

Delft University of Technology

Good Things Come In Threes
Improving Search-based Crash Reproduction With Helper Objectives
Derakhshanfar, Pouria; Devroey, Xavier; Zaidman, Andy; van Deursen, Arie; Panichella, Annibale

DOI
10.1145/3324884.3416643
Publication date
2020
Document Version
Final published version
Published in
Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE
2020

Citation (APA)
Derakhshanfar, P., Devroey, X., Zaidman, A., van Deursen, A., & Panichella, A. (2020). Good Things Come
In Threes: Improving Search-based Crash Reproduction With Helper Objectives. In J. Grundy, D. Lo, & C.
Le Goues (Eds.), Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020: Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering (pp. 211-223). Article 9285999 (Proceedings - 2020 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020). ACM.
https://doi.org/10.1145/3324884.3416643
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3324884.3416643
https://doi.org/10.1145/3324884.3416643

Good Things Come In Threes: Improving Search-based Crash
Reproduction With Helper Objectives

Pouria Derakhshanfar
p.derakhshanfar@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Xavier Devroey
x.d.m.devroey@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Andy Zaidman
a.e.zaidman@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Arie van Deursen
arie.vandeursen@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Annibale Panichella
a.panichella@tudelft.nl

Delft University of Technology

Delft, The Netherlands

ABSTRACT

Writing a test case reproducing a reported software crash is a com-

mon practice to identify the root cause of an anomaly in the soft-

ware under test. However, this task is usually labor-intensive and

time-taking. Hence, evolutionary intelligence approaches have been

successfully applied to assist developers during debugging by gen-

erating a test case reproducing reported crashes. These approaches

use a single fitness function called Crash Distance to guide the

search process toward reproducing a target crash. Despite the re-

ported achievements, these approaches do not always successfully

reproduce some crashes due to a lack of test diversity (premature

convergence). In this study, we introduce a new approach, called

MO-HO, that addresses this issue via multi-objectivization. In par-

ticular, we introduce two newHelper-Objectives for crash reproduc-

tion, namely test length (to minimize) andmethod sequence diversity

(to maximize), in addition to Crash Distance. We assessed MO-

HO using five multi-objective evolutionary algorithms (NSGA-II,

SPEA2, PESA-II, MOEA/D, FEMO) on 124 non-trivial crashes stem-

ming from open-source projects. Our results indicate that SPEA2

is the best-performing multi-objective algorithm for MO-HO. We

evaluated this best-performing algorithm for MO-HO against the

state-of-the-art: single-objective approach (Single-Objective Search)

and decomposition-based multi-objectivization approach (De-MO).

Our results show that MO-HO reproduces five crashes that cannot

be reproduced by the current state-of-the-art. Besides, MO-HO im-

proves the effectiveness (+10% and +8% in reproduction ratio) and

the efficiency in 34.6% and 36% of crashes (i.e., significantly lower

running time) compared to Single-Objective Search and De-MO,

respectively. For some crashes, the improvements are very large,

being up to +93.3% for reproduction ratio and -92% for the required

running time.

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6768-4/20/09.
https://doi.org/10.1145/3324884.3416643

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Search-based software engineering.

KEYWORDS

crash reproduction, search-based software testing, multi-objective

evolutionary algorithms

ACM Reference Format:

Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen,

and Annibale Panichella. 2020. Good Things Come In Threes: Improving

Search-based Crash ReproductionWithHelper Objectives. In 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE ’20), Sep-

tember 21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3324884.3416643

1 INTRODUCTION

When a software application crashes, a report (or issue), including

information gathered during the crash, is assigned to developers for

debugging [43]. One common practice to identify the root cause of

a crash is to provide a test case that reproduces it [45]. This test case

can later be adapted and integrated into the test suite to prevent

future regressions. However, this test case is not always available

in the crash reports. Also, depending on the amount of information

available in the report, writing this crash reproducing test case can

be time-consuming and labor-intensive [39].

Consequently, various approaches have been proposed in the

literature to automate crash reproduction [4, 6, 23, 31, 32, 36, 39, 44].

These approaches use the information about a crash (e.g., stack

traces from crash reports) to generate a crash reproducing test case

by utilizing different techniques such as symbolic execution, model

checking, etc. Among these approaches, two evolutionary-based

techniques have been introduced: ReCore [36] and EvoCrash [39].

These two approaches generate test cases able, when executed,

to reproduce the target crash using single-objective evolutionary

algorithms. The empirical evaluation of EvoCrash [39] shows that

it outperforms other, evolutionary-based and non-evolutionary-

based approaches in terms of crash reproduction ratio (percentage

of crashes that could be reproduced) and efficiency (time taken to

reproduce a given crash successfully). This evaluation also confirms

that EvoCrash significantly helps developers during debugging.

EvoCrash relies on a single-objective evolutionary algorithm

(Single-Objective Search hereafter) that evolves test cases according

211

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

to an objective (Crash Distance hereafter) measuring how far a gen-

erated test is from reproducing the crash. Crash Distance combines

three heuristics: line coverage (how far is the test from executing

the line causing the crash?), exception coverage (does the test throw

the same exception as in the crash?), and stack trace similarity (how

similar is the exception stack trace from the one reported in the

crash?). Although Single-Objective Search performs well compared

to the other crash reproduction approaches, a more extensive em-

pirical study [37] evidenced that it is not successful in reproducing

complex crashes (i.e., large stack traces). Hence, further studies to

enhance the guidance of the search process are required.

Just like any other evolutionary-based algorithm, Single-Objecti-

ve Search requires to maintain a balance between exploration and

exploitation [42]. The former refers to the generation of completely

new solutions (i.e., test cases executing new paths in the code); the

latter refers to the generation of solutions in the neighborhood

of the existing ones (i.e., test cases with similar execution paths).

Single-Objective Search ensures exploitation through Guided Muta-

tion, which guarantees that each solution contains the method call

causing the crash (and reported in the stack trace) [39]. However,

the low exploration of Single-Objective Search may lead to a lack

of diversity, trapping the search in local optima [42].

To tackle this problem, a prior study [38] investigated the usage

of Decomposition-based Multi-Objectivization (De-MO) to decom-

pose the Crash Distance in three distinct (sub-)objectives. A target

crash is reproduced when the search process fullfils all three sub-

objectives at the same time. The empirical evaluation shows that

De-MO slightly improves the efficiency for some crashes. However,

since the sub-objectives are not conflicting, their combined usage

can be detrimental for crash reproduction [38]. A recent study [13]

also conjectured that increasing diversity via additional objective is

a feasible yet unexplored research direction to follow. However, no

systematic empirical study has been conducted to draw statistical

conclusions.

In this study, we investigate a new strategy to Multi-Objectivize

crash reproduction based onHelper-Objectives (MO-HO) [13] rather

than decomposition.More specifically, we add two additional helper-

objectives to Crash Distance (first objective): method sequence di-

versity (second objective) and test case length minimization (third

objective). The second objective aims to increase the diversity in

the method sequences; more diverse sequences are more likely to

cover diverse paths and, consequently, improve exploration. The

third objective aims to address the bloating effect (i.e., the gener-

ated test cases can become longer and longer after each generation

until the all of the system memory is used), as diversity can lead

to an unnecessary and counter-productive increase of the test case

length [1, 33]. Since these three objectives are conflicting, we expect

an improvement in the solutions’ diversity and, hence, improving

the effectiveness (crash reproduction ratio) and efficiency.

To assess the performance of MO-HO on crash reproduction, we

use five multi-objective evolutionary algorithms (MOEAs): NSGA-

II [10], SPEA2 [47], MOEA/D [46], PESA-II [8], and FEMO [25].

We apply them to 124 non-trivial crashes from JCrashPack [37], a

crash benchmark used by previous crash reproduction studies [12].

Those crashes can only be reproduced by a test case that brings

the software under test to a specific state and invokes the target

method with one or more specific input parameters. We performed

0 java.lang.ArrayIndexOutOfBoundsException: 4

1 at [...]. FastDateParser.toArray(FastDateParser.java :413)

2 at [...]. FastDateParser.getDisplayNames ([...]:381)

3 at [...]. FastDateParser$TextStrategy.addRegex ([...]:664)

4 at [...]. FastDateParser.init ([...]:138)

5 at [...]. FastDateParser.<init >([...]:108)

6 [...]

Figure 1: LANG-9b crash stack trace [24, 37]

an internal assessment among MO-HO algorithms to find the best

multi-objective evolutionary algorithm for this optimization prob-

lem. According to the results observed in this assessment, SPEA2

outperforms other MOEAs in crash reproduction using MO-HO

helper-objectives.

Furthermore, we compared the best-performingMO-HO (MO-HO

+ SPEA2) against two state-of-the-art approaches (Single-Objecti-

ve Search [39] and De-MO [38]) from the perspectives of crash

reproduction ratio and efficiency. Our results show that MO-HO

outperforms the state-of-the-art in terms of crash reproduction

ratio and efficiency. This algorithm improves the crash reproduction

ratio by up to 100% and 93.3% (10% and 8%, on average) compared

to Single-Objective Search and De-MO, respectively. Also, after five

minutes of search, MO-HO reproduces five and six crashes (4% and

5% more crashes) that cannot be reproduced by Single-Objective

Search and De-MO, respectively. In addition, MO-HO reproduces

crashes significantly faster than Single-Objective Search andDe-MO

in 34.6% and 37.9% of the crashes, respectively.

A replication package, enabling the full-replication of our evalu-

ation and data analysis of our results is available on Zenodo [14].

2 BACKGROUND AND RELATEDWORK

Several approaches have been introduced in the literature that aim

to reproduce a given crash. Some of these techniques (e.g., ReCore

[36]) use runtime data (i.e., core dumps). However, collecting the

runtime data may induce a significant overhead and raises privacy

concerns. In contrast, other approaches [4, 6, 32, 44] only require the

stack traces of the unhandled exception causing the crash, collected

from executions logs or reported issues. For Java programs, a stack

trace includes the list of classes, methods, and code line numbers

involved in the crash. As an example, Figure 1 shows a stack trace

produced by a crash (due to a bug) in Apache Commons Lang. This

stack trace contains the type of the exception (ArrayIndexOutOf-
BoundsException) and frames (lines 1-6) indicating the stack of
active method calls during the crash.

Among the various approaches solely using a stack trace as input,

STAR [6] and BugRedux [23] use backward and forward symbolic

execution, respectively; MuCrash [44] mutates the existing test

cases of the classes involved in the stack trace; JCharming [31, 32]

applies model checking and program slicing for crash reproduc-

tion; and ConCrash [4] is designed to use pruning strategies to

reproduce the crash-reproducing test case.

EvoCrash is an evolutionary-based approach that applies a

Single-Objective Genetic Algorithm (Single-Objective Search) to

generate a crash-reproducing test case for a given stack trace and

a target frame (i.e., the class under test for which the test case is

generated). The generated test will trigger a crash with a stack

212

trace that is identical to the original one, up to the target frame.

For instance, for the stack trace in Figure 1 with a target frame at

line 3, EvoCrash generates a test case that reproduces the first

three frames of this stack trace (i.e., identical from lines 0 to 3). A

previous empirical evaluation [39] shows that EvoCrash performs

better compared to other crash reproduction approaches relying on

model checking and program slicing [31, 32], backward symbolic

execution [6], or exploiting existing test cases [44]. The study also

confirms that automatically generated crash-reproducing test cases

help developers to reduce their debugging effort.

2.1 Single-Objective Search Heuristics

To evaluate the candidate tests, and consequently guide the search

process, Single-Objective Search applies a fitness function called the

Crash Distance. This fitness function contains three components:

(i) the line coverage distance, indicating the distance between

the execution trace and the target line (the line number pointed to

by the target frame), (ii) the exception type coverage, indicating

whether the target exception is thrown, and (iii) the stack trace

similarity, indicating whether all frames (from the beginning up

to the target frame) are included in the triggered stack trace.

Definition 2.1 (Crash Distance [39]). For a given test case execu-

tion t , the Crash Distance (f) is defined as follows:

f (t) =
⎧⎪⎪⎨
⎪⎪
⎩

3 × ds (t) + 2 ×max (de) +max (dtr) if line not reached

3 ×min(ds) + 2 × de (t) +max (dtr) if line reached

3 ×min(ds) + 2 ×min(de) + dtr (t) if exception thrown

(1)

Where ds (t) ∈ [0, 1] indicates how far the test t is from reaching

the target line using two heuristics: approach level and branch dis-

tance [27]. The former measures the minimum number of control

dependencies between the execution path of t and the target line;
the latter indicates how far t is from satisfying the branch condition

on which the target line is control dependent. And de (t) ∈ {0, 1}
indicates whether an exception with the same type as the target ex-

ception is thrown (0) or not (1). Finally, dtr (t) ∈ [0, 1] calculates the
similarity between the stack trace produced by t and the expected
one, based on classes, methods, and line numbers appearing in both

stack traces. Functions max (.) and min(.) denote the maximum
and minimum possible values for a function, respectively. Con-

cretely, de (t) and dtr (t) are only calculated upon the satisfaction
of two constraints: exception type coverage and stack trace similarity

are relevant only when we reach the target line (first constraint)

and when we have the same type of exception (second constraint),

respectively.

2.2 Single-Objective Search

The search process starts with a guided initialization during

which an initial population of randomly generated test cases is

created. The algorithm ensures that each test case calls the tar-

get method (pointed to by the target frame) at least once. In each

generation, the fittest test cases are evolved by applying guided

mutation and guided crossover. Guided mutation applies a clas-

sical mutation to the test cases while ensuring that the mutated test

contains one or more calls to the target method. Similarly, guided

crossover is a variant of the single-point crossover that preserves

calls to the target methods in the offsprings. Accordingly, each

generated test case contains at least one call to the target method

(i.e., the method triggering the crash) [39].

With those operators, Single-Objective Search improves the ex-

ploitation, but it penalizes exploration of new areas of the search

space by not generating diverse enough test cases. As a consequence,

the search process may get stuck in local optima.

2.3 Decomposition-based Multi-objectivization

To increase diversity during the search, a prior study [38] investi-

gated the usage ofDecomposition-based Multi-Objectivization (called

De-MO hereafter) to decompose the Crash Distance in three dis-

tinct (sub-)objectives. De-MO on the Crash Distance (temporarily)

decomposes the function in three distinct (sub-)objectives: ds (t),
de (t), and dtr (t). Then, De-MO uses a multi-objective evolution-

ary algorithm optimizing three objectives to generate one crash-

reproducing solution. In the end, the global optimal solution is a

test case in the Pareto front produced by MOEAs that satisfies all of

the sub-objectives simultaneously. The empirical evaluation shows

that De-MO increases the efficiency of the crash reproduction pro-

cess for some specific cases compared to Single-Objective Search.

However, it loses efficiency in some other cases.

In particular, in Multi-objectivization, search objectives should

be conflicting to increase the diversity of generated solutions [22].

However, the three sub-objectives inDe-MO [38] are tightly coupled

and not conflicting: the stack trace similarity (dtr (t)) cannot be
computed for test case t without executing the target line (ds (t) = 0)
and throwing the correct type of exception (de (t) = 0). Also, the
type of exception (de (t)) is not relevant, while test t does not cover
the statement in the target line (ds (t) = 0.0).

3 MULTI-OBJECTIVIZATIONWITH
HELPER-OBJECTIVES (MO-HO)

Decomposing the Crash Distance leads to a set of dependent sub-

objectives, which reduces the effect of improving diversity through

multi-objectivization [22]. In this study, we focus on using new

helper-objectives in addition to the Crash Distance, rather than

decomposing it. We define two helper-objectives called method

sequence diversity and test length minimization that aim to

(i) increase diversity in the population (i.e., generated tests) and (ii)

address the bloating effect [30, 33]. Then, we use five different evo-

lutionary algorithms belonging to different categories of MOEAs

(e.g., decomposition-based and rank-based) to solve this optimiza-

tion problem. In the remainder of this section, we first discuss the

two helper-objectives. Next, we present the MOEAs used to solve

this problem.

3.1 Helper-Objectives

As suggested by Jensen et al. [22], adding helper-objectives to an

existing single objective can help search algorithms escape from

local optima. However, this requires that the helper objectives are

in conflict with the primary one [22]. Therefore, defining proper

helper-objectives is crucial.

Method Sequence Diversity. The first helper-objective seeks

to maximize the diversity of the method-call sequences that com-

pose the generated tests because more diverse tests might execute

213

different paths or behaviors of the target class. Notice that each test

case is a sequence of statements, where each statement belongs to

one of the following five different categories [33]: primitive state-

ments, constructors, field statements, method calls, or assignments.

Furthermore, the length of a test case is variable, i.e., it is not fixed

a priori and can vary during the search.

In recent years, several functions have been introduced to mea-

sure test case diversity [30]. These functions measure the diversity

between two test cases by using a binary encoding function to

calculate the distance between the corresponding encoded vectors

using the Levenshtein distance [26], Hamming distance [19], etc.

For three or more test cases, the overall diversity corresponds to

the average pairwise diversity of the existing test cases [30]. These

metrics have been used in other testing tasks (e.g., automated test

selection), but not in crash reproduction.

To measure the value of this helper-objective for the generated

solutions, we follow a similar procedure. Let us assume that F =
{ f1, f2, .. fn } is a set of public and protected methods in the target
class (i.e., method calls that can be called directly by the generated

tests), and T = {t1, t2, ..tm } is a set of generated test cases. To

calculate the diversity of T , we first need to encode each tk ∈ T
into a binary vector. We use the same encoding function proposed

by Mondal et al. [30]: each test case tk ∈ T corresponds to a binary

vector vk of length n (i.e., the number of public and protected

methods in the target class). Each elementvk [i] of the binary vector
denotes whether the corresponding method fi ∈ F is invoked

by the test case tk . More formally, for each method fi ∈ F , the
corresponding entry vk [i] = 1 if tk calls fi ; vk [i] = 0 otherwise.
Then, we calculate the diversity for each pair of test cases tk

and ti as the Hamming distance between the corresponding binary
vectorsvk andvi [19]. The Hamming distance (Hamming) between
two vectors corresponds to the number of mismatches1 over the to-

tal length of the binary vectors. For instance, the Hamming distance

between A = 〈1, 1, 0, 1, 0〉 and B = 〈0, 1, 0, 1, 1〉 equals to 2/5 = 0.4.
Definition 3.1 (Method Sequence Diversity). Given an encoding

function V (.), the method sequence diversity (MSD) of a test t ∈ T
corresponds to the average Hamming distance of that test from the

other test cases in T :

MSD (t) =

∑
ti ∈T \{t } Hamminд(V (t),V (ti))

|T | − 1 (2)

In our approach, MSD should be maximized to increase the

chance of the generated test to execute new paths or behaviors in

the target class. Since our tool (see Section 4.1) is designed for mini-

mization problems, we minimize the method sequence similarity

using the formula:

fMSD (t) = 1 −MSD (t) (3)

Test LengthMinimizationWhile increasing method sequence

diversity can help to execute diverse paths of the target class, a

previous study [1] also showed that test diversity metrics (such as

call sequence diversity) can reduce coverage. This is due to the

bloating effect, i.e., diversity will also promote larger test cases over

short ones. Let us assume that we have a set of short test cases

with few method calls in our population (most of the elements in

their binary vectors are 0). A lengthy test case tL that calls all the

1The number of positions at which the corresponding bits are different.

methods of the target class will have a binary vector containing

only 1 values. As a consequence, tL will have a large Hamming

distance from the existing test cases.

Larger tests introduce two potential issues: (i) they are likely

more expensive to run (extra overhead), and (ii) they may contain

spurious statements that do not help code coverage (which is a

part of Crash Distance). In the latter case, mutation can become

less effective as it may mutate spurious statements rather than

the relevant part of the chromosomes. Therefore, test diversity is

in conflict with Crash Distance. To avoid the bloating effect, our

second helper-objective is test length minimization, which counts

the number of statements in a given test:

Definition 3.2 (Test Length Minimization). For a test case t with a
length |t |, the fitness function is:

flen (t) = |t | (4)

3.2 Multi-Objective Evolutionary Algorithms

In this study, our goal is to solve a multi-objectivized problem by

minimizing the three objective functions (Crash Distance, fMSD ,

and flen). In theory, we could consider various MOEAs, each com-
ing with different advantages and disadvantages over different

optimization problems (e.g., multimodal, convex, etc.). However,

we cannot establish upfront what type of MOEA works better for

crash reproduction as the shape of the Pareto Front (i.e., type of

problem) for crash reproduction is unknown. Hence, we chose five

MOEAs from different categories to determine the best algorithm

for MO-HO: NSGA-II uses the non-dominated sorting procedure;

SPEA2 is an archive-based algorithm that selects the best solutions

according to the fitness value; PESA-II divides the objective space

to hyper-boxes and selects the solutions from the hyper-boxes with

the lower density; MOEA/D decomposes the problem to multiple

sub-problems; and FEMO, is a (1+1) evolutionary algorithm that

evolves tests solely with mutation and without crossover.

We use the same stopping conditions for all search algorithms,

which is a maximum search budget, or when the target crash is

successfully reproduced, i.e., a solution with a Crash Distance of

0.0 is found. Also, to increase exploitation during the search, all

algorithms use the guided crossover and guided mutation operators.

In the following subsections, we briefly describe the selected

search algorithms and their core characteristics.

3.2.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II) [10].

In NSGA-II, offspring tests are generated, from given a population

of size N , using genetic operators (crossover and mutation). Next,
NSGA-II unions the offspring populationwith the parent population

into a set of size 2N and applies a non-dominated sorting to select

the N individuals for the next generation. This sorting is performed

based on the dominance relation and crowding distance: the solutions

are sorted into subsequent dominance fronts. The non-dominated

solutions are in the first front (Front0). These solutions have a
higher chance of being selected. Furthermore, crowding distance is

used to raise the chance of the most diverse solutions within the

same front to be selected for the next generation. In each generation,

parent test cases are selected for reproduction using the binary

tournament selection.

214

3.2.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2) [47]. Be-

sides the current population, SPEA2 contains an external archive

that collects the non-dominated solutions among all of the solutions

considered during the search process. SPEA2 assigns a fitness value

to each solution (test) in the archive. The fitness value of solution i
is calculated by summing up two values: Raw fitness (R (i) ∈ N0),
which represents the dominance relation of i; and Strength value
(S (i) ∈ [0, 1]), which estimates the density of solutions in the same
Pareto front (solutions that are not dominating each other). A solu-

tion with lower fitness value is “better” and has a higher chance of

being selected. For instance, the non-dominated solutions have a

R (i) = 0, and their fitness values are lower than 1.
The external archive has a fixed size, which is given at the be-

ginning of the search process. After updating the archive in each

iteration, the algorithm checks if the size of the archive exceeds this

given size. If the size of the archive is smaller than the given size,

SPEA2 fills the archive with the existing dominated solutions. In

contrast, if the size of the archive is bigger than the given size, this

algorithm uses a truncation operator to remove the solutions with

a high fitness value from the archive. After updating the archive,

SPEA2 applies binary tournament selection based on the calculated

fitness values, selects parent solutions, and generates offspring so-

lutions via crossover and mutation.

3.2.3 Pareto Envelop-based Selection Algorithm (PESA-II) [8]. Sim-

ilar to SPEA2, PESA-II benefits from an external archive. In each

generation, the archive is updated by storing the non-dominated

solutions in the archive and the current population. However, the

difference is in the selection strategy and archive truncation. In

this algorithm, instead of assigning a fitness value to each of the

solutions in the archive, the objective space is divided, based on

the existing solutions, into hyper-boxes or grids. Non-dominated

solutions in a hyper-box with lower density have a higher chance

of being selected and a lower chance of being removed.

3.2.4 Multi-objective Evolutionary Algorithm Based on Decomposi-

tion (MOEA/D) [46]. This algorithm decomposes the M-objectives

problem into K single-objective sub-problems and optimizes them

simultaneously. Each sub-problem has different weights for the

optimization objectives. The K sub-problems д(x |w1), . . . , д(x |wK)
are obtained using a scalarization function д(x |w) and a set of

uniformly-distributed weight vectorsW = {w1, . . . ,wk }. The de-
composition can be done with several techniques such as weighted

sum [29], Tchebycheff [29], or Boundary Intersection [9, 28]. In each

generation, MOEA/D maintains the best individuals for each sub-

problem д(x |wi), while the reproduction (based on crossover and
mutation) is allowed only among solutions (tests) within the same

neighbourhood (mating restriction).

3.2.5 Fair Evolutionary Multi-objective Optimizer (FEMO) [25].

This algorithm is a local (1+1) evolutionary algorithm. It means

that in each iteration, only one solution is evolved by the mutation

operator to have only one offspring solution for the next generation.

FEMO contains an archive. In the first iteration, it generates a

random solution and places it in the archive. In the next generations,

it selects one individual from the archive and evolves it by mutation

operator to generate a new solution. Finally, if the new solution

dominates at least one of the solutions in the archive, it adds the

new solution to the archive and removes the dominated solutions.

Each solution in the archive has a weight (w) that indicates the
number of times that a solution was selected from the archive. So,

the initial weight of a newly generated test case is 0. During the

selection, FEMO selects a solution randomly from the solutions in

the archive that have the lowestw .

4 EMPIRICAL EVALUATION

To assess the impact of MO-HO on crash reproduction, we per-

formed an empirical evaluation and answered the following re-

search questions.

RQ1: Which Multi-Objective algorithm performs better with MO-

HO’s search objectives in terms of crash reproduction?

RQ2: What is the impact of the MO-HO algortihm on crash re-

production compared to Single-Objective Search and De-MO?

RQ3: How does MO-HO’s efficiency compare to Single-Objective

Search and De-MO?

4.1 Implementation

Since other crash reproduction approaches are not openly available,

we implemented a new open-source evolutionary-based crash re-

production framework, called Botsing.2 Botsing is well-tested and

designed to be easily extensible for new techniques (new evolution-

ary algorithms, new genetic operators, etc.). It relies on EvoSuite

[17], an evolutionary-based unit test generation tool, for code in-

strumentation and for the internal representation of an individual

(i.e., a test case) by using evosuite-client as a dependency.
For this study, we implemented the techniques used in previous

studies for crash reproduction (Single-Objective Search and De-

MO) in Botsing. Moreover, we implemented all of the MO-HO

approaches, which include the two fitness functions for our new

helper-objectives (method sequence diversity and test length) and

the five MOEAs mentioned above.

4.2 Setup

Crash Selection. We selected our crashes from JCrashPack [11,

37], a collection of crashes from open-source projects and created

for crash reproduction benchmarking. Based on the reported results

of the prior studies about search-based crash reproduction [37, 38],

we know that Single-Objective Search and De-MO face various

challenges to reproduce many of the crashes in this benchmark. For

this study, we apply our approach and state-of-the-art algorithms

to 124 crashes from JCrashPack, which are used in the recent

search-based crash reproduction study [12]. These crashes stem

from six open-source projects: JFreeChart, a framework for building

interactive charts; Commons-lang, a library providing extra utilities

to the java.lang API; Commons-math, a library for mathematical
and statistical usages; Mockito, a testing framework for mocking

objects; Joda-time, a library for date and time manipulation; XWiki,

a large-scale enterprise wiki management system.

Algorithm Selection. We attempted to reproduce the selected

crashes using seven evolutionary algorithms: Single-Objective Sear-

ch,De-MO, andMO-HOwith fiveMOEAs (NSGA-II, SPEA2, PESA-II,

MOEA/D, and FEMO). For each crash, we ran each algorithm on

2Available at https://github.com/STAMP-project/botsing

215

each frame of crash stack traces. We repeated each execution 30

times to take randomness into account, for a total number of 199,710

independent executions. We ran the evaluation on servers with 40

CPU-cores, 128 GB memory, and 6 TB hard drive.

Evaluation procedure. In RQ1, we perform an internal assess-

ment of MO-HO by comparing all MOEAs to determine the best-

performing one when optimizing the search objectives in MO-HO.

Then, to answer RQ2 and RQ3, we use the best-performing MO-HO

configuration (MOEA) to evaluate its effectiveness and efficiency

against the state-of-the-art crash reproduction approaches.

Parameter Settings. We set the search budget to five minutes,

as suggested by previous studies on evolutionary-based crash re-

production [39]. Also, we fixed the population size and archive size

(if needed) to 50 individuals, as recommended in prior studies on

test case generation [33]. For MO-HO with PESA-II, the number of

bisections for gridding is set to the default value of five grids. InMO-

HO with MOEA/D, the weight vectors are obtained using a variant

simplex-lattice design [40] and using the Tchebycheff approach as

the aggregation function. Finally, we set the neighborhood selection

probability to 0.2 (set to the default value [15]) and the maximum

number of solutions that can be replaced in each generation to 50.

For all MOEAs, we use the guided mutation with mutation probabil-

ity pm = 1/n (n is the length of the test case), and guided crossover
with crossover probability pc = 0.8 (the same parameters used for
the suggested baselines).

4.3 Data Analysis

To evaluate the crash reproduction ratio (i.e., the percentage of

successful crash reproduction attempts in 30 rounds of runs) of

different algorithms, we follow the same procedure as the previous

studies [12, 38]: for each crashC , we find the highest frame that can
be reproduced by at least one of the algorithms (rmax). We analyze

the crash reproduction ratio of each algorithm for a target crash C
targeting frame rmax .

To check whether the performance (reproduction ratio) of MO-

EAs significantly differs from one another, we use the Friedman

test [18]. The Friedman test is a non-parametric version of the

ANOVA test [16], i.e., it does not make any assumption about the

data distribution. It is a multiple-problem statistical test and has

been widely used in the literature to compare randomized algo-

rithms [21, 34]. Friedman’s test allows to rank and statistically

compare different MOEAs over multiple independent problems, i.e.,

crashes in our case. For Friedman’s test, we use a level of signifi-

cance α = 0.05. If the p-values obtained from Friedman’s test are

significant (p-values <= 0.05), we apply pairwise multiple com-

parison using Conover’s post-hoc procedure [7]. To correct for

multiple comparison errors, we adjust the p-values from Conover’s

procedure using Holm-Bonferroni [20].

To answer RQ2, we need to determine whether an algorithm

reproduces a crash. Since we repeat each execution 30 times, we

use the majority of outcomes for a crash reproduction result. In

other words, if an algorithm could reproduce a crash in ≥ 15 runs

(i.e., reproduction ratio of ≥ 50%), we count that frame as reproduced.

To compare the number of reproduced crashes by each algorithm,

we used the same procedure used by Almasi et al. [2] and Campos

et al. [5]: we check crash reproduction status and reproduction ratio

Table 1: MOEAs ranking (inMO-HO) in terms of crash repro-

duction ratio (Friedman’s test) and results of the pairwise

comparison (p-value ≤ 0.05)

Rank MOEA Rank value Significantly better than

1 SPEA2 2.63 (2), (3), (4), (5)

2 PESA-II 2.86 (4), (5)

3 NSGA-II 2.90 (4), (5)

4 MOEAD 4.97 (5)

5 FEMO 5.05

of the best-performing MO-HO algorithm (according to the results

of RQ1), Single-Objective Search, and De-MO at five time intervals:

1, 2, 3, 4 and 5 minute.

To evaluate the efficiency of the algorithms (RQ3), we analyze

the time spent by the bestMO-HO algorithm, Single-Objective Sear-

ch, and De-MO for generating a crash reproducing test cases. Since

efficiency is only applicable to the reproduced crashes, we compare

the efficiency of algorithms on the crashes that are reproduced

at least once by one of the algorithms. If, for one execution, an

algorithm was not able to reproduce the crash, it means that it

consumed the maximum allowed time budget (5 minutes). To assess

the effect size of differences between algorithms, we use the Vargha-

Delaney Â12 statistic [41]. A value of Â12 < 0.5 for a pair of factors

(A,B) shows that A reproduced the target crash in a shorter time,

while a value of Â12 > 0.5 indicates the opposite. Besides, Â12 = 0.5

means that there is no difference between the factors. To evaluate

the significance of effect sizes (Â12), we use the non-parametric

Wilcoxon Rank Sum test, with α = 0.05 for the Type I error.
A replication package of our evaluation is available on Zenodo

[14]. It contains the selected crashes, the results and data analysis

presented in this paper, as well as the implementation of MOEAs

in Botsing and a Docker-based infrastructure to enable the full-

replication of our evaluation.

5 RESULTS

This section presents the results of our empirical evaluation and

answers, one by one, our research questions.

5.1 Best MOEA forMO-HO (RQ1)

Figure 2 presents the crash reproduction ratio of theMOEAs applied

to ourMO-HO framework. For this analysis, we consider the number

of times (in percentage) each MOEAs could reproduce a given

crash across 30 runs and using a search budget of five minutes. On

average (the squares in Figure 2), the best algorithm for MO-HO is

SPEA2, with an average and median of 76% and 100% of successful

reproductions, respectively. SPEA2 is Followed by PESA-II, NSGA-II,

and MOEAD. Also, this figure shows that the first quartile of the

crash reproduction ratio of SPEA2 is, at least, about 25% higher than

other MOEAs.

According to Friedman’s test, the differences in reproduction

ratios are statistically significant (p-value ≤ 0.05). This means that

some MOEAs are significantly better than others within our MO-

HO framework. For completeness, Table 1 reports the ranking pro-

duced by the Friedman test. To better understand for which pairs

216

●
●●●●●●●0.00

0.25

0.50

0.75

1.00

FEMO MOEA/D NSGA−II PESA−II SPEA2
Algorithms

R
ep

ro
du

ct
io

n
R

at
io

 (p
er

ce
nt

)

Figure 2: Crash reproduction ratio (out of 30 executions) of

MO-HO algorithms. The upper and lower edge of each box

present the upper and lower quartile, respectively. (�) de-
notes the arithmetic mean and (—) is the median.

of MOEAS the statistical significance holds, we applied the post-

hoc Conover’s procedure for the pairwise comparison. The results

of the comparison are also reported in Table 1. According to this

table, the best-performing algorithm is MO-HO + SPEA2, which

has a significantly higher crash reproduction ratio compared to

other MO-HO algorithms. The next algorithms are MO-HO + PESA-

II and MO-HO + NSGA-II. These two algorithms are significantly

better than MO-HO + MOEAD and MO-HO + FEMO. Finally, the

worst algorithm in terms of crash reproduction is FEMO, which is

significantly worse than other MOEAs.

Summary (RQ1). MO-HO + SPEA2 achieved the highest perfor-

mance in terms of crash reproduction ratio compared to MO-HO +

other MOEAs. The next best-performing MOEAs, in terms of crash

reproduction, are PESA-II and NSGA-II.

5.2 Crash Reproduction (RQ2)

Figure 3 depicts the crash reproduction ratio of the best-performing

MO-HO configuration (i.e., with SPEA2), Single-Objective Search,

and De-MO at five time intervals (search budgets). As indicated

in this figure, the average crash reproduction ratio of MO-HO is

higher than other algorithms at all of the time intervals. Also, the

median crash reproduction ratio for this algorithm is always 100%.

Furthermore, the maximum improvement achieved byMO-HO with

the five-minutes search budget is in XWIKI-14599 (with 100% im-

provement) and MATH-3b (with 93.3% improvement) compared

to Single-Objective Search and De-MO, respectively. In contrast,

the largest reduction in reproduction ratio by MO-HO (with the

five-minutes budget) is in XCOMMONS-1057 (with 30% drop) and

XWIKI-13616 (with 40% reduction) compared to Single-Objective

Search and De-MO, respectively. We will explain the negative fac-

tors in MO-HO, which lead to negative results for this algorithm in

some corner cases, in Section 5.4.

Moreover, we can see that De-MO is the second-best algorithm

in all of the time intervals. In the first 60 seconds of the crash

reproduction process, on average, its crash reproduction ratio is 4%

better than Single-Objective Search. However, in contrast to the

other two algorithms, the crash reproduction ratio of this algorithm

changes only slightly after the first 120 seconds. Hence, at the end of

the search process, the average crash reproduction ratio of De-MO

is only 2% better than Single-Objective Search. In contrast, since

the crash reproduction ratio of MO-HO keeps growing, on average,

it remains more effective than Single-Objective Search (about 10%)

even after 300 seconds. The other interesting point in Figure 3 is

the first quantile of MO-HO. In the first 60 seconds, this value is

lower than 12%, but it grows up to 62% after 300 seconds. This

improvement is not observable in state-of-the-art algorithms.

Furthermore, MO-HO is more stable in crash reproduction after

300 seconds budget compared to the other algorithms. Figure 3

demonstrates that the interquartile range (i.e., the difference be-

tween first and third quartile) of crash reproduction ratio inMO-HO

with the 300 seconds budget is 46% smaller than the interquartile

range of other algorithms (being 38.3% forMO-HO, 76.6%. for Single-

Objective Search, and 70.8% for De-MO).

Also, Figure 4 shows the number of crashes, which are repro-

duced by MO-HO, but not by the state-of-the-art algorithms and

vice versa in different time intervals. As indicated in this figure, in

all of the time intervals, the number of crashes that are reproduced

by MO-HO is higher than the crashes that it cannot reproduce. In

the best case (after 1 minute of search), MO-HO reproduces eight

and seven new crashes that cannot be reproduced by Single-Ob-

jective Search and De-MO, respectively. In contrast, there is only

one crash that can be reproduced by De-MO and not by MO-HO.

Also, after five minutes, MO-HO still reproduces more crashes than

the baselines: it reproduces five and six new crashes that cannot be

reproduced by Single-Objective Search and De-MO, respectively.

The crashes that are reproduced byMO-HO after fiveminutes but

not by Single-Objective Search are: TIME-10b frame 5, XCOMMONS-
928 frame 2, XWIKI-14227 frame 2, XWIKI-14475 frame 1, and

XWIKI-14599 frame 1. And the crashes that are reproduced byMO-
HO after five minutes but not by De-MO are: MOCKITO-16b frame
4, TIME-5b frame 3, XWIKI-13377 frame 3, XWIKI-14227 frame 2,
MATH-3b frame 1, and MOCKITO-10b frame 1.
Figure 5 shows the crash’s stack trace reported in the issue

XWIKI-14227. MO-HO is the only approach that can reproduce

the first two frames of this stack trace. Here, the target method

is useMainStore (Figure 6), which does not have any input argu-
ment. Hence, to reproduce this crash, the crash reproducing test

generated by MO-HO (depicted in Figure 8) should invoke specific

methods (e.g., setWiki, setWikiId) to set different local variables
in the xwikiContext0 object, and then, pass this object to the class
under test (here, ActivityStreamConfiguration). Since the crash
reproducing test case generated by MO-HO does not add any plu-

gin to the xWiki0 object, the execution of this test indeed leads to
a NullPointerException thrown at line 5619 of the getPlugin
method in Figure 7. Generating such a specific test case requires a

search process with high exploration ability, which can generate

diverse test cases.

We do note that Single-Objective Search cannot even generate a

test case covering the target line (line 85 of the useMainStore
method). However, De-MO can cover the target line thanks to

more test generation diversity delivered by the application of multi-

objectivization.

Moreover, Single-Objective Search and De-MO reproduces two

crashes that cannot be reproduced by MO-HO after five minutes.

We will analyze these corner cases later in Section 5.4.

217

●

●●●●●●●

60 seconds budget 120 seconds budget 180 seconds budget 240 seconds budget 300 seconds budget

De−MO MO−HO Single De−MO MO−HO Single De−MO MO−HO Single De−MO MO−HO Single De−MO MO−HO Single

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Algorithms

R
ep

ro
du

ct
io

n
R

at
io

 (p
er

ce
nt

)

Figure 3: Crash reproduction ratio (out of 30 executions) ofMO-HO against state-of-the-art in five different time intervals. (�)
denotes the arithmetic mean and (—) is the median.

●

●

●

●

●

●

●

●

●

●

0

1

2

3

5

6

7

8

60 120 180 240 300
Time budget (seconds)

of

 c
ra

sh
es

MOHO.reproduces ● ●less more than ● De−MO Single objective

Figure 4: Number of reproduced crashes only by MO-HO or

only by one of the state-of-the-art algorithms.

0 java.lang.NullPointerException: null

1 at [...]. XWiki.getPlugin(XWiki.java :5619)

2 at [...]. ActivityStreamConfiguration.useMainStore ([...]:85)

3 [...]

Figure 5: XWIKI-14227 crash’s stack trace [37].

82 public boolean useMainS tore () {

83 XWikiContext c on t e x t = c o n t e x t P r o v i d e r . g e t () ;

84 i f (c on t e x t . i sMainWiki ()) { return fa l s e ; }

85 A c t i v i t y S t r e amP l u g i n p l ug i n = (

A c t i v i t y S t r e amP l u g i n) c on t e x t . ge tWik i () .

g e t P l u g i n [. . .] c o n t e x t) ; / / <−− t a r g e t l i n e

86 }

Figure 6: Method useMainStore appears in the second frame
of the XWIKI-14227 crash’s stack trace.

In addition, after five minutes of crash reproduction, De-MO

reproduced six crashes, which are not reproduced by Single-Ob-

jective Search. Still, there are more crashes (seven) that can be

reproduced by Single-Objective Search but not by De-MO. This

5617 public XWik i P l u g i n I n t e r f a c e g e t P l u g i n ([. . .]) {

5618 XWikiPluginManager p l u g i n s = ge tP lug inManager () ;

5619 Vector < S t r i ng > p l u g i n l i s t = p l u g i n s . g e t P l u g i n s () ;

5620 [. . .]

5621 }

Figure 7: Method getPlugin appears in the first frame of the
XWIKI-14227 crash’s stack trace.

1 public void t e s t 0 () throws Throwable {

2 A c t i v i t y S t r e amCon f i g u r a t i o n ac0 = new

Ac t i v i t y S t r e amCon f i g u r a t i o n () ;

3 XWikiContext xWikiContext0 = new XWikiContext () ;

4 XWiki xWiki0 = new XWiki () ;

5 xWikiContext0 . s e tWik i (xWiki0) ;

6 xWikiContext0 . s e tW ik i I d (" 4~ YR l f I > .U { i b ") ;

7 P rov ide r <XWikiContext > p r o v i d e r 0 = (P rov ide r <

XWikiContext >) mock ([. . .]) ;

8 doReturn (xWikiContext0) . when (p r o v i d e r 0) . g e t () ;

9 I n j e c t o r . i n j e c t (ac0 , [. . .] , " c o n t e x t P r o v i d e r " , (

Ob j e c t) p r o v i d e r 0) ;

10

11 / / Und e c l a r e d e x c e p t i o n !

12 ac0 . useMa inS tore () ;

13 }

Figure 8: Crash-reproducing test case generated by MO-HO

for the XWIKI-14227 crash.

result shows that despite the new crashes reproduced by De-MO,

this algorithm was counter-productive with respect to the total

number of reproduced crashes.

Summary (RQ2). On average, MO-HO has the highest crash

reproduction ratio independently from the search budgets.

5.3 Efficiency (RQ3)

Figure 9 shows the time (in seconds) needed by theMO-HO and the

state-of-the-art algorithms to successfully reproduce the crashes in

our benchmark. On average, the fastest algorithm is MO-HO, with

218

●● ●●●●●●●●●●●●●●

●

●●●●●●●●●●
●
●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●

●

●●

●

●●

●

●●●

●

●●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●

●

●●●●
●
●●●●●

●

●●●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●

●●
●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●
●
●●●●●●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●

●

●●

●●●●●●

●

●●●●●●●●●

●

●

●●●

●

●●●

●

●●●●●

●

●

●●●

●

●●●

●

●

●

●●●●●

●

●●●●●

●

●

●

●●

●

●●●●

0

100

200

300

De−MO MO−HO Single
Algorithms

C
om

su
m

ed
 T

im
e

(s
ec

on
ds

)

Figure 9: Overall budget consumption in seconds (log. scale).

(�) denotes the arithmetic mean and (—) is the median.

Table 2: Pairwise comparison of the budget consumption

with a small (S), medium (M), and large (L) effect size Â12 <

0.5 and a statistical significance < 0.05.

#(Â12 < 0.5) Single De-MO MO-HO

L M S L M S L M S

Single - - - 7 - 4 1 - 2

De-MO 13 7 2 - - - 3 2 -

MO-HO 35 6 2 33 10 4 - - -

an average search time of 71 seconds per crash replication. The

median of its running time is lower than 10 seconds. The second

fastest algorithm is De-MO that, on average, uses 84 seconds to

reproduce the crashes. The slowest algorithm is Single-Objective

Search, which demands, on average, about 100 seconds.

Moreover, the biggest improvements achieved by MO-HO in

terms of efficiency are for XWIKI-14599, in which MO-HO requires

only 3% of the time required by Single-Objective Search to achieve

crash reproduction, and MATH-3b, in which MO-HO requires only

7% of the time required by De-MO to finish the crash reproduction

task. However, the biggest efficiency losses byMO-HO are inMATH-

81b with 45 seconds drop (15% of time budget) and XRENDERING-

481 with 145 seconds drop (48% of time budget) compared to Single-

Objective Search and De-MO, respectively.

Table 2 compares the budget consumption of the algorithms from

a statistical point of view, i.e., according to the effect sizes (Â12 <

0.5) and statistical significance (p-value < 0.5). According to this

table, MO-HO is the fastest algorithm: it significantly reproduced

43 (34.6% of crashes) and 47 (37.9% of crashes) crashes faster than

Single-Objective Search and De-MO, respectively. Most of these

significant improvements have large effect sizes (35 against Single-

Objective Search and 33 against De-MO). In cases that MO-HO

improves efficiency, on average, this algorithm decreases the time

required for crash reproduction by 47% and 58% compared toDe-MO

and Single-Objective Search, respectively.

Furthermore, Table 2 shows a few cases, in which MO-HO in-

creases the consumed time compared to the state-of-the-art: 3

against Single-Objective Search and 5 against De-MO. In most of

these cases (7 out of 8), the crash reproduction process needs to

reproduce a crash with only one frame. Even the exceptional case

is a stack trace with three frames. In contrast, in cases that MO-HO

wins, we have many crashes with more frames (six frames, for

0 java.lang.ArrayIndexOutOfBoundsException: 2

1 at org.apache.commons.math.linear.BigMatrixImpl.operate(

BigMatrixImpl.java :997)

Figure 10: MATH-98b crash’s stack trace [24, 37].

991 public BigDec imal [] op e r a t e (B igDec imal [] v) {

992 f ina l int nRows = th i s . getRowDimension () ;

993 f ina l int nCols = th i s . getColumnDimension () ;

994 f ina l BigDec imal [] out = new BigDec imal [v . l e ng t h] ;

995 for (in t row = 0 ; row < nRows ; row++) {

996 . . .

997 out [row] = sum ; / / <−− t a r g e t l i n e

998 }

999 . . .

1000 }

Figure 11: Method operate appears in the first frame of the
MATH-98b crash’s stack trace [24, 37].

instance). Also, this table shows that De-MO is significantly slower

than Single-Objective Search in 11 crashes. Meanwhile, MO-HO is

only slow in reproducing three crashes. Hence, our proposed algo-

rithm reduces the cases in which the multi-objectivization search

process is slower than the single objective search by 73%.

Summary (RQ3). The fastest crash reproduction algorithm is

MO-HO with an average improvement in running time in 34.6% of

the crashes compared to the state of the art.

5.4 Corner cases analysis

Despite the notable improvements achieved by MO-HO, there are

few specific cases, in which Single-Objective Search or De-MO

outperform MO-HO. For instance, in Section 5.2, Single-Objective

Search and De-MO reproduce two crashes that are not reproduced

by MO-HO. Also, we observed in Section 5.3 that the efficiency of

these two algorithms is higher than MO-HO in 8 crashes.

To understand whyMO-HO is counter-productive in a few cases,

we performed a manual analysis to analyze the factors in MO-

HO that negatively impact the crash reproduction process. Re-

sults of our analysis point to two adverse factors: extra overhead

in calculating the objectives (fitness evaluation) and helper-

objectives misguidance.

Extra calculation in fitness evaluation. In some cases, crash

reproduction is trivial, and the search process reproduces it in a

few seconds. For instance, in TIME-8b [24, 37], Single-Objective
Search and De-MO reproduce the crash in about a second. The time

required by MO-HO to reproduce this crash is three seconds (3

times more). This stems from the fact that fitness function evalua-

tion in MO-HO is more time-consuming than the state-of-the-art:

Single-Objective Search and De-MO need to calculate only the crash

distance for each test case evaluation, whileMO-HO needs to calcu-

late the call diversity, as well. This extra calculation lengthens the

search process by a couple of seconds. In these cases, the increased

crash reproduction time is lower than 5 seconds, and it is negligible

in practice.

Helper-objectives misguidance. In some other cases, the sce-

nario, which leads to crash reproduction, needs a simple sequence

219

of methods calls to the target class. Still, the complexity of this

scenario stems from the input arguments used for the method calls.

In these cases, since crash reproduction does not need the call di-

versity, method sequence diversity objective misguides the search

process. Alternatively, we need another objective for method input

argument diversity (i.e., improves the diversity of the input argu-

ments for method calls). Adding new helper-objectives to consider

other aspects of diversity is part of our future agenda.

As an example, let us analyze MATH-98b (Figure 10), in which
MO-HO doubled the time consumed by the crash reproduction

search process against state-of-the-art. This crash concerns an

ArrayIndexOutOfBoundsException . Also, this crash has only one
frame. For reproducing this crash, the generated test case needs

to instantiate a class called BigMatrixImpl and call a method

named operate (Figure 11) with precise input values. Method

getColumnDimension used in operate returns the number of rows
in the data variable, which has been set in the constructor. To re-

produce this crash, the generated test case should pass an array

with a size smaller than the passed size to the constructor. In this

case, method argument diversity could help the search process, and

the method call diversity is not helpful.

6 DISCUSSION

6.1 Effectiveness and applicability

Generally, De-MO reproduces some crashes that cannot be repro-

duced by Single-Objective Search due to its improved exploration

ability, resulting from the multi-objectivization of the crash dis-

tance. However, since the decomposed objectives in this approach

depend on one another (e.g., the stack trace similarity is not helpful

if the generated test does not throw the given type of exception),

they may misguide the search process in various cases. For instance,

as we saw in Section 5.2, Single-Objective Search reproduces six

crashes that are not reproducible by De-MO.

In contrast,MO-HO has three conflicting search objectives. From

the theory [22], the objective function must be conflicting to in-

crease the overall exploration ability. Our results confirm the theory:

the chance of the search process getting trapped in a local optimum

is lower by using MO-HO objectives compared to the ones used

in De-MO. As we observed in Section 5.2, after 1 minute of search,

MO-HO reproduces 8 and 7 crashes more than Single-Objective

Search and De-MO, respectively. Also, it continues outperforming

with larger search budgets (2, 3, 4, and 5 minutes) until the end

of the search process. It reproduces 5 and 6 crashes more than

Single-Objective Search and De-MO, respectively, while it cannot

reproduce only two crashes, reproduced by the other algorithms.

Note that reproducing each crash needs a particular test case

which drives the software under test to a particular state, and then, it

calls amethodwith proper input variables. To achieve this goal, each

crash reproducing test case needs to createmultiple complex objects.

Hence, reproducing five new crashes (4% of crashes available in our

benchmark) is a significant improvement for MO-HO.

6.2 Factors in the benchmark crashes that
impact the Success ofMO-HO

There are multiple factors/characteristics of the crashes in our

benchmark that might impact the performance of our approach

positively. We identify the following relevant factors: (1) the type

of the exception (e.g., null pointer exception), (2) the size the stack

frames, (3) the number of classes involved in the crashes, (4) the

number of methods of the deepest class in the crash stack. To

verify whether these factors influence the performance of our algo-

rithm, we used the two-way permutation test [35]. The permutation

test is a well-established non-parametric to assess the significance

of factor interactions in multi-factorial analysis of variance (non-

parametric ANOVA). We use a significance level alpha=0.05 and a
very large number of iterations (1,000,000) to ensure the stability

of the results over multiple executions of the procedure [35].

For the sake of our analysis, we considered the difference in

crash reproduction rate between MO-HO and the baselines as the

dependent variable, while the co-factors are our independent vari-

ables. According to the permutation test, the type of exception (p-
value=0.006) and the number of crash stack frames (p-value=0.001)
significantly impact the performance ofMO-HO compared to Single

Objective Search.We can also observe similar results when consider-

ing the improvements ofMO-HO against De-MO: p-values=< 10−12
for both exception type and the number of frames). In other words,

there are certain types of exceptions and stack trace sizes for which

MO-HO is statistically better than the state-of-the-art approaches.

From a deeper analysis, we observe that for NullPointerExcep-
tion and org.joda.time.IllegalFieldValueException,MO-HO
achieves a higher reproduction ratio than Single Objective Search

when the stack traces contain up to three frames for NPE (+22% in

reproduction rate) and up to five frames for IllegalFieldValueEx-
ception (+50% in reproduction rate). Instead, for stack traces with

more frames, the differences in reproduction ratio are negligible

(±1% on average) or negative (-10% in reproduction ratio). Besides,

MO-HO achieves better reproduction ratios for the following ex-

ceptions independently of the stack size: XWikiExceptions (+23%
on average), UnsupportedOperationException (+6% on average),

MathRuntimeException (+14% on average).

Finally,MO-HO outperformsDe-MOwhen reproducing NullPoin-
terExceptionwith 1-3 frames (+8% on average), ClassCastExcep-
tion (+8% on average), StringOutOfBoundsException (+18%with
more than 2 frames, on average), IllegalFieldException (+8%
on average), UnsupportedOperationException (+23% on aver-

age), MockitoException (+83% for short traces, on average), and

MissingMethodInvocation (+80% on average).

6.3 Crash reproduction cost

In this study, we observed that sinceMO-HO increases the diversity

of the generated test cases, it can dramatically improve the efficiency

of crash reproduction. This algorithm significantly improved the

speed of the search process in more than 36% of crashes compared

to Single-Objective Search and De-MO. In cases in which MO-HO

had a significant impact, it improves the crash reproduction speed

by more than 47%.

The prior studies on search-based crash reproduction [37, 38]

suggested 5 minutes as the search budget because the search pro-

cess cannot reproduce more after 5 minutes. However, we observed

that despite the high efficiency ofMO-HO, this algorithm continues

to reproduce more crashes in the second half of the time budget.

220

Section 5.2 shows that MO-HO keeps increasing the crash repro-

duction ratio even in the last minutes of the search process, while

the previous multi-objectivization approach (De-MO) changes only

slightly after the first 2 minutes of crash reproduction. Hence, in-

creasing the search budget for MO-HO can lead to a higher crash

reproduction ratio.

6.4 Extendability

The improvement achieved by the proposed helper-objectives shows

the impact of suitable objectives on increasing the diversity of the

generated test cases and result in improving the effectiveness and

efficiency of the crash reproduction search process. Hence, we

hypothesize that this approach can be extended by adding new

relevant helper-objectives.

7 THREATS TO VALIDITY

Internal validity.We cannot ensure that our implementation of

Botsing is without bugs. However, we mitigated this threat by test-

ing our tool andmanually analyzing some samples of the results.We

used a previously defined benchmark for crash reproduction, which

contains 124 non-trivial crashes from six open-source projects and

applications. Moreover, we explained how we parametrized the

evolutionary algorithms in Section 4.2. We used the default values

of these algorithms in the other open-source implementations like

EvoSuite and JMetal. The effect of these values for crash repro-

duction is part of our future work. Finally, to take the randomness

of the search process into account, we followed the guidelines of

the related literature [3] and executed each evolutionary crash

reproduction algorithm for 30 times.

External validity.We report our results for only 124 crashes

introduced by JCrashPack [37], which is an open-source crash

reproduction benchmark collected from six open-source projects.

However, we recall here that we cannot guarantee that our results

are generalizable to all crashes. Evaluation MO-HO on a larger

benchmark from more projects is part of our future work.

Reproducibility.We provide Botsing as an open-source pub-

licly available tool. Also, the data and the processing scripts used

to present the results of this paper, including the subjects of our

evaluation (inputs), the evolution of the best fitness function value

in each generation of each execution, and the produced test cases

(outputs), are openly available as a docker image [14].

8 CONCLUSION AND FUTUREWORK

Crash reproduction can ease the process of debugging for devel-

opers. Evolutionary approaches have been successfully used to

automate this process. Existing evolutionary-based approaches use

one single objective (i.e., Crash Distance) to guide the search and

rely on guided genetic operators. Later strategies applied multi-

objectivization via decomposition (De-MO) in an attempt to improve

diversity (and, therefore, exploration). However, the latter strategy

may misguide the search process because the sub-objectives are

not strongly conflicting.

In this study, we apply a new approach calledMulti-Objectivizati-

on using Helper-Objectives (MO-HO) to tackle the problems of the

former techniques. In MO-HO, multi-objectivization is performed

by adding two helper-objectives that are in conflict with Crash Dis-

tance. We evaluated MO-HO with five MOEAs, which are selected

from different categories of multi-objective algorithms. Our results

indicate that MO-HO is the most efficient algorithm, significantly

outperforming Single-Objective Search and De-MO. Also, this algo-

rithm is able to reproduce 8 and 5 more crashes in 1 and 5 minutes,

respectively, compared to the state-of-the-art. Moreover, in contrast

to the previous multi-objectivized crash reproduction approach (De-

MO), the crash reproduction ability of MO-HO increases with large

search budgets (i.e., above two minutes).

We performed an additional analysis to find the correlation be-

tween the different aspects of the crashes and the ability ofMO-HO

in reproducing them. The result of this analysis shows that two

factors in crashes significantly impact the performance of MO-HO:

(i) type of exception and (ii) the number of crash stack frames.

Furthermore, we observed that Single-Objective Search and De-

MO could outperformMO-HO but only in a few cases.We performed

a manual analysis to characterize the negative factors leading to the

adverse results in these cases. Our analysis reveals that two negative

factors are at play in these cases: (i) extra calculations in fitness

evaluation and (ii) helper-objectives misguidance. We also showed

in Section 5.4 that while the differences in extra calculations in fitness

evaluation are significant, they are often negligible in practice.

The contributions of the paper are as follows:

(1) An open-source implementation of seven crash reproduction

techniques (Section 4.1).

(2) An empirical comparison of seven search-based crash repro-

duction approaches (Section 4).

(3) An analysis of the benefits of multi-objectivization with

helper objectives in terms of reproduction ratio and effi-

ciency (Section 5).

(4) The identification of the special situations in which MO-HO

can be counter-productive (Section 5.4).

(5) The identification of a strong correlation between the ability

of MO-HO in improving the efficiency and effectiveness of

crash reproduction for combinations of exception types and

the number of frames in the stack trace of the target crash

(Section 6.2).

In our future work, we will investigate additional helper-objecti-

ves for crash reproduction. For instance, the current helper-objectiv-

es inMO-HO concern the test length andmethod sequence diversity.

However, further objectives can be added, such as test input/data

diversity. Increasing the number of objectives will require to evalu-

ate their performance using different many-objective evolutionary

algorithms. We will also analyze the evolution of the fitness values

of existing and new objective to further investigate the root causes

of good and bad performances of MO-HO and other objectives for

different crashes and different MOEAs.

Moreover, the search objectives introduced by De-MO is only op-

timized by NSGA-II MOEA. As future work, we will investigate the

impact of utilizing other MOEAs for optimizing De-MO objectives.

ACKNOWLEDGMENTS

This research was partially funded by the EU Project STAMP ICT-

16-10 No.731529.

221

REFERENCES
[1] Nasser M Albunian. 2017. Diversity in search-based unit test suite generation. In

International Symposium on Search Based Software Engineering. Springer, 183–189.
[2] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-

felds. 2017. An industrial evaluation of unit test generation: Finding real faults
in a financial application. In 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE,
263–272. https://doi.org/10.1109/ICSE-SEIP.2017.27

[3] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250. https://doi.org/10.1002/stvr.1486

[4] Francesco A. Bianchi, Mauro Pezzè, and Valerio Terragni. 2017. Reproducing
concurrency failures from crash stacks. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2017. ACM Press,
705–716. https://doi.org/10.1145/3106237.3106292

[5] José Campos, Rui Abreu, Gordon Fraser, and Marcelo d’Amorim. 2013. Entropy-
based test generation for improved fault localization. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 257–267.

[6] Ning Chen and Sunghun Kim. 2015. STAR: Stack trace based automatic crash
reproduction via symbolic execution. IEEE Trans. on Software Engineering 41, 2
(2015), 198–220. https://doi.org/10.1109/TSE.2014.2363469

[7] W. J. Conover and Ronald L. Iman. 1981. Rank Transformations as a Bridge
between Parametric and Nonparametric Statistics. The American Statistician 35,
3 (1981), 124–129. https://doi.org/10.1080/00031305.1981.10479327

[8] David W. Corne, Nick R. Jerram, Joshua D. Knowles, and Martin J. Oates. 2001.
PESA-II: Region-Based Selection in Evolutionary Multiobjective Optimization. In
Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation
(San Francisco, California) (GECCO 01). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 283–290.

[9] Indraneel Das and J. E. Dennis. 1998. Normal-Boundary Intersection: A New
Method for Generating the Pareto Surface in NonlinearMulticriteria Optimization
Problems. SIAM J. on Optimization 8, 3 (March 1998), 631–657. https://doi.org/
10.1137/S1052623496307510

[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[11] Pouria Derakhshanfar and Xavier Devroey. 2020. JCrashPack: A Java Crash
Reproduction Benchmark. Zenodo. https://doi.org/10.5281/zenodo.3766689

[12] Pouria Derakhshanfar, Xavier Devroey, Gilles Perrouin, Andy Zaidman, and
Arie Deursen. 2020. Search-based crash reproduction using behavioural model
seeding. STVR 30, 3 (may 2020), e1733. https://doi.org/10.1002/stvr.1733

[13] Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, and
Annibale Panichella. 2020. Crash Reproduction Using Helper Objectives. In
Genetic and Evolutionary Computation Conference Companion (GECCO ’20 Com-
panion). ACM, Cancún, Mexico. https://doi.org/10.1145/3377929.3390077

[14] Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, and
Annibale Panichella. 2020. Replication package of "Good Things Come In Threes:
Improving Search-based Crash Reproduction With Helper Objectives". https://doi.
org/10.5281/zenodo.3979097

[15] Juan J Durillo, Antonio J Nebro, and Enrique Alba. 2010. The jMetal framework
for multi-objective optimization: Design and architecture. In IEEE congress on
evolutionary computation. IEEE, 1–8.

[16] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.
Annals of Eugenics 7, 2 (1936), 179–188. https://doi.org/10.1111/j.1469-1809.1936.
tb02137.x

[17] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering (Szeged,
Hungary) (ESEC/FSE ’11). ACM, New York, NY, USA, 416–419. https://doi.org/
10.1145/2025113.2025179

[18] Salvador García, Daniel Molina, Manuel Lozano, and Francisco Herrera. 2008.
A study on the use of non-parametric tests for analyzing the evolutionary al-
gorithms’ behaviour: a case study on the CEC’2005 special session on real pa-
rameter optimization. Journal of Heuristics 15, 6 (14 May 2008), 617. https:
//doi.org/10.1007/s10732-008-9080-4

[19] R. W. Hamming. 1950. Error Detecting and Error Correcting Codes. Bell System
Technical Journal 29, 2 (apr 1950), 147–160.

[20] S. Holm. 1979. A simple sequentially rejective multiple test procedure. Scandina-
vian Journal of Statistics 6 (1979), 65–70.

[21] Sadeeq Jan, Annibale Panichella, Andrea Arcuri, and Lionel Briand. 2017. Au-
tomatic Generation of Tests to Exploit XML Injection Vulnerabilities in Web
Applications. IEEE Transactions on Software Engineering i (2017), 1–27. https:
//doi.org/10.1109/TSE.2017.2778711

[22] Mikkel T Jensen. 2004. Helper-objectives: Using multi-objective evolutionary
algorithms for single-objective optimisation. Journal of Mathematical Modelling
and Algorithms 3, 4 (2004), 323–347.

[23] Wei Jin and Alessandro Orso. 2012. BugRedux: reproducing field failures for
in-house debugging. In 2012 34th International Conference on Software Engineering

(ICSE). IEEE, 474–484. https://doi.org/10.1109/ICSE.2012.6227168
[24] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of ex-

isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis - ISSTA 2014.
ACM Press, San Jose, CA, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[25] Marco Laumanns, Lothar Thiele, Eckart Zitzler, Emo Welzl, and Kalyanmoy Deb.
2002. Running time analysis of multi-objective evolutionary algorithms on a
simple discrete optimization problem. In International Conference on Parallel
Problem Solving from Nature. Springer, 44–53.

[26] Vladimir Levenshtein. 1966. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet Physics Doklady, Vol. 10. 707–710.

[27] Phil McMinn. 2004. Search-based software test data generation: A survey. Soft-
ware Testing Verification and Reliability 14, 2 (2004), 105–156. https://doi.org/10.
1002/stvr.294

[28] Achille Messac, Amir Ismail-Yahaya, and Christopher A Mattson. 2003. The nor-
malized normal constraint method for generating the Pareto frontier. Structural
and multidisciplinary optimization 25, 2 (2003), 86–98.

[29] Kaisa Miettinen. 1999. Nonlinear Multiobjective Optimization: Kaisa Miettinen
(1st ed.). Springer US.

[30] Debajyoti Mondal, Hadi Hemmati, and Stephane Durocher. 2015. Exploring test
suite diversification and code coverage in multi-objective test case selection. In
2015 IEEE 8th International Conference on Software Testing, Verification and Vali-
dation (ICST) (ICST ’15). IEEE, 1–10. https://doi.org/10.1109/ICST.2015.7102588

[31] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiene Tahar, and Alf Larsson.
2015. JCHARMING: A bug reproduction approach using crash traces and directed
model checking. In 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 101–110. https://doi.org/10.1109/
SANER.2015.7081820

[32] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiène Tahar, and Alf Larsson.
2017. A bug reproduction approach based on directed model checking and
crash traces. Journal of Software: Evolution and Process 29, 3 (mar 2017), e1789.
https://doi.org/10.1002/smr.1789 arXiv:1408.1293

[33] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Au-
tomated test case generation as a many-objective optimisation problem with
dynamic selection of the targets. IEEE Transactions on Software Engineering 44, 2
(2018), 122–158. https://doi.org/10.1109/TSE.2017.2663435

[34] Annibale Panichella and Urko Rueda Molina. 2017. Java unit testing tool
competition - Fifth round. Proceedings - 2017 IEEE/ACM 10th International
Workshop on Search-Based Software Testing, SBST 2017 (2017), 32–38. https:
//doi.org/10.1109/SBST.2017.7

[35] Fortunato Pesarin and Luigi Salmaso. 2010. Permutation tests for complex data:
theory, applications and software. John Wiley & Sons.

[36] Jeremias Rößler, Andreas Zeller, Gordon Fraser, Cristian Zamfir, and George
Candea. 2013. Reconstructing core dumps. In Proc. International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 114–123. https:
//doi.org/10.1109/ICST.2013.18

[37] Mozhan Soltani, Pouria Derakhshanfar, Xavier Devroey, and Arie van Deursen.
2020. A benchmark-based evaluation of search-based crash reproduction. Empiri-
cal Software Engineering 25, 1 (jan 2020), 96–138. https://doi.org/10.1007/s10664-
019-09762-1

[38] Mozhan Soltani, Pouria Derakhshanfar, Annibale Panichella, Xavier Devroey,
Andy Zaidman, and Arie van Deursen. 2018. Single-objective Versus Multi-
objectivized Optimization for Evolutionary Crash Reproduction. In Symposium
on Search-Based Software Engineering. SSBSE 2018. (LNCS), Thelma Elita Colanzi
and Phil McMinn (Eds.), Vol. 11036. Springer, Montpellier, France, 325–340. https:
//doi.org/10.1007/978-3-319-99241-9_18

[39] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. 2018. Search-Based
Crash Reproduction and Its Impact on Debugging. IEEE Transactions on Software
Engineering (2018). https://doi.org/10.1109/TSE.2018.2877664

[40] Yan-Yan Tan, Yong-Chang Jiao, Hong Li, and Xin-Kuan Wang. 2012. A modifica-
tion to MOEA/D-DE for multiobjective optimization problems with complicated
Pareto sets. Information Sciences 213 (2012), 14–38.

[41] András Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[42] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and ex-
ploitation in evolutionary algorithms: A survey. ACM Comput. Surv. 45, 3 (2013),
33. https://doi.org/10.1145/2480741.2480752

[43] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-Cárdenas,
and Denys Poshyvanyk. 2015. Generating reproducible and replayable bug re-
ports from android application crashes. In 2015 IEEE 23rd International Conference
on Program Comprehension. IEEE, 48–59.

[44] Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. 2015. Crash reproduction via
test case mutation: Let existing test cases help. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015. ACM Press,
New York, New York, USA, 910–913. https://doi.org/10.1145/2786805.2803206

[45] Andreas Zeller. 2009. Why Programs Fail, Second Edition: A Guide to Systematic
Debugging (2nd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

222

[46] Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition. IEEE Transactions on evolutionary computation
11, 6 (2007), 712–731.

[47] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving the
strength Pareto evolutionary algorithm. TIK-report 103 (2001).

223

