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Abstract. We consider a convection-diffusion problem in a box in which rigid bodies are
present. The location and orientation of these bodies are subject to a set of parameters.
In order to use a reduced basis method, we perform a two-step method. In the first step,
we transform the parameter-dependent geometric situation to a reference situation (also
mapping the mesh). Then, we use the Empirical Interpolation Method (EIM) in order to
separate the parameter from the variables of the pde. We present several numerical results
that indicate the efficiency of the method. The corresponding analysis will be presented in
a forthcoming paper, [2].

1 Introduction

Flow problems around moving bodies naturally occur in several applications, e.g.
propulsion systems for ships or helicopters. The flow problems are typically modeled
by instationary nonlinear pde’s and usually lead to highly complex, extremely high di-
mensional nonlinear systems. Hence, for an efficient numerical solution, a model reduction
is strongly required.

There is a huge literature on reduced basis methods in particular for flow problems,
a complete list goes beyond the scope of this paper. Let us just mention [4, 5, 7, 8,

1This work was supported by the European Commission within the Research Training Network Break-
ing Complexity, No. 2-2001-00574. This paper was written when the first author was in residence at the
Politecnico di Torino. We are extremely grateful to Claudio Canuto for many inspiring discussions and
in particular to Gianluigi Rozza (MIT, Department of Mechanical Engineering) for inspiring discussions
and for providing us with useful hints and materials. We also acknowledge that he pointed out missing
references to related work in an earlier version of this paper.
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9, 10, 15, 16, 19, 23, 25] for fluid flow, [11, 13, 17, 18, 19, 20] for elliptic and [6, 22]
for parabolic problems. All investigations are concerned either with stationary problems
or with instationary problems, where the domain is fixed in time. More recently, also
parameter-dependent problems have been investigated, [11, 13, 18, 19, 25]. In most of
the papers the influence of these parameter is affine. Just recently, non-affine parameter
dependencies have been investigated, [12, 14].

We want to develop a new reduced basis framework that allows us to construct a
reduced model for instationary problems with moving bodies. As a first step in this di-
rection, we aim to develop a reduced basis framework for linear and nonlinear convection-
diffusion problems in a box containing one or more rigid bodies whose position and ori-
entation are subject to a parameter (which can be time-dependent in a next step also
playing the role of a control).

Our method consists of two steps. Firstly, we use domain decomposition and mapping
to reduce the problem to reference situation. Then, we use the Empirical Interpolation
Method (EIM) to separate the influence of the parameter (which is non-affine here) from
the pde. This idea has also been used in [12, 14] to treat parametrized problems where
the influence of the parameter is non-affine. The basis functions for the reduced model
are then defined by taking snapshots with respect to the parameter space.

In a forthcoming paper, [2], we will present the numerical analysis (e.g. error estimates)
for the presented method. Investigations in this direction can be found e.g. in [3, 21].
More details on the particular computations can be found in [24].

The remainder of this paper is organized as follows. In Section 2, we introduce the con-
sidered convection-diffusion problem and describe appropriate parameter spaces. Section
3 is devoted to the description of the domain transformation and Section 4 contains the
Empirical Interpolation Method. The final reduced basis model is introduced in Section
5, Section 6 contains our numerical results and Section 7 conclusions and an outlook.

2 A convection-diffusion problem around rigid bodies

We consider a stationary convection–diffusion problem in a rectangle � ⊂ R2 in which
one or more rigid bodies are located in dependence of a parameter µ. We assume that
the shape of the bodies are identical and fixed. The bodies can be interpreted as blades
of a rotor or propeller and in the case of only one body B(µ) is a rotated blade of some
B = B(0) around an angle µ ∈ D = [0, π

2
], see the left part of Figure 1.

In the case of several blades we also assume that they are oriented in dependence of a
parameter which now is a vector. We consider here the case of five blades. To be precise,
the five blades are fixed on a rotating disc (the rotor) which is rotated with an angle φ.
Since the whole model is periodic, it is sufficient to consider φ ∈ [−π

5
, π

5
] in the case of

five blades. At each rotation angle φ (also called phase angle) of the rotor, each blade Bi

is oriented around an angle νi with respect to the tangential of the circle. For technical
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Figure 1: Geometry for one blade (left) and five (right) blades.

reasons, one typically restricts the range

νi ∈
[
− π

36
,

π

36

]
= [−5◦, 5◦].

Thus, the parameter vector reads

(φ, ν1, . . . , ν5) ∈ D :=
[
− π

5
,
π

5

]
×

[
− π

36
,

π

36

]5

.

Let us denote by NB the number of blades (as already said, we detail the cases NB = 1
and NB = 5), then

B(µ) :=

NB⋃
n=1

Bn(µ)

denotes the part of � containing the rigid bodies. Here, µ ∈ D is the parameter described
above. We subdivide � \ B(µ) =: Ω(µ) in subdomains according to Figure 1, so that we
obtain

Ω(µ) :=

NS⋃
n=1

Ωn(µ)

with subdomains Ωn(µ) ⊂ � and NS ∈ N denoting the number of subdomains (NS = 3
for one and NS = 13 for five blades).

Given coefficients a and b (that may also be non-constant or even also depend on the
solution itself), we consider the following convection-diffusion problem.

−a∆u + b · ∇u = 0 , in Ω(µ),

u = 0 , on ∂B(µ),

u = 1 , on ΓD,

∂u
∂n

= 0 , on ΓN ,

(2.1)
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where ΓN := ∂� ∩ {x = 1.5} is the Neumann part of the outer boundary ∂� and
ΓD := ∂� \ ΓN the Dirichlet part of ∂�.

Then, defining for µ ∈ D and g ∈ H1/2(ΓD)

V (µ, g) :=
{
v ∈ H1(Ω(µ)) : v = g on ΓD, v = 0 on ∂B(µ)

}
(2.2)

the variational formulation of (2.1) is well-known to read as follows: Find u ∈ V (µ, 1),
such that∫

Ω(µ)

a(x)∇u(x)∇v(x) dx +

∫
Ω(µ)

b(x) · ∇u(x) v(x) dx = 0 ∀v ∈ V (µ, 0), (2.3)

or, equivalently in operator form

〈A(µ)u, v〉+ 〈B(µ)u, v〉 = 0 ∀v ∈ V (µ, 0) , (2.4)

where

〈A(µ)u, v〉 :=

NS∑
n=1

∫
Ωn(µ)

a(x)∇u(x) · ∇v(x) dx,

〈B(µ)u, v〉 :=

NS∑
n=1

∫
Ωn(µ)

b(x) · ∇u(x) v(x) dx.

(2.5)

As already said, we want to investigate if a reduced basis method can be used for such a
parameter-dependent problem. Reduced basis models have been studied in the literature
also for bilinear forms that depend on a parameter, see e.g. [11, 13, 18, 19, 25]. However,
there the parameter needs to enter the bilinear form in a very specific way, e.g. as multiple
factor. Our case above does not fit into that framework. A possible wayout is described
in [12, 14], by approximating the bilinear forms using the so-called empirical interpolation
method (see Section 4 below).

3 Transformation to a reference domain

In our problem, the shape of the body is invariant, only its location and orientation
depends on a specific parameter µ ∈ D. Hence, it is a natural idea to transform the
problem to a reference situation, say µ = 0. Since in our particular problem, the parameter
µ represents a rotation, the desired transformation seems obvious.

Thus, we transform the variational formulation (2.3) and (2.4), respectively, to a refer-
ence domain Ω̂. It turns out that this step is also crucial to derive an efficient algorithm,
since it enables the application of a reduced basis method on the reference domain. We
start by deriving the mapping for the case of one blade and five blades, respectively,
and then perform the transformation itself. It turns out that the transformation is quite
similar in both cases.
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One single blade

As already pointed out, we use the splitting Ω(µ) into NS = 3 subdomains as visualized
in Figure 1. Furthermore, we choose the reference domain Ω̂ = Ω(µ̂), where µ̂ = 0, i.e.,
the blade is aligned horizontal.

We can easily define the mapping on each particular subdomain. On Ω1, no mapping
is applied, Ω2(µ) is rotated by an angle of (−µ), thus we have an affine transformation in
this subdomain. In Ω3, each point is rotated by an angle depending on its position, i.e.,
points near to the outer circle are almost not rotated, while points near to the inner circle
are rotated almost by (−µ). As the rotation depends on the position this is a non-affine
transformation.

Thus, one possible mapping reads:

x̂ = T (x, µ) :=


x, in Ω1,

Q1(µ)x, in Ω2(µ),

Q2(µ, x)x, in Ω3,

(3.1)

where Q1(µ) is a (Givens-)rotation by (−µ) and

Q2(x, µ) :=

 cos(µρ(‖x‖2)) sin(µρ(‖x‖2))

− sin(µρ(‖x‖2)) cos(µρ(‖x‖2))

 , (3.2)

where ρ(z) := 1− z−rI

rO−rI
and rI ,rO are the radii of the inner and outer circle, respectively

and we assume that the center of the inner and outer circle, respectively, is the origin.
By definition, this choice realizes a full rotation by (−µ) for points on the inner circle
(ρ(rI) = 1) and no rotation for points on the outer circle (ρ(rO) = 0). The effect of the
(inverse) mapping is shown in Figure 2. For the transformation of the pde to the reference
domain we also need the Jacobian of (3.1) which can be computed in a straightforward
way.

Five blades

We assume that the orientation of the blade initially only depends on its position, i.e.,
on the rotation angle of the rotor. A function

f ∈ C2
2π, f : φ 7→ α

is called blade steering curve (BSC), where α denotes the angle w.r.t. the tangential. We
define the reference domain Ω̂ by Ω(µ̂) = Ω(φ̂, ν̂1, ν̂2, ν̂3, ν̂4, ν̂5), where φ̂ = 0 and ν̂i = 0,
i.e., we have no rotation of the rotor and no deviation from the BSC in all five blades.
Furthermore, Ω(µ) is divided into NS = 13 subdomains as visualized in Figure 1. For this
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Figure 2: Effect of inverse mapping (one blade).

case one possible mapping reads x̂ = T (x, µ), where

T (x, µ) :=



x, in ΩE,

Q1(φ)x, in ΩI(φ),

Q2(x, φ)x, in ΩM ,

Q1(φ)[Q1(∆νi)(x−MBi
(φ)) + MBi

(φ)], in ΩI
Bi

(φ, νi),

Q1(φ)[Q2(x−MBi
(φ), ∆νi(x−MBi

(φ)) + MBi
(φ)], in ΩM

Bi
(φ),

(3.3)

where Q1(α) is again a (Givens-)rotation by (−α), Q2(x, α) is defined by (3.2) and MBi
(φ)

is the center of the i-th blade (in the computational domain). Furthermore, ∆νi is the
difference of the steering angle of the i-th blade, when mapping from the original domain
to the reference domain, i.e.,

∆νi =
(
f

(
φ̂i

)
+ ν̂i

)
−

(
f (φi) + νi

)
= f

(
2π

i− 1

5

)
− f

(
φ + 2π

i− 1

5

)
− νi,

where f is a given BSC. In other words, this is a concatenation of the mapping introduced
for the case of one blade.

To visualize the effect of the (inverse) mapping, the left part of Figure 3 shows a mesh
for the reference domain Ω̂ and the right part shows the resulting mesh when applying
the (inverse) mapping for µ = (φ, ν1, ν2, ν3, ν4, ν5) = (36◦, 0◦, 0◦, 0◦, 0◦, 0◦).

Again we have to compute the Jacobian of (3.3) which turns out to be a combination
of the case of one blade.

Now we are ready to use these transformations within the pde.
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Figure 3: Mesh on reference domain Ω̂ (left) and effect of the inverse mapping (right) for the case of five
blades.

Transformation of the pde to the reference domain

To transform the pde we follow standard lines and set Ω̂ = Ω(µ̂) as well as V̂ (g) :=
V (µ̂, g) on the reference domain. Then, the variational formulation for (2.1) on the
reference domain takes the form: Find û ∈ V̂ (1), such that〈

Â(µ)û, v̂
〉

+
〈
B̂(µ)û, v̂

〉
= 0 ∀ v̂ ∈ V̂ (0), (3.4)

for differential operators Â(µ) and B̂(µ) that take the form

〈
Â(µ)û, v̂

〉
=

NS∑
n=1

∫
Ω̂n

∇û(x̂) · T (n)(x̂; µ)∇v̂(x̂) dx̂,

〈
B̂(µ)û, v̂

〉
=

NS∑
n=1

∫
Ω̂n

v̂(x̂) t(n)(x̂; µ) · ∇û(x̂) dx̂,

(3.5)

where the matrix T (n) and the vector t(n) are obtained in a straightforward way by the
change of variable x ∈ Ωn 7→ x̂ ∈ Ω̂n and the chain rule.

Hence, we have shifted the dependence on the parameter from the domain dependence
to a dependence of the bilinear form, i.e., the coefficients of the corresponding bilinear
forms â(·, ·) and b̂(·, ·) depend on the parameter µ ∈ D. This allows us to use a reduced
basis approach. However, we are still lacking an important requirement for obtaining an
efficient algorithm, namely the separability of (3.4) w.r.t. the parameter µ. This will be
discussed in the next section.
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4 Empirical Interpolation Method

As already said above, reduced basis methods have already been investigated for
parameter-dependent problems, see e.g. [11, 13, 18, 19, 25]. This approach, however,
requires that the differential operator can be factorized so that the influence of the pa-
rameter can be separated from the bilinear form of the pde. The bilinear forms â(·, ·) and
b̂(·, ·) associated with Â and B̂, respectively, do not have this form. This is basically due
to the fact that the transformation is not affine linear.

In analogy to [12, 14], we aim to use the so-called empirical interpolation method
(EIM), [1], in order to approximate Â and B̂ by separable operators that will allow to
use a reduced basis approach. Moreover, of course, a separation of the parameter from
the differential operator also gives rise to efficient numerical methods. Let us now briefly
describe the EIM and then describe its application to our problem.

Let g : Ω × D → R be a function, depending on spatial coordinates x ∈ Ω and the
parameter µ ∈ D. The main idea of the empirical interpolation method is to construct M
basis functions qm : Ω → R, m = 1, . . . ,M , and M interpolation points ξm, m = 1, . . . ,M ,
such that g(x, µ) is interpolated by

gM(x, µ) :=
M∑

m=1

λm(µ)qm(x), (4.1)

where (for one particular µ) the weights λm(µ), m = 1, . . . ,M , are given by the solution
of the following interpolation problem

gM(ξj, µ) =
M∑

m=1

λm(µ)qm(ξj) = g(ξj, µ) , j = 1, . . . ,M. (4.2)

In other words, we approximate a given function g by interpolating it by a tensor product
gM at appropriately chosen knots.

Furthermore, the number M of used basis functions is determined in such a way that
a specified tolerance εemp is reached, i.e.,

εM(µ) := ‖g(x, µ)− gM(x, µ)‖L∞(Ω) ≤ εemp , ∀µ ∈ D. (4.3)

One chooses the smallest M such that (4.3) is valid. Details on the construction of the
basis functions and the choice of the interpolation knots can be found in [1].

We apply the EIM on each subdomain Ω̂n to approximate T (n) and t(n) by∥∥∥∥T (n)(x̂; µ)−
Ma,n∑
m=1

Θ(n)
m (µ) Λ(n)

m (x̂)

∥∥∥∥
L∞(Ω̂n)

≤ εemp,

∥∥∥∥t(n)(x̂; µ)−
Mb,n∑
m=1

θ(n)
m (µ) λ(n)

m (x̂)

∥∥∥∥
L∞(Ω̂n)

≤ εemp,
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(where the norms are to be understood as those for vector fields) so that we obtain the
following approximations of Â and B̂, respectively:

〈
Âemp(µ)û, v̂

〉
=

NS∑
n=1

∫
Ω̂n

∇û(x̂) ·
Ma,n∑
m=1

Θ(n)
m (µ) Λ(n)

m (x̂)∇v̂(x̂) dx̂

=:

Q∑
q=1

Θq(µ) Aq(û, v̂) (4.4)

and similarly 〈
B̂emp(µ)û, v̂

〉
=

S∑
s=1

Φs(µ)Bs(û, v̂). (4.5)

We finally obtain the approximate variational problem: Find û ∈ V̂ (1), such that〈
Âemp(µ)û, v̂

〉
+

〈
B̂emp(µ)û, v̂

〉
= 0, (4.6)

for all v̂ ∈ V̂ (0).

5 Reduced-Basis Approximation

Now we are going to describe the reduced basis method we are considering. To this
end, we need to define our basis functions (also called modes) for the reduced model.
Often this is done by defining certain so-called snapshots as a starting point. We take
snapshots corresponding to the parameter µ, i.e., we fix N values µ1, . . . , µN for the
parameter and compute the corresponding snapshots as discrete solutions of (3.4), i.e.,
find û(µn) ∈ V̂h(1), such that〈

Â(µn)û(µn), v̂
〉

+
〈
B̂(µn)û(µn), v̂

〉
= 0 , (5.1)

for all v̂ ∈ V̂h(0), where V̂h(g) is a discrete subspace of V̂ (g) (e.g. a finite element space
with mesh size h). Next, we homogenize the problem (with respect to the boundary
conditions) by defining

ũi :=

 û(µ1) , if i = 0 ,

û(µi+1)− û(µ1) , if i = 1, · · · , N − 1,
(5.2)

i.e., ũ0 satisfies the non-homogeneous boundary conditions, whereas all others fulfill ho-
mogeneous boundary conditions. We define the approximation space (trial space) by
V̂ N

h (g) := ũ0 + V̂ N
h (0), where V̂ N

h (0) := span{ũi : 1 ≤ i ≤ N − 1} is the test space.

9
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Using these spaces for any new parameter µ ∈ D we could directly apply a Galerkin
projection to obtain the reduced basis approximation by solving the following problem:
Find ûN(µ) ∈ V̂ N

h (1), such that〈
Â(µ)ûN(µ), v̂

〉
+

〈
B̂(µ)ûN(µ), v̂

〉
= 0, (5.3)

for all v̂ ∈ V̂ N
h (0). As this would not lead to an efficient algorithm, we take advantage

of the derived approximation for (3.4) and solve instead the approximate problem: Find
ûN(µ) ∈ V̂ N

h (1), such that〈
Âemp(µn)ûN(µn), v̂

〉
+

〈
B̂emp(µn)ûN(µn), v̂

〉
= 0 (5.4)

for all v̂ ∈ V̂ N
h (0).

5.1 Linear PDEs

Let us detail our approach first for a linear pde, where we can use the full computational
power of the EIM.

Algorithm 5.1 (Reduced basis approximation for linear problems).
Given a tolerance εemp.
Offline-Stage:

1. Use EIM to compute Θq and Φs as above as well as the separated bilinear forms Aq

and Bs.

2. Fix N values µ1, . . . , µN for the parameter and compute the snapshots by solving
the approximated problem (5.1).

Online-Stage: Given a new parameter µ ∈ D

1. Compute Θq(µ) and Φs(µ) using (4.2). This requires the solution of NS × 2× 2× 2
(small) linear systems of equations.

2. Assemble the linear system for the reduced model. This requires O((Q + S)N2) +
O((Q + S)N) operations.

3. Solve the reduced (N×N)-system. This can be done in general inO(N3) operations.

In the online stage the computational work is reduced from solving an Nh-dimensional
(finite element) problem to a N -dimensional (N � Nh) problem. Obviously this approach
is in particular more efficient if the convection-diffusion problem has to be solved several
times.

10
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5.2 Nonlinear PDEs

As we also want to deal with nonlinear pde’s, we consider the following equation

−a∆u + g(u)b · ∇u + h(u)u = 0, (5.5)

using the same boundary conditions as above. One standard way to solve such equations
is by an iteration of linear problems of the form

−a∆u + g(U)b · ∇u + h(U)u = 0, (5.6)

where U typically denotes a solution of some previous iteration. Thus, we can reduce
basically everything to the linear case. However, we have to take the functions g(U) and
h(U) into account for computing the EIM since otherwise we would have to recompute
these terms in the online-stage in each iteration. With this modification (which also causes
more computational work in the offline-stage) we can use the presented algorithm within
this framework.

6 Numerical Results

We now present some numerical results for two linear and two nonlinear problems,
namely

0 = −0.1∆u + (1, 0)T · ∇u,

0 = −∆u + (x, y)T · ∇u,

0 = −0.1∆u + (0.5, 0.5)T u · ∇u,

0 = −0.1∆u + (0.5, 0.5)T u · ∇u + u2.

All computations have been performed with FEMLAB using finite elements.

6.1 One Blade

The geometry is shown in Figure 1. The mesh size is fixed for all computations to
hmax = 0.1. The snapshots are taken by a uniform subdivision of the parameter interval
D = [0, π

2
].

For different numbers of snapshots N , we compute the reduced basis approximation
ûN(µ) and compare it to the reference solution û(µ), which is computed on the same
mesh. This is done for M = 5 different angels of interest. We measure the error eN(µ) :=
û(µ)− ûN(µ) terms of the following quantities:∥∥∥∥∂eN(µ)

∂n

∥∥∥∥
L1(∂B̂)

,

∥∥∥∥∂eN(µ)

∂n

∥∥∥∥
L2(∂B̂)

,
∥∥eN(µ)

∥∥
L∞(Ω̂)

,
∥∥eN(µ)

∥∥
L2(Ω̂)

.

The first two quantities reflect the fact that in several applications the interesting quanti-
ties (like e.g. forces or efficiency) are measured on the boundary of the blade. We display
the average values of these quantities for M different angles.
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∥∥∥∂eN (µ)
∂n

∥∥∥
L1(∂B̂)

,
∥∥∥∂eN (µ)

∂n

∥∥∥
L2(∂B̂)

∥∥eN(µ)
∥∥

L∞(Ω̂)

∥∥eN(µ)
∥∥

L2(Ω̂)

N = 2 4.5761e-01 3.3881e-01 1.2539e-01 5.4620e-03

N = 4 1.6949e-02 6.4470e-04 3.7161e-03 8.0362e-06

N = 6 3.6594e-04 3.7995e-07 6.6941e-05 4.2811e-09

N = 8 5.2275e-06 7.5078e-11 1.1455e-06 1.0824e-12

N = 10 2.6008e-07 2.6797e-13 6.5634e-08 5.0167e-15

Table 1: Results for one blade and example 1.
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N = 2 1.1024e-01 2.3864e-02 1.0885e-02 1.3184e-04

N = 4 3.7916e-03 2.8802e-05 1.8383e-04 3.4300e-08

N = 6 2.6304e-05 3.7832e-09 3.4220e-06 1.4072e-11

N = 8 5.7911e-07 1.7271e-12 7.8264e-08 1.1656e-14

N = 10 4.0959e-08 7.9742e-15 4.9690e-09 5.5172e-17

Table 2: Results for one blade and example 2.

The tables 1-4 show exponential decreasing errors. This is also shown in Figure 4,
which shows the decay of all four error quantities for example 4. We also see that, as
expected, the convergence is slower for the quantities on the boundary.
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Figure 4: Example of one blade: Decay of the errors.
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N = 2 1.7430e-01 5.3947e-02 5.0205e-02 1.4509e-03

N = 4 3.2225e-03 2.2602e-05 8.9602e-04 6.3792e-07

N = 6 4.3833e-05 6.0672e-09 2.1547e-05 4.2519e-10

N = 8 3.2445e-07 4.5052e-13 3.6249e-07 1.0633e-13

N = 10 1.4655e-08 1.2759e-15 1.9834e-08 4.1186e-16

Table 3: Results for one blade and example 3.
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N = 2 2.8339e-02 1.5279e-03 1.7724e-02 2.2992e-04

N = 4 4.7547e-04 5.5136e-07 3.8283e-04 9.3087e-08

N = 6 6.6904e-06 2.0499e-10 7.4213e-06 4.3219e-11

N = 8 1.2306e-07 8.5338e-14 2.2431e-07 3.4243e-14

N = 10 7.3634e-09 2.7582e-16 1.0780e-08 1.4195e-16

Table 4: Results for one blade and example 4.

Another aspect of the reduced basis method is that once the snapshots are computed
and the matrices are assembled, the reduced basis approximation can be obtained very
fast. Though it is perfectly suited whenever rapid, repeated and reliable solutions of
parameterized pde’s are needed. To underline this, Figure 5 shows computing timings
to obtain Nsol solutions (i.e., the solution for Nsol different parameter values µ). On the
one hand, they are computed directly, on the other hand reduced basis method using
N = 10 snapshots is applied. The left part of Figure 5 shows computing times for a linear
problem (corresponding to example 2) and the right part shows computing timings for
the nonlinear problem in example 4.

Here, we have not taken into account that for smaller mesh sizes hmax the time for
obtaining the solution directly increases, while the time for obtaining the reduced basis
approximation is constant, since the online-stages are independent of the used mesh. On
the other hand, timings for obtaining the snapshots and assembling the needed matrices
will increase too, but this only has to be done once.
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Figure 5: Comparison of computing times for one blade and for the linear example 2 (left) and the
nonlinear problem example 4 (right).

6.2 Five Blades

The geometry is again shown Figure 1. The mesh size is fixed for all computations to
hmax = 0.2. Again, we obtain snapshots by uniformly subdividing the parameter space
D. We compare the same error quantities as above for M = 5 parameters.∥∥∥∂eN (µ)
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N = 20 1.1964e-02 3.6420e-04 5.2278e-03 9.8293e-05

N = 40 9.1587e-04 2.0902e-06 4.2153e-04 2.9216e-07

N = 60 1.4821e-04 4.8827e-08 6.0365e-05 5.1978e-09

N = 80 4.0223e-05 4.1482e-09 1.4194e-05 3.7492e-10

N = 100 1.5575e-05 6.9286e-10 4.9104e-06 4.5514e-11

N = 120 6.8332e-06 1.2272e-10 2.3183e-06 1.0518e-11

N = 140 3.0928e-06 2.4590e-11 1.1610e-06 2.6126e-12

N = 160 1.1671e-06 3.5936e-12 4.2677e-07 3.8431e-13

N = 180 7.8726e-07 1.6177e-12 2.3441e-07 1.5186e-13

Table 5: Results for four blades, example 1.

Again, all tables show exponential decreasing errors, also graphically shown in Figure
6 for example 2. Due to the more complex space of parameters, one observes an increased
number of snapshots needed to obtain a certain accuracy.

To compare computing timings we proceed as above. Figure 7 (left) shows computing
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N = 10 5.0502e-04 6.8106e-07 6.3083e-05 3.1175e-09

N = 20 7.2797e-05 1.2904e-08 9.8053e-06 1.0385e-10

N = 30 1.6501e-05 7.7402e-10 1.6965e-06 2.3149e-12

N = 40 6.0813e-06 9.5160e-11 5.1187e-07 2.7740e-13

N = 50 2.3656e-06 1.4870e-11 2.0042e-07 6.2629e-14

N = 60 8.0245e-07 2.0297e-12 8.4087e-08 1.0942e-14

N = 70 3.6383e-07 3.3420e-13 3.0846e-08 2.0882e-15

Table 6: Results for four blades, example 2.
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Figure 6: Five blades: decay of the errors.
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N = 20 1.7994e-03 6.6581e-06 1.0316e-03 1.7604e-06

N = 40 1.3098e-04 3.6979e-08 7.9048e-05 8.2982e-09

N = 60 1.3817e-05 3.4869e-10 9.3197e-06 1.0002e-10

N = 80 5.1865e-06 5.5496e-11 3.2915e-06 1.6076e-11

N = 100 2.3986e-06 1.0469e-11 1.3001e-06 2.5292e-12

N = 120 8.1416e-07 1.3232e-12 4.5038e-07 2.8584e-13

N = 140 3.9471e-07 2.8873e-13 2.0356e-07 7.6517e-14

N = 160 2.0887e-07 8.1595e-14 1.0668e-07 1.9364e-14

N = 180 1.3694e-07 3.7260e-14 6.3443e-08 1.0606e-14

Table 7: Results for four blades, example 3.

timings needed for a linear problem (example 2) and the right part shows computing
timings for a nonlinear problem (example 4, taking N = 50 snapshots). Compared to the
case of one blade, the ‘overhead’ is slightly larger, once again because of the more complex
parameter space and the more complex mapping, respectively. On the other hand, once
the snapshots are computed and the empirical interpolation is done, we are able to obtain
a reliable reduced basis approximation very fast.
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Figure 7: Five blades: Comparison of computing times for the linear example 2 (left) and the nonlinear
problems 4 (right). We use N = 50 snapshots.

Finally, note that for a large number of snapshots N and a nonlinear problem the offline
stage may require a huge amount of memory. The timings for saving and loading these

16



Timo Tonn and Karsten Urban

∥∥∥∂eN (µ)
∂n

∥∥∥
L1(∂B̂)

∥∥∥∂eN (µ)
∂n

∥∥∥
L2(∂B̂)

∥∥eN(µ)
∥∥

L∞(Ω̂)

∥∥eN(µ)
∥∥

L2(Ω̂)

N = 10 8.5161e-04 1.4593e-06 5.8696e-04 3.6237e-07

N = 20 8.2204e-05 1.6552e-08 7.5417e-05 6.0244e-09

N = 30 1.8548e-05 6.9106e-10 1.2778e-05 1.3441e-10

N = 40 9.1968e-06 1.6472e-10 7.1211e-06 3.1829e-11

N = 50 1.8992e-06 7.8555e-12 1.7168e-06 2.3689e-12

N = 60 8.0668e-07 1.3775e-12 7.3932e-07 4.9827e-13

N = 70 3.6563e-07 2.3958e-13 3.5814e-07 9.1114e-14

N = 80 1.9058e-07 7.7435e-14 1.6374e-07 2.9236e-14

N = 90 9.2633e-08 1.6731e-14 9.2139e-08 8.2077e-15

N = 100 5.4029e-08 5.5711e-15 5.0178e-08 3.1985e-15

N = 110 2.8019e-08 1.5905e-15 2.4575e-08 1.0008e-15

Table 8: Results for four blades, example 4.

matrices is not taken into account in Figure 7. Furthermore, this is the reason for taking
only N = 50 snapshots, as we obtain adequate accuracy, while keeping the complexity of
the initial computation (offline-stage) and the complexity of the online-stage low.

7 Summary, Conclusion and Outlook

We have presented a reduced basis method for convection-diffusion problems around
rigid bodies whose position and orientation is subject to the choice of a parameter. We
have used a domain decomposition and mapping approach to reduce the problem to a
reference situation. By the Empirical Interpolation Method we obtain a separation of the
parameter from the differential operator. Then, we define basis functions for the reduced
model by taking snapshots with respect to the parameter. We show numerical results
that indicate exponential rate of convergence with respect to the number of snapshots.

As already indicated above, the error analysis of the above method will be described
in [2]. The numerical results presented in this paper are very promising and make us
confident that reduced basis methods can be used efficiently for such problems. Several
directions for further research are obvious. The time-dependent case is currently under
investigation and also systems of pde’s (like e.g. in [5, 14, 16]) are considered. Finally,
we did not yet investigate how the snapshot basis can be optimized e.g. by a Proper
Orthogonal Decomposition (POD) or by using a-posteriori error estimates. The ultimate
goal of this project is to use this method also for optimization problems.
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