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ABSTRACT: Deep and shallow uncertainty are defined and contrasted with regard to messaging the 
uncertainty about climate change. Deep uncertainty is often traced back to the writings of Frank Knight, 
where in fact it simply meant subjective probability. Although Knight envisioned a scientifically grounded 
quantification of subjective uncertainty, deep uncertainty is frequently invoked to disable quantification, 
with attendant problems in communicating and propagating uncertainty through chains of reasoning. 
These issues together with science based uncertainty quantification are illustrated with recent applications 
to ice sheet dynamics. The issues of performance assessment and validation are addressed.

less than 9 and also high confidence that it is strictly 
greater than 2. Do you have high confidence that it 
is one of the six integers 3, 4 … 8? If six statements 
each have a 0.8 chance of being true, the chance 
that all are true could be anything from 0 to 0.8. 
Note that in the natural language it is not even clear 
whether “all statements have a 0.8 chance of being 
true” means “each statement has a 0.8 chance of 
being true” or “there is a 0.8 chance that all state-
ments are true”. The natural language is a very poor 
vehicle for reasoning under uncertainty.

It gets worse. Consider the second statement. Are 
the authors highly confident that ‘the earth is warm-
ing AND humans are responsible’, or are they highly 
confident that ‘GIVEN that the earth is warming, 
humans are responsible’? These are very different 
statements. Since the Earth’s warming is asserted in 
the first statement, perhaps the second statement is 
meant. In that case, the likelihood of both statements 
holding is the product of their individual likelihoods. 
If the first two statements enjoy “high confidence”, 
then both can hold with only “medium confidence”. 
Scouring the text for the authors’ meaning is futile; 
were there any determinate meaning, no scouring 
would be needed. Instead of reasoning under uncer-
tainty, the authors do what most of us do most of 
the time, they just throw words at it.

The greatest barrier to communicating uncer-
tainty is not some deficiency of the target audi-
ence; it is a deficient understanding of uncertainty 
on all sides. The logic of partial belief  is subjective 
or Bayesian probability. Specialists have known 
how to “do” uncertainty for a long time, and it 
involves specialist training. You can’t do it by the 
seat of your pants, as the National Research Coun-
cil has amply shown. We are now facing decisions 

1 THE INEVITABILITY OF 
UNCERTAINTY QUANTIFICATION

The US National Research Council 2010 report 
Advancing the Science of Climate Change (http://
www.nap.edu/catalog.php?record_id=12782) illus-
trates reasoning and communicating under uncer-
tainty. Using the IPCC AR4 calibrated uncertainty 
language, the report bases its first summary con-
clusion on high confidence (at least 8 out of 10) or 
very high confidence (at least 9 out of ten) in six 
statements1 (p. 4,5):

1. Earth is warming
2. Most of the warming over the last several dec-

ades can be attributed to human activities
3. Natural climate variability ... cannot explain or 

offset the long-term warming trend.
4. Global warming is closely associated with a 

broad spectrum of other changes,
5. Human-induced climate change and its impacts 

will continue for many decades,
6. The ultimate magnitude of climate change and 

the severity of its impacts depend strongly on 
the actions that human societies take to respond 
to these risks.

What is the confidence that all six of these state-
ments hold? Pick a random integer between 1 and 
10. You can have high confidence that it is strictly 

1. “As discussed in Appendix D, high confidence indicates 
an estimated 8 out of 10 or better chance of a statement 
being correct, while very high confidence (or a statement 
than an outcome is “very likely”) indicates a 9 out of 10 
or better chance.”
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that could eventually impact the habitability of 
the planet as we know it, and we will take those 
decisions without knowing exactly how current 
actions affect the future climate. It’s all about 
uncertainty and, not surprisingly, uncertainty 
has become a key part of the climate messaging: 
deniers and contrarians use uncertainty to shift the 
proof burden, alarmists use uncertainty to frighten 
us into action; science messagers, crafty or clumsy, 
magnify their certainty. The way forward starts 
with getting the uncertainty narrative right, and 
this involves more than hurling words.

Specialists in topics newly confronting deci-
sion under uncertainty often improvise their own 
approaches. Following the introduction of expert 
systems in the 1970’s, the artificial intelligence com-
munity experienced an explosion of “alternative 
representations of uncertainty” through the 1980’s, 
including certainty factors, degrees of possibility, 
fuzzy sets, belief functions, random sets, imprecise 
probabilities, non-monotonic logic, imprecise prob-
abilities, among many others. The proceedings of the 
premier conference Uncertainty in Artificial Intel-
ligence have been digitized since 1985 and provide 
a unique record of the development of alternative 
representations of uncertainty. Figure 1 shows the 
relative word fragment count of various approaches 
in 1985. The largest component is “belief function”, 
followed by “Bayes”, “fuzzy” and “certainty fac-
tor”. “Bayes” accounts for 26% of the total.

In 2000 the balance has shifted; “Bayes” now 
accounts for 79% of the count. In 2012 the count 
is 97% “Bayes”.

Alternative representations of uncertainty re-
emerge in new fields. This paper is a high pass over 
the their entrance in climate science, reducing tech-
nical jargon to the minimum. The logic of partial 
belief  is rehearsed at the 30,000 ft level. Imprecise 

probabilities, Deep, and Knightian uncertainties 
are overflown. For some uncertainties, the appar-
ent depth may result from the lack of operational 
meaning; this is called shallow uncertainty. The 
alternative to hurling words at uncertainty is to 
quantify it through a process of rational consensus 
based on empirical measures of performance. The 
last two sections introduce this.

2 THE LOGIC OF PARTIAL BELIEF

The subjectivist interpretation of probability goes 
back to Thomas Bayes (1763), but the operational 
measurement of partial belief as subjective prob-
ability dates from Ramsey (1926). This brief section 
rehearses the best modern rendering, namely that 
of Savage (1954). Suppose that receiving $10,000 is 
better than receiving $100 in all situations. The event 
France wins the next soccer world cup is “qualitatively 
more probable than” USA wins the next world cup’ 
for a subject if and only if (s)he prefers the lottery, 

$10,000 if France …; $100 otherwise
to
$10,000 if USA …; $100 otherwise,

Figure 1. Word fragment counts in Uncertainty in Arti-
ficial Intelligence, 1985.

Figure 2. Word fragment counts in Uncertainty in Arti-
ficial Intelligence, 2000 (left) and 2012 (right).
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and if  the relation is additive: 

$10,000 if France OR Belgium …; $100 otherwise
is preferred to
$10,000 if USA OR Belgium …; $100 otherwise.

Other axioms require that the qualitative prob-
ability relation is transitive, that it is not influenced 
by the size of the (positive) rewards and that there 
is a sufficient number of disjunct events. If  your 
preference complies with these axioms then there is 
a unique probability measure P such that event A is 
qualitatively more probable than event B if  and only 
if  P(A) ≥ P(B). Ramsey’s initial theory used prefer-
ence equalities between “certainty equivalents” 
and gambles, and has led to the persistent miscon-
ception that subjective probability is restricted to 
betting. This is not true, and the step from a quali-
tative to quantitative probability is quite small. 
Suppose we partition all possibilities into disjoint 
events A1 ... A2n arranged in increasing qualitative 
probability, and such A2n is not qualitatively more 
probable than A1 ∪ A2. Form a new partition B1…
Bn such that B1 = A1 ∪ A2n, B2 = A2 ∪ A2n-1, etc. 
The B’s will be more uniform than the A’s. Suppose 
that event X is qualitatively more probable than 
the union of the first k of the B’s and qualitatively 
less probable than the union of the first k + 1; then 
the probability of X is approximately k/n, and as 
n gets large the numerical probability is uniquely 
determined.

Probability in this sense is the logic of partial 
belief. Logic does not tell us what to believe, it tells 
us, for example, if  we believe both A and If A then 
B then we should also believe B. Logic is normative; 
it says how we should transfer belief. It does not 
describe how people actually reason. Most people 
think that the following is a valid argument:

“Only the fittest species will survive”
“Cockroaches are the fittest species”
Therefore
“Cockroaches will survive”.2

The logic of partial belief  is similar; it does not 
tell us the degree to which we should believe that 
“Bill, who is dull and good in math, is an account-
ant”, but it says the degree to which we believe 
“Bill is a jazz musician” cannot be smaller than 
the degree to which we believe “Bill is a jazz musi-
cian and an accountant” (Tversky and Kahneman 

1982). Yet people commit such errors in droves. 
The paradoxes of Allais (1953) and Ellsberg (1961) 
describe choice situations in which many people 
exhibit behaviour violating the axioms guarantee-
ing the representation of partial belief  as subjective 
probability. McCrimmon (1968) found that busi-
ness executives willingly corrected violations of the 
axioms, when made aware of them. Other authors 
(Kahneman and Tversky, 1979; Schmeidler, 1989; 
Quiggin, 1993; Wakker, 2010) account for such 
paradoxical choice behaviour by transforming the 
probabilities of outcomes into “decision weight 
probabilities” which play the role of likelihood in 
computing optimal choices but do not obey the 
laws of probability. Wakker (2010, p. 350) notes 
that decision weighting also fails to describe some 
empirically observed behaviour patterns.

To be sure, there are limitations in the represen-
tation of partial belief  as subjective probability:

1. First and foremost, partial belief  is personal, 
that is, it pertains to an individual. If  a group of 
individuals’ partial beliefs satisfy certain math-
ematical constraints, then by jointly observing 
various phenomena and updating their beliefs 
on the results of observations, members of the 
group will converge to a common probability 
distribution about those phenomena. Absent 
this “natural” convergence mechanism, differ-
ing partial beliefs are unavoidable.

2. Just as propositional logic does not capture 
every valid passage of thought, subjective prob-
ability does not capture all valid reasoning about 
partial belief. Events which I myself  can readily 
cause to occur violate Ramsey’s condition of 
“ethical neutrality” and illustrate this limita-
tion. My partial belief  in the event that I will 
clean my cellar next week cannot be assigned a 
probability via lotteries: $10 if I clean my cellar 
next week, $0 else would not be preferred to $10 
if Heads with a fair coin, $0 else; but changing 
the rewards from $10 to $1,000,000 in both lot-
teries would change my preferences.

3. The theory describes convergence via obser-
vation, but says nothing about other ways of 
reaching consensus in the face of uncertainty. 
One can obey the rules of logic and still be 
“irrational” in a wider yet less well defined sense 
of the term. The same holds for partial belief.

3 IMPRECISION, PROBABILITY 
INTERVALS AND FUZZINESS

Imprecise probabilities were introduced by Walley 
1991 as differences in certainty equivalents when 
buying and selling lotteries. Together with fuzzy sets 
they have appeared in the climate literature (see for 

2. 80% of third year mathematics students at the Delft 
Technical University judged this a valid syllogism. To see 
that it is not valid, compare: “Only women get pregnant, 
Maria is a woman, therefore Maria gets pregnant”.



16

example Fu et al. 2005, Hall et al. 2007, Ghosh and 
Mujumdar 2009, Kriegler et al. 2009). Without dis-
puting the substantive contribution these authors 
have made, we briefly discuss the use imprecise 
probabilities in the uncertainty accounting.

The idea is that we, or experts, cannot assess a 
precise degree of belief, or precise subjective prob-
ability P that:

Contribution to sea level rise from Ice Sheets exceeds 
1 meter in 2100.

Instead experts should give an interval, say 
[0.1, 0.5] in which P is certain to lie. The bounds of 
this interval are quite precise—but second, third, ... 
order imprecisions can deal with that. The uniniti-
ated ask, “if  you’re uncertain about a value between 
0.1 and 0.5, why not take a distribution over this 
interval and use its expected value as an estimate of 
P?” That would confuse imprecision with probabil-
ity, goes the response: you can’t put a probability 
on imprecise numbers. Denying the applicabil-
ity of probability distributions within probability 
intervals has been explained as follows:

The interval lacks any concentration of probability 
or likelihood within the interval, so the actual value 
is not more likely to be at any one place or another 
within the interval. But neither is there necessarily 
a uniform probability distribution over the interval. 
Instead the actual value has complete latitude to be 
anywhere within the interval with probability one. 
(Ferson et al. 2007, p. 19).

Bounding or “simple interval measures” of 
course are not new; the question is the extent to 
which they can aid complex uncertainty account-
ing. The Probabilistic Risk Assessment Procedures 
Guide o(US Nuclear Regulatory Commission 
(1983) gets it right:

The simplest quantitative measure of variability in 
a parameter or a measurable quantity is given by an 
assessed range of the values the parameter or quan-
tity can take. This measure may be adequate for 
certain purposes (e.g., as input to a sensitivity analy-
sis), but in general it is not a complete representation 
of the analyst’s knowledge or state of confidence and 
generally will lead to an unrealistic range of results 
if such measures are propagated through an analysis. 
(p. 12–12)

If  different probability intervals are generated 
by different experts, what do we do with them? 
Following Hall et al. (2007) we could take weighted 
combinations of the lower bounds, in order to be 
“conservative”. If  there is no way to distinguish 
good and poor probability interval assessments 
then we can do anything else with equal justice. 

A very large measure of arbitrariness is introduced 
in this way.

Fuzziness as a representation of uncertainty has 
also appeared in the context of emissions scenarios 
(Fu et al. 2005). Regarding the question whether 
fuzziness represents uncertainty, the discussion can 
be very brief. Suppose you get an email from an 
unknown Quincy, and you are equally uncertain 
that Quincy is a Man or a Woman (Cooke 2003). 
The uncertainty that Quincy is a Man would be 
represented by a fuzzy membership function 
µM(Q) taking a value in the interval [0,1] reflect-
ing the degree to which Quincy is believed to be in 
the set of Men. A similar function µW(Q) describes 
the degree to which Quincy is believed to be in the 
set of Women. The uncertainty that Quincy is a 
Man AND a Woman would be represented as the 
membership µM∩W(Q) in the intersection of the sets 
of Men and Women. In the original theory, this 
would be the minimum of µM(Q) and µW(Q). Since 
you are equally uncertain whether Quincy is a Man 
or a Woman, µM(Q) = µW(Q) = ½; and Quincy is a 
Man AND a Woman with value 1/2. Your uncer-
tainty that Quincy is either a Man or a Woman 
would be the maximum of these uncertainties, also 
1/2. Combination rules have proliferated, but they 
all share the feature: the uncertainty of belonging 
to an intersection of two sets (M and W) is some 
function of the uncertainties µM(Q) and µW(Q), 
and does not depend on M and W themselves. Par-
tial belief  does not behave that way.

4 DEEP AND KNIGHTIAN 
UNCERTAINTY

Denying the application of probability within 
intervals of imprecision is related to the notion that 
there are “deep” uncertainties which defy quantifi-
cation. One often hears that climate change is rife 
with deep uncertainty. The first documented use of 
the term appears to originate in the 2003 Senate 
testimony of the late Stephen Schneider:

“In fact, the climate change debate is characterized 
by deep uncertainty, which results from factors such 
as lack of information, disagreement about what is 
known or even knowable, linguistic imprecision, sta-
tistical variation, measurement error, approxima-
tion, subjective judgment, and disagreement about 
structural models, among others (see Moss and Sch-
neider, 2000).” U.S. Senate Committee on Com-
merce, Science and Transportation Hearing on 
“The Case for Climate Change Action” October 1, 
2003 Stephen H. Schneider.

A search for a precise definition came no farther 
than: “By deep uncertainty we mean uncertainty 
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that results from myriad factors both scientific 
and social, and consequently is difficult to accu-
rately define and quantify” (Kandlikar et al. 2005). 
For an uncertainty analyst, that is standard fare. 
Although Moss and Schneider (2000, p. 36) advo-
cate a Bayesian or subjectivist approach in which 
experts assess their subjective probability distribu-
tions, “deep uncertainty” seems to have morphed 
into apology for not quantifying uncertainties, into 
which breach the imprecisionists have sprung. The 
sobriquet is that deep uncertainty is “Knightian”.

Economist Frank Knight’s book Risk, Uncer-
tainty and Profit (1921) appeared in the same year 
as John Maynard Keynes’ Treatise on Probability, 
well before F.P. Ramsey’s operational definition 
of partial belief  in terms of observed preference 
behaviour (1931) and before R. von Mises’ frequen-
tist interpretation of probability (1928). The latter 
works have framed most of the subsequent discus-
sions on the foundations of probability. Keynes 
believed that probabilities of various events were 
incommensurable and that probabilities should 
be organized as partial orderings. For Knight, 
“risk proper” is measurable by resolving outcomes 
into equi-probable alternatives (Knight 1921, 
III.VII.34). By aggregating risks, losses can be 
converted into fixed costs and these would not give 
rise to profits. “Uncertainty”, in contrast, concerns 
“partial knowledge” for which “the conception of 
an objectively measurable probability or chance 
is simply inapplicable” (Knight 1921, III.VII.47). 
Many authors have seized on such statements 
to argue that uncertainty in climate change is 
unquantifiable. A typical example is Claude Henry 
(2006), who also performs a Mormon baptism of 
Heisenberg into his faith:

“Keynes and Knight make a clear distinction between 
two kinds of uncertainty: the first one, called risk, 
may be characterized by probabilities, while this is 
not possible for the second one. Here we deal with 
decision-making under genuine uncertainty, no prob-
ability distributions being available. ...Uncertainty 
in quantum mechanics is strictly probabilistic, and 
Werner Heisenberg, had he been an economist, 
would have called “principle of risk” his famous 
Uncertainty Principle.”

Many economists, not the least of whom is Sir 
Nicholas Stern (2008), have averred that where 
“we don’t know the probability distribution” then 
“Knightian uncertainty” kicks in, which cannot be 
characterized by probabilities. Regrettably, these 
authors did not read further in Knight:

“We can also employ the terms ‘objective’ and ‘sub-
jective’ probability to designate the risk and uncer-
tainty respectively, as these expressions are already 

in general use with a signification akin to that pro-
posed” (Knight 1921, III.VIII.1).

Knight, writing in 1921, did not know how to 
measure subjective probabilities. Neither did he 
know how to measure “risk” or objective probabili-
ties. It was, after all, von Mises (1928) who empha-
sized that objective probabilities can be measured 
as limiting relative frequencies of outcomes in a 
random sequence. Like many authors of this period, 
Knight appears to have been unaware of the role 
of (in) dependence assumptions, and believed 
that objective probabilities are much more objec-
tive than modern probability warrants. It is indeed 
significant that economists claiming that climate 
uncertainty cannot be described with probability 
harken back to a period when probability, both 
objective and subjective, were not well understood.

This is not to gainsay that Knight was ahead of his 
times. The idea of calibrating the probability judg-
ments of the individual “business man” prefigures 
the modern use of structured expert judgment.

“A still more interesting complication, and one of 
much greater practical significance, is the possibility 
of forming a class of similar instances on entirely dif-
ferent grounds. That is, instead of taking the decisions 
of other men in situations more or less similar objec-
tively, we may take decisions of the same man in all 
sorts of situations. It is indisputable that this procedure 
is followed in fact to a very large extent and that an 
astounding number of decisions actually rest upon such 
a probability judgment …”. (Knight, 1921 III.Vii.43)

5 SHALLOW UNCERTAINTY

Shallow uncertainty is uncertainty resulting from 
undefined terms, careless formulation, lack of 
operational definitions and overall intellectual 
sloth. The good news is that shallow uncertainty, 
originating from our own insouciance regarding 
the meaning of words, is much easier to remove 
than uncertainty about our future climate.

As an example, consider the Social Discount 
Rate (SDR) often written as:

SDR = ρ + ηG(t)

where ρ is the rate of pure time preference, η is the 
coefficient of constant relative risk aversion and 
G(t) is the time average growth rate of per capita 
consumption out to time t. It is generally recognized 
that the discount rate is an important driver, if  not 
the most important driver, in the economic mod-
els for climate change. Some (e.g. Stern 2008) see a 
strong normative component. Others infer values 
for ρ and η from data (Evans and Sezer 2005). 
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Nordhaus (2008) equates the SDR to the observed 
real rate of return on capital with a constant value 
for G(t), and sees ρ and η as “unobserved norma-
tive parameters” (p. 60) or “taste variables” (p. 
215) which are excluded from uncertainty quanti-
fication. Pizer (1999) assigns distributions to ρ and 
η. Nordhaus and Popp (1996) put a distribution 
on ρ. Weitzman (2001) fits a gamma distribution 
to SDR based on an expert survey. Frederick, 
Lowenstein and O’Donoghue (2002, p. 352) note 
that “virtually every assumption underlying the 
DU [discounted utility] model has been tested and 
found to be descriptively invalid in at least some 
situations”. They also cite the founder of dis-
counted utility, Paul Samuelson: “It is completely 
arbitrary to assume that the individual behaves so 
as to maximize an integral of the form envisaged 
in [the DU model]”( p. 355) Weitzman (2001) and 
Pizer and Newell (2003) show that uncertainty in 
the discount rate drives long term rates down.

We may distinguish variables according to 
whether their values represent

a. Policy choices
b. Social preferences
c. Unknown states of the physical world.

Uncertainty quantification is appropriate for 
(b) and (c). It is not appropriate for (a) if  we are the 
chooser of policies. Various authors assign time 
preference and risk aversion to both (a) and (b).

Questions arise as to the operational meaning 
of society’s rate of pure time preference, How, with 
sufficient means and license, would this be meas-
ured? Similar questions pose themselves regarding 
society’s coefficient of risk aversion, the utility of 
consumption, the preferences of a representative 
consumer, etc. If  the modelling community has not 
agreed on operational definitions for such terms, 
then the models are not ready for uncertainty 
analysis. The adage is: If  you don’t know what it 
means, you can’t be uncertain about it.

6 EXPERTS

Saying ‘we don’t know the probability distribu-
tion’ implies that probability is an objective prop-
erty of the world which we happen not to know. 
Partial belief  is not a property of the world in this 
sense. Introspection suffices for quantifying partial 
belief; there is nothing to not know. The rub is that 
each individual is entitled to his/her own subjective 
probability distributions. Those most knowledge-
able about a scientific field, experts, will also have 
differing degrees of partial belief  about variables of 
interest. Expert disagreement is inherent in choice 
under uncertainty. Indeed, if  the science ‘isn’t there 
yet’, experts are supposed to disagree. This section 

broaches the issue of using experts to quantify 
uncertainty. If  shallow uncertainty regarding the 
meaning of words is under control, there is no 
impediment to experts quantifying their degrees of 
belief  as subjective probability distributions.

Data is helplful at this point. The following 
graph from Bamber and Aspinall (2013) shows the 
results of eliciting subjective probability distribu-
tions from 12 experts regarding the 21th century 
contribution to sea level rise from the Greenland 
ice sheet in mm/yr. The same experts were elicited 
in 2010 and in 2012. “M” means that the expert 
is primarily a modeller, “O“ denotes an observa-
tionalist. Experts assessed the 5, 50 and 95 percen-
tiles of their subjective probability distributions. A 
value of 3 mm/yr means that by 2100 the Green-
land ice sheet will have contributed roughly 15 cm 
to sea level rise.3

The experts’ 95 percentiles for this contribution 
range from 15 cm to 120 cm for the 2012 elicita-
tion. What are we to do with this? Clearly we could 
cherry pick different experts and convey very dif-
ferent messages. Some authors argue that the 
experts’ distributions should not be combined; the 
diversity of expert views is the proper message to 
the decision makers (Morgan et al. 2009, Morgan 
and Henrion 1990). Indeed, if  the raw uncombined 
expert data provide sufficient information to take 
a decision, then combination is unnecessary. In 
many cases, like the Greenland ice sheet example, 
the raw data is not sufficient; if  we are 95% sure 
that this contribution is less than 15 cm in 2100, we 
would take different decisions than if  there is a 1 in 
20 chance of a contribution exceeding 1.2 meters.

A strong argument in favour of non-combina-
tion is that any combination procedure requires 

Figure 3. 21st century contribution to sea level rise 
from the Greenland ice sheet [mm/yr].

3. This assumes effectively zero contribution in 2000 and 
linear growth rate of the contribution to its 2100 value.
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justification in order to deflect allegations of cherry 
picking. Combining the experts’ distributions with 
equal weight entails justifying that experts perform 
these probabilistic assessment tasks equally well. 
What does it mean to perform probabilistic assess-
ment tasks well or badly? A discussion of perform-
ance must precede a discussion of combination. 
Expert performance data was collected for the ice 
sheet study, but not published4; we turn to other 
sources.

6.1 Expert performance

An expert assessing an unknown quantity can be 
regarded as a new sort of measuring instrument. 
The scientific employment of this instrument 
requires trying it out on things we know before 
applying it to things we don’t know. With sufficient 
time and patience we could ask experts to give 
point predictions of things we later observe, and 
assess each experts’ error distribution. It doesn’t 
sound easy, but it sounds easier than it is. How do 
we add the error distance for an item expressed in 
nanometres with another expressed in kilograms 
per square kilometer? If  we change the first to 
meters, should we change the second? Even if  the 
variables are both in years, an error of 3 years in 
assessing the mean age of an aircraft fleet is not 
the same as an error of 3 years in assessing the age 
of your youngest daughter. To assess performance, 
the variables must be converted to a common scale, 
and the common scale is probability. Instead of an 
error distance between an estimated and observed 
quantity, performance will focus on ‘how surprised’ 
the expert should be by the observed quantity. That 
requires that experts assess their subjective distri-
butions for the unknown quantities. Experts then 
become statistical hypotheses, amenable to empiri-
cal control via standard statistical methods.

A recent study of information security (Ryan 
et al. 2012) used 10 calibration questions to score 
performance. Figure 2 shows the 5, 50, and 95 per-
centiles of the best and worst performing experts in 
a panel of 13, and also shows the realizations (#). 
The calibration questions concerned attack rates 
on different information systems. Expert 1 catches 
one of the 10 realizations in his 90% central confi-
dence band, whereas expert 2 catches 9 out of 10. 
Should we use such information, and if  so, how?

6.2 Bayesian approaches

Most statisticians, confronted with this sort of 
data for the first time, would seek to combine the 

experts’ performance information through some 
form of Bayesian updating. There have been many 
proposals in this direction, starting with Morris 
(1977), yet they have come to naught. With a bit 
of formalism, it is easy to understand why (Cooke 
1991).

Suppose we have two unknown continuous 
quantities X1 and X2. One expert gives his cumu-
lative distribution functions F1, F2 for X1 and X2. 
The decision maker also has prior distributions 
G1, G2 for X1 and X2. The decision maker wants 
to use the observed value of X1, say x1, to update 
his distribution about X2. The decision maker 
has a joint distribution for X1 and X2, and (s)he 
should simply update that whereby the informa-
tion from the expert plays no role. However, we 
suppose that somehow the decision maker can’t 
do that, and instead wants to update his opinion 
about this expert based on the observation of x1. 
For any r in (0, 100), {F1(X1) ≤ r/100} denotes the 
event that X1 takes a value less than or equal to 
the r-th percentile of the expert’s distribution. The 
expert evidently believes that this event has prob-
ability r/100, but the decision maker may assign it 
a different probability. If  the decision maker thinks 
this expert is likely to underestimate X1, then his 
probability of {F1(X1) ≤ r/100} will be less than 
r/100. The decision maker will update his prob-
ability of event {F2(X2) ≤ r/100} based on observ-
ing {F1(X1) ≤ r/100}. This requires specifying the 
decision maker’s joint probability of these events. 
However, if  he does that, problems will arise. The 
simplest case is that these two events are exchange-
able, for any r. This entails that for the decision 
maker, these two events are equally likely, for any r. 
Now we do a simple calculation, where P denotes 
the decision maker’s probability, and assuming the 
distribution functions are all invertible:

P({F1(X1) ≤ r/100}) = P{(X1 ≤ F1
-1(r/100)}

= G1F1
-1(r/100) = P({F2(X2) ≤ r/100})

= G2F2
-1(r/100).;

From which we infer, for any r

F2
-1(r/100) = G2

-1G1F1
-1(r/100).

The expert’s distribution for X2 is completely 
determined by his distribution for X1 and the deci-
sion maker’s priors. The decision maker needn’t 
consult experts at all!

6.3 Rational consensus

The Bayesian paradigm is a paradigm for individ-
ual decision making. An expert judgment study can 
have any of several possible goals: an expert survey, 

4. Publications with performance data are in preparation 
at this writing.
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a political consensus seeking an equilibrium of 
stakeholders, or a rational consensus. Rational con-
sensus is not formally defined, but the idea is this: 
for combining their opinions, experts pre-commit 
to a method of combination that satisfies neces-
sary conditions of the scientific method. Then, 
the method is executed. Experts needn’t adopt 
the results as their personal probability distribu-
tions, but withdrawing from the rational consensus 
incurs a proof burden. They must argue that other 
necessary conditions for the scientific method have 
not been met. Withdrawing for other reasons, for 
example, that the results are hostile to one’s inter-
ests, does not threaten rational consensus.

For details on combining experts see (Cooke 
1991, Cooke and Goossens 2008, Aspinall and 
Cooke 2013). A few points can be recalled here. 
The most important requirement of the scientific 
method is empirical control. This requires that 
each expert-hypothesis be empirically tested on 
the basis of calibration variables from the experts’ 
field whose values are known post hoc. Figure 2 
is an example. For each item, each expert’s per-
centiles (5, 50, 95) define four intervals to which 
(s)he assigns realization probabilities 0.05, 0.45, 
0.45, 0.05. The statistical hypothesis being tested 
is that the realizations can be viewed as independ-
ent samples from this distribution.5 The p-value of 
each hypothesis, given the realizations, is the prob-
ability of falsely rejecting the hypothesis that the 
expert’s probability statements are true. For expert 
1 in Figure 4, the p-value of the corresponding 
statistical hypothesis is 5.4 × 10-8. For expert 2 it 
is 0.314. We hasten to add that we are not reject-
ing expert-hypotheses but using the language of 
hypothesis testing to measure how well an expert’s 
probability statements accord with the realizations. 
Note the eight orders of magnitude difference in 
these p-values. Statistical likelihood is a fast func-
tion. If  you believe that 10 independent events 
each have probability 90% of occurring, then the 
likelihood of seeing only one of the ten occur is 
10 × 0.9 × 0.19 ∼ 10-8 (the computation for the data 
in Figure 2 is a bit more complicated, owing to the 
presence of the 50 percentile, and also a chi square 
approximation). Each expert’s statistical accuracy 

is measured by the corresponding p-value. Less 
important than statistical accuracy, but still impor-
tant, is the expert’s informativeness. Intuitively, 
this is measured as the expert’s ability to concen-
trate high probability mass in small intervals. The 
measure of informativeness must not depend on 
the scale of the underlying variables. Cognoscenti 
wanting details are referred to the above references. 
These performance measures are combined so as 
to satisfy a strictly proper scoring rule constraint: 
in an appropriate long run sense, an expert maxi-
mizes his/her expected score by and only by stating 
percentiles corresponding to his/her true beliefs. 
It must be emphasized that measuring expert per-
formance and combining experts satisfies con-
straints devolving from the scientific method but 
are in no way unique. In the same way, a bicycle 
satisfies Newton’s laws but does not follow from 
these laws; it is designed to serve a purpose. In the 
same way the performance-based combinations of 
expert judgments are designed to serve the purpose 
of finding rational consensus on the quantification 
of uncertainty. Better bicycles are always welcome.

7 EXPERT JUDGMENT VALIDATION

Forty five professionally contracted studies with 
domain experts from fields including of nuclear 
safety, aerospace and aviation risk, environmen-
tal transport, finance, volcanology, public health 
were reviewed by Cooke and Goossens (2008) in a 
special issue of Reliability Engineering and System 
Safety. The data including calibration variables 
was made available to researchers. Highlights of 
research based on this data are summarized below. 
Since then the applications have nearly doubled, 
expanding into areas like ecosystem modelling, 
project management, and climate modelling. All 

5. In this context, independence is not an assumption 
about the experts’ joint distribution, it is a desideratum 
of the decision maker. If  the experts’ joint distributions 
are dependent, then the expert will learn from observing 
the calibration variables. Expert learning is not a goal 
of the elicitation, and the decision maker desires experts 
who have already learned. If  the calibration variables 
are multiple realizations of the same random variable, 
or otherwise confounded, then standard techniques for 
reducing the power of the statistical test apply.

Figure 4. Best and worst performing experts in Ryan 
et al. (2012).
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studies compared an Equal Weight (EW) combi-
nation with performance based weighted combina-
tion (PW). Measuring performance transforms the 
field of expert judgment from a confessional to a 
science- and data-based activity. Any combination 
of experts’ distributions can be tested against the 
set of calibration variables, and its performance 
scored. When scored on the calibration variables, 
equal weighting usually—not always—produces 
statistically acceptable performance at the expense 
of low informativeness. Performance-based com-
binations usually—but not always—perform better 
on both counts. Both PW and EW may be scored 
for statistical accuracy and informativeness; com-
bining scores for statistical accuracy and informa-
tiveness yields a “combined score” (Cooke and 
Goossens 2008).

In a few studies, variables of interest were later 
observed, enabling true out-of-sample validation 
(Cooke and Goossens 2008). In most cases the 
variables of interest are not observable on times-
cales relevant for the decision problem. Therefore, 
various forms of cross validation have been sug-
gested. Clemen (2008) proposed a Remove-One-
At-a-Time (ROAT) method according to which 
the calibration variables were removed one at a 
time and predicted by the model initialized on the 
remaining calibration variables. The predictions, 
though originating from different decision makers, 
were pooled and compared with the equal weight 
decision maker. On the 14 studies selected for this 
exercise, Clemen found that PW combined score 
was higher than that of EW on 9, which was not 
statistically significant. Cooke (2008a, 2012) noted 
that this procedure is biased against PW since each 
calibration variable is predicted by a decision maker 
in which experts who assessed that particular item 
badly are up-weighted. It is commonly observed 
that removing one calibration variable can influ-
ence an individual expert’s statistical likelihood by 
a factor 3 or more, a feature explained by the fact 
that statistical accuracy is a very fast function.

Variations on the ROAT approach have been 
performed by other researchers. Lin and Cheng 
(2008) examined 28 of the 45 studies and found 
PW significantly out performing EW, although 
PW’s out-of-sample performance was degraded. 
Lin and Cheng (2009) used ROAT on 40 studies 
finding no significant difference between PW and 
EW.6 Lin and Huang (2012) used ROAT with the 
Brier score in a regression based study of the effects 
of aggregation method, dependence, number of 
experts and seed variables and overconfidence on 
the Brier score.

Other researchers have undertaken cross valida-
tion without ROAT. Cooke (2008a) looked at half-
half  splits in 13 studies with at least 14 calibration 
variables. Flandoli et al. (2010) examined five data-
sets, choosing 30% of the number of calibration 
variables as the size of the test set, provided this 
number was at least 8, otherwise the test set was 8. 
They recoded the classical model in R with some 
restrictions7 and randomly drew 500 partitions 
into training and test sets of the fixed sizes. The 
most extensive study of this kind is Eggstaff  et al. 
(2013), which initializes the global weights model 
on all non empty subsets of seed variables and 
in each case predicts the complementary subset, 
again using only global weights. Studies with large 
numbers of seed variables were split into separate 
studies to prevent combinatoric explosion. In total 
62 expert judgment studies were analysed.

Studies differ in subject matter, number and 
training of experts, the methods of recruitment and 
methods of elicitation. For this reason, a numeri-
cal representation of out-of-sample validity at the 
study level would be desirable. For N seed variables, 
for each K = 1...N-1, Eggstaff et al. (2013) com-
pute the combined scores of PW and EW for each 
K-tuple of variables in the training set, based on 
prediction of N-K out-of-sample variables in the 
test set. The same experts, the same calibration vari-
ables, and the same information background meas-
ures apply for all training set choices within one 
study. However the statistical power of the test set 
goes down as the training set size increases, there are 
many more K-tuples for values of K near N/2, and 
these studies have overlapping training sets. With 
this in mind the PW and EW combined scores are 
averaged for each size K, for K = 1..N–1. The ratio 
of PW and EW can be compared across training set 
sizes. In aggregating ratios of positive numbers we 
must take the geometric mean, or geomean.8

6. There large differences between the in-sample values in 
these two papers, and those found in the original studies.

7. Specifically, they did not implement the log uniform 
background measure, and did not implement “item 
weights” which are item specific and depend on the 
experts’ informativeness for each item. This is the per-
formance weighting scheme most often used in practice.

8. To see this suppose on two comparisons the scores 
were (PW = 4, EW = 1) and (PW = 1, EW = 4) The 
performance is identical, but the average of ratios is 
1/2(4 + 1/4) = 2.125. The Geomean is (4 × 1/4)1/2 = 1. Egg-
staff  et al. report only the average scores for each size 
of the training sets, so we consider the ratios of aver-
ages. Since the average is always greater or equal to the 
geomean, the numerator and denominator in these com-
parisons would both be smaller if  we took the geomeans 
of combined scores of each separate K-tuple of training 
variables. It’s impossible to say if  there is an overall effect 
of this choice.
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This should not come as a total surprise. Little in 
an expert’s training prepares him or her for proba-
bilistic assessment. Some experts are able to give 
very accurate and informative assessments, many 
others less able to do this. Unfamiliarity with prob-
abilistic assessment will be reflected not only in 
expert scores but in experts’ ranking of colleagues 
for probabilistic assessment tasks. This simple 
observation has noteworthy consequences. Expert 
nominations for advisory roles, blue ribbon panels 
and the like may identify experts with substantive 
knowledge, influence and poids in their field, but 
the supposition that this is a good way to quantify 
uncertainty is not supported by the evidence.

Returning to the Greenland ice sheet, Figure 7 
shows combinations based on self  weights, equal 
weights and performance weights, for both elicita-
tions, in 2010 and 2012 respectively.

From the more recent elicitation, the equal 
weights decision maker’s 95 percentile for total sea 
level rise in 2100 due to the Greenland ice sheet is 
about 80 cm, and for self  weights about 60 cm; for 

Figure 5. 62 studies, per study: geomeans of compari-
sons of PW/EW combined score ratios.

Figure 6. Expert mutual self-weights and performance 
ranking, Ice sheets (Nov. 2012) left and Dam safety right 
(Aspinall and Cooke, 2013).

The geomean of  the ratios of  combined scores 
of  all comparisons for each of  the 62 studies are 
plotted in Figure 5. In 45 of  the 62 studies (73%) 
the geomean of  combined score ratios PW/EW 
was greater than unity. When PW’s combined 
score exceeded that of  EW, it tended to exceed by 
a greater amount than when EW’s combined score 
exceeded that of  PW. The best eyeball assessment 
is to compare the mass of  lines above and below 
the baseline of  1. The geomean of  the geomeans 
for each study was 2.46. Summarizing, PW out-
performs EW in out of  sample cross validation 
on more than two thirds of  the studies, and the 
combined score of  PW is more than twice that 
of  EW.

The accuracy of a DM in terms of proximity of 
the median to the true value is not directly related 
to the scoring variables of statistical accuracy and 
informativeness. Eggstaff  et al. (2013) report an 
accuracy advantage of PW over EW comparable 
to the ratios of combined scores; however that fea-
ture is not pursued in this paper.

The extensive dataset of domain expert elici-
tations has afforded other insights into expert 
judgment. Based on a number of studies in which 
experts were very well published, it was possible to 
derive weights based on experts’ citation indices 
(Cooke, Elsaadny and Huang 2008) . Performance 
was comparable to equal weighting and inferior to 
performance-based weights. On a few occasions 
the analyst asked experts to rank each other, and 
compared these ranks with their performance on 
calibration variables. The findings for elicitations 
on ice sheets and dam safety in Figure 6 speak for 
themselves:
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the performance-based decision maker the value is 
close to 30 cm.

7 CONCLUSIONS

Whether the calibrated language, deep uncertainty, 
Knightian uncertainty, imprecise probabilities in 
climate change will go the way of fuzzy sets, ran-
dom sets, belief  functions, and degrees of possi-
bility in artificial intelligence remains to be seen. 
However useful the alternative representations of 
uncertainty may be, they should not crowd out 
active research within the probabilistic approach. 
In addition to expert validation discussed above, 
other areas include, above all, high dimensional 
dependence modelling. After the normal copula 
crashed and burned in 2008 (Salmon 2009), finan-
cial mathematicians have engaged actively in cap-
turing dependence in the tails of random variables. 
Complex graphical structures are emerging for 
characterizing and computing with these depend-
ence structures. Dependence elicitation began in 
earnest in the nuclear sector 20 years ago, but has 
had limited application in other studies. However, 
very recent work has introduced the concept into 
assessing future ice sheet melting due to global 
warming. Once we have good measures of per-
formance, training experts for comprehensive 
probabilistic assessment of complex problems 
becomes a possibility, the need for which has some 
urgency. On real applications there is seldom time 

and budget for this, and little research has been 
done. Another cluster of questions concerns fitting 
models to expert judgment, and evaluating models 
on the basis of expert judgment.
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