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Abstract A primary concern of the mining industry is to meet production targets,
which are required and defined by customers. Deviations from these targets, in
terms of quality and quantity, highly affect the economical aspect. Recently, an effi-
cient resource model updating framework concept has been proposed aiming for the
improvement of rawmaterial quality control and process efficiency in any type of min-
ing operation. The concept integrates online sensor measurements, obtained during
production, into the resource model. In this way, due to the spatial variability, quality
attributes of the blocks that will be produced in the next days or weeks are being
updated based on real-time measurements. The concept has been applied in a lignite
field with the aim of identifying local impurities in a lignite seam and to improve the
prediction of coal quality attributes in neighbouring blocks. This paper investigates
the added value of using the resource model updating framework by using the value
of information analysis. The expected benefit of additional information (integration
of the online sensor measurements into the resource model) is compared to a case
where there is no additional information integrated into the process. These benefits
are evaluated based on the economic impact determined by applying the resource
model updating framework in mine planning.
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1 Introduction

One of the main challenges in mining is spatially highly variable grades or quality
attributes of the resource. Extreme values or impurities cannot be localized completely
by exploration data and therefore cannot be captured and predicted in deposit models.
Utilizing online sensor technique characterization in combination with rapid resource
model updating, a faster reaction to unexpected deviations can be implemented during
operations, leading to locally improved models and thus increased production effi-
ciency. This concept was first proposed as a closed-loop framework and applied to
a coal deposit by Benndorf et al. (2015). The developed framework is based on the
ensemble Kalman filter (EnKF) and integrates online sensor data into the resource
model as soon as data are obtained.

A first investigation (Benndorf 2015) has proven the approach to work well within
a synthetic case study under a variation of several control parameters. Wambeke and
Benndorf (2016) extended the framework for practical applications, including the han-
dling of attributes and measurements showing a non-Gaussian distribution, dealing
with localization and inbreeding issues, avoiding spurious correlations and increasing
the computational efficiency. The third investigation (Yüksel et al. 2016a, b) imple-
mented the framework in a full case study by adapting implementation details for
coal quality attributes in a continuous mining environment. The framework’s appli-
cability for a full-scale lignite production environment was validated, and significant
improvements were demonstrated. These results have been demonstrated for a case
where one sensor has been placed on an excavator. This sensor observes the pro-
duced material from that excavator and the data produced by this sensor is being
used for updating the neighbourhood blocks around the mined blocks. An exten-
sion was presented by Yüksel et al. (2016a, b) who presented a new application of
the framework in a full-scale lignite production, where the initial resource model
generation is semi-automated without the explicit need of geostatistically simulating
prior models. This application allows for a fast and rather simple generation of prior
models instead of generating a fully simulated deposit model using conditional sim-
ulation. Additional to that, the contribution provided a real updating application of
local coal quality estimates in different production benches based on measurements
of a blended material stream. To investigate the impact of the improvements achieved
by the previously mentions applications, this contribution aims to quantify the eco-
nomic impacts determined by applying the resource model updating framework in
mine planning.

One of the commonly used tools for assessing the value of additional information
added into a system is the value of information (VOI; Howard 1966; Raiffa 1968;
Matheson 1990). In the last decades, VOI gained high popularity in many different
fields. A few applications also appeared in the mining industry. Peck and Gray (1999)
make no explicit reference to VOI, yet they discuss the potential benefits for decision
makers by gathering information in the mining industry. Barnes (1986) applied VOI
to incorporate geostatistical estimation into mine planning. More recently, Phillips
et al. (2009) provided a case study where a VOI decision framework was applied to
provide guidance for mine managers regarding the purchase of ore grade scanners.
Eidsvik and Ellefmo (2013) conducted a VOI study in order to compare two grade
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Fig. 1 Aim of the resource model updating framework

analysing methods (differing in costs) in the collected data from exploration bore-
holes. Eidsvik et al. (2016) presented a unified framework for assessing the value
of potential data-gathering schemes by integrating spatial modelling and decision
analysis, with a focus on petroleum, mining and environmental geosciences. Con-
trary to the mining industry, the VOI approach has found more applications in a
related field, the oil and gas industry. Bratvold et al. (2009) provided an extensive
overview on oil and gas industry applications. Bhattacharjya et al. (2010) integrated
the decision-analytic notion of VOI with spatial statistical models, similar to this
paper’s application work. Barros et al. (2016) proposed a new methodology to per-
form VOI analysis within a closed-loop reservoir management framework, which is a
similar framework of resource model updating, except it is applied in reservoir engi-
neering. Further applications in the oil and gas industry can be found (Grayson 1960;
Newendorp 1975; Stibolt and Lehman 1993; Houck 2004; Steagall et al. 2005; Bickel
et al. 2008).

The essence of the technique is to evaluate the benefits of collecting additional
information before making a decision (Bratvold et al. 2009). When using the resource
model updating framework, the decision-making process would change the short-term
mining plan by using a mine optimizer. If the resource model always provides correct
coal quality attributes it would deliver perfect information, otherwise it is known as
imperfect information. The latter is usually the case in geoscience applications, since
the reality is unknown. The resource model updating framework aims to carry forward
the current situation from imperfect information to an “improved” imperfect Informa-
tion state, where the current situation lies somewhere between the perfect information
and previous imperfect information (Fig. 1). The previous imperfect information state
gets closer to the perfect information state with each iteration step of the updating
process.

The expected benefit of additional information (integration of the online sensor
measurements into the resource model) is compared to a case where there is no addi-
tional information integrated into the process. These benefits are evaluated based on
the economic impact, for example, the monetary value such as cost per shift of min-
ing operation, determined by applying the resource model updating framework in the
mine planning process. This contribution addresses the following question: What is
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the value of integrating real-time production measurements into the resource model
and executing an optimized mine plan, considering economic aspects?

The remainder of this article is structured as follows: First, the resource model
updating framework is briefly reviewed. Next, the VOI concept is introduced. Then,
the principles behind the stochastic-based mine process optimizers for short-term and
weekly job scheduling mine planning are presented. This is followed by a case study
performed in a full-scale lignite production. Results are discussed and summarized.
The article concludes with a summary of the research contributions and directions for
future research.

2 Updating Attributes in a Resource Model Based on Online Sensor Data

For rapid updating of the resource model, sequentially observed data must be inte-
grated with prediction models in an efficient way. For this study, this is done by using
sequential data assimilation methods, namely the EnKF-based methods. A formal
description of the real-time updating algorithm used herein is provided in Yüksel et al.
(2016a, b). Figure 2 provides a general overview of the operations performed to apply
the updating algorithm for improving the coal quality control using online data. The
concept initially starts with resource modelling by using a geostatistical simulation
technique, namely the sequential Gaussian simulation (SGS). This is the first required
data set consisting of ensemble members to be updated. The second data set consists
of a collection of actual and predicted sensor measurements. The actual online sensor
measurement values are collected during the lignite production and the predicted mea-
surements are obtained by applying the production sequence as a forward predictor to
the prior resource model realizations. Once both input data are provided, the updated
posterior resource model can be obtained. This process will continue as long as the
online sensor measurement data are received.

3 Value of Information

In the context of this contribution, theVOI concept is used to understandwhat is gained
by integrating the online sensor measurement data into the resource model when using
the updating framework. In general, VOI is calculated as

VOI �
[

Expected value wi th
additional in f ormation

]
−

[
Expected value wi thout
additional in f ormation

]
, (1)

defined by Bratvold et al. (2009). In the coal-based case study presented later, the
concept analyses the value of the resource model updating framework’s ability to
improve the prediction of the ash percentage (ash %). For this, the expected value of
the posterior model (Vposterior) is compared to the prior model’s expected value (Vprior)
and it is

VOI � Vposterior − Vprior. (2)
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Fig. 2 Configuration of the real-time resource model updating concept, modified from Wambeke and
Benndorf (2015)

Translated into economic terms, the VOI [Eq. (3)] of the resource model updating
framework can be expressed by

VOIeconomical � ∣∣Cposterior − Cprior
∣∣ , (3)

where
∣∣Cposterior − Cprior

∣∣ denotes the absolute value. The performed research focuses
on the costs of deviating from the target quality (ash %) during short-term production.
The calculation of these costs can be done as follows

Cprior � Dprior ∗ dprior ∗ tprior, (4)

where Cprior (e) is the costs of deviating from the target production quality, when
executing the mine plan on the prior model. The unit costs for deviating per ton of
coal is Dprior (e/ash %× t). The amount of deviation per coal quality value is dprior
(ash %), and, finally, the amount of the deviated coal is tprior (ton). Similar applies
to the posterior model. The previously defined parameters are: Cposterior, Dposterior,
dposterior, and tposterior.

The VOI concept considers the value of perfect and imperfect information (VOPI).
Perfect information refers to perfectly reliable information; thus, it contains no uncer-
tainties. Perfect information rarely exists, but it provides a best-case scenario for the
VOI, and it defines an upper limit on the value of additional information (Phillips
et al. 2009). Since the study presented here presents a real case, the reality remains
unknown. Thus, there can be no VOPI defined. As a benchmark, a resource model is
used that integrates all available sensor information available to the end of the study.
As indicated in Fig. 1, the performed experiments will compare the calculated VOIs
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Table 1 Characteristics of the short-term and weekly job scheduling mine planning optimization models

Model Short-term mine planning Weekly job scheduling

Task Monthly mine plan Weekly/daily mine plan

Approach Mixed integer programming to
reproduce the mining operation
and determining the best
configuration for a set of
decision variables

Discrete event simulation to
simulate the mining operation
in combination with a hybrid
genetic and simulated
annealing search algorithm
determining the best
configuration for a set of
decision variables

Objectives Meeting weekly coal tonnages
and grade targets

Meeting daily coal tonnages and
grade targets

Constraints Planned equipment’s
maintenance schedule
(equipment availability)

Planned equipment’s
maintenance schedule
(equipment availability)

Equipment capacities
(production rates)

Equipment capacities
(production rates)

Precedence relationships within
a bench

Extraction sequence in different
benches

Required equipment downtimes
while belt shifting occurs

Decisions Extraction sequence in different
benches

Excavator task scheduling

Belt shift scheduling Blending of coal product

Blending of coal product

Time steps Weeks Shifts

of the imperfect value and updated & improved value. These values will be calculated
after applying the mine optimizers, described in the next section, on the prior and
posterior (updated) models.

4 Mine Planning Optimization

In order to investigate the expected benefit of the updating framework, the framework
is applied in the short-term mine planning context. To cover the short-term mine plan-
ning horizons, two different simulation-based optimizers were considered, which have
been implemented within the context of the European Project RTRO-Coal (Benndorf
et al. 2015; Table 1). Both models are used as a transfer function needed for the VOI
concept as introduced in Fig. 1. The weekly job scheduling optimizer considers shift-
based scheduling (a shift being 8 h long), and it shows the benefits of the updating
framework—to quickly integrate newly gained information into production control.
In contrast, the short-term optimizer for extraction sequencing is used to demonstrate
the benefits on a broader, less localized, scale and a longer time frame of months.
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Table 2 Illustration of how the binary decision variables determine the extraction sequence

Block Extraction period

1 2 3 4

1 0 0 1 0

2 0 0 0 0

While block 1 will be mined in extraction period 3, block 2 is not scheduled for mining during extraction
periods 1 through 4

4.1 Short-Term Mine Planning

Methods of mathematical optimization have been successfully applied in mining to
find optimal solutions to various mine planning problems addressing issues on risk
reduction and meeting production targets (Goodfellow and Dimitrakopoulos 2017;
Liu and Reynolds 2017; Aliyev and Durlofsky 2017; Benndorf and Dimitrakopoulos
2013; Dimitrakopoulos 2011; Dimitrakopoulos and Ramazan 2004; Ramazan and
Dimitrakopoulos 2007, 2013).

Like these optimization models, a short-term optimization model

min
{
cT x |Ax ≤ b, x ≥ 0, xi ∈ {Z , R}

}
, (5)

was formulated based on the mixed integer programming approach for the continuous
lignite mining operation at hand. The mining process is represented by a system of
linear (in-)equalities Ax ≤b and a set/vector of decision variables x defining a mining
plan. These linear inequalities are also referred to as constraints, and consider limits
imposed by the operation such as the amount of extractable material per time period
due to the deployed equipment. Each decision variable xi can either be binary (to
determine the extraction sequence, Table 2) or continuous (to determine coal blending
and when a belt shift should occur).

Which mining plan (value combination of the decision variables x) is the best is
determined by the objective function cT x. For short-term mine planning, deviations
from production targets shall be minimized when excavating material from the mine
according to the plan. Production targets are in terms of coal tonnage and coal quality
(e.g., ash content) to ensure the reliable and continuous delivery of in-spec coal to
the customers. Therefore, penalty functions for not meeting production targets have
been defined (Fig. 3). Figure 3a shows a steeper slope for underproduction in com-
parison to overproduction since in this instance there is not enough lignite provided
to the customer for example, endangering the correct operation of a power plant. In
contrast, overproduction is not viewed as critical as underproduction because the con-
sidered mining operation has a lignite bunker at its disposal to temporarily store a
limited amount of lignite to compensate for such things or standstills due to holidays,
equipment failure, etc.
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Fig. 3 Penalty functions for not meeting production targets a coal tonnage and b coal quality

The penalties for deviations in coal tonnage from the production target Otarget can
be calculated in a similar way as the coal quality penalties, which are explained in
detail in the next paragraphs.

For the coal quality production target (ash %), the penalty function is a linear
piecewise function consisting of four segments with slopes sl1, sl2, sl3, and sl4 (e/ash
%× t). The lower and upper limit of a coal quality parameter Qmin and Qmax are
considered, which represent the maximum bandwidth for an efficient operation of
the downstream process, such as power plants. Exceeding these thresholds will be
penalized stronger than just slightly deviating from the target valueQtarget. The penalty
is calculated from

P �

⎧⎪⎪⎨
⎪⎪⎩

sl1 (Q − Qmin) + sl2
(
Qmin − Qtarget

)
Q ≤ Qmin

sl2 ∗ (
Q − Qtarget

)
Qmin < Q ≤ Qtarget

sl3 ∗ (
Q − Qtarget

)
Qtarget < Q ≤ Qmax

sl4 (Q − Qmax) + sl3
(
Qmax − Qtarget

)
Qmax < Q

, (6)

where Q is the simulated quality.
To incorporate the resource model uncertainties, a neutral risk approach has been

selected by calculating the penalty value for each simulated quality value of the
resource model and then determining the mean of these penalty values P̄ . Then, the
calculation of the costs for deviating from the target production quality value defined
in Eq. (4) can be converted to

Cprior � P̄prior ∗ tprior, (7)

for the prior resource model. For the posterior model, this calculation is done in a
similar manner.

4.2 Weekly Job Scheduling

Due to the complexity of interacting constraints in production scheduling, for weekly
job scheduling, a flexible approach based on discrete event simulation and a hybrid
genetic and simulated annealing search algorithm has been implemented. A simulation

123



Math Geosci

Fig. 4 Interaction between an optimizer and a simulator (Benndorf et al. 2015)

Fig. 5 Visual representation of a series of task schedules, with seven simulation days and three shifts for
each day. A cross means the excavator is scheduled to work (Mollema 2015)

model was developed to represent the complex continuous mining operation. This
simulator serves as the objective function to evaluate different mining plans (value
combinations of the decision variables x). To find the best mining plan, the simulator
interacts with an optimizer. The optimizer explores the space of the decision variables
and suggests a mining plan that is evaluated by the simulator. Based on the evaluation
results, the optimizer choses which mining plan to evaluate next (Fig. 4).

For the weekly job scheduling process, the inputs/constraints to the simulator
include, but are not limited to, the resourcemodel, a given extraction sequence (mining
plan), and the equipment’s production rates and scheduled maintenance requirements.
The decision variables of the optimization process are the task schedules of the excava-
tors. The schedule for each excavator is a list with three shifts per day of the simulated
period. For each shift, the excavator is either scheduled to work or is not active. The
input for a single simulation is thus a two-dimensional array with six rows and 3×n
columns, where n is the number of simulated days. An example of a schedule is shown
in Fig. 5 (Mollema 2015).

The stochastic mine optimizer also works with a penalty function to calculate the
fitness of a solution. The total penalty value of a solution is the sum of both the
quality and tonnage penalty value for all days of the simulation, similarly to the
short-term optimization model. The structure of both penalty functions is similar to
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Fig. 6 Complicated geology in the lignite mine Profen (Germany)

the one depicted in Fig. 3b, except that the slopes for the inner segments are zero;
reducing the number of segments, the piecewise linear function consists of from four
to three. By minimizing the penalties, the optimizer tries to find a best task schedule.
Thus, the resource model uncertainties are translated into penalty calculations based
on an optimized mining schedule. For detailed information on the used mine process
optimizer, the readers are referred to Mollema (2015). For calculating the penalty and
the costs of deviating from the target production quality value, Eqs. (6) and (7) can be
used.

5 Case Study

5.1 Case Description

The case study is performed on a lignite mining operation in Germany, where the geol-
ogy of the field is complex, including multiple split seams with strongly varying seam
geometry and coal quality distribution (Fig. 6). In this case study, the challenge orig-
inates from the complicated geology that leads to geological uncertainty associated
with the detailed knowledge of the coal deposit. This uncertainty causes deviations
from expected process performance and affects the sustainable supply of lignite to the
customers. The knowledge of the coal deposit is improved, and the process perfor-
mance is increased by applying the resource model updating framework described in
previous works like Yüksel et al. (2016a, b). Now, the aim is to quantify the added
value of the mentioned improvements in knowledge.

For the case study, the target area was defined as an already mined out area of
25 km2, where there are about 3000 drill holes. Mining operations are executed by six
excavators, each working on a different bench. The produced materials are transported
by conveyor belts. All conveyor belts merge at a central conveyor belt leading to the
coal stock and blending yard, which is further connected to a train load. A radiometric
sensor measurement (RGI) system is installed on the central conveyor belt just before
the coal stock and blending yard (Fig. 7). This system allows an online determination
of the ash content of the blended mass flow directly on the conveyor belt, without
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Fig. 7 Radiometric sensor measurement device

Fig. 8 Resource models that are used in the experiments

requiring any sampling or sample processing. This case study assumes the RGI values
to be correctly calibrated and representative. The prior coal quality model has been
generated by 25 realizations using geostatistical simulations (SGS) on a 25×25×
1-m grid (SGS performed on each grid point) and afterwards relocked to a block size
of about 50×50 m.

5.2 Applying the Model Updating Framework

The experiments performed in this case study calculate the expected values for different
resource model-based experiments (Fig. 8). The base case resource model, namely
the prior model, is without any additional information. The other resource models
(posterior models) incorporate additional sensor information. They are created by
applying the resource model updating algorithm up to different points in time. In total,
there are five different posterior models representing different levels of information.
This updating process is performed every 2 h using the actual mining sequence and the
available RGI data for this time span. All the updating parameters are kept constant in
order to compare the differences caused by feeding different prior models as an input.

The posterior model, which resulted from updating the prior model over the
19 July–13 August period, is assumed as the most precise model since this is the
most up-to-date resource model created with the highest amount of exploration data,
and therefore, it serves as a benchmark.
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5.3 Weekly Job Scheduling Mine Planning

The defined daily coal production is 12,000 tons and no penalties are applied for
values between 9000 and 15,000 tons, a deviation of 3000 tons. The target production
quality is defined as 9% ash and the penalty is only applied for the realizations above
10.5 ash% and below 7.5 ash%. The costs of deviating from the targets (the penalties)
in this study are calculated by one unit per ton of coal. Hence, these penalties can be
interpreted as percentage of deviation from the targets. A penalty of 0.1 e/ash % is
applied per ton of coal. The mine optimizer is applied to all the resource models,
defined in Sect. 5.2, for the following 5 days after their updating periods. For the
base case and the benchmark case, the mine optimizer is applied for 5 days after
each updating period. These dates will be 2–6 August, 5–9 August, 8–12 August, and
11–16 August. For these dates, there are different best schedules optimized based on
the prior model, the updated model and the real model. Thus, in total, there are 12
different best schedules for different time spans.

Next, the best schedules obtained are applied to the benchmark model (Fig. 9).
This is done to see the improvements during the mining operations when using the
prior model, the most current model and the benchmark model. As mentioned in
the previous section, the case study presented here is a real case study, and thus,
there can be no VOPI defined for this case study. For this reason, the most precise
model that incorporates most information is assumed to approximate reality. In this
way, an approximation of VOPI can be calculated between the benchmark and the
prior model, whereas the VOI is calculated between the posterior model and the prior
model. A comparison of this would answer the following questions: “What would be
the result of the mining activities if we didn’t have additional information?”, “How
did the additional information affect the mining activities?” and, finally, “What would
happen if we knew the reality and performed the mining activities based on that?” Of
course, the latter one is only for comparison and, in reality, we can never have this
information beforehand.

Once the optimized schedules are applied to the benchmark model, the expected
costs of deviating from the target quality (ash%) values will be calculated as explained
in Sect. 4.1. The expected values are then compared to each other, and the VOI is
calculated. This comparison and the results are provided next. Figure 10 presents the
calculated deviation costs (penalties). This graph calculates the deviations per day for
exceeding the upper target values of the ash content. Deviations from lower targets
are of less interest. Figure 11 presents the calculated VOI for each case. The VOPI is
represented with squared lines and the average of those VOPI is represented with a
red line. The calculated VOI is represented with a pointed line and the trend line fitted
on these points is represented with a dark green line.

In Fig. 10, the darkest column represents the calculated penalties for the optimized
schedule based on the prior model. The lightest column represents the calculated
penalties for the optimized schedule optimized based on the posterior model, which is
updated until the mentioned time period. The medium darkest column represents the
calculated penalties for the schedule using the benchmark model.

When evaluating the VOI for the next 5 days of mining after updating, a significant
penalty reduction can be observed for the posterior model. This leads an increasing
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Fig. 9 VOI: experimental scheme for weekly job scheduling mine planning

Fig. 10 Cost calculations of deviating from the target quality (ash %)

VOI towards VOPI. Further, the following observations can be made: (i) the mean
value of penalties for the schedule based on the prior model ise 47,000, while periods
vary between e 40,000 and e 52,000, (ii) penalties for the schedule based on the
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Fig. 11 VOI

posterior model gradually decrease frome 46,000 toe 31,000, (iii) the mean value of
penalties for the schedule based on the benchmark model is e 37,000, while periods
vary betweene 31,000 ande 43,000, (iv) thus, for this case study, the calculatedVOPI
ise 10,000 and the calculated VOImoves frome 4000 toe 8000 (Fig. 11), and (v) the
above-mentioned VOI numbers will lead to approximately a e 300,000 to e 600,000
annual cost reduction or savings.Note that these savings are solely related to theweekly
task scheduling application applied to the upper limit of the ash content. In Fig. 11,
the trend line of the VOI illustrates the benefit of using a combination of the resource
model updating algorithm and the mine optimizer (“closed-loop” optimization). With
each iteration of updating, the mine schedule optimization penalties decrease, thus
VOI increases.

5.4 Short-Term Mine Planning

Tables 3 and 4 summarize the optimization model’s parameters used in this case study.
Themodel starts with a predefined state of the open-cutmine and plans the exploitation

Table 3 Defined quality bandwidths for the lignite product

Qmin Qtarget Qmax

Ash (%) 0 10.7 15

Table 4 Information about the optimization model parameters for the deployed equipment

Excavator Operating hours
(h/week)a

Waste (m3/h)a Lignite (m3/h)a

Excavator 1 4000 7050 4700

Excavator 2 2800 3880 3170

Excavator 3 2300 1645 2000

Excavator 4 2500 2820 3170

Excavator 5 4000 1410 1530
aPlease note that out of confidentiality reasons the presented parameters are scaled and do not represent
reality
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Fig. 12 VOI: experimental scheme for short-term mine planning

on five benches for four time periods (weeks). A total of 200,000 tons of lignite per
time period (week) need to be supplied with a defined quality bandwidth for the ash
content (Table 3).

To penalize exceeding or a shortfall with respect to defined lignite quality limits
Qmin and Qmax, a slope coefficient (sl1, sl4) of “±1.3” is used (Fig. 3b). This
represents 1.3 units of monetary value per unit deviation (e/ash %× t). Within the
quality limits, a slope coefficient (sl2, sl3) of “±1” is used. For penalizing over- or
underproduction, a slope coefficient of 40 or 80, respectively, is applied per 106 tons
(Fig. 3a). As a result, this objective gets a higher priority, and the production scheduling
of lignite of better quality but with an insufficient amount is avoided.

The optimizer is applied to a selection of the resource models defined in Sect. 5.2.
In total, there are three different optimized mining plans for an optimization period of
4 weeks, 2–29 August: (i) optimized mining plan achieved by applying the optimizer
to the prior resource model, (ii) optimized mining plan achieved by applying the
optimizer to the posterior resource model (which is updated between 19 July and
4 August) and (iii) optimized mining plan achieved by applying the optimizer to the
benchmark resource model (which is updated between 19 July and 13 August).

Next, these obtained best schedules are applied to the benchmark resource model
(Fig. 12). This is done to see the improvements during the mining operations, when
using the prior model, themost current model and the benchmarkmodel. Similar to the
weekly job scheduling mine planning experiments, the benchmark model is assumed
to be the reality since it is the most up-to-date and, therefore, the most precise resource
model. An approximation of VOPI is calculated between the benchmark and the prior
model, whereas the VOI is calculated between the posterior model (4th August model;
updated between 19 July and 4 August) and the prior model. Figure 13 shows the
optimized mining sequences for the three different mining plans calculated by the
optimizer. It is expected that one would observe more mining sequence differences
between the mining plans created using the prior and the benchmark resource model
than between the mining plans created using the benchmark and the posterior (updated
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Fig. 13 Illustration of the optimized mining sequences and differences to the benchmark model

Fig. 14 Box plots for quality ash of the weekly scheduled lignite

till 4th August) resource model. A difference in the mining sequence means that either
a block is scheduled for mining in different extraction periods in the two mining plans
in question or that a block is scheduled for mining in one mining plan but not in the
other. There are 85 differences in the optimized mining sequences determined using
the prior and the benchmark resource model. For the optimized mining sequences,
determined using the 4th August and the benchmark resource model, there are only
77 differences.

Figure 14 presents the lignite’s ash content for each time period calculated by
applying the optimized mining plans to the benchmark resource model. When the
optimized mining plan is calculated based on a more accurate/up-to-date resource
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Fig. 15 Cost calculations of deviating from the target quality (ash %)

model, the following observations can be made: (i) a better fitting of the average ash
values to the target ash value of 10.7% is achieved, (ii) a better fitting of the average
ash values to the target ash value area (defined from 0 to 15%) is accomplished and
(iii) a decrease in the uncertainty range is attained.

To quantify these findings and the VOI, penalties for deviating from the target ash
value are used (Fig. 15). The darkest column represents the calculated penalties for
the best mining plan, which is optimized based on the prior resource model, and later,
this mining plan is applied to the benchmark resource model. The lightest column
represents the calculated penalties for the best mining plan which is optimized based
on the posterior resource model (4th August) of that case, and later, this mining plan
is applied to the benchmark resource model. The medium darkest column represents
the calculated penalties for the best mining plan which is optimized by using the
benchmark resource model, and later, this mining plan is applied to the benchmark
resource model. A decrease in penalties, when the optimized mining plan is calculated
based on amore accurate/up-to-date resourcemodel, is expected to be observed.When
looking at each time step individually, this is not always the case. Since the optimizer
calculates an overall best mining plan, single time steps can show a different behaviour
for the penalty than the overall penalty of the entire optimization period (last entry
in Fig. 15). For the overall penalty, the expected behaviour is observed: The VOI is
e 124,110, whereas the VOPI is e 327,090. These significant benefits of the resource
model updating framework are achieved for only one quality parameter, for a very
short optimization time frame (in comparison to the life ofmine) with limited localized
updates. Therefore, annual cost reductions or savings between e 1.1 and e 1.4 Mio
could be approximated. For other parameters, like the calorific value or sulphur content,
which also have a major impact on the lignite quality and consequently the revenues,
similar calculations can be made.

6 Conclusions

In this contribution, the added value of the real-time resource model updating concept
is demonstrated by using a Value of Information (VOI) analysis. The expected eco-
nomic benefits of additional information (due to the integration of the online sensor

123



Math Geosci

measurements into the resource model) is compared to different cases, where there is
no additional information integrated into the process.

Using the resource model updating framework in combination with the mine opti-
mizer, the performed case study proves that the deviations from the defined target
quality are reduced. In summary, for weekly job scheduling, the calculated VOI var-
ied between e 2000 and e 8000 for a five-day mining period. For short-term mine
planning, the calculated VOI varied from e 92,000 to e 124,000 for 4 weeks of
mining. These numbers will lead to approximately a e 100,000–e 550,000 annual
cost reduction or saving using the weekly job scheduling optimization model. Using
the short-term mine planning optimization model, which optimizes the extraction
sequence, even higher annual cost reductions or savings could be possible—e 1.1Mio
to e 1.4 Mio.

This research demonstrates using the resource model updating framework leads to
more accurate resourcemodels at each iteration step. By having an up-to-date resource
model, mine planning will yield better results and the efficiency of the mining process
can be increased significantly. Deviations from the prior model can be processed and
adapted quickly and efficiently. This would result in reaching the target product, which
needs to bemined,more efficiently. Furthermore, if any deviations from the production
targets are noticed and the plan needs to be changed, it can be done swiftly and will
be based on a more accurate prediction of the mining environment.
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