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Abstract

The continuous progress of reservoir monitoring technology provides encouraging capacities to reduce
uncertainties in the subsurface characterization and to mitigate risks in field development applying the
reservoir simulation approach. However, it is always challenging to take full advantage of the observation
data, since an accurate representation of strong heterogeneities requires a high-resolution grid. Most of
the discretization methods cannot handle full tensor permeability, and high nonlinearity introduced by
complex physical process drastically reduces simulation efficiency. In this work, we develop an advanced
parallel framework for reservoir simulation with the implementation of state of the art discretization
and linearization methods. We apply the multipoint flux approximation (MPFA) method to handle the
full tensor permeability in unstructured grids. To keep the fidelity of the geological model and improve
computational efficiency, we use massively parallel computations via Message Passing Interface (MPI).
Complex subsurface physics is described by mass-based formulations making the framework flexible for
general-purpose reservoir simulation. However, the representation of phase behavior introduces additional
workload when compared with the phase-based formulations in the traditional approach. Here, we apply the
Operator-Based Linearization (OBL) approach which not only overcomes this drawback but also turns it to
an advantage. In this method, the conservation equations are described in an operator form. By constructing
a library of tabulated operators, the repeated work spent on complex phase behavior and property evaluation
can be significantly reduced. We benchmark the parallel framework with analytical solutions under single-
phase flow and multiphase flow. The results demonstrate that the parallel framework provides accurate
simulation results for structured and unstructured grids. We validate that MPFA implemented in our parallel
framework converges to real solutions when the permeability is a full tensor. Besides, several realistic
cases have been rigorously tested confirming high computational capacity, efficiency, and accuracy of the
advanced massively parallel framework for general-purpose reservoir simulation. With the implementation
of MPFA and OBL approaches, the parallel framework is fully equipped for the simulation of problems
with full tensor permeability, high-heterogeneities, and complex physical processes.
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Introduction

With the development of reservoir monitoring technology, more valuable data has been observed during
the exploration and development stages. Assisted with reservoir simulation, this data can help to reduce
uncertainties in the subsurface characterization and mitigate risks in field development. However, it is
always challenging to integrate detailed information into reservoir simulation. For example, limited by
the computational efficiency, a highly heterogeneous geological model can not be applied for reservoir
simulation of complex physical processes (e.g. compositional simulation) directly.

The most popular approach to reducing the number of degrees of freedom is a coarsening of geological
models which increases numerical errors inevitably. However, another challenge may be introduced after
the upscaling procedure due to the appearance of full tensor permeability. The most commonly used two-
point flux approximation (TPFA) method can not provide convergent solutions for reservoirs with full
permeability tensor [Abushaikha et al., 2017; Hjeij and Abushaikha 2019a and b]. Also, the solutions using
the TPFA method are not always numerically convergent for general unstructured grid cases [Abushaikha et
al., 2020]. Besides, the complex physics of multiphase flow makes it hard for the development of a reservoir
simulator and enhances the nonlinearity of the system which can drastically reduce simulation efficiency.
Thus, an accurate and computationally efficient reservoir simulator is still strongly required.

To overcome the limitations introduced by TPFA and to have a better understanding of the flow behavior
in the subsurface domain, several advanced numerical methods have been developed in reservoir simulation
[Aavatsmark et al., 1998; Aavatsmark, 2002; Abushaikha et al., 2015; Abushaikha et al., 2018; Hjeij et
al. 2019a; Hjeij et al. 2019b; Zhang et al., 2019a; Zhang et al., 2019b]. Among them, the O-method of
multipoint flux approximation (MPFA-O) has been proved to be an efficient and convergent method. The
flow behavior in strong heterogeneities [Abushaikha et al., 2008; Li et al., 2014; Wang et al., 2019; Li et
al., 2018a; Wu et al., 2018] and the effect of phase behavior on flow response [Voskov et al. 2008; Voskov
et al. 2009; Li et al., 2016; Liu et al., 2018; Li et al., 2018b] have also been widely discussed.

In this work, we introduce an advanced parallel framework for reservoir simulation. We apply the MPFA -
O method on a general unstructured grid and compare results with the TPFA approach. We demonstrate that
our framework can provide convergent solutions for the cases with full tensor permeability and unstructured
grid. For high-fidelity geological models, we use massively parallel computations via Message Passing
Interface (MPI) which can improve the simulation efficiency significantly. To make the framework more
general, we apply the mass-based formulations which unify the single-phase, dead oil, black oil, and the
compositional models.

For the solution of the nonlinear governing equations, we apply the state of art linearization method
named as operator-based linearization (OBL) [Voskov, 2017; Khait et al., 2017; Khait et al., 2018a; Khait
et al., 2018b]. With the application of OBL, the phase behavior computation workload can be drastically
reduced. Also, it simplifies the programming of Jacobian assembly which in turn improves the flexibility
of the simulation framework. We benchmark the numerical solutions with analytical solutions under single-
phase flow and multiphase flow conditions. The results demonstrate that the parallel framework developed
in this work is capable to provide accurate and efficient solutions for reservoir simulation. The simulations
of a highly heterogeneous geo-model on different numbers of processors demonstrate the strong scalability
of the parallel framework.

Parallel Framework for Reservoir Simulation

In this section, we describe the governing equations, discretization method, linearization method, and the
implementation of massively parallel computation.
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Modelling approach
Assuming that there are n. components and n, phases in an isothermal system, the transport equations can
be written as below.

np p "p

ol . ~

E(gﬁ;xcjpjsj) + div Z;xcjpjuj +Z;xcjp]qj =0,c=1 ..., n. (1)
- J= J=

Here, ¢ is the reservoir porosity; ¢ is the time; subscript ¢ is the index for mass components; subscript j
is the index for phases; x,; is the mole fraction of component ¢ in phase j, p is the phase molar density; s is
the saturation; ¢ is the phase rate per unit volume. w; is the Darcy velocity of phase j:

ky;
uj=-(Klu—Jj_VP) Jj=1 ..., np (2)

where K is the permeability tensor; k,; is the relative permeability of phase j; u is the viscosity; P is the
pressure.

There are two kinds of formulations, including mass-based and phase-based formulations, used for
solving the system of governing equations. In this study, to unify the formulations of the single-phase, dead
oil, black oil, and the compositional models, we apply the mass-based formulations of which the unknowns
are pressure and overall compositions z, = Zxc P S / ijs o

J J

Multipoint flux approximation method

As a common discretization method, the TPFA method is widely used in many reservoir simulators.
However, it is limited to provide an accurate solution for the simulations which apply unstructured grid or
full tensor permeability. To handle these two situations, by using functions related to geometry calculation
in INMOST (Terekhov et al., 2019), we apply the MPFA-O method for discretization. As shown in Figure
1, there are six control volumes in black bold lines and two intersection volumes in red lines. x;, x,, x3,
X4, X5, and x, are the centers of cell 1, cell 2, cell 3, cell 4, cell 5, and cell 6; xi, x3, X3, X4, X5, X6 and x7
are the midpoints of edges. The fluxes through half-edges including xx7, x3x7, x7x; and x7x4 are computed
through intersection volume x;x,x4x3, and the fluxes through half-edges including x;xg, xsxs, xsx5 and xgx7 are
computed through intersection volume xs;x4x4xs.

Figure 1—The schematic of control volumes and intersection volumes
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As shown in Figure 2, V(ll) is the normal on the connection line between x; and x3, the superscript denotes

the index of cell 1; n;, n,, n;, and n, are the normal vectors on the half-edges. In the sub-region of the
intersection volume, falls inside cell 1, the gradient of potential can be written as:

o p)esior)] ®

L
grad P = oF,

Figure 2—Normal vectors in an interaction volume

where F is the area of the triangle x;xx;.

The flux through half-edge is represented by ]f,k) where i is the index of the edge and £ is the index of
the cell. Take the cell 1 for example, the fluxes through half-edges can be written as:

! T T i

]( I';n I';n P.-P
. ITK1gradP —ﬁ : ]T V(l) V(Zl) S 4)
31) 3 1[773n; P;-P

where K is the permeability of cell 1 in full tensor format; I" is the length of half-edge.

By defining G,
oo L|rm K[V V0= 5] rnfKp) rfK ) (5)
=55 v V=58

17 2F, ! 1 2l 2F, F3n3TK1V(11) F3n3TKlv(21)

equation (4) can be written as
Al P-P
Lll)_-c S (6)
3 P3-P

By using the same approach, we can obtain matrixes G,, G, and G4. The fluxes through half-edges in
each cell can be written as:

f{11) Py= P /(12)_ Py=pP
)|~ G- 0" "9
1(3 P3P .ﬂ4. [Py~ P
SR A )
2| Py=Py |2 | Py=P
1(3)__(;3 —af(4)__G4 -
/3 LP3— P3|/ 4 P4 Py

By assuming that the flux on the interface of two neighboring cells is continuous, equation (7) can be
rewritten as:
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(1
&1
7 g \P2- P4)+g >( P4):-g3)(P2'P3)+g(3)(;’3'P3)

(8)

/= gl )(Pz P3)+g(2,)(P3 Ps)— 'g(z,)(Pl Pl) g(z);(lﬁ P1)

/=g (>(P1 P2) g(z’ ;(P4 Pz) g(2,>(P2- p4)+ g(z, )(p4 p4)

By defining £ = [f1, £, f3, fa]', P = [P\, P,, Ps, P,]T, P =[P\, P,, P;, P,]", we can obtain two equations:
f=CP+FP. 9)

AP=BP. (10)
By combining equations (9) and (10), we can obtain:

f=TP, T=CA'B+F. (11)
As T is computed based on intersection volume, it can only be used to compute the fluxes through half-
edges. To simplify the Jacobian assembly, we integrate the T of intersection volumes as connection-based
transmissibility vector. For example, in Figure 1, we get a vector T, = [T 1> T5 T4 Ts T¢] for the connection
between cell 3 and cell 4. With the vector of pressure P = [P, P, P; Py Ps Ps]", we get the flux through
edge x,x3 by flux, ., = Tinee' P. Thus, by applying the MPFA-O method to discretize the mesh and applying

backward Euler approximation to discretize in time, the governing equations can be transformed as:

n p n n p
Il
(V¢lec P - At; leijpﬂjl TinnegP
= Jj=

ntl

"p p
- V¢2xcjpjsj +Athcjquj =0,c=1 ...,n. (12)
J=1 J=1

Here V is the volume of a control volume; / denotes the edges/faces of a control volume; /lﬂ- = (kr g / yj)

is the mobility of phase j over the interface / by upstream weighting, ¢, = ¢,V is the source of phase j; n+1
is the current time step; » is the previous time step.

Operator-based linearization method

As an unconditionally stable method, the implicit method has been implemented in many reservoir
simulators. However, it is always challenging to construct the Jacobian matrix, especially when the phase
behavior is complex. In general, the main challenges are introduced by properties and their derivatives.
During a simulation run, properties may be computed multiple times for the same state of the system (similar
values of nonlinear unknowns). The repeated work reduces the simulation efficiency a lot.

There are three ways to determine the derivatives including numerical approach, straightforward hand-
differentiation approach, and automatic differentiation techniques. The numerical approach is quite flexible
but often fails to offer a robust solution and can be expensive for multicomponent systems [Pruess et al.,
1999; Pruest, 2004]. The straightforward hand-differentiation approach is the most accurate strategy and
is implemented in many commercial simulators. However, the ensemble of the Jacobian becomes quite
complex which usually reduces the flexibility to add/change governing physics in the simulation framework
[Cao, 2002]. The automatic differentiation techniques [Voskov 2012; Zaydullin et al. 2014; Garipov et
al. 2016; Garipov et al. 2018] are proved to provide robust solutions and help to keep the flexibility of a
reservoir simulator. However, the automatic differentiation usually introduces an overhead and limits the
efficiency of a reservoir simulator.

In this work, we apply the state-of-the-art operator-based linearization (OBL) method proposed by
Voskov (2017). By using the OBL, equations (12) are transformed in an operator format:
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(5 o, u) = V(é)qso(é)ac(w)- ac(wn)]-ZAtTﬁm,egPﬂi(w)+ 0((5, o, u) c=1 ...ng (13)

where, the operators are defined as:

p
af(a)) = [l + C,,(P -P,. f)]Zxc P (14)
=
n p ,
&(w)%xé,-p% (15)

p
01(5, , u) = Athc jquj(f, , u) (16)
=i

Here, P, is the reference pressure for the porosity ¢,. From equations (14) to (16), a. and . are only
dependent on the phase and rock properties and independent of spatially distributed properties. The term 6,
can also be separated into space-dependent and state-dependent operators, but considering the complexity
of the well conditions, we do not show it here. Therefore, the most severe nonlinearity and complexity
related to phase behavior and property calculation are introduced by a., 5. and their derivatives.

In the OBL, the parameter space of the nonlinear unknowns of .. and f. are discretized using a uniform
grid. Once a status falls inside a hypercube with certain coordinates, we compute the operators on the
vertices of this hypercube. Then, the operators and their derivatives inside the hypercube can be determined
by interpolation. To save the workload spent on operator computation, the operators on each node are only
computed single time and stored. The robustness and reliability of the OBL approach have already been
proofed in multiple numerical studies (Voskov, 2017; Khait and Voskov, 2017; 2018a, b). In addition, the
utilization of the OBL approach simplifies the programming of the linearization stage which makes the
simulator more general and flexible.

Implementation of massively parallel computation

As an efficient and promising approach to improve computational performance, the massively parallel
computation is chosen as a base technology for our reservoir simulation framework. To utilize that, we
should first assign workload to the processors on cluster nodes evenly. As schematically shown in Figure
3a, a geo-model with 8x8 grids is divided into four sub-domains through reservoir domain decomposition.
Then we determine shared cells in blue (Figure 3b) and ghost cells in red (Figure 3c) in each sub-domain. By
assigning the grids in each sub-domain to a unique processor, the assignment of the workload is completed.
Next, during a simulation run, to integrate the workload of each sub-domain, we apply the Message Passing
Interface (MPI) to exchange the information among different processors by sharing the variables of shared
cells with corresponding ghost cells in neighboring processors.

Figure 3—The grids for parallel simulation with MPFA-O
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Numerical results

In this section, we first benchmark the numerical solutions with analytical solutions in single-phase flow
to validate the accuracy of the parallel framework. Second, to demonstrate the performance of the OBL
method, we perform a benchmark in two-phase flow. In the end, we test the parallel framework with field
cases on structured and unstructured grids.

Benchmark of single-phase flow

Here, we will benchmark the numerical solutions with analytical solutions under a single-phase transient
flow state. We apply two kinds of grids to meshing a homogeneous geo-model with a cubic size of 1 x1x1 m.
First, we mesh the domain with four resolutions based on hexahedra shown in Table 1. Second, by splitting
the hexahedra grid into six tetrahedrons grids, we generate an unstructured grid. The rock and fluid are
incompressible; the reservoir is anisotropic with a full tensor permeability shown below:

10 05 00
K=[05 10 05| (17)
00 05 10
Table 1—Grid dimension and grid size
 Grid 8x8x8 16x16x16 | 32x32x32 | 64x64x64
dimensions
Grid size/m 0.125 0.0625 0.03125 0.015625
The transport equation can be written as:
v-(u)=/, (18)
where f'is a force term constraint by an analytical solution:
P,=10+ sin(nx)sin(n y)sin(nz)e*’ . (19)

By defining a function shown in equation (20), we can investigate the accuracy of the numerical solutions.

r ’ N
L2—imte‘g = J L2dt’ L2 = Zl VI(P a-i” P n-i) : (20)
=0 =

Where V; is the volume of the i grid; P, is the analytical pressure solution of the i block; P, is the
numerical pressure solution of the i block; N is the number of blocks.

Through a detailed sensitivity analysis, we find that the optimum values of simulation time and timestep
are equal to 5 days and 0.1 days. Prolongation of simulation time or chopping of timestep will barely change
the L;.ue,. Finally, we compare the numerical solutions of TPFA and MPFA-O methods using four grid
resolutions. From Figure 4, we can see that with the mesh refinement, the solutions of the MPFA-O method
converge to a real solution while the TPFA method fails to converge. It demonstrates that our simulator is
capable to provide accurate solutions for reservoir simulation in unstructured and full tensor permeability
domains.
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8 SPE-200615-MS

Figure 4—L, .., analysis of the MPFA-O and TPFA methods

Benchmark of multiphase flow

In this section, we will benchmark numerical solutions of two-phase flow with analytical solutions of
the Buckley-Leverett equation. Here, the reservoir size is equal to 10x1x1 m; the rock and fluid are
incompressible; the permeability is 1 mD; the porosity is 0.3; the reservoir is saturated with oil; the
viscosities of oil and water are equal to 2 and 1 cP respectively; the relative permeabilities are defined as
k., = s,? and k,, = 5,7; the resolution of the parameter space of each nonlinear known is set as 64. We inject
water from the left side and produce oil from the right side with a constant rate equaling 0.001 m?/day and
simulation time equaling 1000 days. We apply hexahedra to meshing the geo-model with grid dimensions
equaling to 1024x5x5.

The numerical solutions for pressure and water saturation are shown in Figure 5 and Figure 6. From
Figure 6, we can observe a shock of the water saturation. And numerical solution approaches to the real
solution which is obtained by solving the Buckley-Leverett equation. By changing the parameters of rock
and fluid in the model, we can investigate the effect of the properties on flow behavior which helps us
further understand the flow underground.

Figure 5—Pressure distribution of the numerical solution
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Figure 6—Water saturation of the numerical and analytical solutions

Next, we perform simulations with different grid resolutions including 64x5x5, 128x5x5, 256x5x5, and
512x5%5. By defining a function shown in equation (21), we can investigate the effect of grid size on
simulation accuracy. As shown in Figure 7, with the mesh refinement, the water saturation approaches to the
real solution. It demonstrates that the OBL method is capable to provide accurate and convergent solutions
for multiphase flow.

Figure 7—The effect of grid size on the numerical solution

N
L= JZ VZ(S weari =S w—n-i) . (2 1 )
=1

Where S,..; is the analytical water saturation solution of the i block; S, i1s the numerical water
saturation solution of the i** block.

Field cases

Since we are still working on a high-performance linear solver [Nardean et al., 2019], the solver applied
in this study is just a common one that constrains the simulation efficiency. Thus, in this section, we test
a three-dimensional problem based on the top 20 layers of SPE10 reservoir on structured and unstructured
grids, which can be taken as a reference for initial testing between the two discretization schemes, and also
investigate the scalability of the new parallel simulator.

Case 1. The permeability is shown in Figure 8. The rock and fluid are incompressible; the initial
pressure is 300 bar; the porosity is homogeneous and equals 0.25; the initial water saturation is 0.2;
the viscosities of oil and water are equal to 2 and 1 cP respectively; the relative permeabilities are
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10 SPE-200615-MS

defined as Ky =[(S,y-Sy)/ (1= Sy - S ) Ko =[(S, = S) /(1= Syse = S )s Sune = 02, S, = 02 the resolution of
the parameter space of each nonlinear known is set as 64; two wells are imposed diagonally with one injector
and one producer; the bottom hole pressure of injector is 400 bar; the bottom hole pressure of producer is
200 bar; the simulation time is 5000 days.

Figure 8—Permeability of the top 20 layers of SPE10 reservoir

We test the MPFA-O and TPFA methods for the strong heterogeneous model which is meshinged by
hexahedra. As shown in Figure 9, the water saturation distribution is quite complex due to the strong
heterogeneities underground. The MPFA-O and TPFA methods provide the same solution since we apply
a structured grid and diagonal tensor permeability.

Figure 9—Water saturation distribution after 5000 days (8 cores)

Case 2. Here, we bend the geo-model of the previous case and obtain a new model shown in Figure 10.
The parameters applied are the same as the last case. From Figure 11a, we can see that the bent strong
heterogeneous geo-model introduces a complex flow response and water breakthrough time is 1200 days.
By observing the error between MPFA-O and TPFA in Figure 11b, we find that the water breakthrough
time is delayed by using the TPFA.
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Figure 10—Permeability of the top 20 bent layers of SPE10 reservoir

Figure 11—Water saturation distribution and the error between MPFA-O and TPFA after 1200 days

Running the simulation up to 5000 days, we obtain a much more complex water saturation distribution in
Figure 12. By performing this simulation on 8, 16, 32, and 64 cores, we can investigate the scalability of the
new parallel simulator. As shown in Figure 13, the speedup versus the number of processors demonstrates
the strong scalability of this parallel framework for reservoir simulation.
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Figure 12—Water saturation distribution of the MPFA-O after 5000 days (8 cores)

Figure 13—Scalability of the new parallel framework for reservoir simulation

Conclusions

In this work, an advanced parallel framework for reservoir simulation has been developed. To make the
framework flexible for complex geological models and capable to handle full tensor permeability, the
MPFA-O method is applied on a general unstructured mesh.

As a general-purpose reservoir simulator, the governing equations are represented by mass-based
formulations which could unify different flow models. To overcome the Jacobian assemble hussle and
improve the performance of complex phase behavior evaluation, we apply state-of-the-art Operator-Based
Linearization (OBL) approach. In the OBL, the governing equations are transformed into an operator
form. The state-dependent operators are uniformly discretized in the parameter space of the problem. By
computing the values of operators in vertices of hypercubes, we construct a tabulated representation of
physics. During a simulation run, once the status falls inside a hypercube, we determine the values of
operators and their derivatives by multi-linear interpolation. This way, the phase behavior and property
evaluation at each node is reduced to one time only. Besides, the programming complexity or Jacobian
assemble is drastically simplified.
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In order to simulate results at geological scale, we use massively parallel computations via Message
Passing Interface (MPI) to improve the computational efficiency. We benchmark the numerical solutions
with analytical solutions of single-phase flow which demonstrates that the parallel framework is capable to
provide accurate and convergent solutions for reservoir simulations. Furthermore, to validate the modelling
capabilities of multiphase flow, we compare the numerical solutions with analytical solutions obtained by
solving the Buckley-Leverett equation. The results demonstrate that our advanced parallel framework for
reservoir simulation is capable to handle multiphase flow problems. By using a strong heterogeneous real
field geo-model, we run simulations at different numbers of processors. The results demonstrate the strong
scalability of the new parallel framework for reservoir simulation.
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