
Delft Center for Systems and Control

Deep Reinforcement Learning for
the Synthesis of Self-Triggered
Sampling Strategies

R.J.F. de Ruijter

M
as

te
ro

fS
cie

nc
e

Th
es

is

Deep Reinforcement Learning for the
Synthesis of Self-Triggered Sampling

Strategies

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

R.J.F. de Ruijter

March 13, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Control engineering researchers are increasingly embracing data-driven techniques like rein-
forcement learning for control and optimisation. An example of a case where reinforcement
learning could be useful is the synthesis of near-optimal sampling strategies for self-triggered
control. Self-triggered control is an aperiodic control method that aims to reduce the num-
ber of communications between the controller and sensors in a control loop, by predicting
when some triggering condition is met and only transmitting a sample accordingly. Recent
research has shown that greedily following the proposed sampling times can result in sub-
optimal long-term average inter-sample times. Abstraction-based methods have been able
to synthesise sampling strategies that result in better long-term average inter-sample times,
by allowing for early sampling and considering the proposed sampling times as deadlines.
However, these abstraction-based methods suffer greatly from the curse of dimensionality in
the form of combinatorial explosion, which limits their practicality for more complex sys-
tems. This thesis proposes a novel deep reinforcement learning tool for finding near-optimal
sampling strategies for self-triggered control of LTI systems. The proposed tool is evaluated
and compared to a state-of-the-art abstraction-based method. The proposed tool is shown
to match the performance of the abstraction-based method for smaller systems, while still
achieving good results on more complex systems that prohibit the use of abstraction-based
methods.

Master of Science Thesis R.J.F. de Ruijter

ii

R.J.F. de Ruijter Master of Science Thesis

Table of Contents

Preface and Acknowledgements ix

1 Introduction 1

2 Preliminaries and Problem Statement 3
2-1 Aperiodic control . 3

2-1-1 Fundamentals . 4
2-1-2 Challenge: maximizing average inter-sample times 7
2-1-3 Abstraction-based methods . 7

2-2 Reinforcement learning . 14
2-2-1 Fundamentals . 14
2-2-2 Deep Reinforcement Learning . 19
2-2-3 A closer look at Policy Gradient methods 22

2-3 Problem statement . 26

3 Methodology 27
3-1 Environment . 27

3-1-1 Base environment . 28
3-1-2 Environment wrappers . 28

3-2 Agent . 29
3-2-1 Algorithm selection . 30
3-2-2 Hardware and parallelisation . 31
3-2-3 Action masking . 34
3-2-4 Neural network expansion . 35

3-3 Experimental setup . 39

Master of Science Thesis R.J.F. de Ruijter

iv Table of Contents

4 Results 41
4-1 2-dimensional system . 41

4-1-1 Experiment 1 . 41
4-1-2 Experiment 2 . 42

4-2 3-dimensional system . 45
4-3 4-dimensional system . 46
4-4 Trajectory smoothness . 47

5 Conclusion and future work 49
5-1 Conclusion . 49
5-2 Future work . 50

A Comparison of components 51
A-1 Scheduling of learning rate and horizon . 51
A-2 NN expansion versus fixed depth . 52
A-3 Action-masking versus action-penalisation . 53
A-4 PPO hyperparameters . 53

B Tool User Guide 55
B-1 Requirements . 55
B-2 How to use? . 55
B-3 Guidelines for hyperparameter tuning . 56

Bibliography 57

Glossary 61
List of Acronyms . 61
List of Symbols . 61

R.J.F. de Ruijter Master of Science Thesis

List of Figures

2-1 Networked Control System. 3
2-2 Periodic versus aperiodic sampling times . 4
2-3 ETC system. 5
2-4 Greedy approach versus long-term optimal approach. 8
2-5 State-space partitioning with polyhedral cones. 10
2-6 Simulated traces under PETC and the near-optimal SDSS. 12
2-7 Ruuing average ISTs under PETC and the near-optimal SDSS. 12
2-8 Abstraction-based methods versus sample-based methods. 13
2-9 Agent-environment interaction. 15
2-10 Generalised Policy Iteration . 18
2-11 Agent-environment interaction in deep reinforcement learning. 20
2-12 A perceptron. 20
2-13 A multilayer perceptron . 21
2-14 Schematic representation of a value network, Q-network and policy network. . . . 21
2-15 A single timestep of surrogate objective JCLIP 24
2-16 Pseudo-code description of actor-critic style PPO implementation 25

3-1 Schematic representation of the environment with the penalty wrapper. 29
3-2 Environment with the action-mask wrapper . 30
3-3 Schematic representation of the Actor-Critic style PPO implementation. 31
3-4 Parallelisation scheme used for the proposed tool. 32
3-5 Comparison of achieved sampling rates for different amounts of environments. . . 33
3-6 Regular neural network inference versus action-masking. 34
3-7 Search space reduction through action-masking. 36
3-8 The neural network expansion workflow . 37

Master of Science Thesis R.J.F. de Ruijter

vi List of Figures

3-9 D2RL network architecture . 38

4-1 Results experiment 1 . 42
4-2 Results experiment 2 . 42
4-3 Example policies. 43
4-4 Comparison of sampling times for different fundamental checking periods. 44
4-5 Running average ISTs . 44
4-6 Results experiment 3. 45
4-7 Results experiment 4. 46
4-8 Trajectory smoothness versus SAIST for different values for β 47

A-1 Evaluation of neural network expansion. 52
A-2 Action-penalisation versus action-masking. 53

R.J.F. de Ruijter Master of Science Thesis

List of Tables

4-1 SAIST-values obtained in experiment 1 and 2, including the PETC values for
reference. 43

Master of Science Thesis R.J.F. de Ruijter

viii List of Tables

R.J.F. de Ruijter Master of Science Thesis

Preface and Acknowledgements

First and foremost, I would like to sincerely thank my thesis supervisor dr. ir. Manual Mazo
Espinosa for providing me with a research direction and for his guidance during my Master
thesis. I really appreciated his laid-back management style combined with his sharp and
helpful advice. I also want to express my gratitude to the other members of our research
group, who provided me with excellent support and feedback during the weekly meetings.
In particular I would like to thank ir. Gabriel de Albuquerque Gleizer for the insightful
discussions of his work, which has been the main inspiration for this thesis research. Lastly, I
would like to thank my friends, family and girlfriend for being a part of my live and making
my student years truly memorable.

Delft, University of Technology R.J.F. de Ruijter
March 13, 2022

Master of Science Thesis R.J.F. de Ruijter

x Preface and Acknowledgements

R.J.F. de Ruijter Master of Science Thesis

Chapter 1

Introduction

Machine learning is a data-driven form of artificial intelligence in which performance of a
system improves automatically through the processing of data. A specific type of machine
learning that has recently gained a lot of interest from the academic community is called
reinforcement learning (RL). Reinforcement learning involves an agent that learns desired
behaviour by interacting with an unknown environment and receiving rewards for its actions,
thereby creating its own dataset on-the-fly. Such an RL agent uses trial-and-error to gather
experience with the goal of maximising the rewards it obtains by altering its behaviour.
Recently, the use of artificial neural networks has been introduced into the RL framework,
which has greatly increased the capabilities of these methods. Such "deep reinforcement
learning" algorithms have been able to achieve and surpass human performance in complex
tasks like playing Atari games. A deep reinforcement learning algorithm called AlphaGo was
even able to beat professional players at the extremely complex board game Go.
Control engineering researchers are also embracing these kinds of data-driven techniques. An
example of a case where reinforcement learning could be useful is learning optimal sampling
strategies for Event-Triggered Control (ETC) and Self-Triggered Control (STC). In tradi-
tional control schemes, control updates happen periodically, whereas ETC and STC schemes
enable aperiodic updates. In this approach, a sample measurement of the state is only send
to the controller when a triggering condition that guarantees some control objectives is met.
This allows for more flexible control, which is especially useful when multiple control loops
share the same communication network. Since such a communication network has a limited
bandwidth, sampling becomes a scarce resource and one might want to minimise its wasteful
use. This gives rise to the problem of synthesising a sampling strategy that maximises a
control loop’s long-term average sampling time, which would result in lower resource usage.
Most current methods attempt to achieve this by using some finite-state traffic abstraction
of the system, that models the sampling characteristics of a system. These abstractions are
in the form of transition systems, which can quickly grow in size with the complexity of the
system. This could result in abstractions that exceed computer memory capacity and search
times that are too long to be practical, a phenomenon often referred to as "the curse of dimen-
sionality". Data-driven methods like reinforcement learning could present a viable alternative
to these abstraction-based methods.

Master of Science Thesis R.J.F. de Ruijter

2 Introduction

Since an RL agent learns from experience that is generated on-the-fly, it does not need a priori
knowledge of the entire transition system and will therefore not be hindered by computer
memory capacity. The simulating nature of reinforcement learning enables the study of long-
term dynamics, which make it an interesting candidate for this application. However, the
training of these RL models does require the generation and processing of massive amounts
of experience, since the state-action spaces describing these tasks are large. In the case of
Go for example, an astonishing 10170 different board configurations are possible - more than
the number of atoms in the known universe. Training a reinforcement learning agent to solve
such a task sequentially on a single processor would take too much time to be of any real use.
For this reason, these methods often rely on parallel computing approaches to generate the
experience from which the agent can learn. Such an approach can scale with the complexity
of the problem by just employing more experience-generating workers in parallel.

The main goal of this thesis research is to implement a tool which uses deep reinforcement
learning methods to synthesise near-optimal sampling strategies for LTI self-triggered control
systems. The performance of this tool will be compared to that of an abstraction-based
method by Gleizer et al. [9]. The main findings of this thesis research are presented in
this report. Chapter 2 will provide an overview of key concepts related to ETC/STC and
Deep Reinforcement Learning, followed by the problem statement of this thesis research.
Chapter 3 includes a description of the proposed tool and experimental setup. Chapter 4 will
present and discuss the results of the experiments. Lastly, Chapter 5 contains a conclusion
and recommendations for future work. In the Appendices, some additional results comparing
different components of the tool can be found, followed by a guide on how to use the proposed
tool.

R.J.F. de Ruijter Master of Science Thesis

Chapter 2

Preliminaries and Problem Statement

This chapter will provide the reader with the necessary theoretical knowledge to understand
the research presented in this thesis report. The first section will focus on aperiodic control,
followed by a section on reinforcement learing. Finally, the problem addressed by this thesis
research will be formulated in the last section.

2-1 Aperiodic control

Feedback controllers are typically implemented in a periodic fashion. Sensor measurements are
received periodically by the controller after which control actions are calculated and applied
to the plant using actuators. The field of periodic control is mature and many well-developed
theories and tools for analysis and design are available to engineers. Although this still makes
periodic control the preferred method for many applications, it has its disadvantages. Some
of these disadvantages become apparent in the case of Networked Control Systems (NCS).

Figure 2-1: Networked Control System containing N control loops [1].

An NCS, as depicted in Figure 2-1, is a collection of distributed control loops in which
the communication between sensors, actuators and controllers in every loop is transmitted
over a shared digital communication network. Some advantages of this approach include
reduced wiring and maintenance costs. These shared communication networks are however
bandwidth-limited: they contain finitely many communication channels and can only handle

Master of Science Thesis R.J.F. de Ruijter

4 Preliminaries and Problem Statement

one signal per channel at any given time. This makes communication a scarce resource and
the need for minimization of its wasteful use arises, which could potentially also lead to
energy-savings. A closely related problem is the scheduling of different control loops over the
same communication channel, while ensuring closed-loop stability of all control loops.
These problems can be solved by allowing for aperiodic controller updates. In the periodic
control setting, sampling times are equally spaced according to a fixed sampling period. In the
aperiodic control setting, the next sampling time is determined dynamically, which results in
aperiodic controller updates, as depicted in Figure 2-2. Event-Triggered Control (ETC) and
Self-Triggered Control (STC) are two related methods of dynamically determining this next
sampling time. In ETC, the control loop is only triggered when an event, defined by some
triggering-condition, occurs. When this triggering-condition is properly designed, it ensures
adequate closed-loop control performance, while reducing the amount of communication traffic
over the network. Whereas ETC is reactive and requires monitoring of the system in between
control tasks, STC could be considered a more pro-active alternative. STC uses a model of
the system to predict the necessary next sampling time based on the triggering condition. In
this section, some relevant concepts related to these methods will be covered.

Figure 2-2: Periodic (l) versus aperiodic (r) sampling times.

2-1-1 Fundamentals

Let us consider a feedback-controlled linear time-invariant (LTI) system, described by the
following state space model:

ẋ(t) = Ax(t) +BKx̂(t), x(t) ∈ Rn, x̂(t) ∈ Rn (2-1)

where x is the plant’s state vector, x̂ is the state measurement vector available to the controller
and A, B, K are matrices of appropriate dimensions. The design of controller K is outside the
scope of this literature survey. The feedback is implemented in a zero-order sample-and-hold
manner: let tk, k ∈ N0 be a sequence of sampling times, then

x̂(t) = x(tk), ∀t ∈ [tk, tk+1) (2-2)

This means that once the measurement of the state available to the controller x̂ is updated,
it is kept constant until the next sampling time, resulting in a constant control action being
applied to the plant during this time.

Continuous and Periodic ETC

In periodic control, the sequence of sampling times tk would be equally spaced, depending on
a fixed sampling period. In ETC on the other hand, tk is determined by a triggering condition

R.J.F. de Ruijter Master of Science Thesis

2-1 Aperiodic control 5

C(x(t), x(tk)) = 0. A state update is only send to the controller when the triggering condition
is met. The earliest version of ETC required continuous monitoring of the triggering condi-
tion, which was later termed Continuous Event-Triggered Control (CETC). The triggering
condition is a function of the current state x(t) and the last sampled state that was sent to
the controller x(tk). This results in the triggering times

t0 = 0, tk+1 = inf{t > tk | C(x(t), x̂(t)) = 0} (2-3)

Note that the resulting inter-sample time (IST) τ(x(tk)) := tk+1 − tk depends on the last
sampled state.

Figure 2-3: ETC system.

In CETC, this triggering condition is continuously monitored, which requires specialised
hardware and can result in Zeno behaviour (i.e. an infinite amount of events in a finite time
interval), because CETC has no inherent lower bound on the triggering time. In Periodic
Event-Triggered Control (PETC) [12] the triggering condition is checked only periodically,
with a fixed sampling interval h > 0, called the fundamental checking period. This type
of ETC attempts to strike a balance between periodic and event-based control and can be
easily implemented on standard digital hardware, while inherently excluding Zeno behaviour
because of the natural lower bound on the inter-event time (h). In case the triggering condition
C(x(t), x(tk)) > 0 is not met when checked, no state update is send from plant to controller
and no new control input commands has to be send from the controller to the plant for at
least another sampling interval h. This means no access to the communication network is
required during this interval. When the triggering condition is met, it means a control action
is required to guarantee control objectives. Formally:

t0 = 0, tk+1 = inf{kh > tk, k ∈ N | C(x(t), x̂(t)) ≥ 0} (2-4)

The resulting IST τ(x(tk)) := tk+1 − tk is again a function of the state. In the PETC case,
we can also define a discrete IST κ = τ/h. Often a maximum IST naturally emerges form a
PETC triggering condition, but to enforce a "heartbeat" of the system a maximimum discrete
IST k̄ is often set.

Master of Science Thesis R.J.F. de Ruijter

6 Preliminaries and Problem Statement

Self-Triggered Control

STC as originally proposed by [39] is another aperiodic control method. In STC, instead of
continuously or periodically checking the triggering condition, the controller uses the sampled
state and a model of the system dynamics to predict the next sampling time tk+1 = tk + Γ(x(tk)).
The next sample time is the maximum sample time such that the resulting predicted state
of the system still meets a triggering condition. Note that this is a conservative prediction.
Formally,

t0 = 0, tk+1 = sup{t ∈ hN | t > tk, C(t− tk, x(t), x̂(t)) ≤ 0} (2-5)

Since triggering times can be predicted ahead of time using STC, it allows for more flexibility
in scheduling control loops compared to ETC. STC also does not require the use of dedicated
hardware to monitor the state. However, the computational cost of STC is higher compared
to ETC, and the reliance on predictions instead of actual measurements of the state make it
less robust against possible disturbances.

Triggering conditions

Many different variations of triggering conditions can be found in the literature, such as
triggering conditions based on the state error [32], the input error [11] or on a Lyapunov
function of the system [39], [40], [17]. The goal of most of these triggering conditions is to
ensure that the system is stable. A very common way of achieving this is with triggering
conditions that guarantee a monotone decrease of the Lyapunov function of the system, i.e.
triggering conditions that ensure that the derivative of the Lyapunov function is kept negative.

Sampling strategies

Generally speaking, a sampling strategy maps an alternating sequence of past states and
inter-sample times r = x0τ0x1τ1...xk to a next inter-sample time τk. However, finding such a
sampling strategy can be very difficult, and some simplifications can achieve similar outcomes.
In the context of STC, [9] defines the following simplifications:

• state-dependent sampling strategy (SDSS): a strategy that maps a sequence of states to
the next inter-sample time τi: s : (Rnx)+ → R+

• static SDSS : a strategy that takes as input only one state in order to determine the
next inter-sample time τi, i.e. a memoryless strategy: s : Rnx → R+

How to synthesise a sampling strategy depends on the sampling goal. One interesting chal-
lenge is finding a static SDDS that minimises the amount of sampling, i.e. maximises the
average inter-sample times, which will be presented in more detail next.

R.J.F. de Ruijter Master of Science Thesis

2-1 Aperiodic control 7

2-1-2 Challenge: maximizing average inter-sample times

Once we start considering communication as a scarce resource, the question of how to minimize
its wasteful use naturally arises. This could be seen as an optimisation problem: sample as
little as possible while still ensuring control performance. This goal could be more formally
expressed using the average inter-sample time (AIST) and smallest average inter-sample
time (SAIST):

AIST(x, s) := lim inf
n→∞

1
n+ 1

n∑
i=0

τi(x) SAIST(s) := inf
x∈Rnx

AIST(x, s) (2-6)

Note the the AIST is the limit average inter-sample time, which means it is a fundamentally
long-term metric which is not sensitive to short-term transient behaviour. The SAIST could
be considered the worst-case AIST that could arise from a strategy s. This means that the
SAIST is not longer a function of the state x but only of the strategy s, which makes it a
good measure of sampling performance.
Most of the aforementioned triggering conditions were designed with the goal of sampling
as late as possible, which is the logical choice when using ETC. However, the predictive
nature of STC allows for more flexibility in the determination of the next sampling time.
Realize that sampling earlier than the triggering condition proposes can only result in better
control performance at the cost of a worse immediate IST. When we thus consider the STC-
generated sampling time as a sampling deadline instead, we gain the possibility of searching
for strategies that result in more optimal long-term average inter-sample times. Formally:

d(x) = max{τ ∈ T | C(τ,M(τ)x̂, x̂) ≤ 0}, (2-7)

where T ∈ {h, 2h, . . . , k̄h} and M(t) := Ad(t) + Bd(t)K is the state transition matrix under
held input. Note that this deadline is state-dependent and is calculated at sampling time, i.e.
when a new state measurement is send to the controller.
In this setting, simply sampling at the proposed deadline could be considered a greedy optimi-
sation approach: this maximises the immediate reward without regard for long-term effects.
Such an approach will only result in an optimal solution if the optimisation problem has a
strict optimal substructure, which can not be assumed in this case. To illustrate this, consider
Figure 2-4. Let’s say we need to choose one of the two depicted paths with the goal of max-
imising long-term rewards, where the numbers represent the reward obtained when visiting
that circle. When we only consider immediate rewards, we will choose the top path, although
this obviously is not the optimal choice when we take future steps into account. However,
making a different choice than the greedy one requires knowledge of future reward dynamics.
One way of dealing with this problem relies on the construction of finite abstractions of the
state space.

2-1-3 Abstraction-based methods

The abstraction-based method for finding sampling strategies by Gleizer et al. [9] forms the
main inspiration for this thesis research. Since the proposed method essentially attempts to
mimic the abstraction-based method [9] in a sample-based manner, it is important to first
have a good understanding of this abstraction-based method. First the necessary theoretical
concepts will be explained.

Master of Science Thesis R.J.F. de Ruijter

8 Preliminaries and Problem Statement

Figure 2-4: Illustrative example of how a greedy approach can result in sub-optimal returns.

Definitions

A transition system S = (X ,X0,U , E ,Y, H), as described by Tabuada [31], is a way of de-
scribing the dynamics of a system, where:

• X is the finite or infinite set of states;
• X0 ⊆ X is the finite or infinite set of initial states;
• U is the set of inputs;
• E ⊆ X × U × X is the set of edges or transitions between states;
• Y is the set of outputs;
• H(x) : X → Y is the output mapping

Transition systems can be finite or infinite, depending on the state set. A transition system
is autonomous if U is an empty set. A weighted transition system S = (X ,X0,U , E ,Y, H, γ)
is a transition system with a weight function γ : E → Q added to the transitions.

A finite-state abstraction is a mapping Φ from the original, possibly infinite state space S to
some finite abstract state space Φ(S). This often aggregates concrete states that have a shared
property of interest into one abstracted state for analysis, which is why it is sometimes also
referred to as state aggregation or compression. The process of aggregating different states
into one abstracted state causes loss of information, but allows for easier analysis of a specific
property of interest, for example sampling times.

A quotient system S/R = (X/R,X0,U , E/R,Y, H/R), as described by Tabuada [31], is a transi-
tion system that is a simulation of the original transition system S = (X ,X0,U , E ,Y, H). This
simulation relation essentially means that the notions we are interested in (i.e. the output
and possible transitions of the system) are captured by the quotient system while simplifying
the description. In order to obtain a quotient system of S, some finite-state abstraction of
the state space is constructed and new transitions are determined between these abstract
states such that every possible transition present in the original system is also present in the
quotient system.

Finite-state abstractions for PETC systems

In order to obtain a finite-state abstraction of a state set, one has to relate states of the
concrete system to states of the abstraction. For PETC systems, this can be done in several
ways, three of which are described here. Gleizer et al. [8] describe a quotient model that

R.J.F. de Ruijter Master of Science Thesis

2-1 Aperiodic control 9

simulates the output behaviour of a PETC traffic model by aggregating states that trigger at
time k into the same quotient state. This is done by first determining the set Kk ⊆ Rnx of
states that will certainly have triggered by time k:

Kk =
{
{x ∈ Rnx | C(·) > 0} for k < k̄

Rnx for k = k̄
(2-8)

The quotient state Qk is then computed for k ∈ {1, 2, ..., k̄} by taking Kk and removing all
states that belong to Kj with j < k:

Qk =

Kk \
k−1⋃
j=1
Qj for k > 1

Kk for k = 1
(2-9)

Building on this time-based partitioning of the state-space, Gleizer et al. [7] define the
simulation relation Rl ⊆ X × Y l. This relation relates states of the concrete PETC system
to their respective generated sequences of next l inter-sample times. In this formulation,
the abstracted states are thus l-length sequences containing the next l inter-sample times.
Formally, (x, k1k2...kl) ∈ Rl if and only if:

x ∈ Qk1 ,

M(hk1)x ∈ Qk2 ,

M(hk2)M(hk1)x ∈ Qk3 ,

...
M(hkl−1)...M(hk1)x ∈ Qkl

(2-10)

Another method of constructing a finite-state abstraction is described by Mazo et al. [18].
They propose a partitioning of the state space using conic covering. This abstraction is
based on the idea that for LTI ETC systems, states lying on the same ray crossing the origin
result in the same inter-sample time, i.e. are isotropic with regards to inter-sample time:
τ(x) = τ(λx),∀λ 6= 0, x 6= 0. This results in abstractions where states are aggregated into
polyhedral cones pointed at the origin, as illustrated in Figure 2-5. When more cones are
added, a state-space abstraction with a higher precision is acquired. This method is not
directly related to the abstraction-based method by Gleizer et al. [9], which is the main
inspiration for this thesis research, but the proposed method does use the idea of isotropic
covering (see Section 3-1-2).

Master of Science Thesis R.J.F. de Ruijter

10 Preliminaries and Problem Statement

Figure 2-5: Example of a state-space partitioning with polyhedral cones in R2 [18].

Traffic models

Using the abstracted state set, one can construct PETC traffic models in the form of quotient
systems. To do this, transitions should be added between the abstracted states as well as
an output map. First, the autonomous case (U = ∅) will be considered, where the PETC
triggering strategy is followed, i.e. no early triggering is allowed. Such a system can be
described as an infinite transition system S = (X ,X0,U , E ,Y, H), where

• X = X0 = Rn;
• U = ∅;
• E = {(x, x′) ∈ Rn ×Rn | x′ = M(τ(x))x}, with τ(x) ∈ {h, 2h, ..., k̄h} the IST associated

with x;
• Y = {1, 2, ..., k̄};
• H(x) = τ(x)/h

In the case of the l-complete state abstraction from [7], a transition relation called the domino
rule is applied. This transition relation is a natural consequence of the way the abstracted
state set is constructed: a state associated with sequence k1k2...kl must lead to a state whose
next first l−1 samples are k2k3...kl. This means that any abstracted state in Xl that starts with
k2k3...kl is a possible successor to k1k2...kl. [7] takes as the output map for each abstracted
state the first inter-sample time alone. The resulting l-complete PETC traffic model is the
system Sl = (Xl,Xl, ∅, El,Y, Hl), with

• Xl = πRl(X);
• El = {(kσ, σk′) | k, k′ ∈ Y, σ ∈ Y l−1, kσ, σk′ ∈ Xl};
• Y = {1, 2, ..., k̄};
• Hl(k1k2...km) = k1;

R.J.F. de Ruijter Master of Science Thesis

2-1 Aperiodic control 11

Next, the system which allows for early triggering will be considered. Such a system can be
described as a weighted infinite transition system, where the action set contains the discrete
sampling times from h until the deadline d(x) ((2-7)). To evaluate the sampling performance
of a sampling strategy, a weight related to the sampling time is added to the transitions.
Formally: S = (X ,X0,U , E ,Y, H, γ), where

• X = X0 = Rn;
• U = Y = {1, 2, ..., k̄};
• E = {(x, u, x′) | hu ≤ d(x) and x′ = M(hu)x};
• H(x) = d(x)/h;
• γ(x, u, x′) = hu

Gleizer et al. [9] apply the same abstraction of the state-space (i.e. (x, σ) ∈ Rl, with
σ = k1k2...kl) to this transition system. This results in the following transition relation: a
transition from abstracted state Qσ to Qσ′ exists if for some u respecting the deadline (i.e.
u ≤ k1), ∃x ∈ Rnx such that

x ∈ Qσ
M(hu)x ∈ Qσ′

(2-11)

As described by Gleizer et al. [9], a traffic model which allows for early triggering can be
constructed by adapting the l-complete traffic model from [7]. This so called l-predictive
traffic model has the form of a transition system Sl = (Xl,Xl,U , El,Y, Hl, γl), where

• Xl = πRl(X);
• U = Y = {1, 2, ..., k̄};
• E = {(σ, u, σ′) ∈ Xl × U × Xl | u ≤ σ(1),∃x ∈ Rnx : Eq. (2-11) holds};
• Hl(σ) = k1;
• γ(σ, u, σ′) = hu

Note that when the depth of the abstraction l is small, the amount of non-determinism present
in this transition system is large. Increasing the depth of the abstraction results in a more
refined division of the state space and a decrease in the amount of non-determinism. Because
of this non-determinism in the abstraction, it is not possible to directly extract a sampling
strategy from it. In order to obtain a sampling strategy, Gleizer et al. [9] play a mean-payoff
game on the transition system, where player 0 picks the action and player 1 antagonistically
picks the transition. The details of this mean-payoff game are not relevant for this thesis
research.

Gleizer et al. [9] have included numerical results for a 2-dimensional system. Figure 2-6
shows a comparison between simulated traces of the sampling strategy obtained using the
abstraction-based method proposed in [9] and the greedy method of following the proposed
deadline. The strategy obtained using the greedy method depicted in green exhibits bursts
of low inter-sample times equal to 0.1. The strategy obtained using the method which allows
for early-triggering (depicted in yellow) is able to avoid these fast-triggering regions of the
state space by sometimes sampling before the proposed deadline (depicted in red).

Master of Science Thesis R.J.F. de Ruijter

12 Preliminaries and Problem Statement

Figure 2-6: Comparison between simulated traces of the SDSS with l = 2 from [9] and of the
PETC strategy, both with the same initial state.

The resulting ISTs obtained by the greedy PETC method and the early-triggering enabled
method are compared in Figure 2-7. It depicts the simulated running average of the ISTs,
generated from 10 different initial conditions using both methods. The method which allows
for early-triggering clearly outperforms the greedy method in terms of long-term AISTs. The
SAIST obtained using the proposed method is calculated to be 0.6, compared to 0.233 for the
greedy method.

Figure 2-7: Running average of the ISTs generated from 10 different initial conditions under
PETC and the near-optimal SDSS using l = 2 from [9].

These results clearly show the viability of considering long-term dynamics in order to max-
imise the long-term inter-sample times. However, the construction of finite state-abstractions
to achieve this has some disadvantages. Primarily, the method proposed in [9] suffers from
the curse of dimensionality, as many abstraction-based methods do. This effect mainly raises
its ugly head during the construction of the abstraction. As the depth of the abstraction l
increases, the amount of possible transitions grows rapidly, which is also known as combina-
torial explosion. This quickly leads to memory errors or infeasible computation times. The
extend of these problems increases rapidly with system dimensionality and complexity.

R.J.F. de Ruijter Master of Science Thesis

2-1 Aperiodic control 13

Avoiding the construction of the complete abstraction could be a way to avoid this combina-
torial explosion. This leads us to investigate sample-based optimisation methods, since these
enable step-by-step exploration of the state space. Visited states are only stored temporarily
in order to update the strategy and are then discarded. This means that increasing the look-
ahead distance is relatively cheap in terms of memory requirements, which reduces the curse
of dimensionality. The iterative nature of these sample-based methods also result in more
gradual increase in strategy performance during training time. To illustrate this, consider
the illustrative example in Figure 2-8. The construction of a more refined abstraction takes
some time, during which no better solutions are obtained. It is only once the new abstraction
is completed that a better solution can be extracted from the abstraction, as depicted in
Figure 2-8. This means that if the optimisation process is somehow stopped or crashes before
the new abstraction is completed, a lot of computing power and time is wasted. However,
sample-based optimisation techniques are iterative and every optimisation step slightly im-
proves the solution. This means that the optimisation process can be stopped after every
step, with practically no loss of optimality of the solution. In the next section, a popular
sample-based optimisation method called reinforcement learning (RL) will be introduced.

Figure 2-8: An illustrative example comparing hypothetical solutions over time obtained using
an abstraction-based method to a sample-based method.

Master of Science Thesis R.J.F. de Ruijter

14 Preliminaries and Problem Statement

2-2 Reinforcement learning

Reinforcement Learning (RL) is a type of machine learning in which an agent learns by
interacting with its environment and receiving a reward for the actions it performs. It mainly
has its roots in the fields of optimal control and trial and error learning. Optimal control
is a branch of optimisation, stemming from the 1950s. Generally, it attempts to solve the
problem of synthesizing a controller which maximises some desired behaviour of a dynamical
system. One of the approaches to solving this problem is called Dynamic Programming (DP),
developed by Richard Bellman in the 1950s [2]. Dynamic programming attempts to solve an
optimization problem by dividing it into nested smaller sub-problems which can be solved
recursively using the Bellman equation. Many of the mathematical concepts describing the
dynamic programming methods also form the basis of reinforcement learning, like the value
function and policy. The main problem with this approach is that it also suffers from “the
curse of dimensionality”, because its computational complexity grows exponentially with the
number of states. The term "trial-and-error learning" goes back as far as the mid-19th century
when the term was used by the British ethologist and psychologist Conway Lloyd Morgan [35]
to describe observations of animal behaviour. The principle of trial-and-error learning was first
formally expressed by American psychologist Edward Thorndike in the early-20th century [34].
He proposed the "law of effect", which states that for a certain situation, responses that result
in a rewarding state have their association with that situation strengthened and are thus more
likely to occur in the future when the same situation arises again. Computer implementations
of trial-and-error learning were first philosophised by Alan Turing in 1948 [36]. In the following
years, some research on trial-and-error learning was conducted in different loosely connected
fields, but the focus of the machine learning community was mostly on supervised learning
techniques. In these years, the distinction between supervised learning and trial-and-error
learning was not as well defined, but in the 1970’s Harry Klopf observed that the key idea
of trial-and-error learning was missing from the machine learning field: the adaptation of
behaviour because of the hedonic desire for collection of reward through experience. This is
why Klopf is often regarded as the "father of reinforcement learning". Only in the 1980s a new
concept called temporal difference (TD) learning was formalised by R.S. Sutton [29], which
brought the studies of dynamic programming and trial-and-error learning firmly together in
the context of machine learning. This approach hinges on the idea of comparing successive
estimates of the value function in order to improve the estimate. It has the advantage of
being model-free (like trial-and-error methods) and is implemented in a online, incremental
fashion (like DP), while greatly reducing the dimensionality problems that DP suffers from.

2-2-1 Fundamentals

In this section, the key concepts related to RL will be introduced.

Agent-environment interaction

As stated before, a reinforcement learning system consists of an agent and an environment.
The agent is the decision-making part of the system. At every time-step, the agent is presented
with the state of the environment sk. The agent then chooses which action ak to perform
from the set of available actions in the current state A(sk). The agent presents this action to

R.J.F. de Ruijter Master of Science Thesis

2-2 Reinforcement learning 15

the environment, which updates its state accordingly and presents this newly obtained state
sk+1 to the agent, together with a numerical reward rk+1. This interaction is depicted in
Figure 2-9. On tuple of state, action, reward and updated state (sk, ak, rk, sk+1) is one data
sample, which is called experience in the context of RL.

Figure 2-9: Agent-environment interaction [16].

Return and policy

The reward function which determines the reward is part of the environment but can be
shaped by the user to favour certain behaviour. The return is defined as some accumulation
of reward by the agent over time. Most often a discounted summation of future rewards is
used:

R =
∞∑
k=0

γkrk+1 (2-12)

The agent follows a decision-making rule called a policy π to determine which action to take.
A policy can be both deterministic or stochastic. A deterministic policy πk(s) = a simply
maps a state to an action, whereas a stochastic policy πk(a | s) = Pr(ak = a | sk = s) gives
the probability of taking an action given a state. The policy is learned in a iterative manner
based on the collected experience. There are many different reinforcement learning algorithms
available, but all have the same goal: implicitly or explicitly learning the optimal policy.

Markov Decision Processes

In reinforcement learning, the environment is typically assumed to satisfy the Markov prop-
erty. This is true if the current state description sk contains all relevant information about
the system from the past and present. Such a state description is called a Markov state.
In the context of reinforcement learning this includes the reward signal and can formally be

Master of Science Thesis R.J.F. de Ruijter

16 Preliminaries and Problem Statement

described as follows:

Pr(rk+1 = r, sk+1 = s′ | s0, a0, r1, ..., sk−1, ak−1, rk, sk, ak) = Pr(rk+1 = r, sk+1 = s′ | sk, ak)
(2-13)

The LHS of Eq. 2-13 describes the probability distribution of the dynamics as a function of
all past and present states, actions and rewards, whereas he RHS describes the probability
distribution of the dynamics as a function of only the present state and action. This means
that the state update sk+1 and reward signal rk+1 depends only on the current state sk and
the chosen action ak, and not on the "path" that led to this state. This is why the Markov
property is also sometimes referred to as "independence of path". It might be that a state is
not strictly Markov, but is still a good approximation of a Markov state, i.e. most relevant
information about the system is retained in the state. RL techniques will still yield results
in this case, but more loss of information will result in more loss of performance. A concept
very central in RL is called a Markov Decision Process (MDP). Most RL methods assume
the environment to be an MDP. An MDP can be described with the tuple (S,A,R,P), where
S is the state space; A is the action space, P(s′ | s, a) is a Markovian transition model and
R(s, a) or R(s, a, s′) is a Markovian reward model. Most RL algorithms consider the case
were the state and action spaces are finite, called a finite Markov Decision Process. The
discrete transition dynamics of such a environment are denoted as:

p(s′, r | s, a) = Pr(rk+1 = r, sk+1 = s′ | sk = s, ak = a) (2-14)

From these dynamics of the finite MDP, all other interesting properties of the environment
can be computed, such as the state-transition probabilities p(s′ | s, a) or the expected rewards
for a state-action pair r(s, a) or state-action-next-state triplet r(s, a, s′). However, these
probabilities are often not known to the agent.

Value functions

The goal of reinforcement learning is to tune the agent’s policy π such that following the policy
maximises the agent’s expected return. A useful related concept is called the value function,
which gives some measure of "goodness" to a state or state-action pair under a policy π. We
can define the state-value function under policy π as the expected return of following policy
π from state s:

V π(s) = E
[
R
∣∣∣ sk = s, π

]
= E

[∞∑
k=0

γkrk+1
∣∣∣ sk = s, π

]
(2-15)

Alternatively, we define the state-action value function under policy π as the expected return
of taking action a from state s and subsequently following policy π:

Qπ(s, a) = E
[
R
∣∣∣ sk = s, ak = a, π

]
= E

[∞∑
k=0

γkrk+1
∣∣∣ sk = s, ak = a, π

]
(2-16)

For readability purposes, we will from this point on simply refer to the state value function
V π(s) as the value-function and to the state-action value function Qπ(s, a) as the Q-function
(as is common in the literature).

R.J.F. de Ruijter Master of Science Thesis

2-2 Reinforcement learning 17

As mentioned before, the goal of a reinforcement learning algorithm is to find the optimal
policy π∗. A policy is optimal if the expected return when following this policy is greater or
equal to the expected return when following any other policy: V π∗(s) ≥ V π(s),∀s, ∀π. As
such, there could be more than one optimal policy, but all optimal policies share the same
value-function. Applying this optimal policy to the value-function gives the optimal value
function, V ∗.

V ∗(s) = max
π

V π(s) = E
[∞∑
k=0

γkrk+1
∣∣∣ sk = s, π∗

]
(2-17)

Applying the optimal policy to the Q-function gives the optimal Q-function, Q∗:

Q∗(s, a) = max
π

Qπ(s, a) = E
[∞∑
k=0

γkrk+1
∣∣∣ sk = s, ak = a, π∗

]
(2-18)

Bellman expectation and optimality equations

We can divide the value-function in Eq. 2-15 into two parts: a part capturing the value of
the current state, and a part capturing the expected value of possible successive states. This
gives rise to a recursive relation called the Bellman expectation equation, or simply Bellman
equation:

V π(s) = E
[∞∑
k=0

γkrk+1
∣∣∣ sk = s, π

]
= E

[
rk+1 + γ

∞∑
k=0

γkrk+2
∣∣∣ sk = s, π

]
= E

[
rk+1 + γV π(s′)

∣∣∣ sk = s, π
]

(2-19)

An import observation is the relation between the optimal value-function and optimal Q-
function:

V ∗(s) = max
a∈A(s)

Q∗(s, a) (2-20)

When we apply the same method for finding the Bellman equation to this relation, we obtain
the Bellman equation for V ∗(s) called the Bellman optimality equation for the value-function:

V ∗(s) = max
a∈A(s)

Q∗(s, a)

= max
a

E
[∞∑
k=0

γkrk+1
∣∣∣ sk = s, ak = a, π∗

]
= max

a
E
[
rk+1 + γ

∞∑
k=0

γkrk+2
∣∣∣ sk = s, ak = a, π∗

]
= max

a
E
[
rk+1 + γV ∗(s′)

∣∣∣ sk = s, ak = a, π∗
]

(2-21)

Master of Science Thesis R.J.F. de Ruijter

18 Preliminaries and Problem Statement

Replacing V ∗(s) and V ∗(s′) with Eq. 2-20 gives the Bellman optimality equation for the
Q-function:

Q∗(s, a) = E
[
rk+1 + γmax

a′
Q∗(s′, a′)

∣∣∣ sk = s, ak = a, π∗
]

(2-22)

These recursive relations form the basis for many reinforcement learning methods.

Dynamic programming, Monte Carlo simulations and Temporal-difference learning

Reinforcement learning combines aspects of two optimisation methods: dynamic programming
(DP) and Monte Carlo simulations. The goal of dynamic programming is to solve Bellman
equations in order to find an optimal policy. This method requires full knowledge of the
MDP, including the state transition model P(s′ | s, a). DP alternates between evaluation and
improvement of the current policy in order to iteratively find an optimal policy, a process called
Generalize Policy Iteration (GPI) (Figure 2-10). DP methods make use of bootstrapping: the
estimate of the value of one state Vi+1(sk) is updated based on the current estimate of the
value of a successor state Vi(sk+1). This results in the following update rule:

Vi+1(sk) = arg max
a

E
[
rk+1 + γVi(sk+1)

∣∣∣ sk = s, πk
]

(2-23)

Figure 2-10: Generalised Policy Iteration [30].

Monte Carlo methods take an alternate approach to finding optimal policies. Monte Carlo
methods don’t require full knowledge of the MDP dynamics p(s′, r | s, a), but learn optimal
policies from sample sequences of states, actions and rewards obtained by the agent. Monte
Carlo methods only learn from complete sample episodes, i.e. trajectories that naturally
terminate eventually, so are only defined for episodic tasks, i.e. tasks that contain a terminal
state. Monte Carlo methods also follow the GPI methodology, but the updated value for each
state only depends on the previous value for that state and the actual observed sequence of
rewards, so Monte Carlo methods do not use bootstrapping. Note how in Eq. (2-24), the
updated value Vi+1(sk) is a weighted sum of the previous value Vi(sk) and the actual observed
rewards Gk, weighted by the learning rate α:

Vi+1(sk) = (1− α)Vi(sk) + αGk = Vi(sk) + α
[
Gk − Vi(sk)

]
(2-24)

R.J.F. de Ruijter Master of Science Thesis

2-2 Reinforcement learning 19

One of the most central ideas in reinforcement learning is TD. It combines the bootstrapping
from dynamic programming with the sampling-based learning of Monte Carlo simulations,
which results in the following update rule:

Vi+1(sk) = Vi(sk) + α
[
rk+1 + γVi(sk+1)− Vi(sk)

]
(2-25)

This way of updating allows online implementation of the value-function prediction, since
learning is done during the episode, whereas this is not possible using Monte Carlo methods.
In fact, TD learning is more generally applicable, since it does not require episodic MDPs.
The part between brackets in Eq. 2-25 is called the temporal difference error δ. Classic RL
methods like SARSA and Q-learning revolve around this idea, but it also appears in modern
methods, as will be discussed in Section 2-2-3.

2-2-2 Deep Reinforcement Learning

The reinforcement learning framework presented in the previous sections is clearly a very
powerful framework for tackling many different kinds of optimal control problems. However,
all methods discussed so far have used a tabular representation of the value-functions and
Q-functions, i.e. a table containing distinct values for states or state-action pairs. This limits
the possibilities of such algorithms when the state or action spaces are continuous or high-
dimensional. Luckily, it is possible to use function approximation techniques such as artificial
neural networks (ANNs) to parameterise the value-function, Q-function and policy. The idea
of adding techniques from deep learning to the powerful reinforcement learning framework
gave rise to the fast-moving field of deep reinforcement learning (DRL). Recently, such DRL
algorithms have been able to achieve and surpass human performance in complex tasks like
playing Atari games. A DRL algorithm called AlphaGo was even able to beat professional
players at the extremely complex board game Go. The training of these DRL models requires
the generation and processing of massive amounts of experience, since the state-action spaces
describing these tasks and the amount of parameters describing the model are very large. In
the case of Go for example, an astonishing 10170 different board configurations are possible
- more than the number of atoms in the known universe. Training a reinforcement learning
agent to solve such a task sequentially on a single processor would take too much time to be
of any real use. For this reason, researchers turned to parallel computing approaches. These
approaches typically use multiple copies of the environment in parallel (called workers) that
generate experience from which the agent can learn. Such an approach can scale with the
complexity of the problem by just employing more experience-generating workers in parallel,
thus reducing the training time. The incorporation of ANN’s and parallel workers into the
RL framework is depicted in Figure 2-11.

Artificial neural networks

An artificial neural network (ANN) is a computational model inspired by biological neural
networks in the human brain. The brain consists of "computational units" called neurons,
which are connected in a network by synapses. In ANNs, the basic building block is called a
perceptron, as depicted in Figure 2-12. The input to a perceptron is a vector x = [x1, ...xn].
First, the perceptron takes a weighted sum of these input values, and adds a bias. This

Master of Science Thesis R.J.F. de Ruijter

20 Preliminaries and Problem Statement

Figure 2-11: Agent-environment interaction, with a neural network as policy approximation and
parallel workers.

weighted sum is then fed to an activation function, which introduces non-linearity to the
perceptron. Many different activation functions are available, like the ReLu, tanh, and sigmoid
functions. The output of this activation function is also the output of the perceptron.

Figure 2-12: A perceptron [10].

If more than one perceptron is joined in a layered fashion, this results in an multi-layer
perceptron (MLP), as depicted in Figure 2-13. Usually, layers have dense connections, which
means that the output of every unit in a layer is fed as an input to every unit in the next
layer:

xl = g(W T
l xl−1 + bl) (2-26)

where g(·) is the activation function and W l and bl are the weight matrix and bias vector
of layer l. Every neural network consists of an input layer and an output layer, with some
amount of hidden layers in between. The amount of layers is called the depth of the neural
network, and the amount of units in one layer is called the width of the layer, which can both
be set to obtain different neural network architectures.

The weights and biases are the parameters that need to be learned, with the goal of minimising
or maximising an objective, for example the mean squared error between the outputs of the
neural network and desired values. This is done using the backpropagation algorithm, which
essentially uses the chain rule to compute the gradient of the objective function with respect

R.J.F. de Ruijter Master of Science Thesis

2-2 Reinforcement learning 21

Figure 2-13: An MLP with 3 inputs, 1 output, 2 hidden layers, and dense connections [37].

to the individual weights of the network. This gradient is used to update the weights and
biases through some gradient method like stochastic gradient descent (SGD) or Adam. A
forward pass of a neural network is called neural network inference.

Neural networks can be used to approximate different functions in deep reinforcement learning,
as depicted in Figure 2-14. The Q-function can be approximated by a network that takes as
an input the state of the environment, and outputs the Q-values for all possible actions. The
value-function can be approximated by a network that also takes as an input the state of the
environment and outputs the value (i.e. the expected sum of rewards) associated with that
state. A stochastic policy-function can be approximated by a network that also takes as an
input the state of the environment and outputs the probabilities of taking every action based
on that state.

Figure 2-14: Schematic representation of a value network, Q-network and policy network.

In the context of DRL, logits are the un-normalised predictions of a policy network, which
can be any real number ranging from [−∞,+∞]. In order to transform these logits to actual
probabilities, they are often fed to a final activation layer containing the softmax function,
which normalises the logits:

σ(zi) = ezi∑K
j=1 e

zj
(2-27)

Master of Science Thesis R.J.F. de Ruijter

22 Preliminaries and Problem Statement

Q-learning versus Policy Gradient methods

When categorising RL methods, the main point of difference is in what exactly is learned. All
RL methods have the objective to learn an optimal policy, but the way that this is achieved
can differ. Deep Q-learning approaches attempt to indirectly optimise the policy through the
learning of the Q-function, approximated by the Q-network. Policy Gradient (PG) methods
are more principled: they seek to directly optimise in the policy space. These methods
require a stochastic policy approximated by a neural network πθ(a | s) and directly optimise
the policy by applying gradient ascent on its parameters, such that the probability of taking
actions associated with high returns is increased. Both methods have their strengths and
weaknesses, and which method is preferred is case-dependent. Deep Q-learning methods are
often much more sample efficient than PG methods because data can be reused, whereas
PG methods require the collection of new samples for every gradient step. However, Deep
Q-learning methods can result in poor convergence and instability and are in general sensitive
to hyperparameter settings. The simplicity, versatility and stability of modern PG methods
often make it the preferred choice when sample efficiency is not of the utmost importance.
The next section will explain Policy Gradient methods and one of its most successful variants,
called Proximal Policy Optimisation.

2-2-3 A closer look at Policy Gradient methods

The objective of PG methods, like all RL methods, is to maximize the future expected return
obtained by following a policy. Formally, the goal is to maximise the objective function

J(πθ) = Eτ∼πθ [G(τ)] (2-28)

where τ is a trajectory obtained by following the policy πθ and G(τ) is the return obtained
by following that trajectory. This is achieved by repeatedly calculating the gradient of the
objective function and applying gradient ascent on the parameters of the policy network:

θk+1 = θk + α∇θJ(πθ) (2-29)

The Policy Gradient Theorem as presented by [30] shows that the gradient of the objective
function can be written as:

∇θJ(πθ) = E
[T∑
t=0
∇θ log πθ(at | st)Φt

]
(2-30)

where Φt can be one of multiple terms related to the sum of rewards (see [25] for an ex-
tensive review). One of the most used choices for Φt is the advantage function Aπ(st, at) :=
Qπ(st, at)−V π(st), because it greatly reduces the variance in gradient calculation. The advan-
tage function Aπ(st, at) gives a measure of how much better or worse an action a is compared
to the policy’s default behaviour. Using the advantage function in Eq. (2-30) means the
objective JPG will increase if the action a becomes more likely, but only if the advantage is
positive. If the advantage is negative, the objective JPG will increase if the action a becomes
less likely, i.e. if πθ(a|s) decreases.
In practice of course, the advantage function is not known and must be estimated. The
advantage function estimate Ât(s, a) can be calculated in different ways, but a widely-used

R.J.F. de Ruijter Master of Science Thesis

2-2 Reinforcement learning 23

approach called Generalised Advantage Estimation (GAE) uses the value function estimate
and observed rewards from a trajectory:

Ât(s, a) = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1)δT−1 (2-31)

where δt = rt + γV (st+1)− V (st) is the temporal difference error. This is one of the reasons
why many PG methods also maintain a value function network Vφ(s) to estimate the value
function, which is updated concurrently with the policy network. A method which maintains
both a value-function and policy-function is called an Actor-Critic method, where ‘actor’
refers to the learned policy (since this is used to select actions), and ‘critic’ refers to the
learned value function (since this is used to evaluate the performed actions). The simplest
and most widely used method for learning Vφ(s) is regression on the mean-squared-error
between the value function estimate and the observed return from a trajectory:

φk = arg min
φ

Ê
[T∑
t=0

(Vφ(st)−Gt)2
]

(2-32)

Many different methods have been proposed to handle the problems associated with PG meth-
ods (i.e. poor sample efficiency and learning instability due to large trajectory variance). In
particular, one family of methods called Proximal Policy Optimisation (PPO) has demon-
strated state-of-the-art performance on many RL benchmark tasks, while striking a balance
between sample efficiency, simplicity, and wall-clock time.

Proximal Policy Optimisation

The main motivation behind the family of methods called Proximal Policy Optimisation
(PPO) is to use generated experience as efficiently as possible without causing instability
and performance collapse. This is achieved by limiting the difference between the action
probabilities of the old policy πθold(at | st) and the updated policy πθ(at | st). The method is
scalable (i.e. it allows for parallelisation), has improved sample efficiency over previous PG
methods, and displays robust performance over a variety of tasks. This section will give a
brief overview of this method.

PPO attempts to maximise an objective function which includes the estimated advantage
function:

JPG(πθ) = Ê
[T∑
t=0

log πθ(at | st)Ât(s, a)
]

(2-33)

Ât(s, a) can be estimated from the collected trajectory in a number of ways, like mentioned in
the previous section. The expression Ê[·] indicates that the expectation is estimated using the
empirical average over the batch of collected samples. The policy is updated by performing
multiple steps of gradient ascent on the parameters of the policy network using the gradient
calculated from this batch of collected samples. However, applying too many steps of gradient
updates using the same gradient, increases the risk of stepping too far away from the policy
from which that gradient was computed, thus decreasing the validity of the computed gradi-
ent. On the other hand, taking too little steps using the same gradient means the collected
trajectory data is not used optimally. In normal policy gradient, old and new policies are close

Master of Science Thesis R.J.F. de Ruijter

24 Preliminaries and Problem Statement

in parameter space (due to the use of gradient descent), but small differences in parameter
space can potentially have large differences in policy performance. PPO uses a similar trick
to Trust Region Policy Optimisation (TRPO) [24], namely limiting the difference between
the old policy and the new policy in policy space, i.e. the resulting action probabilities cannot
differ too much. This will limit the magnitude of changes to the actual metric of interest,
namely the action probabilities, and thus the resulting performance of the policy. This is
done by borrowing the surrogate loss from TRPO, which introduces the probability ratio ρ:

JCPI(πθ) = Ê
[T∑
t=0

πθ(at | st)
πθold(at | st)

Ât
]

= Ê
[T∑
t=0

ρt(θ)Ât
]

(2-34)

If this objective was used in an unconstrained manner, maximisation would result in extremely
large policy updates. Whereas TRPO solves this by using a complex second-order optimisa-
tion method based on the KL-divergence between the old and new policies, PPO introduces
a simple clipped version of Eq. (2-34):

JCLIP (πθ) = Ê
[T∑
t=0

min
(
ρt(θ)Ât, clip(ρt(θ), 1− ε, 1 + ε)Ât

)]
(2-35)

As depicted in Figure 2-15, this modification of the objective removes the incentive for moving
the probability ratio ρ outside of the interval 1 + ε or 1 − ε, depending on whether the
advantage is positive or negative respectively. This ensures that a good action will only
become moderately more likely (depending on the choice of ε), and a bad action will only
become moderately less likely. This results in more monotone and stable policy improvements.

Figure 2-15: Plots showing a single timestep of the surrogate objective JCLIP as a function of
the probability ratio ρ, for positive advantages (l) and negative advantages (r). Note that JCLIP
sums many of these terms. The starting point of the optimisation is indicated by the red dots.
[26].

The PPO implementation from the original paper further augments the surrogate objective
by including a value-function error term and an entropy bonus. The value-function term is
needed when a neural network architecture that shares parameters between the policy and
value function is used. The entropy bonus term should help to ensure sufficient exploration
as suggested by earlier work, e.g. [19]. Both terms have their own weighting factor, which
results in the following surrogate objective:

R.J.F. de Ruijter Master of Science Thesis

2-2 Reinforcement learning 25

JCLIP+V F+S(πθ) = Ê
[
JCLIP (πθ)− c1J

V F + c2S[πθ](st)
]

(2-36)

Note that the term "PPO" formally refers to a family of RL methods that use the surrogate
objective (2-35). This surrogate loss can be used in different policy gradient algorithms. In the
original PPO paper [26], an Actor-Critic style algorithm was used. In this implementation,
each of N parallel workers runs the policy πθold for T timesteps. Such a run is called a
rollout. The NT collected rollout samples are used to calculate advantage estimates Ât
for each timestep and to construct the surrogate objective, which is then optimised using
minibatch SGD or Adam for K epochs. This use of a rollout buffer speeds up and stabilises
the learning process by decreasing the variance between gradient updates, because the same
policy is ran for NT timesteps before calculating gradients on a larger batch of samples.
Figure 2-16 describes this algorithm using pseudo-code.

Figure 2-16: Pseudo-code description of the actor-critic style PPO implementation from [26].

Master of Science Thesis R.J.F. de Ruijter

26 Preliminaries and Problem Statement

2-3 Problem statement

The main goal of the research presented in this thesis report is to develop a tool which employs
deep reinforcement learning techniques to find static state-dependent sampling policies for LTI
self-triggered control systems that provides near-maximal average inter-sample time while
respecting given control performance constraints. This tool has to be scalable through the
use of some parallelisation scheme. More formally, the goals can be formulated as follows

Main goal Implement a deep reinforcement learning tool which outputs a static state-
dependent sampling policy for LTI self-triggered control systems. The ob-
jective function to be maximised is

J(πθ) = lim inf
n→∞

1
n+ 1

n∑
i=0

τi(x, πθ) (2-37)

where τi(x, πθ) is the inter-sample time from state x suggested by the learned
policy πθ. To ensure that the resulting policy is safe, the choice of possible
inter-sample times is constrained by the inter-sample time suggested by the
STC system, which has to be respected as a sampling deadline (as described
in Section 2-1-2).

Requirements 1. This tool has to be scalable in terms of data generation and complexity
of the policy function, for use with more complex and higher-dimensional
systems.

2. This tool should allow the user to set multiple different stopping criteria.
3. The user should be able to monitor the sampling performance during

the training process.
4. The user should be able to stop the learning process early, and still

obtain the most optimal policy found so far.
5. The user should be able to add a measure of trajectory smoothness
ω(x, πθ) to the objective function:

J(πθ) = lim inf
n→∞

1
n+ 1

n∑
i=0

βωi(x, πθ) + (1− β)τi(x, πθ) (2-38)

Evaluation 1. Evaluate performance both in terms of sampling performance and wall-
clock times of the proposed RL method to that of the abstraction-based
method as proposed by [9], using multiple different systems.

2. Perform a study on the relation between average inter-sample times and
trajectory smoothness.

R.J.F. de Ruijter Master of Science Thesis

Chapter 3

Methodology

This chapter will discuss the formulation of the environment and RL agent, as well as the
experimental setup used to obtain the results presented in the next chapter.

3-1 Environment

For a problem to be solved using a reinforcement learning approach, it needs to be formulated
as an RL environment. Formulating this in computer code is standardised by the OpenAI
Gym framework, which is widely used in industry and the academic world. In the Gym
framework, the environment is constructed as a class which requires; a reset function, which
starts a new episode and returns an observation; and a step function, which requires an
action as input and returns a tuple containing a new observation, reward, a customisable info
dictionary and a boolean indicating the termination of an episode.
The user can add different methods and attributes to the environment class in order to
formulate their problem. The Gym framework also allows for the addition of wrappers, which
add functionality or overwrite the methods of the base environment class. The following code
example shows a simple simulation of a OpenAI environment for 20 episodes with 100 steps
per episode, where random actions are picked every step:

1 import ExampleEnv
2
3 env = ExampleEnv ()
4
5 for i_episode in range (20) :
6 observation = env . reset ()
7 for t in range (100) :
8 action = env . action_space . sample ()
9 observation , reward , done , info = env . step (action)

10 if done :
11 print ("Episode finished after {} timesteps" . format (t+1))
12 break
13 env . close ()

Master of Science Thesis R.J.F. de Ruijter

28 Methodology

3-1-1 Base environment

The base environment (which defines the problem) used in training requires a discrete-time
model of the plant and controller (Ad, Bd,K); the triggering condition; and values for the
minimum and maximum triggering time kmin, kmax and fundamental checking periode h.
The step function calculates the state update under held control input, based on the current
state of the system and the action chosen by the agent, which corresponds to the discrete
sampling time k:

x(t+ 1) = (Akd +BdK
k−1∑
i=0

Aid)x(t) (3-1)

The step function also returns the reward, which is simply the inter-sample time hk. The
step function then returns the updated state and reward to the agent. The reset function sets
the state to a random point within a bounded region. The deadline function calculates the
sampling deadline d(x) based on the current state of the plant and the supplied triggering
condition.

3-1-2 Environment wrappers

In order to aid the learning process, some wrappers were introduced to the base environment.
These wrappers reformulate the basic problem to make it easier to learn for the agent.

• Episodic wrapper: since the base problem is not an episodic problem (i.e. it contains
no terminal states), episodes have to be ended artificially by setting a maximum episode
length. This allows for more efficient exploration of the state space, since after every
episode the system is reset to a random state.

• Action-penalisation wrapper: this wrappers specifies one possible method of using
the sampling deadline during the learning process. If the agent selects a sampling time
that is beyond the deadline, the step is not taken (i.e. the state remains the same) and
a negative reward (i.e. penalty) is returned. This should allow the agent to quickly
learn to not exceed the deadlines. Figure 3-1 depicts a schematic representation of this
method, where the negative reward is set to be equal to r = −hkmax.

• Action-masking wrapper: this wrapper specifies another possible method of using
the sampling deadline during the learning process. Since the deadlines are known a
priori (i.e. before choosing an action), it is possible to disallow the agent to choose
illegal sampling times. This can be done by constructing an action-mask consisting of
ones and zeros, which specifies the legal and illegal actions, and supplying this mask to
the agent. For example, when kmax = 5 and the deadline associated with the current
state is d(x) = 3, the resulting action mask would be [1, 1, 1, 0, 0]. During the calculation
of the action probabilities by the agent, this action-mask can be used to push the
probabilities of choosing an illegal action to zero. Section 3-2-3 provides a more detailed
description of these calculation on the agent side. Using this method over the action-
penalisation method greatly reduces the action space, which should stabilise and speed
up the learning process.

R.J.F. de Ruijter Master of Science Thesis

3-2 Agent 29

• n-Spherical coordinates wrapper: since states that lie on the same radial axis are
associated with the same sampling times (as explained in Section 2-1-3), it could be
useful to transform the cartesian state coordinates to n-spherical coordinates, and only
send the angles as observations to the agent. Incorporating this a priori knowledge on
the shape of the solution greatly reduces the policy search space: instead of having to
explore the entire reachable state set one can restrict exploration to a small box around
the origin, which should stabilise and speed up the learning process. States that lie on
the same radial axis but on opposite sides of the origin are also associated with the
same sampling time, so should be treated as the same abstracted state. This reduces
the search space again by a factor 2, and results in perfectly symmetrical policies by
definition.

• Smoothness reward wrapper: as will be shown in Section 4-4, maximising long-term
sampling times could lead to sharper trajectory changes when sampling. In order to
combat this effect, the user should be able to incorporate a term for the smoothness
of the trajectory into the reward function. This wrapper calculates a weighted sum
of the reward due to the sampling time and a reward based on the angle between the
trajectory directions before and after sampling. Formally:

r(x, k) = β(1− ψ(x, k)
π

) + (1− β) k

kmax
, with ψ(x, k) = arccos a · b

|a||b|
(3-2)

where ψ ∈ [0, π] is the angle between the trajectory vectors before and after sampling
(i.e. a and b resp.), and β ∈ [0, 1] is a weighting term. Note that both (1− ψ

π) ∈ [0, 1]
and k

kmax
∈ [0, 1] are normalised values, so the weighting term β directly specifies the

trade-off between sampling performance and trajectory smoothness.

3-2 Agent

Next, the agent used for solving the environment will be discussed. First, the reasoning behind
the choice of RL algorithm will be presented, followed by a overview of the used hardware.

Figure 3-1: Schematic representation of the environment with the penalty wrapper.

Master of Science Thesis R.J.F. de Ruijter

30 Methodology

Figure 3-2: Schematic representation of the environment with the action-mask wrapper, with
an example action-mask for kmax = 5 and d(x) = 3.

Then, some components specific to this implementation will be discussed, like action-masking
and neural network expansion. The final part of this section will give a quick comparison of
the different components.

3-2-1 Algorithm selection

As discussed in Section 2-2-2, the choice of which DRL algorithm to use for solving a specific
problem is not a trivial one: no algorithm is clearly better for every use case. For example,
when experience is collected through interaction with a real physical system like a robot,
high sample efficiency is an important feature of the RL algorithm, so one might prefer an
off-policy algorithm from the Q-learning family because of the possibility to reuse experience.
On the other hand, experience collected through simulation can be very "cheap" and sample
efficiency becomes less of a concern. However, if the environment is very complex and calcu-
lating a step is computationally expensive, sample efficiency can again be of more importance.
If the sample efficiency is of less concern, on might prefer an on-policy Policy Gradient al-
gorithm for their learning stability and strong convergence. A simulated environment also
enables parallelisation of the experience generation, which decreases the learning wall-clock
time. Other important considerations are hyperparameter-sensitivity and compatibility with
discrete or continuous state- and/or action-spaces. The problem considered here consists of
a continuous state-space and a discrete action-space, which eliminates or complicates the use
of some algorithms.
PPO has shown state-of-the-art performance on a wide variety of applications. When sam-
pling efficiency is not of the greatest concern, the simplicity, ease of tuning and possibility for
parallelisation presented by PPO currently make it the preferred method for discrete-action
problems. The PPO implementation from the Stable Baselines 2 library [13] was adapted for
this thesis research. Stable Baselines is a set of implementations of DRL algorithms based on
OpenAI Baselines, and is widely used in the academic world. This PPO implementation is
very similar to the Actor-Critic style algorithm from the original PPO paper [26], which uses
gradient clipping, a rollout buffer and periodical policy updates as depicted in Figure 3-3 and
explained in Section 2-2-3.

R.J.F. de Ruijter Master of Science Thesis

3-2 Agent 31

Figure 3-3: Schematic representation of the Actor-Critic style PPO implementation. The dashed
lines represent periodical updates after finishing a rollout.

3-2-2 Hardware and parallelisation

Deep reinforcement learning requires the generation and processing of large amounts of data.
As discussed in Section 2-2-2, the use of parallel computing is therefore essential. OpenAI Five
- an algorithm capable of beating professional Dota5 players - for example was trained using a
scaled-up version of PPO on 256 GPUs and 128,000 CPU cores. In that setup, the CPUs are
used to simulate the environment, and GPUs are used for neural network inference (i.e. action
selection) and policy updates. The experiment described in this thesis were run on a Intel Xeon
W-2145 CPU with 16 logical cores, where both simulation and NN interactions are handled
by the CPU. In theory, increasing the number of parallel experience-generating environments
should result in better policy performance and wall-clock times. However, in practice there are
some limiting factors related to the parallelisation scheme and available hardware. Figure 3-
4 describes the parallelisation scheme used in this research, which is mostly based on the
method described in [28] and differs from the standard Stable Baselines implementation.
This scheme essentially consists of two paths: the simulation path and the policy update path.
The simulation path consists of alternating environment steps to obtain the updated states
and neural network inference to obtain new actions. Unlike threads, processes do not share
memory with other processes. Since the environment interactions and NN inference run on
separate processes, there will be some latency introduced by the transmission of the states
and actions between these processes (called inference communication time in Figure 3-4).

A rollout consists of multiple of these simulation loops run in series and results in a large
batch of experience tuples. This batch is then used to update the neural network parameters
using a gradient descent algorithm. Note that since NN inference and policy updates are
run on the same process, the batch of experience samples is already available to the neural
network process, so this does not introduce latency due to communication. Once the policy
update is completed, a new rollout will commence.

Since every CPU logical core can only run one thread per moment in time, the amount of
parallel simulation processes is limited to the number of CPU cores, in this case n = 16.
However, this does not mean that the number of environments is limited to 16 as well:

Master of Science Thesis R.J.F. de Ruijter

32 Methodology

Figure
3-4:

Parallelisation
schem

e
used

forthe
proposed

tool.

R.J.F. de Ruijter Master of Science Thesis

3-2 Agent 33

it is possible to launch multiple environment instances on each parallel process. The m
environments on each process will all take one step in series, after which the n×m updated
states are aggregated and send to the neural network process for inference. Increasing the
amount of environments in series on each process has two major advantages:

• A reduction is latency due to inference communication. When there is only one envi-
ronment running on each of the n parallel processes, this would result in an inference
batch of n samples and thus 1

n inference communications per sample. However, when
we have m environments running in series on each process, this would result in an in-
ference batch of nm samples and thus 1

nm inference communications per sample. This
constitutes a reduction of latency per sample and thus a higher sampling rate.

• When multiple environment steps are simulated in parallel, the inference step has to
wait until the slowest of these environment computations is finished. This is called the
straggler effect and was researched in relation to DRL by Stooke et al. [28]. Variance
in stepping time mainly arise from varied computation loads. In this thesis research for
example, an environment step consists of k matrix multiplications and k calls to the
trigger function, which can result in a large difference in computation time especially for
higher-dimensional systems. The straggler effect will increase with increased number of
parallel processes n. Running multiple independent environment steps in series on each
process is a way of combating the straggler effect, since the sum of the computation
times per parallel process will be closer to the mean.

Figure 3-5: Comparison of achieved sampling rates for different amounts of environments.

These theoretical effects were verified experimentally. Figure 3-5 compares the achieved time
per experience sample when using different amounts of environments. The maximum amount
of parallel processes during this experiment was set to 16, due to hardware limitations. This
means that when less than 16 environments are launched, every process contains only one
environment. The blue line represents the simulation time per experience sample when only

Master of Science Thesis R.J.F. de Ruijter

34 Methodology

counting the environment calculations, i.e. not including NN inference and gradient updates.
However, this does include the inference communication latency, since the measurement was
done on the neural network process (see Figure 3-4). The orange line represents the simulation
time per experience sample including inference time, and the green line represents the overall
simulation time per experience sample which also includes policy updates. For reference, the
colored brackets in Figure 3-4 correspond to these lines.

One can clearly observe that an increase of environments results in a decrease in simulation
time per sample. However, all lines flatten out and the sampling rate including gradient up-
dates diverges from the others. This implies that the latency due to inference communication
and straggler effect are largely reduced, and one of the remaining bottlenecks is the speed of
the gradient calculations and policy updates. The difference between the blue and orange line
is due to the latency resulting from performing the actual NN inference. The resulting bot-
tlenecks are now the inference speed, policy update speed and the number of parallel workers,
all of which are hardware related. A hardware accelerator like a GPU or TPU could reduce
the latency introduced by inference and policy updates further.

3-2-3 Action masking

As discussed in Section 3-1-2, one way of ensuring the safety of the final policy is to apply
action masking to the gradient calculations. Figure 3-6 shows a visualisation of neural network
inference without and with action masking.

Figure 3-6: Schematic representation of regular neural network inference (l) and neural network
inference using action-masking (r).

R.J.F. de Ruijter Master of Science Thesis

3-2 Agent 35

To further illustrate how action-masking works, consider the following example, similar to
the example from [14]. Suppose there are 4 possible actions a1 − a4, which are given equal
probabilities from state s0 by the policy:

πθ(· | s0) = [πθ(a1 | s0), πθ(a2 | s0), πθ(a3 | s0), πθ(a4 | s0)]
= softmax([l1, l2, l3, l4])
= [0.25, 0.25, 0.25, 0.25]

(3-3)

with ln ∈ R the logit corresponding to action an. Now imagine that from state s0 only the
first three actions are legal. Action masking can disable the illegal action by replacing the
logits corresponding to illegal actions by −∞ or a large negative number, before feeding the
logits to the softmax function. The softmax function will then push the action probabilities
associated with the illegal actions to zero, resulting in the agent almost certainly not choosing
these actions:

π′θ(· | s0) = softmax(lmasked) = [0.33, 0.33, 0.33, 0.00] (3-4)

During stochastic gradient descent, again only valid actions are used in the calculation of the
gradient of the objective function. This makes all gradients related to the masked actions
equal to zero, while renormalising the gradients for the other actions.

The main advantage of this method over penalising illegal actions, is the reduction of the
action search space. To illustrate this, consider Figure 3-7: when no action masking is
applied, all state-action pairs that lie under the red line have to be sampled in order to first
learn which actions are illegal, while learning an optimal strategy. Even once the deadlines
have been learned, the action probabilities of illegal actions will not become zero. This
results in a waste of computing power due to sampling of illegal actions. However, when
we directly use the a priori information we have regarding the deadline d(x) in the form of
action-masking, only the state-action pairs that lie below the green line have to be explored,
thus greatly reducing the search space. Another small advantage of this method is that the
reward function is not altered by adding penalties for illegal action, which makes monitoring
of the learning process more straightforward. A disadvantage of this method is that action
masking and thus deadline calculation is also required during evaluation of the final policy, in
order to obtain good results and guarantee safety (i.e. k(x) ≤ d(x)). However, the alternative
penalisation method also requires calculation of the deadlines during evaluation, in order
to guarantee safety of the final policy, because in that case the learned policy is still not
guaranteed to exclude illegal actions.

3-2-4 Neural network expansion

Deciding on the number of layers (depth) and the amount of nodes in each layer (width) of
a neural network is not a trivial task. The universal function approximation theorem states
that a feedforward neural network with only 1 hidden layer can approximate any continuous
function for inputs within a specific range, given it contains enough nodes in its hidden
layer. Although this is true, this does not mean that only having one layer in a neural
network is practical: in order to be able to learn complex functions, the width of the hidden
layer can become infeasibly large and may fail to learn and generalize correctly. Adding

Master of Science Thesis R.J.F. de Ruijter

36 Methodology

Figure 3-7: Schematic representation of some 1-dimensional state-action space, with an upper
limit on the actions of kmax. The green area is the legal part of the state-action space, the red
area the illegal part.

additional hidden layers has proven to be beneficial for learning more complex functions,
where it has been hypothesised that each concurrent layer extracts more high-level features
from the input data. However, simply adding more hidden layers also has some downsides:
deep neural networks are more prone to overfitting, require large amounts of data, can suffer
from unstable (i.e. exploding and vanishing) gradients and have a less convex loss function
[20] which result in slower training or even divergence. Ota et al. [20] have shown that naively
deploying deeper neural networks for DRL does not lead to better performance due to their
non-convex loss surface, while wider networks have a more convex loss surface resulting in
better convergence. Relatively shallow networks of 2 layers are still very prevalent in DRL.
However, recent studies (e.g. [20], [4]) have shown that increasing network depth can in fact
result in improved performance when some specialised techniques are used.

The method proposed in this thesis uses incremental expansion of the neural network. The
general idea is to start out with a relatively shallow network and add hidden layers to the
network when learning converges. Before giving a more detailed description of this imple-
mentation, the motivation behind this approach will be illustrated:

• In order to obtain more accurate and optimal results, the abstraction-based method
by Gleizer et al. [9] uses refinement of the abstractions by increasing the depth of the
abstraction l, which allows for the synthesis of more complex sampling policies. One
way of mimicking this using deep reinforcement learning, is to increase the episode
length, in order to capture more accurately the long-term system dynamics. However,
if the expressiveness of the neural network is the bottleneck, the added complexity from
increasing the episode horizon will not be absorbed effectively by the neural network.
This motivates the use of sufficiently deep neural networks.

• Since the policy is trained for a specific system and does not need to generalise to other
systems, using deeper neural networks can not result in overfitting.

• However, simply starting with a very deep neural network showed to result in high
computational loads during policy updates, due to the large amount of trainable pa-
rameters. This motivates the use of neural networks that are as small as possible, while
not being too small to capture the required complexity of the sampling behaviour.

R.J.F. de Ruijter Master of Science Thesis

3-2 Agent 37

• Also, convergence was slightly worse when using a fixed depth, deep neural network.
This is most likely due to the non-convexity of the loss surface of deeper networks, as
described by [20]. Using a more shallow network enabled the agent to more quickly learn
moderately well-performing policies, but limited the performance of the final policy. See
Appendix A for a comparison.

• The hypothesis presented here is as follows: Using neural network expansion allows
for the quick learning of coarse but moderately well-performing policies, while ensuring
that the expressiveness of the neural network is not the limiting factor when the episode
length is increased during later stages of the learning process. Appendix A includes some
empirical evidence to support this hypothesis.

Figure 3-8: The neural network expansion workflow

Although this implementation uses separate networks representing the policy- and value func-
tions, this section will simply use the term "network" referring to both policy- and value-
network for readability purposes. Figure 3-8 describes the learning process including neural
network expansion. The learning process should start out with a network that is as small as
possible in order to reduce computational load and speed up the initial learning. Experiments
showed that starting with only 1 layer resulted in bad performance, so the learning process
should be initialised with a 2 layer network. The weights of the network are initialised ran-
domly, using an orthogonal initialisation scheme [23]. The reinforcement learning process is
then initialised. During the learning process, the sampling performance is measured periodi-

Master of Science Thesis R.J.F. de Ruijter

38 Methodology

cally by running the current policy on a validation environment. If the validation score does
not improve anymore, it could be a sign that the current neural network is not able to capture
further complexity and the RL loop is stopped. This is when the neural network expansion
process commences.

First, a dataset consisting of state-action-value tuples is extracted from the current network
for later use. This is done by repeatedly simulating the system using the current network and
saving the trajectory steps.

A new network with one or more additional layers is then initialised, and the weights of the
old network are copied to the primary layers of the new network. The resulting new network
is then essentially a copy of the old network, but contains extra layers with random weights.

The copied layers of the new network are then permanently frozen, which means any future
gradients are not calculated for and do not affect the weights in these layers, an idea borrowed
from transfer learning. One could now consider the frozen layers a sort of stationary feature
extractor for the newly added layers. The reason for this is twofold. Firstly, freezing of the
previously trained layers ensures that the previously learned information is not lost. Secondly,
any future gradients will only flow into the added layers during backpropagation, which greatly
speeds up policy updates and reduces the required computational load.

One problem still exists: how does one initialise the weights of the newly added layers in
order to ensure that there is no severe loss in policy performance when the reinforcement
learning process is continued? Experiments showed that random weight initialisation (e.g.
orthogonal) often resulted in sharp collapse of the policy performance, which is undesirable.
To prevent this, the new network is pretrained on the previously obtained dataset using su-
pervised learning, specifically regression with an MSE loss. Pretraining of the policy network
uses the state-action pairs, while pretraining of the value network uses the state-value pairs.
This process is called imitation learning or behaviour cloning, and it essentially transfers the
learned input-output behaviour from the old to the new network.

At this point, the old network and trajectory dataset are no longer needed and could be
removed if necessary. The reinforcement learning process is then recommenced. This alter-
nating process of reinforcement learning until convergence of the validation score and neural
network expansion can be repeated until some stopping criterion is met.

D2RL [27] is a neural network architecture which incorporates dense connections from the
input to each of the layers for the policy, as well as for the value function. [27] showed that
this can be useful for reinforcement learning with deeper neural networks, and D2RL showed
better performance with lower variance and higher sample-efficiency compared to standard
dense networks. For these reasons, the D2RL architecture was incorporated in the proposed
method.

Figure 3-9: The D2RL modification to the policy πθ(s) neural network architecture [27].

R.J.F. de Ruijter Master of Science Thesis

3-3 Experimental setup 39

The main advantage of using this method over using a fixed-depth shallow network is the
increase in performance due to the ability to capture more complexity. The main advantage
of this method over using a fixed-depth deeper neural network is the decrease of computa-
tional requirements by the neural network process during policy updates, while still matching
the performance. Appendix A includes a more in-depth evaluation of this neural network
expansion method.

3-3 Experimental setup

The metrics used to evaluate the final policy πθ are:

• SAISTapprox(πθ) := infx∈XM
N∑
i=0

τi(x, πθ),
where XM is a set of M different, equally separated initial conditions.

• MAISTapprox(πθ) := 1
M

M∑
j=0

N∑
i=0

τi(xj , πθ)

Note that these values are approximations of the metrics described in Section 2-1-2, obtained
experimentally by running the final policy from M different initial conditions for N timesteps.
The smallest average inter-sample time obtained from these runs is the SAIST, the average
over all these runs is the mean average inter-sample time (MAIST). These values will be
calculated periodically during the learning process, in order to evaluate the learning process
more accurately than just using learning curves.
From all the aforementioned components and settings, the best combination will be used for
further evaluation of the proposed method. The following list is a summary of the settings
and components used during evaluation:

• n-Spherical coordinates, where only the angles are send to the agent. States that lie on
opposite sides of the origin are treated as the same abstracted state.

• Action-masking of illegal actions. Code adapted from [33].

• Neural network expansion as described in Section 3-2-4 with layer freezing, D2RL ar-
chitecture, and behaviour cloning. The learning process is initialised with a network
containing two layers of 64 nodes.

• The learning rate is initialised at 0.003 and is decreased with a factor 3 every time the
neural network is expanded.

• The horizon is initialised at 10 steps and is increased with a factor 2 every time the
neural network is expanded.

• All experiments are run for a fixed time period for better comparison.

• All experiments are run 5 times, in order to obtain a measure of the variance between
runs.

• The hyperparameters used can be found in Appendix A. These hyperparameters were
hand-tuned, since PPO is not overly sensitive to hyperparameter settings.

Master of Science Thesis R.J.F. de Ruijter

40 Methodology

R.J.F. de Ruijter Master of Science Thesis

Chapter 4

Results

In this chapter, the results of this thesis will be presented. The method with the settings as
described in Section 3-3 is evaluated on a 2-dimensional system using two different funda-
mental checking periods, a 3-dimensional system and a 4-dimensional system. These results
are compared to the results obtained using the abstraction-based method from [9].

4-1 2-dimensional system

The 2-dimensional system used in this numerical example is taken from [9]. The system
consists of the following plant and controller:

A =
[

0 1
−2 3

]
, B =

[
0
1

]
, K =

[
1 −4

]
(4-1)

The triggering condition is the predictive Lyapunov-based triggering condition from [9] of the
form V (ζ(t)) > −ρζ(t)TQLyapζ(t), where ζ(t) := Ad(h)x(t) +Bd(h)Kx̂(t) is the next-sample
prediction of the state, V (x) = xTPLyapx, ρ = 0.8 is the triggering parameter. The Lyapunov
matrices that were used are: PLyap = [1 0.25

0.25 1], QLyap = [0.5 0.25
0.25 1.5]. For the first experiment

we set h = 0.1 and kmax = 20.

4-1-1 Experiment 1

For the first experiment, a fundamental checking period of h = 0.1 was used. The initial
episode length was set to 10 samples, and increased by a factor 2 when the neural network
was expanded. Figure 4-1 shows the SAIST values for 5 runs of the proposed RL-based
method and the SAIST values for a run of the abstraction-based method. Note that the
SAIST-values for the RL-based method and under PETC in Figure 4-1 are estimated by
simulating the latest policy for 1000 steps from 500 equally spaced initial states. The final
policy was evaluated by simulating the policy for 2000 steps from 1000 equally spaced initial
states, for a more accurate estimate.

Master of Science Thesis R.J.F. de Ruijter

42 Results

Figure 4-1: Estimated SAIST curves for the PETC, proposed RL-based method and abstraction-
based method [9], for the 2-dimensional system with a fundamental checking time of h = 0.1.

The proposed RL-based method resulted in a final SAIST of 0.60 and a MAIST of 0.62, when
averaged over the 5 runs. The abstraction-based method also resulted in a SAIST of 0.60.
However, the abstraction-based method returned a SAIST value of 0.50 after just 24 seconds
of runtime, and already reached its final SAIST value of 0.60 after just 492 seconds. This
shows that although the final performance obtained using the abstraction-based method was
similar to that of the RL-based method, the abstraction-based method is significantly faster
than the proposed RL-based method for this numerical example. However, a different result
is obtained when a shorter fundamental checking time is used, as was done in experiment 2.

4-1-2 Experiment 2

For the second experiment, the same system was used, but with a shorter fundamental check-
ing period of h = 0.05. The settings remained unchanged from experiment 1. The results are
depicted in Figure 4-2.

Figure 4-2: Estimated SAIST curves for the PETC, the proposed RL method and the abstraction-
based method [9], for the 2-dimensional system with a fundamental checking period of h = 0.05.

R.J.F. de Ruijter Master of Science Thesis

4-1 2-dimensional system 43

In this experiment, the abstraction-based method resulted in a final SAIST of 0.45, whereas
the proposed RL-based method resulted in a final SAIST of 0.66. This illustrates how
abstraction-based methods can struggle with systems that are more complex in terms of
sampling behaviour, while the proposed RL-based method is less affected. In fact, these ex-
periments with h = 0.05 resulted in a higher SAIST value than for h = 0.1 when using the
RL-based method. For comparison, Table 4-1 summarises the results obtained in experiments
1 and 2.

h=0.1 h=0.05
PETC 0.32 0.27
Abstraction-based method 0.60 0.45
Proposed RL-based method 0.60 0.66

Table 4-1: SAIST-values obtained in experiment 1 and 2, including the PETC values for reference.

To fully understand where this difference stems from, consider the following. All possible
policies for h = 0.1 are also possible for h = 0.05, by just increasing the sampling time k
for every state by a factor 2 (if we assume kmax to be large enough to not limit the possible
policies). Furthermore, the shorter fundamental checking period h results in a larger infinite
set of possible transitions, and therefore results in a larger infinite policy space. This increase
in possible transitions is exactly the reason why for h = 0.05 the abstraction-based method is
not able to match the SAIST-value it obtained for h = 0.1: the size of the abstraction grows
significantly. The proposed RL method however does not suffer from the same problem, and
still shows convergence to approximately the same values as for h = 0.1. Furthermore, the
larger policy space associated with the shorter fundamental checking period could contain
policies that have a more refined and complex division of the state-space, which could result
in better average inter-sample times, as is the case in experiment 2. This is illustrated by
Figure 4-3, which depicts an example policy obtained for h = 0.1 and for h = 0.05.

Figure 4-3: Example policies for h = 0.1 (left) and h = 0.05 (right), obtained using the proposed
RL-based method. The trajectories resulting in the SAIST values are included.

Master of Science Thesis R.J.F. de Ruijter

44 Results

These policy plots in Figure 4-3 include an example trajectory, from the initial condition that
results in the SAIST-value. This illustrates how this policy ensures that the system enters a
stable trajectory in a region of the state space which results in higher average inter-sample
times.

Also note that the SAIST under PETC for h = 0.05 is lower than that for h = 0.1 (see Table
4-1). This might be counter-intuitive: since these experiments use a predictive Lyapunov-
based triggering condition, the immediate inter-sample time for h = 0.05 can only be larger
or equal to that for h = 0.1, as illustrated in Figure 4-4. However, this result is actually
in line with the hypothesis that forms the starting point for this thesis: a longer immediate
inter-sample time can lead to shorter long-term average inter-sample time.

Figure 4-4: Illustrative example showing the possible sampling times for h = 0.1 and h = 0.05
for two possible trajectories of a predictive triggering condition.

Figure 4-5 shows the running average of the ISTs generated for the 2-dimensional system with
h = 0.05 from 20 different initial conditions under PETC and a policy obtained using the
proposed RL-based method. Note how the AIST values when following the obtained policy
are much slower to converge than when following the PETC strategy. However, within a few
seconds of simulation, the AISTs for all trajectories following the trained strategy is already
higher than the AISTs following the PETC strategy.

Figure 4-5: Running average of the ISTs generated from 20 different initial conditions under
PETC and the strategy obtained using the proposed RL-based method in experiment 2.

R.J.F. de Ruijter Master of Science Thesis

4-2 3-dimensional system 45

4-2 3-dimensional system

To further evaluate the proposed method, it was tested on a 3-dimensional system. The
3-dimensional system used in this numerical example consists of the following plant:

A =

0 1 0
0 0 1
1 −1 −1

 , B =

0
0
1

 (4-2)

The controller K was synthesised using pole placement, with the closed-loop poles placed at
(−1,−2,−3). The triggering condition is the predictive Lyapunov-based triggering condition
from [9] of the form V (ζ(t)) > −ρζ(t)TQLyapζ(t), where ζ(t) := Ad(h)x(t) + Bd(h)Kx̂(t)
is the next-sample prediction of the state, V (x) = xTPLyapx, and ρ = 0.8 is the triggering
parameter. The Lyapunov matrix Q was set to the identity matrix and P was obtained
using the lyap function from the Python Control Systems Library [38]. We set h = 0.05 and
kmax = 20.

Figure 4-6 contains the estimated SAIST and MAIST over curves obtained using the proposed
RL method for 5 runs. The final policy results in a SAIST of 0.64 averaged over the 5 runs,
which again is higher than simply following the "greedy" PETC sampling strategy, which
results in a SAIST of 0.40. Note that during training, the SAIST value can sometimes
temporarily decrease greatly while the MAIST value is still growing. A possible explanation
for this is that the policy is optimised for the MAIST (i.e. the mean AIST over all initial
conditions), which gives no guarantees on the SAIST. However, in these experiments it was
observed that this deviation is usually temporary, as can also be observed in Figure 4-6.

Figure 4-6: Estimated SAIST and MAIST curves for 5 runs of the proposed RL method, for the
3-dimensional system. The PETC SAIST-value is included for reference.

No value for the abstraction-based method is included in Figure 4-6, because the abstraction-
based method was not able to run on the hardware used for these experiments. The reason
for this is memory overload due to the sheer size of the abstraction, even of depth l = 1.
The abstraction-based method has to calculate and store in memory the entire abstraction,
before being able to extract a policy from it. This is where the true advantage of the proposed
method again becomes evident: since transitions are calculated one step at a time and are only

Master of Science Thesis R.J.F. de Ruijter

46 Results

stored in memory for the duration of one rollout, the memory requirements are far smaller
and don’t grow significantly with the size of the transition system. This again illustrates how
the proposed RL-based method provides greater flexibility and can be applied to complex
systems that prevent the use of abstraction-based methods.

4-3 4-dimensional system

Finally, the proposed method was evaluated on a 4-dimensional system:

A =


1.38 −0.208 6.71 −5.676
−0.581 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 , B =


0 0

5.679 0
1.136 3.146
1.136 0

 ,
K =

[
0.518 −1.973 −0.448 −2.1356
−3.812 −0.0231 −2.7961 1.671

] (4-3)

The triggering condition again is the predictive Lyapunov-based triggering condition of the
form V (ζ(t)) > −ρζ(t)TQLyapζ(t), where ζ(t) := Ad(h)x(t) +Bd(h)Kx̂(t) is the next-sample
prediction of the state, V (x) = xTPLyapx, ρ = 0.8 is the triggering parameter, h = 0.01 and
kmax = 100. The Lyapunov matrix Q was set to the identity matrix and P was obtained
using the lyap function from the Python Control Systems Library [38].

Figure 4-7: Estimated SAIST curves for 5 runs of the proposed RL method, for the 4-dimensional
system. The PETC SAIST-value is included for reference.

Figure 4-7 contains the estimated SAIST and MAIST curves (i.e. estimated using 1000 steps
from 500 equally spaced initial states) obtained using the proposed RL method for 5 runs of 4
hours each. The final policy results in an MAIST of 0.153 and a SAIST of 0.146 averaged over
the 5 runs, which again is higher than simply following the "greedy" PETC sampling strategy,
which results in a SAIST of 0.118. This demonstrates how even for higher-dimensional systems
the proposed method is able to obtain sampling strategies that result in better AISTs than
following the PETC strategy, and does so in a reasonable amount of time.

R.J.F. de Ruijter Master of Science Thesis

4-4 Trajectory smoothness 47

Also note that most hyperparameter settings were left unchanged from the experiments on
lower-dimensional systems, with the exception of initial episode length which was set to 80.
Further tuning of hyperparameters like increasing the buffer size, NN width and episode
length could potentially result in better performance for higher-dimensional systems.

4-4 Trajectory smoothness

As mentioned in Section 3-1-2, an alternative cost function was implemented which incorpo-
rates a measure of trajectory smoothness besides the usual term for the average sampling-time.
For reference:

r(x, k) = β(1− ψ(x, k)
π

) + (1− β) k

kmax
, with ψ(x, k) = arccos a · b

|a||b|
(4-4)

where ψ ∈ [0, π] is the angle between the trajectory vectors before and after sampling and
β ∈ [0, 1] is a weighting term.

The hypothesis presented here is as follows: Optimising for inter-sample times will result in
fewer but stronger control actions and therefore a decrease in trajectory smoothness. This
hypothesis was evaluated by running the same experiment for different values for weighting
coefficient β ∈ [0, 1]. Figure 4-8 depicts the obtained SAIST-values and the angle (in degrees)
between the trajectory vectors before and after sampling ψ for different values of β. A clear
inverse relation between the SAIST and the trajectory smoothness can be observed. When
β = 0 (i.e. trajectory smoothness is not considered) the SAIST-value is highest and the
trajectory smoothness is low, namely the trajectory vectors before and after sampling are
almost perpendicular. Conversely, when β = 1 (i.e. average inter-sample times are not
considered) the SAIST-value approaches the fundamental checking period h = 0.05 and the
trajectory vectors before and after sampling are almost tangent. This result supports the
hypothesis presented here and shows how the proposed tool allows the user to make a trade-
off between ISTs and trajectory smoothness by varying β.

Figure 4-8: Comparison of the angle (in degrees) between the trajectory vectors before and after
sampling ψ and the SAIST for different values for weighting coefficient β.

Master of Science Thesis R.J.F. de Ruijter

48 Results

R.J.F. de Ruijter Master of Science Thesis

Chapter 5

Conclusion and future work

5-1 Conclusion

This thesis proposes a deep reinforcement learning tool for the synthesis of near-optimal
sampling strategies for self-triggered control systems. The viability of the proposed tool as
an alternative to abstraction-based methods such as [9] was shown through some numeri-
cal examples. In these experiments, the proposed method was able to match the sampling
performance obtained by the abstraction-based method for an example 2-dimensional sys-
tem. When the same system was used but with a shorter fundamental sampling time, the
proposed method was able to exceed the performance of the abstraction-based system. The
abstraction-based method was not able to run for a 3-dimensional and 4-dimensional system,
due to memory capacity limitations. The proposed method however could still find sampling
strategies that resulted in better average inter-sample times than simply following the PETC
sampling strategy. This illustrates how the proposed method is a viable alternative that can
be applied to more complex systems that prohibit the use of abstraction-based methods.

The proposed tool was designed with scalability in mind. The neural network expansion
component for example, enables the use of deeper and wider neural network architectures,
which might be necessary for more complex systems in terms of sampling behaviour. The use
of parallel workers enables scaling of the generation of experience, but is still limited by the
available hardware (i.e. amount of CPU cores and use of hardware accelerators).

Finally, the proposed tool enables the user to include a term for the trajectory smoothness
into the reward function. An inverse relation between trajectory smoothness and average
inter-sample times was found during evaluation of the tool, which could be of interest in some
use-cases.

The higher flexibility presented by the proposed method compared to more formal methods
like the abstraction-based method from [9] does come with some downsides. Not every run
of the proposed method will converge to the exact same final value and the policy might
get stuck in local optima, as can be observed from the experiments in Chapter 4. In order
to minimise this effect, one might need to adjust the hyperparameter settings and/or run

Master of Science Thesis R.J.F. de Ruijter

50 Conclusion and future work

the algorithm multiple times with different random seeds. Settings like rollout buffer size,
minibatch size, learning rate, discount factor, horizon length, and neural network width and
depth can have an effect on the learning process. Some general guidelines on how to adjust
these hyperparameters are included in Appendix B.

5-2 Future work

Future research on this topic could focus on improving the current tool. One could pursue the
use of more modern, larger neural network architectures, which could improve performance.
Recent research [4] has shown that the use of modern network architectures in DRL can
outperform state-of-the-art methods, but to ensure stable training requires techniques like
spectral normalisation. Another option would be to include some method(s) to increase
sample efficiency, like prioritized trajectory replay [15]. Finally, one could consider techniques
to enhance the exploration efficiency, like including parameter noise [22], or some form of
intrinsic reward ([21], [5], [6]).

Another route could focus on scaling of the current tool, by employing multiple CPU-GPU
platforms in parallel, all running the current algorithm. Gradients could then be globally
averaged using MPI Allreduce or similar to update the central model parameters, similar to
the setup of OpenAI Five [3].

This research has not considered the generalisation capabilities of the models obtained using
the proposed method. An interesting question is whether the obtained models can be used
to facilitate the training of new models for different systems, by applying techniques from
transfer learning.

In this research, the action space was strictly constrained to respect the deadlines imposed
by the PETC triggering condition, which guarantees safety but might be too strict. An
interesting question is whether this constrained could be loosened somewhat, by allowing the
agent to sometimes choose a sampling time beyond the imposed deadline. One could then
include a reward related to some control performance measure like Lyapunov decrease, which
would give the end user more flexibility in terms of shaping the reward function.

Other research directions could focus on the case where the state is not fully observable
(which would result in a partially observable MDP), noisy state measurements or non-linear
dynamics.

R.J.F. de Ruijter Master of Science Thesis

Appendix A

Comparison of components

The different components and settings as discussed in this chapter have all been tested and
compared. In this section the most relevant findings will be discussed.

A-1 Scheduling of learning rate and horizon

An important hyperparameter is the learning rate, which determines the step size at each
gradient update. Smaller and larger values for the learning rate both have their advantages
and disadvantages. Larger values cause quicker convergence towards the optimum, and enable
the optimiser to escape local optima. This can also present a problem though: when the
learning rate is too high, it can cause unstable learning and even divergence, because the
optimiser is not able to settle in an optimum. Smaller values on the other hand can cause
the optimiser to converge very slowly and get trapped in a local optimum, but often result
in a more accurate approximation of the optimum. In order to get the best of both world,
the learning rate is often scheduled: learning is initialised with a high learning rate which
is decreased over time. The proposed method also uses this approach. When using neural
network expansion, the learning rate is decreased every time the network is expanded in
order to prevent the learning process to become unstable. When not using neural network
expansion, the learning rate is decreased linearly, from a start value to a final value in a fixed
amount of timesteps.

As mentioned in Section 3-2-4, increasing the episode length or horizon is a way of capturing
more of the complexity of the system dynamics, which could result in more complex and
optimal sampling policies, similar to increasing the depth of the abstractions in [9]. However,
shorter horizons result in better exploration of the state space, due to the random state
initialisation of each new episode. This is especially important during early stages of training,
to reduce the chance of the policy getting stuck in a local minimum. In order to again get the
best of both worlds, the proposed method also schedules the horizon: starting the learning
process with a shorter horizon for better exploration and increasing the horizon over time in
order to obtain more accurate final results. When using neural network expansion the horizon

Master of Science Thesis R.J.F. de Ruijter

52 Comparison of components

is increased every time the network is expanded. When not using neural network expansion,
the horizon is increased every N environment interactions, with N a large number.

A-2 NN expansion versus fixed depth

Figure A-1 depicts a comparison between runs using the neural network expansion method
and two runs with a fixed neural network depth: one with a shallow network of two layers
and one with a deeper network of 6 layers. Every method was run 5 times. NN expansion
happens every 5 million steps and the horizon increases with a factor 2. One can clearly
see how the shallow network is not able to capture the increased complexity introduced by
increase in horizon length, and is not able to match the performance obtained using the deep
network and the expansion method. This motivates the use of deeper NNs.

The runs using the expansion method show slightly faster convergence than the ones with the
fixed deep network, but their final performance is comparable. However, the deeper network
method showed a higher use of computational resources by the neural network process as
compared to the expansion method, in this case approximately 3 times as high. In the case
of the expansion method, gradients are only calculated and applied to the last layer, which
greatly reduces neural network training load and scales well to even deeper neural networks.
This demonstrates the possible advantage of using NN expansion over a fixed depth deep
network.

Figure A-1: Estimated SAIST curves and 95% confidence interval for a 2-layer and 6-layer NN,
and using NN expansion. The width is fixed to 64 nodes.

Also consider the following: neural network expansion reduces the amount of parameters that
have to be updated. If we fix the amount of computing power available for policy updates, a
network using NN expansion can thus have wider hidden layers than a fixed depth NN with
the same amount of layers. This could be advantageous since wider neural networks can help
with convergence as shown by [20], which was also observed during experiments in this thesis
research.

R.J.F. de Ruijter Master of Science Thesis

A-3 Action-masking versus action-penalisation 53

A-3 Action-masking versus action-penalisation

Figure A-2 depict the learning curves when using action-penalisation and action-masking. One
can see that the average reward obtained using action-penalisation is lower than when using
action-masking. The reason for this is decreased convergence due to the sampling of illegal
actions by the action-penalisation method, whereas the action-masking method prevents the
sampling of illegal actions.

Figure A-2: Average reward curves of a run with action-penalisation and one with action-masking.

A-4 PPO hyperparameters

PPO is known for not being too sensitive to hyperparameter settings, so the hyperparameters
were hand-tuned for the proposed tool. This section will give a brief overview of the relevant
hyperparameters and the settings that were used.

• Policy model: for the base implementation an multi-layer perceptron (MLP) was used
for the policy- and value-networks. Maintaining separate policy- and value-networks
produced the best results.

• For the activation function three common variants were considered: ReLu, tanh and
sigmoid. The ReLu activation function produced the best results.

• A discount factor γ of 1 produced the best results. This is to be expected, since we
are interested in the limit average ISTs.

• The entropy coefficient c1 specifies the strength of the entropy regularization (see
Section 2-2-3). Higher values should ensure more random steps being taken by the
agent, resulting in more exploration. However, this hyperparameter did not seem to
have a large effect on the results, so the default value of 0.01 was used.

• The clipping parameter ε corresponds to the acceptable threshold of divergence be-
tween the old and new policies during gradient updates. Lower values ensure smaller

Master of Science Thesis R.J.F. de Ruijter

54 Comparison of components

updates and more stable but slower learning as a result. A value of ε = 0.2 produced
the best results.

• The minibatch size is the number of samples in the rollout buffer divided by the
number of minibatches per update, so in order to use all samples in the rollout buffer
the number of minibatches should be a factor of the rollout buffer size. The size of
the minibatches is limited by the available memory. In order to make sure this is not
exceeded, the minibatch size was set equal to the number of environments, which makes
the minibatch size equal to the size of an inference batch.

• The number of epochs specifies the number of passes through the rollout buffer
during network updates. Higher values should result in quicker learning at the expanse
of learning stability. A value of 10 produced the best results.

R.J.F. de Ruijter Master of Science Thesis

Appendix B

Tool User Guide

B-1 Requirements

The following packages have to be installed in order to use the proposed tool:

• python3-dev (>=3.5)
• cmake
• libopenmpi-dev
• zlib1g-dev
• tensorflow (1.8.0 - 1.15.0)
• tensorboard
• stable-baselines
• control

B-2 How to use?

The RL tool can be started by running main.py, after which the training process can be
monitored using Tensorboard. The user should specify an instance of a triggering condition
in config.py. This triggering condition should conform to the ETCetera convention. This
instance should contain:

• a method called "trigger", which returns True if triggering is necessary, and False oth-
erwise.

• attribute "kmax" (int)
• attribute "h" (float)
• attribute "plant" (LinearPlant)
• attribute "controller" (LinearController)

Master of Science Thesis R.J.F. de Ruijter

56 Tool User Guide

Examples can be found in the "systems" folder. The user can also adjust the hyperparameter
settings in config.py. These hyperparameters are described in config.py. The user can set
multiple different stopping criteria:

• fixed runtime
• fixed amount of environment steps
• fixed amount of network expansions
• early stopping before the next network expansion on convergence of the SAIST-value

The user can enable or disable the different components described in Chapter 3, such as
neural network expansion, action masking, smoothness, environment vectorisation, etcetera.
The user can load a previously trained model in order to evaluate its performance.

B-3 Guidelines for hyperparameter tuning

During the experiments presented in Chapter 4, most hyperparameters were left unchanged
from the first experiment to simplify the comparison. However, during other experiments
where hyperparameters were adjusted, an increase in final performance and stronger conver-
gence were observed. When training is unstable, one should reduce the learning rate. The
initial horizon length should be set to a length which captures the most important sampling
behaviour of the system. Shorter initial horizon lengths will result in faster initial learning,
but performance could degrade if important sampling behaviour is not captured. In general,
when the dimensionality of the system increases, one should increase one or multiple of the
following hyperparameters:

• buffer size
• network width,
• horizon length
• training time
• number of parallel processes (if the hardware allows this)
• maximum amount of steps and/or patience between network expansions
• minimum and maximum amount of epochs and patience during behaviour cloning

R.J.F. de Ruijter Master of Science Thesis

Bibliography

[1] Dieky Adzkiya and Manuel Mazo Jr. Scheduling of event-triggered networked control
systems using timed game automata, 2016.

[2] Richard Bellman. Dynamic Programming. Dover Publications, 1957.

[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota
2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[4] Johan Bjorck, Carla P. Gomes, and Kilian Q. Weinberger. Towards deeper deep rein-
forcement learning with spectral normalization, 2022.

[5] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A.
Efros. Large-scale study of curiosity-driven learning. In ICLR, 2019.

[6] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation, 2018.

[7] Gabriel de Albuquerque Gleizer and Manuel Mazo Jr au2. Computing the sampling
performance of event-triggered control, 2021.

[8] Gabriel de Albuquerque Gleizer and Manuel Mazo Jr. Scalable traffic models for schedul-
ing of linear periodic event-triggered controllers, 2021.

[9] Gabriel de Albuquerque Gleizer, Khushraj Madnani, and Manuel Mazo Jr. Self-triggered
control for near-maximal average inter-sample time, 2021.

[10] Deepak Raj. Single-layer neural networks in machine learning (perceptrons), 2020. [On-
line; accessed 10-January-2022].

[11] MCF Donkers and WPMH Heemels. Output-based event-triggered control with guaran-
teed h infinity gain and improved and decentralized event-triggering. IEEE Transactions
on Automatic Control, 57(6):1362–1376, 2011.

Master of Science Thesis R.J.F. de Ruijter

58 Bibliography

[12] WPM Heemels Heemels, MCF Donkers, and Andrew R Teel. Periodic event-triggered
control for linear systems. IEEE Transactions on automatic control, 58(4):847–861, 2012.

[13] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines.
https://github.com/hill-a/stable-baselines, 2018.

[14] Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy
gradient algorithms, 2020.

[15] Xingxing Liang, Yang Ma, Yanghe Feng, and Zhong Liu. Ptr-ppo: Proximal policy
optimization with prioritized trajectory replay. arXiv preprint arXiv:2112.03798, 2021.

[16] Mathworks. What is reinforcement learning?, 2008. [Online; accessed Januari 7, 2022].

[17] Manuel Mazo Jr, Adolfo Anta, and Paulo Tabuada. An iss self-triggered implementation
of linear controllers. Automatica, 46(8):1310–1314, 2010.

[18] Manuel Mazo Jr, Arman Sharifi-Kolarijani, Dieky Adzkiya, and Christiaan Hop. Ab-
stracted models for scheduling of event-triggered control data traffic. In Control Subject
to Computational and Communication Constraints, pages 197–217. Springer, 2018.

[19] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lil-
licrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. In International conference on machine learning, pages
1928–1937. PMLR, 2016.

[20] Kei Ota, Devesh K. Jha, and Asako Kanezaki. Training larger networks for deep rein-
forcement learning, 2021.

[21] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In International conference on machine learning,
pages 2778–2787. PMLR, 2017.

[22] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen,
Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space
noise for exploration, 2018.

[23] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlin-
ear dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

[24] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust region policy optimization, 2017.

[25] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation, 2018.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

R.J.F. de Ruijter Master of Science Thesis

https://github.com/hill-a/stable-baselines

59

[27] Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2rl: Deep
dense architectures in reinforcement learning. arXiv preprint arXiv:2010.09163, 2020.

[28] Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning.
arXiv preprint arXiv:1803.02811, 2018.

[29] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9–44, 1988.

[30] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, second edition, 2018.

[31] Paulo Tabuada. Verification and control of hybrid systems: a symbolic approach. Springer
Science & Business Media, 2009.

[32] Paulo Tabuada and Senior Member. Event-triggered real-time scheduling of stabilizing
control tasks.

[33] Cheng-Yen Tang, Chien-Hung Liu, Woei-Kae Chen, and Shingchern D. You. Imple-
menting action mask in proximal policy optimization (ppo) algorithm. ICT Express,
6(3):200–203, 2020.

[34] Edward L Thorndike. Animal intelligence: an experimental study of the associative
processes in animals. The Psychological Review: Monograph Supplements, 2(4):i, 1898.

[35] William Homan Thorpe et al. Origins and rise of ethology. Heinemann Educational
Books, 1979.

[36] Alan Mathison Turing. Intelligent machinery, 1948.

[37] unknown. Multilayer perceptron. [Online; accessed 18-February-2022].

[38] unknown. Python control systems library. [Online; accessed 18-January-2022].

[39] Manel Velasco, Josep Fuertes, and Pau Marti. The self triggered task model for real-
time control systems. In Work-in-Progress Session of the 24th IEEE Real-Time Systems
Symposium (RTSS03), volume 384, 2003.

[40] Manel Velasco, Pau Martí, and Enrico Bini. On lyapunov sampling for event-driven
controllers. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference, pages 6238–6243. IEEE, 2009.

Master of Science Thesis R.J.F. de Ruijter

60 Bibliography

R.J.F. de Ruijter Master of Science Thesis

Glossary

List of Acronyms

NCS Networked Control Systems
ETC Event-Triggered Control
STC Self-Triggered Control
LTI linear time-invariant
CETC Continuous Event-Triggered Control
PETC Periodic Event-Triggered Control
IST inter-sample time
AIST average inter-sample time
SAIST smallest average inter-sample time
MAIST mean average inter-sample time
TD temporal difference
MDP Markov Decision Process
DP Dynamic Programming
GPI Generalize Policy Iteration
SGD stochastic gradient descent
GAE Generalised Advantage Estimation
RL reinforcement learning
DRL deep reinforcement learning
PG Policy Gradient
PPO Proximal Policy Optimisation
TRPO Trust Region Policy Optimisation
SDSS state-dependent sampling strategy
ANN artificial neural network
MLP multi-layer perceptron

Master of Science Thesis R.J.F. de Ruijter

62 Glossary

R.J.F. de Ruijter Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface and Acknowledgements

	Main Matter
	Introduction
	Preliminaries and Problem Statement
	Aperiodic control
	Fundamentals
	Challenge: maximizing average inter-sample times
	Abstraction-based methods

	Reinforcement learning
	Fundamentals
	Deep Reinforcement Learning
	A closer look at Policy Gradient methods

	Problem statement

	Methodology
	Environment
	Base environment
	Environment wrappers

	Agent
	Algorithm selection
	Hardware and parallelisation
	Action masking
	Neural network expansion

	Experimental setup

	Results
	2-dimensional system
	Experiment 1
	Experiment 2

	3-dimensional system
	4-dimensional system
	Trajectory smoothness

	Conclusion and future work
	Conclusion
	Future work

	Appendices
	Comparison of components
	Scheduling of learning rate and horizon
	NN expansion versus fixed depth
	Action-masking versus action-penalisation
	PPO hyperparameters

	Tool User Guide
	Requirements
	How to use?
	Guidelines for hyperparameter tuning

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

