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Multi-voxel Algorithm for Quantitative Bi-exponential MRI T1
Estimation

P. Bladt1, G. Van Steenkiste1, G. Ramos-Llordén1, A.J. den Dekker1,2, J. Sijbers1

1 iMinds Vision Lab, University of Antwerp, Belgium.
2 Delft Center for Systems and Control, Delft University of Technology, The Netherlands.

ABSTRACT
Quantification of the spin-lattice relaxation time, T1, of tissues is important for characterization of tissues in clinical mag-
netic resonance imaging (MRI). In T1 mapping, T1 values are estimated from a set of T1-weighted MRI images. Due to
the limited spatial resolution of the T1-weighted images, one voxel might consist of two tissues, causing partial volume
effects (PVE). In conventional mono-exponential T1 estimation, these PVE result in systematic errors in the T1 map. To
account for PVE, single-voxel bi-exponential estimators have been suggested. Unfortunately, in general, they suffer from
low accuracy and precision. In this work, we propose a joint multi-voxel bi-exponential T1 estimator (JMBE) and compare
its performance to a single-voxel bi-exponential T1 estimator (SBE). Results show that, in contrast to the SBE, and for
clinically achievable single-voxel SNRs, the JMBE is accurate and efficient if four or more neighboring voxels are used
in the joint estimation framework. This illustrates that, for clinically realistic SNRs, accurate results for quantitative bi-
exponential T1 estimation are only achievable if information of neighboring voxels is incorporated.

Keywords: Quantitative MRI, Partial volume effects, T1 relaxometry, Maximum likelihood estimation

1 INTRODUCTION
One of the key assets of magnetic resonance imaging (MRI) as a diagnostic tool is the non-invasive provision of unique
anatomical information due to a high contrast between different soft tissues in the human body. The intensities of the voxels
in MR images depend on multiple variables, including the imaging sequence and the acquisition parameters. Therefore, MR
images only provide qualitative information in the form of contrast between different types of tissues. Quantitative MRI
methods are designed to estimate MRI parameters that provide quantitative information on tissue structure. Compared to
qualitative MR images, quantitative information has more clinical significance, is easier to evaluate, allows for comparison
between measurements from different scanners and enables longitudinal follow-up of patients.

The spin-lattice relaxation time, T1, is one of the MRI parameters reflecting the local tissue environment. Quantitative
T1 mapping is a technique in which a T1 value is estimated for each voxel in the image, using a set of T1-weighted MR
images. In conventional quantitative T1 mapping, it is tacitly assumed that there is only one type of tissue in each voxel
of the T1-weighted images. Then, the relaxation process is described by one T1 value. This justifies the use of voxel-wise
mono-exponential models to describe the evolution of the signal intensities of T1-weighted images acquired at different
points in time. However, at borders between tissues it is possible that there are two (or more) tissue types present in a
voxel, referred to as the partial volume effect (PVE). This implies that the relaxation process is described by more than one
T1 value. Quantitative multi-exponential T1 mapping refers to methods that can detect and estimate multiple relaxation
parameters in a single voxel avoiding PVEs in order to enhance the quality of the T1 map.

If there are two tissue types present in a voxel, a bi-exponential model is needed to describe the longitudinal relaxation
of the magnetization. For single-voxel multi-exponential analysis of relaxation decays, evidence is given that there is
large uncertainty of the fitted parameters and that different combinations of parameters can fit the data equally well when
noise is present.1, 2 Therefore, it is expected that single-voxel bi-exponential estimators for quantitative bi-exponential T1
estimation will be inaccurate at low signal-to-noise ratios (SNRs). Several authors have proposed methods to improve
the fitting of multi-exponential signals, including the use of prior information3, 4 and spatial averaging.5–7 Huang et al.8

presented a fitting procedure based on a multi-voxel algorithm. They estimate T2 (spin-spin relaxation) values in the
presence of PVEs based on the assumption that there are two homogeneous tissues within a region of interest (ROI) of a
few neighbouring voxels. Both T2 values are estimated jointly for all voxels within this ROI, justified by the homogeneity
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of the tissues. This multi-voxel algorithm increases the effective SNR, thereby increasing the accuracy and precision of the
estimator.

In this study, a joint multi-voxel bi-exponential estimator (JMBE) for quantitative bi-exponential T1 estimation in the
human brain is presented based on the idea introduced by Huang et al.8 In order to create the JMBE, it is assumed that
within a small region of interest of K voxels in the human brain, located at the border between two tissues, a maximum
of two homogeneous tissues is present. Furthermore, the model needed to describe the longitudinal signal poses extra
challenges in the implementation of the estimator compared to the simpler model for T2 decay. Additionaly, the fact that
magnitude data is Rician distributed should be accounted for in the estimation framework. These challenges are explored
in this work.

2 METHODS
For quantitative bi-exponential T1 estimation, two key pilars are needed: a robust model describing bi-exponential T1
relaxation and a parameter estimation technique. The model for bi-exponential T1 relaxation is built up starting from a
robust model for mono-exponential T1 relaxation. Maximum likelihood estimation is chosen as estimation technique. Both
the JMBE and the SBE are constructed based on these two pilars.

2.1 Mono-exponential model
Throughout this work, it is assumed that the T1-weighted images are acquired with the inversion-recovery gradient-echo
(IR-GE) sequence, the gold standard for T1-weighted imaging.9, 10 The magnitude signal in a voxel, containing one tissue
type, of an image acquired with the IR-GE sequence is described by

S(TI) = M0

∣∣∣∣∣∣
1− (1− cos(θ1)) exp

(
− TI
T1

)
− cos(θ1) exp

(
−TR
T1

)
1− cos(θ1) cos(θ2) exp

(
−TR
T1

)
∣∣∣∣∣∣ , (1)

where M0 is the equilibrium magnetization, θ1 the angle of the inversion pulse, θ2 the angle of the pulse that brings the
longitudinal magnetization in the transverse plane for measurement, TR the repetition time and TI (inversion time) the time
between the inversion pulse and the pulse bringing the magnetization in the transverse plane. By changing the TI, multiple
images with different T1-weighting can be acquired. Subsequently, mono-exponential T1 mapping can be performed by
fitting a model, related to Eq.(1), to each voxel in the set of T1-weighted images. Assuming ideal imaging conditions
(θ1 = 180◦, θ2 = 90◦ and TR� T1), Eq.(1) simplifies to a frequently used model:11

fi(θ) =M0

∣∣∣∣1− 2 exp
(
−TIi
T1

)∣∣∣∣ , (2)

with parameter vector θ = {M0, T1}. However, these assumptions are often invalid. First, a very long TR is impractical
in a clinical setting as this would result in a very long total acquisition time. Furthermore, the flip angles θ1 and θ2 often
slightly deviate from the ideal values due to inhomogeneities in the RF pulses.11 Therefore, using Eq.(2) as model for
mono-exponential T1 mapping might result in systematic errors. A more robust model is presented by Barral et al. in:11

fi(θ) ≡ fi(a, b, T1) =
∣∣∣∣a+ b exp

(
−TIi
T1

)∣∣∣∣ , (3)

with parameters a and b of θ = {a, b, T1} defined as:

a = M0
1− cos(θ1) exp

(
−TR
T1

)
1− cos(θ1) cos(θ2) exp

(
−TR
T1

) , (4)

and

b = −M0
1− cos(θ1)

1− cos(θ1) cos(θ2) exp
(
−TR
T1

) , (5)

respectively. Up to this point, it is assumed that a voxel contains one tissue type. The model in Eq.(3) serves as a starting
point for the bi-exponential model described in the next subsection.
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2.2 Bi-exponential Model
Consider a voxel that contains two tissues, denoted by x and y, with spin-lattice relaxation times {T1,x, T1,y} and relative
volumes {Vx, Vy}, with Vx +Vy = 1. It can be assumed that the longitudinal relaxation of the spin systems of both tissues
do not influence one another.12, 13 The resulting (noise-free) magnitude signal from an IR-GE sequence, with an inversion
time TIi, is then given by:

S(TIi) =
∣∣∣∣Vx [ax + bx exp

(
− TIi
T1,x

)]
+ Vy

[
ay + by exp

(
− TIi
T1,y

)]∣∣∣∣ , (6)

with ax and ay described by Eq.(4) and bx and by described by Eq.(5). By redefining the linear parameters in Eq.(6), a
single-voxel bi-exponential model is given by

fi(θ) =
∣∣∣∣a+ b exp

(
− TIi
T1,x

)
+ c exp

(
− TIi
T1,y

)∣∣∣∣ , (7)

with θ = {a, b, c, T1,x, T1,y} and linear parameters a = Vxax + Vyay , b = Vxbx and c = Vyby .

2.3 Maximum Likelihood Estimation
The second pilar needed to construct the JMBE and the SBE is a suitable parameter estimation framework. An important
feature of maximum likelihood (ML) estimation is the fact that the data distribution is incorporated in the ML estimator, in
contrast to conventional (weighted) least squares estimators.

Magnitude MR data are Rician distributed with a probability density function (PDF) given by:14–16

pM (Mi|θ, σ) = Mi

σ2 exp
(
−M

2
i + f2

i (θ)
2σ2

)
I0

(
fi(θ)Mi

σ2

)
, (8)

with I0(.) the zeroth order modified Bessel function of the first kind, Mi a voxel value of the magnitude image at inversion
time TIi, σ the standard deviation of the Gaussian noise in the real and imaginary images and fi(θ) the model, a function
of the θ, describing the magnitude data at inversion time TIi.

Consider a set of N independent magnitude MR data points {Mi}Ni=1 measured at N inversion time points TIi. The joint
probability density function pM ({Mi}|θ, σ) of these data points is the product of the marginal PDFs of the individual data
points, assuming independence between acquisitions:

pM ({Mi}|θ, σ) =
N∏
i=1

pM (Mi|θ, σ). (9)

The joint PDF is a function of the data for a given value of the parameters. The ML estimator is derived from this joint
PDF as follows.17 First, the available data points are substituted for the corresponding independent variables in the joint
PDF. Since these data points are numbers, the resulting expression depends only on the elements of the parameter vector θ.
These elements, which are the hypothetical true parameters, are now considered to be variables. The resulting function is
called the likelihood function, which is denoted as L(θ|{Mi}) It follows from Eqs. (8) and (9) that the likelihood function
is given by:18

L(θ|{Mi}) = 1
σ2N exp

(
−

N∑
i=1

M2
i + fi(θ)2

2σ2

)
N∏
i=1

MiI0

(
fi(θ)Mi

σ2

)
. (10)

The ML estimator θ̂ML is now defined as the value of θ that maximizes the likelihood function with respect to θ:

θ̂ML = arg max
θ

(L(θ|{Mi})). (11)
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2.4 Joint Multi-voxel Bi-exponential Estimator
The JMBE is constructed with the single-voxel bi-exponential model described in Eq.(7) and the ML estimation framework
described in the previous subsection.

Consider K voxels in a chosen ROI that contains two homogeneous tissues with global spin-lattice relaxation times T̄1,x
and T̄1,y . The likelihood function of N observed magnitude data points in each of the K voxels, assuming independence
between all data points (between acquisitions on the one hand and between voxels on the other hand), is given by:

L(θ|{Mi,k}) =
K∏
k=1

N∏
i=1

pM (Mi,k|fi,k(θk), σ) (12)

= 1
σ2NK exp

(
−

K∑
k=1

N∑
i=1

M2
i,k + fi,k(θk)2

2σ2

)
K∏
k=1

N∏
i=1

Mi,kI0

(
fi,k(θk)Mi,k

σ2

)
, (13)

with θ = {a1, ..., aK , b1, ..., bK , c1, ..., cK , T̄1,x, T̄1,y}, θk = {ak, bk, ck, T̄1,x, T̄1,y}, Mi,k the magnitude signal of voxel
k at time i and fi,k(θk) the single-voxel bi-exponential model in Eq.(7):

fi,k(θk) =
∣∣∣∣ak + bk exp

(
− TIi
T̄1,x

)
+ ck exp

(
− TIi
T̄1,y

)∣∣∣∣ . (14)

The JMBE searches for the θ, consisting of 3K linear and 2 nonlinear parameters, that maximizes the likelihood function
defined by Eq.(13). Since the logarithm is a monotonically increasing function, maximizing the likelihood function is
equivalent to minimizing the negative logarithm of the likelihood function, which is computationally less demanding:19

θ̂ML = arg min
θ

(
K∑
k=1

N∑
i=1

[
fi,k(θk)2

2σ2 − ln I0
(
fi,k(θk)Mi,k

σ2

)])
. (15)

In human tissue, perfect homogeneity is not expected and the T1 value of a tissue type within the ROI might vary slightly.
Therefore, the global spin-lattice relaxation time of a tissue type x in a ROI of K voxels is given by the weighted average:

T̄1,x =

∑K

k=1
V1,kT1,x,k∑K

k=1
V1,k

, (16)

with V1,k the relative volume of the tissue type x in voxel k and T1,x,k the spin-lattice relaxation time of tissue type x in
voxel k.

The SBE, which serves as an initial comparison for the JMBE, can be seen as a special case of the JMBE. Indeed, the JMBE
transforms to the SBE when K = 1, i.e., the ROI consists of one voxel. Furthermore, the global spin-lattice relaxation
times, T̄1, reduce to the voxel spin-lattice relaxation times, T1. The parameter vector θ consists of 3 linear and 2 nonlinear
parameters: θ = {a, b, c, T1,x, T1,y}.

The JMBE and SBE are constructed in Matlab (The Mathworks, Natick, MA, United States). The minimization of the
negative logarithm of the likelihood function is performed using unconstrained nonlinear optimization Matlab functions.
More specifically, the Matlab function fminunc is used as it attempts to find a minimum of a nonlinear multivariable function
starting at an initial estimate. Within the function fminunc, the trust-region algorithm is chosen to perform the optimization.
This algorithm requires the gradient of the function with respect to the elements in θ, which drastically speeds up the search
for the minimum. The initial estimate of θ is obtained in two steps. First, the polarity of the magnitude data is restored
by applying a sign-shifting function.11 Then, a starting point is found by means of a nonlinear least squares fit using the
variable projection algorithm.20

2.5 Cramér-Rao Lower Bound
The bias of an estimator θ̂ is defined as

b(θ̂) = E[θ̂]− θ, (17)
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with E[.] the expectation operator and θ the true (unknown) parameter vector. If b(θ̂) = 0, the estimator is unbiased. The
CRLB is a lower bound on the variance of any unbiased estimator θ̂ of the parameter vector θ:21

cov(θ̂) ≥ I(θ)−1, (18)

with cov(θ̂) the covariance matrix of θ̂, I(θ) the Fisher information matrix and the symbol ≥ implying that the matrix
difference cov(θ̂) − I(θ)−1 is a positive semidefinite matrix. In other words, the variances of the elements of θ̂ (i.e., the
diagonal elements of cov(θ̂)) are always higher than or equal to the corresponding diagonal elements of the inverse of the
Fisher information matrix. The Fisher information matrix is defined as

I(θ) = E

[(
∂ ln p(y|θ)

∂θ

)(
∂ ln p(y|θ)

∂θ

)T]
, (19)

with p(y|θ) the PDF given a certain parameter vector θ. For Rician magnitude data, the PDF is given by Eq.(8). Substitu-
tion of the joint PDF, defined in Eq.(12), in Eq.(19), results in:22

I(θ) =
K∑
k=1

N∑
i=1

∂fi,k
∂θ

∂fi,k
∂θT

∞∫
Mi,k=0

Mi,k

σ2 exp
(
−
M2
i,k + f2

i,k

2σ2

)
I0

(
Mi,kfi,k
σ2

)Mi,kI1

(
Mi,kfi,k

σ2

)
σ2I0

(
Mi,kfi,k

σ2

) − fi,k
σ2

2

dMi,k.

(20)
with model fi,k ≡ fi,k(θk). The integral in Eq.(20) can only be computed numerically.

An unbiased estimator with a variance that approaches the CRLB (i.e., an estimator with maximally achievable precision) is
referred to as efficient.23 The efficiency of an estimator is defined as the ratio of the relevant CRLB variance to the variance
of the estimator.24 The ML estimator is an asymptotically efficient estimator, i.e., it reaches the CRLB asymptotically (that
is, for an increasing number of observations).19, 25

By implementing the model given by Eq.(14) in Eq.(20), the CRLBs can be calculated and compared to the precision of
the JMBE to determine its efficiency. As the SBE is a special case of the JMBE, the CRLBs needed for assessment of the
efficiency of the SBE are found analogously with K = 1.

3 EXPERIMENTS AND RESULTS
3.1 Single-voxel Bi-exponential T1 Estimation
It is expected that single-voxel bi-exponential T1 estimation is inaccurate at clinically realistic SNRs, based on previous
research of single-voxel multi-exponential analysis of relaxation decays.1, 2 This premise was explored with a numerical
simulation experiment using the SBE.

A voxel was created containing 50% white matter (Vw = 0.5, M0 = 0.69, T1,w = 815.5 ms) and 50% gray matter
(Vg = 0.5, M0 = 0.78, T1,g = 1325.6 ms). The chosen tissue spin-lattice relaxation times are realistic values for these
tissues in a 3T MRI scanner.26–31 For a fixed SNR, the bias of the estimator increases as the ratio T1,x/T1,y , with the
largest spin-lattice time in the numerator, decreases.2 Of the three major brain tissues (white matter, gray matter and CSF),
the ratio T1,x/T1,y is smallest for white matter (WM) and gray matter (GM). Therefore, the expected inaccuracy will be
most prominent in the WM-GM combination, explaining their selection in this experiment. From this phantom voxel,
noise-free IR-GE T1-weighted magnitude data was simulated with fixed imaging settings shown in Table 1. The inversion
times {TIi}Ni=1, at which the longitudinal magnetization is sampled, are predominantly in the beginning of the available
time interval TR. This provides more information as the signal is often fully relaxed in the later parts of this time interval.

From the noise-free dataset, Rician distributed measurements were generated. For an SNR of 2000, 600, 400 and 50, this
process was repeated 5000 times, resulting in 5000 noisy datasets per SNR. The SNR was defined as

SNR = µs
σ
, (21)

with µs the mean of the signal intensity distribution of the N T1-weighted magnitude images and σ the standard deviation
of the Gaussian noise in the original real and imaginary images.
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TR 10 s
θ1 180◦
θ2 90◦
N 12

50, 81, 131, 211, 342,
{TIi}Ni=1 553, 895, 1447, 2340,

3785, 6121 and 9900 ms

Table 1: Imaging settings for single-voxel bi-exponential simulation experiment.

From the n = 5000 datasets for each SNR, n estimates θ̂(1), . . . , θ̂(n) of the underlying parameter vector θ were obtained
with the SBE. The distribution of the T1,w and T1,g estimates for the different SNRs is shown in Fig.1. As the SNR
decreases, the distributions start to deviate from a normal distribution. For an SNR of 50, the estimator fails completely. In
order to quantify the accuracy of the estimator, the bias of the estimator was estimated from the sample {θ̂(1), . . . , θ̂(n)}
for each of the different SNRs. An estimator of the bias of the mth element θ̂m of θ̂ is provided by

b̂(θ̂m) = 〈θ̂m〉 − θm, (22)

with 〈θ̂m〉 = 1
n

∑n
j=1 θ̂

(j)
m the sample mean. A 100× (1− α)% confidence interval (CI) for b̂(θ̂m) is then given by:32

[
b̂(θ̂m)− tα/2,n−1

sm√
n
, b̂(θ̂m) + tα/2,n−1

sm√
n

]
, (23)

with tα/2,n−1 the 100× (1− α/2)%-percentile of a t-distributed random variable with n− 1 degrees of freedom and sm
the sample standard deviation defined by

sm =

√√√√ 1
n− 1

n∑
i=1

(θ̂(i)
m − 〈θ̂m〉)2. (24)

If the 100× (1− α)% CI, defined in Eq.(23), does not contain the value zero, the null hypothesis that the estimator θ̂m is
unbiased is rejected with a significance level of α.
In Table 2, the bias estimates for the different SNRs are given for the relaxation parameters. For an SNR of 600, the bias
for the T1 estimation of gray matter is already significant. Little information on typical SNRs in T1-weighted MR images
was found in the literature. Based on the calculation of the SNR on a real dataset of T1-weighted brain images (26-year old
healthy male volunteer, 3T Siemens MRI scanner, IR turbo spin echo sequence, (2 × 2 × 6) mm3 voxels in 25 128×128
slices, TR=8040 ms, TE=18 ms, echo spacing = 8.78 ms, turbo factor = 4, bandwidth = 222 Hz/Px) and one reference,33 it
is assumed that typical T1-weighted images acquired at 3T have an SNR between 20 and 100 depending on the voxel size.
For this SNR range, Table 2 clearly shows that the SBE is unable to produce accurate estimates of T1,w and T1,g in voxels
suffering from PVEs when N = 12 data points are used.

White Matter Gray Matter
SNR b̂(T̂1,w) [ms] CI [ms] b̂(T̂1,g) [ms] CI [ms]
2000 -0.10 [-0.35, 0.15] 0.21 [-0.16,0.58]
600 -0.80 [-1.62,0.03] 5.3 [4.1,6.6]
400 -3.3 [-4.6,-2.0] 9.6 [7.7,11.6]
50 -105 [-113,-98] 635 [597,673]

Table 2: Estimate of the bias of the T1 estimator for both WM (left) and GM (right), along with the 95% confidence intervals (CI). These
are calculated using the results shown in Fig.1.
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Figure 1: T̂1 histograms from 2000 realizations for a voxel with a 50/50 WM/GM ratio. The green lines show the true T1 values.

3.2 Multi-voxel Bi-exponential T1 Estimation
In the previous subsection, it was shown that, for clinically realistic SNRs, the SBE is clearly unsuitable for bi-exponential
T1 estimation. The effective SNR can be increased by means of the JMBE as the signal of multiple voxels within the ROI
is incorporated, which is expected to lead to more accurate estimation of the global spin-lattice relaxation times T̄1,x and
T̄1,y of both tissues within the ROI. However, the ROI should be kept as small as possible to meet the demand of tissue
homogeneity. If the ROI is too large, the spin-lattice relaxation time might vary substantially within a tissue, which would
lead to quantification errors. With this trade-off in mind, the choice was made to define the ROI as four contiguous voxels
(K = 4), arranged two-by-two.

There is a vast amount of possibilities for the distribution of two tissues in these four voxels. As it is not possible to study
the quality of the estimator for all tissue distributions, a first evaluation of the JMBE was done using a phantom with a
basic, yet probable, distribution of WM and GM (Fig.2). Two voxels contain 50% WM and 50% GM, while the other two
only contain one of both tissue types. Again, WM and GM are chosen as simulation tissues since estimation inaccuracy,
if present, is expected to be most prominent for this combination of brain tissues.2 As perfect tissue homogeneity is
improbable, small intra-tissue variations in voxel spin-lattice relaxation were manually introduced to make the experiment
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more realistic. For WM, the T1,w values were 812.9 ms, 815.5 ms and 818.1 ms. For GM, 1322.1 ms, 1325.6 ms and 1329.1
ms were chosen as T1,g values. This resulted in global spin-lattice relaxation times T̄1,w = 815.5 ms and T̄1,g = 1325.6
ms, for WM and GM respectively.

Figure 2: Schematic presentation of a distribution of WM and GM in the four-voxel phantom

The setup of this experiment is identical to the experiment performed in the previous section. From the four-voxel phantom,
noise-free IR-GE T1-weighted magnitude data was simulated with the same imaging settings as for the experiment in the
previous subsection (Table 1). For multiple SNRs, Rician distributed measurements were generated 5000 times from the
noise-free dataset. From the n = 5000 datasets for each SNR, n estimates θ̂(1), . . . , θ̂(n) of the known true parameter
vector θ were obtained with the JMBE. The distribution of the T̄1,w and T̄1,g estimates for a single-voxel SNR of 200,
100, 50 and 20 are shown in Fig.3. As for the SBE experiment, the accuracy of the estimator was quantitatively judged
by estimating the bias, shown in Table 3. From these results, it can be concluded that the null hypothesis that the JMBE
is unbiased cannot be rejected (with a significance level of 0.05) down to an SNR of 70 for this particular distribution of
tissues in the ROI when N = 12 magnitude data points are used. Compared to the results of the SBE, the improvement is
significant.

White Matter Gray Matter

SNR b̂( ˆ̄T1,w) [ms] CI [ms] b̂( ˆ̄T1,g) [ms] CI [ms]
200 0.20 [-0.14,0.54] 0.013 [-0.470,0.494]
100 0.70 [-0.17, 1.57] 0.90 [-0.38, 2.17]
70 -0.43 [-1.69,0.83] 1.5 [-0.5,3.4]
50 3.4 [1.6,5.3] 6.5 [3.7,9.3]
20 14 [9,19] 82 [71,93]

Table 3: Estimate of the bias of the T̄1 estimator for both WM (left) and GM (right), along with the 95% confidence intervals (CI). These
are calculated using the results shown in Fig.3.

Next, the efficiency of the JMBE was estimated from the sample {θ̂(1), . . . , θ̂(n)} for each SNR. As the efficiency of the
estimator is defined as the ratio of the relevant CRLB variance to the variance of the estimator, an estimator of the efficiency
of θ̂m is given by

ê(θ̂m) = CRLB(θm)
s2
m

, (25)

with CRLB(θm) the mth element on the diagonal of the inverse of the Fisher information matrix defined in Eq.(20) and
sm the sample standard deviation defined in Eq.(24). A 100× (1− α)% CI for the efficiency is given by:32[

CRLB(θm)
s2
m

χ2
α/2;n−1

n− 1 ,
CRLB(θm)

s2
m

χ2
1−α/2;n−1

n− 1

]
, (26)

with χ2
α/2;n−1 the 100× (1− α/2)%-percentile of a χ2-distributed random variable with n− 1 degrees of freedom. The

null hypothesis that the estimator θ̂m is efficient is rejected (with significance level α) if the value 1 lies outside the CI. In
Table 4, the effiency estimates are shown for the different SNRs. It can be concluded that the estimator, which is unbiased
down to an SNR of 70, is efficient down to the same SNR for this particular distribution of WM and GM in the four-voxel
ROI and assuming N = 12 T1-weighted data points are used.
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(d) SNR=20

Figure 3: ˆ̄T1 histograms from 5000 realizations for a four-voxel phantom containing 50% WM and 50% GM. The green lines show the
true T̄1 values.

White Matter Gray Matter

SNR ê( ˆ̄T1,w) CI ê( ˆ̄T1,g) CI
200 0.997 [0.959,1.037] 1.001 [0.962,1.041]
100 0.994 [0.965, 1.034] 0.972 [0.935, 1.011]
70 0.992 [0.953,1.031] 0.963 [0.926,1.002]
50 0.91 [0.87,0.95] 0.88 [0.84,0.92]
20 0.89 [0.86,0.92] 0.10 [0.09,0.11]

Table 4: Estimate of the efficiency of ˆ̄T1 for WM (left) and GM (right) along with its 95% confidence intervals (CI). These are calculated
using the results shown in Fig.3.

3.3 Criterion for Accurate and Efficient Bi-exponential T1 Estimation
In the previous subsection, the accuracy and efficiency of the JMBE for a particular combination of tissues in four voxel
was demonstrated for a clinically achievable SNR. However, as stated above, there are many possible distributions of two
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tissues within a four-voxel ROI and it is impossible to validate the estimator for all these distributions. Therefore, based
on the results shown in the previous subsection, a criterion was searched that provides an estimate of the minimal single-
voxel SNR needed in order to produce accurate and efficient estimations of T̄1,x and T̄1,y with the JMBE for a particular
distribution of two tissues in the ROI.

Consider the results in the previous subsection. It is clearly shown in Fig.3 that, as the SNR decreases, the precision of the
estimator decreases which results in a smaller distance between the sample distributions. In Fig.3c, for an SNR of 50, the
sample distributions start to overlap. Furthermore, for that SNR, each sample distribution starts to deviate from a normal
distribution, most visible in the outer tail of the histogram of the GM relaxation parameter estimates. This qualitative
observation was confirmed by the quantitative estimation of the bias that shows that the JMBE is biased for an SNR of 50
for that tissue distribution in the ROI. It appears that there should be a clear separation between the sample distributions
for both global T1 values. Whether there is a separation between both sample distributions, depends on the precision (i.e.
standard deviation or variance) of the estimator and the absolute difference between the ground truth values of T̄1,w and
T̄1,g . As the estimator is unbiased down to an SNR of 70 in the previous experiment, the separation between both sample
distributions in Fig.3b qualifies as the minimal separation for an unbiased JMBE. The relation between the sample standard
deviations for T̄1,w and T̄1,g and the absolute difference between the ground truth values is given by:

|T̄1,w − T̄1,g| = 4.47(sT̄1,w
+ sT̄1,g

). (27)

Furthermore, it was shown that the JMBE is efficient if it is unbiased. Therefore, the sample standard deviations in Eq.(27)
can be replaced by the respective square roots of the CRLBs. Based on these observation, a general criterion for an unbiased
and efficient JMBE is provided by

|T̄1,x − T̄1,y| > 4.5
(√

CRLB
(
T̄1,x|θ, N, {TINi=1}

)
+
√

CRLB
(
T̄1,y|θ, N, {TINi=1}

))
, (28)

with CRLB(T̄1,x|θ, N, {TINi=1}) the respective element on the diagonal of the inverse of I(θ), described in Eq.(20). Note
that the CRLB of T̄1,x depends on the other parameters in θ. In other words, two ROIs with different distributions of
two tissues with fixed values for T̄1,x and T̄1,y will have different values for the CRLBs. Furthermore, the number of
T1-weighted images N and the inversion times at which the images are acquired {TINi=1} also effect the CRLB.

With the rule of thumb defined in Eq.(28), it is possible, for any distribution of two tissues within the four-voxel ROI, to
easily obtain an estimate of the minimal SNR required for the JMBE to be accurate and efficient. Instead of performing the
experiment from the previous subsection for multiple distributions of tissues, this criterion allows a fast feasibility study of
bi-exponential T1 estimation with the JMBE for some expected tissue distributions.

For a certain distribution of tissues in the ROI, the sum of the square roots of the CRLBs of T̄1,x and T̄1,y was calculated
for a range of SNRs between 5 and 100, assuming N = 12 T1-weighted images acquired at the TIs shown in Table 1. This
experiment was performed for multiple distributions of two tissue types in the four-voxel phantom (Fig. 4). The voxel spin-
lattice relaxation times were chosen guaranteeing that T̄1,x and T̄1,y had the same value for the different distributions of
two specific tissues. This facilitates the comparison between the different distributions. This entire process was performed
for the three possible combinations of major brain tissues: WM and GM, WM and CSF, and GM and CSF. For CSF, the
global spin-lattice relaxation time T̄1,c was fixed to 4136 ms.31

(a) (b) (c) (d) (e)

Figure 4: Schematic presentation of a four-voxel phantom containing (a) 25% WM and 75% GM, (b) 40% WM and 60% GM, (c) 50%
WM and 50% GM, (d) 60% WM and 40% GM, and (e) 75% WM and 25% GM

The results are shown in Fig.5-7. For combinations of WM and GM, the minimal single-voxel SNR for an accurate and
efficient JMBE lies between 60 and 90. Equivalently, for combinations of GM and CSF, and WM and CSF, the JMBE
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requires a minimal SNR between 20 and 40, and 10 and 25, respectively. The results of this feasibility study are in line
with the observation of Clayden et al.2 that estimator inaccuracy is more prominent as the ratio T1,x/T1,y , with T1,x > T1,y ,
decreases. The combination of WM and GM determines the general SNR requirements for accurate and efficient multi-
voxel bi-exponential T1 estimation as it demands the highest single-voxel SNR. It can be concluded that, when N = 12
T1-weighted images are acquired and a four-voxel ROI is chosen for the JMBE, a minimal SNR of approximately 90 is
needed for accurate and efficient multi-voxel bi-exponential T1 estimation.
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Figure 5: Feasibility study for multiple distributions of WM and GM in the ROI. The x-component of the intersection point (x, y) between
each curve and the horizontal line represents the minimal single-voxel SNR needed for the JMBE to be accurate and efficient.
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Figure 6: Feasibility study for multiple distributions of GM and CSF in the ROI. The x-component of the intersection point (x, y)
between each curve and the horizontal line represents the minimal single-voxel SNR needed for the JMBE to be accurate and efficient.
Note that the green and blue curve are superimposed.
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Figure 7: Feasibility study for multiple distributions of WM and CSF in the ROI. The x-component of the intersection point (x, y)
between each curve and the horizontal line represents the minimal single-voxel SNR needed for the JMBE to be accurate and efficient.

4 DISCUSSION AND CONCLUSION
In this work, a joint multi-voxel bi-exponential T1 estimator was presented to estimate the spin-lattice relaxation times of
both tissues present in a ROI of neighbouring voxels containing voxels suffering from PVEs. For a ROI of four voxels,
the JMBE is accurate and efficient for a minimal single-voxel SNR of 90, when 12 T1-weighted images are obtained. This
implies that, for these conditions, the JMBE is accurate and efficient around the top of the clinically achievable SNR range.
This is in sharp contrast to the SBE, which was already biased for an SNR of 600, assuming 12 T1-weighted images.

The high level of homogeneity is a vital assumption for the validity of the JMBE. If within-tissue T1 values vary signifi-
cantly on a scale comparable to the size of the ROI, it will result in quantification errors. This requires further research on
in vivo data. Note, however, that when clinical data is used, JMBE quantification errors due to tissue heterogeneity will be
small compared to the SBE quantification errors caused by a complete failure of the estimator at clinically realistic SNRs.

The minimal SNR required could be further lowered in two ways. A first option is the acquisition of a larger amount of
T1-weighted images. However, this has the downside of extending the total acquisition time. The second, more feasible
option is enlarging the ROI to 8 neighbouring voxels, arranged 2× 2× 2. Unfortunately, depending on the size and shape
of the voxels, this might further increase the within-tissue heterogeneity. Furthermore, it would cause the addition of 12
extra linear parameters to θ.

In order to upgrade from quantitative bi-exponential T1 estimation to quantitative bi-exponential T1 mapping with enhance-
ment of the quality of the T1 map by avoiding PVEs as the final goal, two extra obstacles need to be addressed. Firstly, the
relative volumes Vx and Vy of both tissues in a voxel need to be derived from the estimated linear parameters. Secondly,
an algorithm is needed to distribute both relative volumes in the voxel taking into account the tissues in the neighbouring
voxels. Accurate quantitative bi-exponential T1 estimation by means of the JMBE is the first step in this three-step process
towards quantitative bi-exponential T1 mapping.
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