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a b s t r a c t

We consider strongly monotone games with convex separable coupling constraints, played by dy-
namical agents, in a partial-decision information scenario. We start by designing continuous-time
fully distributed feedback controllers, based on consensus and primal–dual gradient dynamics, to
seek a generalized Nash equilibrium in networks of single-integrator agents. Our first solution adopts
a fixed gain, whose choice requires the knowledge of some global parameters of the game. To
relax this requirement, we conceive a controller that can be tuned in a completely decentralized
fashion, thanks to the use of uncoordinated integral adaptive weights. We further introduce algorithms
specifically devised for generalized aggregative games. Finally, we adapt all our control schemes to
deal with heterogeneous multi-integrator agents and, in turn, with nonlinear feedback-linearizable
dynamical systems. For all the proposed dynamics, we show convergence to a variational equilibrium,
by leveraging monotonicity properties and stability theory for projected dynamical systems.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Generalized games arise in several engineering applications,
ncluding demand-side management in the smart grid (Saad
t al., 2012), charging scheduling of electric vehicles (Gram-
atico, 2017) and communication networks (Facchinei & Pang,
009). These scenarios involve multiple autonomous decision
akers, or agents; each agent aims at minimizing its individual
ost function – which depends on its own action as well as on the
ctions of other agents – subject to shared constraints. Specif-
cally, in many distributed control problems, the action of an
gent consists of the output of a dynamical system. For instance,
n coverage maximization (Dürr et al., 2011) and connectivity
roblems (Stanković et al., 2012), the agents are vehicles with
ome inherent dynamics, designed to optimize inter-dependent
bjectives related to their positions; in electricity markets, the
ctions are represented by the power produced by some gen-
rators (De Persis and Monshizadeh, 2019); in optical networks,
he costs are a function of the output powers of some dynamical
hannels (Romano & Pavel, 2020).

✩ This work is supported by NWO under project OMEGA (613.001.702) and
by the ERC under project COSMOS (802348). The material in this paper was
partially presented at the 2020 European Control Conference, May 12–15, 2020,
Saint Petersburg, Russia. This paper was recommended for publication in revised
form by Associate Editor Claudio De Persis under the direction of Editor Christos
G. Cassandras.
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005-1098/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
In this context, the goal is to drive the physical processes to a
desirable steady state, usually identified with a generalized Nash
equilibrium (GNE), using only the local information available to
each agent. One possibility is to exploit time-scale separation
between the computation of a GNE and setpoint tracking; yet,
this solution is typically economically inefficient and not robust
(Zhang et al., 2015). Alternatively, part of the recent literature
focuses on the design of distributed feedback controllers, to au-
tomatically steer a dynamical network to some (not known a
priori) convenient operating point, while also ensuring closed-
loop stability (Dall’Anese et al., 2015; De Persis and Monshizadeh,
2019). This paper fits in the latter framework.

In particular, we investigate GNE seeking for multi-integrator
agents, motivated by robotics and mobile sensors applications
(Frihauf et al., 2012; Stanković et al., 2012), where multi-
integrator dynamics are commonly used to model elementary
vehicles. The study of this class of systems allows us to address
GNE problems for a variety of dynamical agents, linear or nonlin-
ear, via feedback linearization (e.g., Euler–Lagrangian systems as
in Deng and Liang (2019)).

Literature review: A variety of algorithms has been proposed to
seek a GNE in a distributed way (Börgens & Kanzow, 2018;
Yi & Pavel, 2019; Yu et al., 2017) with a focus on aggrega-
tive games (Belgioioso & Grammatico, 2017; Belgioioso & Gram-
matico, 2018; De Persis & Grammatico, 2020). These works refer
to (aggregative) games played in a full-decision information set-
ting, where each agent can access the action of all the competitors
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.automatica.2021.109660
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.109660&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:m.bianchi@tudelft.nl
mailto:s.grammatico@tudelft.nl
https://doi.org/10.1016/j.automatica.2021.109660
http://creativecommons.org/licenses/by/4.0/


M. Bianchi and S. Grammatico Automatica 129 (2021) 109660

(
t
i
l

i
p
s
r
i
g
a
T
c
i
c
w
e

o
w
(
a
w
N
L
b
d
c
a
w
w
s
w
r
c
l
m
t
t

C

F
S
S

d
a

aggregate value), for example in presence of a central coordina-
or that broadcasts the data to the network. Nevertheless, this is
mpractical in many applications, where the agents only rely on
ocal information.

Instead, in this paper, we consider the so-called partial-decision
nformation scenario, where each agent holds an analytic ex-
ression for its cost but is unable to evaluate the actual value,
ince it cannot access the strategies of all the competitors. To
emedy the lack of knowledge, the agents agree on sharing some
nformation with some trusted neighbors over a communication
raph. Based on the data exchanged, each agent can estimate
nd asymptotically reconstruct the actions of all the other agents.
his setup has been investigated for games without coupling
onstraints, resorting to gradient and consensus dynamics, both
n discrete-time (Koshal et al., 2016; Tatarenko et al., 2018), and
ontinuous-time (Gadjov & Pavel, 2019; Ye & Hu, 2017). Fewer
orks deal with generalized games (Deng and Nian, 2019; Parise
t al., 2020; Pavel, 2020).
Moreover, all the results mentioned above consider static

r single-integrator agents only. Distributively driving a net-
ork of more complex physical systems to a Nash equilibrium
NE) is still a relatively unexplored problem. With regard to
ggregative games, a proportional integral feedback algorithm
as developed in De Persis and Monshizadeh (2019) to seek a
E in networks of passive second-order systems; in Deng and
iang (2019) and Zhang et al. (2019), continuous-time gradient-
ased controllers were introduced for some classes of nonlinear
ynamic. Stanković et al. (2012) addressed generally coupled
ost games played by linear agents, via an extremum seeking
pproach; NE problems in systems of multi-integrator agents
ere studied by Romano and Pavel (2020). Yet, none of these
orks considers generalized games. Despite the scarcity of re-
ults, the presence of shared constraints is a significant extension,
hich arises naturally when the agents compete for common
esources (Facchinei & Kanzow, 2010, §2). However, dealing with
oupling constraints in a distributed fashion is extremely chal-
enging. All the results available resort to primal–dual refor-
ulations (Deng and Nian, 2019; Pavel, 2020), where the main

echnical complications are the loss of monotonicity properties of
he original problem and the non-uniqueness of dual solutions.

ontributions: Motivated by the above, we develop fully dis-
tributed continuous-time controllers to seek a GNE in networks
of multi-integrator agents. We focus on games with separable
coupling constraints, played under partial-decision information.
Our novel contributions are summarized as follows:

• Nonlinear coupling constraints: We introduce primal–dual
projected-gradient controllers to drive single-integrator
agents to a GNE, with convergence guarantees under strong
monotonicity and Lipschitz continuity of the game mapping.
In contrast with the existing fully distributed methods, we
allow for arbitrary convex separable (not necessarily affine)
coupling constraints. Besides, our schemes are the only
continuous-time fully distributed algorithms for generalized
games (except for that in Deng and Nian (2019), for aggrega-
tive games and specific equality constraints only) (Sections
3–4);

• Adaptive GNE seeking: We conceive the first GNE seeking
algorithm that can be tuned in a fully decentralized way
and without requiring any global information. Specifically,
we extend the result in De Persis and Grammatico (2019) to
generalized games and prove that convergence to an equi-
librium can be ensured by adopting integral weights in place
of a fixed, global, high-enough gain, whose choice would
require the knowledge of the algebraic connectivity of the
communication graph and of the Lipschitz and strong mono-
tonicity constants of the game mapping (Sections 3–4);
2

• Generalized aggregative games: We propose controllers for
aggregative games with affine aggregation function, where
the agents keep and exchange an estimate of the aggrega-
tion value only, thus reducing communication and computa-
tion cost. Differently from the existing results, e.g., Deng and
Nian (2019), we can handle generic coupling constraints,
thanks to a new variant of continuous-time dynamic track-
ing. Furthermore, we develop an adaptive algorithm that
requires no a priori information and virtually no tuning
(Section 5);

• Heterogeneous multi-integrator agents: We show how all our
controllers can be adapted to solve GNE problems where
each agent is described by mixed-order integrator dynamics,
a class never considered before. Importantly, this allows us
to address games played by arbitrary nonlinear agents with
maximal relative degree, via feedback linearization. To the
best of our knowledge, we are the first to study generalized
games with higher-order dynamical agents (Section 6).

To improve readability, the proofs are in the appendix. Some pre-
liminary results have been presented in Bianchi and Grammatico
(2020); the novel contributions of this paper are: we consider
adaptive controllers that can be tuned without need for any
global information; we address a wider class of generalized games
with nonlinear coupling constraints; we present algorithms for
aggregative games, scalable with respect to the number of agents;
we address the case of mixed-order multi-integrators (instead
of double-integrators); we provide a more extensive numerical
analysis, including applications to networks of heterogeneous
nonlinear systems.

Basic notation: See Bianchi and Grammatico (2020).

Operator-theoretic definitions: An operator F : Rn
→ Rn is

monotone (µ-strongly monotone) if, for all x, y ∈ Rn, (F(x) −

(y))⊤(x − y) ≥ 0 (≥ µ∥x − y∥2). For a closed convex set
⊆ Rn, projS : Rn

→ S is the Euclidean projection onto
; NS : S ⇒ Rn

: x ↦→ {v ∈ Rn
| supz∈S v

⊤(z − x) ≤

0} is the normal cone operator of S; TS : S ⇒ Rn
: x ↦→

cl(
⋃
δ>0

1
δ
(S − x)) is the tangent cone operator of S, where cl(·)

enotes the set closure. The projection on the tangent cone of S
t x isΠS(x, v) := projTS (x)(v) = limδ→0+

projS (x+δv)−x
δ

. By Moreau’s
Decomposition Theorem (Bauschke & Combettes, 2017, Th. 6.30),
v = projTS (x)(v)+ projNS (x)(v) and projTS (x)(v)

⊤projNS (x)(v) = 0, for
any v ∈ Rn.

Projected dynamical systems (Cherukuri et al., 2016): Given an
operator F : Rn

→ Rn and a closed convex set S ⊆ Rn, we
consider the projected dynamical system

ẋ = ΠS(x,F(x)), x(0) = x0 ∈ S. (1)

In (1), the projection operator is possibly discontinuous on the
boundary of S. If F is Lipschitz on S, the system (1) admits a
unique global Carathéodory solution, i.e., there exists a unique
absolutely continuous function x : R≥0 → Rn such that x(0) = x0,
ẋ(t) = ΠS(x, g(x)) for almost all t . Moreover, x(t) ∈ S for all
t ≥ 0, as on the boundary of S the projection operator restricts
the flow of F such that the solution of (1) remains in S (while
ΠS(x,F(x)) = F(x) if x ∈ int(S)).

Lemma 1. Let S ⊆ Rq be a nonempty closed convex set. For any
y, y′

∈ S and any ξ ∈ Rq, it holds that (y − y′)⊤ΠS (y, ξ) ≤

(y − y′)⊤ξ . In particular, if ΠS(y, ξ ) = 0, then (y − y′)⊤ξ ≥ 0
for all y′

∈ S (i.e., ξ ∈ NS(y)). □

Proof. By Moreau’s theorem, (ξ −ΠS(y, ξ )) ∈ NS(y); thus
∀y, y′

∈ S, (y′
− y)⊤(ξ −ΠS(y, ξ )) ≤ 0. ■
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. Mathematical background

We consider a group of agents I := {1, . . . ,N}, where each
gent i ∈ I shall choose its decision variable (i.e., strategy) xi from
ts local decision setΩi ⊆ Rni . Let x := col((xi)i∈I) ∈ Ω denote the
stacked vector of all the agents’ decisions, Ω := ×i∈IΩi ⊆ Rn the
overall action space and n :=

∑N
i=1 ni. The goal of each agent i ∈ I

is to minimize its objective function Ji(xi, x−i), which depends
both on the local strategy xi and on the decision variables of
the other agents x−i := col((xj)j∈I\{i}). Furthermore, we address
generalized games, where the coupling among the agents arises
also via their feasible decision sets. In particular, we consider
separable coupling constraints, so that the overall feasible set is
X := Ω ∩ {x ∈ Rn

| g(x) ≤ 0m} , where g : Rn
→ Rm, g(x) :=∑

i∈I gi(xi), and gi : Rni → Rm is a private function of agent i.
The game is then represented by N inter-dependent optimization
problems:

∀i ∈ I : argmin
yi∈Rni

Ji(yi, x−i) s.t. (yi, x−i) ∈ X . (2)

The technical problem we consider in this paper is the computa-
tion of a GNE, a joint action from which no agent has interest to
unilaterally deviate.

Definition 1. A collective strategy x∗
= col((x∗

i )i∈I) is a general-
ized Nash equilibrium if, for all i ∈ I,

x∗

i ∈ argmin
yi

Ji(yi, x∗

−i) s.t. (yi, x∗

−i) ∈ X . □

Next, we formulate standard convexity and regularity assump-
tions for the constraints and cost functions (Kulkarni & Shanbhag,
2012, Asm. 1; Pavel, 2020, Asm. 1).

Assumption 1. For each i ∈ I, the set Ωi is closed and convex;
gi is componentwise convex and twice continuously differen-
tiable; X satisfies Slater’s constraint qualification; Ji is continu-
ously differentiable and the function Ji (·, x−i) is convex for every
x−i. □

Under Assumption 1, x∗ is a GNE of the game in (2) if and
only if there exist dual variables λ∗

i ∈ Rm such that the following
Karush–Kuhn–Tucker (KKT) conditions are satisfied, for all i ∈

I (Facchinei & Kanzow, 2010, Th. 4.6):

0ni ∈ ∇xi Ji(x
∗

i , x
∗

−i) +
∂
∂xi

gi(x∗

i )
⊤λ∗

i + NΩi (x
∗

i )

0m ∈ −g(x∗) + Nm
R≥0

(λ∗

i ).
(3)

Specifically, we focus on the subclass of variational GNEs (v-
GNEs) (Facchinei & Kanzow, 2010, Def. 3.11), namely GNEs with
equal dual variables, i.e. λ∗

i = λ∗
∈ Rm for all i ∈ I, for which the

KT conditions read as

0n ∈ F (x∗) +
∂
∂xg(x

∗)⊤λ∗
+ NΩ (x∗) (4a)

m ∈ −g(x∗) + Nm
R≥0

(λ∗). (4b)

here F is the pseudo-gradient mapping of the game:

F (x) := col
((

∇xi Ji(xi, x−i)
)
i∈I

)
. (5)

Variational equilibria enjoys important structural properties, such
as economic fairness (Facchinei & Kanzow, 2010). For example,
in electricity markets, the dual variables correspond to unitary
prices charged for the use of the infrastructure by an adminis-
trator that aim at maximizing its revenue while ensuring certain
operating conditions, and it is reasonable to assume that the
administrator cannot charge discriminatory prices to different
energy producers (Kulkarni & Shanbhag, 2012). A sufficient con-
dition for the existence and uniqueness of a v-GNE is the strong
 t

3

monotonicity of the pseudo-gradient (Yi & Pavel, 2019, Th. 1,
Rem. 1), which was always postulated in continuous-time NE
seeking under partial-decision information (Gadjov & Pavel, 2019,
Asm. 2; Deng and Nian, 2019, Asm. 3). It implies strong convexity
of the functions Ji(·, x−i) for any x−i (Tatarenko et al., 2018,
Rem. 1), but not necessarily convexity of Ji in the full argument.

Assumption 2. The game mapping F in (5) is:

(i) µ-strongly monotone, for some µ > 0;
(ii) θ0-Lipschitz continuous, for some θ0 > 0. □

3. Fully distributed equilibrium seeking

In this section, we consider the game in (2), where each agent
is associated with the following dynamical system:

∀i ∈ I : ẋi = ui, xi(0) ∈ Ωi. (6)

Our aim is to design the inputs ui ∈ Rni to seek a v-GNE in a
fully distributed way. Specifically, each agent i ∈ I only knows
its own feasible set Ωi, the portion gi of the coupling constraints,
and its own cost function Ji. Moreover, the agents cannot access
the strategies of all the competitors x−i. Instead, each agent only
relies on the information exchanged locally with some neighbors
over a communication network G(I, E). The unordered pair (i, j)
belongs to the set of edges E if and only if agent i and j can
xchange information. We denote by W ∈ RN×N the symmetric

adjacency matrix of G, with [W ]i,j > 0 if (i, j) ∈ E , [W ]i,j = 0
otherwise; L the symmetric Laplacian matrix of G; Ni := { j |

i, j) ∈ E} the set of neighbors of agent i. For ease of notation, we
ssume that the graph is unweighted, i.e., [W ]i,j = 1 if (i, j) ∈ E ,
ut our results still hold for the weighted case.

ssumption 3. The communication graph G(I, E) is undirected
nd connected. □

Our first algorithm is inspired by the discrete-time primal–
ual gradient iteration in Pavel (2020, Alg. 1). To cope with
he lack of knowledge, the general assumption for the partial-
ecision information scenario is that each agent keeps an esti-
ate of all other agents’ actions (Pavel, 2020; Tatarenko et al.,
018). Let xi := col((xij)j∈I) ∈ Rn, where xii := xi and xij

is agent i’s estimate of agent j’s action, for all j ̸= i; x j
−i :=

col((xj,ℓ)ℓ∈I\{i}). Each agent also keeps an estimate λi ∈ Rm
≥0 of

the dual variable and an auxiliary variable zi ∈ Rm to allow
for distributed consensus of the dual estimates. Our proposed
dynamics are summarized in Algorithm 1, where c > 0 is a global
ixed parameter (and θ is a constant defined in Lemma 3).

We note that the agents exchange {xi, λi} with their neighbors
nly, therefore the controller can be implemented distributedly.
mportantly, each agent i evaluates the partial gradient of its cost
xi Ji on its local estimate xi, not on the actual joint strategy
. In steady state, the agents should agree on their estimates,
.e., xi = x j, λi = λj, for all i, j ∈ I. This motivates the presence
f consensual terms for both primal and dual variables. For any
nteger q, we denote Eq := {y ∈ RNq

: y = 1N ⊗ y, y ∈
q
} the consensus subspace of dimension q, and E⊥

q := {y ∈
Nq

:
(
1⊤

N ⊗ Iq
)
y = 0q} its orthogonal complement; Specifically,

En and Em are the action and multiplier consensus subspaces,
espectively. Moreover, Pq :=

1
N 1N1⊤

N ⊗ Iq is the projection matrix
onto Eq, i.e., Pq y = projEq (y), and P⊥

q := INq − Pq is the projection
matrix onto the disagreement subspace E⊥

q .
While Algorithm 1 is fully distributed, choosing the gain c

equires global knowledge about the graph G, i.e., the algebraic
onnectivity, and about the game mapping, i.e., the strong mono-
onicity and Lipschitz constants. These parameters are unlikely
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Algorithm 1 Constant gain

Initialization: set c > c :=
(θ0+θ )2+4µθ

4µλ2(L)
; ∀i ∈ I, set xi

−i(0) ∈ Rn−ni ,
i(0) = 0m, λi(0) ∈ Rm

≥0;

Dynamics: ∀i ∈ I,

ẋi = ui = ΠΩi

(
xi,−∇xi Ji(xi, x

i
−i) −

∂
∂xi

gi(xi)⊤λi

− c
∑

j∈Ni
(xi − x j

i )
)

ẋi
−i = −c

∑
j∈Ni

(xi
−i − x j

−i)

żi =
∑

j∈Ni
(λi − λj)

λ̇i = ΠRm
≥0

(
λi, gi(xi) − zi −

∑
j∈Ni

(λi − λj)
)

to be available locally in a network system. To overcome this
limitation and enhance scalability, De Persis and Grammatico
(2019) proposed a controller where the communication gains
are tuned online, thus relaxing the need for global information,
for games without coupling constraints. Here we extend their
solution to the GNE problem. Our proposed controller is given in
Algorithm 2. For all i ∈ I, ki is the adaptive gain of agent i, γi > 0
is an arbitrary local constant and ρ i

:= col((ρ i
j )j∈I).

We emphasize that Algorithm 2 allows for a fully uncoupled
uning: each agent chooses locally the initial conditions and the
arameter γi, independently of the other agents and without need
or coordination or global knowledge.

emark 1. Algorithm 2 uses second order information, as each
gent sends the quantity ρ i, which in turn depends on the es-
imates of its neighbors. In case of delayed communication, this
eans dealing with twice the transmission latency with respect

o a controller that exploits first order information only, e.g., Algo-
ithm 1. In a discrete-time setting, a sampled version of Algorithm
can be implemented by allowing the agents to communicate

wice per iteration, a common assumption for GNE seeking on
etworks (Gadjov & Pavel, 2020; Pavel, 2020). □

To rewrite the closed-loop dynamics in Algorithms 1, 2 in
ompact form, let us define x := col((xi)i∈I) and, as in Gadjov
nd Pavel (2019, Eq. 11), for all i ∈ I,

i := [0ni×n<i Ini 0ni×n>i ], (7)

here n<i :=
∑

j<i,j∈I nj, n>i :=
∑

j>i,j∈I nj; let also R :=

iag ((Ri)i∈I). In simple terms, Ri selects the ith ni dimensional
omponent from an n-dimensional vector, i.e., Rixi = xii = xi and
= Rx.
Let λ := col((λi)i∈I), z := col((zi)i∈I), Ω := {x ∈ RnN

| Rx ∈

}, g(x) := col((gi(xi)i∈I)), G(x) :=
∂
∂xg(x) = diag(( ∂

∂xi
gi(xi))i∈I),

:= col((ki)i∈I), ρ := col((ρ i)i∈I), K := diag((kiIn)i∈I), D(ρ) :=

iag((ρ i)i∈I), Γ := diag((γi)i∈I), and, for any integer q > 0,
q := L⊗ Iq. Furthermore, we define the extended pseudo-gradient
apping F as:

(x) := col((∇xi Ji(xi, x
i
−i))i∈I). (8)

herefore, Algorithm 1, in compact form, reads as

ẋ = ΠΩ

(
x,−R⊤(F (x) + G(Rx)⊤λ) − cLnx

)
(9a)

ż = Lmλ (9b)
˙ = ΠRNm

≥0
(λ, g(Rx) − z − Lmλ), (9c)
4

Algorithm 2 Adaptive gains

Initialization: ∀i ∈ I, set γi > 0, xi
−i(0) ∈ Rn−ni , ki(0) ∈ R,

i(0) = 0m, λi(0) ∈ Rm;

ynamics: ∀i ∈ I,

ẋi = ui = ΠΩi

(
xi,−∇xi Ji(xi, x

i
−i) −

∂
∂xi

gi(xi)⊤λi

−
∑

j∈Ni
(kiρ i

i − kjρ i
i )
)

ẋi
−i = −

∑
j∈Ni

(kjρ i
−i − kiρ

j
−i)

k̇i = γi∥ρ
i
∥
2, ρ i

:=
∑

j∈Ni
(xi − x j)

żi =
∑

j∈Ni
(λi − λj)

λ̇i = ΠRm
≥0

(
λi, gi(xi) − zi −

∑
j∈Ni

(λi − λj)
)

and Algorithm 2 as

ẋ = ΠΩ

(
x,−R⊤(F (x) + G(Rx)⊤λ) − LnKρ

)
(10a)

˙ = D (ρ)⊤ (Γ ⊗ In) ρ, ρ = Lnx (10b)

ż = Lmλ (10c)

λ̇ = ΠRNm
≥0

(λ, g(Rx) − z − Lmλ). (10d)

. Convergence analysis

In this section, we show the convergence of our dynamics to a
-GNE. We focus on the analysis of Algorithm 2, which presents
ore technical difficulties; the convergence of Algorithm 1 can
e shown analogously.
We start by noting an invariance property of our controllers,

amely that if z(0) ∈ E⊥

m (for instance, z(0) = 0m), then z ∈ E⊥

m
long any solution of (10), by (10c). The next lemma relates a
lass of equilibria of the system in (10) to the v-GNE of the game
n (2).

emma 2. Under Assumptions 1, 2, 3, the following statements hold:

(i) Any equilibrium point col
(
x̄, k̄, z̄, λ̄

)
of (10) with z̄ ∈ E⊥

m is
such that x̄ = 1N ⊗ x∗, λ̄ = 1N ⊗ λ∗, where the pair (x∗, λ∗)
satisfies the KKT conditions in (4), hence x∗ is the v-GNE of
the game in (2).

(ii) The system (10) admits at least one equilibrium col
(
x̄, k̄, z̄, λ̄

)
with z̄ ∈ E⊥

m . □

We remark that in Algorithm 2 (or 1) each agent i evalu-
ates the quantity ∇xi Ji in its local estimate xi, not on x. As a
consequence, the operator R⊤F is very rarely monotone, even
under strong monotonicity of the game mapping F . The loss of
monotonicity is indeed the main technical difficulty arising in
the partial-decision information scenario. Following De Persis and
Grammatico (2019) and Pavel (2020), we deal with this issue
by leveraging a restricted monotonicity property, which can be
guaranteed for any game satisfying Assumptions 1–3, without
additional hypotheses, as shown in the next lemmas. The proof
relies on the decomposition of x along the consensus space En,
where F is strongly monotone, and the disagreement space E⊥

n ,
where Ln is strongly monotone.

Lemma 3 (Bianchi & Grammatico, 2020, Lem. 3). Let Assump-
tion 2 hold. Then, the extended pseudo-gradient mapping F in (8)
is θ-Lipschitz continuous, for some θ ∈ [µ, θ0]. □
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emma 4. Let Assumptions 2, 3 hold, and let

1 :=

⎡⎣ µ

N −
θ0+θ

2
√
N

−
θ0+θ

2
√
N

k∗λ2(L)2 − θ

⎤⎦, k :=
(θ0 + θ )2 + 4µθ

4µλ2(L)2
. (11)

hen, for any k∗ > k and K ∗
= INnk∗, for any x ∈ RNn and any

∈ En, it holds that M2 ≻ 0 and also that

[b] (x − y)⊤ (R⊤ (F (x) − F (y))+ LnK ∗Ln (x − y))
≥ λmin(M1) ∥x − y∥

2 .
□

We can now present the main result of this section.

heorem 1 (Convergence of Algorithm 2). Let Assumptions 1, 2, 3
old. For any initial condition in S = Ω×RN

×E⊥

m×RmN
≥0 , the system

n (10) has a unique Carathéodory solution, which belongs to S for all
≥ 0. The solution converges to an equilibrium col

(
x̄, k̄, z̄, λ̄

)
, with

¯ = 1N ⊗ x∗, λ̄ = 1N ⊗ λ∗, and (x∗, λ∗) satisfies the KKT conditions
n (4), hence x∗ is the v-GNE of the game in (2). □

A similar result holds also for the dynamics in (9).

heorem 2 (Convergence of Algorithm 1). Let Assumptions 1, 2, 3
hold. Let c > c, with c as in Algorithm 1. For any initial condition
n S = Ω × E⊥

m ×RmN
≥0 the system in (9) has a unique Carathéodory

olution, which belongs to S for all t ≥ 0. The solution converges to
n equilibrium col

(
x̄, z̄, λ̄

)
, with x̄ = 1N ⊗ x∗, λ̄ = 1N ⊗ λ∗, and

(x∗, λ∗) satisfies the KKT conditions in (4), hence x∗ is the v-GNE of
the game in (2). □

Remark 2. As for Euclidean projections, evaluating ΠΩi (x, v) can
be computationally expensive. If, for some i ∈ I and some twice
continuously differentiable mapping g loc

i : Rni → Rp, Ωi = {xi ∈

Rni | g loc
i (xi) ≤ 0p}, then the following alternative updates can be

used in Algorithm 1 (and similarly in Algorithm 2):

ẋi = −∇xi Ji(xi, x
i
−i) −

∂
∂xi

gi(xi)⊤λi − ∂
∂xi

g loc
i (xi)⊤λloci

− c
∑

j∈Ni
(xi − x j

i )

λ̇loci = ΠRp
≥0
(λi, g loc

i (xi)).

In simple terms, the local constraints are dualized like the cou-
pling constraints; but the corresponding dual variables are man-
aged locally. The drawback of this primal–dual approach is that
the satisfaction of the local constraints can only be ensured
asymptotically. □

5. Generalized aggregative games

In this section, we study aggregative games, where the cost
function of each agent depends only on the local action and on
an aggregation value ψ(x) :=

1
N

∑
i∈Iψi(xi), where ψi : Rni → Rn̄

is a private function of agent i. It follows that, for each i ∈ I, there
is a function fi : Rni ×Rn̄

→ R such that the original cost function
Ji in (2) can be written as

Ji(xi, x−i) = fi(xi, ψ(x)), ∀x ∈ Rn (12)

In particular, we focus on games with affine aggregation func-
tions, where, for all i ∈ I, ψi(xi) = Bixi + di, for some Bi ∈

Rn̄×ni , di ∈ Rn̄. As a special case, this class includes the common
(weighted) average aggregative games.

Since an aggregative game is only a particular instance of
the game in (2), Algorithms 1–2 could still be used to drive
the system (6) to the v-GNE. This would require each agent i
to keep (and exchange) an estimate of all other agents’ actions,
i.e., a vector of n − ni components; however, the cost of each
agent is only a function of the aggregation value ψ(x), whose
5

Algorithm 3 Constant gain (aggregative games)

Initialization: set c > c :=
(θ̃σ )2

4µλ2(L)
; ∀i ∈ I, set ςi = 0n̄, zi(0) = 0m,

λi(0) ∈ Rm
≥0;

Dynamics: ∀i ∈ I,

ẋi = ui = ΠΩi

(
xi,−∇xi fi(xi, σ

i) −
∂
∂xi

gi(xi)⊤λi

− cB⊤

i
∑

j∈Ni
(σ i

− σ j)
)

ς̇i = −c
∑

j∈Ni
(σ i

− σ j), σ i
:= ψi(xi) + ςi

żi =
∑

j∈Ni
(λi − λj)

λ̇i = ΠRm
≥0

(
λi, gi(xi) − zi −

∑
j∈Ni

(λi − λj)
)

Algorithm 4 Adaptive gains (aggregative games)

Initialization: ∀i ∈ I, set γi > 0, ςi = 0n̄, ki(0) ∈ R, zi(0) = 0m,
i(0) ∈ Rm

≥0;

ynamics: ∀i ∈ I,

ẋi = ui = ΠΩi

(
xi,−∇xi fi(xi, σ

i)− ∂
∂xi

gi(xi)⊤λi

−B⊤

i
∑

j∈Ni
(kiρ i

− kjρ j)
)

ς̇i = −
∑

j∈Ni
(kiρ i

− kjρ j) σ i
:= ψi(xi) + ςi

k̇i = γi∥ρ
i
∥
2 ρ i

:=
∑

j∈Ni

(
σ i

− σ j
)

żi =
∑

j∈Ni
(λi − λj)

λ̇i = ΠRm
≥0

(
λi, gi(xi) − zi −

∑
j∈Ni

(λi − λj)
)

dimension n̄ is independent of the number of agents. To re-
duce the communication and computation burden, we introduce
two distributed controllers that are scalable with the number
of agents, specifically designed to seek a v-GNE in aggregative
games. Our proposed dynamics are shown in Algorithms 3 and
4.

Since the agents rely on local information only, they do not
have access to the actual value of the aggregation ψ(x). Hence,
we embed each agent with an auxiliary error variable ςi ∈ Rn̄,
hich is an estimate of ψ(x)−ψi(xi). Each agent aims at asymp-
otically reconstructing the true aggregation value, based on the
nformation received from its neighbors. We use the notation

xi fi(xi, σ
i) := ∇y fi(y, σ i)|y=xi +

1
N B

⊤

i ∇y fi(xi, y)|y=σ i .

We note that, in Algorithms 3 and 4, the agents exchange the
quantities σ i

∈ Rn̄, instead of the variables xi, ρ i
∈ Rn, like in

Algorithms 1 and 2. Let σ := col((σ i)i∈I). We define the extended
seudo-gradient mapping F̃ as

˜ (x, σ) := col
((

∇xi fi(xi, σ
i)
)
i∈I

)
. (13)

ssumption 4. The extended pseudo-gradient mapping F̃ in
13) is θ̃-Lipschitz continuous, for some θ̃ > 0. Hence, F̃ (x, ·) is
˜
σ -Lipschitz continuous, for some θ̃σ ∈ (0, θ̃ ], ∀x ∈ Rn. □

Assumption 4 is standard (Gadjov & Pavel, 2020, Asm. 4; Koshal
et al., 2016, Asm. 3) and can be shown to hold under
Assumption 2 if the matrix [B1 . . . BN ] is full row rank, e.g., for
average aggregative games.

By defining ς := col((ςi)i∈I), K := diag((kiIn̄)i∈I), ψ(x) :=

col((ψ (x )) ), B := diag((B ) ), the dynamics in Algorithms 3
i i i∈I i i∈I
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nd 4 read, in compact form, as

ẋ = ΠΩ

(
x,−F̃ (x, σ) − G(x)⊤λ− cB⊤L n̄σ

)
(14a)

˙ = −cL n̄σ, σ = ψ(x) + ς (14b)

ż = Lmλ (14c)

λ̇ = ΠRNm
≥0
(λ, g(x) − z − Lmλ) , (14d)

and

ẋ = ΠΩ

(
x,−F̃ (x, σ) − G(x)⊤λ− B⊤L n̄Kρ

)
(15a)

ς̇ = −L n̄Kρ, σ = ψ(x) + ς (15b)

k̇ = D (ρ)⊤ (Γ ⊗ In̄) ρ, ρ = L n̄σ (15c)

ż = Lmλ (15d)

λ̇ = ΠRNm
≥0
(λ, g(x) − z − Lmλ) , (15e)

respectively. We note that only if the estimates of all the agents
coincide with the actual value, i.e., σ = 1N ⊗ ψ(x), we can
conclude that F̃ (x, σ) = F (x), F as in (5).

Remark 3. From the updates in (14b) (or (15b)), we can infer
an invariance property of the closed-loop system (14) (or (15)),
namely that, at any time, 1

N

∑
i∈I ςi = 0n̄, and thus 1

N

∑
i∈I σi =

(x) (or equivalently, Pn̄σ = 1N⊗ψ(x)), provided that ς(0) = 0Nn̄.
In fact, the dynamics of σi in Algorithm 3 can be regarded as a
continuous-time dynamic tracking for the time-varying quantity
ψ(x), i.e.,

σ̇i = −c
∑

j∈Ni
(σ i

− σ j) +
d
dt (ψi(xi)), σi(0) = ψi(xi(0)). (16)

We emphasize that in Algorithm 3 there is no agent that knows
the quantity ψ(x). This is the main difference with respect to
Algorithm 1, where the consensus of the estimates works instead
as a leader–follower protocol. If the actions x are constant, the
dynamics in (16) reduce to a standard average consensus algo-
rithm and ensure that σ → 1N ⊗ ψ(x) exponentially, under
Assumption 3. Therefore, when the action dynamics (14a) are
input-to-state-stable (ISS) with respect to the estimation error,
convergence can be ensured via small-gain arguments (for c
big enough) — a similar approach was used in Deng and Nian
(2019). However, in the presence of generic coupling constraints
(even affine), this robustness cannot be guaranteed; to still en-
sure convergence, we design an extra consensual term for the
action updates, i.e. cB⊤L n̄σ. Furthermore, via the error variable
ς, we avoid studying the discontinuous dynamics in (16). We
finally note that we consider games with affine ψ (a broader
class than Gadjov and Pavel (2020)), but nonlinear aggregation
functions are also studied (Deng and Liang, 2019; Deng and
Nian, 2019; Zhang et al., 2019). However, Deng and Liang (2019)
and Zhang et al. (2019) postulate strong monotonicity of an
augmented operator, a condition much more restrictive than our
Assumption 2(i) (Deng and Liang, 2019, Rem. 2); instead, the
approach in Deng and Nian (2019) is not suitable to deal with
generic coupling constraints, as discussed above. □

By leveraging the invariance property in Remark 3, we can
obtain a refinement of Lemma 4.

Lemma 5. Let Assumptions 2(i), 3, 4 hold, and let

M2 =

[
µ −

θ̃σ
2

−
θ̃σ
2 k∗λ2(L)2

]
, k =

θ̃2σ

4µλ2(L)2
. (17)

hen, for any k∗ > k and K ∗
= INn̄k∗, for any (x, σ) such that

σ = P ψ(x) and any (x′, σ ′) such that σ ′
= P ψ(x′) = 1 ⊗ψ(x′),
n̄ n̄ n̄ N

6

it holds that M2 ≻ 0, and that

(x − x′)⊤(F̃ (x, σ) − F̃ (x′, σ ′)) + (σ − σ ′)⊤L n̄K ∗L n̄(σ − σ ′)

≥ λmin(M2)
col (x − x′, σ − 1N ⊗ ψ(x)

)2
. □

Next, we exploit Lemma 5 to prove the convergence of Algo-
rithm 4. An analogous result holds for Algorithm 3.

Theorem 3 (Convergence of Algorithm 4). Let Assumptions 1, 2(i),
3, 4 hold. Then, for any initial condition in S = Ω×E⊥

n̄ ×RN
×E⊥

m×

RmN
≥0 the system in (15) has a unique Carathéodory solution, which

belongs to S for all t ≥ 0. The solution converges to an equilibrium
col

(
x̄, ς̄, k̄, z̄, λ̄

)
, with ψ(x̄) + ς̄ = 1N ⊗ ψ(x̄), λ̄ = 1N ⊗ λ∗, and

(x̄, λ∗) satisfies the KKT conditions in (4), hence x̄ is the v-GNE of the
ame in (2). □

heorem 4 (Convergence of Algorithm 3). Let Assumptions 1, 2(i),
, 4 hold, and let c > c, with c > c as in Algorithm 3. Then, for

any initial condition in S = Ω × E⊥

n̄ × E⊥

m × RmN
≥0 the system in

14) has a unique Carathéodory solution, which belongs to S for all
≥ 0. The solution converges to an equilibrium col(x̄, ς̄, z̄, λ̄), with
(x̄) + ς̄ = 1N ⊗ ψ(x̄), λ̄ = 1N ⊗ λ∗, and (x̄, λ∗) satisfies the KKT
onditions in (4), hence x̄ is the v-GNE of the game in (2). □

. Multi-integrator agents

In this section, we consider the game in (2) in the absence
f local constraints, a standard assumption for NE problems
ith higher-order dynamical agents (Romano & Pavel, 2020,
sm. 1; Deng and Liang, 2019, Def. 1).

ssumption 5. Ω = Rn. □

Besides, we study problems where each agent is represented
y a system of (mixed-order) multi-integrators:

i ∈ I :

{
x(ri,k)i,k = ui,k, k ∈ {1, . . . , ni}, (18)

where ri,k ≥ 1 and we denote by xi,k := [xi]k, ui,k := [ui]k
the kth scalar component of agent i strategy and control input,
respectively. Our aim is to drive the agents’ actions (i.e., the xi
coordinates of each agent state) to a v-GNE of the game in (2). We
emphasize that the agents are not able to directly control their
strategy xi in (18).

Remark 4. We consider the general form in (18) — instead
of homogeneous multi-integrator systems x(ri)i = ui as in Ro-
mano and Pavel (2020) — because these dynamics often arise
from feedback linearization of multi-input multi-output (nonlin-
ear) systems. As an example, the feedback linearized model of
a quadrotor in Lotufo et al. (2020, Eq. 18) is a combination of
triple and double integrators. In general, consider any input-affine
system

∀i ∈ I : żi = fi(zi) + gi(zi)ūi, xi = hi(zi), (19)

for smooth mappings fi : Rqi → Rqi , gi : Rqi → Rqi×ni , h :

Rqi → Rni ; the objective is to drive the controlled outputs xi to a
v-GNE. Assume that the systems in (19) have, for all zi ∈ Rqi ,
vector relative degree (Isidori, 1987, §5.1) {ri,1, . . . , ri,ni}, with
ri,1, . . . , ri,ni ≥ 1 and r1+· · ·+rni = qi. This class includes, e.g., the
Euler–Lagrangian dynamics considered in Deng and Liang (2019).
Then, for all i ∈ I, there is a change of coordinates ξi = Ti(zi)
and a state feedback ūi = α(ξi) + β(ξi)ui such that the closed-
loop system, in the new coordinates and with transformed input
ui, is exactly (18) (Isidori, 1987, §5.2). In practice, the problem
of driving the systems in (19) to a v-GNE can be recast, via a
linearizing feedback, as that of controlling the multi-integrator

agents in (18) to a v-GNE. □
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Algorithm 5 Multi-integrator agents (adaptive gains)
Initialization: ∀i ∈ I, set γi > 0, ζi

−i(0) ∈ Rn−ni , ki(0) ∈ R,
zi(0) = 0m, λi(0) ∈ Rm;

Dynamics: ∀i ∈ I, for all k ∈ Ki,

x(ri,k)i,k = ui,k = ũi,k −
∑ri,k−1

j=1 ci,k,j−1x
(j)
i,k

ũi = −∇xi Ji(ζ
i
i, ζ

i
−i) −

∂
∂xi

gi(ζii)
⊤λi −

∑
j∈Ni

(kiρ i
i − kjρ

j
i )

ζ̇
i
−i = −

∑
j∈Ni

(kiρ i
−i − kjρ

j
−i) ζii := ζi = col((ζi,k)k∈Ki )

k̇i = γi∥ρ
i
∥
2 ρ i

:=
∑

j∈Ni
(ζj − ζi)

żi =
∑

j∈Ni

(
λi − λj

)
λ̇i = ΠRm

≥0

(
λi, gi(ζii) − zi −

∑
j∈Ni

(λi − λj)
)

Let Ki := {1, . . . , ni} and Mi := {k ∈ Ki | ri,k > 1}, for all
∈ I. We assume that each agent is able to measure its full state.
imilarly to Romano and Pavel (2020), in (18), for each i ∈ I, we

consider the controllers

∀k ∈ Ki : ui,k = ũi,k −
∑ri,k−1

j=1 ci,k,j−1x
(j)
i,k, (20)

where ũi,k is a translated input to be chosen, and (ci,k,0 :=

1, . . . , ci,k,ri,k−2, ci,k,ri,k−1 := 1) are the ascending coefficients of
any Hurwitz polynomial of order (ri,k−1), for all i ∈ Ki. Moreover,
for all i ∈ I, we define the coordinate transformation

col((col(xi,k, . . . , x
(ri,k−1)
i,k ))k∈Ki ) ↦→ col(ζi, vi), (21)

where vi := col((vi,k)k∈Mi ) and ζi := col((ζi,k)k∈Ki ), with vi,k :=

col(x(1)i,k , . . . , x
(ri,k−1)
i,k ), and

ζi,k :=

{
xi,k +

∑ri,k−1
j=1 ci,k,jx

(j)
i,k if k ∈ Mi

xi,k if k /∈ Mi.
(22)

We note that, for the closed loop systems in the new coordinates,
it holds, for all i ∈ i ∈ I,

∀k ∈ Mi :

{
ζ̇i,k = ũi,k

v̇i,k = Ei,kvi + Gi,kũi,k,
(23)

here Ei,k =

[
0ri−2 Iri−2
1 −c⊤

i,k

]
, Gi,k =

[
0ri−2
1

]
, and ci,k :=

col(ci,k,1, . . . , ci,k,ri,k−2).
We conclude that the system in (18), with the control inputs

20), in the new coordinates (21), reads as: ∀i ∈ I,

ζ̇i = ũi (24a)

˙ i = Eivi + Giũi, (24b)

here ũi := col((ũi,k)k∈Ki ), Ei := diag((Ei,k)k∈Mi ), Gi :=

iag((Gi,k)k∈Mi ), for all i ∈ I.
The dynamics of ζi in (24a) are identical to the single-

ntegrator in (6), with translated input ũi. As such, we are in a
osition to design ũi according to Algorithm 2 (or 1, or 3 or 4 for
ggregative games), to drive the variable ζ := col((ζi)i∈I) to an
quilibrium ζ̄ = x∗, where x∗ is the v-GNE for the game in (2). In

the following, we show that this choice is sufficient to also control
the original variables xi to the v-GNE.

The resulting dynamics are shown in Algorithm 5. Here, ζi :=

col(ζij)j∈I), and ζ
i
j represents agent i’s estimation of the quantity

j, for j ̸= i, while ζii := ζi, ζi−i := col((ζij)j∈I\{i}). Let also
ζ := col((ζi)i∈I).
7

Theorem 5 (Convergence of Algorithm 5). Let Assumptions 1, 2,
3, 5 hold. For any initial condition, the system in Algorithm 5
as a unique Carathéodory solution. The solution converges to an
quilibrium col(x̄, ζ̄, k̄, z̄, λ̄), with x̄ = x∗, ζ̄ = 1N ⊗x∗, λ̄ = 1N ⊗λ∗,
nd (x∗, λ∗) satisfies the KKT conditions in (4), hence x∗ is the v-GNE
f the game in (2). □

We emphasize that the proof of Theorem 5 is not based on the
pecific structure of Algorithm 2; in fact, the result still holds if
nother secondary controller with analogous convergence prop-
rties is employed to design ũi in (24). For instance, by choosing
he controller in Deng and Nian (2019, Eq. 11), we can address ag-
regative games played by multi-integrator agents over balanced
igraphs. Romano and Pavel (2020) follow a similar approach (for
omogeneous multi-integrators and NE problems), and handle
he presence of deterministic disturbances by leveraging the ISS
roperties of their selected secondary controller (Gadjov & Pavel,
019, Eq. 47). We have not guaranteed this robustness for our
ynamics. However, the algorithm in Romano and Pavel (2020) is
esigned for unconstrained games. On the contrary, Algorithm 5
rives the system in (18) to the v-GNE of a generalized game, and
nsures asymptotic satisfaction of the coupling constraints. We
inally remark that we assumed the absence of local constraints
Assumption 5); nevertheless, if some are present, they can be
ualized and satisfied asymptotically, as in Remark 2.

. Illustrative numerical examples

.1. Optimal positioning in mobile sensor networks

We consider a connectivity problem formulated as a game,
s in Stanković et al. (2012). A group I = {1, . . . ,N = 5} of
obile sensor devices have to coordinate their actions via wire-

ess communication, to perform some task, e.g., exploration or
urveillance. Mathematically, each sensor i aims at autonomously
inding the position xi = col(pxi , p

y
i ) in a plane to optimize some

rivate primary objective ci(xi), but not rolling away too much
rom the other devices. This goal is represented by the following
ost functions, for all i ∈ I:

i (xi, x−i) := ci(xi) +
∑

j∈I

xi − xj
2
.

ere, ci(xi) := xTi xi +d⊤

i xi + sin(pxi ), with di ∈ R2 randomly gener-
ated local parameters, for each i ∈ I. The useful space is restricted
by the local constraints 0.1 ≤ pyi ≤ 0.5, ∀i ∈ I. The sensors
communicate over a random undirected connected graph G(I, E).
To preserve connectivity, the Chebyshev distance between any
two neighboring agents has to be smaller than 1

5 , resulting in
the coupling constraints max{|pxi − pxj |, |p

y
i − pyj |} ≤

1
5 ,∀(i, j) ∈ E .

fter the deployment, all the sensors start sending the data they
ollect to a base station, located at x̄ = col(0, 0.3), via wireless
communication. To maintain acceptable levels of transmission
power consumption, the average steady state distance from the
base is limited as 1

N

∑
j∈Ni

(xi − x̄)⊤(xi − x̄) ≤
1
2 . This setup

satisfies Assumptions 1–2. We set c = 30 to satisfy the condition
in Theorem 2; γi = 1,∀i ∈ I; initial conditions are chosen
randomly. We consider two different cases for the sensor physical
dynamics.

Velocity-actuated vehicles: Each agent is a single-integrator as
in (6). Fig. 1 compares the results for Algorithms 1 and 2 (in
logarithmic scale) and shows convergence of both to the unique
v-GNE and asymptotic satisfaction of the coupling constraints. In
the first phase, the controllers are mostly driven by the consen-
sual dynamics; we remark that, when the agents agree on their
estimates, the two algorithms coincide.
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Fig. 1. Results of Algorithms 1–2 for velocity-actuated vehicles.

Fig. 2. Results of Algorithm 5 for Euler–Lagrangian vehicles linearized via
feedback linearization.

Euler–Lagrangian vehicles: Each mobile sensor i ∈ I is modeled
as an Euler–Lagrangian systems of the form Ii(xi)ẍi + Ci(xi, ẋi) +

Ui(xi) = ui, where Ui = col(0,−1),

Ii(xi) =

[
2 + 0.6 ∗ cos(pyi ) 0.5 + 0.3 cos(pyi )
0.5 + 0.3 cos(pyi ) 0.5

]
,

Ci(xi, ẋi) =

[
−0.3 sin(pyi )ṗ

y
i −0.3 sin(pyi )(ṗ

x
i + ṗyi )

0.3 sin(pyi )ṗ
x
i 0

]
.

he systems satisfy the conditions in Remark 4 with uniform
ector relative degree {2, 2}. Therefore, we first apply a lin-
arizing feedback; the problem then reduces to the control of
ouble-integrator agents, and we choose the transformed input
see Remark 4) according to Algorithm 5 and the analogous
lgorithm with constant gain (obtained by choosing ũi in (24)(a)
ccording to Algorithm 1). The local constraints are dualized as in
emark 2. The results are illustrated in Fig. 2. Finally, in Fig. 3, we
ompare the trajectories of the vehicles in the velocity-actuated
nd Euler–Lagrangian cases. Importantly, the local constraints are
atisfied along the whole trajectory for single-integrator agents,
nly asymptotically for the higher-order agents.

.2. Competition in power markets as aggregative game

We consider a Cournot competition model (Hobbs & Pang,
007; Pavel, 2020). A group I = {1, . . . ,N} of firms produces
nergy for a set of markets J = {1, . . . ,m}, each corresponding
o a different location. Each firm i ∈ I controls a production plant
n ni ≤ m of the locations, and decides on the power outputs

∈ Rni of its generators. Power is only dispatched in the location
i

8

Fig. 3. Cartesian trajectories of velocity-actuated and Euler–Lagrangian vehicles,
with adaptive gains.

of production. Each plant has a maximal capacity, described by
the local constraints 0ni ≤ xi ≤ Xi. Moreover, an independent
system operator (ISO) imposes an upper bound on the market
share of the producers, so that 1⊤

nixi ≤ Ci. Market clearance
is guaranteed by the ISO via external control mechanisms, but
the overall power generation is bounded by markets capacities
r = col((rj)j∈J ). Thus, the firms share the constraints Ax ≤ r .
Here, A = [A1 . . . AN ], and Ai ∈ Rm×ni with [Ai]j,k = 1 if [xi]k
is the power generated in location j ∈ J by agent i, [Ai]j,k = 0
otherwise, for all j ∈ J , k = 1, . . . , ni. In simple terms, Ax ∈ Rm is
the vector of total power generations for each market. Each firm
i ∈ I aims at maximizing its profit, i.e., minimizing the cost

Ji(xi, x−i) = ci(xi) − p(Ax)⊤Aixi + w(1⊤

nixi),

where ci(xi) =
∑ni

k=1 Qi,k([xi]k)2 + qi,k[xi]k is the generation cost,
p(Ax)⊤Aixi is the revenue, where p : Rm

→ Rm associates to
each market a unitary price depending on the offer and [p(Ax)]j =

Pj−χj[Ax]j,w(y) = w2y−w1y2 is a price charged by the ISO for the
use of the infrastructure. We set N = 20, m = 7 and randomly
select which firms participate in each market. We choose with
uniform distribution Xi in [0.3, 1.3], Ci in [1, 2], rj in [1, 2], Qi,k
in [8, 16], qi in [1, 2], Pj in [10, 20], χj in [1, 3], for all i ∈ I,
j ∈ J , k = 1, . . . , ni, w1 in [0.5, 1], w2 in [0, 0.1]. The firms
cannot access the productions of all the competitors, but can
communicate with some neighbors on a connected graph. The
turbine of generator i is governed by the dynamics (Deng and
Liang, 2019)

Ṗi,k = −α1
i,kPi,k + α2

i,kRi,k

Ṙi,k = −α3
i,kRi,k + α4

i,kui,k,

with Pi,k = [xi]k; Ri,k and ui,k are the steam valve opening and
control input; the parameters α·

i,k’s are set as in Deng and Liang
(2019). Via feedback linearization, the problem for each generator
reduces to the control of a double-integrator. The competition
among the firms is described as an aggregative game with aggre-
gation value ψ(x) = Ax (this is advantageous with respect to the
formulation in Pavel (2020), as the firms only keep an estimate of
the aggregation and firm i does not need to know the quantities
{Aj, j ̸= i}). We numerically check that this setup satisfies
Assumptions 2, 4. We simulate the equivalent of Algorithm 5 for
aggregative games, obtained by choosing ũ in (24) according to
i
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Fig. 4. Distance from the v-GNE, for the power production in the electricity
market.

Algorithms 3, 4; we deal with the local constraints as in Remark 2.
The results are shown in Fig. 4 and indicate fast convergence of
the firms’ production to the unique v-GNE.

8. Conclusion and outlook

Generalized games played by nonlinear systems with maximal
elative degree can be solved via continuous-time fully dis-
ributed primal–dual pseudogradient controllers, provided that
he game mapping is strongly monotone and Lipschitz continu-
us. Convergence can be ensured even without a-priori knowl-
dge on the game parameters, via integral consensus. Seeking
n equilibrium when the agents are characterized by constrained
ynamics is currently an open problem. The extension of our
esults to the case of direct communication, noise and parameter
ncertainties is left as future work.

ppendix A. Proof of Lemma 2

Under Assumption 3, we have, for any q > 0,

Range
(
Lq

)
= Null

(
1⊤

N ⊗ Iq
)

= E⊥

q , (A.1)

Null
(
Lq

)
= Range

(
1N ⊗ Iq

)
= Eq. (A.2)

i) For any equilibrium col(x̄, k̄, z̄, λ̄) of (10), with z̄ ∈ E⊥

m , it holds
hat

∈ R⊤(F (x̄) + G(Rx̄)⊤λ̄+ NΩ (Rx̄)) + LnK̄ ρ̄ (A.3)

= D (ρ̄)⊤ (Γ ⊗ In) ρ̄, ρ̄ = Lnx̄ (A.4)

= Lmλ̄ (A.5)

∈ −g(Rx̄) + z̄ + Lmλ̄+ NRNm
≥0

(
λ̄
)
, (A.6)

here K̄ = diag((k̄iIn)i∈I). By (A.4) we have ρ̄ = 0Nn, i.e., x̄ ∈ En
y (A.2), and by (A.5) and (A.2), we have λ̄ ∈ Em. Hence, x̄ = 1N ⊗
∗ and λ̄ = 1N⊗λ∗, for some x∗

∈ Rn, λ∗
∈ Rm. By left multiplying

oth sides of (A.3) by (1⊤

N ⊗In), by (A.2) and since (1⊤

N ⊗In)R⊤
= In,

(1N ⊗ x∗) = F (x∗), Rx̄ = x∗, and G(Rx̄)⊤(1N ⊗λ∗) =
∂
∂xg(x

∗)⊤λ∗,
e retrieve the first KKT condition in (4). We obtain the second
ondition in (4) by left multiplying both sides of (A.6) by (1⊤

N ⊗Im)
and by using that (1⊤

N ⊗ Im)g(Rx̄) = g(x∗), (1⊤

N ⊗ Im)z̄ = 0 and
(1⊤

N ⊗ Im)NRNm
≥0

(1N ⊗ λ∗) = NNRm
≥0
(λ∗) = NRm

≥0
(λ∗).

(ii) Let (x∗, λ∗) be any pair that satisfies the KKT conditions in (4).
By taking x̄ = 1N ⊗ x∗, λ̄ = 1N ⊗ λ∗ and any k̄, (A.3)–(A.5) are
satisfied as above. It suffices to show that there exists z̄ ∈ E⊥

m
such that (A.6) holds, i.e., that (−g(Rx̄) + v̄) ∈ E⊥

m , for some v̄ ∈

NRNm
≥0

(λ̄). By (4), there exists v∗
∈ NRm

≥0
(λ∗) such that g(x∗) = v∗.

Since NRNm
≥0

(1N ⊗ λ∗) = ×i∈INRm
≥0
(λ∗), it follows by properties of

cones that col(v∗

1, . . . , v
∗

N ) ∈ NRNm
≥0

(λ̄) with v∗

1 = · · · = v∗

N =
1
N v

∗.

herefore, (1⊤

N ⊗ Im)(−g(Rx̄) + v̄) = −g(x∗) + v∗
= 0m, or

(−g(Rx̄) + v̄) ∈ E⊥. ■
m

9

Appendix B. Proof of Lemma 4

Let y = 1n ⊗ y, for some y ∈ Rn. We decompose x = x⊥
+ x∥,

where x∥
:= Pnx, x⊥

:= P⊥
n x. Therefore, x∥

= 1N ⊗ x̂, for some
x̂ ∈ Rn. By Pavel (2020, Eq. 50),

(x − y)⊤R⊤(F (x) − F (y)) ≥ −θ∥x̂ − y∥∥x⊥
∥ + µ∥x̂ − y∥2

− θ∥x⊥
∥
2
− θ0∥x⊥

∥∥x̂ − y∥.

or any k∗ > k > 0, we have K ∗
≻ 0 and, by (A.2),

ull (LnK ∗Ln) = En. Therefore it holds that (x − y)⊤LnK ∗Ln(x −

) ≥ k∗λ2(L)2∥x⊥
∥
2. By

x̂ − y
 =

1
√
N

x∥
− y

, we conclude that

(x − y)⊤ (R⊤ (F (x) − F (y))+ LnK ∗Ln (x − y))
≥ col(∥x⊥

∥, ∥x∥
− y∥)⊤M1col(∥x⊥

∥, ∥x∥
− y∥),

ith M1 as in (11) and, for k∗ > k, M1 ≻ 0 by Silvester’s
riterion. The conclusion follows since, by orthogonality, ∥x∥

−

∥
2
+ ∥x⊥

∥
2

= ∥x − y∥
2. ■

ppendix C. Proof of Theorem 1

We first rewrite the dynamics in (10) as

˙ = ΠΞ (ω,−A(ω) − B(ω)), (C.1)

where ω := col (x, k, z,λ), Ξ := Ω × RN
× RNm

× RmN
≥0 ,

A(ω) :=

⎡⎢⎢⎢⎢⎣
R⊤F (x) + LnKLnx
−D(ρ)⊤ (Γ ⊗ In) ρ

0Nm

Lmλ

⎤⎥⎥⎥⎥⎦, B(ω) :=

⎡⎢⎢⎢⎢⎢⎢⎣
R⊤G(Rx)⊤λ

0N

−Lmλ

−g(Rx) + z

⎤⎥⎥⎥⎥⎥⎥⎦.

By Assumption 1 and Lemma 3, A and B are locally Lipschitz;
therefore, for any initial condition in Ξ , the system (C.1) has a
unique local Carathéodory solution, contained in Ξ (Cherukuri
et al., 2016). Moreover, we note that the set S = {w ∈ Ξ |

z ∈ E⊥

m} is invariant for the system (C.1), since for all ω ∈ Ξ ,
∂
∂ω

((1N ⊗ Im)⊤z)ω̇ = (1⊤

N ⊗ Im)Lmλ = 0m.
Let Φ := Pm + L+

m , where L+

m is the Moore–Penrose pseudo-
nverse of Lm, and we recall that Pm =

1
N 1N1⊤

N ⊗ Im is the
projection matrix on Em. By properties of the pseudo-inverse and
A.2), L+

m = L+

m
⊤, L+

m ⪰ 0 and Null(L+

m) = Em. Since Null(Pm) = E⊥

m
nd Pm ⪰ 0, we have Φ ≻ 0. Also, L+

mLm = INm − Pm = P⊥
m is the

rojection matrix on Range(Lm) = E⊥

m . We define the quadratic
yapunov function

=
1
2∥ω − ω̄∥

2
Q := (ω − ω̄)⊤Q (ω − ω̄)

=
1
2 (∥x − x̄∥2

+ ∥k − k̄∥
2
Γ−1 + ∥z − z̄∥2

Φ + ∥λ− λ̄∥2),

where Q =: diag(INn,Γ −1,Φ, INm), and x̄ = 1N ⊗ x∗, λ̄ = 1N ⊗λ∗,
where the pair (x∗, λ∗) satisfies the KKT conditions in (4), k̄ such
that k∗

:= min(k̄) ≥ k, with k as in (11), z̄ ∈ E⊥

m chosen such that
ω̄ := col

(
x̄, k̄, z̄, λ̄

)
is an equilibrium for (10), and such a z̄ exists

by the proof of Lemma 2. Therefore, for any ω ∈ S, we have

V̇ (ω) : = ∇V (ω)ω̇ = (ω − ω̄)⊤Q ω̇

= (ω − ω̄)⊤QΠΞ (ω,−A(ω) − B(ω))

≤ (ω − ω̄)⊤Q (−A(ω) − B(ω)), (C.2)

where the last inequality follows from Lemma 1 and by exploiting
the structure of Q and Ξ . By Lemma 1, it also holds that (ω −

ω̄)⊤Q (−A(ω̄) − B(ω̄)) ≤ 0. By subtracting this term from (C.2),
we obtain

V̇ (ω) ≤ −(ω − ω̄)⊤Q (A(ω) − A(ω̄) + B(ω) − B(ω̄)).
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esides, for any z ∈ E⊥

m , by L+

mLm = P⊥
m and (A.2), we have

z − z̄)⊤ΦLm(λ− λ̄) = (z − z̄)⊤(λ− λ̄), and hence

(ω − ω̄)⊤Q (B(ω) − B(ω̄))

= (x − x̄)⊤R⊤(G(Rx)⊤λ− G(Rx̄)⊤λ̄)
+ (λ− λ̄)⊤(−g(Rx) + g(Rx̄))

= (x − x∗)⊤(∇y(g(y)⊤λ)|y=x − ∇y(g(y)⊤λ̄)|y=x∗ )

− (λ− λ̄)⊤(∇y(g(x)⊤y)|y=λ − ∇y(g(x∗)⊤y)|y=λ̄)
≥ 0

and the last inequality holds, for any ω ∈ S, by applying
(Rockafellar, 1970, Th. 1), since λ, λ̄ ∈ RNm

≥0 and in view of
Assumption 1. Therefore, for any ω ∈ S, it holds that:

V̇ (ω) ≤ −(ω − ω̄)⊤Q (A(ω) − A(ω̄))

= −(x − x̄)⊤R⊤ (F (x) − F (x̄))
− (x − x̄)⊤(LnKLn(x − x̄))
+ (k − k̄)⊤Γ −1D(ρ)⊤ (Γ ⊗ In) ρ
− (λ− λ̄)⊤Lm(λ− λ̄),

(C.3)

where we used that ρ̄ := Lnx̄ = 0. For the last addend in
(C.3), we can write (λ − λ̄)⊤Lm(λ − λ̄) = λ⊤Lmλ by (A.2)
and, by Bauschke and Combettes (2017, Th. 18.15), λ⊤Lmλ ≥

1
2λmax(L)

∥Lmλ∥
2. The third addend in (C.3) can be rewritten as

(k − k̄)⊤Γ −1D(ρ)⊤ (Γ ⊗ In) ρ =
∑N

i=1

(
ki − k̄i

)
ρi⊤ρi

= ρ⊤(K −

K̄ )ρ = x⊤Ln(K − K̄ )Lnx = (x − x̄)⊤Ln(K − K̄ )Ln(x − x̄), where
K̄ := diag((k̄iIn)i∈I). Therefore, the sum of the second and third
erms in (C.3) is −(x− x̄)⊤LnK̄Ln(x− x̄) ≤ −(x− x̄)⊤LnK ∗Ln(x− x̄),
here K ∗

:= k∗INn. By Lemma 4, we finally get

˙ ≤ −λmin(M1)∥x − x̄∥2
−

1
2λmax(L)

∥Lmλ∥
2, (C.4)

with M1 ≻ 0 as in Lemma 4.
Let P̄ be any compact sublevel set of V (notice that V is

radially unbounded) containing the initial condition ω(0) ∈ S.
P̄ is invariant for the dynamics, since V̇ (ω) ≤ 0 by (C.4). The
set P := P̄ ∩ S is compact, convex and invariant, therefore,
by exploiting Lemma 3 and the continuous differentiability in
Assumption 1, we conclude that A+B is Lipschitz continuous on
P . Therefore, for any initial condition, there exists a unique global
Carathéodory solution to (10), that belongs to P (and therefore is
bounded) for every t (Cherukuri et al., 2016, Prop. 2.2). Moreover,
by De Persis and Grammatico (2019, Th. 2), the solution converges
to the largest invariant set O ⊆ {ω ∈ P s.t. V̇ (ω) = 0}.

We can already conclude that x converges to the point 1N ⊗

x∗, with x∗ the unique v-GNE of the game in (2). We next
show convergence of the other variables. Take any point ω :=

col(x, k, z,λ) ∈ O. Since V̇ (ω) = 0, by (C.4) we have x = x̄ =

N ⊗x∗, and λ ∈ Em, i.e. λ = 1N ⊗λ, for some λ ∈ Rm
≥0. Therefore,

y expanding (C.2), by x = x̄, ρ := Lnx = 0Nn and (A.2), we have

= (λ− λ̄)⊤(g(Rx̄) − z) = (λ− λ∗)⊤g(x∗) = λ⊤g(x∗)

= λ⊤(g(Rx̄)−z), (C.5)

here in the second equality we have used that z ∈ E⊥

m and the
hird equality follows from the KKT conditions in (4b). Then, let
(t) = col(x(t), k(t), z(t),λ(t)) be the trajectory of (C.1) starting
t ω. By invariance of O, x(t) = x̄ and λ(t) ∈ E , for all t .
m d

10
Therefore, by (10b)–(10c), it holds that k(t) ≡ k, z(t) ≡ z , for all
t . Hence, the quantity v := (g(Rx(t))−Lmλ(t) − z(t)) is a constant
long the trajectory ω(t). Suppose by contradiction that [v]k > 0,

for some k = {1, . . . ,Nm}. Then, [λ̇(t)]k = [v]k for almost all t ,
y (10d), and λ(t) grows indefinitely. Since all the solutions of

(10) are bounded, this is a contradiction. Therefore, v ≤ 0m, and
⊤v = 0 by (C.5). Equivalently, v ∈ NRNm

≥0
(λ), hence λ(t) ≡ λ, for

ll t . We conclude that the points in O are equilibria.
Moreover, the set Λ(ω0) of ω-limit points1 of the solution to

10) starting at any ω0 ∈ S is nonempty (by Bolzano–Weierstrass
heorem, since all the trajectories of (10) are bounded), and
(ω0) ⊆ O (see the proof of De Persis and Grammatico (2019,
h.2)). Hence, all the ω-limit points are equilibria. We next show
hat, for any ω0 ∈ S, Λ(ω0) is a singleton; as a consequence, the
solution converges to that point (Bauschke & Combettes, 2017,
Lemma 1.14). For the sake of contradiction, assume that there are
two ω-limit points ω1 = col(x̄, k̂, z1,λ1), ω2 = col(x̄, k̂, z2,λ2) ∈

Λ(ω0), with ω1 ̸= ω2. We note that ω1 and ω2 must have the
same vector of adaptive gains k̂ by definition of ω-limit point,
since the ki’s in Algorithm 2 are nonincreasing. Let ω3 = col(x̄, k̂+

1α, z1,λ1), α ∈ R chosen such that min(k̂ +1α) > k, k as in (11).
By (C.4), ∥ω(t) − ω3∥Q is nonincreasing along the trajectory ω(t)
of (C.1) starting at ω0. Thus, by definition of ω-limit point, it holds
that ∥ω1 − ω3∥Q = ∥ω2 − ω3∥Q , or ∥col(0Nn, α1N , 0Nm, 0Nm)∥Q =

∥col(0Nn, α1N ,λ1 − λ2, z2 − z1)∥Q . Equivalently, ω1 = ω2, that is
a contradiction. ■

Appendix D. Proof of Theorem 2

The proof follows as for Theorem 1, by defining ω :=

col (x, z,λ), Ξ := Ω × RNm
× RmN

≥0 ,

A(ω) :=

[
R⊤F (x)+cLnx

0Nm
Lmλ

]
, B(ω) :=

[
R⊤G(Rx)⊤λ

−Lmλ
−g(Rx)+z

]
,

with Lyapunov function V (ω) =
1
2 (∥x − x̄∥2

+ ∥z − z̄∥2
Φ + ∥λ −

¯∥
2), and by exploiting, in place of Lemma 4, Lemma 3 in Pavel

2020). ■

ppendix E. Proof of Lemma 5

By Assumptions 2 and 4, we have

(x − x′)⊤(F̃ (x, σ) − F̃ (x′, σ ′))

= (x − x′)⊤(F̃ (x, σ) − F̃ (x, Pn̄ψ(x)))

+ (x − x′)⊤(F̃ (x, Pn̄ψ(x)) − F̃ (x′, Pn̄ψ(x′)))

≥ µ∥x − x′
∥
2
− θ̃σ∥x − x′

∥∥σ − 1N ⊗ ψ(x)∥.

Moreover, we note that (σ−1N⊗ψ(x)) ∈ E⊥

n̄ , since Pn̄σ = Pn̄ψ(x),
nd σ ′

∈ E n̄. Hence, by (A.2), we have (σ − σ ′)⊤L n̄K ∗L n̄(σ − σ ′) ≥
∗λ2(L)2∥σ − Pn̄ψ(x)∥2, and the conclusion follows readily. ■

ppendix F. Proof of Theorem 3

The dynamics (15) can be recast in the form (C.1), with ω =

ol (x, ς, k, z,λ), Ξ = Ω × RNn̄
× RN

× RNm
× RNm

≥0 ,

(ω) =

⎡⎢⎣ F̃ (x,σ)+B⊤Ln̄KLn̄σ
Ln̄KLn̄σ

−D(ρ)⊤(Γ⊗In̄)ρ
0Nm
Lmλ

⎤⎥⎦, B(ω) =

⎡⎣ G(x)⊤λ
0Nn̄
0N

−Lmλ
−g(x)+z

⎤⎦.
1 z : [0,∞) → Rn has an ω-limit point at z̄ if there exists a nonnegative
iverging sequence {t } such that z t → z̄.
k k∈N ( k)
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y proceeding as in the proof of Theorem 1, we note that the set S
s invariant for the dynamics, since, for all ω ∈ S, ∂

∂ω
(Pn̄ς)ω̇ = 0Nn̄,

∂
∂ω

(Pmz)ω̇ = 0Nm.
Analogously to the proof of Lemma 2, it can be shown that

ny equilibrium point ω̄ := col
(
x̄, ς̄, k̄, z̄, λ̄

)
∈ S of (15) is such

hat λ̄ = 1N ⊗ λ∗, the pair (x̄, λ∗) satisfies the KKT conditions
in (4), and σ̄ := ψ(x̄) + ς̄ = 1N ⊗ ψ(x̄). Moreover, for any pair
(x∗, λ∗) satisfying the KKT conditions in (4), there exists z̄ ∈ RmN

such that col(x∗, 1N ⊗ ψ(x∗) − ψ(x∗), k, z̄, 1N ⊗ λ∗) ∈ S is an
equilibrium for (15), for any k ∈ RN . The proof is omitted because
of space limitations.

Let ω̄ = col
(
x̄, ς̄, k̄, z̄, λ̄

)
∈ S be an equilibrium of (15)

such that k∗
= min(k̄) > k, k as in (17), and consider

he quadratic Lyapunov function V =
1
2∥ω − ω̄∥

2
Q , where

= diag(In, INn̄,Γ
−1, Pm + L+

m, INm). Analogously to the proof of
heorem 2, it holds that (ω − ω̄)⊤Q (B(ω) − B(ω̄)) ≥ 0, and that
˙ (ω) ≤ −(ω − ω̄)⊤Q (A(ω) − A(ω̄)), for all ω ∈ S. Also we note
hat

(x − x̄)⊤B⊤L n̄KL n̄(σ − σ̄) + (ς − ς̄)⊤L n̄KL n̄(σ − σ̄)

= (ς + Bx + d − (ς̄ + Bx̄ + d))⊤L n̄KL n̄(σ − σ̄)

= (σ − σ̄)⊤L n̄KL n̄(σ − σ̄),

here d := col((di)i∈I)), and that (k − k̄)⊤Γ −1D(ρ)⊤(Γ ⊗ In)ρ =

σ− σ̄)⊤Ln(K − K̄ )Ln(σ− σ̄) as in the proof of Theorem 2. Hence,
y Lemma 5, we obtain, for all ω ∈ S

˙ (ω) ≤ −λmin(M2)(∥x − x̄∥2
+ ∥σ − 1N ⊗ ψ(x)∥2)

−
1

2λmax(L)
∥Lmλ∥

2,

ithM2 ≻ 0 as in (17). Then, existence of a unique global solution
or the system in (15) and convergence to an equilibrium point
ollows as for Theorem 1. ■

ppendix G. Proof of Theorem 4

Analogously to Lemma 5, it can be shown that for any
> c , there exists δ > 0 such that, for any (x, σ) with

n̄σ = Pn̄ψ(x) and any (x′, σ ′) with σ ′
= Pn̄ψ(x′), it holds that

(x − x′)⊤(F̃ (x, σ) − F̃ (x′, σ ′)) + c(σ − σ ′)⊤L n̄(σ − σ ′) ≥ δ∥col(x −

x′, σ − 1N ⊗ ψ(x))∥2. Then, the proof follows analogously to
Theorem 3. ■

Appendix H. Proof of Theorem 5

Under the coordinate transformations in (21), the dynamics
in Algorithm 5 read as (24), where the input ũi in Algorithm
5 has been chosen by design according to Algorithm 2, under
Assumption 5. Therefore, existence of a unique bounded solution
and convergence of ζi to x∗

i (and of the variables ζi, ki, zi, λi), for
ll i ∈ I, follows from Theorem 1. On the other hand, we note
hat, for all i ∈ I and all k ∈ Mi, Ei,k is Hurwitz, because it is in
anonical controllable form and the coefficients of the last row are
y design the coefficients of an Hurwitz polynomial. Therefore, Ei
s also Hurwitz, and hence the dynamics in (24b) are ISS with
espect to the input ũi (Khalil, 2002, Lemma 4.6). In turn, the
nput ũi is bounded, by boundedness of trajectories in Theorem 1,
ssumption 1 and Lemma 3; moreover, by the convergence in
heorem 1, the KKT conditions in (4) and by continuity, we have
hat ũi → 0ni for t → ∞. Hence, for all i ∈ I, vi → 0
symptotically (this follows by definition of ISS, see Khalil (2002,
x. 4.58)). By the definition of ζi, we also have xi → x∗

i , for all
∈ I. ■
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