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ABSTRACT ARTICLE HISTORY

This paper shares an early-career perspective on potential themes for the upcoming International Received 22 June 2022
Association of Hydrological Sciences (IAHS) Scientific Decade (SD). This opinion paper synthesizes six Accepted 16 December 2022
discussion sessions in western Europe identifying three themes that all offer a different perspective on

the hydrological threats the world faces and could serve to direct the broader hydrological community: i?gg:llarin

“Tipping points and thresholds in hydrology,” “Intensification of the water cycle,” and “Water services

under pressure.” Additionally, four trends were distinguished concerning the way in which hydrological ASSOCIATE EDITOR

research is conducted: big data, bridging science and practice, open science, and inter- and multi- H. Kreibich

disciplinarity. These themes and trends will provide valuable input for future discussions on the theme KEYWORDS

for the.next IAHS SD..We encourage othgr early—cal_'eer scientists to voicg t_he.zil.' opinion by organizing .their IAHS Scientific Decade; early-

own discussion sessions and commenting on this paper to make this initiative grow from a regional career scientists; tipping

initiative to a global movement. points; water cycle
intensification; water
services

Introduction

thematic advances in the field of hydrology. It is now a global
The International Association of Hydrological Sciences movement initiated and coordinated by the IAHS. The past
(IAHS) Scientific Decades (SDs) aim to formulate science SDs have provided the foundation for scientific collaborations
programmes and engage the scientific community to advance and have been vital in shaping hydrological research around
the hydrological sciences. The first International Hydrological ~specific themes. The last two SDs especially have shown that
Decade was formulated in 1965 by United Nations well-organized community efforts can shape the field of
Educational, Scientific and Cultural Organization (UNESCO) hydrology (Hrachowitz et al. 2013, McMillan et al. 2016,
(Nace 1965) to highlight the field of hydrology as an indepen-  Kreibich et al. 2017). The two most recent decades focused
dent scientific discipline, but SDs have since grown to boost on prediction in ungauged basins (PUB, 2002-2012; Sivapalan
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et al. 2003) and on change in hydrology and society (Panta
Rhei, 2012-2022; Montanari et al. 2013). The results from the
PUB decade have been summarized by Hrachowitz et al.
(2013), and several community papers on Panta Rhei research
results have already been published (e.g. McMillan et al. 2016,
Kreibich et al. 2017).

Because of increased cooperation between hydrologists, the
next SD is likely to have an even bigger impact than the last
one. Therefore, it is important to start the discussions on a
theme for the next SD. The themes of the past two decades
were developed through discussions during symposia, in
online blogs, and in specific sessions at IAHS conferences
(Sivapalan et al. 2003, Montanari et al. 2013). The discussions
were open to all hydrologists. Due to the international orienta-
tion of the IAHS, people from all over the world were involved.
However, the author list of the opinion papers predominantly
involved well-established researchers. While established
researchers are key in shaping research, early career scientists
(ECSs) are important drivers of many research projects.
Although they were invited and encouraged to participate in
the discussion sessions, ECSs were rarely part of the author list
of the resulting opinion papers (Fig. 1). Since the gender
balance in hydrology differs between established researchers
and ECSs (Popp et al. 2019), the diversity of the authors was
also skewed (Fig. 1). We perceive the lower diversity as a major
disadvantage of the adopted approach, because the outcomes
of the discussions may not have reflected the perspectives of
the full spectrum of hydrologists.

We believe that actively involving a more complete repre-
sentation of hydrological researchers early on in the discussion
could lead to an SD theme that is not necessarily different but
at the very least supported by a larger part of the hydrological
community. This broad backing of the theme will further
increase the impact of the upcoming SD. To boost ECS invol-
vement in SD discussions, we organized discussion sessions in
western Europe targeting ECSs. This resulted in a gender-
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balanced group of co-authors consisting of mostly ECSs
(Fig. 1). Due to the regional character of this initiative, a spatial
bias is inherently present in the presented work. We therefore
urge other groups of ECSs to actively share their own opinions,
for example as comments on this paper or in future IAHS
discussion sessions.

We present three potential themes for the upcoming SD
that all offer a different perspective on the hydrological threats
the world faces: “Tipping points and thresholds in hydrology,”
“Intensification of the water cycle,” and “Water services under
pressure.” We acknowledge that, even though the Panta Rhei
decade has come to an end, change in hydrology and society is
as important as it was 10 years ago (Bloschl et al. 2019).
However, a new theme will boost hydrology and provide an
opportunity to incorporate the knowledge gained in the last
decade within a new focus. In addition, four key trends are
presented: big data, bridging science and practice, open
science, and inter- and multidisciplinarity. The trends are
beyond the scope of a possible theme, as they concern the
fashion in which hydrological research is or is expected to be
conducted. These themes and trends can provide valuable
input for future discussions on a theme for the next IAHS SD.

Methods

We aimed to involve a more diverse group of the hydrological
scientific community, in particular ECSs, in the discussion on
the new SD theme, for which we adopted a different approach
than was applied for previous SDs. For this initiative, ECSs
were not strictly defined by years since their last graduation;
rather, we welcomed anyone identifying as an ECS to create an
inclusive atmosphere. We organized ECS discussion sessions
to identify potential themes for the upcoming SD in a joint
effort led by early-career hydrologists from Wageningen
University and Research (WUR). In the spring of 2022, six
discussion sessions took place over the course of five weeks at

This initiative

/
/

Early
Career

94%

Figure 1. Gender (top) and career-stage (bottom) diversity in co-authors of initial publications of predictions in ungauged basins (15 co-authors, Sivapalan et al. 2003),
Panta Rhei (34 co-authors, Montanari et al. 2013), and this initiative (49 co-authors). For the publications of Sivapalan et al. (2003) and Montanari et al. (2013), the
numbers are based on publicly available, online information. Early career scientists in these charts are defined as having received their latest degree (BSc, MSc, PhD) less
than five years before publication of the paper. This definition was chosen to enable an unambiguous classification.



WUR and five other institutes in four countries: the Karlsruhe
Institute of Technology (KIT), the Luxembourg Institute of
Science and Technology (LIST), the Delft University of
Technology (TUD), the University of Freiburg (UoF), and
the University of Ziirich (UZH). Additionally, researchers
from the Swiss Federal Institute of Technology in Ziirich
(ETH), and the Dutch branch of the Young Hydrologic
Society (YHS-NL), were invited to join. Each session was
attended by 10-30 participants. PhD candidates made up the
majority of the participants, complemented by postdoctoral
researchers and assistant professors. No master’s students
joined the discussions. The participants were all either scien-
tists or engineers focusing on sub-topics of hydrology and
environmental hydraulics. In total, around 75 people attended
at least one of the sessions, and 49 of those (65%) decided to
stay involved in the project by co-authoring this paper.

While these sessions have greatly improved the influence of
ECSs in such discussions (Fig. 1), the session’s geographic
locations have inevitably led to a spatial bias towards high-
income countries. Although the participants’ countries of ori-
gin were more diverse than the affiliated institutes (Fig. 2),
future efforts should aim to further broaden the diversity by
including a larger geographical region.

All discussion sessions lasted an hour and followed a similar
format, but the content evolved during the series of discus-
sions. Each session started with a short presentation of the
history of the SDs and the aim of our initiative. Subsequently,
the participants were split into groups of 4-6 people to
broaden the discussion and involve all opinions. The division
was targeted to create diverse groups mixing institutes and
sub-disciplines of hydrology. These group conversations were
guided by a set of questions that were prepared in advance. The
questions developed over the sessions starting from a brain-
storming level (i.e. “What do you expect to be key words for
hydrology in the near future?”) towards more detailed ques-
tions in the later sessions (i.e. “What would be the research
questions tackled in the proposed themes?”). All questions can
be found in the Supplementary material. Finally, each group
summarized their answers to the questions at the plenary
discussion that followed. ECSs were encouraged to voice
their opinion on the theme of the next SD in small groups of

Latin America and
the Caribbean

Sub-Saharan Africa

South Asia

Middle East and
North Africa

Europe and

Eentral At East Asia and Pacific

Figure 2. Regions of origin of the co-authors of this paper, according to the
regions defined by the World Bank (Serajuddin et al. 2017).
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peers without their voices being unintentionally overshadowed
by the presence of senior scientists.

Potential themes for the next IAHS Scientific Decade

Hydrological threats arise from pressures of the environment
(e.g. climate change, ecosystem degradation, and biodiversity
loss) and society (e.g. population, industrial, and economic
growth). We see these threats as the central problem for
hydrology in the coming decade. Hydrological threats thus
should be studied, but this can be done starting from different
perspectives. Three themes emerged from the discussion ses-
sions that all postulate a perspective on how hydrology could
tackle the hydrological threats faced by the environment and
society. For the next TAHS Scientific Decade, we suggest that
hydrological research could focus on one of the themes below:

e Tipping points and thresholds in hydrology;
e Intensification of the hydrological cycle;
e Water services under pressure.

Tipping points and thresholds in hydrology

Tipping points are critical thresholds in complex systems such
as the hydrological system. Once critical thresholds are
exceeded, the system’s state heavily changes; this is referred
to as a regime shift. These regime shifts can be either reversible
or irreversible. A reversible tipping point indicates that the
system can be restored under the same environmental circum-
stances, whereas an irreversible tipping point indicates that the
system can only be restored after circumstances have been
reversed beyond the original point, known as hysteresis
(Scheffer et al. 2009). Both reversible and irreversible tipping
points occur in hydrology. Examples of reversible tipping
points are the Horton and Dunne principles of overland flow
generation (Horton 1945, Dunne and Black 1970a, 1970b), and
an example of an irreversible tipping point is a landslide due to
heavy rainfall (Keefer et al. 1987).

As mentioned before, the hydrological cycle is affected by
climate change and human interventions. Therefore, hydrol-
ogy needs to advance the understanding and prediction of
systems under change (Ehret et al. 2014), with particular
attention to tipping points and their critical thresholds
(Bloschl et al. 2019). The concept of tipping points gained
momentum over the past several decades, because hydrologi-
cal threats have resulted in water systems being pushed beyond
their sustainable level. For instance, deforestation has led to
soil erosion and karstification (Gams and Gabrovec 1999).
Recently, warnings have repeatedly been issued that deforesta-
tion in the Amazon is likely to hit a tipping point, greatly
reducing precipitation (e.g. Lovejoy and Nobre 2018, Amigo
2020). Another example is groundwater abstraction that jeo-
pardizes groundwater-dependent vegetation (Barron et al.
2013).

These examples show that tipping points link the hydro-
logical system with landscapes as well as ecosystems. In related
scientific fields, tipping points are already a well-established
concept. They are fundamental to the Intergovernmental Panel
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on Climate Change (IPCC) reports and the Planetary
Boundaries framework (Rockstrom et al. 2009, Steffen et al.
2015, IPCC 2021). Based on the IPCC report, the Planetary
Boundaries framework and tipping point research, warnings
are frequently issued stating that passing these tipping points
poses risks and will have severe impacts (Steffen et al. 2018,
Lenton et al. 2019, Otto et al. 2020). Given the complexity and
connectivity of the entire Earth system, tipping points in other
scientific areas will affect hydrology and vice versa.

Next to external tipping points affecting the hydrological
cycle, tipping points have also been observed in different parts
of the hydrological cycle itself. Hydrological disciplines in
which tipping points have been identified include surface run-
off (Horton 1945, Dunne and Black 1970a, Dijkstra et al.
2019), groundwater (Bailey 2011, Figura et al. 2011), hydro-
meteorology (Buitink et al. 2020, Denissen et al. 2020,
Krishnamurthy et al. 2020), ecohydrology (Hirota et al. 2011,
Mayor et al. 2019), and water quality (Dakos et al. 2019,
Dijkstra et al. 2019). Moreover, these tipping points manifest
themselves in all places: from arctic (Devoie et al. 2019, Rosier
et al. 2021) to temperate climates (Kupec et al. 2021, van der
Velde et al. 2021), from wet (Loverde-Oliveira et al. 2009,
Verbesselt et al. 2016) to arid regions (Bailey 2011,
Bernardino et al. 2020), and from hydrological source (Marty
2008) to sink (Kirwan and Megonigal 2013).

While tipping points have been found, they remain difficult
to identify and are often not well represented in models.
Predicting and identifying hydrological tipping points is par-
ticularly challenging since the positive feedbacks that induce
regime shifts originate from complex interactions and occur in
heterogeneous landscapes with high connectivity (Scheffer et
al. 2012, Nijp et al. 2019). In addition, modelled tipping points
can only be verified after they occur (Denissen et al. 2020,
Krishnamurthy et al. 2020). The impossibility of verifying
unobserved tipping points is problematic since their occur-
rence comes with the drastic consequences of irreversible tip-
ping behaviour for hydrological systems (e.g. Drijthout et al.
2015, Dakos et al. 2019). Unravelling how known tipping
points cause hydrological regime shifts requires the integration
of different research approaches. Experiments in a controlled
setting can help to identify the underlying feedback mechan-
isms (Webster et al. 2016, van de Vijsel et al. 2021). With
conceptual models capturing the key processes, it is possible
to test whether this feedback mechanism indeed causes the
observed regime shift (Bailey 2011, Dijkstra et al. 2019).

At the same time, high-complexity models capturing the
processes as completely as possible can be used to reproduce
the conceptual simulations in settings closer to physical reality
(Drijthout et al. 2015). These high-complexity simulations
assist with interpreting field observations and extrapolating
results to future climate scenarios. In practice, integrating
these scientific approaches is not straightforward. Identifying
tipping points in increasingly large amounts of data is tedious,
and “scanning” for tipping points with models is computa-
tionally expensive. Efficiently integrating these approaches
might greatly advance our scientific understanding of hydro-
logical regime shifts and could help us to not only identify but
also successfully predict tipping points.

Given the potentially catastrophic consequences of hydro-
logical tipping points, improving our process understanding
and predictive capacity should be a focal point of future hydro-
logical research. This is summarized in the following research
questions that the theme “Tipping points and thresholds in
hydrology” would address:

e How can hydrological tipping points and thresholds be
identified?

e At what scales are the identified tipping points and
thresholds relevant, and how do these scales interact?

e Which non-hydrological tipping points affect hydrologi-
cal systems?

e What needs to be included in hydrological models to
simulate and predict tipping points and thresholds?
How reliable are modelled tipping points and thresholds?

e How can we use our knowledge of tipping points and
complex systems to mitigate the impacts of environmen-
tal and climate change?

Intensification of the water cycle

As global warming directly influences water fluxes, the hydro-
logical cycle is strongly affected by climate change (e.g.
Kundzewicz 2008, Peleg et al. 2018, Madakumbura et al.
2019). Climate change intensifies the hydrological cycle,
increasing (for instance) the frequency and intensity of
droughts and floods (Gloor et al. 2013, Bertola et al. 2020,
Wasko et al. 2021). More hydrological extremes make securing
freshwater by, for example, reservoir management increasingly
difficult (Carvalho-Santos et al. 2017). Combined with
decreasing freshwater storage due to shrinking glaciers
(Beniston and Stoffel 2014) and the depletion of high-quality
groundwater aquifers (Rotzoll and Fletcher 2013), the intensi-
fication of the water cycle threatens water security.

Until now, studies have mainly focused on identifying dri-
vers of the intensification (Ziegler et al. 2003, Huntington
2006). However, less is known about mitigation of the risks
that the hydrological intensification poses for agricultural pro-
ductivity, water availability, and water quality (Paprotny et al.
2018, Abram et al. 2021). We urgently need to explore this
impact and potential mitigation strategies. In particular, we
need to identify spatial and temporal trends of dry and wet
extremes in the context of a rapidly changing climate to enable
adaptations that store water for drier periods and redistribute
it to drier areas (e.g. Dai et al. 2018). We need interdisciplinary
collaborations that lead to adaptations such as hydraulic struc-
tures that can prevent flash floods and a guaranteed minimum
flow discharge to protect river ecosystems.

In the past, the intensification of the hydrological cycle was
often described according to the “dry gets dryer, wet gets
wetter” paradigm (Held and Soden 2006, Kitoh et al. 2013).
However, recent studies showed that this paradigm is too
simple and not universally true (Allan 2014, Greve et al.
2014, Kumar et al. 2015, Christidis and Stott 2021). Hence,
we need to understand local mechanisms and drivers to help
mitigate the consequences of extreme events, thereby ensuring
freshwater availability. This is especially important in the



Global South, where water insecurity is a substantial issue
(Vorosmarty et al. 2010).

Increased drought occurrence and severity is a key compo-
nent of the intensification of the hydrological cycle. Droughts
are driven by a series of complex feedback mechanisms
between (amongst other things) precipitation, soil moisture,
and evaporation. Drought events manifest themselves in the
environment (i.e. low discharge), but their impacts include
immense social, environmental, and economic ramifications
(e.g. Nilson 2014). Monitoring drought events is complicated
as they present themselves in different parts of the water cycle
(i.e. soil moisture, groundwater, surface water) in different
phases of the event (van Loon 2015, Buitink et al. 2021).
Remote sensing data with increasing accuracy and spatiotem-
poral resolution provide opportunities to monitor different
parts of the hydrological cycle simultaneously (West et al.
2019). Regardless, challenges remain in accurately predicting
droughts (Sutanto et al. 2020), as well as predicting the impact
of climate change on drought occurrence and intensity
(Vicente-Serrano et al. 2020). We must resolve these chal-
lenges and find solutions to prevent large-scale drought
impacts.

In addition to increasing the occurrence of dry extremes,
the intensified water cycle increases the occurrence of wet
extremes (Addo and Adeyemi 2013, Pendergrass et al. 2017,
Ansah et al. 2020, De Luca et al. 2020). In the last 10 years,
numerous extreme precipitation events have occurred with
extensive impacts around the globe (e.g. Duan et al. 2014,
Otto et al. 2018, Abram et al. 2021, Wasko et al. 2021). A
recent example is the 2021 summer flood event that impacted a
large part of northwestern Europe. Here, the connection with
other disciplines was clearly visible as the impacts extended
beyond hydrology: increased erosion led to large scour holes in
the Meuse (Task Force Fact-finding hoogwater 2021,
Barneveld et al. 2022). This extreme summer flood resulted
from weather circumstances with a reoccurrence time of
400 vyears, illustrating the extreme nature of the event
(Kreienkamp et al. 2021). Yet this was not an isolated event:
the number of extreme rainfall events is increasing due to
shifting global weather patterns and rising temperatures that
enhance the atmospheric moisture-holding capacity (Held and
Soden 2006, Lenderink and van Meijgaard 2008, Kennedy et al.
2016, Lenderink et al. 2017). More extreme rainfall events can
result in floods with high socio-economic impacts, and can
increase the risk of flash floods (Alfieri et al. 2015, Piper et al.
2016, Meyer et al. 2021). The risk of flash floods in urban areas
is even higher due to their increasingly impervious surface
(Cutter et al. 2018).

All in all, extreme events, both dry and wet, are expected to
occur more frequently in the future (Wahl et al. 2015, Ward et
al. 2018, Zscheischler et al. 2018). The same goes for com-
pound events, where two extremes co-occur, such as a com-
pound drought in which a precipitation deficit coincides with a
heatwave (Seneviratne et al. 2010, Buras et al. 2020), or a
compound flood in which precipitation excess coincides with
a storm surge (Wahl et al. 2015). This requires improved early
warning systems to limit the negative impacts of extreme
events, and long-term strategies to mitigate and cope with
any remaining detrimental effects (Pappenberger et al. 2015,
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Ward et al. 2018, Couasnon et al. 2020, Abram et al. 2021,
Wasko et al. 2021). However, assumptions of climate statio-
narity on which many of the statistical approaches are based
are no longer valid (Milly et al. 2008). Predicting the risks of
these types of events has therefore become more difficult.
Improving hydrological forecasts thus requires improving the
entire forecasting chain. The chain starts with weather fore-
casts that are the input for hydrological simulations (Emerton
et al. 2016). These hydrological simulations provide the basis
for impact forecasts (e.g. Sutanto et al. 2019). Finally, the risks
are disseminated (Sorensen 2000) together with suggested
mitigation strategies.

To summarize, we propose that the focus of hydrological
research should shift from identifying intensification to pro-
viding knowledge on how to mitigate its effects, from local to
global scales. Research questions that need answering are the
following:

e What is the impact of an intensified hydrological cycle on
the environment, ecosystem services, and society?

e What areas are most at risk from the intensification of the
hydrological cycle?

e How reliable are extreme event predictions that are based
on extrapolating relatively short data series, and how can
this reliability be improved?

e How can early-warning systems be improved so that
extreme events can be accurately predicted?

e What mitigation strategies are suitable in the context of
ongoing intensification of the hydrological cycle?

Water services under pressure

To raise awareness of the crucial role of water for nature and
society, we advocate for a broader use of the “ecosystem services”
framework in hydrology. More specifically, the water cycle could
be seen as the ecosystem under study: “water services” (e.g. Prasad
2006, Lele 2009, Ojea et al. 2012). Following Daily’s (1997) defini-
tion of ecosystem services, water services, or hydrological services,
describe the conditions and processes through which the water
cycle sustains and fulfils human life (e.g. Underwood et al. 2018).
We propose to extend this definition to include the vital role of
water in the environment. By widely acknowledging and adopting
water services as a concept in hydrology, scientific advances can
help secure currently vulnerable water services in a dynamic
natural and social environment.

Whereas “water services” indicate the services that water
provides for the environment and society, society also greatly
influences the water system (Linton and Budds 2014, Liu et al.
2014). This influence was studied extensively during the Panta
Rhei decade, leading to a push in the field of socio-hydrology
(e.g. Scott et al. 2014, McMillan et al. 2016, Di Baldassarre et al.
2018, Pijl et al. 2018). Essential eco- and social systems heavily
depend on limited water resources for services such as drink-
ing water, irrigation water, and hydropower. This dependence
explains why the substantial population and economic growth
over the last century caused a sharp increase in global domes-
tic, industrial, and agricultural water demand (Vorosmarty
and Sahagian 2000, Oberle et al. 2019). The growing water
demand threatens the sustainability of water systems and
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increases their vulnerability (Krol et al. 2003, McCluney et al.
2012). This vulnerability is exacerbated by unpredictable
changes in the water cycle (e.g. hydrological intensification,
salt intrusion) due to climate change (Oki and Kanae 2006).

While society depends on water resources, anthropogenic
activities have compromised the quality of these resources and
related environmental systems. For instance, sea-level rise is
threatening groundwater reservoirs (Rotzoll and Fletcher
2013), and all parts of the water cycle are contaminated by
pollutants such as plastic (Liu et al. 2020, van Emmerik and
Schwarz 2020), bilge water (Tiselius and Magnusson 2017),
nutrients (Lintern et al. 2020), pesticides (Payraudeau 2012),
road salt (Szklarek et al. 2022), and oil (Lucas and MacGregor
2006). Next to affecting water quality, anthropogenic activities
such as canalization also interrupt natural hydrological pro-
cesses, affecting water quantity (e.g. Owens et al. 2005). For
example, ecosystem services such as flood protection and bio-
diversity are more likely to be lost from river deltas as a result
of human activities upstream that interrupt natural sediment
transport (Hoitink et al. 2020). Similarly, large-scaled drainage
associated with land reclamation projects reduces the buffer
function of wetlands and swamps (Nobis et al. 2020).
Therefore, there has been a call in recent research to account
for the dynamic impacts of anthropogenic activities in river
transformation (Russell et al. 2021).

In the Sustainable Development Goals, the United Nations
(2015) recognize that sustainable water resource management
is essential to ensure a sustainable future. Still, estimates sug-
gest that water insecurity is threatening about 80% of the
world’s population (Vordsmarty et al. 2010). Many of these
people live in ecologically fragile, conflict-ridden, and vio-
lence-affected countries that suffer the most from poorly man-
aged water resources (Anderson et al. 2021, World Bank
Group 2021). The water—peace-security nexus is further
impacted by the COVID-19 pandemic (Mukhtarov et al.
2022) and recent intensifications of geopolitical rivalry (De
Falco and Fiorentino 2022). We believe scientific advances in
hydrology could facilitate sustainable water resource manage-
ment, especially for less resilient societies that are most threa-
tened by water insecurity.

Hydrology has supported water resource management by
generating and conveying understanding of water resources
and hydrological extremes (Savenije and Van der Zaag 2008).
This traditional hydrological support should be broadened to
incorporate human-water interactions, to include the spatio-
temporal scales of water, and to tackle managerial challenges
for transboundary water systems (Bloschl et al. 2019). This
involves a holistic management approach, where the entire
water cycle is seen as one system (Cao and Warford 2006,
Bakker 2012, Giupponi and Gain 2017). Implementation of
this holistic approach can be supported by widely adopting the
use of “water services” as a concept in hydrology. We suggest
four key research questions for the theme “Water services
under pressure” to advance the field of hydrology:

e How can we assess quantitative and qualitative water
availability for sustainable water services?

e What hydrological knowledge is missing to provide solu-
tions to support water services?

e How can the development of pressures on water services
be identified, monitored, and predicted?

e What are the scales and spatiotemporal distributions of
pressures on water services?

Current trends in hydrology

Next to the themes, we identified four important trends in
hydrology. These trends are not included as a theme, since they
concern the way of conducting research. We note that these
trends have gained traction over the past years, and think that
continuing and intensifying their application in the hydrolo-
gical sciences can help make research more efficient, more
reproducible, and easier to apply in practice. That is why we
think these trends should be incorporated in the design of the
upcoming SD. The following four trends are discussed here:

Big data;

Inter-and multidisciplinarity;
Bridging science and practice;
Open science.

Big data

In the early days of hydrology, hydrological data were limited
to those collected in the field. Automated sensors greatly
improved the availability of in situ data, but they are still
characterized by high costs and limited spatial coverage. New
technologies such as remote sensing have provided us with
better spatiotemporal data coverage, as well as measurements
covering a larger part of the hydrological cycle, including for
instance precipitation, evapotranspiration, snow, soil moist-
ure, and water storage (Arsenault et al. 2016, Addor et al. 2017,
Cui et al. 2018, Almagro et al. 2021, Klingler et al. 2021). Due
to the size of these datasets, big data is a big topic in the
environmental sciences including hydrology (Chen and
Wang 2018, Gaffoor et al. 2020). We recognize the value of
big data in improving data-driven science on water resources.
With higher data availability, questions arise on how to use
these data efficiently and how to extract knowledge from
different data sources simultaneously.

Big data in hydrology presents not only new opportunities
but also challenges. First of all, data quality and uncertainty are
pressing issues, as poor or inconsistent data quality can lead to
inaccurate interpretations and wunreliable conclusions
(McMillan et al. 2018, Lawton 2021). To make big data robust,
they need to be validated against in situ data. Thus, in situ data
collection needs to be incentivized to sustain in situ validation
efforts (Allen and Berghuijs 2020), while research should also
focus on minimizing the spatial mismatch between the scales
of in situ and big data (Loew et al. 2017). Another challenge is
that big data analyses, such as machine learning, are often
complex. This complexity makes results difficult to interpret,
validate, and reproduce.

Secondly, despite the development of big data, data-sparse
regions still exist (Wilby 2019), and hydrology is often still
considered a data-limited science. Data availability is not
evenly distributed over the globe or over the layers of the



hydrological systems. In particular, data are missing on sub-
surface variables. We should therefore continue to develop
affordable data collection, which can help the growth of citi-
zen-science products that have the potential to increase obser-
vations in data-sparse regions (Buytaert et al. 2014). We
should also continue performing reanalyses to fill temporal
gaps in historical data.

Lastly, storing large datasets is challenging due to limited
and/or expensive storage. Historical data is already being
rapidly lost (Talke and Jay 2013, Benito et al. 2015), so besides
ensuring that data we collect now will remain available for
future generations, we should also focus on conserving the
work of previous generations that have not (yet) been
digitized.

While big data has the potential to advance our under-
standing of hydrology, there is a strong need to develop uni-
versal data collection protocols to improve the foundations of
reproducible data analysis and predictions. We should aim to
use the full potential of all available data together, without
subjectively selecting and rejecting data sources. We suggest
increasing the cooperation between hydrologists and data
scientists to jointly tackle the challenges defined here.

Inter- and multidisciplinarity

Seventeen Sustainable Development Goals were posed by the
United Nations that all ascend beyond boundaries of separate
scientific disciplines (United Nations 2015). Thus, to attain
these goals, scientists need to adopt a more inter- and multi-
disciplinary approach. They can focus on their own discipline
and share knowledge (multidisciplinarity) or combine the dis-
ciplines into a coherent whole (interdisciplinarity; Annan-
Diab and Molinari 2017). Hydrology can be more intertwined
with closely related fields of research, such as meteorology
(Sene 2010), sedimentology (Waldschliger et al. 2022), and
plant sciences (Konkol et al. 2022).

The complex themes of past and future SDs require efforts
to bridge the divide between the environmental and social
sciences (transdisciplinarity). In line with hydrology’s colla-
borative history, the non-solitary research style was also recog-
nized as a key pillar to the success of the Panta Rhei decade
(Montanari et al. 2013) and is gaining traction in other scien-
tific disciplines as well (Van Noorden 2015). Thus, we should
critically evaluate what and how scientific expertise outside of
hydrology could be integrated into hydrology (Seidl and
Barthel 2017). However, practical difficulties arise when con-
ducting multi-, inter-, or transdisciplinary research (e.g. Lélé
and Norgaard 2005, Strober 2006, Lang et al. 2012, Brown et al.
2015). Such collaborations are often characterized by consid-
erable differences in scientific culture, potentially impeding
their success. For example, environmental researchers may
experience social sciences as subjective, while it may frustrate
social scientists if environmental researchers do not recognize
social implications (Brown et al. 2015). Familiarizing oneself
with such cultural differences facilitates effective multi-, inter-,
and transdisciplinary research.

We argue that education on these collaborative approaches
as well as on related disciplines will pave the way for more
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successful collaborations. Funding agencies, educators, institu-
tions, publishers, and researchers should continue to promote
collaborations between disciplines to incentivize, streamline,
and disseminate multi-, inter-, and transdisciplinary research
to drive global sustainable development.

Bridging science and practice

One of the research questions posed in Panta Rhei was: “How
can we support societies to adapt to changing conditions by
considering the uncertainties and feedbacks between natural
and human-induced hydrological changes?” (Montanari et al.
2013). This question is part of the attention that has been given
to closing the gap between science and practice. We distin-
guish the gap between hydrology and water management and
between science and the general public, and will start by dis-
cussing the first. Stakeholders are increasingly incorporated in
research through collaborations between scientists, companies,
and governments, often stimulated by funding agencies. For
example, Cortes Arevalo et al. (2020) use visual storytelling to
strengthen the science-practice interface. Additionally, work-
ing groups that stimulate the bridge between science and
practice have also been set up, such as the IAHS CANDHY
working group. They aim to “stimulate discussion, sharing of
knowledge, information, data, ideas fostering scientific and
professional exchange of academic, institutional and citizen
communities interested in the ‘Citizen AND HYdrology’
topic” (Montanari 2021, p. 1) We endorse these efforts and
see them as the first part of the bridge, but we argue both gaps
should be reduced even further.

In order to decrease the gap, we should overcome the
difficulties that are encountered when aiming to bridge science
and practice. For one, clear communication is impeded by
different interpretation of water-related words such as river
and dike (Venhuizen et al. 2019). On top of this, stakeholders
may hesitate to implement scientific knowledge due to a lack of
trust, contradictory findings, or high costs (Raska et al. 2022).
Overcoming these challenges would enable the use of state-of-
the-art knowledge in decision-making (McMillan et al. 2016)
and requires clear and open communication between scien-
tists, stakeholders, and policymakers, as well as a reflection on
governance strategies based on scientific output. We acknowl-
edge the debate on the role of science in society (Higgins et al.
2006), but we believe science should benefit society. Therefore,
stakeholders and policymakers need to address what knowl-
edge is needed in practice, and scientists need to clearly
address the limitations of their research.

Science and the general public are brought closer by science
communication. Scientists communicate their findings,
because they want to be transparent to the general public
(Kirchner 2017), to reduce scepticism (Hamilton et al. 2015),
and to inform and educate (Dudo and Besley 2016). However,
science communication is not easy. Scientists sharing their
results have to translate their research into intriguing stories
with a clear narrative about potentially controversial topics. In
doing so, they may run into miscommunication, misinterpre-
tation, and exaggeration (Lutz et al. 2018). We propose to
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empower the future generation of scientists by incorporating
science communication in their curricula.

Open science

Publishing scientific work in open access (OA) format has
become increasingly common, with many funding agencies
requiring research to be published OA. However, open science
(OS) does not end at publishing OA. OS includes opening all
parts of the research process: ideation, data collection and
analysis, and dissemination of the results to peers as well as
the public. Science can be made more open and reproducible
by sharing data on public repositories, using open software,
sharing preprints and negative results, and having an open
peer-review process. OS increases accessibility to fellow scien-
tists and the public, improves reproducibility, transparency,
and collaboration, and credits original ideas and work properly
(Gil et al. 2016, van Emmerik et al. 2018, Hall et al. 2022).
Moreover, OS can bridge the Global North-South research
divide, leading to increased inclusivity in science practices
(Adcock and Fottrell 2008, Tennant et al. 2016).

Publishers and scientists already widely acknowledge the
importance of OS. Some journals require both data and code to
be findable, accessible, interoperable, and reusable (FAIR stan-
dards; Wilkinson et al. 2016, Stall et al. 2017). In turn, hydro-
logical researchers are raising awareness by sharing guidelines
like the “Open Hydrology Practical Guide” (Hall et al. 2022).

While science as a whole is becoming increasingly open,
some challenges still need to be tackled. First, OS is more
expensive for the researchers, both financially and timewise.
Financially, OA involves fees, and storing research data is
expensive. Timewise, publishing reproducible code and data
is more labour-intensive than storing code and data for perso-
nal use (Hall et al. 2022). Moreover, not all observations are
quantifiable and transferable (Blume et al. 2018). Publishing
code and data requires experience with (for example) version

control, which is often lacking (Hall et al. 2022). A second
challenge is that publishing data is sometimes prevented due to
privacy, commercial, political, and economic concerns (Zipper
et al. 2020). Third, preprints are often criticized for their poor
scientific quality due to lacking prior peer review.

A fully open and transparent way of doing science can lead
to faster advances in hydrology and is therefore, in our opi-
nion, the only way forward. We believe that the three chal-
lenges discussed here can and should be tackled to promote OS
in hydrological research. On top of that, OS should be included
in education and additional efforts to practice OS should be
better rewarded in the academic system. Since these efforts
cannot stand on their own, it is important that funding agen-
cies also see the value of OS. Additional funding is required to
fully incorporate OS in education and to support any addi-
tional efforts scientists make to publish their research OS.

Synthesis and outlook

During the past two IAHS SDs, strong advances in the field of
hydrology were made. In the first, PUB (Sivapalan et al. 2003),
work was done on reducing predictive uncertainty in hydrol-
ogy. During the second, Panta Rhei (Montanari et al. 2013),
the interaction between hydrology and society was studied.
Thanks to these decades, hydrological models and predictions
have improved, as has our understanding of vital hydrological
processes. The gained knowledge and improved hydrological
tools allow us to tackle different problems in hydrology that we
previously could not. For the upcoming SD, we therefore
propose to use this enhanced toolbox to tackle hydrological
threats caused by climate change and population growth. This
can be approached from different perspectives. We identified
three perspectives that could be selected as the theme for the
upcoming IAHS SD: “Tipping points and thresholds in hydrol-
ogy,” “Intensification of the water cycle,” and “Water services
under pressure” (Fig. 3). We also identified four trends that
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Figure 3. Overview of the themes and trends presented in this paper.
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concern the way in which hydrological research is conducted:
big data, bridging science and practice, open science, and
inter- and multidisciplinarity. If future research is executed
according to these guidelines, it could more efficiently benefit
the entire hydrological community and more effectively alle-
viate the hydrological threats.

The three themes and four trends are presented separately
in this paper, but it should be noted that they are highly
connected. The themes outline possible pathways of future
hydrological research, and the trends have the potential to
improve the speed, applicability, and reproducibility of hydro-
logical research. The connectivity between themes is seen in,
for instance, the co-occurrence of tipping points with the
intensification of the hydrological cycle. Impact identification,
mitigation strategies, and reliable implementation in hydrolo-
gical models are overlapping focal points in the themes.
Connectivity between trends is visible in, for instance, the
fact that using big data in combination with open science
could lead to quicker advances in the field, as well as a more
inclusive research community. If this is further combined with
effective science communication, the knowledge can be
directly applied by policymakers and the public to alleviate
some of the threats we are currently facing as a society.

We offered an ECS perspective in the discussion on the
theme of the new IAHS SD. We synthesized the outcome of
six discussion sessions in western Europe in the spring of 2022.
Along with the themes, we highlighted a number of research
questions that, in our view, should be addressed in the next SD.
We acknowledge that the logistical limitations of our initiative
have led to a spatial bias. This may have caused certain topics
that are vital to the future in hydrology, especially in regions not
represented by the authors, to be overlooked. To overcome the
limitations posed by this bias, we encourage ECSs around the
world to share their opinion, get involved in the IAHS SD
discussions, and organize their own ECS discussion sessions.
These sessions could be organized according to the guidelines
provided in the Supplementary material, which are also avail-
able online with the possibility to post comments (https://
github.com/tvhat/ECSdiscussion-IAHSSD). By targeting cur-
rently underrepresented groups with this type of sessions, inclu-
sivity is actively pursued, which we deem necessary as a passive
open invitation will not automatically lead to diversity. We hope
to see a lively discussion as a result of this opinion paper and are
confident that the presented themes, research questions, and
trends will feed into the larger debate on the next IAHS SD.
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