx

• Kualitas Air Brantas Hilir Sungai (2014).xlsx

• Kualitas Air Brantas Hilir Sungai (2015).xlsx

• Kualitas Air Brantas Hilir Sungai (2016).xlsx

• Kualitas Air Brantas Hilir Sungai (2017).xlsx

• Kualitas Air Brantas Hilir Sungai (2018).xlsx

• Kualitas Air Brantas Hilir Sungai (2019).xlsx
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This document was typeset using LATEX. The document layout was generated using the arsclassica

package by Lorenzo Pantieri, which is an adaption of the original classicthesis package from
André Miede.
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