
TDS: TRADR DISPLAY SYSTEM
A MODULAR INTERFACE FOR ROBOT-HUMAN TEAM

COORDINATION DURING URBAN SEARCH AND RESCUE
OPERATIONS

by

J. Sparreboom
M.C. de Graaf

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Computer Science

at the Delft University of Technology,
to be defended publicly on Thursday September 3, 2015 at 01:30 PM.

Thesis committee: Coach: Dr. J. de Greeff, TU Delft
Client: Dhr. I. Stel, TNO
Coordinator: Dr. Ir. F.F.J. Hermans, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

FOREWORD

This document serves as final deliverable of the development of the TRADR Display System. This development
was done for the TI-3806 course of the Bachelor Computer Science program at the Delft University of Technol-
ogy in the Netherlands. This course, better known as "Bachelor’s Thesis" or "BEP", concludes the Bachelor’s
program by letting groups work on a real program for a real client. The goal of the course is for the partaking
students to gain experience from a realistic working environment, from start to end.

This project was issued by J. de Greeff, from the TRADR consortium. It began at first of June 2015 and came
to an end at September 3nd 2015. The team working on this BEP consists of two persons: Marnix de Graaf and
Jamey Sparreboom. The research and development mainly took place at the faculty of Electrical Engineering,
Mathematics and Computer Science at the Delft University of Technology. Work has also been done for a brief
period at the Fraunhofer Institute at Sankt Augustin and TNO Soesterberg.

The contents of this report consist of an introduction of the faced problem and a description of the used
methodology for solving the problem. It also features an elaboration of the three phases the project was split
in; the research-, development and concluding phase.

The TU Delft coach for this project is J. de Greeff. The client is the TRADR consortium. Mr. I. Stel has been
the contact person for the TRADR consortium. All arrangements with J. de Greeff, also part of the TRADR
consortium, can also be seen as contact with the client. The Bachelor Coordinator assigned is F.F.J. Hermans.

We would like to thank the following persons:
• J. de Greeff, for guiding us through sometimes difficult times and helping us in every way needed with a

smile.

• I. Stel, for giving valuable feedback on our work and allowing us to get a view on a company like
experience.

• F.F.J. Hermans, for answering our project and organization related questions quickly.

• R. van Hattem, for being our savior in technical emergencies.

• D. Reuter, for kickstarting the project to have a working base and fun times at Fraunhofer.

• E. Zimmerman, for giving us a clear view on the problem and the broader picture.

• T. Bagosi, for giving extensive help with the database.

Marnix de Graaf
Jamey Sparreboom
Delft, August 2015

iii

CONTENTS

Foreword iii

1 Summary 1

2 Introduction 2

3 Methodology 4
3.1 Strategy . 4
3.2 General Planning . 5
3.3 Tools and software . 5

3.3.1 Programming Language . 6
3.3.2 GUI Framework . 6
3.3.3 Developer Tools . 7
3.3.4 Other software, languages and frameworks . 7

3.4 Documentation . 8

4 Research Phase 9
4.1 Problem definition . 9
4.2 Problem Analysis . 10

4.2.1 User Requirements. 11
4.2.2 Functional Requirements . 11
4.2.3 Definition of Done . 13

4.3 User Interface design . 13

5 Development Phase 15
5.1 General Implementation . 15

5.1.1 Making a plugin . 15
5.1.2 Building with plugins for modularity. 15
5.1.3 Model View Presenter . 16

5.2 System Design . 16
5.2.1 Initial TDS Design . 17
5.2.2 Actual TDS design . 18
5.2.3 User Interface . 21

5.3 Encountered problems . 22
5.3.1 Problems with python bindings . 22
5.3.2 Database. 23

6 Concluding Phase 25
6.1 Testing . 25
6.2 SIG Feedback . 26

7 Conclusion 28
7.1 Conclusion . 28
7.2 Learnings . 29
7.3 Used knowledge . 29

8 Discussion and Recommendations 30
8.1 Discussion on product . 30
8.2 Recommendations . 30
8.3 Reflection on process . 31

v

vi CONTENTS

A Project description 32

B Scrum sprints 33
B.1 General planning . 33
B.2 Actual planning . 33

B.2.1 Sprint plan WP1 . 34
B.2.2 Sprint plan WP2 . 35
B.2.3 Sprint plan WP3 . 36

C Appendix C: Research Report 37

1
SUMMARY

This Bachelor Thesis took place as part of the Bachelor Computer Science at Delft University of Technology.
This report describes a project issued by the Long-Term Human-Robot Teaming for Robot Assisted Disaster
Response (TRADR) consortium. During this project, the team worked on creating a user interface for use in
human-robot teams during urban search and rescue missions and situation assessment.

New innovations for use in search and rescue operations are being created to keep rescue workers safe
during these operations. It also allows them to work more efficient, possibly saving more lives. One of these
innovations is the use of robots to assess the situation at disaster areas. To work efficiently in robot-human
teams, a clear overview of the data gathered should be available to the rescue workers. This project is aimed at
creating a graphical user interface to give the rescue workers this overview.

The TRADR Display System (TDS) is a user interface created using Python, RQT and QT. It consists of an
overhead map of the disaster location using the virtual globe application Marble. This overhead map shows
gathered and shared information in an efficient manner using a Point Of Interests (POIs) pinned on the map.
Beside the overview map the user interface consists of several tools and informational toolbars to allow further
elaboration on the shown points of interest.

The development of the TDS was done in three phases. The first phase is defined as the research phase in
which the system was designed and research has been done to make sure the provided solution is the best
solution. Here it has been found that the user interface should be not distracting which is solved by the option
to hide information and giving non-invasive messages.

The second phase is defined as the development phase, where the program was created using the insights
gathered from the research phase. The application is build up as set of plugins for modularity. The application,
which is a plugin itself, has been built in a model-view-presenter architectural pattern. It has been made easy
to add a new plugin for new developers in the project.

The last phase is the concluding phase, in which the product created in the development phase was tested
and documentation was created. All ’must have’ requirements have been implemented. The code was tested
by Software Improvement Group (SIG), a company which performs dynamic code analysis. The result is that
the code is above average maintainable (a four out of five stars on SIG’s star system), but there are not enough
tests present.

The result is a modular graphical user interface for use in urban search and rescue missions, which allows
rescue workers to keep a clear overview, allowing them to work more efficiently in robot-human teams.

1

2
INTRODUCTION

Search and Rescue missions are missions aimed at searching for and providing aid to persons in direct danger.
During these missions one or multiple groups of rescue workers go to the dangerous areas in a coordinated
fashion.

Search and Rescue can be split in multiple subgroups. These subgroups include Mountain Search and
Rescue, Ground Search and Rescue and Urban Search and Rescue. Urban Search and Rescue (USAR) is the type
that aims at saving persons in need of rescue at locations such as collapsed buildings or dangerous industrial
sites. These situations often occur due to earthquakes or extreme weather conditions, but explosions are also a
possible cause.

USAR missions often take place in dangerous environments, therefore the safety of the rescue workers is
an important aspect. To keep the rescue workers as safe as possible, they are well trained for these specific
environments. This training allows them to assess locations quickly and notice dangers like unstable debris or
fires. Assessing the location is important to get an insight of the hazards during the rescue. This assessment is
done by taking samples of for example leaking unknown substances and spotting multiple possible hazards
by sensing, such as seeing a broken power cable. But to assess these locations the rescuers workers are still
required to enter the dangerous area.

Many new innovations, like tools for the rescue workers, have been created to make the Search and Rescue
operations more efficient and safer for these rescue workers. Some of these innovations include the use of
Unmanned aerial vehicles (UAVs) and Unmanned ground vehicles (UGVs) in the dangerous areas to assess.
These machines are able to show many different kinds of data to the Search and Rescue team in the form of
video, audio, thermal data, etc. With access to this data it is possible to provide the team with knowledge about
the location of hazards before entering the mission area. Another advantage is that the robots can get or fly to
places inaccessible for humans.

In a USAR team, there often are multiple roles divided through a hierarchy, specifying who leads a certain
subgroup of rescuers. These roles are based on the specialties of every individual team member. A USAR team
in the scope of this project can contain for example:

• a Team leader who organizes the teams and plans their actions

• a UAV/UGV operator who controls the robot or searches for victims or hazards using the data received
from the robot

• an in-field rescuer responsible for assessing the situation by entering the dangerous area, aiding victims
and many other possible tasks according to his or her specialty.

All these team members need different information during their work. The UAV/UGV operator will need to
receive all the robot’s data, whereas an in-field rescuer requires to know what there has been discovered about
the situation. The team leader needs the oversight of all this data.

The Long-Term Human-Robot Teaming for Robot Assisted Disaster Response (TRADR) consortium is
working on software to allow easier and safer situation assessment using robot-human teams.1 To keep a clear
overview of the current situation and every actor during a mission, it is important that available information is
transmitted to all search and rescue (S&R) team members who require it. In most of the cases, this is the whole
team. This information includes photos made by UAVs and UGVs and detailed descriptions given by in-field

2

3

rescuers who took a better look at a location. The S&R team has to work as fast as possible and therefore every
moment spent on searching for information can cost lives. Quick access to information shared by other team
members is crucial.

To do this, a modular Graphical User Interface (GUI) for the TRADR system is desired, on which a map
of the area can be displayed, along with various other information such as locations of casualties, danger
zones, photos of disaster sites etc. A modular GUI is a user interface in which all components, such as toolbars,
layers, information views or locations can be turned on and off independently. This information should be
easily accessible by the in-field rescuers and new information should be easy to insert and send to all other
emergency responders involved in the mission.

This GUI for the TRADR-project is called the TRADR Display System (TDS) and consists of two major parts;
the MapView and the Operator Control Unit (OCU). The OCU is already created by another partner in the
TRADR project and allows users to control a robot using a GUI. This bachelor project is aimed at creating the
MapView plugin to run alongside the OCU. This plugin is required to be extendable, therefore it will need
a modular design. It also will need to be a sturdy and easy to use system, which requires no deep technical
knowledge. The main question of the project therefore is:

How to create a modular GUI for use in a robot-human-team-based Search and Rescue operation?

To answer this main question other (sub)questions have to be asked.

1. How to create a modular GUI?

2. What is an effective way to display the information needed by these rescuers?

3. How to integrate this system into existing systems TRADR already uses?

To address these issues, firstly the used methodology for this project is discussed in chapter 3. Then the
results of the beginning of the project, the research phase, are covered in chapter 4. After the research phase
followed the actual development of the GUI and all of its parts which is examined in chapter 5. The project
concludes with the concluding phase as can be found in chapter 6. The answer to the research question is
elaborated upon in the conclusion in chapter 7 and a discussion about the project is discussed in chapter 8.
For extra information the project description has been added in appendix A and the overview of the SCRUM
sprint results can be found in appendix B. Finally, Appendix C contains the report written at the end of the
research phase.

3
METHODOLOGY

This chapter will cover the methodology of this project. The chapter starts with the development strategy in
section 3.1. After this a general planning is shown in section 3.2. Next the used tools, software and programming
languages are described in section 3.3. The chapter concludes with information about the documentation in
section 3.4.

3.1. STRATEGY
One of the requirements of the bachelor project course is using a proper development methodology. For this
project a minimized Scrum has been used as development methodology.

Agile development comes down to developing in an iterative process. An Agile development methodology
means that it promotes adaptive planning, ensures delivering working software frequently, delivers contin-
uous improvement and encourages rapid response to change (of requirements)2 . Scrum is a type of agile
development and therefore has these benefits.

Scrum consists of sprints, which are a basic unit of development, often one or two weeks. Each of these
sprints begins with a meeting to plan the work to be done that sprint. During this meeting, tasks for the
sprint are identified and are given an estimation of the time it will cost to finish it. During a sprint, the
development team creates the functionality assigned to them. Each sprint ends with a retrospective meeting
in which the process of that sprint is reviewed, allowing the team not to make the same mistakes during the
next sprints. This causes the team to run a full development cycle during each sprint, including planning,
requirement analysis, design, code creating and testing. During the full project, only completely working and
tested functions should be integrated to the project, assuring there is always a working copy available.

During a sprint a short daily meeting is held to receive and provide feedback on the sprint. This includes
discussing what has been done the day before, what is planned to be done this day and what problems could
slow down the development. These meetings should be kept short, around fifteen minutes.

A Scrum team in general consists of multiple standard roles. These roles include:

• the Product Owner, which is responsible for determining the work that should be done for the product
and prioritize it on business value. He also communicates with the stakeholders. This work sorted on
priority is written down in the Product Backlog

• the Development team, which produces the code and tests individually. They discuss the work to be
done within a sprint with the Product Owner and the team mostly consists of three to nine people.

• the Scrum Master, responsible for adhering to the Scrum methodology, enforcing time limits on meetings
to not unnecessarily distract the development team and the scrum master facilitates the Scrum process
in general.

Since the development team consists of two persons, following the usual Scrum methodology would cause
much overhead. The underlying principles can be applied though. During educational lunch lectures provided
by the Delft University of Technology, several guest speakers told: "The best way to use Scrum is by doing it in
the way it works for you". Therefore we did not use the standard roles and both of the team members adhered
to each role. The labor therefore was divided over the team members equally.

4

3.2. GENERAL PLANNING 5

During the project it was decided to do weekly sprints, due to the relatively short development time. The
sprint meeting has been done at the beginning of the week and the plan for that sprint was logged for the
client, coach and other members of the TRADR consortium. These plannings are included in this report in
appendix B.

3.2. GENERAL PLANNING
At the start of the project a project plan was made which contained the high level planning. This can be
seen in figure 3.1. The project is divided into three main parts; a research phase, a development phase and a
concluding phase. This separation is also visible in this report where each phase is covered by a chapter.

Phase 1 Phase 2 Phase 3

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11

Research Report

Set-up

System Design High-level Low-level

Implementation

SIG

Acceptance testing

Final Report

Presentation

Figure 3.1: General overview of the planning from project plan

The actual work is represented in figure 3.2. The differences between the original and actual planning are
caused by:

1. Missing access to documents in the research phase. The TRADR project has a wiki in which all informa-
tion is gathered but it took a week to get access. In the meantime, general research was done on modules
and other software to use.

2. Failing software installations in the research phase. A guide and setup script was provided to install
all existing software but the installation of this failed. A lot of software would not load or compile as it
should. This was solved when going to Fraunhofer, Germany, in week three of the project. Here two days
were spent on fixing the software issues, finalizing the requirements, gathering information and making
a code base to start from.

3. Because of all the delays the research report was not finished at this point. This was finished before
starting the development phase.

4. Because of the late implementation of the database there was little time to finish this report on time.
This is why the deadline has been extended and the next possibility for everyone to attend was weeks
later.

Figure 3.2: General overview of actual work

3.3. TOOLS AND SOFTWARE
Since the TRADR project is in its second year at the time of writing, some decisions have already been made
about which software, frameworks and languages to use. This shaped the context in which the project was
performed, as the team had to adhere to the choices made by the TRADR consortium. Experiences with a

6 3. METHODOLOGY

previous version of the TDS had also to be taken into account. In this section the description and reasons for
each used piece of software is given.

3.3.1. PROGRAMMING LANGUAGE

The MapView needs to be a plugin for RQT. RQT is the visualization plugin for Robot Operating System (ROS).3

ROS is being used for example for communicating and operating the robots.
An RQT plugin can be written in a small set of languages,4 in particular C++ and Python. Both languages

have their advantages and disadvantages. C++ is a language which requires a fair amount of micromanagement
of the memory, whereas Python is a relatively simple language. Given the fact that both team members had
little experience in either of those languages, a language with an easier learning curve allows the team to
develop more efficiently, especially during the first weeks of the development phase.

Both Qt5 (discussed in section 3.3.2) and Marble6 (discussed in section 3.3.4) are written in C++. To use
a C++ library in Python code, there is a need for bindings. These bindings allow calls to C++ code using
Python-like calls, therefore not requiring any knowledge about C++ if the bindings already exist. Therefore
writing the plugin in C++ will require no bindings, but only require the libraries. This is a big advantage over
Python, which requires bindings to use other programs such as Marble and Qt. These bindings can possibly
be incomplete in comparison to the original C++ source code. Missing bindings can lead to problems if the
bindings are required for important functionality as can be read in section 5.3.

It is recommended to write RQT plugins in Python according to the wiki-page about RQT7 due to the ease
of maintaining the plugin. It is also stated that C++ is accepted if the developers are more comfortable with
C++ than Python or if there is a need to use libraries unavailable in Python. Since Qt and Marble both have
bindings and the team was not comfortable with C++, these conditions were not met. Previous code written

for the TDS has been done in Python as well. Therefore it is possible to use this code and integrate it into the
TDS easily.

The choice for Python as programming language has been on the grounds of the expectation on how quick
it was to learn to use properly and that it is recommended to use for RQT plugins. Getting accustomed to C++
can take a long time and could therefore slow down development. Since Python bindings were available for all
required libraries, it was possible to use it without expecting problems.

With the choice of Python, the choice between versions came up. There are two broadly used versions of
Python at this time; Python 2 and Python 3.8 Python 3 is seen as the go-to version nowadays, but Python 2 is
still standard with the operating system Ubuntu 14.04 and is the standard in the TRADR project.

For writing the TDS, the choice was made to use Python 2. This was due to compatibility with libraries
such as Marble. These libraries require the use of Python 2, as the bindings for Python 3 are not stable or
not available yet. The use of Python 2 instead of Python 3 should not have any effect on the development
of the TDS. Both languages are of high quality and do not differ much from each other. They are also well
documented and do not have a direct effect on the planned structure of the program.

3.3.2. GUI FRAMEWORK
As the main objective of the creating the TDS is creating a proper Graphical User Interface, a framework for
building this GUI is important. This framework should at least allow a modular setup of the interface and
should be able to work with the provided MarbleWidget.

It should also be compatible with RQT to be able to fulfill the requirements. RQT has been built using Qt as
base as the name might suggest. More about RQT can be found in section 3.3.4. Marble’s widget for showing
the map with its controls is written with Qt as framework for the GUI. Given that both Marble and RQT require
the plugin to be written in Qt made the choice for a GUI framework much easier.

Qt is multi-platform, therefore making it able to run the GUI of the TDS on multiple different platforms.
The TDS will mainly be used on Ubuntu 14.04, but there is ambition to make it able to run independently
of the platform. Qt makes sure that the graphical element of the TDS is usable on these different platforms,
including tablets and smartphones.

There are multiple versions of Qt available at the moment, Qt4 and Qt5. Qt5 features many new possibilities
and fixes for many bugs in Qt4. However since RQT still only supports Qt4, it was decided to use Qt4 during
the development of the TDS. Using this older version should not create any problems, even though some more
advanced functionality might be unavailable.

3.3. TOOLS AND SOFTWARE 7

3.3.3. DEVELOPER TOOLS
The following tools are used for developing the product:

1. Pycharm:9 This intelligent IDE (integrated development environment) provides all the functionality
expected from a decent IDE but also provides code analysis tools for better code. It offers an educational
license and is also able to use a remote interpreter. This was needed because one of the developers
worked in Windows, while the product is not running on that platform.

2. Qt Creator/Designer:10 Visual editor for GUI’s in QT which can generate .ui files. These files can be
read by QT and generate a user interface. Although this program offers more functionality, it was in this
project only used to visually make an interface and generate the code for it. It was also used to generate
a resource file containing all icons in the program.

3. Sourcetree:11 A git tool which shows a clear overview off all branches.

4. Trello:12 Ticket and other general purpose planning system. Used for notes, Scrum and maintaining the
status on every task.

5. Redmine:13 Ticket system of TRADR, which also hosts a wiki system containing most of the relevant
information on the TRADR project.

6. Gitlab:14 TRADR’s git system. All our code is in this versioning system.

7. Overleaf:15 Online LateX editor for working online on tex document with multiple people at the same
time. Used for producing all documents.

8. PyUnit:16 Python’s standard unit testing library.

9. Sphinx:17 Application generating documentation from dostrings in the source code. It is an requirement
of the project. The requirements also state that Rosdoc has to be used for documentation of ROS
packages, though this is not done because no ROS packages are used for the TDS.

3.3.4. OTHER SOFTWARE, LANGUAGES AND FRAMEWORKS
Next to above developer tools is other software where the product is built upon.

1. Marble: Marble is an application that can display a view of the earth.6 It can be used as an application of
its own, but as it is an open source project, it also serves as an example of how to use Marble widgets in a
self-made program. A big advantage of Marble is that is runs on every operating system that supports
Qt4, which is also used in the TRADR project. The reasons for using Qt4 instead of the newer Qt5 are
described in subsection 3.3.2.

In order for Marble to work, some dependencies have to be installed. On a clean install of Ubuntu 14.04,
the following packages are needed:

• SIP: A tool needed to create Python bindings for C and C++ libraries. In this case the PyQT library.

• PyQT: A set of Python v2 and v3 bindings for Qt. See below.

• PyKDE: Provides the python bindings for KDE, where Marble is a part of.

Together they combine all the advantages of KDE, Qt and Python.

2. ROS: ROS is a framework which is used to make it easier to program robots. It is being used for the TRADR
project, and needs to communicate with the TDS. This is because ROS sends information between its
processes by sending messages, also to and from the TDS. In the current TRADR project, ROS Indigo
is being used, which is not the newest version of ROS. Though, Indigo is the most stable version at the
moment and recommended for stability.3

3. RQT: RQT is the base on which the program has to be build. It is required for the product as ROS is
being used by the TRADR system as base. RQT is a plugin for ROS which allows developers to build a
GUI on the ROS platform in the form of plugins.18 These plugins can be written in Python and C++, in
combination with Qt. The plugins written for RQT can be used as a standalone program, or as a window
docked inside of the RQT window. As told before; the TDS consists of multiple separated parts; the OCU

8 3. METHODOLOGY

and the MapView. These two parts may be used together at the same time, on the same machine. To
make it easy to use these programs together at the same time, RQT allows arranging multiple plugins
around the window by clicking and dragging. Due to the fact that this feature is already built in, the
program is built to be embedded in the RQT window.

4. PyQT: PyQt is a set of Python v2 and v3 bindings for the Qt application framework and runs on all
platforms supported by Qt including Windows, MacOS/X and Linux. PyQt brings together the Qt C++
cross-platform application framework and the cross-platform interpreted language Python. PyQt is
able to generate Python code from Qt Designer. PyQt combines all the advantages of Qt and Python. A
programmer has all the power of Qt, but is able to exploit it with the simplicity of Python.19

5. Untangle: Converts an XML-string or file to a Python object. Used for communication with the
databases.20

3.4. DOCUMENTATION
It was required that the code was properly documented during the development. The documentation is
especially important as further changes and additions to the program will need to be done as the TRADR
project continues and other developers will need to understand the source code of the program to be able to
work with it. The documentation was written using Python dostrings and there is also a separate guide for
installing the software.

The Python docstring are interpreted by the autodoc feature provided by Sphinx. These docstrings were
written following the Sphinx autodoc coding standards.21 This allows Sphinx to format the string to highlight
descriptions of parameters or return values. The documentation will be parsed into HyperText Markup
Language (HTML).

Next to this, a setup guide has been provided with the application. This report, with requirements and
design will also be uploaded to the TRADR project wiki. On this wiki other information is available such as use
cases and older schematics.

4
RESEARCH PHASE

The project started with a research phase. In this phase the optimal solution is researched by gathering
and comparatively analyzing the necessary background information. In the contents of this chapter the
given problem will be described and analyzed. The chapter starts with the problem definition in section 4.1.
Analyzing the problem is done by presenting user and functional requirements in section 4.2. The chapter
ends with a comparison between the envisioned GUI and the actual implemented GUI in section 4.3. Here is
also the answer for the second research sub question how to effectively display the information needed by
rescuers.

4.1. PROBLEM DEFINITION
The TRADR project is an EU-funded project developing technology for human-robot teams to assist in disaster
response efforts. This is done using a proven-in-practice user-centric design methodology, proven in the
NIFTi project.22 In the TRADR-scenario, robots collaborate with humans to explore environments and gather
samples. Through these scenarios, the team develops knowledge of the disaster area over multiple -possibly
asynchronous- missions with as goals, improving team member’s understanding of how to work in the disaster
area and how to improve team-work. The environments these scenarios take place are medium to large scale
industrial accidents, with mission times possibly stretching over multiple days. Teams consist of human
rescuers, UAVs and UGVs.

The TRADR wiki provides in an example scenario on which also the product produced in this project will
be tested. The general scenario of the second year is as follows:

Highly flammable Xylene has caught fire, the fire seems small but can not be put out by the company firemen.
Due to the heat a pipeline filled with resin breaks and more and more resin is pumped onto the flames. This fire
is handled wrongly by the employees causing a spread of the fire in the direction of Intermediate Bulk Containers
(IBC’s) which melt within a minute causing their contents to spill with as a result a non-containable fire. When
the firebrigade arrives it is not sure if all employees have left the premises, the toxic fume spread is not known
and there is still highly explosive ethylacetate on the premises.

During a TRADR-scenario, the data from the robot is filtered and (if needed) approved by its operator and
gets sent to a set of databases. The low-level database is a MongoDB23 database to save documents, photos
and other data such as sensor data from the robots. All entries in this database are time-stamped to allow
possible changes in the situation to be visible.

The high-level database is a StarDog database. This database makes use of an ontology to allow reasoning
between "Things" or schemes. An ontology is a representation of the data (knowledge) by using schemes
within a domain and the relationship between these schemes. These relationships can be used to for example
categorize data automatically. This can be the fact that a fire is a hazard. Since the TRADR project aims at
human-robot teaming, this kind of reasoning is important to allow persistent situation awareness, allowing
the robots to make sense of possibly conflicting information and to allow the robots to determine interactive
behavior for use in team-level coordination.

During an USAR mission using the developed technologies in the TRADR project, it is critical for the
rescuers that the data retrieved using the robots is shared and displayed in a clear manner. Rescuers should

9

10 4. RESEARCH PHASE

therefore be able to access and interpret the data quickly, without costing much time or energy. An option
to communicate the information to the teams is by using portable devices such as tablets, and visualizing
the required information on their screens. By using such a user interface, rescuers in the area can quickly see
hazards and other information on a top-down map. It is also possible for the leader of the USAR mission to
plan strategies dynamically using such an interface and sending his/her commands to the teams.

The TRADR project is evaluated multiple times during a TRADR Evaluation. During the evaluations the
systems are tested during a simulated USAR mission. During these evaluations multiple GUIs have been used.

Before this project, there was a UI which consisted of a browser environment with a top-down satellite
view of the mission area. It also had the possibility to track actors and to add text and images, retrieved from
the previously mentioned databases. It was built on top of the Google Maps API. This UI was a pragmatic
approach, because there needed to be a GUI at TRADR Joint Exercise (TJEx) and there was none at the time.24

Since the project is still in heavy development and more functions are being built to assess areas, an
interface without the possibility of easy expansion is not a workable option and it costs the team valuable time.
Therefore a new user interface (the TDS) is needed, which is built in such a way that it is easy to expand with
for example plugins. The OCU is a GUI created for the robot operators, allowing them to control a robot and
receive direct information such as video streams from a camera in the robot. A global overview of the top level
TRADR architecture can be seen in figure 4.1. The information streams received in the OCU contain much
information that is not important for all team members, such as video footage of a robot moving to its goal.

Figure 4.1: Top level TRADR architecture where the position of the TDS can be seen as part of a larger system. Source: (Private) TRADR
wiki; URL: https://redmine.ciirc.cvut.cz/projects/tradr/wiki/System_Architecture. Retrieved on 16-8-2015

4.2. PROBLEM ANALYSIS
During the first few weeks a list of requirements has been set up in collaboration with the client. These
requirements are based on the problems raised in the problem definition. All requirements found on the
projects Wiki - which were scattered as they cover feedback from multiple years of work - were gathered
together, categorized (see next paragraph), and then the requirements were talked through with several TRADR
consortium members and adjusted accordingly. These members are the TU Delft, TNO and Fraunhofer. After

4.2. PROBLEM ANALYSIS 11

the last TJEx, at which the pragmatic version of the TDS had been used, feedback has been given by the
end-users. This feedback has been taken into consideration while creating the requirements.

The requirements are split in multiple types. Functional requirements, non-functional requirements and
user requirements. Functional requirements are requirements referring to the functionality of the program.
Non-functional requirements refer to how a program should perform and for example what system it should
run on. See also appendix C for the non-functional requirements in this project. The user requirements are a
description of the different users and how and why they use it.

4.2.1. USER REQUIREMENTS
The users of the TDS are mainly firefighters during urban S&R operations. Due to the chaotic situation during
such an operation, it is important that the TDS does not require much knowledge to use. All actions need to be
intuitive to all users. The users are defined as follows (the list is not exhaustive):

The Team Leader leads the mission and coordinates the multiple teams. His main tool to keep an overview
will be the MapView. This means the overview should stay orderly when more information is added to it and it
does not get cluttered.

The Operator will mainly use the OCU part of the TDS, and uses the MapView on the side. Therefore the
MapView needs to be able to run alongside the OCU without the MapView interfering too much with the GUI
of the OCU.

The In-field Rescuers are the persons who explore the mission area. Their tasks include assessing the
situation and sending information and observations to all other devices. If the in-field-rescuers will use the
TDS, they will only use it in read only mode in the scope of this project. In the future there is a possibility that
in-field-rescuers will add information to the MapView and the database. This is not a functionality covered in
this project as the in-field-rescuers will use an adapted UI on some portable device for this.

4.2.2. FUNCTIONAL REQUIREMENTS
The functional requirements are structured using the MoSCoW principle, splitting it in must-have, should-have,
could have and won’t-have requirements. These requirements have been made at the beginning of the project
(see also appendix C). Since then it has been slightly revised due to new planning of time. Below are the revised
requirements. If a requirement is in bold this means that it is implemented in the final product.

MUST HAVE

The product must have:

1. a modular set-up of interface: be able to show or hide certain components and personalize interface
according to role, personal preference and device

2. a layered structure (where layers can be switched on or off) with

• base map

• location of team members

• info icons (Points of interest such as victim, fire, hazardous material, obstacle, remark, photo)

3. info rights management (who can see what, based on different roles)

4. give a notification in case of faulty connectivity and reestablishes it when available

5. display of photos

6. a structure allowing plugins to extend the program

7. the possibility to run multiple instances on different machines, while displaying the same informa-
tion on the multiple instances

8. a setup guide

9. handheld device support: touch control and keyboard on screen when using a touch screen

10. user friendly feedback when an error occurs.

Also, the product must:

• run on Linux

• use KDE Marble

12 4. RESEARCH PHASE

• be implemented as a set of RQT plugins

• use databases as ground truth for data retrieval and storage, in particular the high-level Stardog
(RDF) and low level MongoDB database from the existing system.

• be fully documented using Sphinx and Rosdoc

SHOULD HAVE

The product should have:

1. the following added layers:

• layer for photos, including clustering where multiple pictures have been taken (like in Google
Maps)

• layer for robot trajectory traces

• area indication (“working agreements”) (go, no-go, unstable, searched, robot autonomy)

• user input on the map (Text, notes, drawing, photos)

2. the following icon features:

• icons should be informative (e.g. thumbnail icons from photos, indication of robot control)

• icons should scale naturally

• possibility to lock icons (as to not move them by accident, possibly default)

• show field of view/orientation for photos and robots when data is available

3. the following properties for information in the database:

• timestamp of entry

• name of actor who entered the information

• visible in TDS

4. an indicator for reachability of actors

5. shortcuts to locations

6. map tools (scale info, distance measure)

7. GPS-coordinates visible within TDS (when adding icons and current view)

8. (moved from must haves) a communication ability with other ROS nodes (e.g. to display a video stream)

COULD HAVE

The product could have:

1. Robot status info screen (battery, connection status etc.)

2. time line of events (possibly within main TDS for team leader)

3. possibility for situation report or briefing

4. representation of team management information (e.g. showing team members; show goals, tasks
and status)

5. global search function (e.g. search for data, text, objects)

6. Streetview-like option to view specific area as 3D map (Overlay the 3D point-cloud map with the 2D
plan)

7. information from external sources (e.g. weather information)

8. possibility to show videos and play back videos

9. speech input (in cooperation with DFKI)

10. display of (co-)variance of GPS location

11. comment functionality on photos and other entities

12. simple image editor

13. multitouch functionality (gestures, pinch-to-zoom)

14. recovery options (e.g. using the last position of a robot when the connection is lost or power supply is
not functioning)

4.3. USER INTERFACE DESIGN 13

4.2.3. DEFINITION OF DONE
This subsection will state the success criteria which the finished product has to meet to be called done.
For the product to be finished, the system has to:

• have all must have requirements from subsection 4.2.2 implemented

• pass all acceptance tests

• have no high priority, severe or program breaking bugs left outstanding.

• run on the required system as stated in subsection 4.2.2

4.3. USER INTERFACE DESIGN
In this section the design of the TDS will be discussed. The actual GUI looks a lot like the envisioned GUI in
the research report (see appendix C). The interface is divided in three main parts; a left sidebar containing
tools for map interaction, a main section where the map and potential error messages are displayed, and a
right sidebar containing information on the mission.

During development of the GUI of the TDS, multiple facets were taken into account. Guidelines for the
design of the OCU have already been defined beforehand, unlike the TDS design. Therefore the design of the
MapView has been made at own accord. Information for this was gathered from multiple team members of
TRADR which told about their own experience and feedback from users in the field. Also information from the
TRADR wiki was used as also photos from the previous GUI of the TDS.

Figure 4.2: Interface of the TDS with multiple points of interest on the map, including actors. This interface is sized to a smaller screen size
such as a tablet and parts are minimized to save space

The application should first of all not distract the user, except for important error messages. The most
important task of for example the mission commander is keeping an overview of the situation, and thus the
map of the area. This is the reason the map is the center point of the application. When there is a system
failure the application displays an error message above the map. An error can be caused by for example either
the user by entering an illegal coordinate, or the system when the connection to the database is lost. It is then
still possible to use the rest of the program while fixing the issue which caused the problem. An example of a
displayed error message can be seen in figure 5.7.

Another example of non-invasive messages is the notification center. Located in the top of the right sidebar
by default, the notification center displays messages when new information is available in the database. This
can be a range of messages, as for example a new POI, actor, photo or for future functionality also notes or

14 4. RESEARCH PHASE

videos. The icon within the message is descriptive of the type of message. This way it is possible to visually
filter the messages and know in an instant what type of information is dealt with.

The second facet taking into account during developing was that it would also be used on a portable device
such as a tablet-pc. These devices often have smaller screens than a laptop or desktop monitor. This can cause
text or other information to be too small or cramped on the screen to keep an efficient overview. Since it is very
important to keep the shown information organized and clear, the design of the MapView should allow the
user to turn on and off parts of the interface. To do this, the MapView-plugin lets the user minimize parts of
the interface such as the toolbars. The user can focus on the functionality he needs and hide the functionality
not required at the moment, giving the user control of the information shown. An example of the application
running on a tablet can be seen in figure 4.2. Here the toolbar and two information views have been minimized
to save space.

During the research phase it was found (see Appendix C, section 2.5) that with the optimal level of trans-
parency, the optimal division between divided and focused attention can be achieved.25 The paper by Harrison
researches how one can better support both focusing attention on a single interface object (without distraction
from other objects) and dividing or time sharing attention between multiple objects (to preserve context or
awareness). Special attention is paid on how effective the use of transparency is in combination with small
sized screens and systems with many windows, menus, tools, etc. The conclusion of the paper is that it is
useful for certain user interface elements to use transparency for a better divided attention. This is relevant
for the GUI in the current research as there is a need to focus on a specific situation during an USAR mission,
while preserving awareness on the complete mission. This however is not implemented in the final product.
As the view of the map should not be obstructed in any way, as requested by the client during a meeting,
is transparency not useful for the TDS. Other elements in the UI did not have an apparent reason to have
transparency and it is thus not implemented.

5
DEVELOPMENT PHASE

After four weeks the project reached the development phase. Here actual code was produced and the program
was build part by part. In this chapter can be read how the software has been built and what problems were
encountered during the development.

The development phase started with making a plugin for RQT which can be read in section 5.1, together
with other implementation details and the answer to the first research sub question: How to make a modular
GUI. Next an overview of the implemented system is given in section 5.2. During the development phase
several problems were encountered which is elaborated in section 5.3.

5.1. GENERAL IMPLEMENTATION
This section contains general information about the implementation. This includes a description of how to
make a plugin for RQT, how to make the plugin modular and the used design pattern.

5.1.1. MAKING A PLUGIN
Instead of making a standalone program it was required to build a plugin. TRADR uses robots during a mission
which run on an operation system called ROS.3 Within the TDS are no connections to the robots itself, as
all data transfers are being done by the database. It would still be very useful to incorporate the TDS in the
software for controlling robots and other TRADR related programs. This is why TRADR uses RQT, which is a Qt
based framework for GUI development for ROS.18

As a result, the TDS has been built as plugin for RQt. This means that a person can simultaneously have a
look at the TDS for an overview while in the same window giving commands to a UAV, as most RQt plugins can
be arranged however the user desires. This also means that much of the functionality can already be available
at the startup by sharing common procedures like starting and closing the application. Common procedures
include closing the database connection and closing files that are in use during shutdown.

5.1.2. BUILDING WITH PLUGINS FOR MODULARITY
The application can be launched from within RQT after which the program starts to initialize. As modularity was
important to the client, the decision was made to divide the code of the application into the base functionality
and extending it with plugins to add more functionality. The architectural pattern of the code base is based on
a Model-View-Presenter (see subsection 5.1.3). This division of concerns is implemented in the initialization
by saving all models, views and presenters together in separate lists located in one place.

A general ’add plugin’ function makes it easier for other developers to add their own plugin to the program.
This can be as simple as giving a name and passing the model, view and presenter of the plugin. As not every
plugin needs its own model or view they can be given as parameter to other presenters. Finally, after initializing
the database and configuration settings, a loop is started in which every plugin in the given order is activated.
Each of these plugins initializes itself after each other. The given order makes sure dependencies are met.

15

16 5. DEVELOPMENT PHASE

5.1.3. MODEL VIEW PRESENTER
There are many possible different design patterns to follow when creating a program. This can be done to for
example increase the ease of maintaining and extending the program.

The plugin has been built in a model-view-presenter (MVP) pattern. This approach was chosen as this
well-known pattern makes it possible to change individual parts of the program. In the MVP pattern there’s a
separation between the knowledge (Model) the UI (View) and the logic (Presenter).

All logic for the UI is available in the presenter, which communicates with the view through an interface
containing the base functionality for the view. The actions raised by user input will call to the view, which
passes the information to the presenter. The presenter then performs all logic including the logic and tells the
view what to change.

The pattern consists of creating an interface or base class for the model and the view. By doing this, the
model and view are loosely coupled to the presenter, making it easier to change or mock the view and model.
This is useful for making unit-testing easier for example. The functions defined in the base class are required
to be implemented for the class to work with the basic functionality.

Within the presenter class, no code will be adjusted when a model or view changes, only added. Therefore
by using this pattern, the system design follows the Open-Closed Principle.26 By following this principle old
functionality is almost guaranteed to stay intact after system changes. This allows relatively easy addition of
functionality, therefore keeping the software maintainable and extendable.

The MVP pattern is a derivation from the Model-View-Controller (MVC) pattern. The MVC pattern uses
a Controller instead of a Presenter. This controller received all user-input directly and returns a view to be
rendered. Because of this, the view is only required to render itself. An example of this is visible in figure 5.1

Figure 5.1: The difference between the MVC pattern and the MVP pattern. Image retrieved from:
http://stackoverflow.com/questions/1317693/what-is-model-view-presenter on 27th of August 2015

Since the GUI is created using Qt (see 5.2.3), using signals sent from the view and received in the presenter
is an easy and efficient way of responding to events raised by user input or input from the database. As the
program would need to be tested too, the MVP pattern has the benefits of using the interface for the view. This
can be mocked much easier than by using a MVC pattern.

Another benefit is that the presenter and view in an MVP pattern are often mapped 1-on-1. This creates
a clear separation between multiple different functions within the TDS. This separation makes it easier to
change certain functionality and to create plugins that extend only a part of an already existing function.

5.2. SYSTEM DESIGN
The design of the system has been created in the research phase. During the implementation, it was discovered
that the chosen design did not provide in all necessary requirements, such as adding functionality to the
program using plugins. Since this added functionality required changes in the system design of the TDS, the
actual design differs greatly from the initial design. Differences between these two designs will be explained
and the reason for these changes elaborated.

5.2. SYSTEM DESIGN 17

Figure 5.2: The initial high-level design of the TDS

5.2.1. INITIAL TDS DESIGN
The initial design consisted of multiple RQT plugins and some separate plugins which add functionality. A
visual representation of the initial design is visible in figure 5.2

The most important plugin was the MapView plugin. This plugin was a plugin for RQT and consisted of the
extreme base functionality of the system. It contained the widgets for showing the map, choosing which layers
to display and showing the current GPS-coordinates. All this functionality is directly connected to the Marble
widget and should therefore be contained in a single plugin. The already created OCU plugin for RQT would
be able to run next to the MapView plugin and due to modular interface in RQT itself, it is possible to decide
how to display these two.

The last plugin to be added as RQt plugin is the notification center plugin. The notification center will be
responsible for showing non-intrusive error-messages and notifications, which could be of importance to the
user of the TDS. This might include information about newly found hazards or the loss of connectivity. As
the notification center will be required to send messages received from all plugins, for it to be a separate RQT
plugin, it required to be able to connect to ROS-topics. These ROS-topics are the manner in which ROS sends
messages between programs.

The initial design consisted of two different Qt plugins, not developed as RQt plugin. As these plugins do
not require a direct connection to information from ROS-topics and their GUIs get added to the MapView GUI
or require none, it has no advantages to add it as RQT plugin.

The first of these plugins was the IconProvider plugin. The IconProvider receives requests about points of
interest. Requests could be for example adding a POI to the map, receiving all information saved in the POI or
editing the information saved in a POI. The POIs themselves were supposed to be subclasses from the icon
provider, each adding their own style or functionality to a POI.

The last designed plugin was the ToolProvider. This plugin was responsible of being the location where
each tool was initialized and called. This central access point for the tools could provide the possibility to add
more tools to the program, without requiring references to each of these tools. With a possibly growing set of
required tools as the TRADR development continues, a general point of access makes it easier to add tools
later on.

18 5. DEVELOPMENT PHASE

5.2.2. ACTUAL TDS DESIGN
The initial design did not allow the addition of plugins in a maintainable way. To add a plugin that required a
connection to the Marble widget, it would need to be added to the MapView plugin. As this requires adapting
the MapView plugin for each added plugin, it is possible to introduce bugs. It was also discovered that there
was an interface ready for creating layers in the Marble Widget. To these layers, POIs can be added by using the
placemarks (GeoDataPlacemark objects) from the Marble libraries. New and custom layers could be created
by subclassing the LayerInterface class in the Marble libraries and adjusting its rendering functions.

During the creation of the new design in the development phase, the design got adapted to the Model-
View-Presenter pattern. As this pattern created a separation of concerns which was not available in the initial
design, many of the classes got split into a model, a view and a presenter.

The new system design also adds all widgets to the same RQT plugin. Adding everything to the same plugin
causes only a single plugin to be loaded when starting the TDS in RQt It also allows code to be shared within
these plugins. Later during the development process, it was discovered that sharing code with multiple RQT
widgets was not a problem. Sadly this fact was discovered too late in the development process to easily adjust
it.

A general visualization of the actual design is given in figure 5.3. The actual design consisted of several
Python modules each with their own functionality. The MapViewPlugin class is responsible for instantiating
the other plugins and adding them to one single widget to add to the RQt instance. This class is a subclass of
the Plugin class defined in the RQT module. By subclassing this class and adjusting some methods, the plugin
can be added to RQT and define a shutdown and startup procedure.

Figure 5.3: General overview of the actual design and implementation

MAPVIEWPLUGIN

The MapViewPlugin class contains references to all plugins which need to be instantiated when the MapView
plugin starts. It contains several python dictionaries (a list accessible by a key instead of just an integer)
containing references to all the initiated objects, to make them accessible for other plugins. This is required
when a class in a different plugin requires a reference to an already instantiated view. This way, the required
view can be found by calling the dictionary with the name of this view. In the current format, all plugins which
create or need access to a toolbar require a reference to the MapView plugin. Also, every plugin requiring direct
information from the MarbleWidget has a reference to the MapView, as the MarbleWidget is instantiated here.

The MapViewPlugin also creates a singleton object of the NotificationCenter class. The notification center
should be accessible by every class which has to be able to show notifications or user friendly error messages.
To make it accessible from every module, it is created using the Singleton design pattern. A singleton creates a
single point of access to a created instance as static attribute of the class. The notification center has been
implemented by wrapping the NotificationCenter class with another class. An instance of the inner notification

5.2. SYSTEM DESIGN 19

center class is saved as a class variable of the outer class. This makes sure there is only a single instance of, and
a single point of access to the notification center

The MapView is a module containing the model, view and presenter of one of the main components, the
view of the map. The structure is visible in figure 5.4. The presenter acts as the middle man between the model
and the view. It provides all logic for the view and retrieves this information from the model. The model and
view are connected to the presenter through an interface. In the view class, the MarbleWidget which shows the
top-down map is loaded, along with some other UI elements such as a collapsible toolbar.

Figure 5.4: Overview of the structure within the MapView module

LAYERS

The LayerModel class is instantiated when creating the presenter class in the MapView module. This class
provides a single point of access to the custom layers added to the MarbleWidget. It also provides the logic to
add and retrieve layers.

The custom layers are created and saved in the standard_layers module, which is visualized in figure 5.5.
These layers include a MarbleLayer class, which merely realizes the layer interface in the Marble library and
adds standard functions for activating and deactivating the layer. This class has been subclassed by an empty
layer class, providing no functionality. This empty class can be used as base for layers, which allow drawing or
different renderings on the screen, not dependent on the placemark functionality in Marble.

The other class which extends the MarbleLayer class is the POI layer. This layer uses the placemark
functionality from Marble to show placemarks on the map. Extending this class allows for different styles of
renderings on the map. The already created list of layers is not exhaustive, and new layers can easily be added
by creating a new class using either the MarbleLayer, empty layer or POI layer as base class.

20 5. DEVELOPMENT PHASE

Figure 5.5: Stucture of the standard_layers module.

ACTORS

The actors are represented using the Actors module. This module contains a model, view and presenter for
showing the actors on the map. The model contains a list of actor objects, containing all information of
a specific actor. The presenter also initializes the view, which shows a toolbar. This toolbar shows all the
information saved in the selected actor object.

To show the actors on the map, a new placemark is created in Marble. This placemark is shown on the
actor layer. Since the coordinates of these actors change constantly and the current coordinate is saved in the
database, a threaded class (’worker’) has been created together with the actor layer in the standard_layers
module. This has been placed here since this worker class is closely related to the layer for the actors, which is
defined here. This actor worker polls in a defined rate to retrieve the new coordinates if available.

OTHER MODULES

The maptools module contains the standard tools that can be used to for example make navigating the map
easier. This module has been created to facilitate all tools that are too small to require a separate module. Since
most of the smaller tools are defined in the ‘should haves’ or ‘could haves’ of the requirements (section 4.2.2),
the maptools module only contains the function to go to a saved location or to a custom coordinate in the
current implementation.

A config module has been created to allow easier adjustment of variables that change in different setups,
such as the database address or the currently used map theme. By adding all these variables to one single file,
the variables can be adjusted much quicker by the user.

The config module has also been used as a point of access to functions that are required in many other
modules and are not accessible using regular references. This can better be done by creating a new module
containing these functions, instead of adding them to the config file. By doing this, the config would be
adjustable in a more user friendly manner.

The info rights management class has been created to restrict functions from being executed by user who
should not be able to do this. This allows for example to block certain groups from seeing pictures, which
could contain privacy sensitive information.

The info rights management is implemented as individual functions in the config module. These functions
are able to add a function to the list of restricted functions and to change the permissions each role has. To set
up the restrictions, roles and permissions have been saved as enumerators. Enumerators work the same as a
python dictionary, except that the keys are implemented as attributes of a class and it is not extendable during
runtime. These enumerators can be extended or changed in the config file to change the permissions for each
individual role. To restrict a function, an if-statement should be added to the beginning the function that has
to be restricted, which breaks out of the function if the user is not allowed to execute it.

5.2. SYSTEM DESIGN 21

5.2.3. USER INTERFACE
The complete application is built as plugin and is internally also split into several plugins. This is reflected in
the GUI which also consist of several ’plugins’. The GUI is written in Qt which allows to use widgets within
other widgets. Because of this, the user interface consists of a base widget and multiple other widgets adding
information to this base. These are all created using Qt creator which produces .ui files. These are XML-like
files containing names and attributes for every button and frame available in the application.

Figure 5.6: Interface of the TDS with multiple points of interest on the map, including actors. This interface is sized to a bigger screen size,
such as a desktop or laptop with all information views open

The base consists of a horizontal layout containing three parts; a left sidebar, center widget and a right
sidebar. Only the left sidebar contains actual content which is a scroll area. This means that when many
plugins (and its corresponding widgets) are added to this sidebar, it is possible to scroll or swipe down to access
the other items in the sidebar, which normally would not be able to fit in it.

Widgets belonging to a plugin are loaded when the plugin is initialized. This means that when a plugin
needs to change, only the accompanying .ui file needs to be altered. This modularity ensures easy maintenance
of the widgets. Each widget is implemented as a QDockWidget to make it possible drag and drop the widget to
a preferred location. This functionality did not work as expected, so this is replaced by a minimize function
(see below). After loading the plugin, each element in the widget (e.g. buttons, text fields) is given a connection
with a function. This is done in Qt by first connecting a signal (e.g. clicked, enter pressed, right mouse click)
to a specific slot function, optionally accompanied with extra parameters as for example clicked location, or
contents of a text field just entered by the user. The corresponding slot then gets executed.

This process of linking buttons with functions has to be done separately for touch events, generated by
Qt when using a touch screen. As TRADR is going to use tablets and/or smartphones during missions, it was
required to enable touch support. A ’touch click’ in Qt is a completely different event than the standard ’mouse
button pressed’ event, which means that all connections have to be made manually. In Qt this can be solved by
giving widgets (a button and textline is also regarded as a widget) an extra attribute which lets it accepts touch
events as click events. This is why QWidget (the Qt container which can contain other Qwidgets) is subclassed
to a custom TouchWidget class. The only difference is that an attribute is set during initialization. This accept
touch attribute will be set for every child widget recursively.

To allow each widget to minimize, a special function available to QDockWidgets is used. This function
replaces the standard title bar of the widget with a custom widget, which in the case of the TDS is only a
QPushbutton with the original name of the widget in it. Clicking this QPushbutton hides the complete widget
and it is then replaced with its own reopen button placed in the same position. After clicking on the reopen
button again, the original widget is shown again and the reopen button hides again. This is implemented by

22 5. DEVELOPMENT PHASE

extending each QDockWidget with a self-made QMinimizeWidget class which implements these functions. By
doing this, this code only has to be implemented once and is easy to use for future authors of the TDS and
maximizes maintainability.

The notification center, the layer chooser and the actor overview are the three current widgets in the right
sidebar. These three widgets have a QListWidget (contained in a QDockWidget) in common. A QListWidget is a
widget which allows multiple other widgets to be added and shown in a list format. Normally, the QListWidget
displays items with simple lines of text. For the TDS this is adapted to allow widgets to be added instead of the
regular text.

Figure 5.7: Interface of the TDS with a non-invasive error message showing, caused by an incorrect input

5.3. ENCOUNTERED PROBLEMS
A lot of problems were encountered during the development phase. Some were program-breaking problems
solved in the very last week, and other just took a long time to fix. Most of these problems arose from using
Python as programming language. Marble, the main part of the system, is written in C++ and bindings are
created to access its functions from the python environment. In the research phase however, it was unknown
to the team that for some functions the bindings are not available.

5.3.1. PROBLEMS WITH PYTHON BINDINGS
For the program Python 2 was used in combination with Qt to provide the user interface. Also Marble was used
as part of the program for the view of the top-down map. Both Qt and Marble are written in C++, therefore
using these requires bindings to Python. This way Python can access the functions defined in the C++ code,
granting the developer the possibility to use these functions in the Python code.

To make use of the features of Marble and Qt, libraries have been created which provide the required
bindings. A big part of the functionality works by using these bindings. However within the PyKDE bindings
for Marble, some features were missing. This was due to them requiring native C++ arguments or return types,
or the fact that they were bugged and not stable enough to release.

INPUTHANDLER

These missing bindings included the InputHandler class, which was required for catching user input. Because
of this, it was only possible to turn off all user input on the map, or use the actions of the default InputHandler.
These default actions included sending Qt signals with data of the input of the user, and opening a pop-up on
the map. These default actions were not very clearly documented.

5.3. ENCOUNTERED PROBLEMS 23

The Qt signals sent from the InputHandler can be caught using a slot in the Python code. An example of a
signal sent by the InputHandler is mouseClickScreenPosition. This signal sends the coordinates of an on-screen
click within the map. If we were able to connect a slot to this signal it would be possible to add images or icons
on the map and make them selectable. This signal could not be reached as no reference to the InputHandler
was available in the bindings.

The MarbleWidget class, which is accessible and extendable within the Python code, contains the signal
mouseClickGeoPosition providing the geographic location on the map on which a user clicks. mouseClick-
GeoPosition is a signal sent from the InputHandler and resent by the MarbleWidget This signal can be used to
connect clicks on the map to locations the user clicked on The slots connected to the mouseClickGeoPosition
were never called and debugging showed that the signal was never sent.

This problem was solved by making use of the C++ source code of the MarbleWidget. A function within the
MarbleWidget revealed a function with a very specific string required as argument before it would send the
signal. This string was the signature of the mouseMoveGeoPosition, which sends all movement of the mouse
above the map.

The default InputHandler also raises calls to other functions that change the view of the Marble widget.
This could for example cause a pop-up with information about a location to show if the user clicked on an
important part of the map. Since this pop-up restricted the view on the map, especially on smaller screens,
this function needed to be removed. This was done by not allowing the PopupLayer in Marble to render by
removing these lines from the Marble source code. Changing the Marble source code is not a durable solution,
though for the functionality to be available until it is possible to do this through the Python code, it was
required to do so.

PLACEMARKLAYER AND GEOMETRYLAYER

Marble contains a layer interface, allowing to create overlays over the displayed map. Some types of layers
have been implemented already, including layers to show the terrain of the map, pop-ups or placemarks. In
the plugin it was planned to use a placemark to show POI on the map. The bindings for the placemark layer
were not included in the bindings, rendering it impossible to create this layer within Python.

This was fixed by creating a POI layer which subclasses the standard empty layer of Marble. Within this
layer a reference was created to the Marble model. This model includes "documents" containing information
about the features that will need to be rendered on the map. By adding the placemark to this model and
toggling it’s visibility on the map within the placemark object it is possible to use the placemark feature without
using the default placemark layer.

5.3.2. DATABASE
The TRADR consortium uses two databases to save the data gathered by the robots and humans. These
databases are a low-level23 database and a high-level27 database. These two databases should have a single
point of access from the TDS, which was planned to be done by using a Model-API. This Model-API was
supposed to be created by a member of the TRADR consortium. As the development phase progressed, it
became clear that this API would not be finished on time to use in the TDS. Therefore direct queries to the
databases were required to make use of them. To make a connection to the databases, it became apparent that
previously created code by the TRADR consortium could be used.

A visual representation of the data flow between the databases and the TDS is shown in figure 5.8. Between
the databases a script is running, which creates a ’bridge’ between the high-level and the low-level database.
This bridge keeps the information from both databases synchronized. As soon as new information is written
to the low-level database, meta-data is extracted and entered into the high-level database through the bridge
script. Also a reference to the newly added item is inserted into the high-level database, to connect the
meta-data to an actual object in the database.

The code for the connection for the databases is saved in the DbQueries class. This class calls to other
classes which establish the connections and starts polling the high-level database for new information. If
new information is available or a query has been done manually, the high-level database returns the ID and
requested meta-data to the DbQueries class. Using this ID, the actual data can be retrieved from the low-level
database.

The DbQueries class also contains functions allowing to query the high-level database, without too much
redundant code. This has been done by creating a general set of queries such as getting information and
updating information. These queries receive a type as parameter, allowing a single function to query all types
of data.

24 5. DEVELOPMENT PHASE

Figure 5.8: The flow of data between the high-level database, low-level database and the TDS

The data returned by a query was formatted in Extensible Markup Language (XML). To interpret this data,
a Python module called Untangle has been used. This module parses the XML to a Python object, allowing
easier navigation through the structure. It was chosen to parse it like this since the structure of the XML always
has the same format for all queries, therefore allowing for static navigation through the returned XML string.

This flow of data had already been decided upon before the research phase, though this was expected to be
handled by the ModelAPI. As the ModelAPI was not available during the development and since the bridge
script and classes for the database connection were already available, it was chosen to create the flow in this
manner. Also, since the ModelAPI is still planned to be created later on, the flow should not differ too much
from the flow the ModelAPI will be using. This would possibly create difficulties when adapting the TDS to the
ModelAPI.

Due to the model API not being finished and the previous code not being completely stable within the TDS,
it has been decided with the client that the connection to the database will be finished after this project. This
to make sure a fully stable and functional version will be delivered to the TRADR consortium.

6
CONCLUDING PHASE

The final phase of the project is the concluding phase in which testing is finished, the feedback from SIG is
processed and the product and project is finalized. This chapter opens with a report on performed testing in
section 6.1. After this the feedback from the first and second SIG deadline is given, including the actions for
processing this feedback. This can be found in section 6.2.

6.1. TESTING
After a product has been made, the client has to be convinced that the product does what it is expected to do.
The modular independence created in the code of the product should make testing easier, as high coupling
possibly introduces fault-proneness.28

Three kinds of testing are performed:

• unit testing

• integration testing

• acceptance testing

The most basic form of testing is unit testing. This kind of testing tests individual units of source code to
determine if they are fit for use. An example of this is a very basic function which sets a variable with the given
parameter. To test this function it is executed with a known parameter followed by a check if the variable now
actually has the same value as the parameter.

Most test cases in the product are unit tests. This created some problems in the beginning as the production
application initializes every bit of the program before using it. This was not the case in the test suite though as
this is run without all the initializations to test only the part that requires testing. Also many libraries could not
be imported which let all tests fail. The solution was to manually import the right libraries again and to make a
setup for all tests, which initialized only the parts needed for that specific test.

A more extensive form of testing is integration testing. This kind of testing combines several software
modules and test it as a group. While individual methods can pass a unit test by themselves it is possible
that they provide a wrong result when combined with other methods. Implementing many integration tests
is a quick and efficient way to achieve high test coverage and to make sure multiple modules communicate
correctly. In this project not much integration testing has been performed. This was planned in to be done
in the last week, but there was not enough time left due to the sudden database integration. This is further
described in the next section, section 6.2

The last used form of testing is acceptance testing. The goal of this testing method is to determine if the
requirements are met. This is often executed before delivering the product to the client. While there is software
to test for example GUI’s this was not done because of the lack of time. Instead the team decided to perform
manual testing on the product which revealed several small issues, though these were mostly graphical issues
which could be solved quickly.

After the project has been finished, an integration meeting will be done in which all systems created by the
TRADR consortium will be tested. The TDS will be tested here too. These tests in a simulated environment will

25

26 6. CONCLUDING PHASE

make it easy to double check acceptance tests. During this meeting or a following one, the product will be
tested by the end users and more feedback will be received after this.

The tests resulted in a program that has as few bugs as possible. Since the amount of tests did not cover the
full code, it is still possible that the code contains bugs that have not been found. The testing results will be
further elaborated in section 6.2.

6.2. SIG FEEDBACK
During the project two submissions were made to SIG. SIG has designed the SIG 5-star classification system
for software quality, based on the ISO/IEC 25010 model. Among other things, they perform static code analysis.
Submissions have been made at the 75% mark and at the end of developing. The SIG feedback from the 75%
mark is as follows (in Dutch):

"De code van het systeem scoort vier sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
bovengemiddeld onderhoudbaar is.

Als wij naar de deelscores kijken, zien we dat ze allemaal bovengemiddeld scoren. Dit betekent dat jullie de
belangrijkste onderhoudbaarheidsprincipes nauwkeurig hebben gevolgd, complementen daarvoor.

Het is ook goed om te zien dat jullie testcode hebben geschreven. Jullie zitten nog wel wat onder de optimale
verhouding testcode/productiecode van 1:1. Voor de evaluatie van de tweede upload zou je nog eens kunnen
kijken of de huidige testcode al de belangrijkste functionaliteit van de code raakt. Het toevoegen van testcode is
over het algemeen altijd aan te raden, want meer tests leiden tot minder fouten in de code.

Over het algemeen scoort de code dus (ver) bovengemiddeld, hopelijk lukt het om dit niveau te behouden
tijdens de rest van de ontwikkelfase."

Translated in English:

"The code of the system scores four stars (authors: out of five) in our maintainability model, which means
that the code is above average maintainable.

If we look at the sub scores we see that they all score above average. This means that you accurately followed
the most important maintainability principles, my complements for that.

It’s also good to see that you have written test code. You are however below the optimal 1:1 testcode/productioncode
ratio. For the evaluation of the second upload you could look if the current test code hits all the important
functionality of the code. Adding test code is in general always advisable, as more test lead to less errors in the
code.

So in general the code scores above average, let’s hope you can maintain this level during the rest of the
development phase."

The result of the first SIG evaluation was expected, as we hurried to write tests before the first submission.
As the rest of the code scored well, we tried to maintain every coding pattern we had. In the last week of
the project, the planned time to write the majority of test code, it became clear that we would not receive a
database API as was discussed in the beginning of the project. Next to finalizing the program and writing the
database code there was little time to also finish writing test code. As most program functionality was coupled
to the GUI it was decided to manually test the code with the help of the written use cases.

Because of a lack of time there was actually less coverage in the last submission than in the first one. More
tests are present, and more code is being tested than in the first submission, but also more production code
was added in the meantime which results in a lower coverage percentage. At the first SIG deadline a code test
coverage of 65% was achieved. At the second deadline, the tests resulted in a coverage of 55%.

The second SIG feedback was as follows:

"In de tweede upload zien we dat de omvang van het systeem gestegen is. Het systeem scoort nog steeds vier
sterren, wat betekend dat het bovengemiddeld onderhoudbaar is.

Er is echter een stuk daling in de score op te merken. Deze is met name toe te schrijven aan Unit Complexiteit.
In de bestand database.py bijvoorbeeld is er een unit ‘run(self)’ die bovengemiddeld complex is. Het opsplitsen
van dit soort units in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te begrijpen, te testen en
daardoor eenvoudiger te onderhouden wordt.

Wat betreft de testcode, is het goed om te zien dat er een stijging in het volume van de testcode is.
Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie zijn meegenomen

in het ontwikkeltraject."

6.2. SIG FEEDBACK 27

Translated in English:

" In the second upload we see that the size of the system has risen. The system still scores four stars which
means that it is above average maintainable.

There is however a noticeable drop in the score. This is mainly due to Unit complexity. In the file database.py
for example there is a unit ‘run(self)’ which is above average complex. Splitting this kind of units in smaller
pieces ensures that every part is easy understandable, testable and therefore easier maintainable.

With regard to the test code it is good to see there is a rise in the volume of the testcode.
From these observations we can conclude that the previous recommendations from the last evaluation are

taken into account in the developing process. "

The team agrees with this code evaluation as the database code can be improved. This is mainly because
this code is not completely written by the team, but an adjusted version of code used in other TRADR software.
This is however not a problem as this will be replaced later by the Model-API.

7
CONCLUSION

This chapter gives a conclusion to the research project. This will start in section 7.1 followed by what we
learned from this project in section 7.2 . The chapter ends with section 7.3 where is described which knowledge
from the bachelor program was used.

7.1. CONCLUSION
In the beginning of this report the following research question was formulated:

How to create a modular GUI for use in a robot-human-team-based Search and Rescue operation?

Answering this question began with defining all requirements which defines the goals of the project. The
team managed to implement all requirements from the ’must have’ section (see subsection 4.2.2) and many
others. This is one of the success criteria stated in the definition of done in subsection 4.2.3. The requirement
for the database will be finished after the project as mentioned in the last paragraph of subsection 5.3.2.

The second criterion in the definition of done is passing all acceptance tests. Although testing was done
less thoroughly than planned (see section 6.1), we managed to pass manual acceptance testing based on the
use cases. These use cases were made based on the requirements in section 4.2.2. As the team held weekly
meetings with the client discussing the progress, the implementation of the requirements has also been verified
here.

The third and fourth criteria are also met as the application runs on the specified hardware and does
not have any outstanding high priority, severe or program breaking bugs. A side note is that the database
functionality still has some issues. This is further discussed in the Discussion in section 8.1.

After the research question was formulated sub questions were made. The first sub question is how to
create a modular GUI. As stated in section 5.1 this can be done by building each part of the program as a plugin
using the Model-View-Presenter architectural pattern and a general ’add-plugin’ function. This function makes
sure that each part is loaded correctly and separately in the right order. By building with plugins that can work
independently, modularity is implemented. Also the usage of RQT contributed to an modular user interface.

The second sub question is how to display the information needed by these rescuers in an effective way.
The answer to this question, given in subsection 4.3, is that non-invasive messages should be used, that the
map overview should be the center of the application and that it should be possible to minimize distractions.
This can be done by allowing the user to view only what is needed at that time by minimizing information
views and/or toolbars which are unnecessary in a specific situation.

The last research sub question; "How to integrate this system into existing systems TRADR already uses?", is
answered throughout the report. To use the TDS alongside other user interfaces such as the OCU, the TDS has
been built as an RQt plugin, allowing the user to open multiple interfaces in a single main window. To integrate
the TDS in the already existing TRADR architecture displayed in figure 4.1, a connection to the databases has
been made as described in 5.3.2, allowing the TDS to receive all information stored, including saved images
and points of interest.

The research questions have been answered and the criteria from the "Definition of Done" are met, so now
can be concluded that the problem has been solved, and thus the research question has been answered. The

28

7.2. LEARNINGS 29

client, the TRADR consortium, now has a modular base to build on top of and to use the coming years during
their project, which was the goal.

By making this product and implementing this as part of a larger system it is achieved that Search and
Rescue missions can be executed more efficiently and thus potentially lives can be saved.

7.2. LEARNINGS
By doing this project we learned much from both a Computer Science perspective as project experiences
perspective. In the research phase we experienced how to work together with other international organizations.
This was for example done by working at TNO and going to Fraunhofer in Germany. By doing this we also
learned to work together with various kinds of people; researchers, students and people from business
environments.

We also learned to respect deadlines even more than before, as failing to meet these deadline caused many
problems during the project. We learned during the development phase that we should communicate earlier
and more clearly if there is a problem. We also learned not to promise to create something without being sure
it is even possible. Next to this the experience with programming languages (mainly python) and applying
architectural patterns has increased a lot as we worked through all functionality.

7.3. USED KNOWLEDGE
As this project is the last course of the Computer science course previously accumulated knowledge had to be
used. Next to all project experiences, the Software Quality and Testing course provided knowledge of using Git,
different types of testing and how to test in general. We used knowledge from Software Engineering methods
about benefits/drawbacks of certain design patterns, as also the use of Scrum.

8
DISCUSSION AND RECOMMENDATIONS

To conclude the report the product itself will be discussed in section 8.1. This is followed by recommendations
for future development in section 8.2. To finalize a reflection on the process is given in section 8.3.

8.1. DISCUSSION ON PRODUCT
In the finished product, some bugs have been discovered already. One of these bugs takes place when using
restricted functions with the info rights management. When information is retrieved from the database, it
is possible that information is not shown in the TDS. This is due to the fact that the retrieved information is
added to the program using the same functions as the functions the user can use to add data manually to the
TDS. If this function is restricted, the function will not be executed by the program, therefore the received data
will not be added locally and shown. This should be fixed before the info rights management is actually going
to be used and it can possibly be fixed by overriding the permissions from the user if the function is called by
the database if the user is allowed to receive the information from the database.

Another bug, which is of importance, is the fact that the program does not start without a database
connection. The database connection is created using already available code from the TRADR consortium.
This code ends up in a waiting loop if the database connection is not found. Because of this, the initialization
of the TDS is halted until a database connection is established. Multiple possible solutions have already been
tried, such as using threading to separate the main thread and the database connection thread. Using threads
caused synchronization issues and in some cases the database connection would not be available to the code.
Since the connection between the database and the TDS was created in the last moments of the development,
we were not able to fix this bug before delivering the product. It could possibly be solved using threads in
some other manner or on a different part in the code, specifically the database connection code from the
TRADR consortium. This problem could also be fixed if the API is written for communicating with the database
from the TDS. The blocking loop when querying the database when no connection is established and when
establishing the connection should be taken into account when writing this API.

The program also is unstable without a database connection. As most of the functionality of the program
is using the databases as ground truth, a lost database connection can cause the program to receive invalid
data or block the main thread. This can cause the program to throw exceptions. Most of these exceptions are
caught properly and shown in the TDS, allowing the program to proceed, though in some cases the program
can still crash. This problem can be solved when the API for the databases returns a proper value to indicate if
something went wrong.

8.2. RECOMMENDATIONS
During the project, an API would be provided to query the database. This API was created to relieve the
developers from having to query the multiple databases manually. It would be used as main access point to
the database, providing in all required functionality.

As this API was not created yet at the end of the development of the TDS, direct queries to the database
have been created to make the TDS functional. These direct queries do make the source code of the TDS
more difficult to read, as well as making it harder to change the database or database structure. Therefore

30

8.3. REFLECTION ON PROCESS 31

we recommend to still create an API for the connection with the databases. Not only does it allow for easier
maintenance than the currently created database module, it also makes extending or adjusting the TDS easier.

Many problems also became apparent when working with the PyKDE bindings for Marble. Problems
appeared when trying to access the input handler or placemark layers. The person maintaining the TDS should
keep track of the development of the Marble and the PyKDE bindings. New and updated bindings may solve
many bugs which occurred due to missing or incorrect bindings. These bindings can create easier and more
efficient solutions to problems, like adding or editing placemark object.

To make the GUI more modular, all individual toolbars could be added to RQt separately. By doing this,
every single plugin can be added when required. Due to RQt’s modular interface, all these toolbars can be
relocated and resized independently of the TDS itself. By doing this the OCU can for example be added
between the toolbars and the map. That RQt is able to do this without breaking references between different
modules was not known to us during the development phase. Therefore we did not have time to change the
code in such a way to accommodate this. It can be done by replacing the MapViewPlugin class with multiple
separate classes for each toolbar or function that requires a view and adding them separately to RQt.

8.3. REFLECTION ON PROCESS
Overall we think the process was satisfying. We had a good relation with the team members of the TRADR
consortium which resulted in friendly informal and thereby efficient conversations. Something we really
appreciated doing is writing down everything that was said as our memory is quite bad. This way we made
sure that everything that was discussed was also actually processed. Also appointments were clear for both
parties by doing this.

Next to this, we were very proactive in seeking help when needed, though this could have been better in
the first weeks when a lot of software was not working. In the last few weeks we discovered that we did not
presented our problems clear enough as our coach didn’t realize that essential functionality was not working
at the time.

We are very enthusiastic about the collaboration between us team members. As we are only with two
people decision could be made quickly. We worked together every day and had fun while doing that.

An aspect that could be improved in the process is the planning of time. We needed more time in the
research and concluding phase than expected which didn’t leave enough time for the development phase as
this was shortened by two weeks. This meant that the last two weeks were done in a hurry which resulted in a
lower quality of coding and writing than can be achieved.

Another point of improvement is knowing when to stop trying if something is not working. We spend a lot
of time on certain functionality while in hindsight this could not have worked or another solution would be
better. We also did this on functionality which is not in the must haves section of the requirements, while more
important functionality was not implemented yet. This time could have been better spend.

A
PROJECT DESCRIPTION

The TRADR project is a European collaboration between 8 different universities on the topic of Search & Rescue
robots. At TU Delft we are developing an agent-based system to enable robots (ground and air) to operate
in a team of human firefighters during Search & Rescue missions, e.g. after a fire or earthquake. The system
consists of a multi-agent layer for teamwork coordination, an RDF database for ontology modeling and an
adaptive user interface (UI) that supports coordination of teamwork between humans and robots, provides
tactical information and can be operated by firefighters in the field (e.g. through tablet/smartphone).

The problem that needs to be solved concerns the question of how to design a system that enables
firefighters to work effectively with robots during Search & Rescue missions. Concretely, the BSc project
consists of the design, implementation and testing of a back-end system and prototype UI which combines
data from the agent-layer and RDF database, and presents this to users on a tactical information display.

The agent layer coordinates teamwork for both people and robots, and individual agents decide what
to show to specific users (when and how, eg. draw attention vs subtle). The RDF database allows for model
storage and reasoning and connects to the UI.

The UI is envisioned as something like a GIS map with multiple layers of information (e.g. team-members,
infrastructure, water points etc), that can display a variety of information, depending on the user and on the
context, and that can be used to coordinate teamwork. Based on experience from earlier tests, there are a
number of design requirements, such as:

• connection to RDF database

• map (eg. Google maps) as a base-layer

• multiple layers showing different kinds of information

• widget-like setup to easily switch on/off different components

• the Marble framework will be used as a basis

• coding can be done in C++, Qt Quick (QML) or Python

source: Bepsys: http://bepsys.herokuapp.com/projects/view/102

32

B
SCRUM SPRINTS

B.1. GENERAL PLANNING
WP1: 6 Juli

• map tools 4h

• shortcuts to locations 3h

• Communication with other Ros Nodes 4h

• a structure allowing plugins to extend the program 1h

• a layered structure 6h

• Modular set-up of interface 2h

WP2: 27 Juli

• an indicator of status of actors

• Icon features

• display of photos

• Info rights management

• faulty connectivity/power notifications

• Database: information properties

WP3: 3 Augustus

• handheld device support

• setup guide

• multiple instances

B.2. ACTUAL PLANNING
These are the results after the scrum meeting at the beginning of each week

33

34 B. SCRUM SPRINTS

B.2.1. SPRINT PLAN WP1
Bucket until WP1

• a layered structure

• Maptools

• shortcuts to locations

• a structure allowing plugins to extend the program

• Modular set-up of interface

• Communication with other Ros Nodes

WP1 Plan

• a layered structure

• Create single layer

• Create generator

• Layer selection

• Maptools

• Measure Distance

• Designate Area

• Scale

• shortcuts to locations

• a structure allowing plugins to extend the program

• Modular set-up of interface

Comments: Many of the first waypoint functionalities were already available after installing all existing
plugins.

WP1 After recap Due to various non-existent functions which should be available normally, and way too
much research time needed to get layers properly working, time approximation was way off. Programming
speed is going up gradually and approximations become better.

We weren’t able to finish:

• Layered structure -> Main functionality is now available, but more work is needed to have it working
correctly

• Maptools -> Many of the build-in functions do not work as expected or not at all. Need to rewrite these
functions completely

B.2. ACTUAL PLANNING 35

B.2.2. SPRINT PLAN WP2
WP2 - Week 1 Plan

• Notification- & Errorcenter 4h – Marnix

• Layer structure 8h – Jamey

• Create POI layer 6h – Jamey

• Layer z-index switcher 4h –Jamey

• Database 12h – Jamey & Marnix

• Go-to from notification 1h – Marnix

• Create restricted layer 0.5h – Jamey

• Connect to database - Shortcuts to location 2h – Marnix

• Highlight POI layer points in layer structure 8h – Jamey

• Measure distance rewrite 5h – Marnix

• Scale bar 2h – Marnix

WP2 - Week 1 Recap

Notificationcenter now only needs a database connection. Layer structure got fixed after being plagued by
a harsh bug. Database is thought trough but needs to be talked through first with Timea. Documentation got
added but needs to be worked out more.

Not (completely) finished:

• Layer z-index switcher

• GO-to from notification (button exists)

• Database

• Highlight POI layer points in layer structure

• Measure distance rewrite

• Scale bar

WP2 - Week 2 Plan

• Database 9hr – Marnix

• Layer z-index switcher 5hr – Marnix & Jamey

• POI Layer - add POIs 6hr – Jamey

• Go-to from notification 1hr – Marnix

• Maptools 1hr – Marnix

• Communication with ROS 4hr – Jamey

• Tracking POI Layer 3hr – Jamey

• Faulty-conn. Notification –2hr – Marnix

• Displaying photo’s 10hr

• Actor-information 9hr – Marnix & Jamey

36 B. SCRUM SPRINTS

Plan for Monday: Finish documentation as far as possible WP2 - Week 2 Recap Beginning of the following

week the SIG deadline is planned. Therefore a lot of refactoring has been done at the end of the week, instead
of much new functionality. We’re still waiting on the API for the database, therefore some functionality cant be
finalized/tested. Though the DB is already installed. The structure has been discussed already. Communication
with ROS has been moved to a lower priority. Displaying photo’s became top priority for next week now. Layer
z-index switcher is impossible due to Marble’s placemark rendering.

WP2 - Week 3 Plan

• Displaying photo’s – 15 hr

• Database – 5hr (Awaiting Model API)

• Actor-information – 9hr

• Tracking POI layer – 5hr

• Allow minimalisation/re-opening of dock-widgets – 3hr

• Faulty-conn. Notification – 2hr (Awaiting Model API)

Remark: Less hours are assigned to this week, due to the need for more time for writing tests and documen-
tation.

WP2 - Week 3 Recap
The first 2 days of the week were spent on writings tests before the first SIG deadline. This caused some

delays in the planning. Displaying photo’s has gotten way more difficult than expected due to unavailable
bindings for the inputHandler and PlacemarkInfoDialog. A workaround is in the pipeline. Database Model API
won’t be implemented before the end of this project (because of no good implementation of lazy evalualtion in
Python), therefore we’re going to try to directly communicate with the DB.

B.2.3. SPRINT PLAN WP3
WP3 - Week 1 Plan

• Displaying photo’s – 13 hr (including trying to make the placemarks clickable instead of list of place-
marks)

• Database – 10 hr (Including connectivity notification)(Model API cannot be used, manual stuff)

• Actor-information – 2hr

• Tracking POI layer – 4 hr

• Allow minimalisation/re-opening of dock-widgets – 3hr

• Process SIG feedback – 6hr

Although the following was not really discussed in a scrum meeting anymore, the following was done in
the last week(s):

• Database implementation

• Login screen

• Connectivity notification for database

• Process SIG feedback

• finalized documentation and made read me file. Removed unused code.

C
APPENDIX C: RESEARCH REPORT

37

CONTENTS

1 Introduction 1
1.1 Preface . 1
1.2 Introduction . 1
1.3 Problem Definition . 1
1.4 Background . 2

2 Requirements 3
2.1 Actors . 3
2.2 Requirements . 3

2.2.1 Main Requirements . 3
2.2.2 Definition of Done . 5

2.3 Design goals . 5
2.3.1 Maintainability . 5
2.3.2 Usability . 6
2.3.3 Performance . 6

2.4 Design Overview . 6
2.5 GUI Design . 7

3 Software 8
3.1 Software . 8
3.2 Frameworks. 8

3.2.1 ROS . 8
3.2.2 RQT . 8

3.3 Languages . 9
3.3.1 QT . 9
3.3.2 Python . 9

4 Testing Frameworks 10
4.1 PyUnit . 10
4.2 Py.test . 10
4.3 Nose . 10
4.4 QTestLib . 10

5 Documentation 11

A Use Cases 12

iii

1
INTRODUCTION

1.1. PREFACE
This document is the research report of the TRADR assignment as part of the Bachelor Thesis course at the
Delft University of Technology, The Netherlands. This course is the last part of the Bachelor’s programme,
allowing the students to prove what they learned and are worthy of receiving the Bachelor’s degree.

This report provides an introduction into the problem we are going to solve, including how it is going to be
done and why it will be done like that. The goal is to give an insight into what has been researched to find a
solution and to show the chosen way is the best way to do it.

1.2. INTRODUCTION
Search and Rescue operations can be very dangerous. The in-field rescuers can be exposed to fire, hazardous
materials, unstable structures and other hazards which cannot be seen from their field of view. To make
the in-field rescuers’ job less dangerous, robots are being used more often to do the possibly dangerous or
impossible jobs instead of the humans. The robots do not just make the job less dangerous, it might also speed
up the mission, which could save lives.

The Long-Term Human-Robot Teaming for Robot Assisted Disaster Response (TRADR) project is an
European collaboration consisting of 12 partners from 6 countries on the topic of Search & Rescue robots.1

Among them are 5 universities, 3 research institutes, one industry partner and three end-user organizations,
representatives of fire-brigades from Germany, Italy and the Netherlands. The project started on November 1,
2013, which means that at the time of writing this report the project is in its second year, out of four. TRADR is
developing an agent-based system to enable robots (ground and air) to operate in a team of human firefighters
during Search & Rescue missions. It builds on the research and experience of the NIFTi project which focuses
on human-robot teaming.2

A use case of TRADR is responding to a medium to large scale industrial accident, which can stretch over
several days in dynamic environments. Various kinds of robots collaborate with human team members to
explore the environment and gather physical samples. Other use cases include man-made or natural disasters
such as earthquakes, floodings or major traffic accidents.

1.3. PROBLEM DEFINITION
An important part of the TRADR project is creating an overview of the mission area and communicating
important information in an effective way. To do this, a modular Graphical User Interface (GUI) for the
TRADR system is desired on which a map of the area can be displayed, along with various other information
such as locations of casualties, danger zones, photos of disaster sites etc. This information should be easily
accessible by the in-field rescuers and new information should be easy to insert and send to all other emergency
responders involved in the mission.

This GUI for the TRADR-project will be called the TRADR Display System (TDS) and will consist of two
major parts; The MapView and the Operator Control Unit (OCU). The OCU has already been created. This
bachelor project is aimed at creating the MapView plugin to run alongside the OCU. This plugin will be

1

2 1. INTRODUCTION

required to be extendable, therefore it will need a modular design. It also will need to be a sturdy and easy to
use system, which requires no deep technical knowledge. The main question of the project therefore is:

How to create a modular GUI for use in a robot-human-team-based Search and Rescue operation?

1.4. BACKGROUND
In the years before the TRADR project was the NiFTi project.3,4 The goal of the project was to bring the human
factor into cognitive architectures, while developing robots capable of collaborating with humans in teams.
The TRADR project builds onto the experiences gathered in the NiFTi project. They are both aimed at using
human-robot cooperation in Urban Search & Rescue missions.

One of the conclusions of the NIFTi project was that information persistence is very important, as the
missions can have a duration of longer than a day. Without this, much information can be lost or forgotten as
the time goes by. The TRADR project aims at adding persistent models to the experience gathered in the NIFTi
project to create the ideal human-robot cooperation in search and rescue missions.

2
REQUIREMENTS

This section defines the use and requirements of the application. In subsection 2.1 the actors of the system
will be described. After that all requirements will be listed in section 2.2. Next the driving design principles
will be discussed in section 2.3 and lastly, a general overview of the system design is given in section 2.4.

2.1. ACTORS
The actors of the system are different per location, as the system is used by fire brigades of different countries.
In general, the following actors will be present:

1. Mission commander: Gives orders to team leader and has the overview. The commander sees all the data
a technical team (who selects useful images/information from incoming data streams) has prepared for
him.

2. Team leader: Connection between mission commander and team (which are the robot operators and
data pre-selection persons). The team leader does not access dangerous areas.

3. In field rescuer: Retrieves mission information from the TDS for in field use. It is possible that in field
rescuers have certain specialties and capabilities. These therefore might use the TDS in a different way.

2.2. REQUIREMENTS
This section lists the requirements for the product in subsection 2.2.1 and describes the criteria to label the
product as finished in subsection 2.2.2. Use cases are made based on these requirements which can be found
in Appendix A.

2.2.1. MAIN REQUIREMENTS
The requirements for the product are categorized through the MoSCoW principle:

MUST HAVES

The product must have:

1. a modular set-up of interface: be able to show or hide certain components and personalize interface
according to role, personal preference and device

2. a layered structure (where layers can be switched on or off) with

• base map

• location of team members

• info icons (Points of interest such as victim, fire, hazardous material, obstacle, remark, photo)

3. info rights management (who can see what, based on different roles)

4. give a notification in case of faulty connectivity and reestablishes it when available.

3

4 2. REQUIREMENTS

5. display of photos

6. a structure allowing plugins to extend the program

7. the possibility to run multiple instances on different machines, while displaying the same information
on the multiple instances.

8. a setup guide.

9. a communication ability with other ROS nodes (e.g. to display a videostream)

10. handheld device support: touch control and keyboard on screen when using a touch screen

11. user friendly feedback when an error occurs.

Also, the product must:

• run on Linux

• use KDE Marble

• be implemented as a set of RQT plugins

• use databases as ’ground truth’ for data retrieval and storage, in particular the Stardog (RDF) and low
level database from the existing system.

• be fully documented using Sphinx and Rosdoc

SHOULD HAVES

The product should have:

1. the following added layers:

• layer for photos, including clustering where multiple pictures have been taken (like in Google
Maps)

• layer for robot trajectory traces

• area indication (“working agreements”) (go, no-go, unstable, searched, robot autonomy)

• user input on the map (Text, notes, drawing, photos)

2. the following icon features:

• icons should be informative (e.g. thumbnail icons from photos, indication of robot control)

• icons should scale naturally

• possibility to lock icons (as to not move them by accident, possibly default)

• show field of view/orientation for photos and robots when data is available

3. the following properties for information in the database:

• timestamp of entry

• name of actor who entered the information

• visible in TDS

4. an indicator for reachability of actors

5. shortcuts to locations

6. map tools (scale info, distance measure)

7. GPS-coordinates visible within TDS (when adding icons and current view)

2.3. DESIGN GOALS 5

COULD HAVES

The product could have:

1. Robot status info screen (battery, connection status etc.)

2. time line of events (possibly within main TDS for team leader)

3. possibility for situation report or briefing

4. representation of team management information (e.g. showing team members; show goals, tasks and
status)

5. global search function (e.g. search for data, text, objects)

6. Streetview-like option to view specific area as 3D map (Overlay the 3D point-cloud map with the 2D
plan)

7. information from external sources (e.g. weather information)

8. possibility to show videos and play back videos

9. speech input (in cooperation with DFKI)

10. display of (co-)variance of GPS location

11. comment functionality on photos and other entities

12. simple image editor

13. multitouch functionality (gestures, pinch-to-zoom)

14. recovery options (e.g. using the last position of a robot when the connection is lost or power supply is
not functioning)

HARDWARE

The hardware on which the application must run is:

1. A computer system running linux 14.04 with wifi.

2. A tablet running linux with wifi.

2.2.2. DEFINITION OF DONE
This subsection will state the criteria which the finished product has to meet to be called done.
For the product to be finished, the system has to:

• have all must have requirements from subsection 2.2.1 implemented

• pass all acceptance tests

• have no high priority, severe or program breaking bugs left outstanding.

• run on the required hardware as stated in subsection 2.2.1

2.3. DESIGN GOALS
During development certain design goals are taken into account. These goals are high level and can be thought
of as the driving principles during the project. This is to ensure a stable and fast performing program which
is pleasant to work with for end users. The following subsections describe these goals. Security is not an
important design goal as the client stated that this is not a necessity for now.

2.3.1. MAINTAINABILITY
A very important design goal is modularity. A modular build application is a part of the ’must haves’ in the
requirements, so this will mean a lot to the client. Some advantages of a modular build application are that it
can be easily expanded. Also, when something needs to be altered, it is possible to change only that specific
part without the rest of the program being affected. This will be very useful for the client as expansion is
planned right after we are done with the project. Modular independence also makes testing easier, as high
coupling possibly introduces fault-proneness.5

6 2. REQUIREMENTS

To ensure that expanding and changing the application is an easy task, the code will be extensively
documented in the form of comments, installation and setup guides and documentation in the version
management system the TRADR-project team already uses.

The last design goal for proper maintainability is to ensure high code quality. This can be done by adhering
to coding standards,6 processing feedback from Software Improvement Group (SIG), doing static code analysis
in the IDE and peer reviewing.

2.3.2. USABILITY
The application is going to be used in various and sometimes chaotic environments. The goal is to create an
overview of the situation and thus the program should also be easy to use and to get information from. To do
this, the meaning and function of used icons should be instantly clear.

To continuously keep an overview of the situation, users should not be disturbed by dialogs and should not
leave the current context when trying to enter new information.

Adding to this, when an error is made by the user or system, a user friendly error-message should appear
which is clear and noticeable, but not invasive.

2.3.3. PERFORMANCE
During a search and rescue mission all systems have to perform when needed, as failing hardware or software
could mean loss of lives. This means the application has to keep functioning correctly even when things go
wrong with external factors as for example a lost connection to the database. After such a failure, the system
still has to display at least the known old information, and recover new information when the connection is
reestablished.

When multiple instances of the TDS are active, the system will have to take care of consistency between
them. By doing this, we make sure that everybody has the same information at hand. To do this, continu-
ous updates have to be done. This cannot be done when a failure happens, so the correct and up-to-date
information will have to be shown again when the connection is reestablished.

2.4. DESIGN OVERVIEW
As described in subsection 3.2.2, the system will be built as a set of plugins. This can be seen in a schematic
high level overview of the system design in Figure 2.1. The list of possible icons, connected to the IconProvider
plugin, is not exhaustive. The system will be built modular to allow easy modification of possible entities. The
OCU plugin in the RQT package is already build, but as is works the same as other plugins and it is a part of the
TDS, it is also shown in the overview for extra clarity. The IconProvider and the ToolProvider plugins are not in
the RQT package as they can work independent of the MapView, OCU and NotificationCenter.

Figure 2.1: High-Level System Design Diagram

2.5. GUI DESIGN 7

The system also makes connections to two databases. A low level database is mainly used for storing
pictures and other sensor data, while the high level Resource Description Framework (RDF) database is used
for storing references to the images, entities and their meta-data. The high level database is based on an
ontology, so this can be used for reasoning. The info in the databases can also be queried from within the TDS.
The communication to the databases will not be done by the TDS itself but through the Model API. This is
indicated in Figure 2.1 by the gray dotted lines to the Model API. The Model API is not part of this project.

2.5. GUI DESIGN
The TDS should have a GUI that does not distract in any way from the task the user is performing. Users
should be able to see the requested information when they need it and not be bothered by unnecessary
messages or screen-covering notifications. Harrison tested how the Stroop Effect could be used in a GUI by
using transparency.7 With the optimal level of transparency, the optimal division between divided and focused
attention can be achieved.

In the TDS’ GUI, the focus should lay on undivided attention, as it can be hard to keep organized in the
chaos of a mission. Blocking the view on a small bit of information can cause the user to miss important
events. Therefore an interface with no screen-blocking notifications or pop-ups is required. Notifications
will be given through a notification center, which does not create a pop up, but is displayed as continuously
updating stream. This allows the user to see the notifications when he has time for them, and the system tries
to make sure he does not miss any essential messages by showing how urgent a notification or message is.

Divided attention should be taken into account too. For example, the users which control the robots might
need to use the TDS too, which requires them to use the OCU and the TDS at the same time. Splitting and
arranging the windows will be done by RQT itself, as it contains a tiled window manager. This ensures the user
can change the amount of screen he wants to allocate for the separate views. An option to lock and unlock the
window size properties will be present to make sure that windows don’t move accidentally when not wanted to.

Tools and extra information not directly linked to a location will be shown using (tool)bars. These might be
slightly transparent if they lay over the map due to window sizes, though it should not be too hard to see which
button is which tool.

Icons will create a pop-up if they are selected. This screen will show all information that is linked to that
point in a non-transparent overlay. The user should be able to read the information clearly and efficiently,
which transparency might counteract against.

In figure 2.2 the envisioned GUI can be seen. On the left is the toolbar for easy access to tools while on the
right the notification stream is displayed. Also the actor reachability is displayed here. The most important
information, the overview of the area, is in the center of the application. Above this an error notification is
shown (when needed) in case something goes wrong within the system. The menu on top is an default in RQT.

Figure 2.2: Envisioned GUI design

3
SOFTWARE

As the TRADR project is already in its second year, some decisions have already been made by the team about
which software and frameworks to use. An analysis of the software follows in this chapter. In section 3.1 the
software used for the project is described followed by the used frameworks in section 3.2. The chapter ends
with section 3.3 in which a description of the languages in which the program is written is given.

3.1. SOFTWARE
MARBLE

Marble is an application that can display a view of the earth.8 It can be used as an application of its own, but it
also serves as an example of how to use Marble widgets in a self-made program. A big advantage of Marble
is that is runs on every operating system that supports QT4, which is also used in the TRADR project. The
reasons for using QT4 instead of the newer QT5 are described in subsection 3.3.1.

In order for Marble to work, some dependencies have to be installed. On a clean install of Ubuntu 14.04,
the following packages are needed:

• SIP: A tool needed to create Python bindings for C and C++ libraries. In this case the PyQT library.

• PyQT: A set of Python v2 and v3 bindings for QT.

• PyKDE: Provides the python bindings for KDE, where Marble is a part of.

Together they combine all the advantages of KDE, Qt and Python.

3.2. FRAMEWORKS
A framework is a universal reusable software environment that provides certain functionality as part of a larger
program. Two frameworks will be used for our development.

3.2.1. ROS
Robot Operating System (ROS) is a framework which is used to make it easier to program robots. It is being
used for the TRADR project, and needs to communicate with the TDS. This is because ROS sends information
between its processes by sending messages, also to and from the TDS.

In the current TRADR project, ROS Indigo is being used, which is not the newest version of ROS. Though,
Indigo is the most stable version at the moment and recommended for stability.9

3.2.2. RQT
RQT is the base on which the program has to be build. It is required for the product as ROS is being used by the
TRADR system as base.

RQT is a plugin for ROS which allows developers to build a GUI on the ROS platform in the form of plugins.10

These plugins can be written in Python and C++, in combination with Qt. The plugins written for RQT can
be used as a standalone program, or as a window docked inside of the RQT window. The TDS will consist of
multiple separated parts; the OCU and the MapView. These two parts are likely to be used together at the same

8

3.3. LANGUAGES 9

time, on the same machine. To make it easy to use these programs together at the same time, RQT allows
arranging multiple plugins around the window by clicking and dragging. Due to the fact that this feature is
already built in, the program will be build to be embedded in the RQT window.

3.3. LANGUAGES
The following two subsections will describe why the source code of the project will be written in Python and
QT.

3.3.1. QT
Qt is a technology which makes it easier to create cross-platform programs with the same user interface. Since
the TDS should work on Linux desktops, but also tablets and possibly even smartphones, Qt is a good choice
for creating the GUI of TRADR as QT supports all these platforms. Qt is also required when using marble as it is
built on it.

The newest version of Qt is Qt5. For this however, no proper bindings are available to use with Marble.
Therefore, we are required to use Qt4, in combination with the PyQt4 bindings. Qt4 has a worse performance
than Qt5 and lacks some new features, though these are not needed explicitly. The performance will not
become a big problem as the TDS will not demand as many resources as popular Qt based programs. Therefore
porting the Qt4 source code to Qt5 will not be done during the development of the TDS.

3.3.2. PYTHON
The main programming language of this project will be Python2.7. This is because RQT can be used with
Python or C++. Python will require much less overhead code to create the same functionality. C++ libraries
often can be used with Python too, using available bindings. As these are available for every required library
the TDS will be dependent on, using Python should not form any problems.

There are two broadly used versions of Python available at this time; Python2.7 and Python3.4.11 Python2.7
can be seen as legacy, though it is still widely used and will still be receiving bug-fixes and support. Python3
fixed many of the bugs and problems Python2.7 has, though these bugs do not have to be disruptive for
creating the TDS

The preferred version of Python would be version 3, though the Python3 bindings of the KDE are not
created for Marble yet. This forces us to rewrite the bindings of Marble, or to use Python2.7. The last option
requires much less time and has a lower risk, as rewriting the bindings might be a very time consuming task
which can turn out harder than expected.

For building the TDS, Python2.7 will be used in combination with the __future__ import, which allows
easier porting to Python3 as soon as the bindings are available.12

If the bindings are created long before the final deadline, the choice to use Python3 may still be made. This
is however not probable.

4
TESTING FRAMEWORKS

There are a couple of testing frameworks available to use on Python 3. These for example include Python’s
standard unit test module -better known as PyUnit-, Nose and Py.test. Each of them has their own advantages
and disadvantages. A tool to test the GUI is also needed, since the main functionality of the system will be a
GUI

4.1. PYUNIT
The standard unit tests module (also known as PyUnit) is available in the python libraries. This module is
based on the same framework as the Java testing framework JUnit. In comparison with other available modules
for Python, unit test requires verbose code for many simple tasks. The main advantage is that it is included in
the Python libraries and therefore doesn’t need external libraries. The fact that it needs much verbose code to
create simple tests and that it is solely capable of creating unit tests makes it not ideal.

4.2. PY.TEST
Py.test is one of the most used testing frameworks for Python nowadays. It allows many types of testing
including unit tests, doctests and nose tests. The Py.test framework has been properly maintained and
documented and therefore using it is easy to learn.

4.3. NOSE
The Nose framework is a cloned version of Py.test and still holds to the same philosophy as Py.test. It is able to
recognize and use PyUnit tests as well as Py.test tests and it is able to provide the same testing techniques as
Py.test. The code needed for the tests is nearly identical between Py.tests and Nose, therefore there is not much
verbose code needed for Nose either.

4.4. QTESTLIB
QTestLib is a library that can be used to test programs written in Qt and PyQt. It offers features to test GUIs,
like performing mouse- and keyboard-events. This allows the GUI to be properly tested, which is a must for
this project. QTestLib can be used in combination with PyUnit tests, but as these tests can be interpreted by
Nose, it works in combination with Nose too.

The Nose framework in combination with the QTestLib will be used for this project. The Nose framework
has been used in previous code of the existing TRADR project and offers all needed functionality to test Python
code properly. To keep the usage of frameworks consistent, the choice for Nose seems to be the best one.
QTestLib will be used to offer GUI-testing abilities to Nose.

10

5
DOCUMENTATION

The TRADR project is a collaboration of multiple organizations. Since the amount of source code is growing,
and the TDS will be further developed after we are finished with this project, proper documentation is critical.
There is a wiki available for the project members, including documentation of the code and other information
about the project or meetings. The documentation for this is made using automated tools to reduce the
workload and to ensure consistency. Therefore we will make use of Sphinx (in combination with the autodoc
plugin) and rosdoc-lite. Rosdoc will be needed to allow Sphinx to run on the ROS packages. The generated
documentation will be placed in the RedMine wiki.

Another possibility was to use Doxygen instead of Sphinx. Doxygen is a documentation generator mainly
used for C++, but it is also stable on multiple languages including Python. There are many plugins that allows
RedMine to import the generated HTML documentation quickly. The choice not to use Doxygen was made as it
is not native for Python, whereas Sphinx is. It should not create a problem if it would be used, but as the other
documentation already available on the RedMine wiki has been created using Sphinx, this got the preference
for consistency.

11

A
USE CASES

Coordinates visible within TDS:
Prerequisites:

A role is chosen
Map layer is active

Story:
The current gps coordinates of the center of the area are always visible at the down-right corner of the screen.

Map tools:
Prerequisites:

A role is chosen
Map layer is active

Stories:
1. A scale info bar is visible at the down-left corner of the screen
2. When the user opens the Tools menu by clicking on it, a menu opens. After this, the user clicks on ’Measure
distance’.

The user can now click on the map. For each new point clicked the distance to the previous point is added
to the total distance between all clicked points and is displayed in big letters.
When a closed loop (polygon) is created with the last point, the area spanned by all points is highlighted and
can be classified as for example a no-go area.

Moving to location:
Prerequisites:

A role is chosen
Story:

User clicks on a ’Locations’ button: A list of saved locations opens. Static and dynamic locations are stored in
the high level database. User selects location from list: The map moves to saved location. If the map layer was
inactive, it’s activated beforehand. The zoom level is not altered. If a dynamic location (e.g. a moving robot) is
selected, the map layer keeps focus on the centered location.

Indicator of status of actors:
Actor layer inactive:

Prerequisites:
A role is chosen

Story:
When the user clicks on the ’Actors’ button, a list of actors with their current status is displayed. Actors can be

12

13

humans or robots. Possible status are for example: On-line, Busy, Off-line, Injured...

Actor layer active:
Prerequisites:
A role is chosen
Actor layer active

Story:
A colored label is shown on the pin at the location of each actor shown his descriptive status.

Database information properties
Prerequisites:

User/Actor is connected to the network

Story:
User inserts information which needs to be saved in the database (text, drawing, object position, image
upload...).
TDS adds data to the database and adds a timestamp and the name of the actor.
After this all TDS instances involved in the TRADR system are updated with the new information (on map layer).

If the user has no connection he gets a warning message.
Nevertheless, the information on the TDS should remain visible even without a connection.
Also the edit dialog keeps the edited information.
The user can choose if he wants to discard the dialog or if he wants to wait until the connection comes back. If
the connection is back, the information can be stored into the database.

Icon features:
Prerequisites:

A role is chosen
Map layer active
Icon is visible on the map layer

Informative:
Icon shows a thumbnail of it’s icon image or some abstract graphics incl. status label for actors and other
information.

Natural Scaling:
An icon should keep it’s absolute size:
User zooms in on the map layer: Icons shrinks it’s relative size
User zooms out on the map layer: Icons expand it’s relative size

Icon locking:
User clicks on the icon: View expands and shows more information.
User clicks on the ‘Lock’ button: Icon toggles between locked in place and unlocked (default depends on icon
type).

Field of view (FoV):
Icon shows orientation and field of view for robots and pictures if available.

Info rights management:
Prerequisites:

A role is chosen

14 A. USE CASES

Story:
A user only sees information the role is allowed to see.
Changed configuration of the appearence of the TDS will be stored into a local config file according to his role.
The next time a user chooses the same role on startup, settings from the previous local role session should be
reestablished (e.g. opened layers, allocation and size of widget windows).

Layered structure:
Prerequisites:

A role is chosen

Story:
User opens layer overview: Shows a list of all layers with labels showing their status (enabled, disabled, un-
available/restricted...).
User clicks on a disabled layer in the overview: If user is allowed to open layer, add the layer to the interface
and show it’s content.
User clicks on a enabled layer in the overview: Information on that layer disappears.
User clicks on unavailable/restricted layer: System shows dialog, showing the user an error.

Faulty Connectivity Notifications:
No network connection

Prerequisites:
A role is chosen
Connection lost or database down

Story:
When the connection is lost, an according notification appears informing the user until the connection is
available again.
No edits are possible at this moment.
All data of the layers stay visible.
When the connection is reestablished, the notification disappears and the user can enter data again and store
it into the database making it visible for other interested parties.

Handheld device support:
Prerequisites:

A role is chosen
The application is installed on a handheld device(Tablet, phone) with a touch screen.

Stories:
Touching: The user can open menus/buttons by touching it, just like clicking on a computer.
Onscreen keyboard: When input from the keyboard is needed, an on-screen keyboard appears and can be
used.
Multi-touch is not implemented at this point.

Multiple instances:
Prerequisites:

Multiple users are active

Story:
A user wants to join the current TRADR scenario.
The user can open the program, choose a role and see the same (role dependent) information as other users
on other TDS instances having the same role.

15

Some information can be seen by different roles, some are only visible for some roles.

Display of Photos:
Show image and meta-info

Prerequisites:
Images available
A role is chosen

Story:
User clicks on a picture icon on the map layer: System shows image in image viewer. Next to image, available
meta-information is displayed.
User clicks on the ’Exit image viewer’ button: System returns to previous view.

BIBLIOGRAPHY

[1] Tradr mission page. June 23, 2015. URL: http://www.tradr-project.eu/?page_id=73.

[2] Nifti Mission. June 18, 2015. URL: http://www.nifti.eu/mission.

[3] G.J.M. Kruijff et al. “Designing, developing, and deploying systems to support human–robot teams in
disaster response”. In: Advanced Robotics 28.23 (2014), pp. 1547–1570. DOI: 10.1080/01691864.2014.
985335. URL: http://dx.doi.org/10.1080/01691864.2014.985335.

[4] Nifti Homepage. June 23, 2015. URL: http://www.nifti.eu.

[5] Lionel C Briand and Jürgen Wüst. “Empirical studies of quality models in object-oriented systems”. In:
Advances in computers 56 (2002), pp. 97–166.

[6] Style Guide for Python Code. June 23, 2015. URL: https://www.python.org/dev/peps/pep-0008/.

[7] Beverly L. Harrison et al. “Transparent Layered User Interfaces: An Evaluation of a Display Design to
Enhance Focused and Divided Attention”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’95. Denver, Colorado, USA: ACM Press/Addison-Wesley Publishing Co.,
1995, pp. 317–324. ISBN: 0-201-84705-1. DOI: 10.1145/223904.223945. URL: http://dx.doi.org/
10.1145/223904.223945.

[8] Marbe Homepage. June 23, 2015. URL: https://marble.kde.org/.

[9] ROS Distributions. June 19, 2015. URL: http://wiki.ros.org/Distributions.

[10] ROS-RQT Wiki. June 18, 2015. URL: http://wiki.ros.org/rqt.

[11] Python Wiki: Python2 or 3. June 18, 2015. URL: https://wiki.python.org/moin/Python2orPython3.

[12] Python Documentation: 28.11.future. June 19, 2015. URL: https://docs.python.org/2/library/__
future__.html.

16

GLOSSARY

binding A feature of Python is the ability to take existing libraries, written in C or C++, and make them
available as Python extension modules. Such extension modules are often called bindings for the library.
8, 9

doctest The doctest module searches for pieces of text that look like interactive Python sessions, and then
executes those sessions to verify that they work exactly as shown. 10

GUI Graphical User Interface. 1, 10

MapView A plugin to be created during this project as part of the TRADR Display System. It will display a map
of the area which will be enhanced with points of interest. It will need to run alongside the OCU. 1, 6

MoSCoW The MoSCoW method is a method of ranking requirements on importance, so it is easy to under-
stand. The consonants in the word stand for;
M: Must have,
S: Should have,
C: Could have,
W: Won’t have
3

nose test A unit test making use of the Nose framework. 10

OCU GUI plugin build in RQT. It is used to control the robots used in the TRADR project and show the sensor
data to the person controlling a robot. The OCU is part of the TRADR Display System and will run
alongside the MapView. 1, 6, 8

RDF A family of World Wide Web Consortium (W3C) specifications originally designed as a metadata data
model. 7

RedMine A project management web application including a wiki. 11

ROS Robot Operating System. 8, 11

rosdoc A tool that runs an external documentation tool (like Sphinx) on ROS packages. 11

RQT A ROS plugin, allowing users to create user interfaces on top of the ROS system. 8

SIG Company which performs dynamic source code analysis to ensure code quality. 6

Sphinx A tool allowing marked-up, automated documentation for Python and C/C++. 11

TDS Layered, modular display System for the TRADR system. 1, 3, 7, 11

TRADR EU-funded project to develop technology for human-robot teams to assist in disaster response efforts.
1

unit test A testing method used to test if a small unit of code (like a method) has the expected behavior in a
single case. 10

17

BIBLIOGRAPHY

[1] Tradr mission page. June 23, 2015. URL: http://www.tradr-project.eu/?page_id=73.

[2] Agile Manifesto. Aug. 15, 2015. URL: http://www.agilealliance.org/the-alliance/the-agile-
manifesto/the-twelve-principles-of-agile-software/.

[3] ROS Distributions. June 19, 2015. URL: http://wiki.ros.org/Distributions.

[4] RQT wiki page - section 5.2. Aug. 26, 2015. URL: http://wiki.ros.org/rqt/Tutorials/Create%
20your%20new%20rqt%20plugin.

[5] Qt Homepage. Aug. 27, 2015. URL: http://www.qt.io/.

[6] Marble Homepage. June 23, 2015. URL: https://marble.kde.org/.

[7] RQT Wiki tutorial. Aug. 26, 2015. URL: http://wiki.ros.org/rqt/Tutorials/Create%20your%
20new%20rqt%20plugin.

[8] Python Wiki: Python2 or 3. June 18, 2015. URL: https://wiki.python.org/moin/Python2orPython3.

[9] PyCharm. Aug. 26, 2015. URL: https://www.jetbrains.com/pycharm/.

[10] QT Creator. Aug. 26, 2015. URL: https://wiki.qt.io/Category:Tools::QtCreator.

[11] Sourcetree. Aug. 26, 2015. URL: https://www.sourcetreeapp.com/.

[12] Trello. Aug. 26, 2015. URL: https://trello.com/.

[13] Redmine. Aug. 26, 2015. URL: http://www.redmine.org/.

[14] Gitlab. Aug. 26, 2015. URL: https://about.gitlab.com/.

[15] overleaf. Aug. 26, 2015. URL: https://www.overleaf.com/.

[16] PyUnit. Aug. 26, 2015. URL: https://wiki.python.org/moin/PyUnit.

[17] Sphinx. Aug. 26, 2015. URL: http://sphinx-doc.org/.

[18] ROS-RQT Wiki. June 18, 2015. URL: http://wiki.ros.org/rqt.

[19] PyQT4. Aug. 15, 2015. URL: https://www.riverbankcomputing.com/software/pyqt/intro.

[20] Untangle. Aug. 26, 2015. URL: https://github.com/stchris/untangle.

[21] Sphinx autodoc usage. Aug. 27, 2015. URL: http://sphinx-doc.org/ext/autodoc.html.

[22] Nifti Mission. June 18, 2015. URL: http://www.nifti.eu/mission.

[23] MongoDB introduction. Aug. 15, 2015. URL: http://docs.mongodb.org/manual/core/introduction/.

[24] (Private) TDS TJEx-2015 prototype. Aug. 27, 2015. URL: https://redmine.ciirc.cvut.cz/projects/
tradr/wiki/TDS_-_TJEx-2015_prototype.

[25] Beverly L. Harrison et al. “Transparent Layered User Interfaces: An Evaluation of a Display Design to
Enhance Focused and Divided Attention”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’95. Denver, Colorado, USA: ACM Press/Addison-Wesley Publishing Co.,
1995, pp. 317–324. ISBN: 0-201-84705-1. DOI: 10.1145/223904.223945. URL: http://dx.doi.org/
10.1145/223904.223945.

[26] Robert C Martin. “The open-closed principle”. In: More C++ gems (1996), pp. 97–112.

[27] Stardog homepage. Aug. 26, 2015. URL: http://stardog.com/.

[28] Lionel C Briand and Jürgen Wüst. “Empirical studies of quality models in object-oriented systems”. In:
Advances in computers 56 (2002), pp. 97–166.

56

http://www.tradr-project.eu/?page_id=73
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://wiki.ros.org/Distributions
http://wiki.ros.org/rqt/Tutorials/Create%20your%20new%20rqt%20plugin
http://wiki.ros.org/rqt/Tutorials/Create%20your%20new%20rqt%20plugin
http://www.qt.io/
https://marble.kde.org/
http://wiki.ros.org/rqt/Tutorials/Create%20your%20new%20rqt%20plugin
http://wiki.ros.org/rqt/Tutorials/Create%20your%20new%20rqt%20plugin
https://wiki.python.org/moin/Python2orPython3
https://www.jetbrains.com/pycharm/
https://wiki.qt.io/Category:Tools::QtCreator
https://www.sourcetreeapp.com/
https://trello.com/
http://www.redmine.org/
https://about.gitlab.com/
https://www.overleaf.com/
https://wiki.python.org/moin/PyUnit
http://sphinx-doc.org/
http://wiki.ros.org/rqt
https://www.riverbankcomputing.com/software/pyqt/intro
https://github.com/stchris/untangle
http://sphinx-doc.org/ext/autodoc.html
http://www.nifti.eu/mission
http://docs.mongodb.org/manual/core/introduction/
https://redmine.ciirc.cvut.cz/projects/tradr/wiki/TDS_-_TJEx-2015_prototype
https://redmine.ciirc.cvut.cz/projects/tradr/wiki/TDS_-_TJEx-2015_prototype
http://dx.doi.org/10.1145/223904.223945
http://dx.doi.org/10.1145/223904.223945
http://dx.doi.org/10.1145/223904.223945
http://stardog.com/

GLOSSARY

actor A person or robot with the task of working in the field. In the TDS the actors can be any member of the
search & rescue mission and the robots (UAVs and UGVs). 2, 20

binding A feature of Python is the ability to take existing libraries, written in C or C++, and make them
available as Python extension modules. Such extension modules are often called bindings for the library.
6, 7

dostring A string literal in the source code to create documentation or comments. This literal will not be
stripped during compilation, therefore they are accessible during runtime for referencing or meta-data..
7, 8

GUI Graphical User Interface. 3, 10, 13, 21

HTML A markup language which allows the usage of hypertext/links to other documents. It is mainly used for
webpages. 8

MapView A plugin created during this project as part of the TRADR Display System. It displays a map of the
area which is enhanced with points of interest. It runs alongside the OCU. 3

MarbleWidget A widget in the Marble module, showing the map aspect of the Marble user interface in a
compact and adjustable widget. 6, 23

MoSCoW The MoSCoW method is a method of ranking requirements on importance, so it is easy to under-
stand. The consonants in the word stand for;
M: Must have,
S: Should have,
C: Could have,
W: Won’t have
11

OCU GUI plugin build in RQT. It is used to control the robots used in the TRADR project and show the sensor
data to the person controlling a robot. The OCU is part of the TRADR Display System and runs alongside
the MapView. 3, 7, 10

POI Point Of Interest. 1, 23

polling Checking the database at a defined rate to check for new or changed information.. 23

QWidget A normal widget provided by QT with specific functions. See also Widget. 21

ROS Robot Operating System. 6, 7

RQT A ROS plugin, allowing users to create user interfaces on top of the ROS system. 1, 6, 7, 15

S&R search and rescue. 2

SIG Company which performs dynamic source code analysis to ensure code quality. 1, 26

signal A message raised as response to a (user) action. A signal can be used to call slots after for example a
button is clicked in the user interface or if an value changes.. 16, 21

57

58 GLOSSARY

slot A function that can be called by an Qt signal.. 21

TDS Layered, modular display System for the TRADR system. 1, 3, 6, 13, 15

TJEx A testing moment of all the systems created by the TRADR consortium done by simulating an urban
search and rescue mission.. 10, 11

TRADR EU-funded project to develop technology for human-robot teams to assist in disaster response efforts.
1, 2, 9, 15

UAV Unmanned aerial vehicle. 2

UGV Unmanned ground vehicle. 2

USAR Search and Rescue in urban or industrial environments, mainly aimed at confined spaces such as
collapsed buildings. 2

widget (Small) Element of a user interface. Can often be seen as a small program within another program.. 21

XML A markup language to create structured human- and machine readable documents. 24

	Foreword
	Summary
	Introduction
	Methodology
	Strategy
	General Planning
	Tools and software
	Programming Language
	GUI Framework
	Developer Tools
	Other software, languages and frameworks

	Documentation

	Research Phase
	Problem definition
	Problem Analysis
	User Requirements
	Functional Requirements
	Definition of Done

	User Interface design

	Development Phase
	General Implementation
	Making a plugin
	Building with plugins for modularity
	Model View Presenter

	System Design
	Initial TDS Design
	Actual TDS design
	User Interface

	Encountered problems
	Problems with python bindings
	Database

	Concluding Phase
	Testing
	SIG Feedback

	Conclusion
	Conclusion
	Learnings
	Used knowledge

	Discussion and Recommendations
	Discussion on product
	Recommendations
	Reflection on process

	Project description
	Scrum sprints
	General planning
	Actual planning
	Sprint plan WP1
	Sprint plan WP2
	Sprint plan WP3

	Appendix C: Research Report

