TUDelft

Modelling cyclic structures in Agda
Evaluating Agda’s coinduction through modelling graphs

Faizel Mangroe
Supervisor(s): Jesper Cockx, Bohdan Liesnikov
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Faizel Mangroe
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Bohdan Liesnikov, Diomidis Spinellis

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Graphs are a widely used concept within computer science. Modelling graphs can
be done in various ways, but the most popular approach is doing so inductively. When
graphs contain cycles modelling them becomes less intuitive. A solution for this is
using the dual of induction called coinduction, which has not been as well researched
as induction. In this paper I explored the possibilities and limitations of coinduction in
Agda by modelling graphs using coinduction. I looked at the struggles I encountered
while coding in Agda. I also provide implementations of the graphs encodings. Suit-
ability of the encodings is determined through experiments, in which properties about
graphs are proven. Both guarded coinduction and musical coinduction were successful
in all of the experiments. Creating an implementation using sized types was not suc-
cessful. The main improvements I identified are concerning the ease of use for a new
user of Agda. I recommend improving the documentation as well as the clarity of the
error messages.

1 Introduction

Graph theory plays an important role in a multitude of different fields such as, but not limited
to, the field of chemistry, sociology, biology, operations research, and even war science and
is widely used in computer science as well [SVE10]. Therefore, it is no surprise that there
are a multitude of different ways to model graphs in programming languages. The simplest
representation of graphs is through a list of pairs to represent the edges of a graph. This
is demonstrated by King in his work about graph algorithms in functional programming
|[Kin96|. You could also choose to model a graph by creating a function that returns the
adjacent vertices using an index. Another popular approach is through an inductive way
of modelling graphs |[Erw01]. However, the inductive approach becomes less intuitive when
the graphs contain cycles. Cycles occur when a substructure occurs on a path down from
the root [Ham+06].

Instead of using induction to model the graph, we can also use the dual principle of
induction, coinduction. When using interactive proof assistants, such as Agda, to reason
about graphs that demonstrate cyclic behaviour it is more intuitive to use a coinductive
approach in modelling the graph. Viewing graphs as coinductive structures is not as well
researched as the inductive variant. Nevertheless, there are works exploring this approach in
programming languages like Agda. One of such works is by Celia Picard and Ralph Matthes
who managed to create a coinductive representation of graphs in the functional language
and proof assistant Rocq [PM11|. Another paper by Donnacha Oisin Kidney and Nicolas
Wu also demonstrates an approach of representing graphs in the coinductive style [KW25|.
This approach uses the library cubical Agda, which also extends the type checker.

I will attempt to address the following question:

e What are different encodings of graphs in Agda and which are suitable for the proof
assistant?

e What properties of graphs can be proven using the various encodings (e.g. has s-t
path, has node)?

e What improvements should be made to Agda in order for it to handle modelling with
coinduction more easily?

I will do this by first trying to replicate the results of Picard’s and Matthes’ paper in Agda,
and then translating these results to the other flavours of coinduction. The goal of this
paper is to evaluate the process of modelling graphs through coinduction and analysing the
possibilities and limitations of coinduction in Agda. I also provide concrete implementations
of the found encodings and proofs of the graph properties, as well as listing the struggles I
encountered while trying to model graphs in Agda.

I will start by analysing how responsible engineering applies to my research in section
In section [3] the necessary background information will be discussed. Following this
in section [4 I will go over the different encodings I created using the various methods of
coinduction. In this section I will provide the implementation as well. Afterwards I will
shed light on the experiments I ran using the different encodings in section [5} In section [6]I
will give a summary of the difficulties I encountered while coding in Agda. I will conclude
with a conclusion and some future work in section

2 Responsible Research

In this section I will be discussing three topics concerning responsible research:
e The use of generative Al
e The clarity of what is proven by a proof

e Replicability & Reproducibility

2.1 The use of generative Al

Generative Al can be a helpful tool in coding and research. However, when using such LLMs
for instance to create ideas it is important to properly fact check and attribute these ideas
within a research. During my research I have made use of generative Al for a couple of
cases:

To help translate Rocq code to Agda

To interpret error messages

To clarify the syntax of Agda

To help with latex

I tried to limit my use of AI throughout the research and only resort to using AI when
I could not produce an answer through the conventional route of searching for information.
In my case I could easily verify the validity of the responses generated by the LLM. I could
apply the explanations to my code or use the intuition I gained to create code and run the
type checker to see if the program would run. In Appendix [A]I listed the prompts I used to
gather information trough generative Al.

2.2 The clarity of what is proven by a proof

In my research I intend to prove properties of graphs using the encodings I create. So, it is
very important to know exactly what a particular proof is actually proving as to not create
misunderstandings regarding the capabilities of the encodings. An example of this is how I
created a function that automatically generates a proof when provided a trace, a target and
a node. I first believed this function to prove that the target is present in a particular graph.
However, this was not the case. The function actually proves that the trace provided results
in a valid path to the target in a particular graph. This is why it is important to know what
a program is proving, such that the capabilities of the encodings are not misrepresented.

2.3 Replicability & Reproducibility

When researching a topic it is very important that the results presented and acquired are
reproducible. The research does not serve the public as it should, if the results can only be
created by the author. So in order to make sure that my research is completely reproducible
and replicable by another individual I have taken the following steps:

e Availability: all of the code presented and additional code used during the research
is publicly available in the repository.

e Test of time: in order to make sure the code can be ran in the future, I have added
specifications of the software used within the repository in the README.md file.

3 Background

In this section I will go over the necessary prior knowledge and concepts expected throughout
the paper. I will begin with some brief definition of a graph and list some properties of
graphs, that can be used to reason about graphs. Afterwards I will touch upon the three
different flavours of coinduction within Agda.

3.1 Graphs

In order to create an encoding for a graph we first need to understand what a graph is.

"...a graph G is simply a way of encoding pairwise relationships among a set of objects:
it consists of a collection V of nodes and a collection E of edges, each of which "joins" two
of the nodes. [KT06]"

In order to make it a little less abstract I will give you an example. The Dutch railway
network can be represented as a graph where all stations are nodes and the tracks con-
necting the stations are the edges. There are various categories of graphs. You could talk
about infinite and finite graphs. Graphs without cycle and graphs that contain cycles. It is
also important to make a distinction between directed and undirected graphs because some
graph algorithms depend on this characteristic. Trees can also be seen as graphs, but in this
paper I will not be considering modelling trees since they do not contain cycles. The graphs
I will discuss will be infinite graphs that contain cycles and are directed, unless explicitly
stated otherwise.

https://github.com/FaizelM/Coinductive-graph-encodings-in-Agda

Graphs can have certain properties and I will be using the following subset to test the
different encodings I propose:

e isPresent: when provided a node and a graph, it tells us whether the node is present
in this graph.

e hasCycle: when provided a graph, it tell us whether there exists a cycle in this graph.

e hasPath: when provided a start node, a goal node and a graph, it tells us whether the
goal node can be reached from the start node in this graph.

I chose isPresent as this can be seen as the most simple property of a graph and a lot
of other properties can be defined in terms of this property. I chose the cycle property
since ultimately I want to reason about cyclic structures to evaluate the use of coinduction
in Agda. Lastly, I chose hasPath as this is a property that represents one of the most
fundamental problems within graph theory, path finding.

3.2 Agda coinduction

Agda is a pure, total, dependently typed, functional programming language. Agda being
pure means that every function defined in this language behaves like a mathematical func-
tion, so when you call it with the same input you are guaranteed to get the same outputs
[Stul6]. Secondly, Agda is a total language this means that every function made in Agda
must terminate. Lastly, Agda is also dependently typed. This means that a type can be
indexed by the objects of another type. As a consequence Agda can be used as a proof
assistant. Agda has an interactive mode that can help you identify the goals of a clause
containing holes. These holes can be refined or resolved interactively. An in depth example
of this can be found in Agda’s documentation |Tea24a).
There are three flavours of coinduction in Agda: Guarded, Musical and Sized.

3.2.1 Guarded coinduction

Guarded coinduction makes use of coinductive record types to define a type in terms of the
destructors of that data type. An example taken from the documentation of Agda is the
Stream type |Tea24b].

record Stream (A : Set) : Set where
coinductive
field
hd: A
tl: Stream A

The stream is defined by its fields hd and tl which represent the head and the tail of the
stream. Using these fields you can now use copatterns to create Streams. Copatterns are a
nice way to define and reason about infinite structures |[CA18|. In the example the stream
is defined by matching on the destructor copatterns [And+13| of the stream, hd and tl.

repeat : {A : Set} (a : A) — Stream A
hd (repeat a) = a
tl (repeat a) = repeat a

The stream repeat is defined by defining what is returned when applying the destructors
to the stream. In this case applying hd to the repeat function returns the element a of
type A and the tl function returns the stream itself. In other words repeat is a stream that
repeats a given element an infinite amount of times.

3.2.2 Musical coinduction

The second flavour of coinduction is musical coinduction. This form of coinduction is deemed
the old way and is deprecated. Its notation uses three symbols, namely oo, £, and b. Coin-
ductive occurences in the type are labelled with the delay operator co. The oo suspends
the evaluation of the type it is placed in front of. The operator comes with two functions,
namely # and b. They are called delay and force respectively. The sharp function wraps the
input into a suspended type and the flat function does the opposite. The musical equivalent
of a stream taken from the Agda standard library is defined as follows.

data Stream (A4 : Set a) : Set a where
i (z: A) (zs: oo (Stream A)) — Stream A

Here, you can see how the oo is used to suspend the stream type in the type signature of
the constructor. It makes sure we do not try to evaluate the whole infinite stream at once.

zipWith : (A — B — C') — Stream A — Stream B — Stream C
zipWith - (x = as) (y = ys) = (z - y) = £ zipWith _ - (b as) (b ys)

In the zipWith function you can see the use of the force and delay functions. It uses the
delay operator on the zipWith call to make sure it is delayed, in other words it tells Agda
the evaluation will be done later. Since the zipWith function itself takes stream types as
input parameters the force operator is used to unwrap the suspended stream data types into
stream types.

3.2.3 Sized types

The last flavour uses sized types to implement coinduction. Sized types are types that have
sizes added to them indicating how big they are or how deep they go. The syntax is mostly
the same as the guarded variant except that the extra Size notation is added. An example
from the documentation is a representation of decidable languages as infinite trees [Tea24c|.

record Lang (7 : Size) (A : Set) : Set where
coinductive
field
v : Bool
0:V{j: Size< i} > A— Langj A

open Lang

The parameter i now indicates the size of the type. The second field will now return a
language of type Lang j A where j is of type Size< i. The type Size< ensures that j is

strictly smaller than i. There are other operators for sized types such as oo that indicates
that something is of infinite size, which means that the structure has infinite depth or has
infinite values. The 1 indicating a type of size one bigger than the other. Sized types help
the termination checker by making the size of types explicit.

4 Encodings

In this section I will go over the steps I have taken in finding the graph encodings. I will
start by discussing my first ideas and the results of this intuition. After this I will continue
with the encodings I ended up with using guarded coinduction and musical coinduction. I
will also give an example on how to use the encodings. Finally, I will discuss the results of
the sized type encoding.

4.1 A first intuition

My first intuition was to look at the literature available. I started by analysing the paper
by Picard and Matthew [PM11] and following along with the steps they took in creating the
coinductive graph encoding in Rocq. I did this to see if Agda’s termination checker would
behave similarly to Rocq’s. The first idea mentioned in the paper was to use a normal
adjacency list representation of a graph. I tried this and this type checked, as expected from
the results of the paper. The paper then mentions that the problem with this encoding arises
when trying to use a map function on graph, since the termination checker would not allow
for such a call. This call is not guarded because the co-recursive call in the implementation is
an argument of the map function. The map function was under a constructor, but this is too
indirect to satisfy the guardedness conditions in Rocq. For good measure I tried to define a
map function over the graph, but indeed the termination checker in Agda complained for the
same reason as in Rocq. I wanted to use the map function in order to determine the presence
of a label in the nodes of the graph. However, since this map function did not compile I
needed a different approach. The paper then continues with changing the list representation
of the adjacency list in the graph. They define an ilist as a function that returns a node
given an index. They claimed that this will not violate the termination constraint in Rocq. I
once again followed along with the steps provided in the paper and translated them to Agda
code. However, the termination checker in Agda still did not accept the mapping function
over the new ilist representation of the adjacency list. Even though the representation of the
adjacency list changed the co-recursive call still does not satisfy the guardedness condition
in Agda. This is where I took a step back and after some insightful discussions with one of
my peers, I came to the conclusion that the original classical adjacency list representation
might still work.

4.2 Guarded encoding

I defined the graph using a coinductive record type modelled after the classical adjacency
list representation mentioned in the previous subsection.

record Node : Set where
coinductive
constructor g
field
cur: N
adj : List Node

As presented in the code snippet, the coinductive record has a cur field and an adj field.
The cur field acts as a label and for testing purposes I gave it the type Nat. The adj is
where the cyclic behaviour occurs and is a list of Node types. In order to now check the
suitability of the encoding with the proof assistant, I tried defining a data type that encodes
the presence of a label in a graph. The first version I came up with after the discussion
with my peer was a data type called isPresent that takes as input a Nat and a Node and
has a constructor called node-present that takes these input parameters and checks if the
provided Nat equals the label of the provided Node. If it does, it returns the data type.

data isPresent : N — Node — Set where
node-present : {n : N} {g : Node} — cur ¢ = n — isPresent n g¢

This data type successfully captures the presence of a label in the cur field of a node.
However, as you probably already noticed, it overlooks the case where the label is inside a
node within the adjacency list. My first intuition was to somehow use a map functionality to
check for node-present inside the adjacency list, but I already mentioned that this intuition
did not lead anywhere. After some research, I stumbled upon the mutual functionality of
Agda. This keywords allows for type, record, or function definitions that depend on each
other. With this functionality I defined the adj-present constructor of the isPresent type.

mutual
data isPresentInList : NV — List Node — Set where
here : {n : N} {g : Node} {gs : List Node} —
isPresent n g — isPresentlnList n (g :: gs)
there : {n: N} {g : Node} {gs : List Node} —
isPresentlnList n gs — isPresentlnList n (g :: gs)

data isPresent : N — Node — Set where
node-present : {n : N} {g : Node} — cur ¢ = n — isPresent n g
adj-present : {n : N} {g : Node} — isPresentlnList n (adj g) — isPresent n g¢

In order to evaluate whether a label is present in a node within the adjacency list, I
defined another type that checks explicitly if a label is present in a list of nodes. The here
constructor then looks at the head of the list and checks for isPresent given the head of the
list and the label provided, which makes the types mutually dependent. When isPresent
returns successful the here constructor returns an isPresentInList type with the label and

the list of nodes with the head. If it is not present in that node it has the there constructor
to go into. There the head is omitted and a recursive call is made on the isPresentInList type
with the same label and the list excluding the head. Now using this type the adj-present
can evaluate if the node is present in the adjacency list of the graph. Using these mutual
data types I was able to write manual proofs that reason about the presence of a Nat label
in a graph, showing that the encoding is suitable for the proof assistant.

4.2.1 Example graphs

For this encoding, the destructor copatterns, cur and adj, can be used to define the graphs
as follows:

mutual g2 - Node
gl : Node g2 cur=5
gl.cur=1 g2.adj=(g3[):(g7((g4l)=M)):1
gl .adj=g0 :: []
g0 : Node g3 : N — Node
g0 .cur =0 gdn.cur=mn
g0 .adj =gl == [] g3n.adj=g3 (sucn):|

The nodes g0 and gl have each other in their adjacency list. This creates a graph with
cycle containing g0 and gl. Another way to create a graph is to use the constructor, but
this can only be used on the right hand side of the definition, as shown in g2. You can also
make a function that takes arguments to create a graph. g3 is a an infinite graph starting
from a specified label counting up.

4.3 Musical encoding

After finishing the guarded variant of the graph encoding, I shifted my focus to the musical
option. The way I approached this problem was by simply translating the guarded version
to the equivalent musical notation. At first I ended up with a mix of musical and guarded
notation, since I had a coinductive record that used the musical operators in its fields. After
revising this intermediate solution, I refined it to only contain the musical notation and got
the following result.

data Node : Set where
g N — (List (co Node)) — Node

Comparing the musical notation and guarded variant, it is abundantly clear that the
musical option is way more concise. It is merely a data type with one constructor that
takes a label of Nat type and a List of suspended Nodes and returns a Node. Now I needed
to evaluate if this encoding was suitable for the proof assistant, which led to the more
complicated part of the conversion. Converting the mutual data type for the isPresent

property.

mutual
data isPresent : N — Node — Set where
node-present : {n m : N} {adj : (List (co Node))} —
n = m — isPresent n (g m adj)
adj-present : {n m : N} {adj : (List (co Node))} —
isPresentlnList n (adj) — isPresent n (g m adj)

data isPresentlnList : N — (List (oo Node)) — Set where
here : {n : N} {z : (co Node)} {zs : (List (co Node))} —
isPresent n (b z) — isPresentInList n (z :: zs)
there : {n: N} {z : (0o Node)} {zs : (List (o0 Node))} —
isPresentlnList n xzs — isPresentlnList n (z :: xs)

Since I wanted to use the members of the Node type to use them in the evaluation, I
could no longer just give the node as is to the constructors of the data type. Like how I did
in the guarded case, because in contrast to that case I do not have access to functions that
destruct the node. So in order to still be able to use to adjacency list and the label, I indexed
on them in both constructors of the isPresent type. This allowed me to use the members
of the Node type. The only thing I had to keep in mind was that I had to reconstruct the
node with its constructor when returning the isPresent data types. The second thing I had
to handle was the suspended Node types and the sharp and flat operators. I needed to make
all the nodes in the adjacency lists suspended and wherever I wanted to evaluate a node
from these lists I had to use the force operator. It turned out the only place I needed this
was in the here clause of the isPresentInList type. After finishing this it was time to check
if T could reason about the graph using this data type. This turned out to be successful as
well, I give an overview of the results of the experiments in section [5]

4.3.1 Example graphs

For this encoding the constructor of the data type can be used to create a graph. I created
the same graphs mentioned in section Since the adjacency list contains delayed nodes
all of the nodes in the adjacency lists must be preceded with a # symbol.

mutual g2 : Node
gl : Node g2=g5((t(eg3[]))
gl=g1((2g0):1]) (a7 (@4l =M =1)
g0 : Node
g0=g0((fgl) =) g3 : N — Node

g3n=gn ((2 (g3 (suc n))) = [])

4.4 Sized type encoding

Lastly, I looked into creating a sized type translation of the encoding I presented. I ap-
proached this by reading one of the referenced papers |Abel6| from the documentation
[Tea24c| and using the intuition I developed from it. However, when thinking about how to

convert the encoding and where to include the size parameter, I came to the conclusion that
implementing sized types does not buy us any more power than we already have. I came up
with three possible positions to use the size parameter. The first being inside the definition.

record Node (i : Size) : Set where
coinductive
constructor g
field
cur: N
adj : W{j : Size} — List (Node j)

Now the node has a size i and the nodes in the adjacency list have a size j. I used
different letters because you can not make the assumption that they are of the same depth.
However, you can also not make the assumption that the nodes in the adjacency list are
of a lesser size compared to size i. This is because of the possibility of a cycle occurring
somewhere down the line. So, this does not particularly provide any new information to the
termination checker in any way. A node has some size and the nodes in the adjacency list
also have a size that is not related to the first size. When converting the rest of the code to
sized types where necessary the program still type checks, but in terms of power we did not
gain anything.

Another way was to add the size to the List type of the adjacency list, but you might
notice quickly that this does also not change anything for the node itself. Now, what if we
introduce a wrapper around the graph and have this contain a size. This wrapper contains
all the nodes of a graph. The only thing we gained with this, is being able to explicitly
define that a graph is infinite or finite. With the regular guarded encoding all graphs are
potentially infinite. We could make finiteness explicit in the guarded case by having a node
that contains all other nodes and all the other nodes can not refer to this "parent" node.
So, in principle we still have not found anything new we can do when including size.

In conclusion, I do not believe that sized types give any extra benefits as opposed to
musical or guarded coinduction, considering the adjacency list model, based on my intuition.

5 Proving graph properties on the encodings

In this section I will discuss the creation of the other data types for the properties in order
of guarded and musical. I will also give an overview of the results from the experiments.
Lastly, I will go into the creation of an automatic proving algorithm.

5.1 Guarded

Aside from the isPresent property there are two other properties I used to reason about the
graph encodings. The first being hasCycle and the second being hasPath. While coming
up with the design of these data types I noticed that both data types can be described in
terms of the isPresent data type. For hasCycle it was rather straightforward. The data
type takes a node as input and checks if that same node is present in the adjacency list of
the same node. In the case that the provided node is not part of a cycle, the nodes in the
adjacency list can be checked for a cycle with the CyclelnList data type through adj-cycle.
In a similar way the isPresent data type checked for presence, this mutual data type checks
for the presence of a cycle.

10

mutual
data CyclelnList : List Node — Set where
here : {g : Node} {gs : List Node} — hasCycle ¢ — CyclelnList (g :: gs)
there : {g : Node} {gs : List Node} — CyclelnList gs — CyclelnList (g :: gs)

data hasCycle : Node — Set where
node-cycle : {g : Node} — isPresentInList (cur g) (adj g) — hasCycle g
adj-cycle : {g : Node} — CyclelnList (adj g) — hasCycle g

For the hasPath type it could be defined as a type with a constructor that takes two
labels one for the source and one for the target and a node that represents the graph. Now
with these inputs it checks if label t is present in the graph that has label s. If this is the
case it means that a path from s to t exists in the initial graph so the data type hasPath
can be returned. However there is one complication in this description. How do we get the
graph that has s as a label?

5.1.1 Graph functions on the encodings

In order to answer the question, I needed to find a way to get the node with the correct
label from a graph. In non-functional languages this would have been almost trivial as we
could use any search algorithm and return the graph when found. However, in functional
languages this is a bit more complicated due to the immutability of structures. So, the
question boils down to creating a search algorithm that returns the path to a node.

I created a fuelled depth first search algorithm that returns a pair type of Boolean and
List of Nat, which indicate whether the target is in the graph and if so what the path is to
this target from the initial graph. The dfs algorithm takes a maximum depth of how deep
it is allowed to search. This is necessary for the termination checker, because without this
depth you can not be sure if the dfs reaches an end or loops forever. It takes a target, the
intermediate result of the path and a graph. This algorithm will return a path if the target
is found in the graph within a certain depth.

So now we have our path we needed for finding the specific graph. However we are
not finished yet. We still need to retrieve the node itself. So for this I defined a function
findGraph that given a path and a node it returns the node at the end of following this
path.

Now we can use these functions in the definition of the hasPath type.

data hasPath : N — N — Node — Set where
path : {s t : N} {g : Node} — isPresent ¢ (findGraph (proj. (dfs 10 s [] ¢)) g)
— hasPath s ¢ ¢

5.2 Musical

After finishing the guarded case I once again shifted my focus to translating it to the musical
variant. The two data type definitions stayed almost the same except for the indexing change
that was mentioned in the section explaining the conversion of the isPresent type and the
addition of a suspended node where necessary.

Something interesting to note is that the previously mentioned mapping function, that
did not work for the guarded encoding, does work for this encoding. I believe this to be

11

the case because the sharp guards the co-recursive call, allowing it to pass the termination
checker. However, I was not able to apply my initial intuition of mapping over the adjacency
list with this function and the node-present function to check for presence.

5.3 Results

I tried creating manual proofs, which have been added to appendix [B] for each property in
each encoding and the result of this can be summarised as follows:

Guarded | Musical | Sized Types
isPresent v v X
hasCycle v v X
hasPath v v X

Table 1: Results of suitability of different encodings in proving properties about graphs.

5.4 Automatic proofs

In Agda you can also create functions that for the appropriate input return a proof. I tried
implementing this for the isPresent property, but was not able to do this in the sense that
the function proves the presence of a label in a graph. While coding I could not come up
with an algorithm that could traverse the graph and search for the label while also keeping
track of the intermediate results. As mentioned I already had a dfs algorithm that returns
a path to the target, if it is present. With this input I was able to create a function that
returns an isPresent data type. However, it is important to note that this function does not
constitute to a function that proves the presence of a label in a given graph. It proves that
for a certain path and a certain node from a graph, the path reaches the target node.

6 Improvements to Agda

In this section I will go over some difficulties I encountered while programming in Agda and
the potential corresponding improvements to improve the support for coinduction in Agda
and coding in general.

6.1 Documentation

Agda has an online documentation that contains definitions and some explanations of con-
cepts that can be used in Agda. However, the documentation does not provide enough
information in my opinion. An example would be the page for sized types. This page
has a hyperlink to the different operators used for sized types, but these operators are not
explained. This requires a user to find different resources to figure out how to use sized

types.

12

6.2 Error messages

While programming in Agda I encountered various error messages. More often then not,
reading these error messages did not help me resolve the problems within my code. They
would usually confuse me more. This made debugging the code a cumbersome task. I believe
user would greatly benefit from error messages that help the user identify the issue more
concretely and clearly.

6.3 Coinduction

As for using coinduction, I did not encounter any real limitations in the context of creating
the graph models. I mentioned that my first intuition of using the map function was blocked,
because the termination checker did not allow the co-recursive call to be within the map
function. However, I do not think I can list this a limitation, because the call itself indeed
could loop forever. The only other difficulty I encountered with coinduction is using sized
types. This is mainly because I could not find suitable resources to help me use this concept.

6.4 Coverage checking

When I created the algorithm that returns a proof of type isPresent, there were certain
cases that would never be reached due to how the input was formatted. However, the
coverage checker of Agda complained that I did not include these cases in the definition
of the functions. I think that it would be nice to have a pragma like the non-terminating
pragma to make explicit that the coverage checker does not need to worry about a particular
function. The current solution for this in my case would be to return a Maybe type.

7 Conclusions and Future Work

In my research I tried to encode a graph using the different flavours of coinduction (guarded
coinduction, musical coinduction, and sized types). I used the adjacency list representation
of graphs as a basis for all the encodings. These encodings were used in experiments, in
which I proved properties of graphs. In doing so I encountered various struggles concerning
programming in Agda and using coinduction.

Both guarded coinduction and musical coinduction were successful in all of the experi-
ments. Even though musical coinduction is deprecated, it seems to provide the most power.
The musical notation opposed to the guarded variant was less strict with its guardedness
conditions. The sized type implementation did not yield any results, which could be partly
due to the lack of resources available concerning this method.

While programming in Agda I encountered various struggles mainly concerning the un-
derstandability of the programming language. The support for coinduction and Agda in
general would be greatly benefitted by a more extensive documentation of the language.
Another point of improvement my research identified is increasing the clarity of the er-
ror messages. These improvements would help to flatten the learning curve and ease of
debugging for new users.

Future work regarding coinduction in Agda could use my research as a starting point for
improving coinduction support. I would recommend exploring the capabilities of the musical
variant compared to the guarded version. Another proposal would be to further investigate
the role sized types can play in coinduction.

13

References

1
2]

3]
4]
[5]
6]
7]

8]
19]

[10]

[11]

[12]

[13]

[14]

Andreas Abel. FEquational Reasoning about Formal Languages in Coalgebraic Style.
2016.

Abel Andreas et al. “Copatterns Programming Infinite Structures by Observations”.
In: Conference Record of the Annual ACM Symposium on Principles of Programming
Languages. 2013.

Jesper Cockx and Abel Andreas. “Elaborating dependent (co)pattern matching”. In:
Proc. ACM Program. Lang. (2018).

Martin Erwig. “Inductive graphs and functional graph algorithms”. In: Journal of

Functional Programming (2001).

Makoto Hamana et al. “Representing Cyclic Structures as Nested Datatypes”. In:
Presented at Trends in Functional Programming (2006).

Donnacha Oisin Kidney and Nicolas Wu. “Formalising Graph Algorithms with Coin-
duction”. In: Proc. ACM Program. Lang. (2025).

David Jonathan King. “Functional programming and graph algorithms”. PhD thesis.
University of Glascow, 1996.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley, 2006.

Celia Picard and Ralph Matthes. “Coinductive Graph Representation: the Problem of
Embedded Lists”. In: Electronic Communications of the EASST (2011).

S. G. Shrinivas, Santhakumaran Vetrivel, and N. Elango. “APPLICATIONS OF GRAPH
THEORY IN COMPUTER SCIENCE AN OVERVIEW”. In: International Journal of
Engineering Science and Technology (2010).

Aaron Stump. Verified Functional Programming in Agda. Association for Computing
Machinery and Morgan Claypool, 2016.

The Agda Team. 2024. URL: https://agda . readthedocs.io/en/v2.6.2.1/
getting - started/a- taste - of - agda . html # agda - as - a - proof - assistant -
proving-associativity-of-addition.

The Agda Team. 2024. URL: https://agda .readthedocs.io/en/v2.6.2.1/

language/coinduction.html.

The Agda Team. 2024. URL: https : //agda . readthedocs.io/en/v2.6.2.1/
language/sized-types.html.

14

https://agda.readthedocs.io/en/v2.6.2.1/getting-started/a-taste-of-agda.html#agda-as-a-proof-assistant-proving-associativity-of-addition
https://agda.readthedocs.io/en/v2.6.2.1/getting-started/a-taste-of-agda.html#agda-as-a-proof-assistant-proving-associativity-of-addition
https://agda.readthedocs.io/en/v2.6.2.1/getting-started/a-taste-of-agda.html#agda-as-a-proof-assistant-proving-associativity-of-addition
https://agda.readthedocs.io/en/v2.6.2.1/language/coinduction.html
https://agda.readthedocs.io/en/v2.6.2.1/language/coinduction.html
https://agda.readthedocs.io/en/v2.6.2.1/language/sized-types.html
https://agda.readthedocs.io/en/v2.6.2.1/language/sized-types.html

A Use of Generative Al

This section contains a list of prompts I used to interact with LLMs:

Prompts

How can I convert a function definition from coq to Agda?
How does the with syntax work in Agda?

What does this error message mean [insert error message|?
hi i want to make a table in latex with 4 columns and 4 rows
where the first row and first column is empty and the rest of the
first row is filled with "guarded" "musical" and "sized types"
and the rest of the first column needs to be filled with
"isPresent" "hasCycle" and "hasPath". The inner cells need to
be able to be filled with the colour green and a check mark for
succes and a colour red and an x for failure
How to import the standard library of agda?

15

B Manual proofs

This section contains the manual proofs used in the experiments for each of the properties.
The proofs itself are exactly the same for both the guarded variant and the musical variant.

- prove g2 has 5
proofl : isPresent 5 g2
proofl = node-present refl

- prove g2 has 3
proof2 : isPresent 3 g2
proof2 = adj-present (here (node-present refl))

- prove g2 has 7
proof3 : isPresent 7 g2
proof3 = adj-present (there (here (node-present refl)))

- prove g2 has 4
proof4 : isPresent 4 g2
proof4 = adj-present (there (here (adj-present (here (node-present refl)))))

- prove g0 has a cycle
proof5 : hasCycle g0
proof5 = node-cycle (here (adj-present (here (node-present refl))))

- prove g4 has a cycle
proof6 : hasCycle g4
proof6 = adj-cycle
(there
(here
(adj-cycle
(here
(adj-cycle
(here
(node-cycle (here (adj-present (here (node-present refl)))))))))))

- prove g2 has a path from 5 to 4
proof7 : hasPath 5 4 g2
proof7 = path
(adj-present
(there (here (adj-present (here (node-present refl))))))

- prove g2 has a path from 7 to 4
proof8 : hasPath 7 4 g2
proof8 = path (adj-present (here (node-present refl)))

16

	Introduction
	Responsible Research
	The use of generative AI
	The clarity of what is proven by a proof
	Replicability & Reproducibility

	Background
	Graphs
	Agda coinduction
	Guarded coinduction
	Musical coinduction
	Sized types

	Encodings
	A first intuition
	Guarded encoding
	Example graphs

	Musical encoding
	Example graphs

	Sized type encoding

	Proving graph properties on the encodings
	Guarded
	Graph functions on the encodings

	Musical
	Results
	Automatic proofs

	Improvements to Agda
	Documentation
	Error messages
	Coinduction
	Coverage checking

	Conclusions and Future Work
	Use of Generative AI
	Manual proofs

