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Abstract—ADS-B is a widely used protocol that transmits
aircraft’s position, velocity among other data. The protocol is
not encrypted leading to the need of validation. A validation
algorithm is proposed that makes use of Time Difference of
Arrival localization to validate the position and velocity of ADS-B
transmitting targets. Nowadays, Air navigation service providers
(ANSP) commonly have at least one TDOA localization system in
operation, allowing for cost effective implementation. Validation
is achieved by using a Particle Filter and hypothesis tests. A novel
method is used where the initial density is generated effectively
based on the first set of TDOA measurements. Validation is
possible when two or more ground stations receive the same
ADS-B transmission, therefore the Particle Filter is designed to
process such measurements. The algorithm is tested on data
provided by Air Traffic Control The Netherlands’ North sea
surveillance system. Results show that the validation works and
that the algorithm is able to detect spoofing. Based on spoofed
ADS-B messages and true TDOA measurements, the real and
fake target can be detected when the distance is roughly 750 to
1000 meters (depending on the situation and the various tuning
parameters). In addition, validation based on two or more ground
stations per measurements has the effect that the validation area
is increased, when compared to traditional filters that require 4
ground stations for tracking.

Index Terms—ADS-B, Validation, TDOA, Particle Filter, Hy-
pothesis Testing, State Estimation, Spoofing Detection

I. INTRODUCTION

Automatic Dependent Surveillance Broadcast (ADS-B) al-
lows commercial aircraft to broadcast their own position,
speed, altitude, and other information to ground stations and
other nearby aircraft. This information is then used by air traf-
fic control for situational awareness, and collision avoidance.
ADS-B spoofing is possible due to the lack of authentication
and encryption in the ADS-B protocol. This can result in
incorrect decision-making and safety hazards. Ground station
flooding, false alarm attack and virtual trajectory modification
are some of the attack types as described in [2]. Forging a
spoofed ADS-B is demonstrated in [3] showing the vulnera-
bility of the system.

This paper is based on the Master Thesis [1] of the first author as part of
the Electrical Engineering Master at TU-Delft, executed in cooperation with
Air Traffic Control The Netherlands (LVNL). Finalization and publication has
been supported by his current employer the Royal NLR.

Encryption has been proposed to ensure the validity of
ADS-B messages [4]–[6], but ADS-B is not intended and
designed for encryption and therefore not a feasible solution.

Machine-Learning (ML) based solutions are also proposed
[7]–[9]. A significant disadvantage of ML is that it is vul-
nerable to real ADS-B messages transmitted at a later time.
Secondly, training data of spoofed messages are required and
it is hard to obtain proper training data.

Third type of validation that is proposed in literature is
validation based on measurements of the ADS-B transmission.
This can be done by measuring the angle of arrival of the
impinging signal [10], [11]. But also traditional Mode-S radar
can be used for validation.

This paper proposes an algorithm that validates the position
and velocity of ADS-B messages based on position and
velocity estimates computed from a series of Time Difference
of Arrival (TDOA) measurements. The motivation for TDOA
is twofold. Firstly, validation requires at least two Ground
Stations (GS) per received ADS-B message, compared to
tracking that requires at least four GSs per measurements.
This leads to an increase in coverage and substantial increase
in available measurements for processing. Secondly, many
Air Navigation Service Providers (ANSP) have operational
TDOA systems, allowing for a cost effective implementation.

To estimate the position and velocity from the TDOA
measurements the use of a track filter is proposed. In [12]
and [13] two track filters have been presented. They both
first compute target positions from the TDOA measurements
originating from the same ADSB message, and run a track
filter using these position estimates. At least four TOA
measurements are required to obtain a unique position
estimate. In practice, however, a significant portion of TDOA
measurements originate from only two or three GSs, meaning
the measurements are ambiguous in location (the target is
somewhere on a hyperboloid of two sheets or the intersection
of two such hyperboloids). All such measurements are
neglected in approaches such as in [12] and [13].

Nevertheless, ambiguous measurements still provide
enough information of the ADS-B target such that the
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position can be validated. Therefore a Particle Filter (PF) is
proposed that is able to process measurements originating
from two GSs or more. Such a state estimator is sufficient
when validating ADS-B messages. This approach allows for
validation in a larger area, because the area covered with two
GSs is always larger than the area covered by four GSs.

Section II introduces the state estimation problem and sec-
tion III describes the implemented PF. The spoofing detection
is treated as a binary hypothesis testing problem and the
derivation and implementation details of the hypothesis test
are described in section IV. In section V the entire algorithm
is analysed based on real TDOA measurements and ADS-B
messages provided by the North Sea Wide-Area Multilatera-
tion system operational at Air traffic Control the Netherlands
(LVNL).

II. STATE ESTIMATION BASED ON TDOA MEASUREMENTS

In this section the problem of estimating object position and
velocity from series of TDOA measurements is presented as
a state estimation problem.

A. Bayesian State Estimation

Let xk denote the state vector. The generic state evolution
and the measurement model are given as

xk+1 = fk (xk,wk)

zk = hk(xk,nk)
(1)

where fk (xk,wk), represents the object dynamics with wk

the process noise, and hk(xk,nk) represents the measurement
function, where nk is the measurement noise.

The state evolution and measurement equation define the
transition density p(xk+1/xk) and the likelihood p(zk/xk)
respectively.

The posterior density allows a recursive expression referred
to as Bayesian recursion given by

p(xk+1 | Zk) =

∫
p(xk+1 | xk)p(xk | Zk)dxk

p(xk | Zk) =
p(zk | xk)p(xk | Zk−1)

p(zk | Zk−1)

(2)

The state estimation problem is now defined as obtaining an
approximation to the posterior density p(xk/Zk), where Zk

represents the collection of all measurements received until
(and including) time tk.

B. Object dynamics

In the proposed filter solution a nearly constant velocity
model is used. This model is sufficient for many ANSPs due
to the fact that almost all commercial airliners fly at an almost
constant velocity. Also during landing and take-off the constant
velocity is found to be sufficient. Let the state vector be defined
as

xT
k = [lTk v

T
k ] (3)

with lk and vk the 3D location and velocity of the target,
respectively. The target dynamics then becomes the linear
Gaussian model defined by

xk+1 = Fxk +wk (4)

with

F =

[
I3 TkI3
O3 I3

]
(5)

where I3 is the 3D identity matrix and Tk = tk+1 − tk. The
covariance of the process noise is defined as

Wk = σ2
w

[
T 3
k

3 I3
T 2
k

2 I3
T 2
k

2 I3 TkI3

]
. (6)

C. TDOA measurements

The TDOA measurements are constructed from TOA mea-
surements originating from the same transmission received by
Nk GSs. Obviously the TOA’s depend on the distance between
the target location lk and the GS positions sj , j = 1, . . . , Nk.
In what follows, we assume that the GS position s1 is defined
as the GS that receives the ADS-B message first, j refers to
one of the other GSs that delivers a TOA measurement. Each
TDOA measurement equation is assumed being generated
according to

zjk = hj
k(lk) + nj

k for j = 1, . . . , (Nk − 1) (7)

with nj
k the measurement noise, and the nonlinear measure-

ment function

hj
k(lk) =

||sj+1 − lk|| − ||s1 − lk||
c

(8)

with c the speed of light.
Besides nonlinear, the model underlying each TDOA mea-

surement is ambiguous, since it defines a paraboloid of two
sheets containing infinitely many locations leading to the same
measurement. It is well-known that TDOA measurements from
four (or more) GSs at different locations and heights lead to
a unique location. However in our approach it is desired to
work with less than four GS TOA measurements per scan.

The measurement vector zk is constructed as a collection
of TDOA measurements generated via Eq. (7)

zk = hk(lk) + nk, (9)

with nk the measurements noise. The number of these
measurements varies from time to time depending on factors
like the exact positions of the GSs and their distances to the
target.

Assuming the noise of the TOA measurements is zero mean
and uncorrelated between the GSs, the covariance Q of nk is
given as

Q = CΣCT (10)
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with

C =

−1 1 0 0
... 0

. . . 0
−1 0 0 1

 (11)

and where Σ is a diagonal matrix with the variances of the
individual TOA measurements as the corresponding diagonal
elements.

The pdf of the measurements conditioned on the target state
is then given as follows

p(zk | xk) =
1√

|2πQ|
exp

(
−1

2
||zk − hk(lk))||2Q

)
(12)

with notation ||a||2B = aTB−1a.

III. PARTICLE FILTER DESCRIPTION

Since our aim is to develop a filter that can work with TDOA
measurements from less than four GSs, a particle filter solution
is advocated. A PF allows for processing ambiguous (Nk < 4)
TDOA measurements scan by scan with good performance,
and in combination with the proposed initialization in the
paragraph below, ambiguities are limited. Processing ambigu-
ous measurements in an EKF will likely lead to insufficient
performance, as the EKF is not able to accurately handle the
non-linearity’s present in the ambiguous measurements.

A. Particle Filter Initialization

The proposed PF is a Sequential Importance Resampling
(SIR) filter, except for the filter initialization. A generic initial-
ization of the filter would be to generate particles in a large 3D
volume independent of the knowledge of the GS positions that
received the TOA measurements and the TOA measurements
themselves, and proceed with a SIR filter update. In this
particular application, such a generic initialization would be
extremely inefficient. Instead the initialization is based on the
following considerations.

At first, every TDOA measurement commonly represents a
potential target location on a hyperboloid of two sheets. In our
application, the individual TOAs associated with the GSs are
known, such that one of these sheets is not valid. Secondly,
the height of the targets that are to be dealt with are positive
and lie in a relatively small interval. Thirdly, the points on a
hyperboloid allow an easy sampling; one coordinate of each
point on a hyperboloid can be written as an explicit function
of the other two. These three considerations together makes it
possible on the basis of one TDOA measurement to generate
an equally weighted set of particles that can serve as the initial
particle cloud. This procedure can be repeated in case more
TDOA measurements are available in the first scan.

B. Particle Filter Flow Chart

The flow chart of the SIR filter is given as Algorithm 1

Algorithm 1 SIR-Particle Filter Algortihm
Input: zk
Output: {xi

k, ω
i
k}, i = 1, . . . , Ns

1: Generate an initial set of particles, see III-A
2: Set ωi

0 = 1/Ns for i = 1, ..., Ns

3: for k = 1,...,K do
4: Compute ωi

k = p(zk|lik) for i = 1, . . . , Ns

5: Resample using multinomial resampling
6: Normalize ωi

k =
ωi

k∑
ωi

k

7: Sample xi
k ∼ p(xk|xi

k−1) for i = 1, . . . , Ns

IV. HYPOTHESIS TESTING

In this section, a hypothesis test is defined using the
information in the ADS-B message, its measurement equation,
and the posterior pdf on the target state based on TDOA
measurements, as obtained via the SIR-PF. This hypothesis test
can be used to determine the ADS-B message as spoofed or not
spoofed. To achieve this the likelihood ratio test (LRT) is used
and the null and alternative hypotheses and their likelihoods
are defined.

However before outlining the details of the hypothesis
testing, since the ADS-B measurements are longitude, latti-
tude, height and speed, the state is transformed to Cartesian
coordinates (comprising 3D location and velocity).

zADSB
g = g(zADSB

c ) (13)

Where c denotes Cartesian coordinate system, and g Geodetic
coordinates. This transformation uses an approximation to
transform the associated covariance, resulting in the ADS-B
covariance Rk.

In the remainder of this section, ADS-B measurements are
considered to be in Cartesian coordinates.

A. Hypothesis Definition

H0 : No spoofing
H1 : Spoofing

The probability of detecting spoofing is defined as

p(choose H1|H1) = Pd (14a)

and the associated probability of miss detection as

p(choose H0|H1) = Pm = 1− Pd (14b)

The probability of false detection of spoofing is defined as

p(choose H1|H0) = Pfa (14c)

and the probability of a correct acceptance of the ADS-B
measurement as

p(choose H0|H0) = Pa = 1− Pfa (14d)

The likelihood ratio of the ADS-B message being spoofed
or not is defined as the ratio of the likelihoods of the ADS-
B message conditioned on the received TDOA measurements
under H0 and H1, respectively

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2025 at 07:23:37 UTC from IEEE Xplore.  Restrictions apply. 



L(zADSB
k ) =

p
(
zADSB
k |Zk,H0

)
p
(
zADSB
k |Zk,H1

) H0

≷
H1

τ (15)

where Zk represents all TDOA measurements received so far.
1) Null Hypothesis: The likelihood under the null hypoth-

esis, i.e. no spoofing, is given by;

p
(
zADSB
k |Zk,H0

)
=

∫
p(zADSB

k |xk,H0)p(xk|Zk)dxk
(16)

The first term under the integral is the likelihood on a
non-spoofed ADS-B measurement. With the above modeling
assumptions the likelihood is given by

p
(
zADSB
k |xk,H0

)
=

1√
|2πRk|

exp

(
−1

2
||zADSB

k − xk||2Rk

)
(17)

The second term under the integral is the posterior density
on the target state given all TDOA measurements. This is, as
explained before, in general a non-Gaussian density, which is
represented with the particle cloud computed from the particle
filter. This implies that the integral can be approximated with

p
(
zADSB
k |Zk,H0

)
≈ . . .

. . .
1

Ns

Ns∑
i=1

1√
|2πRk|

exp

(
−1

2
||zADSB

k − xi
k||2Rk

)
(18)

2) Spoofing Hypothesis: Under the spoofing hypothesis
p
(
zADSB
k |Zk,H1

)
represents the likelihood of a spoofed tar-

get message. It is assumed that this likelihood does not depend
on the TDOA measurements. Secondly, the only information
about a spoofed target message is that it will be within
the area where one of the ground stations can receive the
message, therefore this is represented with a uniform pdf over
a relatively large volume V

p
(
zADSB
k |Zk,H1

)
=

1

V
(19)

B. Likelihood Ratio Test

Combining the likelihoods p(zADSB
k |Zk,H0) and

p(zADSB
k |Zk,H1), the Likelihood Ratio can be approximated

as

L(zADSB
k ) ≈ . . .

. . .
1

Ns

Ns∑
i=1

V√
|2πRk|

exp

(
−1

2
||zADSB

k − xi
k||2Rk

)
H0

≷
H1

τ

(20)

For each ADS-B message the LRT is computed and com-
pared against the threshold τ . Three methods of determining
τ are considered namely, the Minimum Bayes Risk (MBR),
Neyman-Pearson (NP) and Minmax (MM). The MBR relies
on knowledge of the prior probability on spoofing and the

definition of costs that are associated with the decision errors,
NP only requires a pre-specified probability of false alarm,
while MM only relies on the definition of costs associated
with the decision errors.

1) Minimum Bayes Risk: Applying the setting of the thresh-
old according to the MBR, two ingredients are required.
At first prior probabilities associated with the hypotheses
are assumed to be known as π0 and π1, respectively. The
prior probabilities can be set by the user depending on their
perception of the probability that spoofing can occur. Secondly,
costs associated with the decision error are defined as C10

and C01, representing the cost of a false alarm and a miss,
respectively. The costs can be set by the user reflecting the
relative costs associated with the decision errors.

Having specified these parameters, the MBR aims at mini-
mizing the Bayesian (average) risk

R(τ) = C10π1Pm(τ) + C01π0Pfa(τ) (21)

where the minimum risk is obtained by setting the threshold
according

τMBR =
C01

C10

π1

π0
(22)

This is a very elegant and computationally tractable result.
It is commonly less easy to compute the attained minumum
risk, but usually that is of less interest to the user. This test is
usually preferred over alternatives, provided appropriate prior
probabilities and costs can be selected.

2) Neyman-Pearson: In the NP procedure, the threshold is
set such that the test maximizes the probability of detection Pd

for a desired probability of false alarm Pfa. Commonly, like
in this case, after selection of the Pfa, there are no degrees-
of-freedom for maximizing the Pd. Therefore, it remains to
specify the threshold in terms of the Pfa, which is given by
the following integral expression.

Pfa(τNP ) =

∫
L(zADSB

k )>τNP

p
(
zADSB
k |Zk,H0

)
dzADSB

k

(23)
with p

(
zADSB
k |Zk,H0

)
as defined in Eq. (16).

An explicit analytic expression for this integral is generally
impossible to obtain. In this particular case, the assumption
of a Gaussian distribution is being used. The first pdf in Eq.
(16), p

(
zADSB
k |xk,H0

)
, is Gaussian, due to the measurement

modeling assumptions. The second pdf in the same equation,
p(xk|Zk), is available as a particle cloud as computed by the
SIR particle filter, Here, this density is approximated by a
Gaussian with matching first and second order statistics

p(xk|Zk) ≈ N (xk/k,Pk/k) (24)

with xk/k and Pk/k, the mean and the covariance of the
particle cloud {xi

k}, i = 1, . . . , Ns, respectively.
Using this approximation, the conditional pdf on the ADS-B

message can be approximated with

p
(
zADSB
k |Zk,H0

)
≈ N (xk/k,Sk) (25)
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with Sk = Pk/k +Rk.
For the four dimensional ADS-B message (longitude, latti-

tude, height, and speed), assuming the Gaussian approxima-
tion, the probability of false alarm can be computed as [14]

Pfa(τNP ) =

(
1 +

G(τNP )

2

)
exp

(
−G(τNP )

2

)
(26)

with the gate G(τNP ) defined as function of the NP threshold
τNP according to

G(τNP ) = −2 ln
(τNP

V

√
2π|Sk|

)
(27)

Using these expressions, a relationship between false alarm
probability and the detection threshold has been obtained,
which can be inverted, using one of the available mathematics
toolboxes. This formula is quite involved and is left out of the
paper.

3) Minmax: An alternative to the NP-test is the Minmax
test, which is based on assuming no knowledge of the prior
probability π0, and π1 = 1−π0. Under the Minmax approach
the maximum Bayes Risk is minimized

τMM = argmin
τ

(
max

0≤π0≤1
R (π0, τ)

)
(28)

The conditional risks are defined as,

R0(τ) = C10Pm (29a)

R1(τ) = C01Pfa (29b)

These two are combined to obtain the total Bayes Risk,

R(π0, τ) = π0R0(τ) + (1− π0)R1(τ) (30)

It has been shown in [15] that when the two conditional
risks are equal, the maximum Bayes Risk is minimized. The
threshold can thus be obtained by Eq. (31)

R0(τ) = R1(τ) (31)

R0(τ) can be found in Eq. (26), and Pm by [14]

Pm =
1

V

π2

2

√
|Sk|G(τMM )2 (32)

V. RESULTS

A. Detection Performance

The validation algorithm is tested on a wide-area
multilateration system in operation by the LVNL designed
by ERA. Three flights are inspected in the analysis, Flight A
is a north-bound flight from Schiphol Airport at FL300, B
similar and containing large amounts of measurements (see
figure 2)where the number of ground stations is below four,
and flight C a helicopter operating at FL25.

52°N

53°N

54°N

55°N

L
a
ti
tu

d
e

2°E 4°E 6°E 8°E

Longitude

 50 mi 

 100 km 

Ground Stations

Flight A

Flight B

Flight C

Fig. 1. Overview of ground stations and flights

Table I shows the percentage of received ADS-B messages
that are validated by the MBR, NP and MM respectively.
Detailed investigation shows that in flight C the PF is unable
to correctly estimate the height of the target due to very bad
vertical dilution of precision, this is a known TDOA issue.
Velocity and horizontal position are estimated correctly by the
PF. Furthermore, The algorithm performs well and as expected
in nominal operations.

MBR NP MM
Flight A 100% 100% 100%
Flight B 100% 100% 100%
Flight C 96.0375% 95.2738% 100%

TABLE I
PERCENTAGE OF MESSAGES VALIDATED

Figure 2 shows the distribution of number of ground
stations that receive each ADS-B message for flight B. This
histogram illustrates the amount of measurements that can be
used for validation. Measurements from two or three GSs are
generally ignored by conventional TDOA systems.

Figures 3 and 4 illustrate a scenario where the use of all
measurements leads to an increased coverage. At low altitudes
the ADS-B messages are received by few GSs, thus in such
scenarios the coverage is increased. Figure 4 suggest a bias in
the PF. But it must be noted un-calibrated measurements are
used. Leading to a difference in performance compared to the
operational system in use by LVNL. The increased covered
area is largely dependent on the area which is covered by
two or three GSs. In this scenario at take-off the increase is
marginal, and at final approach, the increased coverage is about
400 meter. For en-route traffic this area is expected to increase
due to the wider spread of GSs at higher altitudes.

B. Spoofing Detection Performance

In this section two different dynamic spoofing scenarios
are investigated based on flights B and C. The scenario is
such that an airborne target alters its ADS-B location from
beginning to the end of the flight, with an offset in the
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Fig. 2. Histogram showing the distribution of GSs receiving each ADS-B
message for flight B

52°56'N

52°58'N
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Longitude

Esri, TomTom, Garmin, Foursquare, GeoTechnologies, Inc, METI/NASA,

USGS
 1 mi 

 2 km 

Particle Filter track

Conventional TDOA Track

ADS-B only track

Fig. 3. Track of start of flight B

horizontal plane or vertical plane. The spoofed trajectory is a
parallel track with respect to the real airborne target.

1) Flight B: The real transmitted ADS-B messages are
offset with the indicated error in the figures 5 and 6. Results
show that the NP detector is the most sensitive to detecting
the offset in the real ADS-B messages with respect to
the true location of the target. Figure 6 illustrates that all
three detectors have better performance in detecting vertical
spoofing when compared to horizontal spoofing. Likely the
result of the associated ADS-B and PF uncertainty in each
dimension.

A pattern can be seen in the data where initially the target
is accepted as a true ADS-B message, but as the filter closes

53°34'N

53°36'N

53°38'N

L
a

ti
tu

d
e

4°08'E 4°10'E 4°12'E 4°14'E 4°16'E 4°18'E

Longitude

Esri, TomTom, Garmin, Foursquare, GeoTechnologies, Inc, METI/NASA,

USGS
 1 mi 

 1 km 

Particle Filter track

Conventional TDOA Track

ADS-B only track

Fig. 4. Track of end of flight B

in on the true location, and the uncertainty decreases, all three
hypothesis test eventually decide the message is spoofed.

09:58 10:00 10:02 10:04 10:06 10:08 10:10 10:12

Time (hour:min) Nov 30, 2022   

Offset 500m

Offset 750m

Offset 1000m

Offset 1250m

Offset 1500m

Offset 1750m

MM: 100%
MBR: 100%
NP: 99.92%

MM: 100%
MBR: 99.9%
NP: 98.84%

MM: 100%
MBR: 98.17%
NP: 87.09%

MM: 99.85%
MBR: 71.91%
NP: 33.84%

MM: 83.17%
MBR: 15.7%
NP: 3.14%

MM: 16.98%
MBR: 0.75%
NP: 0.08%

Validation Results Horizontal Spoofing

Validated ADS-B message

Spoofed ADS-B message

Fig. 5. Flight B: Spoofing detection results for horizontal spoofing. The right
hand side shows the percentage of messages incorrectly identified as valid for
each hypothesis test. Left hand side shows the offset compared to the true
ADS-B track

2) Flight C: Validation results show some irregularities in
performance in figure 7 and 8. The cause of the rejection of
messages is the bad estimation of the correct height and not
the offset of the spoofed messages. This again is the result of
a very high vertical dilution of precision.

C. Tuning Parameters

Table II shows the tuning variables in the PF that are used
in generating the results.

VI. CONCLUSION

Ambiguous TDOA measurements are used for ADS-B
validation. This method can validate the ADS-B messages
before a traditional TDOA system can even track the target.
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Fig. 6. Flight B: Spoofing detection results for vertical spoofing. The right
hand side shows the percentage of messages incorrectly identified as valid for
each hypothesis test. Left hand side shows the offset compared to the true
ADS-B track

Fig. 7. Flight C: Spoofing detection results for horizontal spoofing. The right
hand side shows the percentage of messages incorrectly identified as valid for
each hypothesis test. Left hand side shows the offset compared to the true
ADS-B track

Validation can thus be done before the location of the target
is determined independently. The ADS-B location message (if
validated) can then already be used by ATC and the coverage
of the TDOA / ADS-B system is increased from the area
where four GSs receive a message, to the area there two GSs
receive a message.

A likelihood ratio test is used to determine if the ADS-
B message is spoofed. Determining a threshold value can be
somewhat trivial, therefore, three different tests are explored to
find which one is best suited. Results have shown that each test
is capable of correct ADS-B validation. The Neyman-Pearson
has the highest threshold generally, followed by the MBR and
the Minmax. It must be noted that these obtained thresholds
are completely tuning dependent. Each test in general is able

Fig. 8. Flight C: Spoofing detection results for vertical spoofing. The right
hand side shows the percentage of messages incorrectly identified as valid for
each hypothesis test. Left hand side shows the offset compared to the true
ADS-B track

Process noise Tuning
location variance σ2

x = 72 σ2
y = 72 σ2

z = 42

velocity variance σ2
vx = 12 σ2

vy = 12 σ2
vz = 0.52

p(xk,H1) Tuning
location Vx = 220e3 Vy = 523e3 Vz = 21e3

velocity Vv = 225e3

Hypothesis Test Tuning MBR MM NP
π0 0.75
π1 0.25
C00 0 0
C01 1 1
C10 1 1
C11 0 0
Pfa 10−6

PF Ns measurement std.
5e4 σv = 10−7

ADS-B Velocity var.
σ2
a = 42

TABLE II
TUNING VARIABLES

to detect spoofed position messages from a range 750m to
1000m onwards. Again, here is must be noted that these results
depend on the quality of the provided measurements. The test
that is best suited completely depends on operator preference,
availability of suited prior probabilities and reasonable costs
that can associated with the possible decision errors.
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