
Development of an Audio
Assessment Module
For Sound Engineering of Aircraft Designs
U. Mehmood

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft





DEVELOPMENT OF AN AUDIO

ASSESSMENT MODULE
FOR SOUND ENGINEERING OF AIRCRAFT DESIGNS

by

U. Mehmood

in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology,
to be defended publicly on Monday July 9, 2018 at 11:00 AM.

Student number: 4229630
Supervisor: Dr. ir. M. Snellen
Thesis committee: Prof. dr. D. Simons, ANCE

Dr. ir. M. Snellen, ANCE
Ir. J. Melkert, FPP

A digital version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




ACKNOWLEDGEMENTS

It has been a long journey, from searching for a graduation project to writing the acknowledgements. It is not
just the end of my thesis, but also the end of my studies at the TU Delft. The past six years were challenging,
amusing and enlightening at the same time. This would not have been possible without the advice and sup-
port of many people.

First and foremost, I would like to thank my supervisor Dr. ir. Mirjam Snellen for her guidance and evaluation
of the work presented in here. I also wish to acknowledge the motivation and guidance provided by Dr. ir.
Abhishek Sahai, who was my supervisor for the first few months of this thesis. Additionally, I would like to
thank Prof. dr. Dick Simons and Ir. Joris Melkert, for being part of the assessment committee.

I would also like to thank Ana, for her valuable suggestions and her assistance during the listening tests con-
ducted in this research. A special thanks to everyone who participated in those listening tests and were willing
to listen to annoying aircraft sounds.

Last but not least, I would like to thank my parents and my siblings for their moral and emotional support in
my life. I am also grateful to my other family members and friends who have supported me along the way.

U. Mehmood
Delft, June 2018

iii





EXECUTIVE SUMMARY

One way of attaining the objective of lower resistance to aircraft noise is to use noise reduction technologies
such as acoustic liners or chevron nacelles; another way of achieving this objective is to design aircraft that
may inherently sound more acceptable. A first step in designing aircraft with optimal sound is the develop-
ment of a module that is able to assess noise in a sophisticated way, which is the exact goal of this research.

In this research the audio assessment module (AAM) is completed with the addition of tonality, roughness
and fluctuation strength. Aures’ tonality metric and Daniel & Weber’s roughness metric are implemented to-
gether with a fluctuation strength metric derived from the roughness metric. The AAM is now able to assess
sound in terms of five sound quality metrics, specifically loudness, tonality, roughness, sharpness and fluc-
tuation strength, but also in terms of conventional metrics such as EPNL.

The AAM is applied to a variety of sound recordings, including 255 measured aircraft flyover measure-
ments of 26 different types of aircraft, in an attempt to find relations between design variables and the five
sound quality metrics. The only significant correlations observed are those of the wingspan, wing loading
and engine diameter with loudness. High values for roughness are observed for helicopter sounds due to
the buzzing sound produced by the helicopter rotor, indicating that roughness is an important metric for
propeller aircraft or aircraft with open-rotor engines.

Listening tests, with the aim of learning whether the psychoacoustic annoyance value (PAmod ) is a better
annoyance predictor than EPNL, were conducted in which twenty subjects participated. The test consisted
of two parts: a direct scaling part in which subjects had to give a rating between 0-100 and a two alternative
forced choice part in which two sounds were presented and subjects had to indicate which one is more an-
noying. From the direct scaling tests it was found that the metrics did not outperform each other in terms of
annoyance assessment. Both the EPNL and PAmod showed a similar correlation with subjective annoyance
ratings. The two alternative forced choice test was performed to investigate two sounds which contradicted
each other in terms of PAmod and EPNL. In some cases, the sound with the higher EPNL value was found to be
more annoying, while in other cases the sound with the higher PAmod value was found to be more annoying.

Some deficiencies of the PAmod metric came to light during the listening tests conducted in this research.
One of the reasons the PAmod did not correctly predict the annoyance all the time may be the varying duration
of the aircraft flyovers. For a valid comparison of two sounds in terms of PAmod , the duration of the sounds
has to be the same, since the values "exceeded 5% of the time" are used in the calculation of PAmod . It was also
found that the loudness contribution to PAmod might be excessive. In addition to the loudness contribution,
the effect and weighting of tonality and sharpness need further investigation. More research into PAmod can
potentially improve correlations with subjective evaluations. An optimized psychoacoustic annoyance model
should be validated with extensive listening tests.

The design parameter analysis stated above has some limitations. The following improvements and fur-
ther research possibilities for the future can be suggested. The 255 aircraft flyovers were all turbofan aircraft
approaching the airport and the number of flyovers for an aircraft type ranged from 1 to 72. For future anal-
ysis, it is suggested to use a minimum of 10 aircraft flyovers for each aircraft type in order to have a more fair
comparison. By taking the average of more than one aircraft flyover, the effect of disturbances such as wind
will be minimized. It is also recommended to perform a design parameter analysis in a dedicated design
environment using auralized sounds. By varying only one design parameter and keeping all other design pa-
rameters constant, direct relations between design parameters and sound quality metrics will become clear.
Moreover, it is suggested to perform a multivariate analysis in which several design variables are examined
at the same time. This gives a much more realistic picture than trying to explain the effect on a dependent
variable by looking at only one single design variable.

The ultimate aim of an audio assessment module is to use it for sound engineering of aircraft designs.
The psychoacoustic metrics are capable of capturing the different characteristics of sound in a more compre-
hensive manner than for example EPNL. Differences in sound for current aircraft or future concepts such as
aircraft powered with open-rotor engines can be captured by the individual metrics. This can then be used for
sound engineering of aircraft designs in which the design is modified in such a way to arrive at a sound which
is as close as feasible to the target sound. In this way, it is possible to design aircraft which sound inherently
more acceptable and reduce the annoyance caused to residents by aircraft noise.
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1
INTRODUCTION

A growing number of people is suffering from the noise that is being produced by aircraft

due to the ever-growing airports and the continuously increasing air-traffic demand. Re-

cently, studies have revealed that there is a direct link between aircraft noise pollution and

increased risk of heart disease and stroke among residents [1], [2]. Aircraft and engine man-

ufacturers are trying their best to create quieter aircraft designs by applying noise reduction

technologies to their products. By doing this they hope to achieve lower resistance from

residents to the growth of airports and air-traffic. Furthermore, the noise certification re-

quirements enforced by the relevant governing bodies are becoming increasingly stringent.

Although latest generation aircraft are 25 decibels quieter than 60 years ago [3], air traffic is

increasing constantly, leading to more aircraft noise.

The focus in the aircraft industry has primarily been on noise absorbing technologies [4]

and thus on making the aircraft more quiet. However, there are physical and practical lim-

itations to these noise reduction technologies [5]. Furthermore, aircraft noise still contains

adverse components such as audible tones and rapid intensity fluctuations leading to an

unpleasant sound. Therefore, it is important that the problem is also tackled in a different

way. The objective from this different point of view is not to make the aircraft more quiet,

but to improve the sound quality such that it sounds less annoying to the residents. This

involves a reduction of the noise components that might individually be contributing to

the annoyance of the residents. The goal of this thesis is to implement sound quality (SQ)

metrics from the field of psychoacoustics into an Audio Assessment Module (AAM), which

has the future goal of being integrated in an aircraft design chain, for aircraft design with

optimal sound. The three SQ metrics that are considered to be important for aircraft noise

1



2 1. INTRODUCTION

and thus need to be implemented are: tonality, roughness and fluctuation strength. The

AAM is already able to assess aircraft noise using traditional certification metrics such as

Effective Perceived Noise Level (EPNL). However, the AAM should go one step beyond what

currently exists for aircraft noise and assess aircraft noise using sophisticated SQ metrics.

These SQ metrics can be combined to calculate a psychoacoustic annoyance value.

The structure of this report is as follows. In chapter 2 the background information is de-

scribed. The problem statement is discussed and work that has already been carried out

by other academics in the field of psychoacoustic and sound engineering is summarized.

Chapter 3 describes the methodology used in this thesis. The validation of the imple-

mented SQ metrics is described in chapter 4. In chapter 5 the AAM is applied to measured

aircraft sounds. It is investigated how design variables have an impact on different sound

characteristics. Furthermore, subjective listening tests are performed to test the capability

of the psychoacoustic annoyance model. This thesis is concluded with the conclusion &

recommendations in chapter 6.



2
BACKGROUND

This chapter covers the background for this master thesis. In the first section, the problem

statement is discussed. In the second section, previously published literature on sound

engineering and sound quality metrics is discussed.

2.1. PROBLEM STATEMENT

Besides carbon emission, noise emission has been a major concern for policy makers in the

last few decades. This has led to regulations and legislation at various governmental lev-

els which have become increasingly stringent in the last few years. The International Civil

Aircraft Organization (ICAO) has defined a balanced approach to tackle the noise emission

concern [6]. This implies that noise reduction should not only be achieved by optimizing

operational procedures and land use planning, but also by technological improvements in

the aircraft design itself. The following goal has been set by the Advisory Council for Aero-

nautics Research in Europe (ACARE): between 2000 and 2050, a reduction of 15 dB in EPNL,

should be achieved (figure 2.1).

3



4 2. BACKGROUND

Figure 2.1: Noise emission goal set by ACARE 1

The ICAO aids on the development and standardization of low noise operational proce-

dures that are safe and cost-effective. The operational procedures include noise preferen-

tial runways and routes and noise abatement procedures for take-off and landing.

The appropriateness of any of these measures depends on the physical lay-out of the air-

port and its surroundings. These procedures have been documented in ICAO Doc 8168 2.

Next to these global regulations, local airport rules have led aircraft manufacturers to make

aircraft noise emission an important aspect in their design. Aircraft noise consists of dif-

ferent noise components. Major aircraft noise sources are depicted in figure 2.2. Most of

the noise generated by the engine occurs due to the high velocity exhaust gases (jet noise)

and the airflow in the fan (fan noise). The landing gear and high lift devices are the main

contributors to airframe noise. In the last few decades, the jet noise has been reduced con-

siderably due to the high bypass turbofan engines. High bypass ratio engines were origi-

nally developed to lower the jet velocity and thus increase the propulsive efficiency as can

be seen from equation 2.1. In this equation ηpr op is the propulsive efficiency, v j the jet

velocity and V the airspeed of the aircraft.

ηpr op = 2

1+ v j

V

(2.1)

A positive side effect of the introduction of bypass engines was a reduction in jet noise due

to the lower jet velocity, since the jet acoustic power fits a strong power law with the veloc-

ity (∼ v8
j ) [8]. The bypass ratio kept increasing over the years and thus the jet noise kept

decreasing. Nowadays the engine fan and airframe are the dominant noise sources during

1Source of image: http://www.acare4europe.org
2https://store.icao.int/index.php/aircraft-operations-vol-i-flight-procedures-fifth-edition-2006-doc-8168-part-1-english-printed.html
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Figure 2.2: Major aircraft noise sources [7]

approach. However, jet noise remains the dominant noise source for most aircraft during

take-off. Today’s aircraft noise spectra differ significantly from the aircraft noise spectra of

50 years ago. This has led to a more focused approach to noise reduction. For example,

chevrons, which is a sawtooth pattern on the exhaust nozzles, are being implemented on

jet engines to reduce the jet noise [5]. The Bombardier CRJ900 was the first aircraft to fly

with chevrons on the GE Cf34-8C5 engine. Today, there are several aircraft with chevron

nacelles such as the Boeing 787. However, there is still some reluctance to systematically

add chevrons since they add weight and lead to additional drag [5]. A technology which is

applied more often is the acoustic liner. These liners reduce the noise within an optimized

frequency range and therefore are well suited to reduce the fan noise [4].

From the examples given above, it is quite clear that the focus in the aircraft industry has

primarily been on noise absorbing technologies and thus on making the aircraft more quiet.

However, there are physical and practical limitations to these noise reduction technologies,

such as additional weight and drag. Furthermore, aircraft noise still contains adverse com-

ponents such as audible tones and rapid intensity fluctuations leading to an unpleasant

sound [7]. Thus, it is necessary to not only focus on making the aircraft more quiet, but also
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on improving the sound quality of the noise produced by aircraft. This can be achieved by

optimizing the sound quality by analyzing any adverse sound components and removing

them by altering the design. This approach is called sound engineering and is already ex-

tensively applied in industries such as automotive engineering.

For example, in the automotive industry each type of car demands a different sound. An

electric car emits little noise and thus could be a hazard for pedestrians. To mitigate this

hazard, car manufacturers add a synthesized sound to the car. Audi has developed e-sound,

that is used on their electric e-tron models 3. E-sound is a sound engineering technique of

generating synthetic engine sounds for the essentially silent vehicle in order to warn pedes-

trians and cyclists of the cars proximity. On the other hand, car manufacturers are using

sound engineering to intensify the engine-sound of their cars. Achieving an optimal sound

can be done by altering the design, as is done on the Lexus LFA 4. Components were de-

signed on the engine which directed the engine sound towards the driver.

The sound engineering approach described above can potentially also be adopted by the

aircraft industry to improve the sound quality of aircraft. This will improve the acceptance

of aircraft noise and lead to lower resistance of residents to the construction of airports and

air-traffic expansion. For that reason, an AAM is currently being developed by the Aircraft

Noise & Climate Effects (ANCE) section at the TU Delft. The AAM will serve the more overall

goal of being able to design aircraft with optimized sound by integrating the module into

the aircraft design chain. Such a design chain is depicted in figure 2.3.

Figure 2.3: Methodology for low-annoyance aircraft design [9]

After the initial aircraft design, the flight path is calculated and source noise is predicted.

The next step in the design chain is the auralization (i.e. aural simulation) of aircraft sound.

This auralized aircraft noise can then be used for annoyance assessment and the results can

subsequently be fed back to the aircraft design tool. To the best of the authors knowledge,

there is no noise assessment module which is integrated into the aircraft design chain. A

noise assessment module integrated in the design chain can help to identify negative sound

effects at an early stage, reducing the need to apply expensive noise reduction technologies

3https://www.designboom.com/technology/audi-e-sound-for-electric-cars/
4http://blog.lexus.co.uk/a-closer-look-inside-the-lfas-v10/
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such as chevron nacelles at a later stage. In addition, by using the AAM for the noise pro-

duced by current aircraft, insights can be obtained in the most annoying aircraft and its

components. This can be used to initiate the process described by figure 2.3.

To be able to design aircraft with optimal sound, suitable noise assessment metrics are

needed. The conventional metrics used for noise assessment can be divided in three main

categories: Loudness based weighted Sound Pressure Level (SPL) metrics, annoyance based

Perceived Noise Level (PNL) metrics and multiple event average level metrics. All these

metrics are briefly explained below.

Loudness based weighted SPL metrics

SPL is a measure of sound pressure and uses a logarithmic scale to represent the sound

pressure of a sound relative to a reference pressure. The reference sound pressure is typi-

cally the threshold of human hearing (2·10−5Pa). Loudness is the subjective perception of

sound pressure. This should not be confused with objective measures of sound pressure

such as SPL. Loudness is defined as the auditory sensation in terms of which sound can be

ordered on a scale from quiet to loud [10]. Loudness can be expressed in phon. A phon is

defined as follows: a sound has a loudness level of X phons if it is equally loud as a tone

with a SPL of X dB at 1 kHz. A more detailed explanation of loudness is given in section 2.2.

The three loudness based weighted SPL metrics are the following.

- A-weighted SPL: Non-linear frequency selectivity of the ear plays an important role in

loudness metrics. This can be seen in the equal loudness contour in figure 2.4.

Figure 2.4: Equal loudness contours 5

5Source of image: http://en.wikiaudio.org
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The A-weighted metric was developed to approximate the fact that the human hearing sys-

tem perceives high frequency sound as louder than low frequency sound of the same SPL.

When assessing the noise impact, higher frequencies are more highly weighted than low

frequencies. In the equal loudness contours, the 40 phon curve was chosen as a reference

for this metric.

- C-weighted SPL: The difference with A-weighted SPL is that this metric was developed to

approximately follow the 100 phon equal loudness contour. This means that this metric is

for the assessment of louder noise levels than the A-weighted SPL (40 phon).

- Sound Exposure Level (SEL): In this calculation, the noise impact from the A-weighted

SPL is integrated over time to account for the duration. The SEL value thus corresponds to

the constant sound level which has the same amount of acoustic energy in 1 second as the

whole noise event.

Annoyance based Perceived Noise Level

The annoyance aspect of noise is not only dependent on the loudness. The duration of the

noise and the presence of tones are other important factors to determine the annoyance

caused by a sound signal. The equal loudness contours given above are not derived for

broadband noise, such as aircraft noise. Therefore, equal noisiness curves were introduced

(figure 2.5). Noisiness is expressed in noy N .

Figure 2.5: Equal noisiness contours 6

6Source of image: https://www.sfu.ca/sonic-studio/handbook/Perceived_Noise_Level.html
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- Perceived Noise Level (PNL): This metric was developed in the 1960s and had the goal

to provide a means of certifying aircraft noise. The equal noisiness curves are used to cal-

culate the PNL in PNdB using equation 2.2.

P N L = 40+33.3log (N ) (2.2)

- Tone-corrected Perceived Noise Level (PNLT): It was found that the presence of discrete

tones in broadband noise make the sound more annoying. Therefore, a tone correction

[11] is added to the PNL value.

- Effective Perceived Noise Level (EPNL): The final addition to the PNL metric was the in-

clusion of a duration correction [11] that would ultimately yield a single value measure for

the annoyance caused by aircraft noise for a single event.

Multiple event average level metrics

Single event noise metrics such as EPNL are most commonly used for aircraft noise cer-

tification. However, multiple event metrics are also convenient for community noise as-

sessment. These metrics are intended to focus on how residents are affected by multiple

aircraft flyovers in a specific time period.

- Equivalent A-weighted sound level for multiple events: The SEL values specified above

are for a single event. When summed energetically for a time period, an equivalent sound

level can be calculated for that period of interest. This can be done for multiple events in

the following way:

L Aeq,T = 10 log10

n∑
j=1

10L AE ( j )/10 −10 log10 T (2.3)

where n is the number of events, T is the time period and L AE ( j ) is the SEL value for the

j th event.

- Day-night average level: In this metric a penalty is given during night times, since noise is

more annoying when the background or ambient noise is low.

- Day-evening-night average level: This is a variation of the previous metric, since in this

case a penalty is also given for events in the evening. The evening penalty is lower than the

penalty for events in the night.

The metrics described above are quite basic metrics which attempt to assess the noise an-

noyance experienced by residents. The loudness based metrics do not take into account

effects of tones. Furthermore, the approximation to a 40 phon (A-weighting) or a 100 phon

(C-weighting) equal loudness curve is not really representative of the loudness experienced
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in the vicinity of an airport. The tone-correction and duration correction in the annoyance

based PNL metrics are also quite basic. For example, for the tone correction, the frequency

spectrum is divided in a very broad and coarse way. Furthermore, only the single most pro-

truding tone is taken into account, neglecting the other tones which could still affect the

annoyance perception. The penalties given in the multiple event average level metrics are

rather arbitrary. Also, tonal content or the effect of frequency is not taken into account. In

general, all these metrics were developed over 50 years ago and since then much more de-

tailed knowledge about noise annoyance experienced by humans has been accumulated.

The AAM is already able to assess aircraft noise in the traditional certification metrics such

as SEL and EPNL. However, the AAM is supposed to go one step beyond what currently ex-

ists for aircraft noise assessment. Models which reflect the physics behind the noise and

take into consideration the way in which the human hearing system processes sounds are

needed. Psychoacoustics is the scientific field which attempts to bridge the gap between

physical and subjective evaluations of sound. In the field of psychoacoustics a lot of re-

search has been conducted on how sound is perceived by the human ear. This has led to

much more sophisticated measures of perceived sound based on the characteristics of the

sound. Sound attributes such as loudness, tonality, sharpness, roughness and fluctuation

strength all contribute to noise annoyance [10],[12]. A spectrogram is a visual representa-

tion of audio. A spectrogram for an aircraft flyover is given in figure 2.6.

Figure 2.6: Departure spectrogram of a Boeing 737-700

High lift devices, together with landing gears, are the main sources of airframe noise during

departure and approach. Airframe noise is mainly broadband noise and thus contains en-

ergy over a wide range of frequencies. In the sample spectrogram it can be seen that when

the aircraft is overhead, the energy is spread over a wide range of frequencies. Loudness is

the subjective perception of the magnitude of a sound. When a spectrogram contains more
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spectral energy, the loudness value will be higher. However, it must be noted that loudness

is not only dependent on the SPL, but also on frequency and duration.

The lines in the spectrogram indicate tones. The lines change in frequency over time due to

the Doppler shift. The most prominent tone is the tone generated by the engine fan and is

called the Blade Passage Frequency (BPF) tone [13]. The BPF can be calculated with equa-

tion 2.4, where B is the number of blades and n is the rotational velocity in rpm. Higher

harmonics of the BPF are also present [14].

BPF = B ·n

60
(2.4)

During take-off, buzzsaw tones can also be heard, which are generated when the speed at

the blade tips is supersonic. These buzzsaw tones are a harmonic series of tones with a low

fundamental frequency [13]. All these tones should be captured with a suitable tonality

metric.

Sharpness deals with the high frequency content of a sound. Applying it to a spectrogram,

a sound will have a higher sharpness when there is a lot of spectral energy concentrated at

the higher frequencies (above 3000 Hz). Roughness deals with fast fluctuations in sound,

while fluctuation strength deals with slow fluctuations in sound. An important source of

roughness in aircraft sound is a propeller engine. Fluctuation strength plays a negligible

role in the assessment of aircraft noise, but is still implemented since it is very similar to

roughness.

Algorithms have been developed that take into account the aforementioned sound attributes

in order to improve the sound quality of products. In sound engineering, these models are

applied to products to improve sound quality. The development of a noise assessment

module, which is the main objective of the thesis, forms the foundation for sound engi-

neering of aircraft designs. In the AAM, loudness and sharpness have already been incor-

porated. That is why the focus of this master thesis will be on the tonality, roughness and

fluctuation strength SQ metrics.

2.2. ACADEMIC LITERATURE

In this section the academic literature on the psychoacoustic metrics will be presented.

First of all, the concepts which play an important role in psychoacoustics will be discussed.

The concepts explained are the following three: non-linear frequency sensitivity, masking

and critical bands.
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Frequency sensitivity

The frequency sensitivity of the human ear is captured by the equal loudness contours,

which were depicted in figure 2.4. The most important conclusion that can be drawn from

the equal loudness contours is that an increase in level at low frequencies will be perceived

as a higher change in loudness, than at high frequencies with the same level increase. Ap-

plied to aircraft noise, this means that for example fan tones generally occurring around 1

kHz and above could have an increased SPL and still be perceived as loud as before, while

low frequency jet noise would be perceived as clearly louder with the same increase in SPL

[7].

Masking

Masking refers to the decrease in audibility of a sound due to the presence of another

sound. The effect of masking is measured quantitatively by determining the masked thresh-

old, which is the SPL of a test tone (usually sine wave) necessary to just be audible in the

presence of a masker (other sound). In general, high frequency sounds will be masked by

low frequency sounds if both are present simultaneously. A tone or narrowband noise will

mask frequencies above the center frequency more effectively than frequencies below the

center frequency. This is called the upward spread of masking. Masking of a test tone by a

masker is illustrated in figure 2.7.

Figure 2.7: Masking of 2 kHz test tone by narrowband noise centered at 1 kHz (left) and white uniform noise

(right). The green line indicates the threshold of hearing. CB = critical band and WN = white noise. [15]

In the left plot, it can be observed that the narrowband noise will mask the test tone of 2

kHz and 40 dB if it has a SPL of 80 dB or above. Also, it can be observed that the masking

is more effective towards higher frequencies (upward spread). Each tone or narrowband

noise will have its own masking pattern. In the right plot of figure 2.7, the masking due to

white uniform noise can be seen. For all dB levels of white noise the following holds: the
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curve is constant until approximately 500 Hz and has a 10 dB per decade slope after 500

Hz. To mask the test tone of 2 kHz and 40 dB, a level of 30 dB of the white noise is already

sufficient. This is much lower than the 80 dB found for the narrowband noise. This observa-

tion implies that broadband noise such as jet noise is very effective in masking other tones.

Masking effects can be measured not only when masker and test sound are presented si-

multaneously, but also when they are not presented simultaneously. The test sound can

also be presented before the masker stimulus is switched on or after termination of masker

stimulus. The masking effect produced in the latter case is referred to as postmasking,

while in the first case it is called premasking [10]. Premasking, simultaneous masking and

postmasking are schematically drawn in figure 2.8.

Figure 2.8: Schematic drawing to illustrate and characterize the regions within which premasking,

simultaneous masking and postmasking occur [10].

Critical bands

The third important concept is the division of the audible frequency range of the human

ear into frequency bands. These frequency bands are called the critical bands. Thus, the

critical bandwidth corresponds to the frequency resolution of the ear. The critical band

rates z are measured in Bark and have a range from 0 to 24. The critical bandwidth as a

function of frequency is given in figure 2.9 and can be computed using equation 2.5.

Figure 2.9: Critical bandwidth approximation. For frequencies until 500 Hz the critical bandwidth is

estimated to be 100 Hz, and for higher frequencies it is estimated to be 0.2 · f [10]

z = 13 tan−1
(
0.76

f

1000

)
+3.5 tan−1

( f

7500

)2
(2.5)
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An important implication of the critical band concept is that two tones present within the

same critical band will not be heard as two separate tones and the sounds will affect each

others perception due to masking. Furthermore, loudness stays the same when increas-

ing the bandwidth of narrowband noise up to the critical bandwidth while keeping the SPL

constant (but the overall sound pressure level increases). If the narrowband noise band-

width exceeds the critical bandwidth, the loudness increases while keeping the SPL con-

stant.

2.2.1. SPECIFIC AND TOTAL LOUDNESS

Loudness is the subjective perception of the magnitude of a sound. It depends on the fre-

quency (figure 2.4), intensity and the duration. Loudness is given in phon when on a log-

arithmic scale, and in sone when using a linear scale. Loudness has been standardized in

ISO 532-1 [16].

First, the SPL of the sound is calculated and transformed to 1/3 octave band levels. These

1/3 octave band levels are then transformed to a SPL value in each critical band (critical

band level). This is done using the equal loudness contours. This is followed by the calcu-

lation of the excitation pattern, which is analogous to the amount of neural activity in the

human ear [10]. The excitation pattern is calculated as follows. The excitation level of the

component is set to the SPL of the component at the place on the Bark scale which cor-

responds to the frequency of the component. As proposed by Terhardt [17], the excitation

decreases with a constant slope towards lower frequencies and with a level dependent slope

towards higher frequencies. In psychoacoustics, the excitation pattern is commonly used

to model auditory masking [18]. Subsequently, the specific loudness, which is the loudness

in each critical band expressed in sone/Bark, is calculated with the following equation:

Nspec (z) = 0.0635 ·100.025LTQ (z)
[

(0.75+0.25 ·100.1(LE (z)−LTQ (z)))0.25 −1
]

(2.6)

where LE is the excitation level and LTQ is the threshold in quiet. In the next step, it is

checked whether the specific loudness in each critical band is either partly or completely

masked by the so-called accessory loudness that is caused by the excitation over the current

critical band from a sound concentrated on another critical band. The unmasked specific

loudness N
′

in each critical band is then determined and used to compute the total loud-

ness Ntot al according to equation 2.7.

Ntot al =
∫ 24

0
N

′
(z) d z (2.7)

Since aircraft noise is not steady but time-dependent, the time-varying loudness calcula-

tion is very relevant. The model of loudness for time-varying sounds takes into account
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temporal masking. Postmasking is the dominant temporal masking effect and premasking

plays a relatively secondary role [10], therefore only postmasking is taken into account in

Zwickers model [19].

Figure 2.10 shows an example of how loudness versus time is established for a 5 kHz tone

burst, with a duration of 10 ms (dotted line) or 100 ms (solid line). The total loudness cor-

responds to the area under the unmasked specific loudness pattern. Hence, the curve of

total loudness is lower for the burst with a duration of 10 ms.

Figure 2.10: Establishment of the loudness of a 5 kHz tone burst with duration of 100 ms (solid line) and 10

ms (dotted line) (a) temporal envelope of both tones (b) specific loudness in the 19th critical band. (c)

loudness as a function of time [10]

Although Zwickers model allows the calculation of loudness for time-varying sounds, it

does not give one overall loudness value for the sound. However, for many sounds where

loudness varies with time, it has been found that the loudness exceeded 5% of the time (N5)

is a reasonably good measure of perceived loudness [16]. As an example, the timevarying

loudness is plotted for an aircraft flyover in figure 2.11. As can be seen, the signal duration

is 15 seconds, and thus the N5 value, is the value exceeded for 0.75 seconds. This value is

indicated by the dashed line in the figure.
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Figure 2.11: Timevarying loudness for an aircraft flyover

2.2.2. SHARPNESS

Sharpness is a measure of the high-frequency content of a sound. A sound with more high-

frequency content is perceived to be sharper. The unit of sharpness is acum and one acum

is referenced to a narrowband noise one critical band wide, with a center frequency of 1 kHz

and having a SPL of 60 dB. Many methods exist which attempt to capture the sharpness of

a sound, such as the method of Zwicker and Fastl [10], Aures’ sharpness method [20] and

the method of von Bismarck [21]. Sharpness in the standard DIN 45692 [22] is similar to the

sharpness method of von Bismarck. Sharpness according to the method of von Bismarck

can be calculated with the following equation:

S = c ×
∫ 24

0 N
′
(z)g (z)z d z

N
(2.8)

where c is a constant depending on the normalization of the reference sound, N
′

is the

specific loudness at critical band rate z and g (z) is a weighting function. The weighting

function is given in equation 2.9. For high critical band rates, it causes a strong increase in

sharpness.

g (z) =
{

1 z ≤ 16

0.066e0.171z z > 16

}
(2.9)

2.2.3. TONALITY

This sound quality metric is concerned with the tonal prominence of a sound. Terhardt’s

tonality metric [23] forms the theoretical basis of tonality metric definition. Developed in

1982, it serves as the basis for many other tonality metrics. This method is based on the
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Figure 2.12: Overview of Terhardts tonality metric [23]

virtual pitch theory. According to the virtual pitch theory, the first six to eight harmonics of

a complex tone can be perceived as separate spectral pitches. From these spectral pitches,

the virtual pitches can be deducted. A schematic overview of Terhardt’s tonality method is

given in figure 2.12.

In the study of Zhang & Shreshta [15], this algorithm is implemented in Matlab and in

VCC+. First of all, the signal is transformed to the frequency domain using a Fast Fourier

Transform (FFT). This is followed by the extraction of the tonal components. The spectral

samples are investigated and it is tested whether the SPL of the i th sample is higher than

the next lower (i − 1) sample and the next higher (i + 1) sample. It is then further tested

whether a candidate found by this criterion meets the condition specified in equation 2.10.

Li −Li+m ≥ 7 dB f or m =−3,−2, ..,2,3 (2.10)

If this condition is met, it is assumed that the group of seven spectral samples (i − 3, i −
2, .., i +2, i +3) forms a tonal component. The value of 7 dB is determined empirically.

The center frequency of the tonal component is not equal to the frequency of the i th sam-

ple, but is calculated using equation 2.11.

fc = fi +0.46 · (Li+1 −Li−1) (2.11)

The next step in the method is the evaluation of masking effects. The SPL excess is calcu-

lated to determine the aurally relevant tones. The SPL excess ∆L can be calculated using

equation 2.12, where n is the number of tonal components.
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∆Li = Li −10log10

{[ n∑
k ̸=i

AEk ( fi )
]2 +EGr ( fi )+EHS( fi )

}
dB. (2.12)

The term AEk is the amplitude of the secondary neural excitation at frequency fi due to a

k th tonal component and can be calculated with equations 2.13-2.15.

AEk ( fi ) = 10
LEk ( fi )

20 (2.13)

LEk ( fi ) = Lk − s(zk − zi ) (2.14)

s =
{

27 fi ≤ fk

−24− 230
fk

+0.2Lk fi ≥ fk

}
(2.15)

The second term in the SPL excess equation, EGr refers to the masking intensity of the

broadband noise encompassing the tone. It is equal to the sum of the broadband noise

intensities surrounding the tone one Bark around it. The final term, EHS is the intensity at

the threshold of hearing and can be calculated using equation 2.16.

EHS( fi ) = 3.64
fi

1000

−0.8

−6.5e−0.6(
fi

1000−3.3)2 +10−3
( fi

1000

)4
dB (2.16)

This calculation is done for all tonal components from i = 1 to i = n. Positive values for ∆Li

indicate components which are aurally relevant.

Due to interaction of simultaneous spectral components in the auditory system, the spec-

tral pitches are not exactly identical to the pitches of isolated tones with the same fre-

quency. The individual spectral pitch of a tonal component expressed in pitch units (pu)

can be calculated using equation 2.17, where vi is the induced pitch shift which can be

determined using equation 2.18

Hi = fi (1+ vi ) (2.17)

vi = 2 ·10−4
(
Li −60

)(
fi −2

)
+1.5 ·10−2e

−∆L1
i

20

(
3− ln( fi )

)
+3 ·10−2e

−∆L2
i

20

(
0.36+ ln( fi )

)
(2.18)

where, ∆L1
i and ∆L2

i are given by equations 2.19 and 2.20.

∆L1
i = Li −20log10

i−1∑
k=1

10LEk ( fi /20) (2.19)

∆L2
i = Li −20log10

n∑
k=i+1

10LEk ( fi /20) (2.20)
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The true spectral pitch thus takes into account the pitch shifts, whereas for the nominal

spectral pitch (H = fi ) the pitch shifts are ignored. The next step in Terhardt’s method is

the weighting of components. Each tonal component is weighted based on its SPL excess

level and frequency. The weighting function is given in equation 2.21.

W Si =
[

1−e
∆Li
15

][
1+0.07

( fi

0.7
− 0.7

fi

)2
]−0.5

(2.21)

The spectral pitch weights W Si versus spectral pitch is called the spectral pitch pattern.

This serves as the basis to calculate the virtual pitch, which is the final step in the method.

As stated earlier, it is one of the main principles of virtual pitch theory that virtual pitch,

even though it is a fundamentally different perceptual attribute, is dependent on the pitches

of the dominant spectral components. The nominal virtual pitch can be calculated using

equation 2.22, while the virtual pitch accounting for pitch shifts and interval stretch (true

virtual pitch) can be calculated using equation 2.23.

Hi m = fi

m
(2.22)

Hi m = fi

m

(
1+ vi − si g n(m −1)10−3{18+2.5m − (50−7m)

fi

m
+0.1(

fi

m
)−2}

)
(2.23)

The virtual pitch is represented by the mth subharmonic of the i th relevant component.

Also, a weight is given to these virtual pitches depending on on how well the determinant

component fits into a harmonic series with other components. Furthermore, a correction

is applied to the weight for the fact that virtual pitch only exists in the human frequency

range. The virtual pitch value (Hi m) and its corresponding weight and frequency form the

virtual pitch pattern.

An example is illustrated in figure 2.13. It represents a pitch analysis of an artificial complex

tone from the study of Zhang & Shreshta [15].

Five plots can be seen in the figure. In the most upper plot the SPL versus frequency is plot-

ted. The second plot depicts the tonal components extracted by the algorithm according

to equations 2.10 and 2.11. It can be observed that the tonal components correspond to

the peaks which can be seen in the first plot. The third plot shows the tonal components

which have an SPL excess (equation 2.12) larger than zero. Only six of the nine components

have an SPL excess larger than zero. In the fourth plot the spectral pitch weight (equation

2.21) is plotted. The spectral pitch weight is the highest for the tonal component at 500 Hz.

The virtual pitches (equation 2.23) are subharmonics of the six spectral pitches indicated
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Figure 2.13: Pitch analysis of complex tone [15]

in the fourth plot. Only the five most prominent virtual pitches are shown in the last plot

in order to simplify the plot. It can be observed that the most prominent virtual pitch is the

one which corresponds to the fundamental frequency of 500 Hz. The fourth and fifth plot

are the important outputs for this tonality metric. This metric does not calculate a single

number for tonality.

Due to the assumptions Terhardt made while developing the method, equation 2.23 can

only be applied when the pitch value is lower than 500 pitch units (pu). Due to the sim-

plicity of the equation, virtual pitches higher than 500 pu may deviate considerably from

the truly perceived pitch. As stated above, another drawback of this method is that it does

not give a single number describing the tonality perceived by the human ear. Instead of a

spectral pitch and virtual pitch pattern, a single number describing the tonality of a sound

perceived by the human hearing system would be more useful. A recommendation is made

by Zhang and Shrestha to find a weighting function which can be applied to both the spec-

tral and virtual pitch patterns and extract a single number from it for tonality. Furthermore,

it is reasoned by Zhang and Shrestha that the precision of the tonality calculation will in-

crease when a proper procedure can be found that introduces loudness into tonality. Both

of these drawbacks are eliminated when using Aures’ tonality metric [24]. Aures found that

if loudness is introduced into the tonality metric, it will have better correlation with sub-
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jective results and a more standardized evaluation of masking effects. Aures’ Tonality met-

ric has been widely used in the automotive industry to improve the sound quality of cars

[25],[26]. Furthermore, Angerer et al. [27] and More [12] found that the annoyance due to

aircraft tonal noise could be predicted with a reasonably high correlation by using Aures’

tonality metric.

An examination of Aures’ tonality metric has been conducted by Hastings and Davies [28].

Sounds with different tonal content were compared by subjects to assess the influence of

bandwidth and frequency on tonality. Two types of sounds were used: tones and bandpass

filtered random noise. For the filtered noise tests, the frequency response of the filter was

varied by changing the location of the half power points and the roll-off rate. To some ex-

tent, the dependency on frequency and bandwidth of tonality were confirmed by the tests.

However, sounds generated with different order filters did not result in equal perceived

tonality.

This can also be observed in figure 2.14. In this figure the estimated tonality of the band-

width and filter order test is plotted, as a function of percent of critical bandwidth. The

subjective response ratings are obtained using listening tests in which 26 subjects partic-

ipated. The blue and red line correspond to the filter order tests. The solid line indicates

weighting function w1, which captures the bandwidth effect in Aures’ model. It can be seen

that there is a significant difference between the curves for the fourth order filter and sixth

order filter.

Figure 2.14: A comparison of the subjective response ratings for the bandwidth and filter order tests.

Symbols: (△) 4th order narrowband noise at 13.5 Bark, (▽) 6th order narrowband noise at 13.5 Bark, (♢)

narrowband noise at 4.5 Bark, (◁) narrowband noise at 9.5 Bark, (▷) narrowband noise at 12.5 Bark, (-)

weighting function w1 [28]
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According to Hasting and Davies, this may be an indication that the half power points are

not good measures of the perceived bandwidth. In another study by Hastings et al. [29] it

was found that roll-off rate of the tonal component affected the tonality perception.

Besides the more sophisticated tonality metrics such as Terhardt’s tonality and Aures’ tonal-

ity, there exist some metrics which quantify the tonal content of a sound in a more basic

manner. Examples of such metrics are the Tone-to-Noise Ratio, Prominence Ratio and the

Joint Nordic Method. The Tone-to-Noise Ratio is defined as the ratio of power contained in

the tonal component under investigation to the power contained in the critical band cen-

tered around that tone, but not including the part of the spectrum that includes the tonal

feature. This is schematically depicted in figure 2.15. The primary tone is the tone with

the highest level in the band. The tone with the second highest level in the critical band

centered on the primary tone, is called the secondary tone. If the primary and secondary

tone are close to each other in frequency, their tone powers are combined.

Figure 2.15: Schematic illustration of the Tone-to-Noise Ratio calculation 7

The Prominence Ratio is defined as the ratio of the power contained in the critical band

centered on the tone under investigation to the average power contained in the two adja-

cent critical bands, one below, and one above (see figure 2.16). When multiple tones are

present in a critical band, the Prominence Ratio is more effective than the Tone-to-Noise

ratio. However, in the case of multiple tones in adjacent critical bands, the Tone-to-Noise

ratio is more effective.

In the Joint Nordic Method [30] the sound pressure levels of the tones are determined from

7Source of image: www.community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/ Tone-to-Noise-Ratio-and-

Prominence-Ratio/ta-p/423296
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Figure 2.16: Schematic illustration of the Prominence Ratio calculation 7

a narrow-band power spectrum. Tones in the same critical band are added to give the total

tone level. Then the sound pressure level of the masking noise is determined, using the av-

erage noise level in that critical band. The total tone level and masking noise level is used

to calculate the Tonal Audibility. The Tonal Audibility is used to penalize the measured av-

erage A-weighted sound pressure level.

Since the Tonal Audibility is used to penalize the A-weighted SPL, the Joint Nordic Method

has the same limitations as the conventional A-weighting metric. Furthermore, the penal-

ties given are rather arbitrary [7]. Tone-to-Noise ratio and Prominence Ratio are widely

used for evaluating tonality of IT devices. In the paper of Sottek [31] it is argued that both

these metrics do not correspond well or even at all to the tonality caused by narrowband

noise or complex tones.

In another study [13], four different tonality indicators (EPNL, Joint Nordic method, DIN45681

and Aures’ tonality) were compared to identify which of them is able to quantify the detri-

mental impact of isolated tones and of buzz-saw noise in aircraft sound at takeoff. It was

shown that when an isolated tonal component is prominent, all four metrics are able to ex-

plain the annoyance ratings. However, when the sound includes a harmonic series of tones

with a low fundamental frequency, i.e. buzz-saw noise, only Aures’ tonality metric was able

to capture it. Therefore, Aures’ model for tonality should be considered when trying to cap-

ture any kind of audible tones in aircraft sound at takeoff.

It is clear that the metrics which are used to quantify the tonality of sound are based on a

spectral analysis and have been developed for stationary sounds. However, aircraft flyovers

are non-stationary sounds that contain broadband noise and complex tones [32]. Several
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possibilities exist to obtain one overall tonality value for a non-stationary sound. For ex-

ample, the average or the highest encountered value can be taken. Another possibility is to

use tonality exceeded 5% of the time.

2.2.4. ROUGHNESS

A rough sound is a sound with fast loudness fluctuations (50 - 90 Hz). A sound is perceived

to be very rough when loudness fluctuations are at around 60 to 70 Hz. A typical example of

a rough sound is the sound of a vacuum cleaner. Empirical data related to roughness was

reported as early as in 1974 [33]. Various methods exist that try to model the roughness of a

sound. One of the earliest methods describing the roughness is given by Zwicker and Fastl

[10]. They found that the two characteristics of the ear that influence roughness sensation

are: at low frequencies, it is the frequency selectivity of our hearing system whereas at high

frequencies, it is the limited temporal resolution. As explained in section 2.2, the masking

effect can also be time-varying. This is referred to as temporal masking. Typical examples

of sounds producing temporal masking patterns are amplitude modulated (AM) tones or

noises, frequency modulated (FM) tones or envelope fluctuations of narrowband noise.

The model of roughness proposed by Zwicker and Fastl is based on the temporal masking

pattern. The relation between a masker and its temporal masking pattern is schematically

illustrated in figure 2.17.

Figure 2.17: Hatched area indicates envelope of amplitude modulated masker. Solid line represents the

temporal masking pattern of that masker [10].

The hatched area in figure 2.17 indicates the envelope of a sinusoidally amplitude modu-

lated masker plotted in terms of SPL. The solid line indicates the temporal masking pattern

of that sinusoidally amplitude-modulated masker. It can be seen that the interval between

two successive peaks of the masker envelope is equal to the reciprocal of the modulation

frequency fmod . The masking depth ∆Lm can also be observed in the figure. The masking

depth is smaller than the modulation depth due to effects of postmasking, i.e. the decay

of psychoacoustic excitation in the hearing system. This observation implies that even if
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the SPL of the masker becomes very low, it is still effective in masking other sounds due to

effects of postmasking. In this method the roughness R is calculated using equation 2.24,

where fmod is the modulation frequency in kHz, ∆Lm is the masking depth in dB/Bark and

z is the critical band rate in Bark.

R = 0.3 fmod

∫ 24

0
∆Lm(z)d z (2.24)

According to Zwicker and Fastl, the roughness sensation reaches a maximum for modula-

tion frequencies of around 70 Hz. A roughness of 1 asper is achieved by a tone with a center

frequency of 1 kHz, SPL of 60 dB and a 100 % amplitude modulation at 70 Hz.

It is noted by Zwicker and Fastl that it might be difficult to quantify the masking depth for

sounds typical for practical applications. Then it might be advantageous to derive rough-

ness from the specific loudness pattern, as is done in [34]. Furthermore, in the disserta-

tion of More [12], it is stated that for complex signals, the determination of the modulation

frequency can be problematic. Also, the modulation frequency may vary with the criti-

cal band rate whereas the equations given above are for a specific modulation frequency.

These problems have led to the metric not being standardized yet. Several others method

exist which calculate the roughness based on the degree of modulation or in other words

modulation depth [35], [36], [37]. The degree of modulation is the ratio of the amplitude of

the modulation signal to the amplitude of the carrier signal. The method given by Daniel

& Weber [36] is an improvement over Aures’ roughness model [35]. Daniel & Weber made

some modifications to Aures’ roughness model to reduce the deviations between subjective

results and calculated results below the just noticeable difference for roughness of 17%. In

psychoacoustics, the just noticeable difference is the amount something must be changed

in order for a difference to be noticeable. The roughness method of Daniel & Weber was

used in the study of Minard & Boussard [13]. In this study, the roughness metric was able

to capture changes in buzzsaw noise, which is often heard at take-off.

2.2.5. FLUCTUATION STRENGTH

The fluctuation strength metric is similar to the roughness metric, but deals with slow fluc-

tuations in loudness. The fluctuation strength also shows a bandpass characteristic, mean-

ing that the sensation can only be heard when fluctuations in loudness are from 1 Hz to 20

Hz. Fluctuation strength reaches a maximum when loudness fluctuations are at around 4

Hz. The unit of fluctuation strength is the vacil and a fluctuation strength of 1 vacil is refer-

enced to 1 kHz pure tone with a level of 60 dB 100% amplitude modulated at 4 Hz. Zwicker

and Fastl proposed two methods for fluctuation strength: one for tones and another for

broadband noise. Again, the temporal variation of the masking pattern, described by the
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masking depth, can be used to develop a model for fluctuation strength. It is found that a

modulation frequency of 4 Hz plays an important part in fluctuation strength. For higher

modulation frequencies, the ear shows the integrative features seen in postmasking, while

for lower modulation frequencies the effects of short-term memory become important. For

amplitude modulated broadband noise, the temporal masking depth decreases with in-

creasing modulation frequencies. Hence, the temporal masking pattern shows a low-pass

characteristic, whereas fluctuation strength has a bandpass characteristic. Taking these ef-

fects into account, a relatively simple formula (equation 2.25) is given for the fluctuation

strength F S of sinusoidally amplitude modulated broadband noise.

F S = 5.8(1.25m −0.25)[0.05LBB N −1]

( fmod /5)2 + (4/ fmod )+1.5
(2.25)

where, m is the modulation depth and LBB N is the level of the broadband noise. Modu-

lated tones show some dependency on frequency. Therefore, for modulated tones, instead

of one masking depth, all the masking depths are integrated along the critical band rate

scale. Fluctuation strength of amplitude modulated or frequency modulated tones can be

approximated with equation 2.26.

F S = 0.008
∫ 24B ar k

0 ∆Ld z

( fmod /4)+ (4/ fmod )
(2.26)

As was observed by Zwicker and Fastl, fluctuation strength appears to be related to speech

and plays a crucial role in the assessment of human speech. At normal speaking rate, usu-

ally 4 syllables per second are produced, leading to a fluctuation of the temporal envelope

at a frequency of 4 Hz. And as has been stated above, the sensation of fluctuation strength

reaches a maximum at modulation frequencies of 4 Hz. As can be expected in nature,

the human speech organ produces speech sounds with dominant envelope fluctuations

at such a rate for which the human hearing system is most sensitive.

The fluctuation strength is the least important metric when assessing noise annoyance.

This might be a reason why there are not many computational models to assess the fluctu-

ation strength of a sound. However, since the roughness and fluctuation metrics are similar

to each other, the fluctuation strength metric may be derived from the roughness calcula-

tion, as is done by Osses Vecchi et al. [38].

2.2.6. ANNOYANCE ASSESSMENT

To be able to compare the acoustic annoyance based on the SQ metrics with traditional cer-

tification metrics, it is important to understand how all the SQ metrics can be combined to

determine the acoustic annoyance. A psychoacoustic annoyance (PA) model has been de-
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veloped by Zwicker and Fastl [10]. The psychoacoustic annoyance model is given by the

following equations:

PA = N5(1+
√

w 2
s +w 2

F R ) (2.27)

ws = 0.25(S −1.75)log10(N5 +10) f or S > 1.75 (2.28a)

ws = 0 f or S < 1.75 (2.28b)

wF R = 2.18

(N5)0.4
(0.4F S +0.6R) (2.29)

where N5 is the loudness exceeded 5% of the time, ws is the term which accounts for sharp-

ness and wF R is the term which accounts for fluctuation strength and roughness.

Their annoyance model incorporates loudness, sharpness, roughness and fluctuation strength.

Tonality was not incorporated, since they reasoned that it did not play an important role in

the annoyance caused by household products. In aircraft noise however, tonal components

are regarded as a very important factor affecting aircraft noise annoyance. For example in

the study of Angerer et al. [27], it was shown that after loudness, tonality has the most

prominent correlation with the experienced annoyance. Also, in the study of More [12] it

was shown that loudness and tonality are the most important metrics that contribute to

the experienced annoyance. Therefore, More [12] and also Di et al. [39] included tonality in

the psychoacoustic model and showed that this modified model yielded the highest corre-

lation with subjective test results. The modified psychoacoustic annoyance model by More

is given by equations 2.30 and 2.31. In these equations K5 is the tonality exceeded 5% of the

time and the γ’s are coefficients to fit the model results to subjective annoyance ratings.

PAmod = N5(1+
√
γ0 +γ1w 2

s +γ2w 2
F R +γ3w 2

T ) (2.30)

w 2
Ton = [(1−e−γ4N5 )2(1−e−γ5K5 )2] (2.31)

In another study, the combined effect of loudness, tonality and roughness on annoyance

ratings of aircraft noise was examined [40]. It was found that the subjects were very sensi-

tive to tonality when both tonality and roughness varied and loudness was kept at the same

level. When all three metrics were varied simultaneously, loudness was the major contrib-

utor to annoyance. However, tonality and roughness also affected the annoyance ratings.
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The attention of the aircraft industry is not only focused on a substantial reduction of the

acoustic impact of aircraft, but to a greater extent on a reduction of the fuel consumption.

For that reason, new engine architectures such as the ultra high bypass ratio (UHBR) en-

gine and the open rotor engines are being investigated. With the prospect of open rotor

engines being mounted on aircraft, tonality will become even more important. Whereas

single propellers radiate mostly tonal noise in the propeller plane, two counter-rotating ro-

tors without nacelle radiate many tones over a wide frequency-range due to complex and

intense noise interference mechanisms [41]. These open rotor engines also sound rougher

than turbofan engines. More [12] found some evidence in his study of an increase in an-

noyance ratings with increased roughness. This can be attributed to the fact that More also

made use of propeller noise measurements, which sound rougher than turbofan engines.

Thus with engine architectures such as the open rotor engines, roughness may also become

more important. As stated by Minard & Boussard [13] the roughness metric may be used to

account for sound sources such as the buzz-saw noise.

Sharpness is the fourth relevant SQ metric for aircraft noise. It is a useful indicator of

when high-frequency noise starts to gain prevalence. Aircraft components such as the fan

and low-pressure turbine generate high-frequency noise. An increase in sharpness reveals

thus that the high-frequency noise generated by the fan has increased relative to the low-

frequency aircraft noise components such as airframe noise and jet noise. The final and

least relevant metric is the fluctuation strength metric. In the study of More [12] no clear

correlation between an increased fluctuation strength and an increase in annoyance was

found. Since it is quite similar to the roughness metric, it is still modeled in the AAM.
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In this chapter the methodology regarding the implemented SQ metrics is stated. In section

3.1 the tonality metric and its implementation in the AAM is given. Section 3.2 elaborates

on the roughness metric implemented. In section 3.3 the methodology concerning the

fluctuation strength metric is stated.

3.1. AURES’ TONALITY

As explained in the previous chapter, many models exist which try to capture the tonal

content of a sound. In the automotive industry Aures’ Tonality metric has been extensively

applied to improve the sound quality of cars [25],[26]. Furthermore, Angerer et al. [27] and

More [12] found that the annoyance due to aircraft tonal noise could be predicted with a

reasonably high correlation by using Aures’ tonality metric. Therefore, it was decided to

implement Aures’ tonality metric in the AAM.

3.1.1. DETAILS OF TONALITY MODEL GIVEN BY AURES

A schematic overview of the metric is given in figure 3.1. The first step of Aures’ method is

the extraction of the tonal components. Also, the narrow-band noises need to be extracted,

since narrow-band noises with bandwidth less than the critical bandwidth are also per-

ceived as tones by the human ear. The next step is the calculation of the SPL excess, to only

consider tones which are aurally relevant. This is done in the same manner as in Terhardt’s

tonality method. The tonal weighting factor is calculated using three weighting functions,

which are explained below.

In figure 3.2 it can be seen that the relative tonality decreases as bandwidth increases. This

29
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Figure 3.1: Overview of Aures’ tonality metric [15]

result was obtained by means of psychoacoustic listening tests.

Figure 3.2: Relative tonality versus bandwidth for pure sine tone ◦, narrowband noise with bandwidth of 30

Hz ♢ and bandpass noise with bandwidth of 1 kHz ▽ from Aures’ original paper [24]. Dashed line indicates

the weighting function w1.

The results from these psychoacoustic tests were converted in a weighting function by Au-

res given in equation 3.1, in which ∆z is the bandwidth in Bark. This weighting function is

also indicated in figure 3.2.

w1(∆z) = 0.13

∆z +0.13
(3.1)
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Figure 3.3: Relative tonality versus frequency for pure sine tone ◦, narrowband noise with bandwidth of 30

Hz ♢, bandpass noise with bandwidth of 1 kHz ▽ and highpass noise with cut-off frequency of 2 kHz ▲ from

Aures’ original paper [24]. The dashed line indicates weighting function w2.

Usually, the half power points are used to determine the bandwidth ∆z. The half power

point is that frequency at which the output power drops to half of its peak value. This is at

an SPL value 3 dB lower than the peak SPL value.

In figure 3.3 it can be observed that for pure sine tones the tonality has a peak between 5

to 9 Bark. For narrowband noise with a bandwidth of 30 Hz little variation could be seen.

And for bandpass noises with a bandwidth of 1 kHz and highpass noise with lower cut-

off frequency of 2 kHz almost no tonal perception was observed. The second weighting

function used in Aures’ tonality is the relation between tonality and frequency of pure tones

with no harmonics and can be seen in equation 3.2, where fi is the center frequency of the

i th tonal component in Hz. This equation is also indicated in figure 3.3.

w2( fi ) =
(

1√
1+0.2( fi

700 + 700
fi

)2

)0.29

(3.2)

Aures reasoned that the tonality perception also depends on the level or prominence of the

sound. This effect is described by equation 3.3, in which ∆Li is the excess level of the i th

tonal component.

w3(∆Li ) =
(
1−e−∆Li

15

)0.29
(3.3)

The three weighting functions are given by equations 3.1-3.3. These three effects form the

tonal weighting factor wT , as given in equation 3.4. It must be noted that first a correction

factor (w
′
n = w 1/0.29

n ) is applied to the three weighting factors, which was introduced by Au-

res to match the subjective responses more closely.
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wT =
√

n∑
i=1

[w
′
1(∆zi )w

′
2( fi )w

′
3(∆Li )]2 (3.4)

Aures also found by means of listening tests that the tonal weighting was not accurate

enough for sounds composed of both broadband and tonal noise. Therefore, parallel to

the tonal weighting factor, a loudness weighting factor is calculated which is based on the

signal-to-noise ratio. First, the loudness of the noise without tones NGr is determined. This

can be used to calculate the loudness weighting factor with equation 3.5. In this equation

Ntot al represents the total loudness level.

wGr = 1− NGr

Ntot al
(3.5)

Finally, both the tonal and loudness weightings are combined into equation 3.6. In this

equation, c is a calibration term to give a 1 kHz tone of 60 dB SPL a tonality of one. The unit

of tonality is tonality unit (t.u.).

K = c ·w 0.29
T ·w 0.79

Gr (3.6)

3.1.2. IMPLEMENTATION IN THE AAM

In this section, the implementation of Aures’ tonality in the AAM is given in detail. The code

is largely based on the code given in the dissertation of Hastings [29]. After a file is loaded

in the AAM, the signal is divided into time-blocks of 0.2 seconds. Hereafter, for each time-

block the SPL is calculated. A flow diagram for the tonality calculation is given in figure 3.4.

After the initialization, the tonal components are extracted and bandwidth & center fre-

quency of each tonal component is calculated. The bandwidth of a tonal component is

estimated using the half-power points. First the peak level of the tonal component is de-

termined and then a inspection is conducted to the left and right of the peak to determine

the closest spectral points where the SPL has dropped by at least 3 dB from the peak level.

The center frequency of the tonal component is not equal to the frequency corresponding

to the peak level, but is calculated using equation 3.7.

fc =
√

fl · fu (3.7)

where fl is the lower cut-off frequency and fu is the upper cut-off frequency of the tonal

component. This is followed by the generation of the tonal spectrum and noise spectrum.

The tonal spectrum contains only the tones found in previous steps, while the noise spec-

trum is the original spectrum with the tones filtered out. The generation of the noise spec-

trum requires the calculation of the noise floor. The noise floor is defined as that level for
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Figure 3.4: Flow diagram of tonality calculation

which 90% of the spectrum in the critical band centered around the tonal component will

be above. The noise floor below the tonal component is determined by using a linear slope

to connect the tonal component endpoints. The next step in the tonality calculation is

the determination of the SPL excess of each tonal components. This is done according to

equation 2.12. Only the components with a SPL excess > 0 dB are relevant. Then the center

frequency, bandwidth and excess level of each tonal components is arranged in ascending

order. The weighting functions w1, w2 and w3 are computed according to equations 3.1

- 3.3 and are used to compute the tonal weighting factor. This is followed by the loudness

calculation, which is done according to DIN45631 [42], for both the tonal spectrum and

noise spectrum. With the loudness of both spectra, the loudness weighting factor is calcu-

lated. Finally, the tonality can be computed. This tonality calculation is repeated for each

time block. For more details about the tonality implementation in Matlab, see [29].
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3.2. ROUGHNESS

As stated before, the roughness method of Daniel & Weber (hereafter referred to as D&W’s

model) is able to capture changes in buzzsaw noise. For that reason, D&W’s model will

be implemented in the AAM. In section 3.2.1 details of the roughness model proposed by

D&W are given. In section 3.2.2 the implementation of the model in the AAM is discussed.

3.2.1. DETAILS OF ROUGHNESS MODEL GIVEN BY DANIEL & WEBER

The structure of the model proposed by Daniel & Weber [36] is illustrated in figure 3.5.

This model is based on the roughness model of Aures [35]. Some modifications are made

to Aures’ model to reduce the deviations between subjective results and calculated results

below the just noticeable difference for roughness of 17%.

Figure 3.5: Overview of roughness method proposed by Daniel and Weber [36]

The Discrete Fourier Transform (DFT) of the time signal is taken using analysis windows

of 200ms weighted by a Blackman window. Then, the spectrum is multiplied by a factor a0
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representing the transmission between free field and the peripheral hearing system. This

transmission factor is indicated by the solid line in figure 3.6. The dotted line in the figure

represents the transmission factor for diffuse-field condition a0D .

Figure 3.6: Transmission factor for free-field condition (a0, solid curve) and diffuse-field condition (a0D ,

dotted curve) [10]

This is followed by a transformation into an excitation pattern with the slopes of the ex-

citation pattern defined by equation 2.15. Subsequently, specific excitations are calcu-

lated within 47 overlapping critical bands (channels) with a bandwidth of 1 Bark. Using

an inverse DFT yields 200ms long specific excitation time functions ei (t ). Then a weight-

ing function Hi ( fmod ) is applied to model the bandpass characteristic of roughness. Since

47 overlapping critical bands are used, 47 weighting functions are applied. The weighting

functions H2( fmod )(z2 = 1 B ar k), H16( fmod )(z16 = 8 B ar k) andH42( fmod )(z42 = 21 B ar k)

are drawn in figure 3.7.

Figure 3.7: Weighting functions H2, H16 and H42 for the roughness metric [36]
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The weighting functions drawn in figure 3.7 are basic in the sense that the weighting func-

tions in the other channels can be derived from them. This can be done in the following

way:

for i = 1,2,...,4: H1 = H2 = H3 = H4

for i = 6,8,...,16 Hi−1 = Hi and

Hi is linearly interpolated between H4 and H16

for i = 17,18,19,20 Hi = H16

for i = 22,24,...,42 Hi−1 = Hi and

Hi is linearly interpolated between H20 and H42

for i = 43,44,...,47 Hi = H42 and

The weighted excitation envelope can then be calculated using equation 3.8, in which ei (t )

is the specific excitation time function.

hBP,i (t ) = I F F T
{

Hi ( fmod ) ·F F T (|ei (t )|)} (3.8)

The DC-value is calculated according to equation 3.9.

h0,i = |ēi (t )| (3.9)

After this the RMS value of the weighted excitation envelope is divided by the DC value of

each original filtered signal to give a generalized modulation depth m∗. The modulation

depth is limited to 1 to avoid unrealistic high roughness values that might be produced by

pulses in the excitation envelope:

m∗
i =


h̃BP,i (t )

h0,i
, i f

h̃BP,i (t )
h0,i

≤ 1

1, i f
h̃BP,i (t )

h0,i
> 1

The specific roughness can then be calculated using equation 3.10.

ri = (gR (zi ) ·m∗
i ·ki−2 ·ki )2 (3.10)

where gR represents calibration factors introduced to account for the dependency of rough-

ness on carrier frequency, ki−2 is the crosscorrelation coefficient between the envelopes of

channel i−2 and i and ki is the crosscorrelation coefficient between the envelopes of chan-

nel i and i +2. The calibration factor gR versus center frequency z is plotted in figure 3.8.

The total roughness is then equal to the sum of specific roughnesses.

R = 0.25
N∑

i=1
ri (3.11)
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Figure 3.8: Calibration factors for the roughness metric [36]

3.2.2. IMPLEMENTATION IN THE AAM

In this section the implementation of D&W’s roughness in the AAM is given. The im-

plementation of this metric was done by Schrader in his dissertation [43]. The code was

adapted and corrected to be able to integrate it in the AAM. The corrections concern changes

in weighting functions and calibration factors and will be explained in this section. As in

the tonality calculation, time-blocks of 0.2 seconds are used. A flow diagram of the rough-

ness calculation is depicted in figure 3.9.

Figure 3.9: Flow diagram of roughness calculation
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After the initialisation of variables, the filter weights which model the bandpass depen-

dency on modulation frequency are calculated. The weighting functions in [43] were de-

fined in the following way:

Hi =



H2, f or 1 ≤ i ≤ 4

H6, f or 5 ≤ i ≤ 15

H16, f or 17 ≤ i ≤ 20

H21, f or 22 ≤ i ≤ 41

H42, f or 43 ≤ i ≤ 47

It can be seen that this is not in accordance to the weighting functions given in the paper

of Daniel & Weber [36]. Therefore, new weighting functions were used that did agree with

the weighting functions given in [36]. The next step in the calculation is the computation

of the calibration factors gR . Initially, the calibration factors were similar to the ones given

in Aures’ model [35]. However, they were modified to tune the results as close as possible to

subjective results of roughness of AM-tones. In figure 3.10 the original calibration factors

and those used in the implementation are plotted.

Figure 3.10: Implemented calibration factors and calibration factors given by Aures for roughness metric

In the roughness calculation, a Blackman window is applied to the signal, the transmission

factor a0 is applied and the SPL is calculated. This spectrum is then used to find the spectral

components that are higher than the minimum excitation. These components are used to

calculate the excitation slopes and to determine the excitation pattern. Subsequently, the

modulation depths m∗ and correlation coefficients k are calculated. The specific rough-

nesses are then calculated in the following way:
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ri =


(gR (zi ) ·m∗

i ·ki )2, f or i = 1,2

(gR (zi ) ·m∗
i ·ki−2 ·ki )2, f or i = 3,4, ...,45

(gR (zi ) ·m∗
i ·ki−2)2, f or i = 46,47

The final step is the calculation of total roughness according to equation 3.11.

3.3. FLUCTUATION STRENGTH

The fluctuation strength is the least important metric when assessing noise annoyance [12]

[7]. This might be a reason why there are not many computational models to assess the

fluctuation strength of a sound. Taking advantage of the physical similarity between rough-

ness and fluctuation strength, a model was developed by Osses Vechi et al. of Eindhoven

University of Technology [38]. This model is referred to as TU Eindhoven’s model hence-

forth and is explained in detail in the following section.

3.3.1. DETAILS OF FLUCTUATION STRENGTH MODEL

TU Eindhoven’s model was adapted from the roughness model given by Daniel & Weber

[36]. A schematic overview of this method can be seen in figure 3.11.

Figure 3.11: Overview of fluctuation strength method proposed by Osses Vecchi et al. [38]

It can be seen that this model is based on the models of roughness given in [36], [35]. The

total fluctuation strength (F S) is equal to the sum of the specific fluctuation strengths, as

depicted in equation 3.12.

F S =
N∑

i=1
f
′ =CF S ·

N∑
i=1

(m∗
i )pm · |ki−2 ·ki |pk · (gF S(zi ))pg (3.12)

The parameters CF S , pm , pk and pg are constants and are optimized to fit their experimen-

tal data. The experimental data contained artificial stimuli (AM and FM tones and AM

broadband noise) and everyday sounds such as male/female speech and musical instru-

ment sounds. The following values were found for the parameters: CF S = 0.249, pm = pk =

1.7 and pg = 1.
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3.3.2. IMPLEMENTATION IN THE AAM

The implementation of the fluctuation strength metric in the AAM is based on the imple-

mentation of the roughness metric. For the fluctuation strength metric, the signal is di-

vided into time-blocks of 2 seconds, in contrast to the time-blocks of 0.2 seconds for rough-

ness and tonality. This is because a higher frequency resolution is required for fluctuation

strength and the frequency resolution is inversely proportional to the snapshot. No flow

diagram is given in this section, since the calculation steps are similar to the roughness cal-

culation.

The weighting functions are derived from the weighting functions in the roughness cal-

culation, such that the highest values for the weighting functions occur at a modulation

frequency of 4 Hz. The calibration factors gF S are kept same as the ones in the roughness

calculation (gR ). In the roughness model the modulation depth was limited to 1 to avoid

unrealistic high roughness values. In [38] it is argued that this is not needed for fluctuation

strength, and a compression ratio of 3:1 is suggested for modulation depths higher than

0.7 rather than a limitation. For example, an input modulation depth of 0.85, which is 0.15

units higher than the threshold of 0.7, will be compressed to a output modulation depth of

0.75.
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VALIDATION

This chapter deals with the validation of the implemented metrics. In section 4.1 the val-

idation of the tonality metric is given. This is followed by the validation of the roughness

metric in section 4.2. Finally, the validation of the fluctuation strength metric is given in

section 4.3.

4.1. VALIDATION OF TONALITY METRIC

As has been stated before one t.u. is referenced to a pure sine tone with a SPL of 60 dB and

a frequency of 1000 Hz. First of all, it is inspected whether this is true for the implemented

metric. A stimuli was created with a SPL of 60 dB and a tone frequency of 1000 Hz. Loading

this stimuli in the AAM gave a t.u. value of 1.007 tonality unit. A bandwidth correction has

been applied in the tonality metric to ensure that a pure sine wave has a bandwidth of zero.

The validation has been done using publicly available data. First, three effects were studied

on stimuli consisting of a tone and background noise: the influence of tone level (∆Ltone )

on tonality perception, the influence of tone frequency ( ftone ) on tonality perception and

the influence of noise bandwidth on tonality perception. From literature, it is known that

a higher tone emergence level and higher tone frequency increase the perceived tonality.

This was also the result in a study performed by Dendievel et al. [44]. In the study, 18 stim-

uli, with varying bandwidth of background noise, were evaluated by 9 subjects using three

listening test methods. The three listening methods used were the following: direct scal-

ing, two alternative forced choice and an iso-tonality equalization method. Results gener-

ated using the AAM will be compared to the results of the direct scaling method used in the

study. The results from the other listening test methods were similar to the results obtained

41
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using the direct scaling method. Background noise was created by adding white uniform

noise. The desired spectral width is obtained by means of a Butterworth filter.

First, the influence of tone emergence level on tonality perception was investigated. The

tone emergence level is defined as the difference between the level of the tone and that of

the noise centered on the tone frequency. The tonality was computed using three different

tone emergence levels: 5, 10 and 15 dB SPL. A tone frequency of 1200 Hz and a noise band-

width of 2 Bark was used. In figure 4.1 the results can be seen.

(a) Ratings of listening tests (b) Aures’ tonality (AAM)

Figure 4.1: Influence of tone emergence level on tonality

In figure 4.1a, the result of the direct scaling method used in the study of Dendievel et al.

can be seen. The perceived tonality increases when tone emergence level increases. In

figure 4.1b, the results of Aures’ tonality implemented in the AAM are given. Again, the

tonality increases when increasing the tone emergence level. Thus this is in line with the

results of the listening tests.

Next, the influence of tone frequency on tonality perception was examined. The tonality

was computed for three frequencies: 600 Hz, 1200 Hz and 2400 Hz. The noise bandwidth

is fixed at 2 Bark. Since the critical bands get wider for higher frequencies, the noise band-

width in Hz is greater for higher frequencies. The tone emergence level is fixed at 20 dB. In

figure 4.2 the results can be seen.

In figure 4.2a it is observed that the ratings increase with increasing tone frequency. This

increase can also be observed in figure 4.2b, where the tonality is computed using the AAM.

These results are thus also in line with each other.
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(a) Ratings of listening tests (b) Aures’ tonality (AAM)

Figure 4.2: Influence of tone frequency on tonality

The influence of background noise on tonality perception is the last effect to be investi-

gated in the study of Dendievel et al. [44]. The authors of the paper argue that most tonal-

ity indicators are not capable to correctly take this effect into account. From the listening

tests it was established that the tonality perception decreases when the background noise

bandwidth increases (see figure 4.3).

Figure 4.3: Ratings of listening tests related to the effect of noise bandwidth

As stated above, one of the aims of the study was to investigate whether tonality indicators

take the influence of background noise bandwidth into account. Five tonality indicators

were considered for this investigation: maximum prominence ratio (PR), tone-to-noise ra-

tio (TNR), the DIN45681 standard, Tonal Audibility of ISO1996-2 and Aures’ tonality (aver-

age over time). The tone emergence level is fixed at 10 dB and stimuli have a duration of 60

seconds. Background noise with a bandwidth of 2 Bark, 4 Bark and 8 Bark is used. In figure

4.4 the results of the study are displayed for a tone frequency of 1200 Hz.
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Figure 4.4: Influence of background noise bandwidth on five tonality indicators [44].

It is evident that only Aures’ tonality metric is able to take the influence of background noise

bandwidth into account. This is due to the fact that a weighting is applied that is based on

the relative loudness of the tone and noise (Wg r ). The other four tonality indicators stay

virtually the same with varying noise bandwidth. Only the value for PR for a bandwidth

of 2 Bark is higher since the indicator calculates the energy ratio between the critical band

centered at the tone and two adjacent critical bands.

The investigation was also conducted for the tonality indicator implemented in the AAM

and compared to the results of the study (figure 4.5).

Figure 4.5: Comparison of noise bandwidth effect between Aures’ tonality implemented in AAM and and

result for Aures’ tonality from [44]
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It can be seen that both the results from the paper and from the AAM show the same trend:

tonality decreases when increasing the background noise bandwidth. A small difference

can be observed between the two curves. This may be attributed to the fact that the added

uniform noise was slightly different, or that the cutt-off frequencies for the Butterworth

filter were slightly different. Nevertheless, it has been established that the tonality metric

implemented in the AAM is able to take the influence of background noise bandwidth into

account.

The last part of the validation of the tonality will be done by making use of aircraft flyover

measurements. A comparison will be made for the tonality values between departure and

approach. It is expected that the tonality value for departure is higher due to the buzz-saw

tones present during take-off. The comparison is made for the Boeing 737-700 and the

Embraer 190. The spectrograms for the Boeing 737-700 for departure and approach can be

seen in figure 4.6.

(a) Departure spectrogram of Boeing 737-700

(b) Approach spectrogram of Boeing 737-700

Figure 4.6: Departure and approach spectrograms of Boeing 737-700



46 4. VALIDATION

By looking at the spectrograms, it becomes clear that the aircraft is more tonal during de-

parture. Multiple strong tones and harmonics can be observed in the departure spectro-

gram. This is mainly due to the presence of buzz-saw tones during take-off. This fact is

reflected by the K5-values for both aircraft in table 4.1.

Aircraft Departure Approach

B737-700 0.2945 0.2352

ERJ-190 0.3167 0.2451

Table 4.1: Comparison of K5-values in t.u. for departure and approach

In this section the validation of tonality has been done using data from literature and by

comparing approach and take-off aircraft flyovers. The tonality metric implemented in the

AAM is able to correctly capture the effect of tone emergence level, tone frequency and

background noise. Applied to aircraft flyovers, the results complied with the expectation of

higher tonality at take-off.
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4.2. VALIDATION OF ROUGHNESS METRIC

Once again it is first inspected whether the reference value of one asper is calculated cor-

rectly. One asper is referenced to a 60 dB SPL 1000 Hz tone which is 100% modulated at 70

Hz. Loading this stimuli in the AAM gave a roughness value of 1.0009 asper.

The roughness model of Daniel & Weber was optimized to reproduce the subjectively found

characteristic bandpass dependence on the modulation frequency of amplitude-modulated

tones. This was also done for the roughness code implemented in Matlab by adjusting the

g-factors in the model. Therefore, it is attempted to reproduce figure 3 in [36] which il-

lustrates the roughness as a function of modulation frequency for amplitude-modulated

tones. The results can be seen in figure 4.7. More information regarding amplitude modu-

lation can be found in appendix A.

Figure 4.7: Roughness of amplitude modulated tones. Calculated roughness (· · ·) and roughness data

obtained from listening tests (-o-) of amplitude-modulated tones as a function of modulation frequency

fmod and carrier frequency fc with modulation depth = 1 and SPL = 60 dB.

The results are given for the following carrier frequencies: 125 Hz, 250 Hz, 500 Hz, 1000

Hz, 2000 Hz, 4000 Hz and 8000 Hz. In the plot the results calculated with the AAM and the

measured data published by Zwicker and Fastl [10] are given. It can be seen that there is

good agreement between the modelled and the subjective data from listening tests. In the

lower left plot it can be seen again that a value of 1 asper is found for a modulation fre-
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quency of 70 Hz. The largest discrepancy can be seen for fc = 250H z and fmod < 50H z and

for fc = 2000H z and fmod > 70H z. However, it has been demonstrated that the bandpass

dependence on modulation frequency has been modelled correctly in the roughness met-

ric.

Additionally, the influence of modulation depth on roughness is investigated. In figure 4.8

the calculated roughness is plotted as a function of modulation depth together with the

power law R = 1.36m1.6. The power relation is given by Zwicker and Fastl [10] and is an

approximation to the subjective data measured.

Figure 4.8: Roughness versus modulation depth

There is a fairly good agreement between the model results and the approximation. For

modulation depths greater than 0.5, an increasing discrepancy can be observed. Nonethe-

less, the differences are smaller than the just noticeable difference of 17%.

In the paper of Daniel & Weber [36] roughness is calculated for varying noise bandwidth.

The result for a center frequency of 1000 Hz and SPL of 70 dB is given in figure 4.9a. In

the figure roughness had been calculated for the following bandwidths: 10 Hz, 30 Hz, 70

Hz, 100 Hz, 300 Hz, 1000 Hz and 2000 Hz. Measured data derived from [35] is also plot-

ted in the figure (circles connected by dots). The bandpass noises used in the calculations

are simulated by digital bandpass filtering of normal distributed random numbers. For

each bandwidth, 21 roughness calculations are carried out and the median is plotted in the

figure together with the quartiles. The roughness as a function of bandwidth was also cal-

culated using the AAM and the result is plotted in 4.9b.
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(a) Calculated roughness (-•-) and roughness obtained using

listening tests (· ◦ ·) as a function of bandwidth given in paper

D&W [36] (b) Calculated results with the AAM

Figure 4.9: Roughness versus bandwidth

It can be seen that the calculated results from figure 4.9a and 4.9b are very similar. There is

a fairly good agreement between the subjective data obtained using listening tests given in

figure 4.9a and the calculated data in figure 4.9b. Thus it can be concluded that the model

is able to correctly predict roughness for unmodulated bandpass noise.

Although Daniel & Weber’s roughness model has been optimized to fit subjective measure-

ments of AM-tones, the model also shows good agreement between measured and calcu-

lated data for FM-tones, as can be seen in figure 4.10. More information regarding fre-

quency modulation can be found in appendix A.

Figure 4.10: Calculated relative roughness (-•-) and relative roughness data obtained using listening tests

(· ◦ ·) versus modulation frequency for FM-tones given in paper D&W [36]

The relative roughness R
R0

(relative to a FM tone with fmod = 70 Hz) is plotted as a function

of modulation frequency for a 1600 Hz FM tone with a frequency deviation ∆ f of 800 Hz

and SPL of 60 dB. Differences between calculated and subjective data can be observed for

low modulation frequencies. For high modulation frequencies the data correspond very

well with each other. This figure was reproduced using the AAM and the result can be seen
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in figure 4.11.

Figure 4.11: Relative roughness versus modulation frequency calculated with the AAM

This plot corresponds to the calculated result as given in figure 4.10. The bandpass charac-

teristic of roughness with the peak at around 70-80 Hz can be detected in the figure.

The roughness metric will also be validated using commercial software: Artemis Suite of

HEAD acoustics8. In this software the roughness metric of Sottek [45] is implemented. Sot-

tek’s roughness metric is similar to D&W’s roughness metric in the way that it calculates

total roughness by summing up specific roughnesses in each critical band. It is thus ex-

pected that the roughness values of Sottek’s method and D&W’s method are comparable.

In table 4.2 the roughness values are calculated for 20 aircraft flyover measurements.

Table 4.2: R5 for 20 aircraft flyover measurements

Measurement AAM (R5) Artemis (R5) Measurement AAM (R5) Artemis (R5)

1 0.0815 0.0706 11 0.0948 0.0718

2 0.0924 0.0766 12 0.0834 0.0693

3 0.0755 0.0753 13 0.0835 0.0755

4 0.0962 0.0755 14 0.0959 0.0789

5 0.0696 0.0715 15 0.1008 0.0815

6 0.1137 0.0782 16 0.1054 0.0827

7 0.1106 0.0810 17 0.0842 0.0795

8 0.0801 0.0697 18 0.9423 1.1

9 0.0901 0.0667 19 0.1064 0.0768

10 0,0838 0,0715 20 0,0784 0,0705

8https://www.head-acoustics.com/eng/nvh_artemis_suite.htm
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It can be observed that the roughness values for AAM and Artemis have the same order of

magnitude. However, there is more variance in the values calculated with the AAM. The

absolute values are not identical for AAM and Artemis when comparing the results for a

specific flyover measurement. This is as expected, since the methods used are different

from each other. Therefore, the ratio between different results should be considered more

important.

It can be seen that all values are in the range of 0.06 - 0.12 asper. However, one outlier

(measurement 18) can be seen. The R5 values calculated for this measurement are 0.94 as-

per (AAM) and 1.1 asper (Artemis). This indicates that the roughness metric implemented

in the AAM is also able to correctly detect strong fluctuations in sound. Roughness over

time is plotted in figures 4.12 and 4.13 for Artemis and AAM roughness respectively. The

plots are very similar. High values for roughness can be observed for the first two seconds,

which is caused by an unknown buzzing disturbance in the measured flyover. Furthermore,

in both plots a peak of approximately 0.4 asper can be observed at t = 5 seconds. Hereafter,

the plots are relatively flat and an increase can be seen towards the end.

Figure 4.12: Roughness vs time calculated with Artemis for measurement 18

Figure 4.13: Roughness vs time calculated with AAM for measurement 18
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The validation using Artemis is also performed by making use of "everyday" sounds. The

sounds include for example a vacuum cleaner, a chainsaw and police siren. Roughness ex-

ceeded 5% of the time is calculated with both the AAM and Artemis and a linear regression

is drawn through these points, as can be seen in figure 4.14. High correlation (R2 = 0.8024)

between the results can be observed.

Figure 4.14: Correlation between results generated with the AAM and Artemis

The validation of roughness has been done using data found in literature and using Artemis.

There is a good agreement between the results presented in literature and the results gener-

ated with the roughness model implemented in the AAM. Although the roughness methods

in Artemis and the AAM differ from each other, the results generated using Artemis showed

good agreement with the results generated with the AAM.
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4.3. VALIDATION OF FLUCTUATION STRENGTH METRIC

First of all, it is examined whether the reference value of one acum is computed correctly.

One acum is referenced to a 60 dB SPL 1000 Hz tone which is 100% modulated at 4 Hz.

Loading this stimuli in the AAM gave a fluctuation strength value of 1.0038.

The bandpass dependency on modulation frequency of the fluctuation strength metric will

now be tested using amplitude-modulated (AM) tones, frequency-modulated (FM) tones

and AM broadband noise. The results of the AAM will be compared with results of the

model of TU Eindhoven [38] and results found in literature which were obtained using per-

ceptual experiments [10]. The results for AM tones are given in figure 4.15.

Figure 4.15: Fluctuation strength vs modulation frequency for AM tones

The stimuli had a center frequency of 1000 Hz, SPL of 70 dB and a modulation index of 1.

It can be observed that the AAM results correspond very well with results from literature.

The model of TU Eindhoven shows a large discrepancy for fmod = 2 Hz. Furthermore, it can

be noticed that the highest value is obtained at fmod = 4 Hz for the AAM results, while the

maximum value occurs at a modulation frequency of 8 Hz for the other two curves. This

may be ascribed to the fact that the filters accounting for the modulation frequency depen-

dency are more accurate in the AAM, as has been described in section 3.2.2.

In figure 4.16 the fluctuation strength is plotted against modulation frequency for FM tones.

The stimuli had a center frequency of 1000 Hz, SPL of 70 dB and frequency deviation of 700

Hz.
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Figure 4.16: Fluctuation strength vs modulation frequency for FM tones

For both the model of TU Eindhoven and the model implemented in the AAM large differ-

ences can be seen at high modulation frequencies with respect to the results from litera-

ture. This is as expected since the model is derived from the roughness method of Daniel

and Weber which is optimized for AM tones. However, the peak for the AAM results do

occur at a modulation frequency of 4 Hz, which is also the case in the results found from

literature.

In figure 4.17 the fluctuation strength is plotted against modulation frequency for AM broad-

band noise. The noise had a bandwidth of 16 kHz, SPL of 60 dB and modulation index of 1.

Figure 4.17: Fluctuation strength vs modulation frequency for AM broadband noise
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For low modulation frequencies, the AAM model and TU Eindhoven model underestimate

the fluctuation strength. At higher modulation frequencies, a better agreement can be ob-

served between literature and the models. Here the peak value occurs at a modulation

frequency of 4 Hz for all three curves.

As with roughness, the validation of fluctuation strength is also performed with Artemis

by making use of "everyday" sounds. The same sounds are included again in the analysis.

Fluctuation strength exceeded 5% of the time is calculated with both the AAM and Artemis

and a linear regression is drawn through these points, as can be seen in figure 4.18. Now

a slightly lower R2-value can be seen than for the roughness analysis. This is because the

fluctuation strength metrics are derived from the roughness metric and thus are derived

from different methods. Furthermore, it was also found that the settling phase is very long

(approximately 5 seconds) for Artemis which also distorts the results. This is due to the

transient effect of digital filters at the beginning of the analysis [46].

Figure 4.18: Correlation between results generated with the AAM and Artemis

The validation of fluctuation strength has been done using data found in literature and

using Artemis. It is confirmed that in the Matlab implementation the fluctuation strength

values peak around a modulation frequency of 4 Hz. The results generated with Artemis

showed reasonable agreement with results generated with the AAM.
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APPLICATION TO MEASURED SOUNDS

In this chapter the AAM is applied to measured aircraft sounds. In figure 5.1 the flow dia-

gram is illustrated for the AAM with all its capabilities. The calculation starts with loading

an audio file. After the initialization of variables, the SPL is computed. This is followed by

the calculation of the conventional metrics and the five SQ metrics. The SQ metrics are

used to calculate a psychoacoustic annoyance value. At the end some figures, for example

spectrograms, are plotted and all the relevant data is written in a dat/excel file.

Figure 5.1: Flow diagram AAM

57
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The data used consisted of aircraft flyovers measured at Schiphol airport. A total of 255

aircraft flyovers were used. The aircraft sounds measured were for 26 different aircraft,

which are shown in table 5.1.

Table 5.1: Aircraft types and corresponding number of aircraft flyovers

Aircraft Number of flyovers Aircraft Number of flyovers

Boeing 737-300 4 Airbus A300-600 1

Boeing 737-400 2 Airbus A319 7

Boeing 737-500 3 Airbus A320 14

Boeing 737-700 25 Airbus A321 6

Boeing 737-800 72 Airbus A330-200 1

Boeing 737-900 9 Airbus A380-800 3

Boeing 747-400 3 Embraer E145 2

Boeing 747-8 2 Embraer E175 15

Boeing 767-300 1 Embraer E190 32

Boeing 777-200LR 8 Fokker F70 27

Boeing 777-300 4 Bombardier CRJ900 2

Boeing 787-800 3 Bombardier CRJ1000 1

Boeing 787-900 5 Avro RJ-85 3

Results for each aircraft flyover were generated with the AAM. The five sound quality met-

rics are the relevant outputs for this study. To indicate the degree of dispersion and the

skewness of the generated results, boxplots are given for each sound quality metric in fig-

ures 5.2 - 5.6. On the abscissa the aircraft type is given.

Outliers are shown as individual points (+). For an aircraft type with only one flyover mea-

surement, like the Boeing 767-300, the boxplot is a single line. For some aircraft, like the

Boeing 747-8, the boxplot is comparatively tall, indicating high variety in the sound quality

metrics. For other aircraft, like the Embraer E175, the boxplot is comparatively short. When

observing the loudness boxplots (figure 5.2), it can be observed that the boxplots for bigger

aircraft, like the Boeing 747 or Airbus A380, is higher than other types of aircraft. For almost

every aircraft type, a lot of variation can be seen in the tonality boxplots (figure 5.3) and

sharpness boxplots (figure 5.5) . The median values for roughness (figure 5.4) and fluctua-

tion strength (figure 5.6) are fairly identical for each aircraft type.

In section 5.1 a design parameter analysis is performed using the results from the AAM.

It will be investigated how different design parameters have an impact on different sound

characteristics such as tonality, loudness etc.. As stated in chapter 2, the sound quality met-

rics can be combined in a psychoacoustic annoyance model. This model will be compared

with the traditional certification metric EPNL using subjective evaluations in section 5.2.
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Figure 5.2: Boxplot of loudness exceeded 5% of the time

Figure 5.3: Boxplot of tonality exceeded 5% of the time
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Figure 5.4: Boxplot of roughness exceeded 5% of the time

Figure 5.5: Boxplot of sharpness exceeded 5% of the time
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Figure 5.6: Boxplot of fluctuation strength exceeded 5% of the time

5.1. DESIGN PARAMETER ANALYSIS

In this section some design variables will be analyzed using the measured aircraft flyovers.

It is attempted to find relations between these design variables and the five sound quality

metrics. Additionally, it is investigated what kind of impact the engine location has on the

sound quality metrics. For each aircraft type, all flyovers for that aircraft type were used

and the average was calculated for each sound quality metric. The calculated results for

each aircraft type are given in Appendix B. Finally, five helicopter flyovers are analyzed to

investigate whether some differences with respect to turbofan aircraft can be observed.

5.1.1. WING

The two variables investigated were the wingspan b and the wing loading W /S. These pa-

rameters change the aircraft’s flight path along with the airframe geometry and thus change

the airframe noise. The wingspan varied from 20 meters to 80 meters, while the wing load-

ing varied between 426.90 kg /m2 and 813.03 kg /m2. A relation was sought between the

wingspan/wingloading and the five sound quality metrics by means of a linear regression

through the data points. The correlation between wingspan/wing loading and N5 was the

only significant correlation observed. These correlations can be seen in figure 5.7. The

loudness values on the ordinate are normalized with respect to the Boeing 737-800. The

P-values for the correlations of loudness versus wing loading and wing span are 6.72e-08

and 7.96e-07 respectively. This means that these correlations are statistically significant.

Apart from the loudness, the other sound quality metrics showed little to no correlation. A

higher wingspan translates into a higher loudness value, since more airframe noise is being
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produced. This also means that an aircraft with a higher wingspan causes a more annoying

aircraft since the loudness has the largest contribution on the annoyance experienced by

residents [47], [7]. An increase in wing loading increases the loudness. It must be noted that

a higher wing loading does not necessarily mean a higher weight or a lower wing size. If the

weight would be kept constant and the wing size is increased, you would have a lower wing

loading and expect a louder aircraft. However, in the aircraft analyzed in this section the

higher wing loadings correspond to larger aircraft, thus larger wings which lead to a higher

loudness values.

(a) Linear regression between wing loading and normalized N5

(b) Linear regression between wingspan and normalized N5

Figure 5.7: Wing parameters analysis

5.1.2. ENGINE

Engine noise is one of the main contributors to aircraft noise and hence the engine pa-

rameters are interesting to analyze. The three parameters investigated in this section were

the following: engine diameter De , engine bypass ratio BPR and thrust-to-weight ratio

T /W . The engine diameter varied between 1 meter and 3.3 meters. Again, besides the
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N5, there is no correlation between engine diameter and the other sound quality metrics.

The engine diameter and loudness correlation shows a R2-value of 0.58. The P-value for

this regression analysis is 5.59e-06, and thus this regression is statistically significant. This

does not necessarily mean that a larger engine creates more engine noise. Larger engines

are mounted on bigger aircraft, thus with a larger body, which could be the source for the

increase in airframe noise and thus loudness, as found previously by the strong relation

between wingspan and N5. Larger turbofans are in fact known to reduce jet noise due to

the higher bypass ratio. This is somewhat illustrated when looking at the correlation be-

tween T /W and loudness. It can be seen that there is a very weak, but more importantly,

a negative correlation. Thus aircraft which produce more thrust for the same weight are

not louder. The P-value for this regression was 0.06. All other correlations of T /W with the

sound quality metrics were weak. For the BPR all correlations were weak, with the highest

R2-value being 0.23 for loudness. All other correlations are given in Appendix C.

(a) Linear regression between engine diameter and normalized N5

(b) Linear regression between T /W and normalized N5

Figure 5.8: Engine parameters analysis
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It is also investigated what impact the engine location has on the sound quality metrics. For

that purpose, aft-mounted engines were compared with wing-mounted engines. Since aft-

mounted engines are used on smaller aircraft, only the small aircraft with wing-mounted

engines were used in this analysis. The results are given in table 5.2.

Table 5.2: Values of the SQ metrics for aft-mounted and wing-mounted aircraft analysis

Aft-mounted Wing-mounted

N5 [sone] 98.7877 119.5368

K5 [t.u] 0.2593 0.2801

R5 [asper] 0.1603 0.0834

S5 [acum] 1.8407 2.1584

F S5 [vacil] 0.4804 0.3925

The engines mounted on the tail have a lower loudness value. This may be due to some

noise being shielded by the fuselage. Also a lower tonality and lower sharpness value can

be observed. This indicates that tones are more effectively masked with aft-mounted en-

gines and that the high-frequency content of the noise is decreased. The aircraft with aft-

mounted engines show higher values for roughness and fluctuation strength.

5.1.3. HELICOPTER SOUNDS ANALYSIS

In this section five helicopter sounds are analyzed in order to see the differences between

helicopters and turbofan aircraft. The results of the analysis are given in table 5.3.

Table 5.3: Results of the helicopter sounds analysis

Measurement N5 [sone] K5 [t.u] R5 [asper] S5 [acum] F S5 [vacil] PAmod EPNL

1 22.7690 0.3477 0.7344 1.0386 0.7872 44.7421 87.2361

2 12.3161 0.2313 0.2946 0.4794 0.2597 20.9628 87.2985

3 31.1739 0.2721 1.0323 0.7737 0.4168 34.9796 91.2772

4 21.737 0.3004 0.8363 1.3022 1.0362 31.3592 85.3859

5 40.4481 0.398 0.4402 1.1224 0.7245 55.2383 90.5948

The most notable difference between helicopters and turbofan aircraft is the roughness

value. The helicopter sounds are much rougher due to the buzzing sound a helicopter ro-

tor makes. The loudness values are lower, since the helicopters were flying quite a distance

away from the mics. The tonality and fluctuation strength values are of the same order

as for the turbofan aircraft. The lower sharpness values indicate that there is less high-

frequency content which can be explained by the fact that there is no fan which generates

high-frequency tones. Additionaly, it can be seen that the EPNL and PAmod values are not
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consistent. Measurement 4 has the lowest EPNL, while the PAmod indicates measurement

2 as least annoying. Furthermore, measurement 3 has the highest EPNL, while the PAmod

indicates measurement 5 as most annoying. The PAmod metric was created using aircraft

noises [12], and is thus not suitable for assessment of helicopter noise. A psychoacous-

tic annoyance metric for helicopters should have a larger contribution of roughness and

smaller contribution of sharpness.

5.2. COMPARISON WITH SUBJECTIVE EVALUATIONS

In figure 5.9 a linear regression is drawn for the 26 aircraft types from the previous section

for EPNL and PAmod . It can be observed that there is a high correlation between PAmod and

EPNL. This indicates that in almost 90% of the cases an increase in PAmod is accompanied

by an increase in EPNL. However, there are some cases in which the two metrics contradict

each other.

Figure 5.9: Correlation between PAmod and EPNL

It is clear that the psychoacoustic annoyance model captures the various sound character-

istics in a more sophisticated way than the traditional certification metrics such as EPNL.

The question then arises whether the psychoacoustic annoyance value is a better predictor

of annoyance and thus a better certification metric. For this purpose, subjective listening

tests were conducted. First, the test setup is given. Secondly, the results of the experiment

are discussed.

5.2.1. TEST SET-UP

Listening Arrangement

The tests were conducted in the anechoic chamber of the Faculty of Applied Sciences of the

TU Delft. Twenty subjects (13 male/7 female, aged from 21 to 61) participated in the exper-
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iment. The test-setup is schematically drawn in figure 5.10. The sound was played through

two loudspeakers. The positioning of sound sources and listeners was done according to

the recommendations given in [48]. Recommendations concern for example the distance

of speakers from the walls, the distance between the speakers etc.

Figure 5.10: Test set-up

Method

The experiment consisted of two parts. The method used in the first part of the listening

tests was the two alternative forced choice method. Two sounds were presented to the sub-

jects and the subjects were asked to choose which one is more annoying. The sounds were

selected in such a way that the EPNL and PAmod values contradicted each other. So go-

ing from sound A to sound B, the EPNL increased while the PAmod value decreased or vice

versa. The direct scaling method was used in the second part of the listening tests. Ten

sounds were presented to the subjects which they had to rate from 0-100 according to the

scale given below.

Figure 5.11: Annoyance scale used in part 2 of the listening test
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Stimuli

Part 1 of the listening tests consisted of 10 comparisons, so 20 sounds. In the second part

another ten sounds were presented, amounting to a total of 30 sounds. The sounds were

selected from the dataset of 255 aircraft flyovers introduced in the previous section.

5.2.2. RESULTS

The results of the two alternative forced choice part are given in table 5.4. Ten sets of sounds

can be seen with their PAmod and EPNL values. For each subject the cell is colored for the

sound which the subject perceived to be more annoying. Additionally, the percentage of

people who indicated that sound to be more annoying is given.

For part 2 of the test, 20 subjects gave ratings to 10 sounds, amounting to a total of 200

ratings. For each sound the average rating was calculated and a linear regression was drawn

with EPNL and PAmod . This can be seen in figures 5.12 and 5.13. Additionally, correlations

of the five sound quality metrics with the average annoyance rating is also given (figures

5.14 - 5.18). The ratings given by each subject are given in Appendix D.

Figure 5.12: Correlation between subjective annoyance ratings and PAmod

Figure 5.13: Correlation between subjective annoyance ratings and EPNL



68 5. APPLICATION TO MEASURED SOUNDS

Tab
le

5.4:R
esu

lts
tw

o
altern

ative
fo

rced
ch

o
ice

test

P
A

m
o

d
E

P
N

L

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Subject 7

Subject 8

Subject 9

Subject 10

Subject 11

Subject 12

Subject 13

Subject 14

Subject 15

Subject 16

Subject 17

Subject 18

Subject 19

Subject 20

%

Set1
So

u
n

d
A

300.79
107.86

30

So
u

n
d

B
282.43

109.17
70

Set2
So

u
n

d
A

277.51
107.96

10

So
u

n
d

B
273.95

110.18
90

Set3
So

u
n

d
A

125.98
99.11

45

So
u

n
d

B
138.20

98.08
55

Set4
So

u
n

d
A

149.23
102.60

20

So
u

n
d

B
157.24

101.81
80

Set5
So

u
n

d
A

152.96
102.41

50

So
u

n
d

B
167.49

101.29
50

Set6
So

u
n

d
A

174.12
104.09

40

So
u

n
d

B
186.29

102.88
60

Set7
So

u
n

d
A

190.66
105.15

25

So
u

n
d

B
203.38

104.16
75

Set8
So

u
n

d
A

206.53
106.04

60

So
u

n
d

B
220.84

104.58
40

Set9
So

u
n

d
A

224.47
107.67

60

So
u

n
d

B
240.08

106.48
40

Set10
So
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n

d
A

318.02
115.63

70
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B
371.21

114.28
30
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Figure 5.14: Correlation of subjective annoyance rating with

loudness (P-value = 0.000875)

Figure 5.15: Correlation of subjective annoyance rating with

tonality (P-value = 0.157)

Figure 5.16: Correlation of subjective annoyance rating with

roughness (P-value = 0.918)

Figure 5.17: Correlation of subjective annoyance rating with

sharpness (P-value = 0.32)

Figure 5.18: Correlation of subjective annoyance rating with fluctuation strength (P-value = 0.666)

5.2.3. DISCUSSION

Looking at the results presented in table 5.4, no clear conclusion can be drawn about which

of the two (EPNL or PAmod ) is better in predicting the annoyance experienced by the sub-

jects. In some cases, e.g. set 2, most subjects indicated the sound with the higher EPNL as

more annoying. In other cases (set 4) most subjects indicated the sounds with the higher

PAmod value as more annoying. And in some other cases (set 5) the sounds were indicated

to be annoying just as often. This indicates that even though the pyschoacoustic annoy-



70 5. APPLICATION TO MEASURED SOUNDS

ance model incorporates the sound characteristics in a much more sophisticated way than

EPNL, it is not necessarily a better annoyance predictor. This can also be observed by look-

ing at figures 5.12 and 5.13. The R2-value for PAmod is only sightly higher than for EPNL.

The P-values were 0.000371 and 0.000273 for the EPNL and PAmod correlation respectively,

and thus these correlations are statistically significant. The subjective results are presented

as average annoyance ratings, varying from a minimum observed annoyance of 36 and a

maximum observed annoyance of close to 87, for the 10 aircraft flyovers.

A possible reason for the PAmod not correctly predicting the annoyance experienced by the

subjects may be the fact that it uses the "values exceeded 5% of the time" for each metric.

When using these values, the duration of the flyover becomes important when comparing

two sounds. A flyover with a longer duration (and thus a longer period where the aircraft is

not heard) will lead to lower ’exceeded 5% of the time’ values and thus a lower PAmod value.

The duration of the aircraft flyovers used in this listening tests varied between 17 seconds

and 24 seconds.

This dependency on duration was confirmed when investigating the sounds given in set

2. During the listening test, 90 % of the subjects indicated sound B to be more annoying.

However, sound B has a lower PAmod value than sound A and it was suspected that the

longer duration of sound B could be a reason for this. Sound A of set 2 has a duration of

17 seconds and sound B has a duration of 20 seconds. Sound B was shortened to 17 sec-

onds and loaded once again in the AAM. This time it gave a PAmod value of 291.08, which

is higher than the PAmod value for sound A and thus consistent with the annoyance experi-

enced by the subjects. So in order to make a good comparison in terms of PAmod between

two sounds, the duration of the sounds have to be the same. Another possibility is to not

take the entire duration of the sound file into account while computing the PAmod value

and adopt an approach similar to the duration correction in the EPNL metric. For example,

only the ten seconds around the maximum loudness value could be used in the calculation

of the psychoacoustic annoyance.

From part 2 of the analysis, both the PAmod and EPNL metric were seen to show high cor-

relation with subjective annoyance ratings. Both the EPNL and PAmod correlation show

a coefficient of determination of around 0.8. Even though the correlations are high, there

is some room for improvement. More research into PAmod can potentially improve cor-

relations with subjective results. In this regard, the effect and weightage of tonality need

further investigation, to reduce the dominant influence of loudness in the predicted an-

noyance metrics. The dominant influence of loudness can be illustrated when looking at



5.2. COMPARISON WITH SUBJECTIVE EVALUATIONS 71

set 10 of part 1 of the listening test. Almost all subjects indicated the sound with the higher

EPNL value to be more annoying. This is possibly due to the piercing tone that can be heard

in that sound. Still, the PAmod value for that sound was significantly lower than the other

sound. The values for the various sound quality metrics are given in table 5.5.

Table 5.5: SQ metrics for set 10 of part 1 of the listening test

Set 10 N5 [sone] K5 [t.u] R5 [asper] S5 [acum] F S5 [vacil] PAmod EPNL

Sound A 174.1974 0.3097 0.1726 1.7222 0.5416 318.0170 115.6283

Sound B 189.2363 0.3017 0.1032 2.0136 0.3693 371.2072 114.2795

It can be seen that the only large difference between the two sounds is the value of N5.

This, together with the fact that most subjects indicated sound A to be more annoying,

shows that the loudness contribution in the calculation of PAmod might be excessive. It

also shows that the tonality contribution to the annoyance experienced by people is under-

rated in the PAmod calculation. It might be unnecessary to include loudness in the tonal

weighting term wTon (see equation 2.31), when loudness is already incorporated in the cal-

culation of Aures’ tonality. Another point to be noted is that the sharpness has a relatively

large influence on the PAmod calculation, even though it is the fourth important metric for

aircraft sound [7],[12]. For sound A, the sharpness is completely omitted since it is lower

than 1.75 acum. This suggests that the sharpness contribution in the PAmod calculation

should be carefully investigated.

Analyzing the correlations of the individual metrics with the annoyance ratings, it can be

seen that the only statistically significant correlation is that of loudness. It also shows

the highest value for the coefficient of determination. In terms of the coefficient of de-

termination, tonality comes at the second place, indicating that it is indeed the second

most important sound quality metric for aircraft noise assessment. Interestingly enough,

not roughness but sharpness has the third highest value for R2. As is expected, fluctua-

tion strength shows little correlation with the average annoyance ratings. Even though the

PAmod showed high correlation with the subjective annoyance ratings, the findings men-

tioned in this section illustrate that it is possible and necessary to optimize the PAmod met-

ric.

Like all audio quality listening tests, this listening test is not free of biases. An example of

a bias type encountered is the "recency effect" [49]. This effect means that the results of

the audio quality assessment is biased towards that part of the test that was heard most

recently. In other words, subjects would tend to choose sound B as more annoying since

this was the sound which they heard more recently than sound A. It was tried to reduce
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this bias by changing the order in which the sounds were played for every time the listen-

ing test was performed. Other biases typically encountered during listening tests are bias

due to listener expectations and the contraction bias. The first bias was tried to reduce by

using as many subjects as possible with different backgrounds. Doing the two alternative

forced choice part first, helps familiarizing the listeners with the stimuli under assessment

and thus reducing the contraction bias in the direct scaling part of the test. While taking

these kind of measures helps reducing the biases, there will still be some bias and thus it is

important to be aware of the biases encountered in audio listening tests.



6
CONCLUSION & RECOMMENDATIONS

This master thesis had the objective of completing the AAM by implementing the SQ met-

rics tonality, roughness and fluctuation strength. The metrics loudness and sharpness had

already been incorporated in the AAM. For each metric, different methods exist and thus

a decision had to be made on which method to use. It was decided to implement Aures’

tonality method since many studies highlighted its suitability for aircraft noise assessment.

In Aures’ tonality method a tonal weighting factor is calculated for tonality after taking into

account the tonal bandwidth, the tone frequency and the tone emergence level. Parallel to

the tonal weighting factor, a loudness weighting factor is calculated. Finally, both the tonal

and loudness weightings are combined to find a value for tonality.

For roughness, the method of Daniel & Weber was used due to its proven ability to capture

changes in buzzsaw noise. The total roughness is computed from the specific roughness

in each critical band. The specific roughness is calculated from the modulation depth.

Weighting functions accounting for the dependency on modulation frequency, and cali-

bration factors accounting for the dependence on carrier frequency are used. The fluctua-

tion strength implementation was derived from the roughness implementation since these

two metrics are similar to each other. The three metrics implemented were validated using

publicly available data and the commercial audio quality assessment software Artemis.

Subsequently, the AAM was applied to measured aircraft flyover sounds. The first part of

the application consisted of a design parameter analysis. It was attempted to find rela-

tions between the design variables and the sound quality metrics. The only significant

correlations observed were those of the wingspan, wing loading and engine diameter with

73



74 6. CONCLUSION & RECOMMENDATIONS

loudness. It must be noted that these correlations could also indicate an indirect relation

between the variables. For example, a larger engine diameter does not automatically trans-

late into a higher loudness value, but larger engines are mounted on bigger aircraft and

the larger body causes an increase in airframe noise and thus loudness. Aircraft with aft-

mounted engines were shown to have a lower loudness, tonality and sharpness than aircraft

with wing-mounted engines. Noise shielding due to the fuselage might be a reason for the

lower values, but further research is needed to find out what the exact effects of engine

position on sound quality are. Helicopters show a much higher value for roughness than

turbofan aircraft due to the buzzing sound a helicopter rotor makes. This indicates that

roughness is an important metric for aircraft with engine architectures such as the open

rotor.

To investigate whether the psychoacoustic annoyance value is a better annoyance predic-

tor than EPNL, listening tests were set up. From the results of these tests it was found that

the metrics did not outperform each other in terms of annoyance assessment. Both the

EPNL and PAmod showed a similar correlation with the subjective annoyance ratings. The

two alternative forced choice test was performed to investigate two sounds which contra-

dicted each other in terms of PAmod and EPNL. In some cases, the sound with the higher

EPNL value was found to be more annoying, while in other cases the sound with the higher

PAmod value was found to be more annoying.

Some recommendations for future research can be stated with regard to the data. The de-

sign parameter analysis conducted in this research made use of 255 aircraft flyovers of 26

different aircraft types. The number of flyovers for each type of aircraft ranged from 1 to

72. For this type of analysis it is recommended to use a minimum of 10 aircraft flyovers for

each aircraft type in order to have a more fair comparison. By taking the average of more

than one aircraft flyover, the effect of disturbances such as wind will be minimized. Fur-

thermore, the aircraft flyovers varied in duration between 15-24 seconds. The duration has

an influence on the PAmod value, since it uses the "exceeded 5% of the time" values. It is

therefore recommended to use flyovers of the same duration when comparing two sounds.

All aircraft flyover measurements used in the design parameter analysis and listening tests

were of aircraft approaching the runway. It might also be interesting to see how the sound

quality metrics differ when aircraft flyover measurements of aircraft departing from the air-

port are used. Only turbofan aircraft were used in the development of the PAmod metric. It

is suggested to analyze propeller aircraft sounds with the AAM to develop a psychoacoustic

annoyance model that is suitable for propeller aircraft. This will require subjective evalua-

tions of propeller aircraft sounds.
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It is also recommended to perform a design parameter analysis in a dedicated design en-

vironment using auralized sounds. By varying only one design parameter and keeping all

other design parameters constant, direct relations between design parameters and sound

quality metrics will become clear. The design parameter analysis conducted in this re-

search was a bivariate analysis, i.e. an analysis to find out if there is a relationship between

two variables. It is suggested to perform a multivariate analysis in which several design

variables are examined at the same time. This gives a much more realistic picture than

trying to explain the effect on a dependent variable by looking at only one single design

variable. Moreover, it is recommended to perform an analysis using synthesized sounds

with subtle changes in sound such as variations in buzzsaw noise intensity. This will clarify

whether the implemented metrics are able to notice subtle changes in sound. It might also

be interesting to implement other methods of the sound quality metrics to compare them

with the ones implemented during this research.

Some deficiencies of the PAmod metric came to light during the listening tests conducted in

this research. One of the reasons the PAmod did not correctly predict the annoyance all the

time may be the varying duration of the aircraft flyovers. As stated above, for a valid com-

parison of two sounds in terms of PAmod , the duration of the sounds has to be the same.

It was also found that the loudness contribution to PAmod might be too high. Also, the ef-

fect and weighting of tonality and sharpness need further investigation. More research into

PAmod can potentially improve correlations with subjective evaluations. An optimized psy-

choacoustic annoyance model should be validated with extensive listening tests.
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A
AMPLITUDE MODULATION AND

FREQUENCY MODULATION

In figure A.1 a graphical illustration is given of amplitude-modulation. Suppose, x(t ) is a

information signal. The second wave is the carrier wave with a certain carrier frequency

fcar r . This results in a amplitude-modulated wave with a varying amplitude.

Figure A.1: Illustration of amplitude modulation 9

Amplitude-modulation of a sine wave can be represented with equation A.1, in which m∗

is the modulation depth, fmod the modulation frequency and Ac the carrier amplitude.

y(t ) =
[

1+m∗ · si n(2π fmod t )
]
· Ac · si n(2π fcar r t ) (A.1)

9Source of image: https://github.com/PetarV-/TikZ/tree/master/Amplitude%20modulation
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In figure A.2 a graphical illustration is given of frequency-modulation. Modulating the car-

rier wave with the information signal results in a frequency-modulated wave with a varying

instantaneous frequency.

Figure A.2: Illustration of frequency modulation 10

Frequency-modulation of a sine wave can be represented with equation A.2, in which fcar r

is the carrier frequency, fmod the modulation frequency, Ac the carrier amplitude, Am the

amplitude of the information signal and ∆ f the frequency deviation. The frequency devia-

tion is the maximum difference between the instantaneous frequency of the FM wave and

the carrier frequency. If for example, the carrier frequency is 1600 Hz and the frequency

deviation is 800 Hz, the instantaneous frequency of the FM signal will vary between 800 Hz

and 2400 Hz.

y(t ) = Ac · si n
(
2π fcar r t + Am∆ f

fmod
si n(2π fmod t )

)
(A.2)

10Source of image: https://github.com/PetarV-/TikZ/tree/master/Amplitude%20modulation



B
SOUND QUALITY METRICS RESULTS

In this appendix the five sound quality metrics are given for each aircraft type. The amount

of flyover measurements for each aircraft type ranges from 1 measurement to 72 measure-

ments. For aircraft types that have more than one measurement, the average of the sound

quality metric was computed and used in the analysis of chapter 5. The calculated results

can be seen in table B.1.

83



84 B. SOUND QUALITY METRICS RESULTS

Table B.1: Sound quality metrics (average) for each aircraft type

Aircraft N5 [sone] K5 [t.u] R5 [asper] S5 [acum] F S5 [vacil]

Boeing 737-300 104.8643 0.2879 0.1371 1.8251 0.4633

Boeing 737-400 108.5545 0.2667 0.1383 1.8025 0.6451

Boeing 737-500 95.4546 0.2549 0.1159 1.9019 0.4488

Boeing 737-700 104.9888 0.2381 0.1382 2.0221 0.4440

Boeing 737-800 117.9782 0.2325 0.1146 2.0075 0.4332

Boeing 737-900 118.4797 0.2272 0.1398 2.0167 0.4341

Boeing 747-400 158.1477 0.2798 0.1462 1.7246 0.5045

Boeing 747-8 156.7752 0.2872 0.2174 1.8289 0.9553

Boeing 767-300 113.8969 0.2536 0.1944 1.7045 0.4110

Boeing 777-200LR 137.8083 0.2775 0.1397 1.9687 0.4857

Boeing 777-300 143.1605 0.2886 0.1059 1.9665 0.3695

Boeing 787-800 102.6676 0.2547 0.0785 1.8680 0.3445

Boeing 787-900 116.2653 0.2407 0.0918 1.8835 0.3810

Airbus A300-600 121.2846 0.2494 0.1314 1.7662 0.8802

Airbus A319 103.6459 0.2931 0.0870 2.0295 0.3858

Airbus A320 101.5242 0.2935 0.0880 1.9993 0.3908

Airbus A321 107.7911 0.2680 0.8986 1.9612 0.4016

Airbus A330-200 130.9947 0.2416 0.0777 2.1152 0.3229

Airbus A380-800 127.9333 0.2419 0.1578 1.9024 0.5349

Embraer E145 73.8182 0.2611 0.1452 1.8689 0.5424

Embraer E175 96.9038 0.2883 0.0831 2.0902 0.4031

Embraer E190 98.7007 0.2428 0.0958 1.9813 04073

Fokker F70 79.2457 0.2598 0.1705 1.8108 0.4891

Bombardier CRJ900 86.6205 0.2692 0.0785 2.0849 0.3894

Bombardier CRJ1000 97.3173 0.2247 0.0798 2.1012 0.3036

Avro RJ-85 93.8809 0.2387 0.0851 2.4999 0.3400



C
CORRELATIONS OF DESIGN PARAMETERS

WITH SQ METRICS

This appendix give the remaining correlations of the design parameter analysis. Five sound

quality metrics were analyzed using five design variables, amounting to a total of 25 corre-

lations. Four of them were presented in chapter 5 and the remaining 21 correlations are

presented in this appendix.

Figure C.1: Correlation of wing loading with tonality Figure C.2: Correlation of wing loading with roughness
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Figure C.3: Correlation of wing loading with sharpness Figure C.4: Correlation of wing loading with fluctuation strength

Figure C.5: Correlation of wingspan with tonality Figure C.6: Correlation of wingspan with roughness

Figure C.7: Correlation of wingspan with sharpness Figure C.8: Correlation of wingspan with fluctuation strength

Figure C.9: Correlation of engine diameter with tonality Figure C.10: Correlation of engine diameter with roughness
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Figure C.11: Correlation of engine diameter with sharpness
Figure C.12: Correlation of engine diameter with fluctuation

strength

Figure C.13: Correlation of thrust-to-weight ratio with tonality Figure C.14: Correlation of thrust-to-weight ratio with roughness

Figure C.15: Correlation of thrust-to-weight ratio with sharpness
Figure C.16: Correlation of thrust-to-weight ratio with

fluctuation strength

Figure C.17: Correlation of bypass ratio with loudness Figure C.18: Correlation of bypass ratio with tonality
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Figure C.19: Correlation of bypass ratio with roughness

Figure C.20: Correlation of bypass ratio with sharpness

Figure C.21: Correlation of bypass ratio with fluctuation strength



D
DIRECT SCALING LISTENING TEST RATINGS

This appendix gives the complete results of the direct scaling test. Ten aircraft flyovers can

be seen with their PAmod and EPNL values. All the ratings given by the 20 subjects are also

presented in the table. In the last column the calculated average rating can be seen. The

average rating has been used in figures 5.12 and 5.13.
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Tab
le

D
.1:R

esu
lts

d
irectscalin

g
test

So
u

n
d

PA
m

o
d

E
P

N
L

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Subject 7

Subject 8

Subject 9

Subject 10

Subject 11

Subject 12

Subject 13

Subject 14

Subject 15

Subject 16

Subject 17

Subject 18

Subject 19

Subject 20

Average

1
167.22

101.31
75

30
20

50
50

50
75

40
10

25
60

30
30

35
50

30
40

40
25

40
40.25

2
205.38

105.36
85

50
25

60
75

75
85

40
50

40
80

50
26

65
65

35
50

60
50

60
56.3

3
235.25

106.43
85

43
30

60
75

75
86

60
60

60
80

50
35

70
66

45
55

65
50

60
60.5

4
116.84

96.90
50

20
20

40
75

25
70

30
20

60
40

60
15

20
45

25
40

45
10

10
36

5
203.23

103.95
80

65
50

70
80

100
78

50
50

65
70

60
30

70
75

60
70

70
30

75
64.9

6
189.24

103.24
65

55
50

69
80

50
85

65
60

65
60

40
40

70
75

55
75

65
45

74
62.15

7
236.51

107.42
85

70
51

75
80

100
85

75
80

65
80

40
29

75
85

75
80

80
55

70
71.75

8
318.02

115.63
100

90
75

76
100

100
90

85
90

90
90

80
47

90
100

85
90

99
75

85
86.85

9
203.74

104.65
75

75
70

70
100

75
87

60
70

65
70

50
36

80
90

60
90

82
15

80
70

10
262.06

107.99
80

80
75

70
75

75
88

60
80

75
75

40
35

85
85

80
95

92
40

75
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