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Abstract—In the context of building electrification the opera-
tion of distributed energy resources integrating multiple energy
carriers poses a significant challenge. Such an operation calls
for an energy management system that decides the set-points of
the primary control layer in the best way possible. This is done
by fulfilling user requirements, minimizing costs, and balancing
local generation with energy storage. This last component is
what enables building flexibility. This paper presents a novel
aging-aware strategy for operating grid-connected buildings that
combine multiple energy carriers (heat and electricity), storage
devices (electric vehicles, batteries, and thermal storage), and
power sources (solar photovoltaics, solar collectors). The novel
energy management algorithm presented considers the aging
of the batteries to enhance the operational differences between
storage technologies, thus making explicit the trade-off between
the services provided by the hybrid energy storage system and
its degradation. This unlocks grid cost reductions between 20-
45% depending on the season when compared to state-of-the-art
solutions.

Index Terms—Energy management systems, Battery degrada-
tion, Hybrid energy storage, Multicarrier energy systems

I. INTRODUCTION

Economic decarbonization is a significant challenge for
modern societies. In particular, the sustainable transformation
of both the power and transport sectors poses substantial
technical and cultural challenges [1]. Both transitions couple in
the population’s homes where electricity, mobility, or HVAC
are needed. Thus, possible synergies between the three sys-
tems can be exploited to achieve the desired decarbonization,
freedom, resiliency, and cost savings [2]. The successful
exploitation of such coupling needs to be carefully tailored
and built into the design of modern multicarrier energy systems
(MCES) [2]–[10]. This necessarily leads to advanced energy
management systems (EMS) that schedule and control the
distributed energy resources (DER)s [5], [6], [9], [11]–[13].
The EMS needs to handle uncertain and variable forecasts

The project was carried out with a Top Sector Energy subsidy from the
Ministry of Economic Affairs and Climate, carried out by the Netherlands
Enterprise Agency (RVO). The specific subsidy for this project concerns the
MOOI subsidy round 2020.

Fig. 1: Schematic diagram of the proposed electrified multi-
carrier building.

(electric vehicles [14], solar, loads), aging storage assets
(batteries [15]–[19]), and user preferences.

To dispatch and operate such systems, the literature suggests
different methods such as stochastic optimization [20], rein-
forcement learning (RL) [6], [7], [9], Model Predictive Control
(MPC) [4]–[6], [11], [12], and many others. Stochastic opti-
mization requires precise characterization of the scenarios to
be simulated, and it incurs heavy computations. The high com-
putational cost is either because it needs to run several sampled
scenarios (Monte Carlo method), or non-linear distributions
must be propagated along the whole simulation window. RL
approaches have challenges in maintaining robustness under
unknown situations, are sometimes non-interpretable, difficult
to tune its parameters, and do not necessarily follow physical
constraints, even when a model-based RL is used [6], [7], [9].
Finally, MPC appears as one of the most popular methods
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in the literature [6]. In it, the optimal controller contains
domain-based models of the system dynamics and uses them
to construct the optimal trajectories for the current time step.
The controller handles uncertainty and real-time operation
by moving the time window of that time-step optimization,
updating the states with measurements and forecasts, and
using accurate models. The main advantage is that decisions
are traceable, the trade-offs explicit, and design limits and
physical constraints can be integrated easily. All methods need
extensive hyper-parameter tuning, and safeguarding optimality
conditions to be implemented.

The energy storage systems (ESS) technologies, such as
Li-ion batteries (LIB) and electric vehicles (EV), are limited
by their aging [5], [16]–[19], [21], [22], as well as by their
availability for mobility in the case of the EVs [14], [22]. The
combination of different ESS technologies is a powerful tool
for securing the energy supply in a safe, cost-effective, and
reliable manner [23], [24]. However, the operation of such
systems is still an open question because of their different
carriers, dynamics, efficiencies, and costs. Moreover, even
though battery aging mechanisms have been studied and mod-
eled extensively at the battery management systems (BMS)
level, this has not been incorporated into the design of an
EMS with multiple energy vectors [5], [22]. This is because
such degradation mechanisms introduce non-linear models,
increasing the overall complexity.

The contribution of this paper is an aging-aware strategy
operation that exploits the trade-off between battery operation
and its degradation in the context of energy systems with mul-
tiple carriers. Our strategy is an optimization-based secondary
controller that minimizes energy cost and battery aging. A
schematic of such a system is presented in Fig. 1. The system
is composed of solar photovoltaics (SPV), battery energy
storage system (BESS),EV, power electronic interface (PEI),
heat pump (HP), solar thermal (ST), thermal energy storage
system (TESS), grid connection and loads. The EMS makes
a clear distinction between fast (electrical) and slow (thermal)
ESS, crucial to designing MCES. Despite two ESS might have
the same performance ratings, their dynamics and technologies
are fundamentally different; therefore, the controller has to
account for it.

II. MODELING & ALGORITHMS

The following section describes the models included in the
EMS. The modeling is done following the Universal Modeling
Framework (UMF) by Powell [25]–[27].

The EMS plans a day ahead operation, considering perfect
information where the sizing of the components is known.
Hence, the costs of the system are only its operation costs.
These are the net grid cost Cgrid and the battery degrada-
tion cost Closs. Lastly, to account for the user’s mobility
requirement, a fictitious penalty pSoCDep is incorporated to
quantify possible deviations from the desired SoC of the EV

at departure. The optimization problem is then reduced to

min
P∗

a,t

Cgrid + pSoCDep + Closs

s.t. Sa,t+1 = SM
a,t(Sa,t, P

∗
a,t,Wt+1|θa,t)

P ∗
a,t = Xπ(Sa,t) ∈ P ∀a ∈ A

Sa,t ∈ S ∀a ∈ A

, (1)

with

a = {SPV, grid, nEV,BESS,HP,ST,TESS} . (2)

The components of the objective are

Cgrid = wgrid

T∑
0

λbuy.P
+
grid + λsell.P

−
grid.∆t , (3)

pSoCDep = wSoC.||εSoC||22 , (4)

and

Closs = wloss.closs.

T∑
0

∑
sa

iloss.∆t, ∀ sa ⊂ a, (5)

where Sa,t is the state vector, P ∗
a,t is the optimal decision for

timestep t, Wt+1 is an exogenous process that introduces new
information after making a decision. The mappings SM

a,t(.),
and Xπ(.) are the transition function and optimal policy,
respectively. The first is a set of equations describing the
states and parameter evolution, and the second is the algorithm
that finds the optimal setpoints. The vector θa,t contains
all the parameters of each asset a and changes over time
t. The subindex a ∈ A corresponds to the assets shown
in Fig. 1 which are PV panels, grid connection, electric
vehicles, stationary battery, heat pump, solar thermal system
and thermal storage. Additionally, sa = {BESS, nEV} ⊂ a
denotes the electric storage assets and nEV = 1...NEV is the
number of EV. The time window is T = 24 hr and the timestep
∆t = 15min. The three components of the objective function
are the grid cost Cgrid, the cost of lost energy capacity Closs,
and a penalty for not charging the EV to the desired setpoint
pSoCDep. Closs is explained in Section II-A2.

The following definitions of the elements are considered:
• The state vector is

Sa,t = [PPV, Pgrid, γnEV , P
e
HP, P

th
HPPST, P

e
load, P

th
load]

T
t .

where Pa,t is the power of the assets and γnEV is the EV
availability

• The policy or decision variables are

P ∗
a,t = [PnEV , PBESS, PTESS]

T
t .

• The superscripts e and th refer to electricity or thermal
carriers. They are used when the subscript is the same.

• Both the policy and state vectors have upper and lower
limits denoted as P

∗
a,t, P

∗
a,t, Sa,t, and Sa,t.

• All bidirectional variables, either policies or states, are
modeled with two constraints:

S+
t + S−

t = St ∧ S−
t ≤ 0 , S+

t ≥ 0 , (6)
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and
S+
t .S−

t = 0 (7)

• Uncertainty is tackled through a direct-lookahead policy
(DLA) Xπ(.) in a deterministic setup where at each
timestep t we take the median of a forecast Wt+1 = 0.
In our case, our policy mapping is our optimization
algorithm.

• The order of the subscript is ”name, device, time index”.
• Capital C denotes total cost in C, lowercase c denotes

unit cost and w indicates tunning/scaling weight.
The inputs of the operation are the solar power PPV, the

prices λbuy/sell, the electric demand P e
load, and the thermal

demand P th
load.

To define transition function SM
a,t(.) all assets need to

be modeled. The thermal assets are incorporated with the
following linear models:

P th
HP = ηHP.P

e
HP , (8)

PST = ηST.PPV , (9)

and

SoCTESS,t+1 = SoCTESS,t−
∆t

QTESS.3600
.ηTESS.PTESS,t , (10)

where η denotes a conversion factor or efficiency, QTESS is the
capacity in kWh. The thermal balance comes in as:

PST + P th
HP + PTESS = P th

load . (11)

The electric power balance, on the other hand, is

PPV + PBESS +

NEV∑
nEV=1

γnEV .PnEV + Pgrid = P e
load + P e

HP . (12)

where γnEV is the EV availability, explained in Section II-B.

A. Electric storage modeling

This subsection describes the models used to describe the
performance and degradation of the electric storage denoted by
sa. The performance model SM

sa,t(.) describes the evolution of
the states Ssa,t, and the degradation model gsa,t(.) describes
the dynamics of the parameters θsa,t that parameterize the
performance model. These performance and aging sub-models
are part of the main transition function SM

a,t(.).
1) Performance models:

Bucket model (BM)

A basic model of the operation of a battery assumes that
its output voltage vt is linear with the state of charge SoC,
assuming no voltage drop. Hence the only equations of this
model are

SoCsa,t+1 = SoCsa,t −
∆t

Qsa,t.3600
.ηc.isa,t , (13)

isa,t =
Psa,t

vsa,t.Ns,sa.Np,sa
, (14)

and
OCVsa,t = aOCV,sa + bOCV,sa.SoCsa,t , (15)

Fig. 2: First order Equivalent Circuit Model.

vt,sa,t = OCVsa,t , (16)

where isa,t is the current passing through the cell, OCVsa,t is
the open circuit voltage, aOCV,sa and bOCV,sa are the voltage
model parameters, ηc is the Coulombic efficiency and Qsa,t

is the cell capacity in Ah. Each battery pack is assumed to
be organized as a Series Cell Module (SCM) where Ns/p, sa

are the series and parallel cells and branches, respectively.

Equivalent Circuit Model (ECM)
To improve the accuracy of the model, a first order Equiv-

alent Circuit Model (ECM) can be incorporated, as in Fig. 2.
The performance sub-model SM

sa,t(.) is then modified with:

iR1,sa,t+1 = e
∆t

R1,sa.C1,sa .iR1,sa,t +
(
1− e

∆t
R1,sa.C1,sa

)
.isa,t

(17)

vsa,t = OCVsa,t − iR1,sa,t.R1,sa − isa,t.R0,sa , (18)

where iR1,sa,t is the pole current, R1,sa and C1,sa are the pole
elements and R0,sa is the series resistance as defined in Fig.
2. Eqs. 13, 14 and 15 are maintained. The ECM incorporates
the series voltage drop (R0,sa) that limits power output and
the first-order diffusion dynamics (R1,sa and C1,sa). This sub-
model further differentiates electric and thermal ESS technolo-
gies.

2) Empirical degradation model gsa,t(.): The degradation
model follows the work from Wang et al. [28], which sum-
marizes all aging mechanisms into calendar (ical) and cyclic
(icycle) aging currents. The chosen degradation model only
describes the capacity fade, neglecting the power fade. Its
equations are:

icycle,sa,t =
c1.c3
c4

.ec2.|isa,t|.(1− SoCsa,t).|isa,t| , (19)

ical,sa,t = c5.e
− 24 kJ

RT .
√
t , (20)

iloss,sa,t = icycle,sa,t + ical,sa,t , (21)

and

Qsa,t+1 = Qsa,t −
∆t

3600
.iloss,sa,t . (22)

where c1:5 are empirical parameters coming from curve fitting
[28], R is the gas constant and T is the temperature.
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Dashboard for CEmpDeg EMS for a typical summer day of 2022. a) Electric balance. b) Electric storage. c) Relative
lost capacity. d) Thermal balance. e) Thermal storage. f) Total cell capacity.

TABLE I: Parameters for the empirical degradation model [28]

Parameter Value
c1 0.0008
c2 0.39
c3 1.035
c4 50
c5 1.721× 10−4

B. Electric Vehicles

From the point of view of a residential building, the EVs are
a BESS with availability constraints and certain requirements
regarding their SoC at departure time tdep. For the availability
γ, the probability distributions of departure (tdep) and arrival
(tarr) times can be described as random variables with Gaussian
distributions tdep/arr ∼ N (µdep/arr, σ

2
dep/arr). The availability γt

will then be

γt =

{
0 t ∈ [tdep; tarr]

1 otherwise
. (23)

The power balance of an EV is

Ptot,nEV,t = γnEV,t.PnEV,t + (1− γnEV,t).Pdrive,nEV , (24)

where Ptot,nEV,t is the total power of the EV, PnEV,t is the
charger power, and Pdrive,nEV is the power consumed driving
assuming no public charging. The total power Ptot,nEV,t is then
used in (14) and later for calculating the aging of the EV
batteries. The average driving power is also sampled from a
Gaussian distribution Pdrive,nEV ∼ N (µdrive, σ

2
drive).

Additionally, the EV is required to be delivered with a
minimum SoC as

SoCEV (tdep) = SoCdep . (25)

This is implemented as a penalty in the cost function (soft
constraint) since an equality constraint might be too strict and
cause non-convergence. This extra cost is defined by taking

Fig. 4: EPEX day-ahead auction prices for summer and winter.
The bold lines show the mean hourly prices.

the squared L2 norm of the deviation εSoC, from Eq.4, and
defined as:

εSoC = SoCEV(tdep)− SoCdep , (26)

III. CASE STUDY & RESULTS

To assess the performance of incorporating aging into the
MCES operation, our proposed controller is benchmarked
against a controller without a degradation sub-model. The
first controller will be called “CEmpDeg” and contains a
first-order ECM with an Empirical aging model. The second
controller, called “BNoDeg” has a bucket model without an
aging model, Eqs. 19 - 22. The two controllers are compared
for the Netherlands’ typical summer and winter days in 2022.
Even though their objective functions and constraints/models
are different, the final informed results are calculated with the
full objective function presented in Eq.1. This means that for
the ”BNoDeg” controller the created power setpoints are used
to calculate Closs.
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w = [wgrid, wEVs, wloss]
T

summer Winter
Weight CEmpDeg BNoDeg CEmpDeg BNoDeg
wgrid 1000 1000 1000 500
wEVs 1000 1000 1000 1000
wloss 600 0 600 0

TABLE II: Objective function weights.

The system is composed of a 5kWp SPV, a 20kWh BESS
with LFP cells, two 12.5kW EV charging points, a 4kWe heat
pump, a 2.7kWth solar thermal collector, a 200kWh TESS, a
6kWp electrical load, a 1kWp thermal demand, and 10kW LV
grid connection.

The output of the SPV is taken from [29]–[31], the market
prices λ are taken from the EPEX day-ahead auction, shown
in Fig.4, and λbuy = 0.95λsell [32], the power demand was
modeled taking the standard consumption patterns [33], and
the heat demand was modeled as [34]. The gsa,t(.) model
is parameterized for LIB cells with Nickel manganese cobalt
oxide (NMC) cathodes and graphite anodes, model parameters
are presented in Table I. The sampling time is ∆t = 15 min,
and the total number of EVs is NEV = 2.

In this case study, the weights w used for the objective
function C(St, Pt) are presented in Table II. The w is chosen
for regularization purposes and tunning preferences. Hence
the user has direct control over how the controller behaves
by changing the ratio between wgrid and wloss. Additionally,
the reader has to remember that the submodels used for the
performance SM

sa (.) and the aging gsa(.) are different between
the controllers.

Our optimization algorithm result in the optimal scheduling
of the power dispatch P ∗

t . The optimal day-ahead strategy of
the CEmpDeg controller is shown in Fig. 3 for the typical
summer day. The dashboard presents the electric power and
thermal balances, the SoC of the storage devices, and the
evolution of the capacities Qsa. Figs. 3a and 3d present the
P ∗
t for the electric and thermal carriers. Given the signal prices

and the high solar generation for this typical summer day the
highest electric load is the EV charging requirement at the
beginning of the day. For the thermal carrier, the controller
chooses to charge the TESS taking advantage of low prices of
the first half of the day. The heat pump follows the thermal
load and ramps down when solar heat generation occurs. The
excess heat from the heat pipes charges the TESS. In this
sense, for the chosen sizing the TESS is not used for daily
variations. Further evidence is needed to quantify the impact
of BESS modeling in its weekly and/or seasonal operation.

As for the battery aging, Figs.3c and 3f, the total degradation
Qloss, sa is less than 0.3 % per cell. In this work, it is assumed
that all cells are identical and hence their aging parameters are
the same, thus their only difference would come from their
utilization. Unfortunately, for the given 24h period and set
of initial parameters calendar aging is 2 orders of magnitude
higher than cyclic aging, in accordance to [28]. Since cyclic
aging represents the operation of the batteries, there’s no
significant difference between Qsa.

The key difference between controllers is how they use
electric storage, Fig. 5. In the CEmpDeg controller, the sa
are used more aggressively (understanding this as higher peak
power values) during the summer to achieve higher earnings,
Fig. 5a. On the other hand for winter, Fig.5b, the P ∗

sa better
captures marginal prices. The results show how the EVs are
not available during t ∈ [tdep, tarr]; nevertheless, they are used
for bidirectional power when connected. The long-duration
thermal storage stays mostly idle during the day, only changing
10-15% in both seasons. The algorithm also successfully
distinguishes between the fast dynamics of electrical storage
and the slow dynamics of the TESS. Using the fast dynamics
of the LIBs to balance out hourly and daily variations. This
also impacts the operation of the TESS presented in Figs. 5c
and 5d. In the CEmpDeg the SoC deviation of the thermal
buffer is slightly less when compared to BNoDeg.

Finally, for the typical days analyzed, Fig. 6 presents the
cumulative grid cost Cgrid curves. The results confirmed that
enhancing the models used for the batteries allows a more
aggressive strategy that pays off with 22% and 48% cost
reductions for summer and winter, respectively. Additionally,
calendar aging dominates by almost 2 orders of magnitude
over cyclic aging, thus the difference in Qloss between ”CEm-
pDeg” and ”BNoDeg” is negligible (less than 0.3mAh/day
per cell). This is why the change in objective function and
constraints enables better grid costs Cgrid. Since the total
capacity fade is going to remain the same for both algorithms
the aging submodel enhances the decisions taken by the
”CEmpDeg” . Of course, this is a direct consequence of the
period being simulated. For longer simulation times this would
not necessarily hold and the trade-off between degradation
and grid operation should be controlled by tunning w. Further
research is needed to clarify this point.

IV. CONCLUSIONS

In the context of designing EMS algorithms for multicarrier
energy systems, this paper showed how the proposed aging-
aware operation strategy enables 20-45% grid cost (Cgrid)
reductions without significant differences in lost battery ca-
pacity (Qloss). This is achieved by enhancing the controller’s
battery models with equivalent circuits and empirical aging
models. An explicit trade-off between battery operation and
its degradation is considered, hence improving the Cgrid for
the user. At the same time, the user requirements (P e/th

load and
SoCdep ) are successfully fulfilled.

Another difference between the two controllers is the TESS
operation, shown in Figs.5c and 5d. This displays how the
operation between carriers is related. Unfortunately, this re-
lationship depends on system sizing, thus further evidence is
needed to clearly define its scope and impact.

Further works include the expansion of the performance
and degradation sub-models with physics-based models [15],
[16], [18], [21], [35]–[39]. Such models have extrapolating
characteristics, which is not the case with the empirical aging
model used in this work. Empirical models that aggregate
different degradation mechanisms into calendar and cyclic
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(a) (b)

(c) (d)

Fig. 5: a) Electrical storage for a typical summer day, b) winter day, c) TESS for a typical summer day, d) winter day.

Fig. 6: Cumulative grid cost Cgrid for typical summer and
winter days.

aging do not reflect varying operating conditions. Another way
to go is to move from a static policy to an adaptive policy
(Xπ → Xπ

t ) to naturally handle the changes both in the
parameters θa,t as well as the belief states Ba,t. The latter
encloses information on the different sources of uncertainty in

the problem, which change in real-time as the system operates.
Finally, the relationship between the carriers has to be further
explored with more extensive simulation and experimental
work showing intraday, weekly and seasonal operation of the
MCES.
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L. R. Camargo, “Model-predictive control and reinforcement
learning in multi-energy system case studies,” Applied
Energy, vol. 303, p. 117634, 12 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0306261921010011

[7] G. Ceusters, L. R. Camargo, R. Franke, A. Nowé, and M. Messagie,
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Abstract—Conventional high-gain DC-DC converters 

primarily focus on increasing voltage gain. However, instead of 

solely pursuing higher voltage gain, improving converter 

efficiency is crucial for applications such as solar PV and fuel cells. 

In this paper, we present an in-depth analysis of five novel high-

gain DC-DC converters (HGDCs). These proposed architectures 

significantly reduce current stress on both passive and active 

components, particularly near the source side of the converters, 

resulting in improved efficiency. A comprehensive comparative 

study is conducted, comparing the proposed converters with 

recently reported converters. The analysis demonstrates that the 

reduced current stress leads to enhanced overall converter 

efficiency for HGDCs 2 and 4, surpassing both the other proposed 

converters and conventional converters. Experimental waveforms 

are provided for HGDCs 2 and 4, demonstrating their ability to 

boost 48 V to 650 V with a power output of 0.5 kW and a switching 

frequency of 50 kHz  
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