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A B S T R A C T   

Food security is important for human well-being worldwide. However, changing climate, population growth and 
shrinking land resources are threatening food security in many regions of the world. Jiangsu Province, China, is 
one such region. It is a major food-producing region of the country but is witnessing rapid population growth and 
urbanization that is putting pressure on agricultural water and land resources and threatening food security of 
the region. 

This paper interprets the nexus between regional water availability and food security in Jiangsu Province 
under different climate change and socio-economic scenarios of population growth and land resource avail-
ability. Climate change scenarios are generated based on historical data and Global Climate Model (GCM) 
products. Socio-economic scenarios are generated based on population growth and crop planted area projections. 

The uptake of water and nutrients are considered as two dominant biophysical processes of crop growth and 
food production. Complementing it is human agency, including human labor, irrigation and land-preparation 
machinery, which are the factors behind water and nutrient use efficiencies of crops grown. Two dominant 
crops are considered, rice and wheat, that contribute to 61.4% of total crops produced in the province. 

Results show that adaptation by human agency is necessary to ensure that food supply meets at least the 
demand of the province under all climate change and socio-economic scenarios. Under relatively favorable 
scenarios, labor could replace land-preparing machinery since the level of food production can be easily 
maintained with abundant water and land availability. Mechanization in agricultural production significantly 
increases food production under unfavorable conditions, since it improves water and nutrient use efficiencies and 
leads to higher crop yields. This demonstrates that human agency plays an important role in securing food under 
stressful scenarios of drier climate, population growth, and contraction of agricultural lands.   

1. Introduction 

Maintaining sufficient food supply is key to a healthy population and 
social stability (Springmann et al., 2016; Kaiser, 2011). This can either 
be realized through trade or through high and stable level of food pro-
duced locally. The latter is especially important under changing climate 
and evolving socio-economic conditions (Turral et al., 2011), such as 
rapid population growth (McCarthy et al., 2018), and shrinking agri-
cultural lands (Hou et al., 2019; Qiu et al., 2020). This is because trade 
will likely be disrupted more often, offering less reliable means of 
securing food for local population (Cardwell, 2014). 

Under changing climate, local food production is expected to be 
affected by changing water availability and impact food security and 

agricultural employment (Hertel and Rosch, 2010; Rosemberg, 2010; 
Siwar et al., 2013). Food security, i.e. when food supply of a region is at 
least able to meet its own demand, is affected directly by such changing 
agro-ecological conditions and crop yields, as well as indirectly by 
inequitable distribution of incomes (Schmidhuber and Tubiello, 2007). 
Changing socio-economic conditions (Garibaldi and Pérez-Méndez, 
2019), such as shrinking agricultural land resources for food crops, are 
also expected to reduce overall food production (van Vliet et al., 2017; 
Wang, 2019). This exasperates food insecurity with rising demand for 
food due to population growth (Avery et al., 2019; Mondal and Sanaul, 
2019). 

Jiangsu Province, China, is one such region that exemplifies the 
pressures on food security. As one of the major regions of crop 
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production in China (Gu and Guo, 2011), the province produces 37 
million tons of food crops (BSC, 2019) and supports the enormous food 
demand of the country. It is also one of the regions which is under water 
stress (Li and Li, 2012; Xu et al., 2011), and witnessing land and pop-
ulation growth pressures (Zhang et al., 2004; Qian et al., 2008; Zhu and 
Ou, 2020). With agricultural land shrinking in the process of urbaniza-
tion, people are shifting from rural agriculture to modern industries, 
leading to rural to urban migration (Lyu et al., 2019). The province is 
likely to face food insecurity in the future and adaptation strategies are 
urgently needed (Xu and Ding, 2015). 

Often not enough adaptation to bio-physical impacts, high-cost of 
measures, short-term merit but long-term negative adaptations, and lack 
of feasible adaptive strategies hinder adequate response to climate and 
socioeconomic changes (Warner and Geest, 2013). This highlights the 
need to unravel possible means to adapt under diverse future scenarios 

and secure sufficient food (Challinor et al., 2010), which move away 
from more expensive hard interventions such as supply oriented mea-
sures to soft interventions. Examples of the latter include how water and 
land resources are governed and used in crop production (Medeiros and 
Sivapalan, 2020; Li and Sivapalan, 2020; Kakinuma et al., 2014). 

This paper uniquely views humans as agents of change that improve 
water and nutrient use efficiencies, and inquires to what extent food 
security can be ensured for Jiangsu Province. Since most food crops are 
farmed, labor is an indispensable part of such human agency (Achille 
et al., 2015). The agency also includes machineries, for irrigation and 
land-preparation, which improves the efficiency of water and nutrients 
uptakes for food crop production (Febrina et al., 2013; Ma et al., 2020; 
Huang et al., 2018). 

The human agency can adapt crop production to changing conditions 
and secure food (Crane et al., 2011; Olesen et al., 2011; Leisnham et al., 

Fig. 1. Illustration of the overall methodology. FSR stands for Food Sufficiency Ratio, which is the ratio of food demand and food supply.  
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2013; Preston et al., 2015; Gomez-Zavaglia et al., 2020). However, no 
studies yet exist that have modelled human agency in context of crop 
production and assessed the effects of its adaptation to changing envi-
ronment on food security. The aim of the paper is to assess the extent to 
which food security can be ensured by adapting human agency under 
changing conditions of water and land availability in Jiangsu Province. 

The paper is organized into five sections. Section 2 describes the 
methodology used for generating climate change and socio-economic 
scenarios, modeling crop production, evaluating food security and 
maximizing it by adapting human agency, together with the main data 
sources used. Section 3 presents the results of “optimized” food security 
under different climate and socio-economic scenarios. Section 4 first 
discusses the improvements in crop water and nutrient use efficiencies 
that are brought about by adapting human agency. It then discusses the 
trade-offs between labor and machinery employed to optimize food se-
curity under different climate change and socio-economic scenarios. 
Section 5 then summarizes the main conclusions. 

2. Methods and materials 

Fig. 1 illustrates the overall methodology. A crop model which 
combines bio-physical mechanisms with human agency (Lyu et al., 
2020) is applied. Climate change brought about by greenhouse gas 
emissions is assumed to effect crop yields due to changes in precipita-
tion. The human agency, including labor, irrigation machinery power 
and land-preparing machinery power per unit area, determines the 
water and nutrient use efficiencies during crop growth. 

The socio-economic conditions are assumed to be dominated by 
population growth and food crop plant area and affect crop production 
and the ratio of food supply to food demand, i.e. food self-sufficiency 
rate – a key indicator of food security. 

The human agency adapts to changing climate and socio-economic 
conditions by improving the water and nutrient use efficiencies of 
food crops so that higher yields are achieved. The food self-sufficiency 
rate within Jiangsu Province is then determined as the ratio of food 
supply and food demanded for given population and planted area 

scenarios. Here food supply is the product of yield and planted area and 
food demand is determined by the dietary demand of the population of 
the province. 

Finally, it is assumed that the objective of adaptation by human 
agency is to jointly maximize the magnitude and stability (i.e. lower 
variance) of food self-sufficiency rate (FSR) for a given climate change 
and socioeconomic scenario over the next 30 years till 2050. The human 
agency adapts in order to identify non-dominated sets of higher and 
stabler (lower variance) FSRs. Here by non-dominated sets it is meant 
that there are no other sets that dominate this set in terms of either 
having higher or stabler FSR. 

2.1. Study area 

As shown in Fig. 2, Jiangsu Province is located in the southeastern 
coast of China. The province is in a transition zone between subtropical 
and warm temperate climate, with annual precipitation around 1000 
mm/year. Three of the main rivers of China run through it: Yi-Shu-Si, 
Huaihe and Yangzi (including the Taihu Lake river network). 
Benefiting from its abundant river systems and water resources, Jiangsu 
is one of the main exporters of food crops to other provinces in China (Li 
et al., 2009). It is able to supply food not only for its own residents, but 
also to other provinces across the country. 

There are eight crop-monitoring stations providing crop locations 
and related information of the growing seasons. Six stations for wheat: 
Fengxian, Ganyu, Xuyi, Huaiyin, Yangzhou, Kunshan and three stations 
for rice: Ganyu, Dantu, Gaochun, are considered. 

2.2. Stochastic climate scenario generation 

Representative Concentration Pathways (RCPs) (IPCC, 2019) have 
been applied as emission scenarios for climate backgrounds to generate 
regional precipitation and temperature time series with uncertainty 
(Lobell et al., 2006). Regional precipitation time series have been pro-
duced with a multi-model climate generator called Simgen (Greene 
et al., 2012, 2015; Greene, 2012). The Simgen climate generator 

Fig. 2. Jiangsu Province, China. Also shown are the stations that are used in the study.  
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Fig. 3. a Frequency distribution representing GCM related uncertainty and selection of percentile models under RCP 8.5. b Frequency distribution representing GCM 
related uncertainty and selection of models at 10, 50 and 90 percentiles under RCP 2.6. 
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incorporates nonlinear climate change trends, inferred using an 
ensemble of global climate models from the Coupled Model Intercom-
parison Project (CMIP5) (Taylor et al., 2012; Meehl and Hibbard, 2007; 
Hibbard et al., 2007; Hurrell et al., 2011). 

Under a given RCP condition, Simgen first uses a selected number of 
Global Climate Models (GCMs) to simulate historical precipitation data 
at the stations within the study area (as shown in Fig. 2) and evaluates 
the performance of each GCM based on its correlation with the historical 
precipitation time series (Greene et al., 2012; Eyring, 2013; Aloysius 
et al., 2016). GCMs with correlation coefficients higher than 0.50 are 
selected for generating climate scenario time series for future time steps. 
The frequency distributions of temperature change (◦C) and fractional 
change of precipitation with per ◦C change of temperature, together 
with the cumulative frequency distribution function (CDF) of the 
selected GCMs for RCPs 8.5 and 2.6 are shown in Fig. 3a, b, for the study 
area. 

A combination of a selected GCM (corresponding to a percentile on 
the frequency distribution) with a RCP used by Simgen then produces 
corresponding precipitation and temperature time series with stochastic 
effects. Here, 100 runs each of 2× 3 combinations of two RCPs (2.6, 8.5) 
and three GCM percentiles (10%, 50%, 95%) are used to generate 
climate change scenarios. For more details on Simgen, readers are 
referred to Greene (2012). 

RCP2.6 represents a pathway where the radiation forcing reaches to 
about 3 W/m2 before 2100 and then declines. The corresponding 
greenhouse gas emission concentration path (Emission Concentration 
Pathway, ECP) assumes constant emissions after 2100. RCP8.5 repre-
sents a pathway in which the radiation forcing reaches greater than 8.5 
W/m2 and continues to rise after 2100. The corresponding ECP assumes 
constant greenhouse gas emission after 2100 and constant greenhouse 
gas concentration after year 2250. 

Precipitation time series have been generated for the six wheat crop 
stations and three rice crop stations (see Fig. 2). For each combination of 
RCP and GCM percentile, the generated climate scenarios have four 
dimensions: P(t)i,j,k, where t is the time step (50 years from 2001 to 2050 
in total, with climate scenarios applied since 2018), i denotes crop type 
(1 for wheat and 2 for rice), j represents crop-monitoring station 
(j ∈ [1,6] for wheat, j ∈ [1, 3] for rice), k indexes a stochastic run of 
Simgen with given RCP and GCM percentile (100 runs in total) 

2.3. Generation of options for adaptation by human agency 

Labor (capita), irrigation machinery (power) and land-preparing 
machinery (power) per unit area are treated as human agency. It im-
proves the efficiencies of water and nutrient uptake, thereby improving 
crop yields. 

In order to generate realistic options for adaptation by human 
agency, appropriate data generating processes that describe temporal 
evolution of human agency are first identified. These are based on 

growth rate time series from 2002 to 2017 of labor force, gL, irrigation 
machinery power, gMI and land-preparing machinery power, gML. 

Autoregressive Integrated Moving Average model (Kotu and Desh-
pande, 2018), ARIMA(1,0,0) is applied to the time series of gL, gMI and 
gML, as it is found to be most appropriate model of the past time series. 
Being ARIMA(1,0,0), the lag coefficients of the models, i.e., τL, τMI, and 
τML, for respective time series are sufficient to describe the time series. 

In order to stochastically simulate the time series, 2000 tuples of 
ARIMA coefficients τL, τMI, and τML within the range of 
[ − 0.9999,0.9999] are randomly sampled for a given climate scenario. 
The generated coefficient tuples are then expressed as [τL,r, τMI,r, τML,r], 
r ∈ [1,2000]. With 2000 samples of coefficient tuples, time series of gL, 
gMI and gML are stochastically generated and 2000 human agency time 
series of human labor force, irrigation machinery power and land- 
preparing machinery power per area are thus obtained. 

2.4. Crop production simulation 

As shown in Fig. 1, a crop production model is used that combines 
both bio-physical factors and human agency in simulating crop yields. 
Lyu et al., (2020) have demonstrated its utility in simulating wheat and 
rice production in Jiangsu Province, China. 

The crop production model treats Normalized Difference Vegetation 
Index (NDVI) as resulting from the joint effect of water and nutrient 
uptakes on plant greenness. Therefore, the effect of water uptake (rep-
resented by transpiration T) on NDVI is first filtered out and the 
remaining variance of NDVI is then assumed to approximate the effect of 
uptake of nutrients N. The yield-uptake relationship is then defined in 
the form of a production function Y = λxW

αxN
β, where Y is crop yield, 

xW is water uptake given by ηWP, xN is nutrient uptake given by ηNF, α 
and β are corresponding elasticities and λ is a scaling factor. This pro-
duction function represents the biophysical responses of crop yields to 
water and nutrient uptakes (Lyu et al., 2020). The parameters (λ,α, β)
therefore do not assess economic or technological aspects of human 
agency. The human agency determines the water and nutrient use effi-
ciencies, ηW and ηN respectively, that translate available water P and 
applied nutrients F to water and nutrient uptakes xW and xN respec-
tively. The relationship between water or nutrient use efficiency and 
human agency is estimated based on the following equations: 

ηj
W = ΛHj + δj + ∊W  

ηj
N = ΘHj + θj + ∊N (1a,b) 

Here, j refers to a crop-monitoring station, Hj represent station- 
specific human activities but its effect on efficiencies, (Λ, Θ), are gen-
eral across all the stations. Fixed station-specific effects are quantified by 
(δi, θi), and (∊W,∊N) represent the residuals accounting for the variances 
of efficiencies not explained by H. 

Fig. 4. Socio-economic scenario I: Population.  
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Human agency such as labor used in crop production LC, irrigation 
machinery power MI and land-preparing machinery power ML per unit 
area are considered in the set of independent variables H. All combi-
nations of joint and individual effects (such as LCMIML,LCMI, 
MIML,LCMI, LC,MI andML) are first regressed and only those effects that 
were statistically significant are selected in the final model. In the 
calibration of Eq. 1, station specific observed values of ηW and ηN were 
calculated as ηW = T

P and ηN = N
F, where T and P are transpiration and 

precipitation fluxes respectively integrated over the crop growing sea-
sons, N is the nutrient proxy, and F is fertilizer use per area, which is the 
nutrient resource for croplands. See supplementary materials for the 
estimated parameters of the equations. 

Climate change scenarios impose its effects on crop growth via pre-
cipitation P (Kawuma Menya, 2011; Kukal and Irmak, 2018; Makowski 
et al., 2020). The simulated crop yields (i.e., crop production per unit 
planted area) under each climate scenario (i.e., a combination of a RCP 
and a GCM percentile) q for either wheat or rice is represented by var-
iable Y(t)j,p,q,r, where t is time step (50 years from 2001 to 2050, with 
climate scenarios applied since 2018), j represents a crop-monitoring 
station (j ∈ [1,6] for wheat, j ∈ [1,3] for rice), r denotes human agency 
scenario (r ∈ [1, 2000]), and p represents a stochastic run of Simgen 
under each climate scenario, p ∈ [1,100]. 

2.5. Socio-economic scenarios 

For a given level of crop yield as determined by the human agency 
factors under a climate change scenario, socio-economic conditions 
linked to population and plant area finally determine the level of food 
self-sufficiency within the study area. 

As shown in Fig. 4, three scenarios of population (Low, Mid, High) 
have been simulated based on provincial population prediction datasets 
(Bureau of Statistics of Jiangsu, 2002, 2012) and the observed time se-
ries of population within the province (Bureau of Statistics of Jiangsu, 
2019). 

The crop plant area scenarios are based on the planted area dataset in 
the Statistical Yearbook of Jiangsu (Bureau of Statistics of Jiangsu, 
2018) and the cost per unit area dataset in the China Rural Statistical 
Yearbook (National Bureau of Statistics, 2002~2018). Future crop 
planted area time series have been simulated based on relationships 
between two food crops (wheat, rice) and six cash crops (used as 
benchmark) since these crops compete over finite land area available 
and the decisions to grow which crops are affected by the costs of 
growing those crops (Chen et al., 2016; Zhao and Yan, 2019). It is 
assumed that farmers are cost minimizers. The farmers decide on how 
much area is allocated to food crops relative to cash crops based on 
minimizing costs (Chen, 2019; Mo et al., 2020). Corresponding effi-
ciency conditions imply linear relationships between areas under food 
crops relative to cash crops and costs of cash crops relative to food crops. 

Fig. 5. Crop plant areas and calibration of forecasting models.  

Fig. 6. Crop plant area scenarios.  
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Following steps outline the steps taken to unravel the linear 
relationships. 

First the time series of the total planted areas of the eight selected 
crops are observed to vary linearly in time. A linear forecasting model 
(R = 0.95, p-value < 10− 3, as shown in Fig. 5a) is used to estimate past 
trend based on historical data from 2011 to 2018 and to generate trend- 
based scenarios of total planted area for the future. 

The ratios of food crop planted areas with the six cash crops (C) 
planted areas are then estimated based on linear regressions, with the 
ratios of cash crop average cost per unit area with the food crops cost per 
unit area as the independent variables: 

AV

AC
= f1(

YC

YV
)

AR

AC
= f2(

YC

YR
) (2a,b)  

where AV and AR are the planted areas of wheat (V) and rice (R) 
respectively, YV , YR and YC are the costs per unit areas of wheat, rice 
and cash crops respectively, and f1 and f2 are linear functions. Fig. 5b 
and 5c show the regression results for wheat (R = 0.84, p-value <10− 4) 
and for rice (R = 0.92, p-value <10− 7). It shows that the cash crops 
within the province have been gradually replaced by food crops because 
the cost per unit area of cash crops have been increasing relative to that 
of food crops. Finally, the slope of the trend line for total planted area, 
estimated based on historical data above, is used to generate scenarios 
for future areas planted under food crops. 

According to the Statistical Yearbook of Jiangsu, in 2018 the area 
planted under wheat and rice in Jiangsu was 4618.68 kha (103 ha), 
whereas the area under the six cash crops was 274.93 kha (i.e., ~5% of 
area under food crops). This means that food crops have already 
dominated the cash crops in the province and may not significantly in-
crease in the future. Therefore, the future scenarios of area under food 
crops only considered stable or declining trends, i.e., constant or nega-
tive slopes of the linear forecasting models for wheat and rice, for it to be 
realistic. Random errors were added based on the residuals between 
observed and linear model of the historic data. 

Four scenarios from low to high slopes are created as shown in Fig. 6. 
The lowest slope scenario is based on the slope displayed in Fig. 5a, the 
other three use scaled slopes which are 75%, 50%, and 25% of the slope 
in the lowest slope scenario. As shown in Fig. 6, the four crop plant area 
scenarios, from low to high, were named as ‘0AL’, ‘1AM1’, ‘2AM2’ and 
‘3AH’. ‘A’ means ‘Area’, ‘L’, means ‘Low’, ‘M’ means ‘Medium’, and ‘H’ 
means ‘High’. 

2.6. Food security indicator: self-sufficiency ratio 

Food self-sufficiency rate, Ψ, is defined as the ratio of food crop 
production to food crop demand of the province. 

The food crop production per capita is calculated as follows: 

Y(t)m,n,p,q,r =

AV (t)n
6

∑6
j=1YV(t)j,p,q,r* +

AR(t)n
3

∑3
j=1YR(t)j,p,q,r

ϕ(t)m
(3)  

where, 
Y(t)m,n,p,q,r is the food crop production per capita at time step t, for 

human agency scenario r with precipitation time series p, (for each 
climate scenario q there are k ∈ [1, 100] precipitation time series with 
stochastic effects of climate), under plant area scenario n and population 
scenario m. 

AV(t)n and AR(t)n are the plant areas of wheat (V) and rice (R) at time 
t, under plant area scenario n. 

ϕ(t)m is the population at time step t, under population scenario m. 
j represent the agricultural meteorological monitoring stations, for 

wheat j ∈ [1,6], for rice j ∈ [1,3]. Note that the numerator of equation (3) 

is the sum of wheat and rice production levels averaged over the six and 
three corresponding stations respectively. 

The calculation of self-sufficiency ratio Ψ(t)m,n,p,q,r is defined as. 

Ψ(t)m,n,p,q,r =
Y(t)m,n,p,q,r

D
(4)  

where, 
Y(t)m,n,p,q,r is the food crop production per capita. 

D is the demand per capita for wheat and rice. The total food crop 
demand was assumed as 400 kg/capita (Wang et al., 2013). No shift in 
diet is considered that may lead to changes either in the total demand for 
food crops per capita or in the demand for wheat relative to rice. 
Considering that the total production of wheat and rice in 2018 
accounted for about 88.7% of all food crops (BSC, 2019), a factor of 0.90 
is used to estimate total D for wheat and rice as 360 kg/capita. 

2.7. Food security 

Under each of the six climate change scenarios (two RCPs and three 
GCM percentiles), 100 precipitation time series are stochastically 
generated. For each such generation, 2000 human agency options are 
applied that are randomly sampled according to the ARIMA model to 
obtain corresponding crop yields for rice and wheat. Then 12 socio- 
economic scenarios, i.e., three population scenarios and four crop 
planted area scenarios, are used to estimate the food sufficiency ratio 
within Jiangsu Province, China. 

For a given climate scenario q, population scenario m, and crop 
planted area scenario n, a collection of food self-sufficiency rates 
Ψ(t)m,n,p,q,r, are obtained. Note here that r ∈ [1,2000] denotes the human 
agency options, i.e., combination of labor, irrigation and land-preparing 
machinery power per unit area of cropland and p ∈ [1,100] denotes the 
100 precipitation time series with stochastic effects under the given 
climate scenario q. 

Simplifying Ψ(t)m,n,p,q,r to Ψ(t)p,r, a two-dimensional food security 
indicator is estimated that considers the magnitude and variance of food 
sufficiency ratio over time. 

In order to estimate the average magnitude of food sufficiency, 
average of food sufficiency ratio is first estimated over the 100 stochastic 
precipitation time series. 

Ψ(t)r =
1

100
∑100

p=1
Ψ(t)p,r (5) 

The magnitude and variance of food self-sufficiency rate are then 
obtained by the equations below respectively, 

Ψ
Ì¿

r =
1
50

∑50

t=1
Ψ(t)r (6a)  

σΨr
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
50 − 1

∑50

t=1

⃒
⃒
⃒
⃒
⃒
Ψ(t)r −

1
50

∑50

t=1
Ψ(t)r

⃒
⃒
⃒
⃒
⃒

2
√
√
√
√ (6b) 

These two quantities provide the two dimensions of food security, 
which are how large and how stable food sufficiency is over time. The 
two quantities can also be thought of as two objectives to be optimized 
by adapting human agency under different climate and socioeconomic 
scenarios, e.g., in the form 

min(− Ψ
Ì¿

r, σΨr
) (7a, b) 

Given the nature of the objective function being multi-objective, 

non-dominated sets of (− Ψ
Ì¿

r, σΨr
) are sought. The human agency 

parameter tuples [τL,r, τMI,r, τML,r] corresponding to non-dominated sets 
are identified as the adaptation by human agency to secure food. Non- 
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Table 1 
Description of data used.  

Data categories Variables (symbol) Unit Period Spatial 
Resolution 

Temporal Resolution Data source 

Hydro-climatic Temperature (T) ◦C 2000− 2017 0.5*0.5◦ Daily time series distributed using 
monthly data 

CRU (CRU, 1901–2017; Harris et al., 2014) 

Precipitation (P) For crop model 
calibration. 

Mm 2000− 2017 0.5*0.5◦ Derived from monthly data. 
Growing-season-accumulated value 
for each year. 

CRU (CRU1901-2017:Harris et al., 2014) 

Precipitation (P) For climate 
scenarios. 

1969–2013 0.25*0.25◦ Derived from daily data. GLDAS Catchment Land Surface Model L4 daily 0.25*0.25◦ V2.0 (Li et al., 2018; 
Rodell et al., 2004) 

Transpiration (Tr) W/m2 (converted to 
mm) 

2000–2017 0.25*0.25◦ Derived from monthly data. 
Growing-season-accumulated value 
for each year. 

GLDAS Noah Land Surface Model L4 monthly 0.25*0.25◦ V2.1 (Rodell et al., 
2004) 

Crop 
Information 

NDVI (g) – 2000− 2017 30 m Derived from 8-day data. 
Growing-season-maximum value for 
each year. 

Landsat 7 NDVI 
(imported from Google Earth Engine: 
‘LANDSAT/LE07/C01/T1_8DAY_NDVI’, Gorelick et al., 2017) 

Crop type & Growing season 1991− 2010 Station-level Yearly National Meteorological Information Center of China (2006) 
Provincial crop yield (Y) kg/ha 2001− 2017 Provincial Yearly Statistical Yearbook of Jiangsu (BSJ, 2018) 
Crop plant area (A) 1000 ha (kha) 2001− 2018 Provincial Yearly Statistical Yearbook of Jiangsu (BSJ, 2019) 
Crop cost per area (Y)  CNY/mu (1 mu = 1/ 

15 ha) 
2001− 2018 Provincial Yearly China Rural Statistical Yearbook (NBS, 2016) 

Human Agency Total Population 104 Capita 2001− 2019 Provincial Yearly Statistical Yearbook of Jiangsu (BSJ, 2019) 
Population Prediction Data 
2011–2030 

104 Capita 2011− 2030 Compilation of population prediction data in Jiangsu Province 2011–2030 (BSJ, 
2012) 

Population Prediction Data 
2001–2050 

104 Capita 2001− 2050 Compilation of population prediction data in Jiangsu Province 2001–2050 ( 
Bureau of Statistics of Jiangsu, 2002) 

Labor force in crop cultivation 
(LC)  

Capita/kha 2001− 2017 Statistical Yearbook of Jiangsu (BSJ, 2018) 

Irrigation machinery (MI)  Kw/kha 
Land-preparing machinery (ML)  
Fertilizer use (F) Ton/kha  

H
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Fig. 7. a Food secure pareto frontiers under least optimistic climate scenario (RCP8.5, P10%). The x-axis shows the objective of minimizing the negative of average 

food self-sufficiency ratio (− Ψ
Ì¿

r), y-axis shows the objective of minimizing the standard deviation of self-sufficiency ratio over time, i.e., σΨr
. Red markers represent 

the non-dominated sets of (− Ψ
Ì¿

r ,σΨr
), i.e., the food secure pareto frontier, while the grey markers represent the dominated set. b Food secure Pareto frontiers under 

most optimistic climate scenario (RCP2.6, P95%) Red markers represent the non-dominated sets of (− Ψ
Ì¿

r , σΨr
), i.e., the food secure pareto frontier, while the grey 

markers represent the dominated set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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dominated sets are such that there are no other ways human agency can 
adapt that will result in both larger magnitude of food self-sufficiency 
ratio as well as stabler (i.e., with lower variance) ratio. These there-
fore describe how the time series of human agency should evolve over 
time in order to optimize food security for the region. 

2.8. Data sources 

The data sources of all the datasets are shown below in Table 1. 

3. Results 

3.1. Food secure non-dominated sets 

Fig. 7a and b show the non-dominated sets (pareto frontier) of (− Ψ
Ì¿

r,

σΨr
) for two climate scenarios, which correspond to food secure options 

identified from amongst the simulated adaptation options by human 
agency (i.e., from 2000 random samples of tuples [τL,r, τMI,r, τML,r]). 

The impact of crop plant area contraction scenarios on food security 
is most significant. Fig. 7a and b display the food security scenarios, 
including non-dominated sets, for the least optimistic climate scenario 
‘(RCP8.5, P10%)’ and the most optimistic climate scenario, ‘(RCP2.6, 
P95%)’. RCP 8.5 is generally taken as the basis for worst case climate 
change scenario, since it assumes that the emission of green-house gases 
will continue to rise throughout the 21st century. On the other hand, 
RCP 2.6 assumes the most stringent limitations on future green-house 
gas emissions. The temperature rise under RCP 8.5 is generally higher 
than that under RCP 2.6 as shown in Fig. 3a, b and leads to less 
precipitation. 

In each of the figures, the three rows correspond to the three popu-
lation scenarios named as ‘1PopL’, ‘2PopM’, ‘3PopH’. The definitions of 
these population scenarios are listed in Table 2. 

The four columns of Fig. 7a and b correspond to the four crop planted 
area (A) scenarios, namely ‘0AL’, ‘1AM1’, ‘2AM2’, and ‘3AH’ (see 
Fig. 6). Here ‘L’ means low, standing for the most negative growth rate 
(i.e., contraction rates) of –33.93 kha/year after 2018 of planted area; 
M1 and M2 correspond to relatively mild planted area contraction rates 
after 2018, i.e. 75% and 50% of low scenario rates respectively. H means 
High, with a relatively stable growth rate of planted area after 2018, 
which is 25% of the value in the low scenario. 

Both the figures confirm that the food secure (pareto) frontier moves 
towards higher level of average food sufficiency ratios when population 
growth rate is lower or planted area contracts slower. This is intuitive 
because faster population growth puts food security under stress, while 
more available land for crops leads to more production of food, thereby 
increasing food self-sufficiency. 

Moreover, the pareto frontier rotates clockwise as higher levels of 

food self-sufficiency,Ψ
Ì¿

, are achieved. This means that food self- 
sufficiency is more variable over time at higher levels of average food 
self-sufficiency, indicating that the tradeoff between the two objectives, 

i.e., min − Ψ
Ì¿

r and min σΨr
, increases with higher levels of average food 

self-sufficiency rate. 
The pattern of the effects of climate scenarios on food self-sufficiency 

rate is similar to those of socio-economic scenarios. The food secure 
pareto frontier moves towards higher level of food sufficiency in the 
most optimistic scenario (RCP2.6, P95%), but with higher variability, 
than in the case of (RCP8.5, P10%). 

3.2. Pareto optimal food self-sufficiency time series 

Fig. 8a and b show the median values of average food self-sufficiency 
ratios for non-dominated human agency sets and for dominated sets (in 
gray) sets for the two scenarios (RCP8.5, P10%) and (RCP2.6, P95%). 
The time series are from 2018 to 2050, which are shown along with the 
historical values available from 2001 to 2017. 

The (3PopH, 0AL) scenario is the worst socioeconomic scenario for 
food security for both the climate scenarios. The worst scenario is the 
least optimistic climate scenario with highest population growth rate 
and rapidly declining crop planted area. Under the scenario of rapidly 
declining crop planted area, the average food self-sufficiency rate drops 
below 1.0 when human agency doesn’t adapt, indicating heightened risk 
of food insecurity. However, with adaptation by human agency, the food 
self-sufficiency rate is maintained above 1.0. This means that human 
agency has the ability to ensure food security even under least optimistic 
scenarios of the future. 

Under the most optimistic socioeconomic scenario of (1PopL, 3AH) 
shown in Fig. 8b, the average food self-sufficiency rate keeps rising and 
finally reaches a value above 1.2. The most optimistic scenario is the 
most optimistic climate scenario with slowest growth in population and 
no contraction of available cropland. With food self-sufficiency rate 
higher than 1.0, the crop production within the province can satisfy the 
food demand of the province and outside. Also note that the difference 
between the dominated and non-dominated solutions is not as high as in 
the least optimistic scenario, meaning that adaptation by human agency 
plays a critical role when dealing with less optimistic future scenarios. 

For the scenarios in between, average food self-sufficiency can be 
maintained between 1.0 and 1.2 when human agency adapts to chang-
ing conditions. Adaptation by human agency is important even under 
more optimistic scenarios since without it food self-sufficiency can fall 
below 1.0 (corresponding to the dominated food sufficiency time series). 
The median levels of food self-sufficiency for non-dominated solutions 
(red lines in Fig. 8a and b) are always higher than that of dominated 
solutions (gray line). Again, the gap between the non-dominated and the 
dominated time series is more significant under less optimistic scenarios, 
i.e., with higher temperature, less precipitation, less crop plant area, and 
more stress from population growth. 

The subplot ‘3PopH, 0PAL’ in Fig. 8a shows that the gap of food self- 
sufficiency between non-dominated and dominated solutions can exceed 
by 10% under the least optimistic climate and socioeconomic scenario. 
Under the scenarios of, e.g., lower pressure on cropland area and from 
population growth (from 0AL to 3AH), the gap between non-dominated 
and dominated solutions narrows and is between 5% and 10%. This 
indicates the importance of adaptation by human agency under more 
stressful climate and socioeconomic conditions, e.g., of drought, or fast- 
pace urbanization. Human agency, which is a combination of labor, 
irrigation and land-preparation machinery, can effectively ensure food 
security within Jiangsu Province under possible future water or land 
resources stresses. 

Table 2 
Population scenarios and its definitions in terms of fertility rate and time to peak (BSJ, 2002, 2012, 2019).  

Year Fertility rate (%) Peak population (104) 

Low 
(1PopL) 

Mid 
(2PopM) 

High 
(3PopH) 

Low 
(1PopL) 

Mid 
(2PopM) 

High 
(3PopH) 

2001~2019 Historical population data 
2020~2050 1.65  1.75  1.85 8139.8 

(2024) 
8167.5 
(2025) 

8241.1 
(2026)  
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Fig. 8. a Median food self-sufficiency ratios time series Ψ(t)r for dominated and non-dominated sets under climate scenario (RCP8.5 P10%). Blue line: historical time 
series; Red line: time series corresponding to non-dominated human agency sets; Grey line: time series corresponding to dominated sets. The province is self-sufficient 
if it remains above the dashed line (i.e., Ψ(t)r > 1). b Food self-sufficiency rate time series Ψ(t)r for dominated and non-dominates sets for climate scenario (RCP2.6 
P95%). Blue line: historical time series; Red line: optimized (non-dominated) time series; Grey line: dominated time series. The province is self-sufficient if it remains 
above the dashed line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

4.1. Improving water and nutrient use efficiencies by adapting human 
agency 

Modern technologies in agriculture such as irrigation and land 
preparation machineries can bring significant improvements in the 
water and nutrient use efficiencies of crops. Water-saving irrigation 
technology has been applied to 2637.47–2767.23 kha from 2017 to 
2018 (Bureau of Statistics of Jiangsu, 2019), which is about 34.9–36.8% 
of total agricultural cropland within the province. Across China, latest 
technologies such as water-fertilizer integrated irrigation system based 
on Internet of Things (IoT) has also been designed and proposed (Shi 
et al., 2017; Hao et al., 2020). Also, land-preparing machinery are better 
in preparing croplands for higher nutrient use efficiency of food crops 
than human labor. 

Fig. 9 shows the average level of water and nutrient use efficiencies 
in log-space under two extreme scenarios: most optimistic and least 
optimistic climate and socioeconomic scenarios. 

The non-dominated efficiencies are higher in general under unfa-
vorable conditions. More trade-off between the two in wheat production 
compared to rice is due to how sensitive crop specific efficiencies are 
related to human agency. The water use efficiency of wheat is sensitive 
to the human agency under non-dominated cases, while that of rice is 
not. However, the nutrient use efficiency of both wheat and rice can be 
significantly improved with adapting human agency, i.e. corresponding 
to non-dominated cases. The difference between non-dominated and 
dominated efficiencies under favorable conditions is insignificant, 
which again emphasizes that human agency matters when conditions 
are unfavorable. There is more scope for improving efficiencies when 
conditions are unfavorable due to poor water and land supply and high 
food demand. 

4.2. Trade-offs between labor and machinery used 

Fig. 10a and b plot labor (LC) against land-preparing machinery 
power (ML) for two climate scenarios: (RCP 8.5, P10%) and (RCP 2.6, 
P95%). The rows of each figure denote population growth rates (three 
levels from low to high), whereas the columns represent crop plant area 
contraction rates (four levels from low to high). 

Modern machinery appears to be the main agency that delivers 
higher food self-sufficiency under all circumstances. Under unfavorable 
socioeconomic conditions, i.e., with higher population growth and 
sharper contraction of available land resources for crop cultivation, 
agricultural land-preparing machinery plays more important role to 
ensure nutrient and water use efficiency in order to increase the pro-
duction of food crop, ensuring a higher and stabler supply of food. The 
effect of labor on food sufficiency is relatively low. This indicates that 
agricultural mechanization would ensure food security in Jiangsu 
Province under the unfavorable scenario of rapid urbanization. Agri-
cultural lands will shrink in the process of urbanization. This will shift 
people from rural agriculture to modern industries, leading to rural to 
urban migration (Lyu et al., 2019). Agricultural mechanization can 
however replace the demand of shrinking human labor while ensuring 
same or higher levels of food production, thereby ensuring food security 
in the region. 

Under the scenarios of less stressed socioeconomic conditions, i.e., 
lower population growth or lower contraction of crop planted area, the 
need for agricultural machinery, which can rapidly improve crop unit 
yields and thus result in higher food self-sufficiency rate, would not be 
that urgent compared to the unfavorable case. More labor can be hired 
to relieve under-employment in rural agriculture areas. 

Similarly, in context of climate scenarios, agricultural labor demand 
would slightly rise in more optimistic climate scenarios since the ur-
gency to use agricultural machinery is eased to a certain extent. When 
the climate is less optimistic, e.g. (RCP8.5, P10%), agricultural ma-
chinery is important agency that should be adapted to improve food crop 
production capacity and ensure high and stable food self-sufficiency. 

Fig. 9. Water and nutrient use efficiencies in log-space with optimized (non-dominated, ND) and dominated (D) solutions of human agency under unfavorable 
(UnFav) and favorable (Fav) scenarios. Unfavorable: least optimistic climate (RCP8.5, P10%), and most stressed socioeconomic scenario (‘3PopH, 0AL’) Favorable: 
most optimistic climate scenario (RCP2.6, P95%) and least stressed socioeconomic scenario (‘1PopL, 3AH’). 
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Fig. 10. a. Trade-off between crop labor force, LC, and land-preparing machinery power, ML, used under least optimistic climate scenario (RCP8.5, P10%). Points 

with color correspond to food secure pareto frontier Green color means higher average food self-sufficiency Ψ
Ì¿

r , yellow color means lower Ψ
Ì¿

r . b Trade-off between 
crop labor force LC and land-preparing machinery power ML under most optimistic climate scenario (RCP2.6, P95%) Points with color correspond to food secure 

pareto frontier Green color means higher food self-sufficiency rate Ψ
Ì¿

r , yellow color means lower Ψ
Ì¿

r . (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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5. Conclusion 

This study investigated how food security can be ensured within 
Jiangsu Province, China under different climate and socioeconomic 
scenarios by adapting human agency. The human agency comprises of 
crop production labor, irrigation machinery power and land-preparing 
machinery. Climate scenarios included six combinations of two RCPs 
(RCP 2.6, and RCP 8.5) and three percentiles (10%, 50%, 95%) of a 
distribution of GCMs most representative of the past climate conditions 
of the province. The socioeconomic scenarios considered combinations 
of three population growth rates and four rates of crop plant area growth 
into the future. Two crops, rice and wheat, were considered. The pre-
dicted time series of food self-sufficiency rate were evaluated, and trade- 
offs between human power and land-preparing machinery power were 
analyzed to reveal the critical role played by human agency in adapting 
to different climate and socio-economic conditions. 

The results demonstrated that adapting human agency led to 
improved water and nutrient use efficiencies of crop production, espe-
cially in least optimistic climate and socioeconomic scenarios. The 
Jiangsu Province can be self-sufficient in food under all considered 
climate and socioeconomic scenarios considered when options are 
available for human agency to adapt. The gap between adaption and 
non-adaptation solutions was found to be larger under more challenging 
scenarios of lesser precipitation, higher population growth or stronger 
contraction of crop plant area. This suggests that human adaptation can 
significantly improve food security within Jiangsu Province especially 
when there are higher stresses of water or land resources insecurity. 

Under lower water or land resources stress conditions, labor could 
replace land-preparing machinery since the level of food production can 
be easily maintained with abundant water and land availability. On the 
other hand, when climate change negatively affects the precipitation, or 
when population rises more rapidly, machinery such as water-saving 
irrigation or even water-fertilizer integrated irrigation systems 
together with land-preparing machinery, instead of human labor, could 
lead to higher levels of water and nutrient use efficiencies. These are 
much needed to secure food under adverse conditions. 

The applied crop model (Lyu et al., 2020) ignores seeds and pesti-
cides inputs to crop production. As reported in the literature, ignoring 
these inputs can lead to over-estimation of production levels (Zida et al., 
2011). Similarly, only precipitation and temperature effects of climate 
change were considered and not those of CO2 fertilization. This may 
lead to under-estimation of production levels under adverse climate 
change scenarios (Rashid et al., 2019). We used historical 18 years agro- 
meteorological stations data. Here crop yields were not limited by 
availability of seeds and fertilizers, therefore it would not be possible to 
assess the effects of these inputs on crop yields and production. How-
ever, assessing the positive feedbacks between CO2 concentration and 
crop yields is possible. We defer this improvement in crop model for 
future research. 
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