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Abstract

Control engineering researchers are increasingly embracing data-driven techniques like rein-
forcement learning for control and optimisation. An example of a case where reinforcement
learning could be useful is the synthesis of near-optimal sampling strategies for self-triggered
control. Self-triggered control is an aperiodic control method that aims to reduce the num-
ber of communications between the controller and sensors in a control loop, by predicting
when some triggering condition is met and only transmitting a sample accordingly. Recent
research has shown that greedily following the proposed sampling times can result in sub-
optimal long-term average inter-sample times. Abstraction-based methods have been able
to synthesise sampling strategies that result in better long-term average inter-sample times,
by allowing for early sampling and considering the proposed sampling times as deadlines.
However, these abstraction-based methods suffer greatly from the curse of dimensionality in
the form of combinatorial explosion, which limits their practicality for more complex sys-
tems. This thesis proposes a novel deep reinforcement learning tool for finding near-optimal
sampling strategies for self-triggered control of LTI systems. The proposed tool is evaluated
and compared to a state-of-the-art abstraction-based method. The proposed tool is shown
to match the performance of the abstraction-based method for smaller systems, while still
achieving good results on more complex systems that prohibit the use of abstraction-based
methods.
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Chapter 1

Introduction

Machine learning is a data-driven form of artificial intelligence in which performance of a
system improves automatically through the processing of data. A specific type of machine
learning that has recently gained a lot of interest from the academic community is called
reinforcement learning (RL). Reinforcement learning involves an agent that learns desired
behaviour by interacting with an unknown environment and receiving rewards for its actions,
thereby creating its own dataset on-the-fly. Such an RL agent uses trial-and-error to gather
experience with the goal of maximising the rewards it obtains by altering its behaviour.
Recently, the use of artificial neural networks has been introduced into the RL framework,
which has greatly increased the capabilities of these methods. Such "deep reinforcement
learning" algorithms have been able to achieve and surpass human performance in complex
tasks like playing Atari games. A deep reinforcement learning algorithm called AlphaGo was
even able to beat professional players at the extremely complex board game Go.

Control engineering researchers are also embracing these kinds of data-driven techniques. An
example of a case where reinforcement learning could be useful is learning optimal sampling
strategies for Event-Triggered Control (ETC) and Self-Triggered Control (STC). In tradi-
tional control schemes, control updates happen periodically, whereas ETC and STC schemes
enable aperiodic updates. In this approach, a sample measurement of the state is only send
to the controller when a triggering condition that guarantees some control objectives is met.
This allows for more flexible control, which is especially useful when multiple control loops
share the same communication network. Since such a communication network has a limited
bandwidth, sampling becomes a scarce resource and one might want to minimise its wasteful
use. This gives rise to the problem of synthesising a sampling strategy that maximises a
control loop’s long-term average sampling time, which would result in lower resource usage.
Most current methods attempt to achieve this by using some finite-state traffic abstraction
of the system, that models the sampling characteristics of a system. These abstractions are
in the form of transition systems, which can quickly grow in size with the complexity of the
system. This could result in abstractions that exceed computer memory capacity and search
times that are too long to be practical, a phenomenon often referred to as "the curse of dimen-
sionality". Data-driven methods like reinforcement learning could present a viable alternative
to these abstraction-based methods.

Master of Science Thesis R.J.F. de Ruijter



2 Introduction

Since an RL agent learns from experience that is generated on-the-fly, it does not need a prior:
knowledge of the entire transition system and will therefore not be hindered by computer
memory capacity. The simulating nature of reinforcement learning enables the study of long-
term dynamics, which make it an interesting candidate for this application. However, the
training of these RL models does require the generation and processing of massive amounts
of experience, since the state-action spaces describing these tasks are large. In the case of
Go for example, an astonishing 1070 different board configurations are possible - more than
the number of atoms in the known universe. Training a reinforcement learning agent to solve
such a task sequentially on a single processor would take too much time to be of any real use.
For this reason, these methods often rely on parallel computing approaches to generate the
experience from which the agent can learn. Such an approach can scale with the complexity
of the problem by just employing more experience-generating workers in parallel.

The main goal of this thesis research is to implement a tool which uses deep reinforcement
learning methods to synthesise near-optimal sampling strategies for LTI self-triggered control
systems. The performance of this tool will be compared to that of an abstraction-based
method by Gleizer et al. [9]. The main findings of this thesis research are presented in
this report. Chapter 2 will provide an overview of key concepts related to ETC/STC and
Deep Reinforcement Learning, followed by the problem statement of this thesis research.
Chapter 3 includes a description of the proposed tool and experimental setup. Chapter 4 will
present and discuss the results of the experiments. Lastly, Chapter 5 contains a conclusion
and recommendations for future work. In the Appendices, some additional results comparing
different components of the tool can be found, followed by a guide on how to use the proposed
tool.
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Chapter 2

Preliminaries and Problem Statement

This chapter will provide the reader with the necessary theoretical knowledge to understand
the research presented in this thesis report. The first section will focus on aperiodic control,
followed by a section on reinforcement learing. Finally, the problem addressed by this thesis
research will be formulated in the last section.

2-1 Aperiodic control

Feedback controllers are typically implemented in a periodic fashion. Sensor measurements are
received periodically by the controller after which control actions are calculated and applied
to the plant using actuators. The field of periodic control is mature and many well-developed
theories and tools for analysis and design are available to engineers. Although this still makes
periodic control the preferred method for many applications, it has its disadvantages. Some
of these disadvantages become apparent in the case of Networked Control Systems (NCS).

I Sensor 1 I—l Plant 1 |—| Actuator 1 | B | Sensor NV I—I Plant N I—I Actuator Nl

Network

Scheduler

Controller 1 Controller N

Figure 2-1: Networked Control System containing N control loops [1].

An NCS, as depicted in Figure 2-1, is a collection of distributed control loops in which
the communication between sensors, actuators and controllers in every loop is transmitted
over a shared digital communication network. Some advantages of this approach include
reduced wiring and maintenance costs. These shared communication networks are however
bandwidth-limited: they contain finitely many communication channels and can only handle
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4 Preliminaries and Problem Statement

one signal per channel at any given time. This makes communication a scarce resource and
the need for minimization of its wasteful use arises, which could potentially also lead to
energy-savings. A closely related problem is the scheduling of different control loops over the
same communication channel, while ensuring closed-loop stability of all control loops.

These problems can be solved by allowing for aperiodic controller updates. In the periodic
control setting, sampling times are equally spaced according to a fixed sampling period. In the
aperiodic control setting, the next sampling time is determined dynamically, which results in
aperiodic controller updates, as depicted in Figure 2-2. FEvent-Triggered Control (ETC) and
Self-Triggered Control (STC) are two related methods of dynamically determining this next
sampling time. In ETC, the control loop is only triggered when an event, defined by some
triggering-condition, occurs. When this triggering-condition is properly designed, it ensures
adequate closed-loop control performance, while reducing the amount of communication traffic
over the network. Whereas ETC is reactive and requires monitoring of the system in between
control tasks, STC could be considered a more pro-active alternative. STC uses a model of
the system to predict the necessary next sampling time based on the triggering condition. In
this section, some relevant concepts related to these methods will be covered.

0 A A N

Time Time

Figure 2-2: Periodic (1) versus aperiodic (r) sampling times.

2-1-1 Fundamentals

Let us consider a feedback-controlled linear time-invariant (LTI) system, described by the
following state space model:

@(t) = Az(t) + BKa(t), x(t) € R", i(t) € R" (2-1)

where x is the plant’s state vector, & is the state measurement vector available to the controller
and A, B, K are matrices of appropriate dimensions. The design of controller K is outside the
scope of this literature survey. The feedback is implemented in a zero-order sample-and-hold
manner: let £, k € Ny be a sequence of sampling times, then

B(t) = 2(ty), Yt € [t trsr) (2-2)

This means that once the measurement of the state available to the controller Z is updated,
it is kept constant until the next sampling time, resulting in a constant control action being
applied to the plant during this time.

Continuous and Periodic ETC

In periodic control, the sequence of sampling times ¢; would be equally spaced, depending on
a fixed sampling period. In ETC on the other hand, tj is determined by a triggering condition

R.J.F. de Ruijter Master of Science Thesis



2-1 Aperiodic control 5

C(x(t),z(tx)) = 0. A state update is only send to the controller when the triggering condition
is met. The earliest version of ETC required continuous monitoring of the triggering condi-
tion, which was later termed Continuous Event-Triggered Control (CETC). The triggering
condition is a function of the current state x(¢) and the last sampled state that was sent to
the controller x(tj). This results in the triggering times

to=0, tpy1= inf{t >ty ‘ C(l‘(t),i’(t)) = O} (2—3)

Note that the resulting inter-sample time (IST) 7T(x(tx)) := tp+1 — tr depends on the last
sampled state.

Ki(t) z(t)
> Plant
Y
Controller Trlgg(.er.mg _____ >
Condition
A A

Cﬁ(t) = :L'(tk), Vit € [tk7tk+l)
Figure 2-3: ETC system.

In CETC, this triggering condition is continuously monitored, which requires specialised
hardware and can result in Zeno behaviour (i.e. an infinite amount of events in a finite time
interval), because CETC has no inherent lower bound on the triggering time. In Periodic
Event-Triggered Control (PETC) [12] the triggering condition is checked only periodically,
with a fixed sampling interval A > 0, called the fundamental checking period. This type
of ETC attempts to strike a balance between periodic and event-based control and can be
easily implemented on standard digital hardware, while inherently excluding Zeno behaviour
because of the natural lower bound on the inter-event time (h). In case the triggering condition
C(x(t),z(tx)) > 0 is not met when checked, no state update is send from plant to controller
and no new control input commands has to be send from the controller to the plant for at
least another sampling interval h. This means no access to the communication network is
required during this interval. When the triggering condition is met, it means a control action
is required to guarantee control objectives. Formally:

to=0, tps =inf{kh>ty, k€ N|C(a(t),2(t)) >0} (2-4)

The resulting IST 7(z(tg)) := tx+1 — t is again a function of the state. In the PETC case,
we can also define a discrete IST x = 7/h. Often a maximum IST naturally emerges form a
PETC triggering condition, but to enforce a "heartbeat" of the system a maximimum discrete
IST k is often set.

Master of Science Thesis R.J.F. de Ruijter



6 Preliminaries and Problem Statement

Self-Triggered Control

STC as originally proposed by [39] is another aperiodic control method. In STC, instead of
continuously or periodically checking the triggering condition, the controller uses the sampled
state and a model of the system dynamics to predict the next sampling time t5 11 = tg + T'(z(t)).
The next sample time is the maximum sample time such that the resulting predicted state
of the system still meets a triggering condition. Note that this is a conservative prediction.
Formally,

to =0, thtr1 = sup{t € hN | t> 1, C(t — tk,$(t), Zi‘(t)) < 0} (2—5)

Since triggering times can be predicted ahead of time using STC, it allows for more flexibility
in scheduling control loops compared to ETC. STC also does not require the use of dedicated
hardware to monitor the state. However, the computational cost of STC is higher compared
to ETC, and the reliance on predictions instead of actual measurements of the state make it
less robust against possible disturbances.

Triggering conditions

Many different variations of triggering conditions can be found in the literature, such as
triggering conditions based on the state error [32], the input error [11] or on a Lyapunov
function of the system [39], [40], [17]. The goal of most of these triggering conditions is to
ensure that the system is stable. A very common way of achieving this is with triggering
conditions that guarantee a monotone decrease of the Lyapunov function of the system, i.e.
triggering conditions that ensure that the derivative of the Lyapunov function is kept negative.

Sampling strategies

Generally speaking, a sampling strategy maps an alternating sequence of past states and
inter-sample times r = xgTpz171...2E to a next inter-sample time 7. However, finding such a
sampling strategy can be very difficult, and some simplifications can achieve similar outcomes.
In the context of STC, [9] defines the following simplifications:

o state-dependent sampling strategy (SDSS): a strategy that maps a sequence of states to
the next inter-sample time 7;: s : (R™)" — R

o static SDSS: a strategy that takes as input only one state in order to determine the
next inter-sample time 7;, i.e. a memoryless strategy: s: R" — R

How to synthesise a sampling strategy depends on the sampling goal. One interesting chal-
lenge is finding a static SDDS that minimises the amount of sampling, i.e. maximises the
average inter-sample times, which will be presented in more detail next.

R.J.F. de Ruijter Master of Science Thesis



2-1 Aperiodic control 7

2-1-2 Challenge: maximizing average inter-sample times

Once we start considering communication as a scarce resource, the question of how to minimize
its wasteful use naturally arises. This could be seen as an optimisation problem: sample as
little as possible while still ensuring control performance. This goal could be more formally
expressed using the average inter-sample time (AIST) and smallest average inter-sample
time (SAIST):

1 & .

. ; 7i(z) SAIST(s) := xglgm AIST(z, s) (2-6)
Note the the AIST is the limit average inter-sample time, which means it is a fundamentally
long-term metric which is not sensitive to short-term transient behaviour. The SAIST could
be considered the worst-case AIST that could arise from a strategy s. This means that the
SAIST is not longer a function of the state x but only of the strategy s, which makes it a

good measure of sampling performance.

AIST(z,s) := liminf

n—oco n 4+

Most of the aforementioned triggering conditions were designed with the goal of sampling
as late as possible, which is the logical choice when using ETC. However, the predictive
nature of STC allows for more flexibility in the determination of the next sampling time.
Realize that sampling earlier than the triggering condition proposes can only result in better
control performance at the cost of a worse immediate IST. When we thus consider the STC-
generated sampling time as a sampling deadline instead, we gain the possibility of searching
for strategies that result in more optimal long-term average inter-sample times. Formally:

d(z) =max{r € T |C(r, M(7)%,%) <0}, (2-7)

where 7 € {h,2h, ..., kh} and M(t) := Agq(t) + Ba4(t)K is the state transition matrix under
held input. Note that this deadline is state-dependent and is calculated at sampling time, i.e.
when a new state measurement is send to the controller.

In this setting, simply sampling at the proposed deadline could be considered a greedy optimi-
sation approach: this maximises the immediate reward without regard for long-term effects.
Such an approach will only result in an optimal solution if the optimisation problem has a
strict optimal substructure, which can not be assumed in this case. To illustrate this, consider
Figure 2-4. Let’s say we need to choose one of the two depicted paths with the goal of max-
imising long-term rewards, where the numbers represent the reward obtained when visiting
that circle. When we only consider immediate rewards, we will choose the top path, although
this obviously is not the optimal choice when we take future steps into account. However,
making a different choice than the greedy one requires knowledge of future reward dynamics.
One way of dealing with this problem relies on the construction of finite abstractions of the
state space.

2-1-3 Abstraction-based methods

The abstraction-based method for finding sampling strategies by Gleizer et al. [9] forms the
main inspiration for this thesis research. Since the proposed method essentially attempts to
mimic the abstraction-based method [9] in a sample-based manner, it is important to first
have a good understanding of this abstraction-based method. First the necessary theoretical
concepts will be explained.

Master of Science Thesis R.J.F. de Ruijter



8 Preliminaries and Problem Statement

greedy choice

long-term
optimal choice

Figure 2-4: lllustrative example of how a greedy approach can result in sub-optimal returns.

Definitions

A transition system S = (X, Xp,U,E,Y, H), as described by Tabuada [31], is a way of de-
scribing the dynamics of a system, where:

X is the finite or infinite set of states;

Xp C X is the finite or infinite set of initial states;

U is the set of inputs;

EC X xU x X is the set of edges or transitions between states;
Y is the set of outputs;

H(z) : X — Y is the output mapping

Transition systems can be finite or infinite, depending on the state set. A transition system
is autonomous if U is an empty set. A weighted transition system S = (X, X0, U,E,Y, H,~)
is a transition system with a weight function v : £ — Q added to the transitions.

A finite-state abstraction is a mapping ® from the original, possibly infinite state space S to
some finite abstract state space ®(.S). This often aggregates concrete states that have a shared
property of interest into one abstracted state for analysis, which is why it is sometimes also
referred to as state aggregation or compression. The process of aggregating different states
into one abstracted state causes loss of information, but allows for easier analysis of a specific
property of interest, for example sampling times.

A quotient system S)g = (X/r, Xo,U,E/r, Y, H/r), as described by Tabuada [31], is a transi-
tion system that is a simulation of the original transition system S = (X, Xp,U,E,Y, H). This
simulation relation essentially means that the notions we are interested in (i.e. the output
and possible transitions of the system) are captured by the quotient system while simplifying
the description. In order to obtain a quotient system of S, some finite-state abstraction of
the state space is constructed and new transitions are determined between these abstract
states such that every possible transition present in the original system is also present in the
quotient system.

Finite-state abstractions for PETC systems
In order to obtain a finite-state abstraction of a state set, one has to relate states of the
concrete system to states of the abstraction. For PETC systems, this can be done in several

ways, three of which are described here. Gleizer et al. [8] describe a quotient model that

R.J.F. de Ruijter Master of Science Thesis



2-1 Aperiodic control 9

simulates the output behaviour of a PETC traffic model by aggregating states that trigger at
time & into the same quotient state. This is done by first determining the set I C R™= of
states that will certainly have triggered by time k:

Kk_{{xE]R”f” 1C(-) >0} fork<k (2:8)

R fork =k

The quotient state Qy is then computed for k € {1,2, ..., k) by taking K and removing all
states that belong to K; with j < &:

k—1

/Ck\ U Qj fOTk>1
Jj=1

K fork=1

Q= (2-9)

Building on this time-based partitioning of the state-space, Gleizer et al. [7] define the
simulation relation R; C X x V!. This relation relates states of the concrete PETC system
to their respective generated sequences of next [ inter-sample times. In this formulation,
the abstracted states are thus Il-length sequences containing the next [ inter-sample times.
Formally, (z, k1ks...k;) € R; if and only if:

T € le,
M(hk1)$ S QkQ,
M (hk2) M (hky)x € Qp,, (2-10)

M (hkj_1)...M(hk1)x € Qy,

Another method of constructing a finite-state abstraction is described by Mazo et al. [18].
They propose a partitioning of the state space using conic covering. This abstraction is
based on the idea that for LTI ETC systems, states lying on the same ray crossing the origin
result in the same inter-sample time, i.e. are isotropic with regards to inter-sample time:
T(z) = 7(Ax),Y\ # 0,2 # 0. This results in abstractions where states are aggregated into
polyhedral cones pointed at the origin, as illustrated in Figure 2-5. When more cones are
added, a state-space abstraction with a higher precision is acquired. This method is not
directly related to the abstraction-based method by Gleizer et al. [9], which is the main
inspiration for this thesis research, but the proposed method does use the idea of isotropic
covering (see Section 3-1-2).
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10 Preliminaries and Problem Statement

\ Xq /

Figure 2-5: Example of a state-space partitioning with polyhedral cones in R? [18].

Traffic models

Using the abstracted state set, one can construct PETC traffic models in the form of quotient
systems. To do this, transitions should be added between the abstracted states as well as
an output map. First, the autonomous case (U = ) will be considered, where the PETC
triggering strategy is followed, i.e. no early triggering is allowed. Such a system can be
described as an infinite transition system S = (X, Xy, U, E, Y, H), where

. X=X =R

o« U =1

o £={(z,2) € R" xR" |z’ = M(7(x))z}, with 7(x) € {h,2h, ..., kh} the IST associated
with z;

e YV={1,2,...k};

In the case of the [-complete state abstraction from [7], a transition relation called the domino
rule is applied. This transition relation is a natural consequence of the way the abstracted
state set is constructed: a state associated with sequence kiks...k; must lead to a state whose
next first [—1 samples are koks...k;. This means that any abstracted state in X; that starts with
koks...k; is a possible successor to kiko...k;. [7] takes as the output map for each abstracted
state the first inter-sample time alone. The resulting [-complete PETC traffic model is the
system §; = (X, X, 0,&,Y, Hy), with

. A :WRz(X);
o & ={(ko,ok') | kK €V, 0 € VL ko, ok € &)
o YV={1,2,....k};

Hl(k‘lk‘zk‘m) = k‘l;
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2-1 Aperiodic control 11

Next, the system which allows for early triggering will be considered. Such a system can be
described as a weighted infinite transition system, where the action set contains the discrete
sampling times from h until the deadline d(z) ((2-7)). To evaluate the sampling performance
of a sampling strategy, a weight related to the sampling time is added to the transitions.
Formally: § = (X, X, U,E,Y, H, ), where

. X=X =R
U=Y=1{1,2,..k};

E={(z,u,2") | hu < d(x) and 2’ = M (hu)x};
H(z) = d(x)/h;

Y(z,u,2') = hu

Gleizer et al. [9] apply the same abstraction of the state-space (i.e. (z,0) € Ry, with
o = kyks...k;) to this transition system. This results in the following transition relation: a
transition from abstracted state Q, to Q, exists if for some u respecting the deadline (i.e.
u < k1), 3z € R™ such that

T € Qo

2-11

M(hu)x € Qy (2-11)

As described by Gleizer et al. [9], a traffic model which allows for early triggering can be

constructed by adapting the l-complete traffic model from [7]. This so called I-predictive
traffic model has the form of a transition system S = (X}, A3, U, &, Y, Hy, 1), where

X = 1R, (X); -

U=YyY=1{1,2,...k};

E={(o,u,0") e i xU x X |u<o(l),3x € R™ : Eq. (2-11) holds};
Hl(O') = k‘l;

v(o,u,0’) = hu

Note that when the depth of the abstraction [ is small, the amount of non-determinism present
in this transition system is large. Increasing the depth of the abstraction results in a more
refined division of the state space and a decrease in the amount of non-determinism. Because
of this non-determinism in the abstraction, it is not possible to directly extract a sampling
strategy from it. In order to obtain a sampling strategy, Gleizer et al. [9] play a mean-payoff
game on the transition system, where player 0 picks the action and player 1 antagonistically
picks the transition. The details of this mean-payoff game are not relevant for this thesis
research.

Gleizer et al. [9] have included numerical results for a 2-dimensional system. Figure 2-6
shows a comparison between simulated traces of the sampling strategy obtained using the
abstraction-based method proposed in [9] and the greedy method of following the proposed
deadline. The strategy obtained using the greedy method depicted in green exhibits bursts
of low inter-sample times equal to 0.1. The strategy obtained using the method which allows
for early-triggering (depicted in yellow) is able to avoid these fast-triggering regions of the
state space by sometimes sampling before the proposed deadline (depicted in red).
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Figure 2-6: Comparison between simulated traces of the SDSS with [ = 2 from [9] and of the
PETC strategy, both with the same initial state.

The resulting ISTs obtained by the greedy PETC method and the early-triggering enabled
method are compared in Figure 2-7. It depicts the simulated running average of the ISTs,
generated from 10 different initial conditions using both methods. The method which allows
for early-triggering clearly outperforms the greedy method in terms of long-term AISTs. The
SAIST obtained using the proposed method is calculated to be 0.6, compared to 0.233 for the
greedy method.
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Figure 2-7: Running average of the ISTs generated from 10 different initial conditions under
PETC and the near-optimal SDSS using I = 2 from [9].

These results clearly show the viability of considering long-term dynamics in order to max-
imise the long-term inter-sample times. However, the construction of finite state-abstractions
to achieve this has some disadvantages. Primarily, the method proposed in [9] suffers from
the curse of dimensionality, as many abstraction-based methods do. This effect mainly raises
its ugly head during the construction of the abstraction. As the depth of the abstraction [
increases, the amount of possible transitions grows rapidly, which is also known as combina-
torial explosion. This quickly leads to memory errors or infeasible computation times. The
extend of these problems increases rapidly with system dimensionality and complexity.
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2-1 Aperiodic control 13

Avoiding the construction of the complete abstraction could be a way to avoid this combina-
torial explosion. This leads us to investigate sample-based optimisation methods, since these
enable step-by-step exploration of the state space. Visited states are only stored temporarily
in order to update the strategy and are then discarded. This means that increasing the look-
ahead distance is relatively cheap in terms of memory requirements, which reduces the curse
of dimensionality. The iterative nature of these sample-based methods also result in more
gradual increase in strategy performance during training time. To illustrate this, consider
the illustrative example in Figure 2-8. The construction of a more refined abstraction takes
some time, during which no better solutions are obtained. It is only once the new abstraction
is completed that a better solution can be extracted from the abstraction, as depicted in
Figure 2-8. This means that if the optimisation process is somehow stopped or crashes before
the new abstraction is completed, a lot of computing power and time is wasted. However,
sample-based optimisation techniques are iterative and every optimisation step slightly im-
proves the solution. This means that the optimisation process can be stopped after every
step, with practically no loss of optimality of the solution. In the next section, a popular
sample-based optimisation method called reinforcement learning (RL) will be introduced.

A
iterative sample-

SAIST based optimisation proposed RL method
[s] v —

/ the construction of a

new deeper abstraction

abstraction-based method

A 4

time [s]

Figure 2-8: An illustrative example comparing hypothetical solutions over time obtained using
an abstraction-based method to a sample-based method.
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2-2 Reinforcement learning

Reinforcement Learning (RL) is a type of machine learning in which an agent learns by
interacting with its environment and receiving a reward for the actions it performs. It mainly
has its roots in the fields of optimal control and trial and error learning. Optimal control
is a branch of optimisation, stemming from the 1950s. Generally, it attempts to solve the
problem of synthesizing a controller which maximises some desired behaviour of a dynamical
system. One of the approaches to solving this problem is called Dynamic Programming (DP),
developed by Richard Bellman in the 1950s [2]. Dynamic programming attempts to solve an
optimization problem by dividing it into nested smaller sub-problems which can be solved
recursively using the Bellman equation. Many of the mathematical concepts describing the
dynamic programming methods also form the basis of reinforcement learning, like the value
function and policy. The main problem with this approach is that it also suffers from “the
curse of dimensionality”, because its computational complexity grows exponentially with the
number of states. The term "trial-and-error learning" goes back as far as the mid-19th century
when the term was used by the British ethologist and psychologist Conway Lloyd Morgan [35]
to describe observations of animal behaviour. The principle of trial-and-error learning was first
formally expressed by American psychologist Edward Thorndike in the early-20th century [34].
He proposed the "law of effect", which states that for a certain situation, responses that result
in a rewarding state have their association with that situation strengthened and are thus more
likely to occur in the future when the same situation arises again. Computer implementations
of trial-and-error learning were first philosophised by Alan Turing in 1948 [36]. In the following
years, some research on trial-and-error learning was conducted in different loosely connected
fields, but the focus of the machine learning community was mostly on supervised learning
techniques. In these years, the distinction between supervised learning and trial-and-error
learning was not as well defined, but in the 1970’s Harry Klopf observed that the key idea
of trial-and-error learning was missing from the machine learning field: the adaptation of
behaviour because of the hedonic desire for collection of reward through experience. This is
why Klopf is often regarded as the "father of reinforcement learning". Only in the 1980s a new
concept called temporal difference (TD) learning was formalised by R.S. Sutton [29], which
brought the studies of dynamic programming and trial-and-error learning firmly together in
the context of machine learning. This approach hinges on the idea of comparing successive
estimates of the value function in order to improve the estimate. It has the advantage of
being model-free (like trial-and-error methods) and is implemented in a online, incremental
fashion (like DP), while greatly reducing the dimensionality problems that DP suffers from.

2-2-1 Fundamentals

In this section, the key concepts related to RL will be introduced.

Agent-environment interaction

As stated before, a reinforcement learning system consists of an agent and an environment.
The agent is the decision-making part of the system. At every time-step, the agent is presented
with the state of the environment s;. The agent then chooses which action ap to perform
from the set of available actions in the current state A(sy). The agent presents this action to
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2-2 Reinforcement learning 15

the environment, which updates its state accordingly and presents this newly obtained state
sg+1 to the agent, together with a numerical reward riy,. This interaction is depicted in
Figure 2-9. On tuple of state, action, reward and updated state (sg,ag, 7k, Sg+1) is one data
sample, which is called experience in the context of RL.

AGENT

\4

»——>»  POLICY

STATE A ACTION
Sk POLICY a
UPDATE

REINFORCEMENT
LEARNING
ALGORITHM

A

A
REWARD

Tk

ENVIRONMENT €¢—————

Figure 2-9: Agent-environment interaction [16].

Return and policy

The reward function which determines the reward is part of the environment but can be
shaped by the user to favour certain behaviour. The return is defined as some accumulation
of reward by the agent over time. Most often a discounted summation of future rewards is
used:

(o)
R=) 1 (2-12)
k=0

The agent follows a decision-making rule called a policy 7 to determine which action to take.
A policy can be both deterministic or stochastic. A deterministic policy m;(s) = a simply
maps a state to an action, whereas a stochastic policy mi(a | s) = Pr(ay = a| sy = s) gives
the probability of taking an action given a state. The policy is learned in a iterative manner
based on the collected experience. There are many different reinforcement learning algorithms
available, but all have the same goal: implicitly or explicitly learning the optimal policy.

Markov Decision Processes

In reinforcement learning, the environment is typically assumed to satisfy the Markov prop-
erty. This is true if the current state description s, contains all relevant information about
the system from the past and present. Such a state description is called a Markov state.
In the context of reinforcement learning this includes the reward signal and can formally be
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16 Preliminaries and Problem Statement

described as follows:

Pr(rit1 =7, Sks1 =8 | 80, @0, 715 oy Sk—15 Qk—1, Tk Sk» Q) = Pr(rp1 =7, Sk41 = 8 | S, ag)
(2-13)

The LHS of Eq. 2-13 describes the probability distribution of the dynamics as a function of
all past and present states, actions and rewards, whereas he RHS describes the probability
distribution of the dynamics as a function of only the present state and action. This means
that the state update sx1; and reward signal ry1; depends only on the current state s; and
the chosen action aj, and not on the "path" that led to this state. This is why the Markov
property is also sometimes referred to as "independence of path". It might be that a state is
not strictly Markov, but is still a good approximation of a Markov state, i.e. most relevant
information about the system is retained in the state. RL techniques will still yield results
in this case, but more loss of information will result in more loss of performance. A concept
very central in RL is called a Markov Decision Process (MDP). Most RL methods assume
the environment to be an MDP. An MDP can be described with the tuple (S, .4, R, P), where
S is the state space; A is the action space, P(s’ | s,a) is a Markovian transition model and
R(s,a) or R(s,a,s’) is a Markovian reward model. Most RL algorithms consider the case
were the state and action spaces are finite, called a finite Markov Decision Process. The
discrete transition dynamics of such a environment are denoted as:

p(s',r|s,a) =Pr(rgp1 =71, spr1 =5 | sk = s,ar = a) (2-14)

From these dynamics of the finite MDP, all other interesting properties of the environment
can be computed, such as the state-transition probabilities p(s’|s, a) or the expected rewards
for a state-action pair r(s,a) or state-action-next-state triplet r(s,a,s’). However, these
probabilities are often not known to the agent.

Value functions

The goal of reinforcement learning is to tune the agent’s policy m such that following the policy
maximises the agent’s expected return. A useful related concept is called the value function,
which gives some measure of "goodness" to a state or state-action pair under a policy w. We
can define the state-value function under policy m as the expected return of following policy
7 from state s:

VT(s) = E[R ‘ Sk = 8,71'} = E[i’ykrk_,_l ’ Sk = S,T['} (2-15)
k=0

Alternatively, we define the state-action value function under policy 7 as the expected return
of taking action a from state s and subsequently following policy :

Q7 (s,a) = E[R ’ Sk = S,a = a,w} = E{i’yka_A'_l ’ Sk = 8,ap = CL,7T:| (2-16)
k=0

For readability purposes, we will from this point on simply refer to the state value function
V7 (s) as the value-function and to the state-action value function Q™ (s, a) as the @Q-function

(as is common in the literature).
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2-2 Reinforcement learning 17

As mentioned before, the goal of a reinforcement learning algorithm is to find the optimal
policy 7*. A policy is optimal if the expected return when following this policy is greater or
equal to the expected return when following any other policy: V™ (s) > V™(s),Vs,Vr. As
such, there could be more than one optimal policy, but all optimal policies share the same
value-function. Applying this optimal policy to the value-function gives the optimal value
function, V*.

Vi(s) = max VT(s) = E[Z Ve ‘ Sk = 5,77*] (2-17)
k=0

Applying the optimal policy to the Q-function gives the optimal Q-function, Q*:

o0

Q*(s,a) = max Q" (s,a) = E{Z Ve ‘ Sk =8, a = a,ﬂ*} (2-18)
k=0

Bellman expectation and optimality equations

We can divide the value-function in Eq. 2-15 into two parts: a part capturing the value of
the current state, and a part capturing the expected value of possible successive states. This
gives rise to a recursive relation called the Bellman expectation equation, or simply Bellman
equation:

e
V7Ti(s) = E_Z’Y%H ’ Sk = S,W}

_k:O _

=E|ris1 +7 D> Ve ‘ Sk = 877T:| (2-19)
) k=0

= E[rpp1 +7V7 ()

Sk :S,ﬂ'}

An import observation is the relation between the optimal value-function and optimal Q-
function:

Vi(s) = ax Q" (s, a) (2-20)

When we apply the same method for finding the Bellman equation to this relation, we obtain
the Bellman equation for V*(s) called the Bellman optimality equation for the value-function:

Vi(s) = ax Q" (s, a)
o0
= mng Z Yorei ‘ Sp = S,a = a,w*}
h=0 (2-21)

~ 00
k

= mng Tht1 —|—727 Tk42 ’ S = S,ar = a,ﬂ-*}

) k=0

=maxE|rp 1 + V() | sk = 5,0 = a,w*}
a L
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Replacing V*(s) and V*(s') with Eq. 2-20 gives the Bellman optimality equation for the
Q-function:

Q" (5,0) = E|rir + ymax Q*(s,) | s = 5,05 = a, 7] (2-22)
(l,

These recursive relations form the basis for many reinforcement learning methods.

Dynamic programming, Monte Carlo simulations and Temporal-difference learning

Reinforcement learning combines aspects of two optimisation methods: dynamic programming
(DP) and Monte Carlo simulations. The goal of dynamic programming is to solve Bellman
equations in order to find an optimal policy. This method requires full knowledge of the
MDP, including the state transition model P(s"|s,a). DP alternates between evaluation and
improvement of the current policy in order to iteratively find an optimal policy, a process called
Generalize Policy Iteration (GPI) (Figure 2-10). DP methods make use of bootstrapping: the
estimate of the value of one state V;i1(sy) is updated based on the current estimate of the
value of a successor state Vj(sk41). This results in the following update rule:

Vit1(sk) = arg max E[rk+l +Vi(ske1) ‘ Sk = Sjﬁk} (2-23)
a

evaluation
T v

TE%greedy(‘l-‘)

improvement

.
.
S m—g U

Figure 2-10: Generalised Policy Iteration [30].

Monte Carlo methods take an alternate approach to finding optimal policies. Monte Carlo
methods don’t require full knowledge of the MDP dynamics p(s’,7 | s,a), but learn optimal
policies from sample sequences of states, actions and rewards obtained by the agent. Monte
Carlo methods only learn from complete sample episodes, i.e. trajectories that naturally
terminate eventually, so are only defined for episodic tasks, i.e. tasks that contain a terminal
state. Monte Carlo methods also follow the GPI methodology, but the updated value for each
state only depends on the previous value for that state and the actual observed sequence of
rewards, so Monte Carlo methods do not use bootstrapping. Note how in Eq. (2-24), the
updated value V11 (sg) is a weighted sum of the previous value V;(sy) and the actual observed
rewards G, weighted by the learning rate a:

Vira(sk) = (1 = 0)Vi(ss) + aGy = Vis) + |G = Vi(sw) (2-24)
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One of the most central ideas in reinforcement learning is 7'D. It combines the bootstrapping
from dynamic programming with the sampling-based learning of Monte Carlo simulations,
which results in the following update rule:

Vipa(sk) = Vilse) + a[rin +Vilsiin) = Vilsy)| (2-25)

This way of updating allows online implementation of the value-function prediction, since
learning is done during the episode, whereas this is not possible using Monte Carlo methods.
In fact, TD learning is more generally applicable, since it does not require episodic MDPs.
The part between brackets in Eq. 2-25 is called the temporal difference error §. Classic RL
methods like SARSA and Q-learning revolve around this idea, but it also appears in modern
methods, as will be discussed in Section 2-2-3.

2-2-2 Deep Reinforcement Learning

The reinforcement learning framework presented in the previous sections is clearly a very
powerful framework for tackling many different kinds of optimal control problems. However,
all methods discussed so far have used a tabular representation of the value-functions and
Q-functions, i.e. a table containing distinct values for states or state-action pairs. This limits
the possibilities of such algorithms when the state or action spaces are continuous or high-
dimensional. Luckily, it is possible to use function approximation techniques such as artificial
neural networks (ANNs) to parameterise the value-function, Q-function and policy. The idea
of adding techniques from deep learning to the powerful reinforcement learning framework
gave rise to the fast-moving field of deep reinforcement learning (DRL). Recently, such DRL
algorithms have been able to achieve and surpass human performance in complex tasks like
playing Atari games. A DRL algorithm called AlphaGo was even able to beat professional
players at the extremely complex board game Go. The training of these DRL models requires
the generation and processing of massive amounts of experience, since the state-action spaces
describing these tasks and the amount of parameters describing the model are very large. In
the case of Go for example, an astonishing 10'7° different board configurations are possible
- more than the number of atoms in the known universe. Training a reinforcement learning
agent to solve such a task sequentially on a single processor would take too much time to be
of any real use. For this reason, researchers turned to parallel computing approaches. These
approaches typically use multiple copies of the environment in parallel (called workers) that
generate experience from which the agent can learn. Such an approach can scale with the
complexity of the problem by just employing more experience-generating workers in parallel,
thus reducing the training time. The incorporation of ANN’s and parallel workers into the
RL framework is depicted in Figure 2-11.

Artificial neural networks

An artificial neural network (ANN) is a computational model inspired by biological neural
networks in the human brain. The brain consists of "computational units" called neurons,
which are connected in a network by synapses. In ANNs, the basic building block is called a
perceptron, as depicted in Figure 2-12. The input to a perceptron is a vector & = [z, ...zy].
First, the perceptron takes a weighted sum of these input values, and adds a bias. This
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Figure 2-11: Agent-environment interaction, with a neural network as policy approximation and
parallel workers.

weighted sum is then fed to an activation function, which introduces non-linearity to the
perceptron. Many different activation functions are available, like the ReLu, tanh, and sigmoid
functions. The output of this activation function is also the output of the perceptron.
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Figure 2-12: A perceptron [10].

If more than one perceptron is joined in a layered fashion, this results in an multi-layer
perceptron (MLP), as depicted in Figure 2-13. Usually, layers have dense connections, which
means that the output of every unit in a layer is fed as an input to every unit in the next
layer:

x = g(Wim 1+ b (2-26)

where g(-) is the activation function and W, and b; are the weight matrix and bias vector
of layer [. Every neural network consists of an input layer and an output layer, with some
amount of hidden layers in between. The amount of layers is called the depth of the neural
network, and the amount of units in one layer is called the width of the layer, which can both
be set to obtain different neural network architectures.

The weights and biases are the parameters that need to be learned, with the goal of minimising
or maximising an objective, for example the mean squared error between the outputs of the
neural network and desired values. This is done using the backpropagation algorithm, which
essentially uses the chain rule to compute the gradient of the objective function with respect

R.J.F. de Ruijter Master of Science Thesis



2-2 Reinforcement learning 21

D
A

/
N
X

output layer

)
@

input layer
hidden layer 1 hidden layer 2

Figure 2-13: An MLP with 3 inputs, 1 output, 2 hidden layers, and dense connections [37].

to the individual weights of the network. This gradient is used to update the weights and
biases through some gradient method like stochastic gradient descent (SGD) or Adam. A
forward pass of a neural network is called neural network inference.

Neural networks can be used to approximate different functions in deep reinforcement learning,
as depicted in Figure 2-14. The Q-function can be approximated by a network that takes as
an input the state of the environment, and outputs the Q-values for all possible actions. The
value-function can be approximated by a network that also takes as an input the state of the
environment and outputs the value (i.e. the expected sum of rewards) associated with that
state. A stochastic policy-function can be approximated by a network that also takes as an
input the state of the environment and outputs the probabilities of taking every action based
on that state.

Value network Q-network

—> Q(Sy (11)

—> Q(s,a)
@—4 Vo] | Do »—»@ e

> Q(sa an)

Policy network
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Figure 2-14: Schematic representation of a value network, Q-network and policy network.

In the context of DRL, logits are the un-normalised predictions of a policy network, which
can be any real number ranging from [—oo, +00]. In order to transform these logits to actual
probabilities, they are often fed to a final activation layer containing the softmax function,
which normalises the logits:
e*i
") = 2-21)
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Q-learning versus Policy Gradient methods

When categorising RL methods, the main point of difference is in what exactly is learned. All
RL methods have the objective to learn an optimal policy, but the way that this is achieved
can differ. Deep Q-learning approaches attempt to indirectly optimise the policy through the
learning of the Q-function, approximated by the Q-network. Policy Gradient (PG) methods
are more principled: they seek to directly optimise in the policy space. These methods
require a stochastic policy approximated by a neural network 7mp(a | s) and directly optimise
the policy by applying gradient ascent on its parameters, such that the probability of taking
actions associated with high returns is increased. Both methods have their strengths and
weaknesses, and which method is preferred is case-dependent. Deep Q-learning methods are
often much more sample efficient than PG methods because data can be reused, whereas
PG methods require the collection of new samples for every gradient step. However, Deep
Q-learning methods can result in poor convergence and instability and are in general sensitive
to hyperparameter settings. The simplicity, versatility and stability of modern PG methods
often make it the preferred choice when sample efficiency is not of the utmost importance.
The next section will explain Policy Gradient methods and one of its most successful variants,
called Proximal Policy Optimisation.

2-2-3 A closer look at Policy Gradient methods

The objective of PG methods, like all RL methods, is to maximize the future expected return
obtained by following a policy. Formally, the goal is to maximise the objective function

J(m9) = Errury [G(7)] (2-28)

where 7 is a trajectory obtained by following the policy my and G(7) is the return obtained
by following that trajectory. This is achieved by repeatedly calculating the gradient of the
objective function and applying gradient ascent on the parameters of the policy network:

Op1 = Ok + aVoJ () (2-29)

The Policy Gradient Theorem as presented by [30] shows that the gradient of the objective
function can be written as:

T

Vo J(mg) = E[Z Vo log m(ay | st)CDt] (2-30)
t=0

where ®; can be one of multiple terms related to the sum of rewards (see [25] for an ex-
tensive review). One of the most used choices for ®; is the advantage function A™(s;,ar) =
Q" (st,at)—V7™(s¢), because it greatly reduces the variance in gradient calculation. The advan-
tage function A™ (s, a;) gives a measure of how much better or worse an action a is compared
to the policy’s default behaviour. Using the advantage function in Eq. (2-30) means the
objective JP¢ will increase if the action a becomes more likely, but only if the advantage is
positive. If the advantage is negative, the objective J©'¢ will increase if the action a becomes
less likely, i.e. if mg(als) decreases.

In practice of course, the advantage function is not known and must be estimated. The
advantage function estimate A;(s,a) can be calculated in different ways, but a widely-used
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approach called Generalised Advantage Estimation (GAE) uses the value function estimate
and observed rewards from a trajectory:

Ai(s,0) = 8 + (YNt + -+ (A Vor (2-31)

where 0; = 1 + YV (st+1) — V(s¢) is the temporal difference error. This is one of the reasons
why many PG methods also maintain a value function network Vy(s) to estimate the value
function, which is updated concurrently with the policy network. A method which maintains
both a value-function and policy-function is called an Actor-Critic method, where ‘actor’
refers to the learned policy (since this is used to select actions), and ‘critic’ refers to the
learned value function (since this is used to evaluate the performed actions). The simplest
and most widely used method for learning Vy(s) is regression on the mean-squared-error
between the value function estimate and the observed return from a trajectory:

T
¢ = arg mmE{Z Vi (st) } (2-32)
t=0

Many different methods have been proposed to handle the problems associated with PG meth-
ods (i.e. poor sample efficiency and learning instability due to large trajectory variance). In
particular, one family of methods called Proximal Policy Optimisation (PPO) has demon-
strated state-of-the-art performance on many RL benchmark tasks, while striking a balance
between sample efficiency, simplicity, and wall-clock time.

Proximal Policy Optimisation

The main motivation behind the family of methods called Proximal Policy Optimisation
(PPO) is to use generated experience as efficiently as possible without causing instability
and performance collapse. This is achieved by limiting the difference between the action
probabilities of the old policy mg,,,(a; | s¢) and the updated policy m(as | s¢). The method is
scalable (i.e. it allows for parallelisation), has improved sample efficiency over previous PG
methods, and displays robust performance over a variety of tasks. This section will give a
brief overview of this method.

PPO attempts to maximise an objective function which includes the estimated advantage
function:

T
JPG(mg) = B| S log mo(ay | s1)Ai(s, )| (2-33)
t=0

flt(s, a) can be estimated from the collected trajectory in a number of ways, like mentioned in
the previous section. The expression IE[] indicates that the expectation is estimated using the
empirical average over the batch of collected samples. The policy is updated by performing
multiple steps of gradient ascent on the parameters of the policy network using the gradient
calculated from this batch of collected samples. However, applying too many steps of gradient
updates using the same gradient, increases the risk of stepping too far away from the policy
from which that gradient was computed, thus decreasing the validity of the computed gradi-
ent. On the other hand, taking too little steps using the same gradient means the collected
trajectory data is not used optimally. In normal policy gradient, old and new policies are close
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in parameter space (due to the use of gradient descent), but small differences in parameter
space can potentially have large differences in policy performance. PPO uses a similar trick
to Trust Region Policy Optimisation (TRPO) [24], namely limiting the difference between
the old policy and the new policy in policy space, i.e. the resulting action probabilities cannot
differ too much. This will limit the magnitude of changes to the actual metric of interest,
namely the action probabilities, and thus the resulting performance of the policy. This is
done by borrowing the surrogate loss from TRPO, which introduces the probability ratio p:

T T
R a|s) 1 = A
JOPI(rg) — B[S 00l 40 515~ 0)4, (2-34)
X mtatsg ) ZEL 04
If this objective was used in an unconstrained manner, maximisation would result in extremely
large policy updates. Whereas TRPO solves this by using a complex second-order optimisa-
tion method based on the KL-divergence between the old and new policies, PPO introduces
a simple clipped version of Eq. (2-34):

T
JOLIP () — E[Z min (pt(Q)At, clip(pe(0),1 — e, 1+ e)flt)} (2-35)
t=0

As depicted in Figure 2-15, this modification of the objective removes the incentive for moving
the probability ratio p outside of the interval 1 + ¢ or 1 — ¢, depending on whether the
advantage is positive or negative respectively. This ensures that a good action will only
become moderately more likely (depending on the choice of €), and a bad action will only
become moderately less likely. This results in more monotone and stable policy improvements.

A<O

+e JCLI P

Figure 2-15: Plots showing a single timestep of the surrogate objective J“X/ as a function of

the probability ratio p, for positive advantages (I) and negative advantages (r). Note that JOLIF
sums many of these terms. The starting point of the optimisation is indicated by the red dots.
[26].

The PPO implementation from the original paper further augments the surrogate objective
by including a value-function error term and an entropy bonus. The value-function term is
needed when a neural network architecture that shares parameters between the policy and
value function is used. The entropy bonus term should help to ensure sufficient exploration
as suggested by earlier work, e.g. [19]. Both terms have their own weighting factor, which
results in the following surrogate objective:
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JOHIPAVISS () — B[ JOHP (mg) = 01TV + cSm)(s1)| (2-36)

Note that the term "PPO" formally refers to a family of RL methods that use the surrogate
objective (2-35). This surrogate loss can be used in different policy gradient algorithms. In the
original PPO paper [26], an Actor-Critic style algorithm was used. In this implementation,
each of N parallel workers runs the policy mg ,, for T timesteps. Such a run is called a
rollout. The NT collected rollout samples are used to calculate advantage estimates A,
for each timestep and to construct the surrogate objective, which is then optimised using
minibatch SGD or Adam for K epochs. This use of a rollout buffer speeds up and stabilises
the learning process by decreasing the variance between gradient updates, because the same
policy is ran for NT' timesteps before calculating gradients on a larger batch of samples.
Figure 2-16 describes this algorithm using pseudo-code.

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,..., N do
Run policy 7y, in environment for 7" timesteps
Compute advantage estimates Al, . ,AT
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT'
Oord 0
end for

Figure 2-16: Pseudo-code description of the actor-critic style PPO implementation from [26].
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2-3 Problem statement

The main goal of the research presented in this thesis report is to develop a tool which employs
deep reinforcement learning techniques to find static state-dependent sampling policies for LTI
self-triggered control systems that provides near-maximal average inter-sample time while
respecting given control performance constraints. This tool has to be scalable through the
use of some parallelisation scheme. More formally, the goals can be formulated as follows

Main goal

Requirements

Evaluation

R.J.F. de Ruijter

Implement a deep reinforcement learning tool which outputs a static state-
dependent sampling policy for LTI self-triggered control systems. The ob-
jective function to be maximised is
1 n
J(mg) = lim inf e ;Ti(l‘, o) (2-37)

where 7;(z, mg) is the inter-sample time from state = suggested by the learned
policy my. To ensure that the resulting policy is safe, the choice of possible
inter-sample times is constrained by the inter-sample time suggested by the
STC system, which has to be respected as a sampling deadline (as described
in Section 2-1-2).

1. This tool has to be scalable in terms of data generation and complexity
of the policy function, for use with more complex and higher-dimensional
systems.

2. This tool should allow the user to set multiple different stopping criteria.

3. The user should be able to monitor the sampling performance during
the training process.

4. The user should be able to stop the learning process early, and still
obtain the most optimal policy found so far.

5. The user should be able to add a measure of trajectory smoothness
w(x,mg) to the objective function:

1
n+1

Jra) = liminf —— 3" B m0) + (1= Bl ) (239)
=0

1. Evaluate performance both in terms of sampling performance and wall-
clock times of the proposed RL method to that of the abstraction-based
method as proposed by [9], using multiple different systems.

2. Perform a study on the relation between average inter-sample times and
trajectory smoothness.
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Chapter 3

Methodology

This chapter will discuss the formulation of the environment and RL agent, as well as the
experimental setup used to obtain the results presented in the next chapter.

3-1 Environment

For a problem to be solved using a reinforcement learning approach, it needs to be formulated
as an RL environment. Formulating this in computer code is standardised by the OpenAl
Gym framework, which is widely used in industry and the academic world. In the Gym
framework, the environment is constructed as a class which requires; a reset function, which
starts a new episode and returns an observation; and a step function, which requires an
action as input and returns a tuple containing a new observation, reward, a customisable info
dictionary and a boolean indicating the termination of an episode.

The user can add different methods and attributes to the environment class in order to
formulate their problem. The Gym framework also allows for the addition of wrappers, which
add functionality or overwrite the methods of the base environment class. The following code
example shows a simple simulation of a OpenAl environment for 20 episodes with 100 steps
per episode, where random actions are picked every step:

import ExampleEnv
env = ExampleEnv ()

for i_episode in range(20):
observation = env.reset()
for t in range(100):
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:
print ("Episode finished after {} timesteps".format(t+1))
break
env.close ()
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3-1-1 Base environment

The base environment (which defines the problem) used in training requires a discrete-time
model of the plant and controller (A4, By, K); the triggering condition; and values for the
minimum and maximum triggering time Kpnin, kmer and fundamental checking periode h.
The step function calculates the state update under held control input, based on the current
state of the system and the action chosen by the agent, which corresponds to the discrete
sampling time k:

k—1

a(t+1) = (Al + BgK > A)x(t) (3-1)

i=0
The step function also returns the reward, which is simply the inter-sample time hk. The
step function then returns the updated state and reward to the agent. The reset function sets
the state to a random point within a bounded region. The deadline function calculates the
sampling deadline d(z) based on the current state of the plant and the supplied triggering
condition.

3-1-2 Environment wrappers

In order to aid the learning process, some wrappers were introduced to the base environment.
These wrappers reformulate the basic problem to make it easier to learn for the agent.

« Episodic wrapper: since the base problem is not an episodic problem (i.e. it contains
no terminal states), episodes have to be ended artificially by setting a maximum episode
length. This allows for more efficient exploration of the state space, since after every
episode the system is reset to a random state.

¢ Action-penalisation wrapper: this wrappers specifies one possible method of using
the sampling deadline during the learning process. If the agent selects a sampling time
that is beyond the deadline, the step is not taken (i.e. the state remains the same) and
a negative reward (i.e. penalty) is returned. This should allow the agent to quickly
learn to not exceed the deadlines. Figure 3-1 depicts a schematic representation of this
method, where the negative reward is set to be equal to r = —hk,qz.

e Action-masking wrapper: this wrapper specifies another possible method of using
the sampling deadline during the learning process. Since the deadlines are known a
priori (i.e. before choosing an action), it is possible to disallow the agent to choose
illegal sampling times. This can be done by constructing an action-mask consisting of
ones and zeros, which specifies the legal and illegal actions, and supplying this mask to
the agent. For example, when k... = 5 and the deadline associated with the current
state is d(x) = 3, the resulting action mask would be [1, 1, 1,0, 0]. During the calculation
of the action probabilities by the agent, this action-mask can be used to push the
probabilities of choosing an illegal action to zero. Section 3-2-3 provides a more detailed
description of these calculation on the agent side. Using this method over the action-
penalisation method greatly reduces the action space, which should stabilise and speed
up the learning process.
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e n-Spherical coordinates wrapper: since states that lie on the same radial axis are
associated with the same sampling times (as explained in Section 2-1-3), it could be
useful to transform the cartesian state coordinates to n-spherical coordinates, and only
send the angles as observations to the agent. Incorporating this a priori knowledge on
the shape of the solution greatly reduces the policy search space: instead of having to
explore the entire reachable state set one can restrict exploration to a small box around
the origin, which should stabilise and speed up the learning process. States that lie on
the same radial axis but on opposite sides of the origin are also associated with the
same sampling time, so should be treated as the same abstracted state. This reduces
the search space again by a factor 2, and results in perfectly symmetrical policies by
definition.

¢« Smoothness reward wrapper: as will be shown in Section 4-4, maximising long-term
sampling times could lead to sharper trajectory changes when sampling. In order to
combat this effect, the user should be able to incorporate a term for the smoothness
of the trajectory into the reward function. This wrapper calculates a weighted sum
of the reward due to the sampling time and a reward based on the angle between the
trajectory directions before and after sampling. Formally:

Y(z, k)
w

,  with ¥(z, k) = arccos a

r(x, k) = p(1 — W

)+ (1 -5

(3-2)

kmax

where 1) € [0, 7] is the angle between the trajectory vectors before and after sampling
(i.e. a and b resp.), and 5 € [0,1] is a weighting term. Note that both (1 — %) € [0,1]
and ﬁ € [0,1] are normalised values, so the weighting term [ directly specifies the
trade-off between sampling performance and trajectory smoothness.

3-2 Agent

Next, the agent used for solving the environment will be discussed. First, the reasoning behind
the choice of RL algorithm will be presented, followed by a overview of the used hardware.

Environment Agent
( N )
Reward function: &
r=hk if Kggent < d(z) rewardir
| r= —hkmaz  if kagent > d(z) |
J
; R
Step function: state: o(t + 1)
k-1
L
2(t+1) = (45 + BK S A)a(t) >
{ i=0 )
N y J
state: z(t + 1) legal action: k
e ™~
Deadline function: |
d(z) := maz{r € T|c(r,z,&)} L action: Kagent
k= kagent  if kagent < d(z)
| k=0 if Kagent > d(z) |
[ ,/

Figure 3-1: Schematic representation of the environment with the penalty wrapper.
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Environment Agent

Step function: reward: kh

k-1

z(t+1) = (A5 + BaK Y | Al)a(t) state: z(t + 1)
i=0

A

state: action: k
z(t+1)

A

Deadline function:
d(z) := maz{r € Tlc(r,z,2)}

action mask

Y

Action mask function:
e.g. [1,1,1,0,0]

Figure 3-2: Schematic representation of the environment with the action-mask wrapper, with
an example action-mask for kp,q. = 5 and d(z) = 3.

Then, some components specific to this implementation will be discussed, like action-masking
and neural network expansion. The final part of this section will give a quick comparison of
the different components.

3-2-1 Algorithm selection

As discussed in Section 2-2-2, the choice of which DRL algorithm to use for solving a specific
problem is not a trivial one: no algorithm is clearly better for every use case. For example,
when experience is collected through interaction with a real physical system like a robot,
high sample efficiency is an important feature of the RL algorithm, so one might prefer an
off-policy algorithm from the Q-learning family because of the possibility to reuse experience.
On the other hand, experience collected through simulation can be very "cheap" and sample
efficiency becomes less of a concern. However, if the environment is very complex and calcu-
lating a step is computationally expensive, sample efficiency can again be of more importance.
If the sample efficiency is of less concern, on might prefer an on-policy Policy Gradient al-
gorithm for their learning stability and strong convergence. A simulated environment also
enables parallelisation of the experience generation, which decreases the learning wall-clock
time. Other important considerations are hyperparameter-sensitivity and compatibility with
discrete or continuous state- and/or action-spaces. The problem considered here consists of
a continuous state-space and a discrete action-space, which eliminates or complicates the use
of some algorithms.

PPO has shown state-of-the-art performance on a wide variety of applications. When sam-
pling efficiency is not of the greatest concern, the simplicity, ease of tuning and possibility for
parallelisation presented by PPO currently make it the preferred method for discrete-action
problems. The PPO implementation from the Stable Baselines 2 library [13] was adapted for
this thesis research. Stable Baselines is a set of implementations of DRL algorithms based on
OpenAl Baselines, and is widely used in the academic world. This PPO implementation is
very similar to the Actor-Critic style algorithm from the original PPO paper [26], which uses
gradient clipping, a rollout buffer and periodical policy updates as depicted in Figure 3-3 and
explained in Section 2-2-3.
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Environment Agent
( B
reward: kh e
Rollout buffer
state: © \_
batch |
\ 4
4 R state value
Loss function V(z)
A . J
gradients |
P \ 2
> Policy- and
action: k value-networks: —
< L T, V¢

Figure 3-3: Schematic representation of the Actor-Critic style PPO implementation. The dashed
lines represent periodical updates after finishing a rollout.

3-2-2 Hardware and parallelisation

Deep reinforcement learning requires the generation and processing of large amounts of data.
As discussed in Section 2-2-2, the use of parallel computing is therefore essential. OpenAl Five
- an algorithm capable of beating professional Dotab players - for example was trained using a
scaled-up version of PPO on 256 GPUs and 128,000 CPU cores. In that setup, the CPUs are
used to simulate the environment, and GPUs are used for neural network inference (i.e. action
selection) and policy updates. The experiment described in this thesis were run on a Intel Xeon
W-2145 CPU with 16 logical cores, where both simulation and NN interactions are handled
by the CPU. In theory, increasing the number of parallel experience-generating environments
should result in better policy performance and wall-clock times. However, in practice there are
some limiting factors related to the parallelisation scheme and available hardware. Figure 3-
4 describes the parallelisation scheme used in this research, which is mostly based on the
method described in [28] and differs from the standard Stable Baselines implementation.
This scheme essentially consists of two paths: the simulation path and the policy update path.
The simulation path consists of alternating environment steps to obtain the updated states
and neural network inference to obtain new actions. Unlike threads, processes do not share
memory with other processes. Since the environment interactions and NN inference run on
separate processes, there will be some latency introduced by the transmission of the states
and actions between these processes (called inference communication time in Figure 3-4).

A rollout consists of multiple of these simulation loops run in series and results in a large
batch of experience tuples. This batch is then used to update the neural network parameters
using a gradient descent algorithm. Note that since NN inference and policy updates are
run on the same process, the batch of experience samples is already available to the neural
network process, so this does not introduce latency due to communication. Once the policy
update is completed, a new rollout will commence.

Since every CPU logical core can only run one thread per moment in time, the amount of
parallel simulation processes is limited to the number of CPU cores, in this case n = 16.
However, this does not mean that the number of environments is limited to 16 as well:
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