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Abstract. We present a “rich” Petrol Station Replenishment Problem
(PSRP) with real-life characteristics that represents the complexities
involved in actual operations. The planning is optimised over multiple
days and therefore, the new variant can be classified as the Multi-Period
Petrol Station Replenishment Problem (MP-PSRP). A Mixed Integer
Linear Programming (MILP) formulation is developed and a decomposi-
tion heuristic is proposed as a solution algorithm, which is evaluated with
a case study from a real-life petrol distributor in Denmark. To determine
delivery quantities, the heuristic uses the newly introduced simultaneous
dry run inventory policy. A procedure is applied to improve the initial
solution. A commercial solver is able to find feasible solutions only for
instances with up to 20 stations and 7 days for the MILP model where
optimality is guaranteed for instances up to 10 stations and 5 days. The
heuristic on the other hand provides feasible solutions for the full case
study of 59 stations and 14 days, within a time limit of 2 h.

Keywords: Petrol Station Replenishment - Inventory routing -
Simultaneous dry run inventory policy - Decomposition heuristic

1 Introduction

In this paper, we develop a variant of the Petrol Station Replenishment Problem
(PSRP), that addresses the optimisation of the distribution of several petroleum
products to a set of petrol stations over a given planning horizon. The products,
stored in underground tanks, are delivered to petrol stations using a heteroge-
neous fleet of vehicles with multiple compartments. The vehicles are assumed
to be equipped with flow meters, that allow to split the fuel in a compartment
over multiple stations. Delivery amount is limited by the available capacity of a
storage tank at a station and the capacity of vehicles. The aim is to determine
the optimal route for the vehicles in order to minimize total travel distance.
Figure 1 shows a schematic representation of the problem.
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Fig. 1. A vehicle trip to multiple stations with different number of underground tanks

As the stations do not have to be replenished every day, the considered prob-
lem is solved over multiple days. The newly formulated problem can be classi-
fied as the Multi-Period Petrol Station Replenishment Problem (MP-PSRP). To
decide when a station needs to be replenished the inventory levels at the stations
are assumed to be known by the supplier. The supplier makes then, per time
period, the following decisions:

When stations are visited and which stations are combined into a trip (i.e.,
the routing decision for vehicles)

— Which vehicles are used to perform the trips

The quantities per product that are transported to each station

— Which compartments are used to deliver the fuel

For each trip the time a vehicle leaves and returns to the depot

These decisions comprise both inventory and routing decisions. Handling
them simultaneously with Inventory Routing Problems (IRP) leads to more effi-
cient operations since inventory and routing decisions are interrelated and these
two factors are the main cost drivers of petroleum supply chain costs [9,23]. For
a comprehensive review of IRP we refer to [7]. Moreover, the problem in this
paper relates to vehicle routing problems with multiple compartments due to
the nature of the problem and we refer to [13] for a review.

Delivery quantities are set sufficiently high to prevent stock out of a product
at a station. The daily demand of a product at a station is given by a deter-
ministic forecast. However, in the real-life situation, the fuel consumption is not
known beforehand. In this research, a safety stock level set to at least the average
daily demand is used to cope with this uncertainty. The daily planning is usu-
ally made over night, with the latest available inventory levels. The safety stock
reduces the risk of running out of a product, regardless of the time of delivery.

In this paper, a Mixed Integer Linear Programming (MILP) model is pro-
posed to formulate the problem. Due to the complexity of the problem, solutions
for real-life size situations cannot be found by an exact approach. Therefore, a
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decomposition heuristic is proposed as a planning method for this problem. Both
the exact solution of the MILP and heuristic approach are evaluated with a case
study from a real-life petrol distributor in Denmark.

The remainder of the paper is organised as follows. An overview of related
literature is presented in Sect. 2 and the problem is defined in Sect. 3. The MILP
model is presented in Sect. 4 and the heuristic is provided in Sect. 5. The results
are discussed in Sect. 6 and Sect. 7 concludes with the main findings and recom-
mendations for further research.

2 Literature Review

The PSRP has received substantial attention in the literature over the last
decades, after the problem was formulated for the first time by [5]. A compre-
hensive overview of the history of the PSRP is provided by [4,11]. The authors
of [10] developed an exact algorithm for the single day PSRP, where the number
of stops per trip was limited to two. The problem is extended to multiple days
by [12], that presented a MILP model with the objective to minimise costs with
a penalty for overtime use of vehicles. In [19], the authors defined a MILP model
for the PSRP which minimises both inventory and routing costs over multiple
days. The number of stations that can be visited in a trip is limited to three and
a station cannot be visited by more than one vehicle during a time period. Tra-
ditionally, the PSRP has been solved over a single day time span mainly because
of the complexity of the problem. Several researchers have, however, shown that
solving the problem over multiple days leads to more efficient solutions [1].

In [20], a Variable Neighbourhood Search (VNS) heuristic is proposed with
a shaking procedure based on shifting deliveries between days in the planning
horizon with a homogeneous fleet of vehicles. [23] also used a homogeneous fleet
of compartmentalised vehicles to distribute fuel and formulated the problem as
a MILP with the objective to minimise both inventory and routing costs.

A variant of the PSRP with a homogeneous fleet is proposed in [16]. The
stations are visited after a minimum delivery quantity can be delivered, which
is set to improve vehicle utilisation. The problem is solved with a Tabu search
algorithm that is proven to find near-optimal solutions. The lower bounds of a
reasonable sized problem are determined with Lagrangian relaxation. A variant
of the PSRP with multiple compartments and time windows is presented by [4].
The time windows represent the scheduling horizon for each vehicle and there
are two types of vehicles with different compartment sizes. The problem is solved
using commercial solvers for the MILP formulation and a heuristic.

A variant of the Vehicle Routing Problem with Time Windows (VRPTW)
is the problem with multiple use of vehicles, where each vehicle can perform
multiple trips per time period. This problem is studied in [3] with a homogeneous
fleet of capacitated vehicles. The researchers presented a MILP model and solved
the problem using a branch-and-price algorithm. Another MILP model for a
single day VRPTW is presented by [17].

The contribution of this paper is twofold: (i) the design of a decomposi-
tion heuristic with a new inventory policy called simultaneous dry run concept,
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which aims to minimise the number of visits to a station considering the delivery
quantities across all tanks at that station, and (ii) the consideration of a unique
combination of real-life characteristics that makes the problem “rich” as later
highlighted in Table 1. Therefore, in the remainder of this section, we present
further literature related to decomposition heuristics and real-life characteristics
in routing problems.

2.1 Decomposition Heuristics

The combination of characteristics makes the considered variant of the MP-
PSRP NP-hard, since it is already shown to be an NP-hard problem even for
simpler problems [1,12,16,23]. An effective method to solve such complex prob-
lems is decomposition heuristics that can be considered under the umbrella of
matheuristics. Matheuristics is a category of heuristics that divides a problem
into sub problems, of which at least one sub problem is a MILP. Another class
of matheuristics are improvement heuristics, where MILP models are used to
improve a solution [2]. The heuristic presented in this research is a decomposi-
tion heuristic, based on decomposing the decision process of the supplier.

In [22], a decomposition heuristic is proposed for the PSRP, in which inven-
tory was not considered. The problem was decomposed into assignment, routing
and improvement procedures. A local search technique based on switching any
two stations between service days was used as the improvement procedure. The
authors of [9] solved an IRP by decomposing the decision process of the ven-
dor into a three-phase heuristic focusing on the decisions of replenishment plan,
delivery sequence and which routes to drive, respectively. Inventory management
has also been included by [10], who decomposed the problem in a Tank Truck
Loading Problem (TTLP) and a routing problem. Similar models are used by
[12], where the planning is constructed for each day of the planning horizon.

The distinction of our decomposition heuristic is the incorporated simultane-
ous dry run inventory policy to determine delivery quantities, which are set in a
way that limits the number of visits to a station. Furthermore, petrol products
are transported by compartmentalised vehicles. These vehicles are often assumed
not to be equipped with flow meters [4,10,12,17,20,23]. The absence of flow
meters limits the flexibility in utilisation of vehicles, since flow meters allow to
split the load from one compartment over multiple stations [8]. The case studied
in this research assumes the availability of flow meters, which allows splitting
loads.

2.2 Real-Life Case Studies

Several researchers developed models to solve real-life cases. In [18], the dis-
tribution of petrol for a network in Hong Kong is improved by applying the
Vendor-Managed Inventory (VMI) concept. The proposed approach helped the
company to increase the delivery volume and decrease driver costs. The authors
of [22] used real-life cases to evaluate the performance of the solution methods to
solve the PSRP. Compared to a planning made by a human operator, a maximum
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saving of 17.7% was achieved. In [21], the PSRP is investigated for a distributor
of petroleum products in Oman. A MILP model is presented that eventually can
be used to prepare a bid for auctions of transportation procurement.

A large petroleum company in China is considered by [16]. The distribution
of petroleum products in provinces was modelled as an IRP and a heuristic is
developed that is shown to provide near-optimal solutions. In [15], the authors
considered the petrol distribution in the United States. A MILP model was used
to determine the optimal supply chain design, while considering multi-modal
transportation methods when determining locations for the facilities. The case
of distribution for an Algerian petroleum company has been evaluated by [4],
with a model for the PSRP with compartmentalised vehicles and time windows.
The method proposed by the authors outperformed the solution created by the
company, in terms of number of vehicles and total travel distance.

The case studies mentioned underline the growing interest in “richer” models,
what promises even more effective methods for the future. For the definition of
“rich” routing problems we refer to the survey by [6] where they mention several
characteristics of VRP variants that lead to this rich category. As we consider
real-life constraints related to time and stations, dynamism, heterogeneous fleet,
and have linkage between inventory and routing decisions our paper fits to this
concept. An overview of the problem characteristics considered in this research
in reference to the most relevant literature is shown by Table 1. With this posi-
tioning, it is clear that our paper addresses a problem with a unique combination
of characteristics that is not done before to the best of authors’ knowledge.

Table 1. Positioning of our work in the literature. TH: Time Horizon S: Single-period,
M: Multi-period, ST: Single Trip, MT: Multiple Trip, MP: Multi-Product, VU: Vehicle
Use, VF: Vehicle Fleet, Comp.: Compartments, SL: Split Loads, HO: Homogeneous,
HE: Heterogeneous, SR: Station Restrictions, Time Con.: Time constraints

Paper IRP | Stops/trip| TH|MP | VU | VF | Comp. | SL | Time Con. | SR
Al-Hinai and Triki [1] Unlimited |[M |v |ST HE |/

Azi et al. [3] Unlimited |S MT |HO v |V

Benantar et al. [4] Unlimited |S |v |ST HE |V v v
Coelho and Laporte [8]|v | Unlimited |[M |v |ST |HE |/ v

Cornillier et al. [12] v |Max. 2 M |v |MT|HE |/ v

Li et al. [16] v | Unlimited |S SU |HO v

Macedo et al. [17] Unlimited | S MT |HO v |V

Popovié et al. [20] v |Max. 3 M |v |ST |HO|V/

Vidovi¢ [23] v |Max. 4 M |v |ST |HO|V/

This research v Unlimited |[M |v  |MT HE |/ v |/ 4

3 Problem Definition

Let G = (V, A) be a complete directed graph, where V' = (0,1,...,n) is a set of
nodes and A = {(4,7) : 4,j € V} is the set of arcs. Each arc (4, ) is associated
with a travel distance c¢;; and a travel time ¢;;. The stations are represented by
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nodes N = (1,...,n) and the depot is given as node 0 or n + 1, depending on
whether it is the initial or final node in a trip. Each node has a fixed service time
st;. Set T = (1,...,n) defines the time periods (days) in the planning horizon.

Set R contains the trips that can be driven by vehicles, with |R| chosen large
enough to enable the maximum number of trips a vehicle can perform during a
daily work schedule. The trip indices are used in increasing order, which means
that r" > r if a vehicle performs trip 7 after trip r.

The stations are directly associated with nodes and have one or multiple
underground tanks that store one type of product p. Set P contains all products,
which are stored at the depot. Each underground tank has a maximum capacity
C? a safety stock IS? and an initial inventory level at the start of the planning
horizon I%). DY, gives the demand for each product at each station per day ¢.

Fuel is transported by a heterogeneous fleet of vehicles. Each vehicle k € K
has multiple fuel compartments f € Fj, with maximum capacity Q*/. Station
restrictions are included in the model by variable ¥, which is 1 if station i can
be visited by vehicle k. Operating hours of vehicles are represented by a time
window [af, b], where af is the start and b the end time for vehicle k during day
t. M is an arbitrary large constant that is used to ensure a linear formulation.

Furthermore, the following assumptions are made:

— There is enough inventory at the depot to fulfil the replenishment plan.

— Inventory levels at stations are known by the supplier.

— Demand is considered as deterministic, based on a forecast. To deal with
stochasticity and potential stock out, a safety stock level is determined for
each tank at each station.

— A station can have only one underground tank per product.

— To transport the petrol products, a heterogeneous fleet of vehicles (equipped
with flow meters) is used with compartments of known size.

— All vehicles are assumed to drive with the same speed, which means that they
have the same travel time, given the same distance.

— Some vehicles cannot visit each station, due to spatial restrictions.

— Stations can be visited multiple times a day and 24/7, because it is assumed
that a truck can always deliver the petrol products at the station.

— Vehicles run within the operating hours, i.e., work schedules of drivers.

4 Mathematical Formulation

The problem is formulated as an MILP. Let binary variable zfjrt be 1 if and

only if vehicle k drives arc (i,7) in trip » during day t. Binary variable y¥, is 1

if vehicle k drives trip r during day t. The same holds for binary variable me
where ¢ is added to define that station ¢ is visited by vehicle k. If binary variable
wftf P is 1, product p is loaded into compartment f of vehicle k during trip r on
day t. If trip '’ is driven after trip r by vehicle k during day ¢, binary variable
ufr, , 1s set to L. Variable qﬁ,’;p is used for the delivery quantity of product p,

loaded in compartment f of vehicle k and delivered to location i during trip r
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on day t. S¥, is the time vehicle k can start the service at station i during trip
r on day t and I?, represents the inventory level of product p at station ¢ at the
end of day t. The problem can then be formulated as follows:

minz Z Z Z Cij xi'cjrt (1)

teT reR keK (ij)EA

Subject to
If > 157 Vpe P,Yne NVteT (2)
P+ > > glr<cr Vpe PYic NVteT (3)
reRkeK feFy
P DN qidr-D Vpe PVie NVteT (4)
reRkeK feFy
2k, < ok Vk e K,Yie NNVre RVteT (5)
> b, =1 Vk e K,Nre RVteT (6)
JEV
S oak =Y ak,, =0 Vk € K,Yj € V,¥r e RVt e T (7)
eV eV
= ak, Vke K,Yie NNVre RVteT (8)
JjEV
qwfp < Mzm Vk e K,Npe PVf e F,,Vie NNVre RVteT (9)
> atr <wil? QM Vk € K,\Xf € F,,Vp € PYr € RVt €T (10)
1EN
S owilt < Vk € K,Nf € F,Vr e RVteT (11)
peP
Sk, >aF Vke K,Vie VV\r e RVt €T (12)
Sk, <bF Vke K,Vic V,Vr€e RVteT (13)
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Szkrt + tij + Sti - M(l z]rt) < Sjth

Vk e K,¥(i,j) € A,¥r € RVt €(T4)

SEL 4+ M1 —uk, ) > Sk Vror € Ryr<r Vke KVt eT (15)
o> Wk, = k-1 Vke KVteT (16)
r€R ' Ry >r reRr

2k <k Vke K,Yie NNVre RNVteT (17)

ot € {0,1} Vk e K,Vi,j € V,V\r e RVteT (18)

y¥ € {0,1} Vke K,Nr e RVteT (19)

2k, e{0,1} VkeKVieNVreRNtecT (20)

wkl? € {0,1} Vk € K,Vf € F,,Vp € P,¥r € RVteT (21)

R, €{0,1} Vke K,\Nrr € Ror<r.r =r+1VteT (22)
qm”>0 Vk e K,Vf € F,,Ype PYie V,VNr € RVt €T (23)
Sk, > Vke K,Vic V,V\r e RVteT (24)

" >0 Vpe PYie NVteT (25)

The objective function (1) minimises the total number of kilometres driven
by all vehicles during the entire time horizon. Constraints (2) and (3) ensure
that inventory levels for fuel in underground tanks stay above the safety stock
level and below the maximum capacity. Constraints (4) keep track of the daily
inventory level, taking into account the demand and deliveries. Station restric-
tions are imposed by constraints (5), which means that some vehicles cannot
access all stations. Constraints (6) ensure that all vehicles start and end at the
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depot. Constraints (7) represent the flow conservation constraints. Constraints
(8) and (9) link = and ¢ variables to z, such that a vehicle can only drive to a
station and deliver fuel when it is visited by that vehicle on a certain day. Con-
straints (10) ensure that compartment capacities are respected and constraints
(11) make sure that only a single product is loaded into a compartment, if any.

Constraints (12-13) ensure that operating hours of the vehicles are respected.
Constraints (14) ensure the consistency of start times at different stations
based on the driving and service times. Constraints (15-17) make sure that,
in case a vehicle performs multiple trips during a time period, these trips are
driven consecutively. Lastly, z, y, z, w and u are defined as binary variables by
(18)—(22) and constraints (19) maintain nonnegativity.

5 Heuristic Solution Method

We investigated two solution methods: (i) using an exact solver, Gurobi Opti-
mizer version 8.1.1 [14], for MILP that is implemented in Python, (ii) a decom-
position heuristic. In this section we describe the decomposition heuristic.

5.1 Decomposition Heuristic

A decomposition heuristic, based on decomposing the decision process of the
supplier, is considered to solve the rich variant of the PSRP for real-life size
instances. To create the planning for a single day, the decision process is decom-
posed into five phases. Since the planning for a certain day affects the inventory
levels of the next day, a dynamic programming approach is required to create
the planning day by day. After each iteration, inventory levels are adjusted with
the delivery quantities. An overview of the heuristic procedure is shown in Fig. 2.

To improve the initial solution created by the decomposition heuristic, an
improvement procedure is proposed (discussed in Sect. 5.2). We now discuss the
five phases considered for the decomposition, which are used to generate the
planning for a single day. This process is repeated for each day in the time
horizon, that is T, days, and the day in the considered iteration is noted as t..

Phase 1 - Order Generation. An order is generated for each underground
tank and the expected day of depletion is determined, by deducting the daily
demand from the inventory level. The day of depletion is the time period the
inventory level is expected to drop below the safety stock level. An order is
identified by the station, product and depletion day, since a station is assumed to
have maximum one tank per product. The resulting list contains all underground
tanks that are expected to deplete during the remainder of the considered time
horizon [t., Te].
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Order generation
for [te, Tel

v

Order pairing
for stations in t;, with other orders
for these stations in [tg, Te]

v

Set quantities
per order, based on simultaneous
dry run concept

v

Route creation (eq. 26-30)
for orders in tg

v

TTLP (eq. 31-40) planning for day t; +
to create planning for t¢ inventory levels

A

Fig. 2. Heuristic procedure, with T, days in time horizon

Phase 2 - Order Pairing. The resulting list from phase 1 is filtered on under-
ground tanks that deplete during the day for which the planning is generated t..
Orders for the same stations as on this filtered list, with an expected depletion
day in the future, are also added to the resulting list of phase 2. The output is
a list of stations, with a set of tanks per station that are expected to deplete
during t. or a future time period.

Phase 3 - Set Quantities. Minimum and maximum delivery quantities are
set according to the simultaneous dry run inventory policy, which we will now
introduce. The maximum delivery quantity is set to the remaining tank’s capac-
ity. Minimum delivery quantities are set to a level that ensures the next delivery
to a station to be postponed for as long as possible. When one of the tanks at
a station depletes, the station needs to be visited. Postponing the next delivery
is done by filling the tank with the highest consumption rate to the maximum,
since this tank depletes the fastest. For the other tanks at the same station, the
minimum delivery quantity is set to the expected sales during the same time
that the tank with the highest consumption rate depletes again. This process,
shown by Fig. 3, ensures that a station is visited as least as possible.
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Phase 4 - Route Creation. This phase is about generating the routes based
on the results of the previous phases. Binary variables y, and z;, are introduced
to determine if route r is used. With the minimum delivery quantity qf,.,mm
following from the previous phase, the route creation model can be stated as:

min Z Yr Cr (26)

reR
Subject to
Zir < Tip Vie N,¥r € R (27)
Zir < Y Vi € N,VT eR (28)
> zir =1 Vie N (29)
reR
> (er,mmzir) < 0.9 C min Vr € R (30)

i€EN

The objective function (26) minimises the total travel distance for the con-
sidered time period. Constraints (27) make the choice to visit station ¢ during
route 7 only possible when the station is included in the predetermined route.
Constraints (28) link variables y and z. Constraints (29) are used to ensure that
each station is visited once. Constraints (30) limit the sum of the minimum
delivery quantities to 90% of the total capacity of the largest vehicle. 90% of
the capacity is used as maximum based on practical experience since different
products need to be loaded into different compartments and a higher value may
hinder feasibility, i.e., the next phase of the heuristic may not be able to find
feasible solutions.

Phase 5 - Tank Truck Loading. In the final phase, routes are assigned to
trucks while maximising vehicle utilisation for an efficient use of the vehicles. A
variant of the Tank Truck Loading Problem (TTLP) by Cornillier et al. [10], is
developed to execute this assignment procedure. Binary variable y* is introduced
to determine which vehicle &k drives a route ~ and wF/? is introduced to set in
which compartment product p is loaded. The model is given as:

S DD OB DD I WL )

reR i€N k€K feF peP
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Subject to
> "> Vpe PYie N,Vr € R
kEK fEF
S Y@< s Vpe PYie N,Vre R
kEK fEF
SO P < Mok Vi€ N,Vk € KVr € R
peEP feF
S g < whie QS Vk e K,Yf € F,¥pe P,Yre R
iEN
S wkir <1 Vke KNfeFVreR
peEP
Syk=1 Vre R
keK
S (yFt,) < bk —aF Vke K
reR
whP < ok Vk € K,Vf € F,¥pe P,Vr € R
P >0 Vk e K,Nf € F,¥pe PYr € R
Expected Simultaneous
dry run dry run
o IO R S Gapaciy lval
E Min. quanti;y-..""-._.....
Forecast - :
Safety stock level
Tank 1 ; Time period
L ____________________ Capacity level
Forec:;;'t.“u"
_____________ Safety stock level
Tank 2 Time period

611

Fig. 3. Visualisation of the simultaneous dry run inventory policy. Shown graphs repre-
sent the inventory levels for two tanks at the same station. Minimum delivery quantities

are set to ensure simultaneous dry

run in the future.
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The objective function (31) maximises the total delivered quantity, to ensure
efficient vehicle utilisation. Constraints (32-33) set the delivery quantity to be
within the range previously determined by the minimum and maximum delivery
quantities. Constraints (34) implement station restrictions and constraints (35)
limit the delivery quantity per compartment to its capacity. The fact that a
compartment can only be filled with one type of product is implemented with
constraints (36). Constraints (37) ensure that each route is driven by a vehicle
exactly once and constraints (38) limit the duration of all routes driven by a
vehicle by the driver schedule. Lastly, constraints (39) link variables w and y.

5.2 Improvement Procedure

For the initial solution, the decision to visit a station is based on the depletion
day. This means that routing is not optimised over the entire time horizon and
that the stations can not be visited later. To improve the initial solution, an
improvement procedure is developed with solution candidates that are based on
visiting stations one time period earlier. To evaluate if the solution improves, the
planning is recreated for the remaining days. Since this is an extensive process,
the number of candidates is limited to the number of station visits.

6 Computational Results

The performance of the decomposition heuristic is evaluated in reference to the
benchmark which is the exact solution of the MILP. A real data set from a petrol
distributor is used that consists of 1 depot, 59 gas stations and 4 vehicles. The
experiments are executed on a computer with a 3.50 GHz 4-core processor and
32 GB of RAM. Shown results are averages of multiple experiments with subsets
of the case study data set and S4-D5 stands for 4 stations over 5 days.

Table 2 shows the distance and computation time for MILP and the heuristic.
The results are the average of performed experiments and the computation time
is limited to7200s. Optimal solutions for MILP can be found for instances with
up to 8 stations and 5 days. For instances larger than 20 stations and 7 days,
there is no available feasible solution. In terms of computation time, the heuristic
provides advantages. However, the total travel increases with 19.1% compared
to MILP solutions. If only experiments with 7 days are considered (representing
practice), the average increase in travel distance is 15.6%. This can be explained
by the fact that the heuristic maximises delivery amounts per vehicle and the
MILP only ensures that the inventory level stays above the safety stock level.

Table 3 shows the heuristic results for real-life size instances. The initial solu-
tion found by the decomposition heuristic is improved during the improvement
procedure by 4.6% on average. For the full data set, a solution is found within
2h, which proves that the heuristic is an effective method for creating solutions
for real-life instances.

As a validation of the heuristic, we also compared the results for 59 stations
across 14 days to the results from the actual planning at the petrol distributor.
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Table 2. Benchmark comparison. CT: computation time, A: difference in distance
relative to MILP, *: not optimal, **: no feasible solution

Experiment | MILP Heuristic
Distance (km) | CT (s) | Distance (km) | A CT (s)

S4-D5 267 2 304 13.8% | 2
S4-D7 480 469 550 14.6% | 4
S6-D5 321 544 413 28.8% | 3
S6-D7 582%* 7200 690 18.5% | 6
S8-Db 399 1955 501 255% | 5
S8-D7 753% 7200 849 12.7% | 8
S10-D5 454%* 7200 581 28.1% | 6
S10-D7 873* 7200 984 12.7% |14
S12-D5 478* 7200 606 26.8% | 8
S12-D7 972% 7200 | 1063 9.4% 18
S520-D7 1376* 7200 | 1642 19.3% |39
S30-D7 —** - 2281 - 79
Average 19.1%

Table 3. Computational results for larger instances. CT: computation time, InSol,
FinSol: initial and final solution.

Experiment | InSol (km) | FinSol (km) | A CT InSol (s) | CT FinSol (s)
S20-D14 3931 3670 —6.6% | 2 162
S30-D14 5588 5365 —4.0% | 4 589
S40-D14 6965 6735 —3.3% |12 727
S50-D14 10267 9813 —4.4% | 29 3747
S59-D14 11426 10877 —4.8% | 14 5103

As this was not straightforward to analyse in detail due to differences in the
algorithmic approach we can only mention indications for the reduction in travel
distance (around 12%) and average number of stops per trip (around 26%). This
shows that the proposed approach has a potential to be used in practice.

7 Conclusions and Future Research

We presented planning methods for the MP-PSRP with real-life characteristics
and increased complexity. In order to deal with the increased computational
complexity, a heuristic is developed, which is a combination of a decomposition
heuristic and an improvement procedure. The decomposition heuristic uses the
newly introduced simultaneous dry run inventory policy to determine maximum
and minimum delivery quantities. The models have been tested with a data set
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based on the real-life situation for a petrol distribution company. It is found
that no feasible solution is available for MILP within the two hour time limit
for instances larger than 20 stations and 7 days. The heuristic can create the
planning for the full case study with 59 stations over 14 days and compared
to the actual planning used at the company shows a potential of reducing the
travel distance. Nevertheless, the performance of the heuristic algorithm needs
improvements as small size instances show gaps compared to the MILP solution.

Future research in this area is encouraged especially in the efficient solution
algorithm development. The value of the simultaneous dry run inventory policy
could be further explored by considering the exact time of delivery instead of
the day of delivery. This would allow to also replenish the quantity of fuel that
has already been sold during the day till the moment of delivery. Furthermore,
the decomposition of the problem into days might be hindering the potential of
our heuristic for a multi-period setting. Therefore, further research into different
decomposition approaches might be promising. Another direction for further
research could be to simulate deliveries with unexpected events, to determine
the effect of uncertainty on the distribution performance.
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