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SUMMARY
The global burden of schistosomiasis and soil-transmitted helminth (STH)
infections is substantial, with millions at risk, particularly in sub-Saharan
Africa. Traditional diagnostic methods using optical microscopy are labour
intensive, operator dependent, and often inaccessible in remote areas.
This thesis focuses on the development and validation of an AI-based
digital microscope, the Schistoscope, designed to enhance the diagnosis
of these infections, particularly in resource-limited settings. The aim is to
bridge existing diagnostic gaps by developing an automated system that
reduces reliance on skilled personnel, enhances diagnostic accuracy, and
improves accessibility.

The research integrates innovations in hardware design, digital imag-
ing, and artificial intelligence (AI) to create an affordable, efficient, and
accurate diagnostic tool that addresses the limitations of traditional mi-
croscopy. The primary objectives include designing and developing cost-
effective digital microscope prototypes, integrating AI algorithms for au-
tomated detection and classification of parasite eggs, and validating the
diagnostic performance of the system through field studies. The devel-
opment process began with two low-cost digital microscope prototypes:
the Raspberry Pi-based Schistoscope and the smartphone-based Schis-
toscope. Both designs focused on affordability, portability, and ease of
use, with key innovations such as the integration of 3D-printed compo-
nents and locally sourced materials to ensure sustainability and ease of
maintenance in endemic regions.

Subsequent iterations led to the development of the Schistoscope 5.0,
which featured significant improvements in imaging quality, automation,
and user interface. The device incorporates a whole slide imaging sys-
tem with an advanced autofocusing algorithm, enhancing image clarity
and diagnostic accuracy. A cornerstone of the thesis is the integration of
AI for automated detection and quantification of Schistosoma haemato-
bium and intestinal helminth eggs. The diagnostic framework employs
deep learning models, particularly convolutional neural networks (CNNs),
to perform semantic segmentation and object detection. Key compo-
nents include the DeepLabV3 with a MobileNetV3 backbone, used for se-
mantic segmentation of Schistosoma haematobium eggs, effectively dis-
tinguishing eggs from background artifacts, and the EfficientDet model,
applied for the detection of intestinal helminth eggs, including Ascaris
lumbricoides, Trichuris trichiura, hookworm, and Schistosoma mansoni.

The models were trained on robust datasets collected from field sam-
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xiv Summary

ples, with extensive image annotation to ensure accuracy. The diag-
nostic system demonstrated high sensitivity and specificity, meeting the
World Health Organisation’s target product profiles for schistosomiasis
and STH control programs. Comprehensive field validation studies were
conducted in Nigeria and Gabon to assess the real-world performance of
the Schistoscope. These studies compared the device’s diagnostic accu-
racy with conventional microscopy and composite reference standards
incorporating real-time PCR and UCP-LF CAA. In Nigeria, the study also
focused on the usability and acceptability of the Schistoscope among
healthcare workers, demonstrating high acceptance rate of both the semi-
and fully automated modes. In Gabon, the diagnostic performance was
assessed on fresh and banked urine samples, with the Schistoscope demon-
strating comparable accuracy to traditional microscopy, alongside the
added benefits of automation and reduced diagnostic time.

Key findings highlight improved diagnostic accuracy, with the Schisto-
scope achieving high precision and sensitivity in detecting schistosomia-
sis and STH infections. The integration of AI reduced the need for skilled
personnel, thereby enhancing automation and efficiency. The device’s
cost-effectiveness is underscored by the use of affordable materials and
open-source hardware/software, making it accessible for low-resource
settings. Field readiness was confirmed through validation under real-
world conditions, attesting to the device’s robustness and reliability.

Despite these advancements, the research identified several challenges
and limitations. Some images were affected by sub-optimal autofocus-
ing, impacting diagnostic accuracy in certain cases. The AI models re-
quire further training on more diverse datasets to improve generalisation
across different environmental conditions. Additionally, operational chal-
lenges such as mechanical issues in the autofocusing mechanism were
noted, necessitating further hardware refinements.

Building on these successes and lessons learned, future research will
focus on hardware and software refinement to improve mechanical sta-
bility and AI model robustness. The Schistoscope will be adapted for
the diagnosis of other parasitic diseases, with enhanced field valida-
tion through extensive trials in diverse settings. Sustainable deployment
strategies will explore local manufacturing options to reduce costs and
improve accessibility. Furthermore, the development of cloud-based data
storage and analysis systems will support large-scale public health initia-
tives.

In conclusion, this thesis demonstrates that the integration of AI with
digital microscopy can revolutionise the diagnosis of schistosomiasis and
STH infections. The Schistoscope not only matches traditional microscopy
in diagnostic accuracy but also offers significant advantages in terms
of automation, cost-effectiveness, and field applicability. By address-
ing key challenges in parasitic disease diagnostics, this research con-
tributes to global efforts in controlling and eliminating neglected tropical
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diseases (NTD), with the potential to improve health outcomes in some
of the world’s most vulnerable populations. Therefore, accelerating the
achievement of the elimination targets as enshrined in the WHO’s NTD
Road Map, 2021-2030 in resource-limited settings.





SAMENVATTING
De wereldwijde ziektelast veroorzaakt door schistosomiasis en van bo-
dem overgedragen helminth-infecties is aanzienlijk, waarbij miljoenen
mensen risico lopen, vooral in Sub-Sahara Afrika. Traditionele diagnosti-
sche methoden die gebruik maken van optische microscopie zijn arbeids-
intensief, afhankelijk van getraind personeel en vaak ontoegankelijk in
afgelegen gebieden. Dit proefschrift richt zich op de ontwikkeling en va-
lidatie van een op AI-gebaseerde digitale microscoop, de Schistoscope,
ontworpen met als doel om de diagnose van deze infecties te verbe-
teren, met name in gebieden met beperkte middelen. Het doel is om
bestaande diagnostische problemen te overkomen door het ontwikkelen
van een geautomatiseerd systeem dat de afhankelijkheid van geschoold
personeel vermindert, de diagnostische nauwkeurigheid verbetert en de
toegankelijkheid vergroot.

Het onderzoek integreert innovaties op het gebied van hardware ont-
werp, digitale beeldvorming en kunstmatige intelligentie (AI) om een
betaalbaar, efficiënt en nauwkeurig diagnostisch hulpmiddel te creëren
dat de beperkingen van traditionele microscopie overkomt. De primaire
doelstellingen zijn het ontwerpen en ontwikkelen van kosteneffectieve
digitale microscoopprototypes, het integreren van AI-algoritmen voor ge-
automatiseerde detectie en classificatie van parasieteneieren, en het
valideren van de diagnostische prestaties van het systeem via veldstu-
dies. Het ontwikkelingsproces ving aan met twee goedkope digitale mi-
croscoopprototypes: de op Raspberry Pi gebaseerde Schistoscope en de
op smartphone gebaseerde Schistoscope. Beide ontwerpen waren ge-
richt op betaalbaarheid, draagbaarheid en gebruiksgemak, met als inn-
novatie de integratie van 3D-geprinte componenten en lokaal beschik-
bare materialen om de duurzaamheid en eenvoudig onderhoud in en-
demische gebieden te waarborgen. Vervolgiteraties hebben geleid tot
de ontwikkeling van de Schistoscope 5.0, die aanzienlijke verbeterin-
gen demonstreerde in beeldkwaliteit, automatisering en gebruikersin-
terface. Het apparaat beschikt over een whole-slide imaging systeem
met een geavanceerd autofocussysteem, wat de beeldhelderheid en dia-
gnostische nauwkeurigheid verbetert. Een belangrijke bijdrage van dit
proefschrift is de integratie van AI voor geautomatiseerde detectie en
kwantificering van Schistosoma haematobium en intestinale helminth-
eieren. Het diagnostisch kader maakt gebruik van deep learning mo-
dellen, met name convolutionele neurale netwerken (CNN’s), voor se-
mantische segmentatie en objectdetectie. Belangrijke componenten zijn
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de DeepLabV3 met een MobileNetV3-backbone, gebruikt voor seman-
tische segmentatie van Schistosoma haematobium-eieren, waarbij eie-
ren effectief worden onderscheiden van achtergrondartefacten, en het
EfficientDet-model, toegepast voor de detectie van intestinale helmint-
heieren, waaronder Ascaris lumbricoides, Trichuris trichiura, maanwor-
men en Schistosoma mansoni.

De modellen zijn getraind op robuuste datasets die zijn verzameld uit
veldmonsters, met omvangrijke beeldannotatie om de nauwkeurigheid
te waarborgen. Het diagnostisch systeem toonde een hoge gevoeligheid
en specificiteit, waarmee het voldoet aan de productprofielen van de
Wereldgezondheidsorganisatie voor zogenaamde controleprogramma’s
voor schistosomiasis en STH. Uitgebreide veldvalidatiestudies zijn uitge-
voerd in Nigeria en Gabon om de prestaties van de Schistoscope in de
praktijk te beoordelen. Deze studies vergeleken de diagnostische nauw-
keurigheid van het apparaat met conventionele microscopie en met real-
time PCR en UCP-LF CAA. In Nigeria richtte de studie zich ook op het ge-
bruiksgemak en de acceptatie van de Schistoscope onder zorgverleners,
waarbij een hoge acceptatiegraad van zowel de semi- als de volledig
geautomatiseerde modi werd aangetoond. In Gabon werd de diagnosti-
sche prestatie beoordeeld op verse en opgeslagen urinemonsters, waar-
bij de Schistoscope vergelijkbare nauwkeurigheid toonde als traditionele
microscopie, naast de extra voordelen van automatisering en verkorte
diagnosetijd.

De bevindingen benadrukken verbeterde diagnostische nauwkeurig-
heid, waarbij de Schistoscope een hoge precisie en gevoeligheid be-
haalde bij de detectie van schistosomiasis en STH-infecties. De inte-
gratie van AI verkleinde de behoefte aan geschoold personeel, waardoor
de automatisering en efficiëntie werden verbeterd.

De kosteneffectiviteit van het apparaat wordt onderstreept door het
gebruik van betaalbare materialen en open-source hardware/software,
waardoor het toegankelijk is voor omgevingen met beperkte middelen.
De geschiktheid voor gebruik in het veld werd bevestigd door validatie
onder werkelijke werkomstandigheden, hetgeen de robuustheid en be-
trouwbaarheid van het apparaat aantoont. Ondanks deze vooruitgang,
identificeerde het onderzoek ook verschillende uitdagingen en beperkin-
gen. Sommige beelden werden beïnvloed door suboptimale autofocus,
wat in bepaalde gevallen de diagnostische nauwkeurigheid negatief be-
ïnvloedde. De AI-modellen vereisen verdere training op meer diverse
datasets om de generaliseerbaarheid naar andere omgevingsomstandig-
heden te verbeteren. Bovendien werden er operationele uitdagingen, zo-
als mechanische problemen in het autofocussysteem, vastgesteld, wat
verdere hardware verbeteringen noodzakelijk maakt. Voortbouwend op
deze successen en geleerde lessen zal toekomstig onderzoek zich moe-
ten richten op hardware- en softwareverbeteringen om de mechanische
stabiliteit en de robuustheid van AI-modellen verder te verbeteren.
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De Schistoscope kan worden aangepast voor de diagnose van andere
parasitaire ziekten, met verbeterde veldvalidatie door uitgebreide proe-
ven in verschillende gebruiksomgevingen. Duurzame implementatie-
strategieën zullen de lokale productie opties verkennen om de kosten
te verlagen en de toegankelijkheid te verbeteren. Bovendien zal de ont-
wikkeling van op de cloud gebaseerde gegevensopslag- en analysesys-
temen grootschalige volksgezondheidsinitiatieven ondersteunen.

Tot slot toont dit proefschrift aan dat de integratie van AI met digitale
microscopie, de diagnose van schistosomiasis en STH-infecties revolutio-
nair kan verbeteren. De Schistoscope evenaart niet alleen de traditionele
microscopie in diagnostische nauwkeurigheid, maar biedt ook aanzien-
lijke voordelen op het gebied van automatisering, kosteneffectiviteit en
toepasbaarheid in het veld. Door belangrijke uitdagingen in de diagnos-
tiek van parasitaire ziekten aan te pakken, draagt dit onderzoek bij aan
de wereldwijde inspanningen om verwaarloosde tropische ziekten te be-
strijden en uit te roeien, met het potentieel om de gezondheidsresultaten
te verbeteren in enkele van ’s werelds meest kwetsbare bevolkingsgroe-
pen. Daarom versnelt het de verwezenlijking van de eliminatiedoelen
zoals vastgelegd in de WHO’s NTD Routekaart 2021-2030 in omgevin-
gen met beperkte middelen.
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INTRODUCTION

This chapter provides an overview of schistosomiasis and soil-
transmitted Helminth infections, examining transmission pathways,
clinical and programmatic impact, and current treatment and control
strategies. The emphasis is on the critical role of accessible, timely, and
regular diagnostics in disease management, control, and elimination,
underscoring the limitations of traditional microscopy in resource-limited
regions where diagnostic sensitivity, specificity, and affordability remain
significant barriers. The motivation, aim, objectives, and structure of
this thesis conclude this chapter.
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1.1. NEGLECTED TROPICAL DISEASES
Neglected tropical diseases (NTDs) comprise a diverse range of
conditions caused by various pathogens, including viruses, bacteria,
parasites, fungi, and toxins. These diseases have profound health,
social and economic impacts, particularly in impoverished communities
in tropical regions, although some NTDs extend beyond these areas.
More than 1 billion people are affected by NTDs, with approximately
1.6 billion people in need of preventive and curative interventions [1].
NTDs encompass a wide array of diseases, such as Buruli ulcer, Chagas
disease, dengue and chikungunya, dracunculiasis, echinococcosis,
foodborne trematodiases, human African trypanosomiasis, leishmaniasis,
leprosy, lymphatic filariasis, mycetoma, chromoblastomycosis, and other
deep mycoses, as well as noma, onchocerciasis, rabies, scabies and
other ectoparasitoses, schistosomiasis, soil-transmitted helminthiases,
snakebite envenoming, taeniasis/cysticercosis, trachoma, and yaws.
However, this research specifically focuses on schistosomiasis and
soil-transmitted helminthiases.

1.1.1. SCHISTOSOMIASIS
The World Health Organisation (WHO) reports that in 2020, approximately
240 million people in 78 countries needed preventive chemotherapy for
schistosomiasis, and more than 90% of those affected reside in Africa,
particularly in sub-Saharan regions [2–4]. Schistosomiasis is transmitted
through contact with freshwater contaminated with Schistosoma (S.)
parasites. This makes activities involving freshwater, such as swimming,
bathing, fishing, or even farming in irrigated fields, common transmission
opportunities in endemic regions. Schistosomiasis exists in two primary
forms: intestinal and urogenital. Intestinal schistosomiasis is caused
mainly by S. mansoni, S. mekongi, S. japonicum, S. intercalatum,
and S. guineensis, while S. haematobium is responsible for urogenital
schistosomiasis [3]. Of these six species, S. mansoni and S.
haematobium are the most widespread [4]. Continued exposure to
infested water - due to the absence of piped water, lack of bridges
across streams, poor health communication, and inadequate vector
control - remains a key driver of infection, sustaining the reservoir of
disease.

The clinical impacts of schistosomiasis vary: S. mansoni often leads to
liver inflammation, malnutrition, and stunted growth in children, whereas
S. haematobium is associated with haematuria, painful urination, urinary
tract infections, and in severe cases, bladder and kidney damage, lesions
in the cervix of women with Female Genital Schistosomiasis (FGS), as well
as high infertility rates in regions with high schistosomiasis prevalence
[4, 5]. Although preventable and treatable, schistosomiasis persists
and improved diagnostic capabilities could enable timely intervention,
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particularly for small-scale farming and fishing communities [2, 6].
Efforts to eliminate schistosomiasis as a major public health problem
continue as part of the broader fight against neglected tropical diseases
[3, 4, 7–9]. In 2022, the WHO released updated guidelines for the
prevention and control of schistosomiasis, recommending an integrated
approach that includes the extension of preventive chemotherapy to all
individuals at risk from age two in areas with a prevalence of at least
10%, as well as improving sanitation, access to treatment, and vector
control [2, 10]. This guideline also recommended case management
(detection of cases and treatment) in areas with low prevalence.
Effective diagnosis is essential for early diagnosis and treatment and
for assessing intervention success, tracking disease reduction, and
monitoring parasite transmission. Accessible and accurate diagnostics
are crucial for surveillance and treatment efforts [2, 3, 11]. Although
new diagnostic tools are being developed, challenges in sensitivity,
specificity, and affordability continue to hinder the effective diagnosis of
schistosomiasis [2, 3, 11].

1.1.2. SOIL TRANSMITTED HELMINTH INFECTIONS
Soil-transmitted helminth (STH) infections pose a significant public
health and economic burden and are often associated with poverty
[12]. Approximately 1.5 billion people are currently infected with STHs
worldwide, with the primary causes being Ascaris lumbricoides, Trichuris
trichiura, hookworm species (Necator americanus and Ancylostoma
duodenale), and Strongyloides stercoralis [13, 14].

Transmission occurs when parasitic worm eggs from improperly
disposed human feces contaminate soil and water sources. This occurs
in settings with poor and inadequate sanitation. Infections arise through
direct contact of the skin with contaminated soil or water during daily
activities such as farming or through play for children. Ingestion can
also occur by consuming unwashed or undercooked vegetables or, in
some cases, contaminated water. Symptoms of STH infections range
from diarrhea, abdominal pain, and general discomfort to anemia [14,
15].

Since the mid-1980s, mass chemotherapy programs have been the
primary approach to combating STH infections globally. These programs
have reduced the prevalence and intensity of infections; however,
low-intensity infections with high re-infection rates remain problematic,
and transmission persists [16]. The persistence of STH has led the WHO
to emphasize the critical role of diagnostics in achieving the goal of
eliminating these infections as a public health issue by 2030 [17].

Various diagnostic techniques are used for STH detection, including
microscopy-based methods (e.g., direct wet mount and Kato-Katz
(KK) method), tube spontaneous sedimentation technique (TSET),
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McMaster, Mini-FLOTAC, and formol-ether concentration, as well as
immunodiagnostic-based methods (e.g., ELISA) and DNA-based methods
(e.g., quantitative polymerase chain reaction [qPCR] and loop-mediated
isothermal amplification) [18, 19]. However, these methods differ
in terms of sensitivity, cost, simplicity, and practicality. Despite
advances in diagnostic technology, the WHO continues to recommend
the Kato-Katz microscopy method for the diagnosis of STH due to its
simplicity, ease of use in the field and affordability [20].

1.2. RESEARCH PROBLEM
The diagnosis of schistosomiasis and soil-transmitted helminth infections
in resource-limited settings remains challenging due to the reliance on a
labor-intensive microscopy technique that requires skilled personnel and
is prone to variability in accuracy. Existing automated microscopy-based
diagnostic tools for diagnosing these infections are inefficient with
automated slide scanning systems that capture and focus on irrelevant
areas of the slide, thus require optimization to minimize scanning
time by targeting only diagnostically relevant parts of sample slides.
Furthermore, there is a critical need for a robust and automated
helminth egg detection system that can handle the complexities of
field-captured images, such as artifacts, transparent, and overlapping
eggs, to improve both accuracy and efficiency. This research aims
to address these challenges by developing and validating a digital
microscope with a comprehensive automated diagnosis framework.
This diagnostic framework will integrate deep learning and refined
segmentation techniques for the enhanced detection and quantification
of Schistosoma eggs in urine samples and will be extended to the
detection and classification of multiple intestinal helminth species in
Kato-Katz fecal smears. The goal is to create a reliable, affordable
and easy-to-use system that meets the WHO’s diagnostic target
product profiles, thereby supporting schistosomiasis and STH control
and elimination efforts, reducing diagnostic errors, increasing speed,
and enhancing accessibility in low-resource environments.

1.3. RESEARCH MOTIVATION
The motivation for this research is driven by the urgent need
for accessible, accurate and affordable diagnostic tools to combat
schistosomiasis and soil-transmitted helminth infections, particularly in
low-resource settings where the burden of these diseases is highest.
Current diagnostic methods, such as conventional microscopy, are
limited by their dependency on skilled personnel, high operational costs,
and limited sensitivity, especially to detect low-intensity infections.
These limitations hinder effective disease monitoring, control and
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treatment in under-served areas, which face significant logistical and
financial barriers to access to healthcare.

Advances in portable digital microscopy and AI-based diagnostic
technologies offer a promising path to address these challenges.
Using AI-driven automation, portable digital devices, and locally man-
ufacturable components, there is potential to create high-throughput,
accurate diagnostic tools that can operate independently of extensive
infrastructure and trained personnel. This research aims to bridge the
gap between traditional and innovative diagnostic approaches by devel-
oping, validating, and optimizing an AI-integrated digital microscope to
meet these requirements, supporting a reliable and efficient diagnosis
of schistosomiasis and STHs even in the most resource-constrained
environments.

Through this work, we seek to establish a scalable community-
centered diagnostic tool that aligns with the WHO’s goals for disease
control and elimination. By ensuring that the device meets the
sensitivity, specificity, and usability requirements for field deployment,
this research will help to strengthen local health systems, expand access
to diagnostics, and ultimately improve patient outcomes in endemic
regions. This thesis is motivated by a commitment to advancing global
health equity by providing sustainable diagnostic solutions tailored to
the needs of communities most affected by neglected tropical diseases.

1.4. AIM AND OBJECTIVES
1.4.1. RESEARCH AIM
The aim of this thesis is to develop, validate and assess a low-cost, locally
manufacturable digital microscope that integrates AI-based detection
algorithms and advanced autofocusing and scanning techniques for the
accurate detection and quantification of S. haematobium and intestinal
helminth infections in resource-limited settings, evaluating its field
applicability, usability, and diagnostic performance against conventional
methods using fresh and banked samples.

1.4.2. RESEARCH OBJECTIVES
The objectives of this thesis are as follows:

1. To develop a low-cost, automated digital microscope for the
registration and detection of helminth eggs in both urine and fecal
samples.

2. To evaluate the usability and acceptability of the automated
digital microscope by comparing its effectiveness with conventional
microscopy among healthcare workers and medical students in
low-resource settings.
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3. To design and implement a Perturb and Observe (P&O) autofocusing
algorithm and an optimized whole slide scanning procedure to
improve image quality, diagnostic accuracy, and scanning efficiency
in the automated digital microscope.

4. To develop and assess automated helminth egg detection algo-
rithms, including the two-stage AI-based diagnostic framework and
deep learning models, for accurately detecting and classifying S.
haematobium and intestinal helminth eggs in both urine and stool
samples.

5. To evaluate the diagnostic performance of the automated digital
microscope in detecting and quantifying of S. haematobium eggs
in field-collected urine samples, and to compare its accuracy with
conventional microscopy and a composite reference standard (CRS)
comprising PCR and UCP-LF CAA.

6. To assess the potential of the automated digital microscope for
retrospective analysis by evaluating its performance on freshly
collected and banked urine samples in resource-limited settings.

1.4.3. RESEARCH HYPOTHESIS
This research is guided by the following hypotheses:

1. The developed automated digital microscope, with its modular
and locally manufacturable design, will demonstrate diagnostic
accuracy, usability, and operational feasibility comparable to or
exceeding traditional microscopy for detecting S. haematobium
and intestinal helminth eggs in resource-limited settings.

2. The integrated imaging components, including the perturb and
observe (P&O) autofocusing algorithm, optimized scanning proce-
dures, and AI-based detection models, will significantly improve
diagnostic accuracy, processing speed, and egg quantification,
meeting or exceeding WHO diagnostic standards for schistosomia-
sis and STH diagnostics.

3. The Edge AI implementation of the Schistoscope, combining
the two-stage diagnostic framework with deep learning-based
classification, will achieve high sensitivity, specificity, and user
acceptability, enabling reliable field deployment and effective
diagnostic performance in both fresh and banked samples.

1.5. THESIS STRUCTURE
This thesis is structured as a series of published articles, arranged in the
order in which the research was conducted, supplemented by integrative
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chapters including an introduction, literature review, and conclusion to
provide a coherent narrative. The original format of each published
article has been maintained to allow a straightforward correlation with
their source papers. All articles are available under green open access
through the TU Delft Research Portal at research.tudelft.nl, with direct
links included in the bibliography entries. This format not only showcases
our research productivity through peer-reviewed publications but also
validates the quality, relevance, and originality of the work, providing
tangible evidence of our contributions to the scientific understanding of
neglected tropical disease diagnosis.

1. Chapter 2 provides a comprehensive review of the literature
on diagnostic tools for the quantitative diagnosis of helminth
infections. They are categorized according to three stages: sample
preparation, microscopic imaging, and automated identification of
helminth eggs.

2. Chapter 3 discusses the development and design of two low-cost
digital microscope prototypes, Raspberry Pi-based (Schistoscope
RP) and smartphone-based (Schistoscope SP), aimed at diagnosing
urinary schistosomiasis in resource-limited settings.

3. Chapter 4 presents a low-cost, automated diagnostic device
(Schistoscope 5.0) for detecting S. haematobium eggs in urine, with
the aim of providing a viable solution for point-of-care diagnostics
in low-resource settings.

4. Chapter 5 presents a study on the usability and user acceptance
of the developed automated digital microscope (Schistoscope 5.0)
among healthcare workers and medical students in low-resource
settings.

5. Chapter 6 explores a field-based evaluation of the automated
digital microscope (Schistoscope 5.0) as a diagnostic tool for
S. haematobium in Nigeria. The study compares the device’s
performance in both semi- and fully automated modes with
conventional light microscopy, especially in resource-limited areas
where schistosomiasis remains prevalent and traditional diagnostic
approaches are challenging.

6. Chapter 7 explores the optimization of the autofocusing and
whole slide scanning systems of the automated digital microscope
(Schistoscope 5.0) for efficient and accurate diagnosis of parasitic
diseases, particularly S. haematobium in sub-Saharan Africa.

7. Chapter 8 details the development and implementation of a
two-stage diagnostic framework for the automated detection and
counting of SS. haematobium eggs in urine samples from field
settings using the automated digital microscope (Schistoscope 5.0).

https://research.tudelft.nl/
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8. Chapter 9 presents a comprehensive validation study of the
automated digital microscope (Schistoscope 5.0) for diagnosing S.
haematobium infections in Gabon. The diagnostic performance
of the Schistoscope was compared with that of conventional
microscopy and a composite reference standard (CRS) that
incorporates real-time PCR and UCP-LF CAA. Conducted in two
parts, Study A assessed fresh samples, while Study B evaluated
banked samples stored for two years.

9. Chapter 10 discusses the development of an artificial intelligence
system for automated detection and classification of intestinal
helminth eggs in Kato-Katz stool smears, specifically designed
to run on the edge computing system of the automated digital
microscope (Schistoscope 5.0) .

10. Chapter 11 presents a summary and reflections on chapters 2 to
10. Each section captures the essential insights, achievements,
and implications drawn from the individual chapters. Provides a
critical reflection on the impact and limitations of the research, and
a robust and comprehensive conclusion to the thesis.

1.6. CONTRIBUTION SUMMARY
This thesis presents the development and validation of an automated
digital microscopy system for the detection of schistosomiasis and STH
infections, with a focus on delivering affordable and scalable diagnostics
for resource-limited settings. Although this research is part of a larger
collaborative effort, my specific contributions are detailed below:

1. Review of Existing Diagnostic Tools

• Conducted an extensive literature review to assess the current
state of digital microscopy and AI-based diagnostics for
schistosomiasis and STH detection.

• Identified gaps in existing diagnostic techniques, particu-
larly the limitations of traditional microscopy in sensitivity,
accessibility, and automation.

• Analyzed and identified performance trade-offs between Schis-
toscope RP & SP designs.

• Formulated the research problem and objectives based on a
critical analysis of existing methodologies.

2. Conceptualization and Development of Schistoscope 5.0

• Led the design, development, and refinement of Schistoscope
5.0, a low-cost, AI-integrated digital microscope optimized for
Schistosomiasis and STH diagnosis.
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• Engineered a modular optical system and an automated
sample stage, ensuring robustness and reproducibility for field
deployment.

3. Development of AI-Based Diagnostic Frameworks

• Created a S. haematobium (SH) dataset, comprising 12,051
field-of-view (FoV) images captured from 103 independent
urine samples collected in field settings.

• Created an STH and S. mansoni dataset consisting of over
3,000 FoV images containing parasite eggs, extracted from
more than 300 fecal smears prepared using the Kato-Katz
technique in field settings.

• Developed an automated detection pipeline for urogenital
schistosomiasis using UNET deep learning architecture .

• Developed a 2-staged diagnostic frame work for urogenital
schistosomiasis using DeepLabV3-MobileNetV3 deep learning
architecture and a region based segmentation approach.

• Developed an object detection and classification model for
S. mansoni and STH eggs using EfficientDet deep learning
architecture .

• Trained, validated, and optimized AI models using annotated
microscopy datasets, improving diagnostic sensitivity and
specificity.

4. Optimization of Autofocusing and Whole-Slide Imaging

• Designed and implemented an adaptive Perturb & Observe
autofocusing algorithm, improving image clarity and diagnostic
precision.

• Developed an automated whole-slide scanning approach,
enhancing the system’s ability to analyze large sample areas
in a shorter time.

5. Validation of Schistoscope 5.0

• Led on-site validation studies in Nigeria and Gabon, coordi-
nating data collection and testing under real-world clinical
conditions.

• Performed statistical analysis that compared the diagnostic
performance of Schistoscope 5.0 and traditional microscopy
using precision, sensitivity, and specificity metrics.

• Conducted surveys to assess user experience and feasibility of
deploying Schistoscope 5.0 in low-resource healthcare settings
in Nigeria.
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My work directly contributes to bridging the gap between tradi-
tional microscopy and AI-driven diagnostics, demonstrating how
affordable, portable AI-enhanced microscopes can significantly im-
prove disease detection, surveillance, and treatment strategies in
endemic regions. This research not only advances the automation
and accuracy of schistosomiasis and STH diagnostics, but also lays
the foundation for scalable AI-powered solutions in global health.
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2
REVIEW OF QUANTITATIVE

DIAGNOSTIC TOOLS
In this chapter, we have comprehensively reviewed sample preparation
devices, portable digital microscopes, and automated detection pro-
cedures essential for diagnosing schistosomiasis and soil-transmitted
helminth (STH) infections. Sample preparation techniques, including
urine filtration, fecal thick smear, sedimentation, and flotation methods,
have been refined for simplicity, cost-effectiveness, and applicability
in field settings. Portable digital microscopes, from handheld models
to smartphone-based setups and fully automated digital systems, offer
promising pathways for diagnostics in resource-limited areas, enabling
real-time data sharing and remote diagnosis. Automated detection
and identification methodologies, spanning machine learning and deep
learning approaches, address the labor intensity and operator depen-
dency of manual examination. Machine learning methods established
initial frameworks for feature extraction and parasite classification, but
the complex variability in real-world samples shifted focus to deep
learning models, which excel in handling complex images with artifacts.
However, challenges such as dataset diversity, model robustness, and
hardware costs persist. Bridging the gap between these innovative
tools and practical field applications requires improving data quality
and model generalization, optimizing device affordability, and fostering
adaptability to field conditions. Progress in these areas will be crucial
to creating scalable, effective diagnostic solutions, ultimately advancing
control efforts and evaluations of treatment efficacy in schistosomiasis
and STH-endemic regions.
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2.1. INTRODUCTION
Diagnostic techniques for schistosomiasis and STH infections are gen-
erally divided into qualitative and quantitative approaches. Qualitative
techniques determine whether the urine or fecal sample of a patient
is positive for the targeted helminth infection, while quantitative tech-
niques assess the intensity of the infection [1]. Although there are
multiple techniques for examining urine and fecal samples [1–6], they
often have operational limitations, such as high cost, complexity, low
sensitivity, and/or reproducibility. Quantitative methods, which involve
the careful preparation of samples prior to microscopic examination,
are widely used to visualise and quantify helminth eggs. This ap-
proach ensures high reliability and diagnostic accuracy, as microscopic
examination also provides a standardized measure (e.g., eggs/mL for
urine or eggs per gram of feces - EPG), which is critical for assessing
infection prevalence and intensity in control programs or drug efficacy
assessments.

The quantitative diagnosis of schistosomiasis and soil-transmitted
helminth infections involves three primary stages: sample preparation,
microscopic imaging, and identification of helminth eggs. In this
chapter, we first review the tools available for the preparation of
urine and fecal samples. Next, we discuss portable microscopic
imaging devices that have been developed or adapted for the field
diagnosis of helminth infections. Lastly, we examine recent advances
in artificial intelligence (AI) algorithms for automated detection and
identification of helminth eggs in urine and fecal samples using
machine learning and deep learning models. Specifically, we analyze
these tools from a technological perspective, detailing the motivations
behind their development, as well as their advantages, benefits, and
intended contributions. Finally, we discuss their limitations, challenges,
and diagnostic gaps. This review aims to provide researchers with
insights into developing accessible, reliable, and affordable point-of-care
diagnostic tools for helminth infections.

2.2. SAMPLE PREPARATION TECHNIQUES
2.2.1. URINE FILTRATION TECHNIQUES
Urine filtration devices are essential tools in diagnosing Schistosoma (S.)
haematobium infections (urogenital schistosomiasis). This technique is
widely adopted due to its simplicity, affordability, and high specificity,
making it suitable for use in low-resource settings where the burden of
the disease is high.

The filtration device typically consists of a plastic filter holder
containing a polycarbonate, nylon, or paper filter with pore sizes ranging
from 12 to 20 µm. During sample preparation, a standard 10 mL urine
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sample is pushed through the filter using a syringe [7]. Eggs of S.
haematobium (approximately 150 by 60 µm in size) present in the urine
are retained in the filter, which is then mounted on a microscope slide
and, in some cases, stained for a clear visualisation of the eggs under
microscopy.

Urine filtration has shown high sensitivity, which is particularly
effective in diagnosing infections in school-aged children, a group
especially vulnerable to schistosomiasis, and is recommended by the
WHO for detecting S. haematobium [8]. However, a significant barrier
to the use of this technique is the cost of the filtration equipment and its
limited availability in rural areas, where it is most needed. For example,
Millipore schistosome filtration devices cost more than $2 per filter.
However, less expensive filtration kits are being developed and their
accuracy is evaluated compared to the established, but costly, Millipore
device [7]. Lowering these costs could significantly expand testing and
monitoring capabilities in resource-limited settings.

In addition, researchers have explored the use of locally available
materials, such as paper products (paper towels, newspaper and paper
from a student workbook) [9], coffee filters, and chiffon, for urine
filtration. Although these materials can filter urine while retaining
eggs, the resulting images often suffer from background interference,
reducing egg visibility.

A specialized microfiltration device for isolating schistosome eggs in
urine was developed by Xiao et al. [3]. This device employs a linear
array of microfluidic traps to capture schistosome eggs with a trapping
efficiency 100% at a flow rate of 300 µl/min. The trapped eggs can be
recovered for downstream analysis or preserved in situ for whole-mount
staining. However, completing the filtration procedure in under 10
minutes would require a flow rate of 3000 µl/min, reducing the trapping
efficiency to 83%.

2.2.2. FECAL THICK SMEAR TECHNIQUES
The fecal thick smear method, which uses a cellophane cover to
examine helminth eggs in stool, was initially introduced by Kato [10] and
has since been evaluated and modified by various researchers [11–15].
However, this method requires a precision balance to accurately weigh
the fecal sample, making the quantitative determination of egg counts
challenging in field settings.

To address this, Layrisse, Martínez-Torres, and Ferrer-Farias [16]
designed a volumetric device that estimates stool weight using a 1 mL
plastic syringe cut 3 mm from its tip. A metal retaining ring around the
plunger limits displacement, maintaining consistent volume. Additional
components - a 3 mm diameter bolt and nut calibrator and a 2x2 mm
steel collar - ensure constant plunger displacement and, consequently,
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uniform stool volume. Although low-cost and reusable, this design is
labor intensive to clean, potentially leading to cross-contamination of
fecal samples with helminth eggs.

To simplify this process, Katz, Chaves, and Pellegrino [17] introduced
a disposable 1.37 mm thick cardboard with a 6 mm center hole,
allowing standardized fecal sample volumes for quantitative thick
smear methods. The sample weights obtained using this technique
demonstrated statistical uniformity within acceptable limits, with a high
correlation between S. mansoni egg counts per gram and traditional
weighing methods. The WHO has since integrated this cardboard-based
device into the Kato-Katz test kit, which includes an applicator stick,
screen, and template. This kit is widely used in mass surveys because
of its reliability, low cost, and simplicity.

However, the Kato-Katz method examines a relatively small stool
sample (typically 41.7 mg), which limits its analytical sensitivity in
low-intensity infections (fewer than 100 EPG). Increased sampling with
the Kato-Katz method can enhance sensitivity, but this approach incurs
additional costs and labor [4]. Furthermore, the Kato-Katz technique
cannot process watery stool samples and is affected by the variability
of stool composition. These limitations can be addressed by employing
concentration methods, such as sedimentation or flotation techniques,
to improve the detection of parasites.

2.2.3. SEDIMENTATION TECHNIQUES
Sedimentation techniques operate on the principle that when a liquid
with a density lower than the parasite eggs is applied to a stool
sample, the eggs separate from the fecal material and, being heavier,
settle at the bottom of the container [1]. This separation can occur
spontaneously or with the aid of centrifugation. The laboratory use of
centrifugation for sedimentation was first introduced by Telemann [18],
where centrifugal force was applied to a mixture containing ether (as
solvent), hydrochloric acid and fecal material to isolate specific portions
of the feces containing intestinal parasites [18]. Since then, techniques
and procedural parameters have been modified, with adjustments for
added simplicity or improved performance [19–24].

The effectiveness of spontaneous sedimentation for detecting S.
mansoni eggs was noted by Lutz [25], showing a 20% improvement
compared to direct examination [26]. This method can be scaled for large
sample sets using parasitological kits such as Paratest and Coprotest,
with contamination minimized by using disposable components and
handling samples in a closed system [27, 28]. However, the extended
sedimentation time limits its applicability in high-throughput laboratory
environments. Furthermore, spontaneous sedimentation does not
adequately separate debris from parasites, resulting in dense smears
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filled with impurities, which can reduce diagnostic sensitivity [5].
Later, a layering technique that leverages differential segmentation

gradients was adapted to recover S. mansoni eggs from stool samples
[29, 30]. This was accomplished by introducing a saline solution through
an aerating stone at the bottom of a flask containing a homogenized
fecal sample. Building on this approach, Coelho et al. [31] developed a
saline gradient device comprising two interconnected cylindrical plastic
columns. The reservoir column, with a capacity of 50 ml, is placed
above a separating column that holds 10 mL of liquid. The columns
are connected by a rubber hose with a roller clamp, and an aquarium
aerating stone, sealed with silicon, is fixed at the bottom of the
separating column. The separating column also has an upper drainage
hose. As the 3% saline solution flows slowly and continuously from the
reservoir to the separating column that contains the fecal sample, it
suspends and discharges low-density waste, clearing the sediment at
the bottom. The eggs, with their higher density, remain on the surface
of the porous plate.

The saline gradient device provides high sensitivity, handles large
sample sizes (0.5–1g), and produces clean sediments, facilitating the
rapid identification of eggs under bright-field microscopy. However,
it is primarily suitable for S. mansoni eggs and carries the risk of
losing parasites in the liquid medium, as well as potential morphological
alterations of the structures of the parasite eggs during processing.

2.2.4. FLOTATION-BASED TECHNIQUES
Flotation techniques are based on the principle that when liquids with
a density higher than that of parasite eggs are applied to a sample,
the eggs become lighter and rise to the surface of the solution. This
method was first reported by Bass [32] to detect hookworm eggs.
Spontaneous flotation can be performed with a saturated solution with
a density ranging from 1.18 to 1.27 g/mL, depending on the reagent.
Willis [33] demonstrated the recovery of light helminth eggs in sodium
chloride solution (NaCl, 1.20 g/mL). However, this technique is less
suitable for recovering dense eggs and protozoa due to issues such as
crystal formation in the fecal smear and osmotic damage to protozoa in
saturated solutions.

Centrifugal flotation with zinc sulfate (1.18 g/mL) recovered twice as
many eggs compared to direct examination, leading to its increased use
as a reference method for intestinal parasite surveys [5]. The Wisconsin
technique [34] involves floating eggs in salt solution by centrifuging on
a swinging bucket rotor. After centrifugation, the eggs are collected in
the meniscus, transferred to a coverlip, and counted by light microscopy
[35]. This method is particularly effective for recovering nematode eggs,
especially when detecting low egg counts. However, inefficiencies can
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occur due to errors in the transfer of eggs from the centrifugation tube
to the microscope slide, affecting precision in high egg counts [36].

Various other techniques concentrate parasite eggs into a single
microscopic field of view to facilitate counting. In the McMaster
technique, the sample is added to a flotation solution and placed in a
McMaster chamber [37]. The chamber setup uses a base slide and a top
slide, printed with a grid, to measure egg concentration. The technique
has seen numerous modifications [38–42] to improve aspects such as
fecal sample weight, volume of flotation solution, centrifugation time
and speed, and flotation duration of the sample [43].

The FLOTAC device features two 5 mL flotation chambers, which allow
up to 1 g of stool to be analyzed [44]. Inspired by McMaster and
Wisconsin methods, FLOTAC provides counts for large fecal samples,
offering greater sensitivity and precision for the detection of intestinal
helminth eggs compared to traditional methods [44]. However, the
time and labor intensive nature of FLOTAC, together with its reliance
on laboratory equipment, limits its accessibility in resources-constrained
settings [44]. The Mini-FLOTAC [45] is a portable adaptation of FLOTAC.
It consists of a base, a reading disk with two 1 mL flotation chambers,
and an optional microscope adapter. Unlike FLOTAC, Mini-FLOTAC does
not require centrifugation equipment, making it suitable for field and
low-resource settings. However, its sensitivity is lower than that of
FLOTAC, and for high-accuracy applications, FLOTAC remains preferable.

The results of flotation methods are traditionally recorded on paper.
For real-time monitoring of the prevalence and intensity of helminth
infections, digital solutions are preferable. The FECPAK system, based
on a modified McMaster technique [46], uses a tube with a central pillar
to collect parasite eggs in a single viewing area. The captured images
are stored digitally, allowing the data to be processed or uploaded for
future reference [14]. Despite the advantage of digital storage, FECPAK
exhibits lower sensitivity and egg recovery rates [15].

The lab-on-a-disk (LOD) platform [35], designed to isolate and image
parasite eggs, uses a disk (10 cm diameter) that fits in a commercial
mini-centrifuge. It features two identical flotation chambers, enabling
balanced centrifugation and efficient egg collection. The device
forms a monolayer of parasite eggs within a precise height chamber,
improving the image accuracy. However, around 30% eggs were lost
during injection, mainly due to sample transfer problems and dead
volume within the Luer-lock adapter. Improvements in design using
computational fluid dynamics simulations are necessary to enhance egg
capture efficiency.

A primary limitation of flotation-based methods is that factors such as
the type of fixative (e.g. formalin, sodium acetate-acetic acid-formalin),
the duration of preservation, and the selection of flotation solutions can
affect the recovery of helminth eggs, affecting the overall accuracy of
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these methods.

2.3. PORTABLE DIGITAL MICROSCOPES
Portable microscopy was first introduced in 1932 by John Norris
McArthur, a pioneering clinical researcher, and was further advanced
in clinical applications by the Wellcome Trust initiative, which led to
the development of the Newton NM1 microscope [47–49]. Recent
advances in opto-mechanics and opto-electronics have significantly
transformed biomedical optics, enabling the redesign of optical imaging
technologies such as conventional light microscopes into integrated,
miniaturized, and portable formats for use at the point of care (POC).
Zhu et al. [50] reviewed cutting-edge optical imaging technologies with
potential impacts on global health, although these technologies are more
readily accessible in high-income countries. Infectious diseases remain
endemic in many low-income countries, raising the need for affordable,
user-friendly optical imaging solutions. Consequently, handheld and
mobile phone microscopes have been developed for the diagnosis of
neglected tropical diseases (NTD), with several reviews highlighting their
application in both field and laboratory settings [47, 51, 52]. However,
more recently, Meulah et al. [53] employed an adapted technology
readiness level (TRL) scale aligned with the WHO target product profile
(TPP) for soil-transmitted helminths (STH) and schistosome infections,
to classify the developmental stages of optical devices, assessing
their readiness for practical use in field settings. Despite these
reviews, the focus on technology design remains limited. This section
discusses various portable microscope designs for imaging helminth
eggs, examining their strengths and limitations from an engineering
design perspective.

The Readiview handheld microscope from Meade Instruments Corpo-
ration (Irvine, CA) is a lightweight, low-cost (under 0.25 kg) monocular
microscope with few moving parts and a LED light source, priced at
approximately $70. Stothard et al. [54] evaluated its optical quality
to examine Kato-Katz fecal smears, noting that it is a convenient
photomicrography platform. At 80× or 160× magnification, trained
users can identify S. mansoni eggs, though the lack of a mechanical
stage may lead to duplicate or missed fields during examination due
to manual slide movement. However, it is suitable for the detection of
schistosome eggs for the confirmation of infection.

Bogoch et al. [55] converted an iPhone 4S into a microscope by
mounting a 3 mm ball lens with double-sided tape over the phone
camera. With a small space between the lens and the sample slide
and illumination from a handheld flashlight, this setup achieved 50–60×
magnification. However, manual slide manipulation limits precision and
image quality is lower than that of conventional microscopes, making
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species differentiation challenging. Smaller eggs like those of T. trichiura
were harder to detect, reducing sensitivity for certain helminths.

Coulibaly et al. [56] tested two experimental portable microscopes on
Kato-Katz slides: the mobile phone-mounted reversed-lens, CellScope,
and the Newton NM1 Portable Field Microscope. The CellScope consists
of a 3D-printed attachment fitted over an iPhone 5s. It uses the
light source of the phone, but requires manual movement for sample
scanning, which impacts egg count accuracy due to lack of structural
support. However, the Newton NM1 is a commercially available
handheld microscope, lightweight (under 500 g), with objective lenses
(10x, 40x, 100x) and an XY translation stage, providing a more stable
platform. Although it costs $650, it offers a long battery life (300 hours
on three AAA batteries) and allows digital imaging with a mobile phone
camera, adding versatility but increasing cost [57, 58].

Digital microscopy offers advantages over conventional microscopy,
including real-time data sharing and remote diagnosis, and the potential
for automated diagnosis via digital image analysis. Holmström et al. [59]
used a compact, cloud-connected digital microscope constructed from
low-cost smartphone camera components. It includes a 5-megapixel
CMOS sensor, LED light sources for both bright-field and fluorescent
imaging, and an image resolution of approximately 1.23 µm. The device
is USB-connected and controlled via MATLAB software, capturing images
that can be stitched into virtual slides for deep learning analysis of stool
samples.

The FECPAKG2 platform uses the MICRO-I device to capture digital
images of helminth eggs concentrated within the FECPAKG2 cassette
[60]. This system enables technicians to view, count, and store images
online, eliminating the need for microscopists on site. Cloud-based
storage allows quality control and the potential for automated egg
counting, which could improve throughput and reduce labor costs [61].

Li et al. [62] adapted a fully automated microscopy system in a
cost-effective design using 3D printed housings, a CMOS sensor, and
low-cost lenses. The system achieves high resolution (1.55 µm), though
it has a limited field of view. Sample scanning and image acquisition
are automated using LabVIEW, reducing manual labor and supporting
whole-slide imaging.

A benchtop imaging system for field experiments was developed by
Sukas et al. [35], using a Sony 5100 camera with a Samyang 100
mm macrolens and halogen lighting. This setup allows for transmitted
light imaging, and Wi-Fi connectivity allows remote control via tablet.
Despite the $1420 cost, the system offers high-resolution imaging and
is suitable for field use.

Agbana et al. [63] developed a low-cost microscope that uses
a smartphone camera with a reverse lens setup to capture high-
magnification images of Schistosoma haematobium eggs in urine
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samples, emphasizing affordability, local production and adaptability for
settings limited by resources. Building on similar principles, Dacal et al.
[64] introduced a 3D printed adapter that aligns a smartphone camera
with a conventional microscope eyepiece, effectively transforming the
setup into a digital microscope. This compact design retains traditional
microscope functionality while allowing easy image digitization and
sharing through a custom Android app. For point of care diagnosis,
Armstrong et al. [65] designed a smartphone-based microscope featuring
a specialized disposable cartridge. The cartridge filters and concentrates
schistosome eggs from urine, aligning them within the field of view for
easy imaging with the reversed lens optics of the smartphone, achieving
sufficient magnification and resolution for effective detection.

Meanwhile, Ward et al. [66] created a flexible and low-cost whole-slide
imaging (WSI) scanner using modular and readily available components,
focused on delivering high-quality data capture at a price below $2,000.
Advancing automation in digital microscopy, Oyibo et al. [67] presented
the Schistoscope, an affordable digital microscope with an optical
system modeled after a standard light microscope. It incorporates a
robust illumination setup and a 4x magnification objective adjustable
up to 20x, projecting the image to a Raspberry Pi camera sensor. The
automated Z-axis focus and X-Y stage movements of the Schistoscope
allow for precise autofocus and slide scanning, ensuring reliable image
capture for diagnostic applications. A commercially available single-slide
automated scanner and microscope similar to the Schistoscope is the
AiDx Assist Makau-Barasa et al. [68]. Its optical train includes a 4×
microscope objective with a numerical aperture (NA) of 0.10 and a
working distance of 18.0 mm, paired with a Sony IMX 178 CMOS sensor
(6.41 Mpix, 3088 × 2076 pixels) that registers a pixel size of 2.40
µm. This multidiagnostic device is capable of detecting microfilaria, S.
haematobium, and S. mansoni eggs in blood, urine and stool samples,
respectively.

A primary challenge with mobile phones and handheld microscopes
remains the manual manipulation of samples, leading to undercounting
of eggs. Some portable microscope designs address this by incorporating
XY stages and motorized autofocus. Advanced designs integrate image
digitization and real-time data sharing for remote diagnosis and
automated analysis via AI. However, cost constraints persist, limiting
widespread adoption in low-resource settings.

2.4. AUTOMATED DETECTION AND IDENTIfiCATION OF
HELMINTH EGGS

Human parasitic infections are typically diagnosed by identifying
parasitic organisms in feces, urine, blood, or tissue samples using
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specific diagnostic methods [69]. Following sample preparation, trained
specialists examine the prepared slides to detect parasitic organisms,
most often helminth eggs or protozoa cysts. Upon identifying these
organisms, experts assess their size, shape, and count to determine the
species of parasites, severity of infection, and appropriate treatment
[70]. However, samples frequently contain artifacts such as urine
crystals, large food debris, amorphous particles, or undigested plant
cells in fecal samples, complicating the interpretation of microscopy
images. Consequently, manual microscopic examination is both labor
intensive and time consuming. Its accuracy can also be influenced by the
skill and experience of the examiner, which is particularly problematic
in regions with limited access to trained personnel. To overcome
these challenges, AI algorithms for the automated identification of
parasitic components and clinical diagnosis of helminth infections are
increasingly vital. These automated detection and identification methods
are generally divided into two main categories: deep learning-based
and machine learning-based approaches.

2.4.1. MACHINE LEARNING-BASED METHODS
The early work of Yang et al. [70] marked one of the first applications
of computer vision for identifying and classifying helminth eggs in fecal
samples. They introduced an automated fecal examination system
that extracted morphometric features—shape, shell smoothness, and
size—from microscopy images, using an Artificial Neural Network (ANN)
for the initial separation of eggs from artifacts, followed by a secondary
ANN for species classification. Building on this, Avci and Varol [71]
employed a multiclass support vector machine (MCSVM) classifier for
parasite classification using invariant moments from pre-processed
images.

Following this foundational research, Bruun, Kapel, and Carstensen
[72] applied matched filters for detection, with linear and quadratic
discriminant analysis to classify features such as autocorrelation and
scattering intensity under dark-field illumination. In a similar vein, Suzuki
et al. [73] used ellipse matching and the image foresting transform for
segmentation, with object recognition achieved through an optimum
path forest classifier. Further advancements by Zhang et al. [74]
introduced the Cascaded-Automatic Segmentation (CAS) approach for
segmenting S. japonicum eggs in fecal samples, using Radon-like feature
enhancement, Randomized Hough transform for elliptical detection, and
final segmentation with an Active Contour Model.

In a related approach, Li et al. [75] used phase coherence technology
for contour extraction and applied SVM classification based on shape
and texture characteristics. Liu et al. [76] advanced this by combining
morphological segmentation, clustering, and neural networks for a
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refined analysis. Wang et al. [77] implemented edge detection on
grayscale and B-channel images, followed by morphological processing,
and extracted six morphological features for SVM classification.

For increased accuracy, Wang et al. [78] applied threshold segmen-
tation using inscribed and circumscribed circles to exclude overlapped
impurities, followed by feature extraction using LBP-uniform, Gabor,
HOG, GLCM and Haar. SVM classifiers with HOG features achieved
the best accuracy. Tchinda et al. [79] employed active contours and
the Hough transform for segmentation, followed by feature reduc-
tion through principal component analysis and classification using a
probabilistic neural network.

Machine learning-based methods established foundational techniques
for feature extraction and classification, utilising SVMs, ANNs, and con-
tour detection. Despite demonstrating effectiveness, these approaches
often struggled with complex samples laden with various artifacts,
leading to a shift toward deep learning methodologies.

2.4.2. DEEP LEARNING-BASED METHODS
The complexity of microscopic images, especially in field samples,
paved the way for deep learning approaches. Peixinho et al. [80]
introduced ConvNet-based feature extraction combined with a linear
SVM to improve the detection of fecal parasite eggs. Subsequent work
by Du et al. [81] furthered this with an object detection model using
morphological methods to extract candidates, followed by the PCA-
Inception-v3 architecture for recognition, demonstrating high precision
and adaptability across images.

With advances in CNN architectures, Li et al. [62] developed a system
using a CNN based on U-Net trained on annotated images to accurately
distinguish eggs from background debris. Building on this model, Li et al.
[82] proposed FecalNet, leveraging ResNet152 and a feature pyramid
network to fully automate detection. More recent work by Kitvimonrat
et al. [83] compared three object detectors: Faster R-CNN, RetinaNet,
and CenterNet, finding that RetinaNet is the most effective for parasite
egg identification.

Other studies expanded these methods to S. haematobium egg
detection in urine samples, despite the challenges of field-captured
images with various artifacts. Early on, Hassan and Al-Hity [84] used
thresholding of cross-correlation coefficients for isolated S. haematobium
egg detection, although performance in noisy images was limited. Later,
Armstrong et al. [65] addressed this with transfer learning, comparing
RetinaNet, MobileNet, and EfficientDet, with RetinaNet performing
well in isolated egg detection and debris rejection, although the
clump artifacts remained challenging. Complementing these methods,
Oyibo et al. [85] developed a two-stage diagnosis framework, which
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consists of semantic segmentation of S. haematobium eggs using
the DeepLabv3-MobileNetV3 deep convolutional neural network and
a refined segmentation step using the ellipse fitting approach to
approximate eggs with an automatically determined number of ellipses.

In parallel, applications targeting intestinal helminth detection pro-
gressed. Alva et al. [86] employed logistic regression with geometric and
brightness features, while Viet, ThanhTuyen, and Hoang [87] introduced
Faster R-CNN for stool sample analysis. Yang et al. [88] presented
Kankanet, an ANN-based mobile application for egg recognition, al-
though dataset limitations affected its performance. Later, delas Peñas
et al. [89] applied a tiny YOLO model, which demonstrated real-time
processing potential but limited accuracy for soil-transmitted helminths.

Subsequent models integrated deep learning-based segmentation
and object detection, such as Deep Belief Networks by Roder et al.
[90] and SSD-MobileNet by Dacal et al. [64], which improved remote
analysis capabilities, particularly for T. trichiura. With improved speed
and precision, YOLOv5 [91] outperformed traditional approaches, while
Nakasi, Aliija, and Nakatumba [92] and Lim et al. [93] found deep
learning methods such as AlexNet and GoogleNet to be more effective
for segmentation tasks.

Recent models emphasized the robustness of classification. For
example, Khairudin et al. [94] explored classifiers such as k-NN, SVM,
and Ensemble, with features that include Hu’s invariant moments and
GLCM. Subsequent innovations by Lee et al. [95] and Libouga et al. [96]
proposed integrated platforms and modified U-Net models to improve
helminth egg detection accuracy, although challenges in data set
diversity continued. YOLOv4-Tiny [97] and Faster R-CNN [98] further
demonstrated enhanced accuracy in high-magnification stool images.

Efforts to develop large datasets, such as the collection of KK stool
smears by Ward et al. [66], underscored the issue of class imbalance.
Concurrently, Acula et al. [99] and Caetano, Santana, and de Lima
[100] explored CNN architectures and AdaBoost classifiers for species
detection in limited datasets. Most recently, Jaya Sundar Rajasekar
et al. [101] found that YOLOv8 with an SGD optimizer outperformed
previous models, and Lundin et al. [102] employed two CNNs to classify
soil-transmitted helminth (STH) eggs, although sample level counts were
consistently higher than the results of manual microscopy.

Deep learning models, particularly those using CNNs architectures,
have proven more adept at handling complex, high-variability images.
These approaches also support automation, providing potential solutions
for field applications in regions with limited access to trained personnel.
However, challenges remain, notably in the limitations of the dataset,
the variability in image quality, and the generalization between different
types of samples.

For a reliable real-world application, future research must focus
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on expanding the diversity of the dataset to include images with
overlapping eggs, various impurities, and artifacts, ensuring robust
model performance across settings. The studies reviewed here confirm
the promise of deep learning in the advancement of automated
diagnosis, underscoring the need for adaptable, data-rich solutions to
support diagnostics in diverse environmental and clinical contexts.

2.5. CONCLUSION
Although traditional methods and newer automated technologies have
contributed valuable tools for the diagnosis of parasitic diseases, there
is a critical need to improve the cost, accessibility, and robustness of
datasets. The future of effective parasite diagnostics in low-resource
settings lies in the seamless integration of affordable, portable sample
preparation and imaging devices with advanced AI-based analysis.
This thesis aims to enhance the diversity of helminth image datasets,
improve the accuracy of automated helminth detection models, and
optimize the efficiency and affordability of digital microscope devices.
These advances are crucial for developing scalable diagnostic solutions
to meet the growing demand in real-world applications within endemic
regions.
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Malakauskas, M. Sarkūnas, and M. A. Taylor. “A comparison of
modifications of the McMaster method for the enumeration of
Ascaris suum eggs in pig faecal samples”. In: Vet. Parasitol.
149.1–2 (2007), pp. 111–116. doi: 10.1016/j.vetpar.
2007.04.014.

[44] G. Cringoli, L. Rinaldi, M. P. Maurelli, and J. Utzinger. “FLOTAC:
new multivalent techniques for qualitative and quantitative
copromicroscopic diagnosis of parasites in animals and humans”.
In: Nat. Protoc. 5.3 (2010), pp. 503–515. doi: 10.1038/
nprot.2009.235.

[45] G. Cringoli, L. Rinaldi, M. Albonico, R. Bergquist, and J. Utzinger.
“Geospatial (s) tools: integration of advanced epidemiological
sampling and novel diagnostics”. In: Geospatial Health 7.2
(2013), pp. 399–404. doi: 10.4081/gh.2013.97.

[46] M. H. Rashid, M. A. Stevenson, S. Waenga, G. Mirams, A. J. D.
Campbell, J. L. Vaughan, and A. Jabbar. “Comparison of McMaster
and FECPAK G2 methods for counting nematode eggs in the
faeces of alpacas”. In: Parasit. Vectors 11.1 (2018), p. 278. doi:
10.1186/s13071-018-2861-1.

[47] A. Vasiman, J. R. Stothard, and I. I. Bogoch. “Mobile phone
devices and handheld microscopes as diagnostic platforms for
malaria and neglected tropical diseases (NTDs) in low-resource
settings: a systematic review, historical perspective and future
outlook”. In: Advances in Parasitology 103 (2019), pp. 151–173.
doi: 10.1016/bs.apar.2018.09.001.

[48] K. Dunning and J. R. Stothard. “From the McArthur to the
millennium health microscope (MHM): future developments in
microscope miniaturization for international health”. In: Microsc
Today 15.2 (2007), pp. 18–21.

[49] R. J. Kreindler. “The Nm1 (Newton Microscopes): Part 2 of 2”. In:
-Depth Exam. Comp. Folded-Opt. Des. Micscape Mag. (2013).

https://doi.org/10.1111/j.1751-0813.1977.tb00247.x
https://doi.org/10.1016/j.vetpar.2007.04.014
https://doi.org/10.1016/j.vetpar.2007.04.014
https://doi.org/10.1038/nprot.2009.235
https://doi.org/10.1038/nprot.2009.235
https://doi.org/10.4081/gh.2013.97
https://doi.org/10.1186/s13071-018-2861-1
https://doi.org/10.1016/bs.apar.2018.09.001


2

34 references

[50] H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan.
“Optical imaging techniques for point-of-care diagnostics”. In:
Lab on a Chip 13.1 (2013), pp. 51–67. doi: 10.1039/
c2lc40864c.

[51] J. Rajchgot, J. T. Coulibaly, J. Keiser, J. Utzinger, N. C. Lo,
M. K. Mondry, J. R. Andrews, and I. I. Bogoch. “Mobile-phone
and handheld microscopy for neglected tropical diseases”. In:
PLoS Neglected Tropical Diseases 11.7 (2017), e0005550. doi:
10.1371/journal.pntd.0005550.

[52] M. A. Saeed and A. Jabbar. “Smart diagnosis of parasitic diseases
by use of smartphones”. In: Journal of Clinical Microbiology 56.1
(2018), e01469–17. doi: 10.1128/JCM.01469-17.

[53] B. Meulah, M. Bengtson, L. Van Lieshout, C. H. Hokke, A.
Kreidenweiss, J. C. Diehl, A. A. Adegnika, and T. E. Agbana.
“A Review on Innovative Optical Devices for the Diagnosis
of Human Soil-Transmitted Helminthiasis and Schistosomiasis:
From Research and Development to Commercialization”. In:
Parasitology 150.2 (2023), pp. 137–149. doi: 10.1017/
S0031182022001664.

[54] J. R. Stothard, N. B. Kabatereine, E. M. Tukahebwa, F. Kazibwe,
W. Mathieson, J. P. Webster, and A. Fenwick. “Field evaluation
of the Meade Readiview handheld microscope for diagnosis of
intestinal schistosomiasis in Ugandan school children”. In: Am.
J. Trop. Med. Hyg. 73.5 (2005), pp. 949–955. doi: 10.4269/
ajtmh.2005.73.949.

[55] I. I. Bogoch, J. R. Andrews, B. Speich, J. Utzinger, S. M. Ame, S. M.
Ali, and J. Keiser. “Mobile phone microscopy for the diagnosis of
soil-transmitted helminth infections: A proof-of-concept study”.
In: The American Journal of Tropical Medicine and Hygiene 88.4
(2013), pp. 626–629. doi: 10.4269/ajtmh.12-0742.

[56] J. T. Coulibaly, M. Ouattara, M. V. D’Ambrosio, D. A. Fletcher,
J. Keiser, J. Utzinger, E. K. N’Goran, J. R. Andrews, and I. I. Bogoch.
“Accuracy of mobile phone and handheld light microscopy for the
diagnosis of schistosomiasis and intestinal protozoa infections in
Côte d’Ivoire”. In: PLoS Neglected Tropical Diseases 10.6 (2016),
e0004768. doi: 10.1371/journal.pntd.0004768.

[57] J. R. Stothard, B. Nabatte, J. C. Sousa-Figueiredo, and N. B.
Kabatereine. “Towards malaria microscopy at the point-of-
contact: an assessment of the diagnostic performance of the
Newton Nm1 microscope in Uganda”. In: Parasitology 141.14
(2014), p. 1819. doi: 10.1017/S0031182014000833.

https://doi.org/10.1039/c2lc40864c
https://doi.org/10.1039/c2lc40864c
https://doi.org/10.1371/journal.pntd.0005550
https://doi.org/10.1128/JCM.01469-17
https://doi.org/10.1017/S0031182022001664
https://doi.org/10.1017/S0031182022001664
https://doi.org/10.4269/ajtmh.2005.73.949
https://doi.org/10.4269/ajtmh.2005.73.949
https://doi.org/10.4269/ajtmh.12-0742
https://doi.org/10.1371/journal.pntd.0004768
https://doi.org/10.1017/S0031182014000833


references

2

35

[58] I. I. Bogoch, J. T. Coulibaly, J. R. Andrews, B. Speich, J. Keiser, J. R.
Stothard, E. K. N’goran, and J. Utzinger. “Evaluation of portable
microscopic devices for the diagnosis of Schistosoma and soil-
transmitted helminth infection”. In: Parasitology 141.14 (2014),
pp. 1811–1818. doi: 10.1017/S0031182014000432.

[59] O. Holmström, N. Linder, B. Ngasala, A. Mårtensson, E. Linder,
M. Lundin, H. Moilanen, A. Suutala, V. Diwan, and J. Lundin.
“Point-of-care mobile digital microscopy and deep learning for
the detection of soil-transmitted helminths and Schistosoma
haematobium”. en. In: Global Health Action 10.sup3 (June 2017),
p. 1337325. doi: 10.1080/16549716.2017.1337325.

[60] I. R. Cooke, C. J. Laing, L. V. White, S. J. Wakes, and S. J.
Sowerby. “Analysis of menisci formed on cones for single field
of view parasite egg microscopy”. In: J. Microsc. 257.2 (2015),
pp. 133–141. doi: 10.1111/jmi.12192.

[61] B. Jiménez, C. Maya, G. Velásquez, F. Torner, F. Arambula,
J. Barrios, and M. Velasco. “Identification and quantification
of pathogenic helminth eggs using a digital image system”.
In: Experimental Parasitology 166 (2016), pp. 164–172. doi:
10.1016/j.exppara.2016.04.016.

[62] Y. Li, R. Zheng, Y. Wu, K. Chu, Q. Xu, M. Sun, and Z. J. Smith. “A
low-cost, automated parasite diagnostic system via a portable,
robotic microscope and deep learning”. In: J. Biophotonics 12.9
(2019), e201800410. doi: 10.1002/jbio.201800410.

[63] T. Agbana, G. Y. Van, O. Oladepo, G. Vdovin, W. Oyibo, and
J. C. Diehl. “Schistoscope: Towards a locally producible smart
diagnostic device for Schistosomiasis in Nigeria”. In: 2019 IEEE
Global Humanitarian Technology Conference (GHTC). Seattle,
WA, USA, 2019, pp. 1–8. doi: 10.1109/GHTC46095.2019.
9033049.

[64] E. Dacal, D. Bermejo-Peláez, L. Lin, E. Álamo, D. Cuadrado, Á.
Martínez, A. Mousa, M. Postigo, A. Soto, E. Sukosd, A. Vladimirov,
C. Mwandawiro, P. Gichuki, N. A. Williams, J. Muñoz, S. Kepha, and
M. Luengo-Oroz. “Mobile microscopy and telemedicine platform
assisted by deep learning for the quantification of Trichuris
trichiura infection”. In: PLoS neglected tropical diseases 15.9
(2021). doi: 10.1371/journal.pntd.0009677.

[65] M. Armstrong, A. R. Harris, M. V. D’Ambrosio, J. T. Coulibaly,
S. Essien-Baidoo, R. K. D. Ephraim, J. R. Andrews, I. I. Bogoch,
and D. A. Fletcher. “Point-of-care sample preparation and
automated quantitative detection of schistosoma haematobium
using mobile phone microscopy”. In: American Journal of Tropical

https://doi.org/10.1017/S0031182014000432
https://doi.org/10.1080/16549716.2017.1337325
https://doi.org/10.1111/jmi.12192
https://doi.org/10.1016/j.exppara.2016.04.016
https://doi.org/10.1002/jbio.201800410
https://doi.org/10.1109/GHTC46095.2019.9033049
https://doi.org/10.1109/GHTC46095.2019.9033049
https://doi.org/10.1371/journal.pntd.0009677


2

36 references

Medicine and Hygiene 106.5 (2022), pp. 1442–1449. doi:
10.4269/ajtmh.21-1071.

[66] P. Ward, P. Dahlberg, O. Lagatie, J. Larsson, A. Tynong, J. Vlaminck,
M. Zumpe, S. Ame, M. Ayana, V. Khieu, Z. Mekonnen, M. Odiere,
T. Yohannes, S. V. Hoecke, B. Levecke, and L. J. Stuyver.
“Affordable artificial intelligence-based digital pathology for
neglected tropical diseases: A proof-of-concept for the detection
of soil-transmitted helminths and Schistosoma mansoni eggs
in Kato-Katz stool thick smears”. In: PLoS neglected tropical
diseases 16.6 (2022), e0010500. doi: 10.1371/journal.
pntd.0010500.

[67] P. Oyibo, S. Jujjavarapu, B. Meulah, T. Agbana, I. Braakman, A.
van Diepen, M. Bengtson, L. van Lieshout, W. Oyibo, G. Vdovine,
and J. C. Diehl. “Schistoscope: An Automated Microscope with
Artificial Intelligence for Detection of Schistosoma haematobium
Eggs in Resource-Limited Settings”. In: Micromachines 13.5
(2022), p. 643. doi: 10.3390/mi13050643.

[68] L. Makau-Barasa, L. Assefa, M. Aderogba, D. Bell, J. Solomon,
R. O. Urude, O. J. Nebe, J. A-Enegela, J. G. Damen, S. Popoola,
J. C. Diehl, G. Vdovine, and T. Agbana. “Performance evaluation
of the AiDx multi-diagnostic automated microscope for the
detection of schistosomiasis in Abuja, Nigeria”. In: Scientific
Reports 13.1 (Sept. 2023), p. 14833. doi: 10.1038/s41598-
023-42049-6.

[69] L. R. Ash and T. C. Orihel. Atlas of Human Parasitology.
5th. American Society of clinical pathologists, 2007. isbn:
978-0891891673.

[70] Y. S. Yang, D. K. Park, H. C. Kim, M. H. Choi, and J. Y. Chai.
“Automatic identification of human helminth eggs on microscopic
fecal specimens using digital image processing and an artificial
neural network”. In: IEEE Transactions on Biomedical Engineering
48.6 (2001), pp. 718–730. doi: 10.1109/10.923789.

[71] D. Avci and A. Varol. “An expert diagnosis system for classification
of human parasite eggs based on multi-class SVM”. In: Expert
Systems with Applications 36.1 (2009), pp. 43–48. doi: 10.
1016/j.eswa.2007.09.012.

[72] J. M. Bruun, C. M. Kapel, and J. M. Carstensen. “Detection and
classification of parasite eggs for use in helminthic therapy”.
In: 2012 9th IEEE International Symposium on Biomedical
Imaging (ISBI). Barcelona, Spain, 2012, pp. 1627–1630. doi:
10.1109/ISBI.2012.6235888.

https://doi.org/10.4269/ajtmh.21-1071
https://doi.org/10.1371/journal.pntd.0010500
https://doi.org/10.1371/journal.pntd.0010500
https://doi.org/10.3390/mi13050643
https://doi.org/10.1038/s41598-023-42049-6
https://doi.org/10.1038/s41598-023-42049-6
https://doi.org/10.1109/10.923789
https://doi.org/10.1016/j.eswa.2007.09.012
https://doi.org/10.1016/j.eswa.2007.09.012
https://doi.org/10.1109/ISBI.2012.6235888


references

2

37

[73] C. T. Suzuki, J. F. Gomes, A. X. Falcao, J. P. Papa, and S.
Hoshino-Shimizu. “Automatic segmentation and classification
of human intestinal parasites from microscopy images”. In:
IEEE Trans. Biomed. Eng. 60.3 (2012), pp. 803–812. doi:
10.1109/TBME.2012.2187204.

[74] J. Zhang, Y. Lin, Y. Liu, Z. Li, Z. Li, S. Hu, Z. Liu, D. Lin, and Z. Wu.
“Cascaded-Automatic Segmentation for Schistosoma japonicum
eggs in images of fecal samples”. In: Comput. Biol. Med. 52
(2014), pp. 18–27. doi: 10.1016/j.compbiomed.2014.
05.012.

[75] Z. Li, H. Gong, W. Zhang, L. Chen, J. Tao, L. Song, and Z.
Wu. “A robust and automatic method for human parasite egg
recognition in microscopic images”. In: Parasitol. Res. 114.10
(2015), pp. 3807–3813. doi: 10.1007/s00436-015-4611-
z.

[76] L. Liu, H. Lei, J. Zhang, Y. Yuan, Z. Zhang, J. Liu, Y. Xie, G. Ni,
and Y. Liu. “Automatic identification of human erythrocytes in
microscopic fecal specimens”. In: J. Med. Syst. 39.11 (2015),
p. 146. doi: 10.1007/s10916-015-0334-z.

[77] W. Wang, M. Si, F. Chen, H. Liu, and X. Jiang. “Study on recognition
method of label-free red and white cell using fecal microscopic
image”. In: Proceedings of the 2018 6th International Conference
on Bioinformatics and Computational Biology. Chengdu, China,
2018, pp. 95–100. doi: 10.1145/3194480.3198909.

[78] X. Wang, L. Liu, X. Du, J. Zhang, J. Liu, G. Ni, R. Hao, and Y. Liu.
“Leukocyte recognition in human fecal samples using texture
features”. In: J. Opt. Soc. Am. A 35.11 (2018), pp. 1941–1948.
doi: 10.1364/JOSAA.35.001941.

[79] B. S. Tchinda, M. Noubom, D. Tchiotsop, V. Louis-Dorr, and D. Wolf.
“Towards an automated medical diagnosis system for intestinal
parasitosis”. In: Inform. Med. Unlocked 13 (2018), pp. 101–111.
doi: 10.1016/j.imu.2019.100238.

[80] A. Z. Peixinho, S. B. Martins, J. E. Vargas, A. X. Falcao,
J. F. Gomes, and C. T. Suzuki. “Diagnosis of human intestinal
parasites by deep learning”. In: Computational Vision and
Medical Image Processing V: Proceedings of the 5th Eccomas
Thematic Conference on Computational Vision and Medical Image
Processing (VipIMAGE 2015). Tenerife, Spain, 2015, p. 107. doi:
10.1201/b19241-19.

[81] X. Du, L. Liu, X. Wang, G. Ni, J. Zhang, R. Hao, J. Liu, and
Y. Liu. “Automatic classification of cells in microscopic fecal
images using convolutional neural networks”. In: Biosci. Rep.
39.4 (2019). doi: 10.1042/BSR20182100.

https://doi.org/10.1109/TBME.2012.2187204
https://doi.org/10.1016/j.compbiomed.2014.05.012
https://doi.org/10.1016/j.compbiomed.2014.05.012
https://doi.org/10.1007/s00436-015-4611-z
https://doi.org/10.1007/s00436-015-4611-z
https://doi.org/10.1007/s10916-015-0334-z
https://doi.org/10.1145/3194480.3198909
https://doi.org/10.1364/JOSAA.35.001941
https://doi.org/10.1016/j.imu.2019.100238
https://doi.org/10.1201/b19241-19
https://doi.org/10.1042/BSR20182100


2

38 references

[82] Q. Li, S. Li, X. Liu, Z. He, T. Wang, Y. Xu, H. Guan, R. Chen,
S. Qi, and F. Wang. “FecalNet: Automated detection of visible
components in human feces using deep learning”. In: Med. Phys.
47.9 (2020), pp. 4212–4222. doi: 10.1002/mp.14352.

[83] A. Kitvimonrat, N. Hongcharoen, S. Marukatat, and S. Watcharabut-
sarakham. “Automatic Detection and Characterization of Parasite
Eggs using Deep Learning Methods”. In: 2020 17th International
Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-CON).
2020, pp. 153–156.

[84] M. O. K. Hassan and K. M. Al-Hity. “Computer-aided diagnosis
of schistosomiasis: automated schistosoma egg detection”. In:
Journal of Clinical Engineering 37.1 (2012), pp. 29–34. doi:
10.1097/JCE.0b013e31823fda36.

[85] P. Oyibo, B. Meulah, M. Bengtson, L. van Lieshout, W. Oyibo,
J. C. Diehl, G. Vdovine, and T. Agbana. “Two-stage automated
diagnosis framework for urogenital schistosomiasis in microscopy
images from low-resource settings”. In: Journal of Medical Imaging
10.4 (2023), pp. 044005–044005. doi: 10.1117/1.JMI.10.
4.044005.

[86] A. Alva, C. Cangalaya, M. Quiliano, C. Krebs, R. H. Gilman, P.
Sheen, and M. Zimic. “Mathematical algorithm for the automatic
recognition of intestinal parasites”. In: PLoS ONE 12.4 (2017),
e0175646. doi: 10.1371/journal.pone.0175646.

[87] N. Q. Viet, D. T. ThanhTuyen, and T. H. Hoang. “Parasite worm egg
automatic detection in microscopy stool image based on Faster
R-CNN”. In: Proceedings of the 3rd International Conference
on Machine Learning and Soft Computing. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 197–202. isbn:
978-1-4503-6612-0. doi: 10.1145/3310986.3311014.

[88] A. Yang, N. Bakhtari, L. Langdon-Embry, E. Redwood, S. G.
Lapierre, P. Rakotomanga, A. Rafalimanantsoa, J. D. D. Santos,
I. Vigan-Womas, A. M. Knoblauch, and L. A. Marcos. “Kankanet:
An artificial neural network-based object detection smartphone
application and mobile microscope as a point-of-care diagnostic
aid for soil-transmitted helminthiases”. In: PLoS neglected tropical
diseases 13.8 (2019), e0007577. doi: 10.1371/journal.
pntd.0007577.

[89] K. E. delas Peñas, E. A. Villacorte, P. T. Rivera, and P. C.
Naval. “Automated Detection of Helminth Eggs in Stool Samples
Using Convolutional Neural Networks”. In: 2020 IEEE REGION 10
CONFERENCE (TENCON). Osaka, Japan, 2020, pp. 750–755. doi:
10.1109/TENCON50793.2020.9293746.

https://doi.org/10.1002/mp.14352
https://doi.org/10.1097/JCE.0b013e31823fda36
https://doi.org/10.1117/1.JMI.10.4.044005
https://doi.org/10.1117/1.JMI.10.4.044005
https://doi.org/10.1371/journal.pone.0175646
https://doi.org/10.1145/3310986.3311014
https://doi.org/10.1371/journal.pntd.0007577
https://doi.org/10.1371/journal.pntd.0007577
https://doi.org/10.1109/TENCON50793.2020.9293746


references

2

39

[90] M. Roder, L. A. Passos, L. C. F. Ribeiro, B. C. Benato, A. X.
Falcão, and J. P. Papa. “Intestinal Parasites Classification Using
Deep Belief Networks”. In: International Conference on Artificial
Intelligence and Soft Computing. Vol. 12415. Springer. Zakopane,
Poland, 2020, pp. 242–251. doi: 10.1007/978-3-030-
61401-0_23.

[91] Y. Huo, J. Zhang, X. Du, X. Wang, J. Liu, and L. Liu. “Recognition
of parasite eggs in microscopic medical images based on
YOLOv5”. In: 2021 5th Asian Conference on Artificial Intelligence
Technology (ACAIT). Haikou, China, 2021, pp. 123–127. doi:
10.1109/ACAIT53529.2021.9731120.

[92] R. Nakasi, E. R. Aliija, and J. Nakatumba. “A Poster on
Intestinal Parasite Detection in Stool Sample Using AlexNet
and GoogleNet Architectures”. In: Proceedings of the 4th ACM
SIGCAS Conference on Computing and Sustainable Societies.
COMPASS ’21. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 389–395. isbn: 978-1-4503-8453-7. doi:
10.1145/3460112.3472309.

[93] C. C. Lim, N. A. A. Khairudin, S. W. Loke, A. S. A. Nasir, Y. F. Chong,
and Z. Mohamed. “Comparison of Human Intestinal Parasite
Ova Segmentation Using Machine Learning and Deep Learning
Techniques”. In: Applied Sciences 12.15 (2022), p. 7542. doi:
10.3390/app12157542.

[94] N. A. A. Khairudin, C. C. Lim, A. S. A. Nasir, and Z. Mohamed.
“Efficient Classification Techniques in Classifying Human Intesti-
nal Parasite Ova”. In: Journal of Telecommunication, Electronic
and Computer Engineering (JTEC) 14.3 (2022), pp. 17–23. doi:
10.54554/jtec.2022.14.03.003.

[95] C.-C. Lee, P.-J. Huang, Y.-M. Yeh, P.-H. Li, C.-H. Chiu, W.-H.
Cheng, and P. Tang. “Helminth egg analysis platform (HEAP):
An opened platform for microscopic helminth egg identification
and quantification based on the integration of deep learning
architectures”. In: Journal of Microbiology, Immunology and
Infection 55.3 (2022), pp. 395–404. doi: 10.1016/j.jmii.
2021.07.014.

[96] I. O. Libouga, L. Bitjoka, D. L. L. Gwet, O. Boukar, and
A. M. N. Nlôga. “A supervised U-Net based color image semantic
segmentation for detection & classification of human intestinal
parasites”. In: e-Prime - Advances in Electrical Engineering,
Electronics and Energy 2 (2022), p. 100069. doi: 10.1016/j.
prime.2022.100069.

https://doi.org/10.1007/978-3-030-61401-0_23
https://doi.org/10.1007/978-3-030-61401-0_23
https://doi.org/10.1109/ACAIT53529.2021.9731120
https://doi.org/10.1145/3460112.3472309
https://doi.org/10.3390/app12157542
https://doi.org/10.54554/jtec.2022.14.03.003
https://doi.org/10.1016/j.jmii.2021.07.014
https://doi.org/10.1016/j.jmii.2021.07.014
https://doi.org/10.1016/j.prime.2022.100069
https://doi.org/10.1016/j.prime.2022.100069


2

40 references

[97] K. M. Naing, S. Boonsang, S. Chuwongin, V. Kittichai, T. Tongloy,
S. Prommongkol, P. Dekumyoy, and D. Watthanakulpanich.
“Automatic recognition of parasitic products in stool examination
using object detection approach”. In: PeerJ Computer Science 8
(2022), e1065. doi: 10.7717/peerj-cs.1065.

[98] B. A. S. Oliveira, J. M. P. Moreira, P. R. S. Coelho, D. A. Negrão-
Corrêa, S. M. Geiger, and F. G. Guimarães. “Automated diagnosis
of schistosomiasis by using faster R-CNN for egg detection in
microscopy images prepared by the Kato–Katz technique”. In:
Neural Computing and Applications 34.11 (2022), pp. 9025–9042.
doi: 10.1007/s00521-022-06924-z.

[99] D. D. Acula, C. P. L. Buico, G. U. Cruzada, M. K. C. Encelan,
and C. Y. G. Rivera. “Soil transmitted helminth egg detection
and classification in fecal smear images using faster region-
based convolutional neural network with residual network-50”.
In: International Conference on Green Energy, Computing and
Intelligent Technology (GEn-CITy 2023). Vol. 2023. 2023, pp. 284–
291. doi: 10.1049/icp.2023.1793.

[100] A. Caetano, C. Santana, and R. A. de Lima. “Diagnostic support
of parasitic infections with an AI-powered microscope”. In:
Research on Biomedical Engineering 39.3 (2023), pp. 561–572.
doi: 10.1007/s42600-023-00288-6.

[101] S. Jaya Sundar Rajasekar, G. Jaswal, V. Perumal, S. Ravi, and V.
Dutt. “Parasite.ai – An Automated Parasitic Egg Detection Model
from Microscopic Images of Fecal Smears using Deep Learning
Techniques”. In: 2023 International Conference on Advances
in Computing, Communication and Applied Informatics (ACCAI).
Chennai, India, 2023, pp. 1–9. doi: 10.1109/ACCAI58221.
2023.10200869.

[102] J. Lundin, A. Suutala, O. Holmström, S. Henriksson, S. Valkamo,
H. Kaingu, F. Kinyua, M. Muinde, M. Lundin, and V. Diwan.
“Diagnosis of soil-transmitted helminth infections with digital
mobile microscopy and artificial intelligence in a resource-limited
setting”. In: PLOS Neglected Tropical Diseases 18.4 (2024),
e0012041. doi: 10.1371/journal.pntd.0012041.

https://doi.org/10.7717/peerj-cs.1065
https://doi.org/10.1007/s00521-022-06924-z
https://doi.org/10.1049/icp.2023.1793
https://doi.org/10.1007/s42600-023-00288-6
https://doi.org/10.1109/ACCAI58221.2023.10200869
https://doi.org/10.1109/ACCAI58221.2023.10200869
https://doi.org/10.1371/journal.pntd.0012041


3
SCHISTOSCOPE: SMARTPHONE

VS RASPBERRY PI DESIGN
Schistoscope: Smartphone versus Raspberry

Pi based low-cost diagnostic device for
urinary Schistosomiasis

Jan Carel Diehl, Prosper Oyibo, Temitope Agbana, Satyajith
Jujjavarapu, G-Young Van, Gleb Vdovin, Wellington Oyibo

PUBLICATION REPORT
• Conference Date: 29 October - 01 November 2020

• Proceedings: 2020 IEEE Global Humanitarian Technology Confer-
ence (GHTC)

• Publisher: IEEE

• DOI: 10.1109/GHTC46280.2020.9342871

41

 https://doi.org/10.1109/GHTC46280.2020.9342871


3

42 3. Schistoscope: Smartphone vs Raspberry Pi Design

ABSTRACT
Schistosomiasis is a neglected tropical disease of Public Health
importance affecting over 252 million people worldwide with Nigeria
having a very high number of cases. It is caused by blood flukes of the
genus Schistosoma and transmitted by freshwater snails. To achieve
the current global elimination objectives, low-cost and easy-to-use
diagnostic tools are critically needed. Recent innovations in optical and
computer technologies have made handheld digital and smartphone-
based microscopes a viable diagnostic approach. Development,
validation and deployment of these diagnostic devices for field use,
however, require the optimisation of its optical train for the registration
of high-resolution images and the realisation of a robust system design
that can be locally produced in low-income countries. Field research
conducted in Nigeria with active involvement of key stakeholders
in research and development (R&D) led to the design of an initial
prototype device for the diagnosis of urinary schistosomiasis, called
Schistoscope 1.0. In this paper, we present further development of the
Schistoscope 1.0 along two parallel design trajectories: a Raspberry
Pi and a Smartphone-based Schistoscope. Specifically, we focused on
the optimization of the optics, embodiment design and the electronics
systems of the devices so as to produce a robust design with potential
for local production.
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3.1. INTRODUCTION
3.1.1. SCHISTOSOMIASIS
Schistosomiasis is endemic in 76 countries and territories around the
world [1] with an estimated 779 million people at risk of infection,
and approximately 252 million people are currently infected [2]. It
presents substantial public health and economic burden as it is a disease
of poverty. Schistosomiasis is caused by blood flukes of the genus
Schistosoma (S.), and it is transmitted by vectors (freshwater snails)
living in streams from where the parasites are contracted when humans
come in contact with water while carrying-out their daily activities such
as washing, bathing, and kids playing or swimming and wading through
to the next community due to absence of bridges.

Both intestinal schistosomiasis (S. mansoni) and urinary schistosomi-
asis (S. haematobium) are endemic in Africa [3–6] with Nigeria having
the highest burden of the disease. Current global to national strategies
are aimed at eliminating this preventable disease by employing inter-
ventional measures that include the use of mass drug administration
(MDA) with approved medicines alongside vector control and hygiene
programmes. In the drive for attaining elimination targets, diagnosis
for adequate monitoring of interventions and surveillance is critical.
Microscopy examination of urine samples, prepared by filtration, sed-
imentation or centrifugation, is currently the WHO reference standard
for the diagnosis of urinary schistosomiasis [7]. However, the laborious
nature, time-consuming, high cost, the bulkiness of equipment, shortage
of required expertise and lack of required maintenance skills, replace-
able parts and associated human errors/subjectivity has limited its
availability in remote rural communities [7, 8]. Hence, a field adaptable,
rapid and easy-to-use diagnosis is critical for the prompt detection
of cases, mapping communities and monitoring trends or progress of
interventions toward the attainment of the elimination targets. This
paper reports on the accomplishments of the first phase of our INSPIRED
(INclusive diagnoStics for Poverty RElated parasitic Diseases) project
which brings together a multidisciplinary team composed of biomedical
scientists, engineers, public health specialists and product designers
from universities in The Netherlands, Nigeria and Gabon. Here, we
discussed and compared results from two parallel design trajectories,
based on the Raspberry Pi and Smartphone, for an automated diagnostic
device for urinary schistosomiasis.

3.1.2. TECHNOLOGICAL DEVELOPMENTS, CHALLENGES AND
OPPORTUNITIES

Rapid progress in optical and computer technologies has made
smartphone- and Raspberry Pi-based microscopes promising alternatives
for field diagnosis of schistosomiasis [9]. Their availability and portability
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make them suitable for use outside of a typical lab setting [7, 10, 11].
Also, with integrated data-driven algorithms for automated detection
and quantification of S. haematobium eggs in filtered urine samples,
the lack of experienced microscope operators at the point-of-care and
the challenge of data storage can be compensated for. Based on the
performance of the algorithm, diagnosis can be achieved with sufficient
performance and operational utility. Aside from automated sample
analysis, detection, and infection load estimation, the imaging platform
could also enable seamless data sharing for disease mapping toward
effective control and elimination. This provides an additional utility
over conventional manual microscopy where data will be manually
generated, recorded and archived.

Despite a wealth of technological innovation in this field which
meets many technical and medical criteria, there are still challenges
in implementing handheld-microscopy devices in resource-constrained
environments [12]. Smartphone-based microscope provides relatively
poor image quality due to the inherent aberration of the optics and
the limitation posed by the numerical aperture [13]. Furthermore, the
limited field of view (FoV), results in the need for multiple measurements
of the sample, which reduces the performance of the diagnostic device
[14]. An optical setup which consists of a smartphone optical train
aligned with a smartphone micro-objective lens (positioned in a reverse
format as shown in fig. 3.1) has shown promising results. This optical
configuration provides a relatively larger FoV (the entire sensor plane),
and a resolution limited mostly by the pixel size of the camera sensor
[15].

Figure 3.1: Reverse lens setup.

Due to an enormous logistics effort required, Currently available
diagnostic devices produced in the West are expensive, scarce, and
difficult to maintain (due to lack of spare parts and required technical
skills) at the point of need in sub-Saharan Africa [13]. Mass
production of components for the consumer electronics market in
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recent years, enabled the fabrication of low-cost, effective and portable
digital imaging devices [7]. Manufacturing these devices by using
locally sourced materials could also reduce costs as well as improve
maintenance due to the availability of spare parts in the target areas.
Integrating this with innovative manufacturing pathways (i.e. local
distributed production) [12], we could overcome import dependency and
unnecessary long distribution value chains, that comes with additional
costs. Accessible manufacturing technologies like 3D-printing and
Laser-cutting offer new opportunities of setting up local production
facilities that can produce and supply the devices and spares for local
use [13].

Once these challenges are addressed, portable digital microscopy
could provide and create access to high-quality schistosomiasis diag-
nostics. Consequently, timely information on the distribution of the
disease, which will reinforce the control and elimination efforts could
also be made readily available for use by interested organisations and
the National Programme [13]. The design goals and challenges for the
Schistoscope development are discussed in the next section.

3.2. DESIGN SETUP
3.2.1. GAPS, CHALLENGES AND OPPORTUNITIES FOR SCHISTOSCOPE

1.0 IMPROVEMENT
A prototype of a diagnostic device for urinary schistosomiasis called
the Schistoscope 1.0 was developed in [13] through an iterative
design process with implementation research conducted in Nigeria and
involving key stakeholders in the research and development process
(see fig. 3.2). After several design iterations, the main body of the
Schistoscope 1.0 was fabricated in a local workshop. This makes the
device easier to repair and maintain locally. The authors further reported
on the design of a simple 3-D printed sample holder used with widely
available filter material for urine filtration. The device was tested with
real urine samples at the University of Lagos and at peri-urban settings
in Lagos Nigeria for simulating the diagnostic test in practice.

From the implementation and development research, a range of
practical design issues, which needed further consideration in the
next design iteration, were identified and hereby proposed. The
recommendations listed below, therefore, formed the basis of the next
design iteration contained in this paper.

1. Local manufacturing: The use of plastic as an alternative to
sheet metal for the embodiment design considering the context. To
enable more detailed and easy-to-clean embodiment, 3D-printing
seems to be the most promising option for manufacturing the
Schistoscopes as Makerspaces and small businesses which provide
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Figure 3.2: Schistoscope 1.0 (left) and filter process (right).

3D printing services and resources are available in Nigeria and
other Low and Middle-Income Countries.

2. Mobile phone: A smartphone has the advantage of being locally
repairable. However, this severely limits the possibilities of
the technical design. The use of a Raspberry Pi or a similar
computer could be an interesting alternative in terms of the ease of
implementation of the control and artificial intelligence algorithms
because it has a large open-source community. Adopting a
Raspberry Pi will also enable the modular design and make it more
efficient in terms of physical embodiment and battery capacity.
Adapting to a new component or expanding the functionality would
be relatively easier. Nevertheless, using a smartphone still has
many benefits such as its ease of use, availability and familiar
interface.

3. Urine filtration: The syringe was not well secured in the holder,
which caused spillage of the urine samples. Due to the small
surface area of the cloth filter and amount of volume injected
through it, the pressure on the mesh was high, and since the
sample holder does not have a handle, easy spillage of content
was observed. The recommendation was to use either established
WHO protocol, or at least to use standard filters.

Based on this feedback from the field, the design process for the next
design iteration was initiated. The project was carried out between
February and July 2019.
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3.2.2. DESIGN GOALS FOR SCHISTOSCOPE 1.0 IMPROVEMENT
To develop a digital microscope which offers an integrated
diagnostics solution (sample preparation and diagnosis) with
the support of a smart algorithm (for detection and quantifi-
cation of the S. haematobium eggs) which can be produced
and maintained in sub-Saharan Africa (with the use of locally
available components and 3D-printing).

For the specific development goals, product scope is defined, which
relates to the primary function of the product, namely diagnosis of
urinary schistosomiasis, and its sub-functions and components. The
three main component groups are the embodiment of the product,
the optics, and electronics. These three components overlap, interact
with each other and are responsible for the successful execution of
the diagnosis of schistosomiasis. Hence, we initiated two parallel
Schistoscope designs trajectories, one based on the Raspberry Pi
(Schistoscope RP) and the other based on the smartphone (Schistoscope
SP). Also, the Schistoscope has to be culturally accepted and trusted,
while keeping costs low.

The four main drivers were chosen to guide the development focus
are as follows:

1. Robustness: The product needs to withstand the harsh tropical
environment in Nigerian, such as humidity and heat. Also, to
aid reparability, the product should be built with locally accessible
parts in the years following the deployment of the device.

2. Potential for Local Production: The product should be locally
producible, using largely standard off-the-shelf components in
combination with local available distributed production methods.

3. Intuitiveness: In order for the product to be accepted and used,
operational considerations such as the ease-of-use should be given
priority with supporting use cues. Furthermore, the choice of
materials and the appearance should contribute to better product
appreciation and acceptance.

4. Hygiene: Aseptic considerations in the handling of the device,
since it works with urine, are imperative to ensure that the product
could be easily cleaned to prevent possible cross-contamination.

3.2.3. TECHNICAL DESIGN CHALLENGES FOR SCHISTOSCOPE RP & SP
The three main technical design challenges of the technology behind
the product are:

1. Accurate alignment of the camera sensor, micro-objective lens and
sample in order to reduce aberrations in the optical system.
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2. Imaging the filtered sample in a single FoV, with optimal illumination
and sufficient resolution for automated analysis.

3. Robust design and material selection of the casing taking into
consideration 3D-printing and off-the-shelf components, in order to
be resistant against the environment in rural Nigeria.

3.3. DESIGN RESULTS
3.3.1. SCHISTOSCOPE RP
The Schistoscope RP (see fig. 3.3) analyses schistosoma eggs by means
of an algorithm running on a Raspberry Pi. The device was designed
such that its casing and development board are modular. This will
enable easy and quick part replacement in case of device failure at the
point of need.

Figure 3.3: Schistoscope RP (left) with working principle of sensor and
lens combination (right).

1. Optics: The Schistoscope RP made use of a Raspberry Pi Camera
Module V2.1, which has a relatively large sensor size (3.674 x
2.760 mm) and offers extensive control over its settings. In order
to image the entire standard 13 mm (urine) filter, an inverted
microscope objective lens (4x) was placed at a distance of 16 cm
between the sample and the lens, and 3.5 cm between the lens
and camera as shown in fig. 3.3. A microscope condenser lens
was used to focus the light in such a way that all the light that
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passes through the sample continues through the objective lens.
Achieving this illumination will result in the maximum contrast.
Additionally, providing an illumination source with high intensity
positioned beneath the sample will reduce the effect of stray light,
which can result in image noise. A manual focusing mechanism
consisting of a 3D printed rotating knob with a thread pitch of 3 mm
and 3 revolutions was developed to accurately adjust the camera
to the appropriate focal plane to mitigate the effect of the defocus
aberration in the registered image.

2. Electronics: The internal electronic design of the Schistoscope
RP consists of a variety of electronic components which include
a Raspberry Pi 3B+ which use Python scripting for implementing
all the software functionality. The Raspberry Pi 3B+ is used in
combination with a HAT (Hardware on top) which makes it easier
to place, on a smaller footprint, electronic components like the
power management block, I2C breakout, Buzzer, EEPROM, screen
connector, indicator light, LED controller, fan controller and a
button connector. These design choices result in a modular system
with components that are easy to repair and upgrade. However,
one disadvantage is that the components may be less protected
from dust and other contextual factors like humidity.

3. Embodiment: All parts of the Schistoscope RP casing were
designed based on three main drivers: robustness, hygiene and
the potential for local production. They consist of the upper cover
(contains the display and closes the upper frame), upper frame
(contains the lens holder, camera sensor, Raspberry Pi), structural
beams (gives structure to the device and helps position the optics
at appropriate distance from the sample), base (contains the LED,
fan, input buttons, USB protocol) and base plate (closes the base).
The design of the casing was optimized for mechanical strength
and robustness in terms of stiffness, material use and printability
by performing static Solidworks load simulations, using Finite
Element Method (FEM). This minimises deflection of the structural
connection between the lens/ sensor and the sample stage which
can result in a noticeable shift in the field of view.

User inputs are with the help of five buttons which are a ‘power’
button, an ‘OK’ button, a ‘back’ button and two ‘directional’ buttons
used for navigating menus and zooming the sample images. The
Schistoscope RP’s feedback to the user includes the diagnosis
of the patient, the amount of eggs found in the sample by the
algorithm and whether the sample is in focus or not, are provided
via a 3.5 inch thin-film transistor (TFT) display with a resolution of
320 x 480 pixels.
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4. Production and maintenance: Most components of the Schis-
toscope RP such as the electronic components, fasteners and
structural aluminium pipes are available off-the-shelf and can be
easily ordered from China via Aliexpress or similar online stores.
The parts that are custom designed include the casing of the
Schistoscope - which is 3D printed - and the printed circuit board.
The cost of manufacturing one Schistoscope RP is estimated at 125
Euro excluding VAT, shipping cost of off-the-shelf components.

Certain parts of the Schistoscope RP, such as the glass staging
area, need to be cleaned after every sample analysis or every day
to remove any cross-contamination by infected urine. Other parts
need to be cleaned after a certain period of time to remove any
dust or mold that has found its way into the device. It might also
be necessary to perform corrective maintenance in cases of device
overheating or the failure of electronic components. Software
updates to add new features and performance improvements of the
device can be automatically installed when the device is powered
on and connected to the internet via a WiFi network.

3.3.2. SCHISTOSCOPE SP
The Schistoscope SP (See fig. 3.4) is a smartphone-based design that
was developed with the main goal of creating a high-resolution image
of the sample. A combination of the optics, focusing system and the
sample arm is necessary for realizing the desired high resolution image.

1. Optics: The Schistoscope SP optics system consists of a
smartphone camera and a reversed lens mounted between the
phone lens and the internal framework as shown in fig. 3.4.
The light sources and a frosted clear acrylic diffuser, positioned
10 mm above the source form the illumination system. This
combination allows even distribution of light across the specimen.
The resolution of the optical system depends on the numerical
aperture of the micro-objective lenses. Higher numerical aperture
equals higher resolution. Also, the FoV strongly influenced the
design of the sample preparation. The complementary metal-oxide-
semiconductor (CMOS) sensor size is 4.8 x 6.4 mm but creates an
effective image of 4 x 6 mm as a result of the image edge being
blurred because of a reduction in the lens’ resolution around its
edge. Hence the sample membrane is designed to be smaller than
the effective FoV.

The smartphone camera has a glass layer over it for protection,
thus creating a distance of 3.68 mm between it and the reverse
lens. This distance reduces the possible distance between the
reverse lens and the sample to 0.5 mm which restricts the range
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Figure 3.4: Schistoscope SP (up) with working principle of sensor and
lens combination (down).

of movement and steps of the focus mechanism, and also the
placement of samples. The focus mechanism performs the high
precision task of moving the sample slide along the axis of the
reversed lens. It consists of 3 main parts: a knob, a thread
and a movement part. The thread is the leading component of
this system as it enables movement of the sample in the vertical
direction. The knob houses the female part of the thread. The
movement part moves it over a distance of 2 mm. It is hollow, so it
houses the light and holds the diffuser on top. The sample holder,
which is a U-shaped track, functions as an insertion system and
holds the sample slide in position from where it is moved by the
focus mechanism.

2. Electronics: After patient diagnosis, relevant diagnostic data are
uploaded to a cloud database via the smartphone using 4G network.
This data can influence the future treatment and prevention of the
disease. Other electronics of the Schistoscope SP include a circuit,
control for the smartphone, sample illumination LED and a 20,000
mAh Xiaomi power bank which can power the smartphone and the
LED for three days in rural areas without electricity supply.

3. Embodiment: The internal framework of the Schistoscope SP
consists of a uniform top part with a hollow axis which aligns all
holes, from the lens of the phone to the movement part in the
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knob, and the bottom part which secures the knob. A phone holder
in the top part of the framework fixates the phone together with
its charging cable and earphone jack. A cone shape underneath
the phone holder which ends in a cylinder is designed to guide the
movement parts. The clamping of the knob is done by fixating the
second internal framework part to the first, using bolts in nuts.
The Schistoscope SP has three buttons: the power, light and home
screen buttons. The power and the light buttons are connected
with a wired switch to the power bank. The home screen button
works as an extension of the original home screen button of the
phone. The designed Schistoscope SP uses the screen of the phone
as the main form of visual feedback to its user.

4. Production and maintenance: Almost all the manufactured
parts of the Schistoscope SP (internal framework, movement part,
buttons) are 3D printed. The male and female thread and the
sample holder were produced on a lathe machine from stainless
steel because they need to withstand high forces and wear.
Polyester Velcro, which is suitable in context of moisture and light,
is used to secure the power bank to the housing. The cost
per device without the cost of the sample slide and the sample
preparation device is estimated at 480 euro. The initial tooling and
service costs for running the tools not taken into account.
There are three levels of the product system that are likely to be
contaminated, which should be sanitized and disinfected regularly.
These include the outer surface of the device, the sample holder
and the filtration system which consists of a membrane, sample
slide, snap ring, sample preparation device and syringes. The
Schistoscope SP is designed for easy repair which can be done alone
by one craftsman, using only standard screwdrivers, in a limited
amount of time. The products’ three levels of reparability (Level
1: opening the house, Level 2: removing the framework, Level 3:
Disassembling the focus mechanism) make its maintenance time-
and cost-efficient.

5. Sample Preparation Device: The sample preparation device (see
fig. 3.5) design focuses on hygienic usage and being leak proof,
fulfilling the optics requirements of a relatively small 3.5 mm FoV
compared to the Schistoscope RP with a 15 mm FoV. In addition,
it keeps the membrane surface flat and improves handling while
also reducing human error for the healthcare worker. It consists of
three main components: The sample slide which is reusable after
cleaning according to WHO guidelines and allows for easy insertion
into the Schistoscope. A spout on top indicates where to put the
syringe and for support when filtering the urine. The urine exits the
sample preparation device through a hole at the bottom. It has a
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soft silicone rubber channel that helps press the membrane to the
side of the sample preparation device. This creates a leak proof
design which ensures the urine and eggs are contained in the 3.5
mm channel during the filtration process. It also aids in lifting the
membrane as close to the optics system as possible to fulfil the
0.5 mm focal length requirement. The snap fit ring helps to hold
the filter membrane tightly to the sample slide making it as flat
as possible so as to reduce warping of the image. A rubber part
is added to the top of the sample slide to prevent spillage during
filtering.

Figure 3.5: Sample preparation device.

3.4. DISCUSSION
In both the Schistoscope designs, all three product subsystems;
embodiment, optics and electronics were thoroughly developed (as
described in section 3.3), and the devices were built to implement
the four main drivers: robustness, potential for local production,
intuitiveness and hygiene. The performance of the two prototypes based
on these drivers is summarized in table 3.1.

The first objective of this project was to create a single FoV
optics system with optimal illumination and sufficient resolution. The
Schistoscope RP didn’t fully satisfy this criterion, as a single field of
view (15 mm) image was obtained in which S. haematobium eggs could
be identified, but some of the terminal spines, which is the distinctive
characteristic of these eggs were not visible. This issue can be resolved
by using a high-end setup with an infinity corrected 4x objective and
200 mm tube and tube lens which would bring the cost of the device
to above 500 Euros. A more affordable alternative is to increase the
numerical aperture by using two Raspberry Pi Camera V2.1 lenses of
which one is inverted. However, the image from the Schistoscope SP
had a high enough quality to detect the spine of the S. haematobium
egg (see fig. 3.6). The second objective was the accurate alignment of
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Table 3.1: Performance of Schistoscope Prototypes in Design Main
Drivers

Main Drivers Schistoscope RP Schistoscope SP

Robustness

The embodiment consists of
structural tubes which provides a
stable design and protects the
electronics components. Also, a
fan with an air filter located in the
product base plate, dissipates
heat from the electrical
components, resulting in a dust
proof product.

The internal framework, housing
and its ribs, enhance strength
and stiffness. The sample holder
was produced with steel to
withstand wear and tear caused
by abrasive cleaners. A large
power capacity that can
withstand 3 days diagnostic
without recharging is
implemented in the design.

Potential for
Local
Production

The parts are either locally
produced by 3D printing or
bought off the shelf. Hence the
product can be easily
manufactured at a cost of Euro
125 per unit and damaged parts
can be reprinted or replaced
locally.

Local manufacturing and
off-the-shelf parts were used in
the design and the cost per unit
of the device is Euro 480. The
product level assemble makes
device maintenance cost and
time efficient.

Intuitiveness

The device is designed with
multiple use cues such as:

• A specific circle at the
bottom of the sample stage
to aid correct placement on
the focus knob

• A circle of light projected on
the glass stage to which
serves as cue on where to
place the sample for correct
alignment

• Icons on the buttons for user
guidance

The device has use cues that
suggest the user holds the device
with two hands in different ways
to secure stability. Also, the two
sliding buttons in the housing
have a coloured bed indicating
whether they are switched on or
off and icons to indicate
functionality. A slight blue colour
ring is added around the rounded
sample insertion hole to indicate
the placement to the user.

Hygiene

Components which come in
contact with the urine sample are
easily removable and cleaned
separately. Components are also
designed to be rounded and
smoothed for easy cleaning.

White is colour giving the product
a hygienic feeling. Due to the
design of the sample holder and
the hole in the embodiment,
samples can be inserted easily
without touching any other parts.

Data Enables data transfer to the cloud
via WiFi technology.

Real time data can be uploaded
to the cloud database via the
smart phone through 4G network.

the camera sensor, lens and sample in order for the product to function,
which was met by both designs of the Schistoscope. However, there was
clogging of the filter by urine sediment due to the small surface area
of the filter used for the filtration process. This problem can be solved
by using the standard filters with larger surface area but the designed
optical system cannot image the entire standard filter in a one FoVs.
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Therefore, moving the sample along the X and Y axes to obtain multiple
FoVs will be a preferred solution.

Figure 3.6: Image of sample with eggs in one field of view obtained from
Schistoscope RP (left) and Schistoscope SP (right).

Finally, both products had a robust design made of materials that are
resistant against the environment in rural Nigeria. The final design of
the Schistoscopes consisted of materials that are 3D printed as well as
purchased off-the-shelf. However, it took about 40 hours to 3D-print
the various components of each device. Using a Laser-cut model would
greatly reduce this delay. Also, the production cost per unit for the
Schistoscope RP and the Schistoscope SP were Euro 125 and Euro 480
respectively. The Schistoscope SP is therefore thrice the price of the
Schistoscope RP. Hence, the Schistoscope RP, if developed further will be
a more suitable low-cost diagnostic device for urinary schistosomiasis.

3.5. CONCLUSION
The goal of the project was to develop a digital microscope which offers
an integrated diagnostics solution (sample preparation and diagnosis)
with the support of a smart algorithm (for detection and quantification
of the S. haematobium eggs) which can be produced and maintained
in sub Saharan Africa (with the use of locally available components
and 3D-printing). This was achieved by the further development of the
Schistoscope 1.0 along two parallel design trajectories: a Raspberry
Pi and a Smartphone-based Schistoscope. The three main component
groups of the design were the embodiment, optics and electronics
systems as prime focus. Both Schistoscopes were able to capture single
FoV images of filtered schistosoma eggs (see fig. 3.6), with optical
alignment of camera, sensor and lens. Most of the materials used in the
production were 3D printed while others were accessible off-the-shelf,
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hence easily replaced when damaged.
In our next design trajectory, the Raspberry pi design will be further

developed because of its cheaper production cost. The standard
filter with a larger surface area will be adopted along with a multiple
FoVs optical system. To reduce the production, Laser-cutting would
be explored for the embodiment design of the device. Also we will
automate the process of imaging and analysing the prepared samples
so validation with laboratory microscopy using a large sample size can
be realized. After the validation in the lab, we will begin testing with
communities in Nigeria based on standard ethical approval.
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ABSTRACT
For many parasitic diseases, the microscopic examination of clinical
samples such as urine and stool still serves as the diagnostic reference
standard, primarily because microscopes are accessible and cost-
effective. However, conventional microscopy is laborious, requires
highly skilled personnel, and is highly subjective. Requirements for
skilled operators, coupled with the cost and maintenance needs of
the microscopes, which is hardly done in endemic countries, presents
grossly limited access to the diagnosis of parasitic diseases in resource-
limited settings. The urgent requirement for the management of
tropical diseases such as schistosomiasis, which is now focused on
elimination, has underscored the critical need for the creation of access
to easy-to-use diagnosis for case detection, community mapping, and
surveillance. In this paper, we present a low-cost automated digital
microscope—the Schistoscope—which is capable of automatic focusing
and scanning regions of interest in prepared microscope slides, and
automatic detection of Schistosoma haematobium eggs in captured
images. The device was developed using widely accessible distributed
manufacturing methods and off-the-shelf components to enable local
manufacturability and ease of maintenance. For proof of principle, we
created a Schistosoma haematobium egg dataset of over 5000 images
captured from spiked and clinical urine samples from field settings and
demonstrated the automatic detection of Schistosoma haematobium
eggs using a trained deep neural network model. The experiments
and results presented in this paper collectively illustrate the robustness,
stability, and optical performance of the device, making it suitable
for use in the monitoring and evaluation of schistosomiasis control
programs in endemic settings.
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4.1. INTRODUCTION
Bright-field microscopy is still the dominant method for imaging
in numerous engineering and scientific domains as a result of its
accessibility. Of particular interest to this work is the medical discipline
of diagnostics, in which it is still the reference standard procedure for
diagnosis and load estimation for many infectious diseases, particularly
those caused by parasites [1].

Schistosomiasis is a neglected tropical disease (NTD) [2] caused by
the parasitic flatworm called Schistosoma. Approximately 700 million
people living in 80 countries are at risk of infection, of which around
90% live in Africa [2–4]. Several Schistosoma (S) species can infect
humans, with S. haematobium being one of the most prevalent species
in Africa and the cause of urogenital schistosomiasis [5]. The reference
standard procedure for the diagnosis of S. haematobium infection is
the detection of eggs in urine via microscopic examination, while
counting the number of eggs in a specified volume of urine (quantitative
analysis) is used for epidemiological surveillance [3–7]. One of the
major limitations of this procedure is that it is operator-dependent,
meaning it is prone to discrepancies in performance since expertise
and skills can vary across individuals [8, 9]. Furthermore, since
infections are predominantly found in rural settings in poor-resource
regions, the availability of functioning microscopes can be a challenge
[10]. Additionally, the employment of skilled microscope operators is
costly and requires investment in ongoing training [8, 9]. Furthermore,
the diagnostic performance of this procedure is inversely related to
the number of worms present, meaning that light infections with low
egg excretion will be easily missed, while these individuals can still
contribute to the transmission of the disease [10]. Finally, the current
World Health Organisation’s (WHO) agenda to eliminate neglected
tropical diseases (including schistosomiasis) [11], requires the precision
mapping of communities and conventional microscopy, which is mostly
used in resource-constrained settings where schistosomiasis is endemic,
may not be able to accelerate this elimination agenda. The critical need
for periodic monitoring of interventions in communities at the ward level
will require devices with automation and self-diagnostic capacities that
human operators alone may not be able to readily provide.

For these reasons, there is a need for inexpensive and smart portable
devices capable of slide-scanning and performing digital microscopic
examination. Such a device will ensure better and consistent
performance across diagnosis, speed up sample scanning, compensate
for the lack of trained microscope operators in some countries, and
assist in diagnosis using artificial intelligence algorithms where needed.
When used with an onboard computer, regional epidemiological data can
potentially be uploaded to a database, therefore allowing stakeholders
involved in epidemiological surveillance to plan and authorize control



4

62 4. Schistoscope 5.0 Design

and elimination schemes. Moreover, such devices will ease the workload
on microscopists in epidemiological surveys or impact assessment
programs, where there are a lot of samples to be analyzed, thus
minimizing errors in diagnosis.

In recent years, accessibility of manufacturing methods such as 3D
printing and laser-cutting has increased. Furthermore, the availability of
smartphones, which have an in-built camera, and miniature computers
such as Raspberry Pi have also increased. This growth has led to the
development of computerized instruments.

Studies on smartphone-based microscopes have been reported [12–
16] with optical setup with numerical aperture (NA) and magnification
equivalent to or higher than some microscope objectives. However,
these microscopes do not have mechanical stages, making it challenging
to maintain focus while manually changing the field of view (FoV). On
the other hand, the scientific literature also includes studies that has
developed open-source microscope designs, automated movement of
the XYZ sample stages and microscope objectives [17–20]. One notable
design is the open-source OpenFlexure device by Collins et al. [21],
which uses a 100× microscope objective and was applied to clearly
resolve malaria parasites in thin blood smears. Li et al. [22] developed
a highly configurable instrument at a variable cost of USD 250–500
(depending on the configuration) that is capable of quantifying malaria
parasites by scanning 1.5 million red blood cells per minute. There have
also been studies on automatic S. haematobium egg detection which
focus mainly on identifying eggs in images pre-captured by professional
clinical operators mostly with isolated and non-overlapping eggs in an
FoV [23–25]. Essentially, captured images of urine samples prepared
in field settings often contain a lot of artifacts such as crystals, glass
debris, air bubbles, fabric fibers and human hair. Thus, an automatic S.
haematobium egg detection system applicable in field settings remains
unexplored.

In this work we demonstrate the potential for a low-cost yet high-
quality instrument, called the Schistoscope, that can function as a
reliable digital microscope, slide scanner and an automatic diagnostic
tool for use in point-of-need diagnostics. We build on our earlier efforts
[26–28] with a focus on the detection of S. haematobium eggs in urine.
The Schistoscope performs autofocusing, automated filter membrane
scanning (creating an image grid of the sample) and automatic S.
haematobium egg detection and count estimation. The four main
drivers in the design of the Schistoscope are focused on: (i) the
robustness of the device in its ability to withstand the harsh tropical
working environment in sub-Saharan Africa, such as humidity, dust and
heat; (ii) potential for local production mainly using standard off-the-shelf
components in combination with locally available distributed production
methods to bring the cost of the device to approximately USD 700 and
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enable local maintenance and repair; (iii) operational considerations
such as the intuitiveness and ease of use; (iv) hygiene considerations in
the handling of the device to ensure that the product could be easily
cleaned to prevent possible cross-contamination between samples.

With these factors in mind, our design of the Schistoscope has
undergone five design iterations [27, 28] with implementation research
conducted in the field, involving key stakeholders in the research and
development process, where the device will potentially be used. For
further proof of principle, we also demonstrate the detection of S.
mansoni and hookworm eggs in fecal samples prepared using Kato–Katz
technique.

4.2. MATERIALS AND METHODS
4.2.1. OPTICAL SYSTEM
We designed the Schistoscope optical system using the working principle
of a conventional light microscope (fig. 4.1a,b). The illumination system
is positioned below the sample stage. Light rays that have passed
through the sample are transmitted through the microscope objective
lens, which sits just above the specimen, and the image is recorded on
the image sensor which is further away from the sample. We employed
two convex lenses in the illumination system: the collector lens and the
condenser lens. It is designed to provide bright and even illumination
on the sample plane and the image plane where the image produced
from the objective is recorded by the sensor. This is important because
it eliminates glare in the captured image since backlight illumination
floods the object with light from behind.

The Schistoscope optical train is similar to that of a standard
microscope, except in our design the eyepiece is replaced by a camera
sensor, focus adjustment knobs are replaced by an automated Z-axis
movement system and software-based autofocus, while the mechanical
stage is replaced by automated XY-axis movement systems. With
the open-source philosophy in mind, we use an easily accessible and
community supported camera module for the Schistoscope—Raspberry
Pi High-Quality Camera Module V2.1, equipped with a Sony IMX477R
stacked, back-illuminated sensor, 12.3 megapixel resolution, 7.9 mm
sensor diagonal and 1.55 µm × 1.55 µm sensor pixel size. We aligned
the camera module with a basic achromatic microscope objective using
the Thorlabs Extra-Long 6 inches (152.4 mm) extension tube. To
visualise Schistosoma eggs, we used a 4× magnification objective
(with 0.10 numerical aperture, corresponding to a focal length of 40
mm); however, the device is designed such that the objective is easily
interchangeable with a microscope objective up to 20× magnification.
Higher magnifications cannot be used due to limited resolution of
the Z-axis slider in our design. The illumination system consists of
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Figure 4.1: (a) Schematic diagram of the Schistoscope optical train
(b) Region of interest showing the Z-axis consisting of a
mechanical slider and optical setup (c) Region of interest
showing the sample stage mounted on the X and Y
slider mechanism (d) Exterior of the Schistoscope device
(embodiment).



4.2. Materials and Methods

4

65

high-power white LED chips welded on a printed circuit board (PCB)
and a 25 mm diameter, 20.1 mm focal length Thorlabs aspheric
condenser with diffuser. The tube lens is connected to a motorized
slider mechanism for effective movement of the optical train along the
Z-axis to obtain accurate focus on the sample. In the design of the
sample stage, it is important to ensure consistency when moving from
one FoV to another in the sample plane to prevent errors during the
automatic slide-scanning procedure. Hence, we designed the sample
stage as a simplified cantilever beam system, in which the sample
holder is mounted on top of an XY stage consisting of two motorized
slider mechanisms (similar to the one on the Z-axis) with their individual
stepper motors. The Y-axis slider mechanism is fixed, and it translates
the X-axis slider mechanism on which the sample holder is directly
mounted as shown in fig. 4.1c.

4.2.2. ELECTRONICS SYSTEM
The Schistoscope makes use of the Raspberry Pi 4 computer board,
which provides a high-bandwidth interface to connect the Raspberry
Pi camera module. The Raspberry Pi board is also connected to an
Arduino Nano board with sufficient general-purpose input–output (GPIO)
pins to communicate with other electronic components such as six limit
switches positioned at both ends of the X-, Y- and Z-axis, 3 NEMA 11
stepper motors along with their respective controllers for movement
along each axis. A custom-made PCB that acts as a shield connects the
Arduino board to the various components. We adopted a 60W AC–DC
double output switching power supply to power the onboard computer
and various device’s electrical components.

4.2.3. SUPPORTING STRUCTURES AND ENCLOSURE
We adopted aluminum profiles for designing the supporting system to
ensure robustness and stability of the device [29]. This will prevent
the need for frequent optical system re-calibration and highly trained
personnel for system maintenance which is generally unavailable in
low-resource settings. Aluminum profiles are widely used for 3D printers,
CNC machinery, and research test set-ups. These profiles allow for
easy attachment of other systems, and the corner joint allows for quick
adaptations in design. The frame is constructed by attaching the profiles
with metal corner joints, thus creating rectangle constructions. The
frame uses several multiple profiles to allow for change and attachment
of an enclosure. The setup creates multiple rectangles to increase
rigidness. The bottom profiles prevent the device from tilting forwards,
the upper profiles prevent the vertical profiles from leaning, and the
middle profiles allow for the mounting of an electronics panel. To prevent
the internal system from adverse exposure to external factors such as
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dust, dampness, or accidental interference by humans, we designed
an enclosure system using a material called ‘Alubond’, a lightweight,
maintenance-free material. A very low expansion coefficient makes it
suitable for temperatures in sub-Saharan Africa. The material allows
for production with laser-cutting, CNC-milling, sawing and drilling. The
enclosure system is robust and attaches easily to the supporting system.
The surface is easy to clean, and the white color resembles a medical
device.

4.2.4. SAMPLE PREPARATION
For this study, S. haematobium eggs were obtained from gut tissue of
hamsters infected with S. haematobium at the Leiden University Medical
Center (LUMC) following a standardized protocol approved by the Dutch
Central Authority for Scientific Procedures on Animal (CCD) as described
previously [30]. Briefly, five weeks after infection with S. haematobium,
hamsters were sacrificed, and eggs were obtained following gut tissue
digestion with collagenase B and extensive tissue washing. Eggs were
concentrated in normal saline (5000 eggs per mL) to prevent hatching
and stored appropriately for future use. The gut tissue derived eggs
are morphologically identical to that seen in human-infected samples.
Ten milliliters of urine samples provided by voluntary donors after oral
consent were spiked with 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
mL of the concentrated stock (5000 eggs per mL) to make 10 dilutions.
In addition to the artificially spiked samples, clinical urine and stool
samples were obtained during a field study in Federal Capital Territory
(FCT), Abuja, Nigeria, in collaboration with the University of Lagos,
Nigeria. Ethical approval for this study was obtained from the Federal
Capital Territory Health Research Ethics Committee (FCT-HREC) Nigeria
(reference No., FHREC/2019/01/73/18-07-19). After receiving informed
consent, a total of 33 urine samples were collected in 20 mL sterile
universal containers from school-age children who had observed the
presence of blood in their urine or had been to the infected community
river in the past six weeks. This screening increased the chances of
having positive samples for our dataset. The spiked and clinical urine
samples were processed using the standard urine filtration procedure
[31]. With a syringe, 10 mL of urine was passed through a 13 mm
diameter filter membrane with a pore size of 0.2 µm. After filtration, the
membrane was placed on a microscopy glass slide, and covered with a
coverslip to increase the flatness of the membrane for image capture
using the Schistoscope. The fecal samples were processed using the
standard Kato–Katz procedure with a 41.7 milligram template [32]. The
prepared microscopic slides were imaged using the Schistoscope device.
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4.2.5. AUTOFOCUS AND AUTO-SCANNING SYSTEM
Microscopic imaging of filter membranes for the detection of S.
haematobium eggs usually encounters challenges such as uneven filter
membranes, presence of artifacts, and deviations of slide angle and
stage position. All these factors can result in loss of focus when
capturing images across different FoVs, thus reducing the readability of
the image by both humans and automatic object detection algorithms.
Therefore, there is a need for an autofocusing system to ensure that
the images captured are always in focus. We designed the autofocusing
algorithm using the following steps [21, 22]: first, the microscope
objective is moved sequentially through a set of positions along the
Z-axis, and at each position an image is captured and converted to
greyscale. Next, a sharpness metric is calculated from the edge image
derived by applying a 2D Laplacian filter to the grayscale image. The
image with the maximum sharpness metric is selected as the image
with the best focus. Due to the high resolution of the system, only a
limited FoV (1078 µm × 1470 µm) can be imaged at one time point.
Therefore, a 13 × 9 grid of images is required to image an entire 13
mm filter membrane for accurate diagnosis. We reduced the risk of
focusing on the slides by defining the top curvature of the membrane as
a starting position for the auto-scanning procedure. The Schistoscope
performs auto-scanning in a row-wise traversal order beginning from the
upper-left position of the grid using the X and Y slider mechanism. An
example grid of a filter membrane captured using the Schistoscope is
shown in fig. 4.2.

4.2.6. AUTOMATIC S. haematobium EGG DETECTION
To automatically detect S. haematobium eggs, we first created a large-
scale image dataset (SH dataset) of Schistoscope-captured microscopic
images of filter membranes prepared from spiked and clinical samples.
The corresponding ground-truth images were created by manually
annotating S. haematobium eggs in the captured images. Expert
parasitologists carried out this task using the coco annotator tool [33].
For the creation of the ground-truth images, we applied the following
principles:

1. Annotation of the exact boundary pixels of the S. haematobium
eggs was not strictly enforced due to the limitation posed by the
size of the eggs.

2. The pixel values of the background and artifacts in the ground-truth
image were labelled as ‘0’ and the eggs as ‘1’.

3. There were few S. mansoni eggs found in the images of the clinical
urine samples and their pixel values were labelled as ‘1’.
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Figure 4.2: Automated image grid acquisition of Schistosoma eggs from
a urine filter membrane. Blue region of interest shows
individual sub-images, red and green regions of interest are
S. mansoni and S. haematobium eggs, respectively, present
in the urine sample. Enlarged areas show the eggs at 300%
digital zoom.

4. Pixels of partially cut eggs at the edges of the images were labelled
as ‘1’.

5. The region of the eggs covered by artifacts was labelled as ‘0’.

A deep neural network (DNN) based on a UNET architecture [34] was
trained for the segmentation of S. haematobium egg pixels using the
SH dataset. The SH dataset was split into 70%, 15% and 15% to train,
validate and test the automated system, respectively, and the deep
neural network was trained for 16 epochs using Google Colaboratory’s
Tesla P100-based servers. During the training stage, the image was
resized to 512 × 512 pixels and the Adam solver was applied with a
learning rate of 1 × 10−5. The momentum and the decay coefficient
were set to 0.9 and 1 × 10−8, respectively. All the weights were
initialized from a Gaussian distribution with a mean of 0 and a standard
deviation of 0.02. The batch size was initialized to 8. After training,
the test set was applied to the trained model and the segmentation
performance was compared to the ground truth using the dice similarity
coefficient [35] as metric. We developed a linear regression model for
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egg count estimation using the pixel area of each connected component
and its corresponding actual egg count in the ground-truth image. The
derived model was applied estimating the egg counts per image in the
segmented mask images of the test set. We compared the results with
the actual egg count per image using mean absolute error (MAE) and
root mean squared error (RMSE) as metrics.

4.3. RESULTS AND DISCUSSION
4.3.1. SAMPLE STAGE XY POSITION REPEATABILITY
We performed a sample stage XY position repeatability test [19, 20] to
quantitatively measure the positioning repeatability of the sample stage
in the X- and Y-axis. We imaged S. haematobium eggs spread out across
three adjacent FoVs and measured the accuracy with which we could
repeatedly center the microscope objective over these different FoVs.
We selected eggs located approximately 2000 µm to 3000 µm apart and
programmed the auto-scanning system to repeatedly cycle between
them 50 times and capture a single 1520 × 2028 pixels image upon
arriving at each FoV. We then estimated the positioning error across
the 50 cycles by calculating the number of pixels (and hence microns)
by which subsequent frames are displaced from the first frame. A
displacement of zero would indicate that the stage returned exactly to
the starting position. The path taken by the sample stage is shown in
fig. 4.3a, where the three vertices are the locations of the eggs in each
FoV. fig. 4.3b–d show XY positioning errors for each egg. The color scale
corresponds to the motion cycle number, indicating the order in which
the data were acquired. The first data point is yellow and the last is
brown. The colors are not distributed randomly, which indicates that
there is a systematic drift. The estimated drift after 50 motion cycles of
the three eggs from their initial positions were 11.17 µm, 13.68 µm and
11.75 µm, respectively, which is small relative to the size of the FoV.

4.3.2. IMAGING PERFORMANCE
We evaluated the quantitative imaging performance of the Schistoscope
by obtaining the resolution limit of the optical setup. Additionally, a
qualitative comparison was performed between images taken by our
device and images of the same FoV taken by a conventional microscope
(BRESSER Science Infinity Microscope) equipped with a plan-achromatic
objective (10× magnification and 0.25 numerical aperture). We adopted
the ISO 12233 slanted-edge technique [36], which provides a fast and
efficient way of estimation and Modulation transfer function (MTF). First,
we registered a slanted-edge image (derived from a standard USAF
1951 resolution target) using the Schistoscope. Next, we selected a
rectangular region of interest (ROI) in the image with a step edge
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Figure 4.3: XY positioning accuracy. (a) the path taken by the sample
stage. (b–d) the displacement of three eggs in the respective
FoV from their initial positions in the captured frame from the
first cycle.

(fig. 4.4a). The device’s edge spread function (ESF) was then calculated
by taking the response of the line perpendicular to the edge. Then we
obtained the derivative of the ESF which is the line spread function (LSF).
The MTF was derived by performing a one-dimensional Fourier transform
of the LSF. The ESF, LSF and MTF curves are shown in fig. 4.4b–d. It was
observed from the MTF curve that the limiting resolution (MTF10) of the
device is 307 lp/mm (3.26 microns), which is in reasonable agreement
with the Rayleigh theoretical value of 3.35 microns (assuming NA 0.1
and center wavelength 550 nm). Thus, the optical setup is more than
sufficient to image the Schistosoma eggs with sizes within the bounds
of 110 − 170 × 40 − 70μm.

In the qualitative comparison between the Schistoscope and a
conventional microscope, we captured the same FoV on a sample
slide containing S. haematobium eggs using both systems (fig. 4.5a,b).
Despite the markedly superior optical characteristics of the conventional
microscope, the overall FoV, field flatness, and visual perception of
the two systems are not so different. A magnified region of interest
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Figure 4.4: Resolution limit of the Schistoscope. (a) Slanted-edge image
with selected rectangular region of interest (b) Edge spread
function curve (c) Line spread function curve (d) Modulation
transfer function curve with a resolution limit of 307 lp/mm.

is also presented for detailed comparison. Although the conventional
microscope has an improved depth of focus and higher contrast, the
quality of the Schistoscope image is acceptable as the terminal spine
of the S. haematobium eggs and the lateral spine of the S. mansoni
eggs (fig. 4.2) could be easily identified by a human reader. To further
demonstrate the ability of the Schistoscope to aid in the diagnosis of
intestinal parasites effectively, we used the device to image fecal smear
containing eggs of S. mansoni and hookworm eggs. As can be clearly
seen in fig. 4.6a,b, the Schistoscope device also can optically resolve
the eggs of these intestinal parasites.
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Figure 4.5: Optical performance of the Schistoscope. (a) Schistoscope
(NA 0.1) and (b) conventional microscope (NA 0.25) images
of fecal smear containing Schistosoma haematobium eggs.
Enlarged ROIs show similar optical qualities.

4.3.3. PERFORMANCE EVALUATION OF S. haematobium EGG
DETECTION ALGORITHM

We created an SH image dataset consisting of 5198 microscopic images
of urine filter membranes (986 and 4212 images from spiked and clinical
urine samples, respectively), along with their respective ground-truth
images with 6437 annotated S. haematobium eggs (4776 and 1661 eggs
in spiked and clinical urine samples images, respectively). Although
images from the clinical samples had fewer or in some cases no eggs
present compared to images of the spiked samples, they still contained
artifacts such as crystals, glass debris, air bubbles, fabric fibers and
human hair (selected images shown in fig. 4.7c,f), thus increasing
the robustness of the dataset and the difficulty of the automatic egg
detection task.
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Figure 4.6: Captured images of intestinal parasites using the Schis-
toscope. Fecal smears of (a) region of interest showing
Schistosoma mansoni eggs. (b) region of interest showing
hookworm eggs.

To address this challenge, we applied the trained UNET model for the
semantic segmentation of S. haematobium eggs present in images of
the test dataset. In the qualitative segmentation results of images in
the test dataset (fig. 4.7), we observed that the deep-learning model
performed better in the segmentation of eggs in images from the spiked
urine samples (fig. 4.7a,b) than in clinical samples (fig. 4.7c–f). Probable
reasons for this difference may be that a higher percentage of eggs in
the SH dataset were from the spiked samples, and the high presence of
artifacts in the images captured from the clinical samples could have
caused segmentation errors. An example of such an error can be seen
in fig. 4.7f, where many uric acid crystals are present in the image.
The similarity between morphological features of the crystals and the S.
haematobium eggs causes the deep-learning model to falsely identify
the crystals as eggs. In the quantitative results, we obtained a dice
similarity coefficient of 0.44. The observed low dice similarity coefficient
in the test data could be due to the following assumptions: (i) the
non-strict-enforcement of exact boundary conditions in the annotation
of the S. haematobium eggs in the ground-truth images; and (ii) poor
segmentation performance of the UNET in the difficult clinical images
with egg-like artifacts (uric acid crystals). We also estimated the egg
count per captured FoV image using a linear prediction model with the
area of the segmented egg pixels as the independent variable. We
obtained a MAE and RMSE of 1.21 and 4.08, respectively. A box plot
shows a visual summary of the estimated egg counts in test images
with 0–10 actual egg count ( 98% of the test images) (fig. 4.8a). An
increased number of outliers above the maximum whisker of the box
plot is observed in the set of images with 0 or 1 actual egg count, which
are predominantly images with artifacts from clinical urine samples.
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Figure 4.7: Visual comparison of semantic segmentation of images in
test dataset (a,b) sample images from spiked urine samples
(c–f) sample images from clinical urine samples.
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From this result, we infer that the automated detection model could
satisfy to the 80% sensitivity diagnostic requirement specified in the
WHO Target Product requirement for the diagnosis of schistosomiasis
[37].

Figure 4.8: Quantitative result of the predicted egg counts per captured
FoV image (a) visual summary of the egg counts in test
images with 0–10 actual egg count ( 98% of the test images)
(b) Scatter plot of test images with actual egg counts greater
than 10.

Furthermore, there is a small difference between the average predicted
egg count in each box and actual egg count, which is evident in the
MAE value of the test dataset. fig. 4.8b shows the scatter plot of test
images with actual egg count greater than 10. It is observed that the
deviation from the line of perfect agreement (black line) increases with
higher number of actual egg count per image. This is a result of the
increasing occurrence of overlapping eggs with an increasing number of
actual egg count per image. Thus, we believe a logarithmic model or an
egg counting algorithm that explores the eggs’ morphological properties
(e.g., egg size and shape) might be a suitable solution to this problem.

4.4. CONCLUSIONS
We developed an optical diagnostic device called the Schistoscope,
which incorporates an automated Z-axis movement for autofocusing a
sample based on a Laplacian sharpness metric, as well as an automated
XY movement of the sample stage for automated grid scanning.
Our experiments showed that the optical system has comparable
performance with conventional microscopes. We demonstrated the
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automatic detection of S. haematobium eggs by creating a robust S.
haematobium egg image dataset containing over 5000 FoV images
of filtered spiked and clinical urine samples from field settings. We
trained a deep neural network model for the semantic segmentation
of the S. haematobium eggs prior to egg count estimation using a
linear model based on the area of the segmented pixels. Although
urine artifacts present in the images from the clinical sample posed
a challenge, the algorithm clearly identified the eggs in the image,
demonstrating that the quality of the images is suitable for automatic
detection of Schistosoma eggs in line with the current diagnostic
reference standard. High-quality microscopy images of S. haematobium,
S. mansoni and hookworm eggs were captured using the device, and the
eggs were clearly identified in captured digital images by microscopists.
Therefore, it is evident that combining automated image acquisition with
a suitable artificial intelligence algorithm in the device for diagnosis will
significantly increase its potential as a diagnostic tool in resource-limited
settings. Manuscripts describing the outcome of a population-based
survey, and validating the diagnostic performance of the Schistoscope
for the detection of S. haematobium eggs in urine samples in a
low-resource field setting, are currently in progress. In conclusion, the
Schistoscope was presented to the national technical working committee
on the eradication of schistosomiasis in Nigeria. Possible potential
benefits of the Schistoscope discussed include point-of-need diagnosis
and drug efficacy monitoring, which could mitigate waste of human,
material and financial resources. Ongoing discussions with local private
and public partners aim to explore ways to integrate the Schistoscope
into active schistosomiasis elimination and control programs in Nigeria.

AUTHOR CONTRIBUTIONS
Conceptualization, P.O., T.A. and J.-C.D.; methodology, P.O., S.J., B.M.
and I.B.; software, S.J. and P.O.; resources, A.v.D. and W.O.; data
curation, P.O. and B.M.; writing—original draft preparation, P.O. and S.J.;
writing—review and editing, I.B., B.M., A.v.D., M.B., T.A., L.v.L., J.-C.D.,
W.O. and G.V.; visualisation, P.O.; supervision, W.O., G.V. and J.-C.D.;
project administration, L.v.L. and J.-C.D.; funding acquisition, J.-C.D. and
L.v.L. All authors have read and agreed to the published version of the
manuscript.

FUNDING
This research was funded by NWO-WOTRO Science for Global Devel-
opment program, Grant Number W 07.30318.009 (INSPiRED—INclusive
diagnoStics for Poverty REIated parasitic Diseases in Nigeria and Gabon).



4.4. Conclusions

4

77

INSTITUTIONAL REVIEW BOARD STATEMENT
The study was conducted in accordance with the Declaration of
Helsinki, and approved by the Federal Capital Territory Health Re-
search Ethics Committee (FCT-HREC) in Abuja, Nigeria (reference no.,
FHREC/2019/01/73/18-07-19).

INFORMED CONSENT STATEMENT
Informed consent was obtained from all subjects involved in the study.

DATA AVAILABILITY STATEMENT
Schistosoma haematobium image dataset is available from the Zenodo
Repository 10.5281/zenodo.6467268.

ACKNOWLEDGMENTS
We thank the Neglected Tropical Disease team from the Federal Ministry
of Health Abuja and Federal Capital Territory Authority Public Health
Laboratory Abuja. We also acknowledge researchers and staff of
ANDI Center of Excellence for Malaria Diagnosis, College of Medicine,
University of Lagos and TU Delft Global Initiative for their support
towards this study.

CONflICTS OF INTEREST
The authors declare no conflict of interest.





REFERENCES
[1] H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan.

“Optical imaging techniques for point-of-care diagnostics”. In:
Lab on a Chip 13.1 (2013), pp. 51–67. doi: 10.1039/
c2lc40864c.

[2] S. A. L. Thétiot-Laurent, J. Boissier, A. Robert, and B. Meunier.
“Schistosomiasis Chemotherapy”. In: Angewandte Chemie Inter-
national Edition 52.31 (2013), pp. 7936–7956. doi: 10.1002/
anie.201208390.

[3] Centers for Disease Control and Prevention. CDC-Schistosomiasis.
2022. url:https://www.cdc.gov/parasites/schistosomiasis/
index.html (visited on 02/12/2022).

[4] World Health Organization. “Schistosomiasis and soil-transmitted
helminthiases: progress report, 2021”. In: Weekly Epidemiological
Record 97.48 (2022), pp. 621–632. url: https://www.who.
int/publications/i/item/who-wer9748-621-
632.

[5] D. G. Colley, A. L. Bustinduy, W. E. Secor, and C. H. King. “Human
schistosomiasis”. In: The Lancet 383.9936 (2014), pp. 2253–
2264. doi: 10.1016/S0140-6736(13)61949-2.

[6] L. Le and M. H. Hsieh. “Diagnosing urogenital schistosomiasis:
Dealing with diminishing returns”. In: Trends in Parasitology 33.5
(2017), pp. 378–387. doi: 10.1016/j.pt.2016.12.009.

[7] P. Hagemann. “Manual of Basic Techniques for a Health
Laboratory”. In: Clinical Chemistry 49 (2003), pp. 1712–1713.

[8] A. D. Long. Malaria: Obstacles and Opportunities. Washington,
DC, USA: Agency for International Development, 1991.

[9] W. P. O’Meara, M. Barcus, C. Wongsrichanalai, S. Muth, J. D.
Maguire, R. G. Jordan, W. R. Prescott, and F. E. McKenzie. “Reader
technique as a source of variability in determining malaria
parasite density by microscopy”. In: Malaria Journal 5 (2006),
pp. 1–7. doi: 10.1186/1475-2875-5-118.

[10] S. Jujjavarapu. “Automating the Diagnosis and Quantification of
Urinary Schistosomiasis”. MA thesis. Delft, The Netherlands: Delft
University of Technology, 2020.

79

https://doi.org/10.1039/c2lc40864c
https://doi.org/10.1039/c2lc40864c
https://doi.org/10.1002/anie.201208390
https://doi.org/10.1002/anie.201208390
https://www.cdc.gov/parasites/schistosomiasis/index.html
https://www.cdc.gov/parasites/schistosomiasis/index.html
https://www.who.int/publications/i/item/who-wer9748-621-632
https://www.who.int/publications/i/item/who-wer9748-621-632
https://www.who.int/publications/i/item/who-wer9748-621-632
https://doi.org/10.1016/S0140-6736(13)61949-2
https://doi.org/10.1016/j.pt.2016.12.009
https://doi.org/10.1186/1475-2875-5-118


4

80 references

[11] World Health Organization. Ending the Neglect to Attain the
Sustainable Development Goals: A Global Strategy on Wa-
ter, Sanitation and Hygiene to Combat Neglected Tropical
Diseases, 2021–2030. World Health Organization, 2021. isbn:
9789240022782. url: https://iris.who.int/handle/
10665/340240.

[12] I. I. Bogoch, J. R. Andrews, B. Speich, J. Utzinger, S. M. Ame, S. M.
Ali, and J. Keiser. “Mobile phone microscopy for the diagnosis of
soil-transmitted helminth infections: A proof-of-concept study”.
In: The American Journal of Tropical Medicine and Hygiene 88.4
(2013), pp. 626–629. doi: 10.4269/ajtmh.12-0742.

[13] N. A. Switz, M. V. D’Ambrosio, and D. A. Fletcher. “Low-cost mobile
phone microscopy with a reversed mobile phone camera lens”.
In: PLoS ONE 9.5 (2014), e95330. doi: 10.1371/journal.
pone.0095330.

[14] J. S. Cybulski, J. Clements, and M. Prakash. “Foldscope: Origami-
based paper microscope”. In: PLoS ONE 9 (2014), e98781. doi:
10.1371/journal.pone.0098781.

[15] S. J. Sowerby, J. A. Crump, M. C. Johnstone, K. L. Krause, and
P. C. Hill. “Smartphone microscopy of parasite eggs accumulated
into a single field of view”. In: The American Journal of
Tropical Medicine and Hygiene 94.1 (2016), pp. 227–230. doi:
10.4269/ajtmh.15-0427.

[16] J. T. Coulibaly, M. Ouattara, M. V. D’Ambrosio, D. A. Fletcher,
J. Keiser, J. Utzinger, E. K. N’Goran, J. R. Andrews, and I. I. Bogoch.
“Accuracy of mobile phone and handheld light microscopy for the
diagnosis of schistosomiasis and intestinal protozoa infections in
Côte d’Ivoire”. In: PLoS Neglected Tropical Diseases 10.6 (2016),
e0004768. doi: 10.1371/journal.pntd.0004768.

[17] A. M. Chagas, L. L. Prieto-Godino, A. B. Arrenberg, and T.
Baden. “The =C100 Lab: A 3D-Printable Open-Source Platform
for Fluorescence Microscopy, Optogenetics, and Accurate Tem-
perature Control during Behaviour of Zebrafish, Drosophila,
and Caenorhabditis Elegans”. In: PLoS Biology 15.7 (2017),
e2002702. doi: 10.1371/journal.pbio.2002702.

[18] T. Aidukas, R. Eckert, A. R. Harvey, L. Waller, and P. C. Konda. “Low-
cost, sub-micron resolution, wide-field computational microscopy
using opensource hardware”. In: Scientific Reports 9 (2019),
p. 7457. doi: 10.1038/s41598-019-43845-9.

[19] R. A. Campbell, R. W. Eifert, and G. C. Turner. “Openstage: A
low-cost motorized microscope stage with sub-micron positioning
accuracy”. In: PLoS ONE 9.2 (2014), e88977. doi: 10.1371/
journal.pone.0088977.

https://iris.who.int/handle/10665/340240
https://iris.who.int/handle/10665/340240
https://doi.org/10.4269/ajtmh.12-0742
https://doi.org/10.1371/journal.pone.0095330
https://doi.org/10.1371/journal.pone.0095330
https://doi.org/10.1371/journal.pone.0098781
https://doi.org/10.4269/ajtmh.15-0427
https://doi.org/10.1371/journal.pntd.0004768
https://doi.org/10.1371/journal.pbio.2002702
https://doi.org/10.1038/s41598-019-43845-9
https://doi.org/10.1371/journal.pone.0088977
https://doi.org/10.1371/journal.pone.0088977


references

4

81

[20] Z. Grier, M. F. Soddu, N. Kenyatta, S. A. Odame, J. Sanders,
L. Wright, and F. Anselmi. “A low-cost do-it-yourself microscope
kit for hands-on science education”. In: Proceedings of the Optics
Education and Outreach V. Vol. 10741. International Society for
Optics and Photonics. San Diego, California, United States, 2018,
107410K. doi: 10.1117/12.2320655.

[21] J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, V.
Mayagaya, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D.
Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta,
S. McDermott, B. Vodenicharski, and R. Bowman. “Robotic
microscopy for everyone: the OpenFlexure microscope”. In:
Biomed. Opt. Express 11.5 (May 2020), pp. 2447–2460. doi:
10.1364/BOE.385729.

[22] H. Li, H. Soto-Montoya, M. Voisin, L. Valenzuela, and M. Prakash.
Octopi: Open configurable high-throughput imaging platform for
infectious disease diagnosis in the field. preprint. 2019. doi:
10.1101/684423. BioRxiv: 684423.

[23] D. Avci and A. Varol. “An expert diagnosis system for classification
of human parasite eggs based on multi-class SVM”. In: Expert
Systems with Applications 36.1 (2009), pp. 43–48. doi: 10.
1016/j.eswa.2007.09.012.

[24] G. Sengul. “Classification of parasite egg cells using gray level
cooccurence matrix and kNN”. In: Biomedical Research 27.3
(2016), pp. 829–834.

[25] C.-C. Lee, P.-J. Huang, Y.-M. Yeh, P.-H. Li, C.-H. Chiu, W.-H.
Cheng, and P. Tang. “Helminth egg analysis platform (HEAP):
An opened platform for microscopic helminth egg identification
and quantification based on the integration of deep learning
architectures”. In: Journal of Microbiology, Immunology and
Infection 55.3 (2022), pp. 395–404. doi: 10.1016/j.jmii.
2021.07.014.

[26] T. E. Agbana, J. C. Diehl, F. van Pul, S. M. Khan, V. Patlan, M.
Verhaegen, and G. Vdovin. “Imaging & Identification of Malaria
Parasites Using Cellphone Microscope with a Ball Lens”. In: PLoS
ONE 13 (2018), e0205020. doi: 10.1371/journal.pone.
0205020.

[27] T. Agbana, G. Y. Van, O. Oladepo, G. Vdovin, W. Oyibo, and
J. C. Diehl. “Schistoscope: Towards a locally producible smart
diagnostic device for Schistosomiasis in Nigeria”. In: 2019 IEEE
Global Humanitarian Technology Conference (GHTC). Seattle,
WA, USA, 2019, pp. 1–8. doi: 10.1109/GHTC46095.2019.
9033049.

https://doi.org/10.1117/12.2320655
https://doi.org/10.1364/BOE.385729
https://doi.org/10.1101/684423
684423
https://doi.org/10.1016/j.eswa.2007.09.012
https://doi.org/10.1016/j.eswa.2007.09.012
https://doi.org/10.1016/j.jmii.2021.07.014
https://doi.org/10.1016/j.jmii.2021.07.014
https://doi.org/10.1371/journal.pone.0205020
https://doi.org/10.1371/journal.pone.0205020
https://doi.org/10.1109/GHTC46095.2019.9033049
https://doi.org/10.1109/GHTC46095.2019.9033049


4

82 references

[28] J. C. Diehl, P. Oyibo, T. Agbana, S. Jujjavarapu, G. Van, G. Vdovin,
and W. Oyibo. “Schistoscope: Smartphone versus Raspberry Pi
based low-cost diagnostic device for urinary Schistosomiasis”. In:
Proceedings of the 2020 IEEE Global Humanitarian Technology
Conference (GHTC). Seattle, WA, USA, 2020, pp. 1–8. doi:
10.1109/GHTC46280.2020.9342871.

[29] I. Braakman. “Improving an Optical Diagnostics Device for Schis-
tosomiasis”. MA thesis. Delft, The Netherlands: Delft University
of Technology, 2021.

[30] T. Agbana, P. Nijman, M. Hoeber, D. van Grootheest, A. van
Diepen, L. van Lieshout, J. C. Diehl, M. Verhaegen, and G.
Vdovine. “Detection of Schistosoma haematobium using lensless
imaging and flow cytometry, a proof of principle study”. In:
Proceedings of the Optical Diagnostics and Sensing XX: Toward
Point-of-Care Diagnostics. Vol. 11247. 2020, 112470F. doi:
10.1117/12.2545220.

[31] K. C. Kosinski, K. M. Bosompem, M. J. Stadecker, A. D. Wagner,
J. Plummer, J. L. Durant, and D. M. Gute. “Diagnostic accuracy of
urine filtration and dipstick tests for Schistosoma haematobium
infection in a lightly infected population of Ghanaian school
children”. In: Acta Tropica 118.2 (2011), pp. 123–127. doi:
10.1016/j.actatropica.2011.02.006.

[32] F. Bosch, M. S. Palmeirim, S. M. Ali, S. M. Ame, J. Hattendorf,
and J. Keiser. “Diagnosis of soil-transmitted helminths using the
Kato-Katz technique: What is the influence of stirring, storage
time and storage temperature on stool sample egg counts?” In:
PLoS Neglected Tropical Diseases 15.1 (2021), e0009032. doi:
10.1371/journal.pntd.0009032.

[33] J. Brooks. COCO Annotator. GitHub repository. 2019. url: https:
//github.com/jsbroks/coco-annotator/ (visited
on 12/18/2021).

[34] O. Ronneberger, P. Fischer, and T. Brox. “U-net: convolutional
networks for biomedical image segmentation”. In: Medical
Image Computing and Computer-Assisted Intervention – MICCAI
2015. Vol. 9351. Munich, Germany, 2015, pp. 234–241. doi:
10.1007/978-3-319-24574-4_28.

[35] Y. H. Nai, B. W. Teo, N. L. Tan, S. O’Doherty, M. C. Stephenson,
Y. L. Thian, E. Chiong, and A. Reilhac. “Comparison of metrics
for the evaluation of medical segmentations using prostate MRI
dataset”. In: Computers in Biology and Medicine 134 (2021),
p. 104497. doi: 10.1016/j.compbiomed.2021.104497.

https://doi.org/10.1109/GHTC46280.2020.9342871
https://doi.org/10.1117/12.2545220
https://doi.org/10.1016/j.actatropica.2011.02.006
https://doi.org/10.1371/journal.pntd.0009032
https://github.com/jsbroks/coco-annotator/
https://github.com/jsbroks/coco-annotator/
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.compbiomed.2021.104497


references

4

83

[36] International Organization for Standardization. ISO 12233:2017.
2017. url: https://www.iso.org/cms/render/
live/en/sites/isoorg/contents/data/standard/
07/16/71696.html (visited on 03/03/2022).

[37] World Health Organization. Diagnostic target product profiles
for monitoring, evaluation and surveillance of schistosomiasis
control programmes. World Health Organization, 2021. isbn:
9789240031104. url: https://iris.who.int/handle/
10665/344813.

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/16/71696.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/16/71696.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/16/71696.html
https://iris.who.int/handle/10665/344813
https://iris.who.int/handle/10665/344813




5
USABILITY AND

USER-ACCEPTANCE STUDY
A usability study of an innovative optical

device for the diagnosis of schistosomiasis in
Nigeria

Michel Bengtson, Adeola Onasanya, Prosper Oyibo, Brice
Meulah, Karl Tondo Samenjo, Ingeborg Braakman, Wellington

Oyibo, J.C. Diehl

PUBLICATION REPORT
• Conference Date: 8 - 11 September 2022

• Proceedings: 2022 IEEE Global Humanitarian Technology Confer-
ence (GHTC)

• Publisher: IEEE

• DOI: 10.1109/GHTC55712.2022.9911019

85

 https://doi.org/10.1109/GHTC55712.2022.9911019


5

86 5. Usability and User-acceptance Study

ABSTRACT
Schistosomiasis is a neglected tropical disease that is predominantly
diagnosed by conventional microscopy in SubSaharan Africa. However,
effective diagnosis by conventional microscopy is limited by multiple
technical and logistic barriers. Alternative diagnostic techniques are
needed. The Schistoscope is a digital optical device that has been
designed to support microscopists for the detection of schistosomiasis
in endemic resource-limited settings. Aim: A user-centered design
approach was used to assess the usability and user-acceptance of
the Schistoscope compared to conventional microscopy in the Federal
Capital Territory, Abuja, Nigeria. In this study, usability and acceptance
are defined as being easy-to-use, efficient, and suitable in the daily
workflow by end-users. Methods: Using a qualitative conventional
context analysis approach, a mixed-methods questionnaire was used
to elucidate themes related to the usability and user-acceptance of
the device. Participants included trained microscopists and university
students (n=17). Results: Participants answered both ranked and open
questions. Overall the device’s use was considered to be easy and
acceptable in the routine workflow of a microscopist. The auto-scan
feature was considered to have added value. Critical feedback regarding
aesthetics of the device, particularly related to size, was noted by the
participants. Conclusion: The usability approach used in this study
elucidated valuable insights of end-users. The Schistoscope was very
well perceived by both medical students and trained microscopists.
Critical feedback will be used to further improve the next iterative
design of the device.
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5.1. INTRODUCTION
5.1.1. EPIDEMIOLOGY OF SCHISTOSOMIASIS
Schistosomiasis is a neglected tropical disease caused by infection
with parasitic worms called schistosomes (trematode flatworms of
the Schistosoma (S) genus), affecting more than 250 million people
worldwide [1]. The majority of infected people live in Sub-Saharan
Africa (SSA), especially in poor communities that lack access to clean
water and adequate sanitation [2]. Populations in endemic regions are
further affected by limited access to adequate diagnostics and general
healthcare services. Schistosomiasis is spread through contact with
larvae-infected fresh water [1]. The main human infective species in SSA
are S. haematobium causing urinary schistosomiasis, and S. mansoni
causing intestinal schistosomiasis. Symptoms of acute schistosomiasis
are fever, diarrhea, fatigue, anemia and generally depleted nutritional
status, myalgia, and malaise. Long term health consequences include
organ failure, and for infected children growth stunting and cognitive
impairment. The high socio-economic burden of this disease is
exacerbated by indirect effects, including school absenteeism and
reduced productivity in adults. Schistosomiasis can be treated with an
anthelmintic drug called praziquantel which is safe and effective against
all infective species [1, 2].

5.1.2. CURRENT DIAGNOSTIC APPROACHES AND CHALLENGES IN
RESOURCE-LIMITED SETTINGS

Conventional microscopy is recommended by the World Health Or-
ganisation as the reference standard technique for the diagnosis of
schistosomiasis [2]. For urinary schistosomiasis, S. haematobium eggs
are excreted in urine. To increase sensitivity, urine samples are
concentrated by filtration, sedimentation, or centrifugation (provided a
centrifuge and electricity are available). Eggs are then detected by
examining either the filter-membrane or the urine sediment under a
conventional microscope (manual examination) [3].

Although conventional microscopy is highly specific and quantitative,
it has several limitations. Egg excretions are variable. Therefore,
eggs are often missed in low-intensity infections or due to inter-
and intra-variation in egg distribution, collectively resulting in reduced
sensitivity [1]. Although the limitation of uneven egg distribution is
not unique to microscopy, even highly trained microscopists can miss
eggs and report inconsistent results. Microscopy is time-consuming
and highly operator-dependent and therefore error-prone, particularly
as user-fatigue develops after many hours of analyzing samples (field
observations). It is also difficult to standardize microscopy as a
readout. The use of conventional microscopy in (remote) endemic
regions is further hindered by logistic constraints [4]. The availability
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of microscopes is limited by high costs, lack of both spare parts and
required skills for repairs and maintenance, and erratic power supplies
[4]. The use of alternative diagnostic tests, e.g. that detect adult
worm-associated circulating antigens [3], is currently not feasible for
routine use due to logistic and financial constraints.

5.1.3. PROPOSED DIAGNOSTIC SOLUTION: DIGITAL OPTICAL DEVICES
To address these diagnostic challenges, digital optical devices, some
supported by artificial intelligence (AI), are being developed by various
international research groups. They range from stand-alone devices to
auxiliary components that are added to conventional microscopes [5],
with or without the option of offline data analysis. All developments aim
to achieve (semi-) automated detection and quantification of parasites
in clinical samples. In line with these goals, the INSPiRED project aims to
improve the diagnosis of parasitic diseases by developing and validating
expert-independent, easy-to-use, and cost effective automated optical
diagnostic devices for use in resource-limited settings. We have
developed a digital optical device called the Schistoscope [6] (figs. 5.1
and 5.2). The development and validation processes involve multiple
steps: (1) prototype development (i.e. system hardware design that
includes optics; electrical components and embodiment, and currently
costs approximately USD 700, and the interaction design); (2) data
collection for the development of AI algorithms (i.e. training data set for
system software) that are programmed to automatically identify specific
pathogen features in a data set e.g. eggs (manuscript in preparation);
(3) diagnostic performance evaluation, with and without AI, with respect
to conventional microscopy as the reference standard (manuscript in
preparation); and (4) usability and user-acceptance in the local context.

5.1.4. BEYOND TECHNICAL DEVELOPMENTS: USABILITY AND USER
ACCEPTANCE IN THE LOCAL CONTEXT

User-centered design (UCD) is an iterative design process in which
designers focus on the users and their needs in each phase of the
design process, from product conception to the final product [7]. A
UCD approach involves four distinct phases: contextual inquiry, user
specification, prototyping, and user experience [7]. Co-creation is the
foundation of UCD during the research and development phase, and
it facilitates researchers to elucidate product specifications [8]. While
designing the Schistoscope, we understood the context of the users [8]
and opportunities for this device [9]. We also identified and specified
the user’s requirements by developing a target product profile [10]. We
are currently evaluating the diagnostic performance of the device, and
assessing how the product fits into the end-user’s work environment in
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Figure 5.1: Schistoscope 5.0 (top) connected to a computer screen
(bottom).

SSA by conducting a usability and acceptability study. This close user
involvement will enhance the probability of meeting their expectations,
and consequently increase uptake of the device in their daily practice
[8]. The usability and user-acceptance study of the Schistoscope
(version 5.0) was conducted in the Federal Capital Territory (FTC), Abuja,
Nigeria, by health workers and medical students who are likely to use
the device in their daily work activities. The aim of this paper is to
describe the findings of the usability study.

5.2. METHODS
5.2.1. STUDY DESIGN AND SETTING
Governed by a UCD approach, a mixed-model questionnaire was
formulated by industrial designers of the INSPiRED project who also
developed the prototype. The questionnaire consisted of several ranked
questions using a 5point Likert scale, and open questions to assess the
usability of the device compared to conventional microscopy. This study
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Figure 5.2: The graphical user interface of the Schistoscope 5.0.

was embedded within a larger epidemiology study that was conducted
in the FTC (Abuja, Nigeria) in two area councils based on schistosomiasis
prevalence and control with praziquantel treatment.

5.2.2. ETHICAL CONSIDERATIONS
The study protocol to obtain urine samples was approved by the College
of Medicine University of Lagos, Health Research Ethics Committee
(CMUL/HREC/07/16/017) and the Federal Capital Territory’s Health
Research Ethics Committee (FHREC/2019/01/73/18-07-19). Community
members who were asked to provide a urine sample for the epidemiology
study, as well as participants of the usability study were informed that
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participation was voluntary and that they were free to withdraw from
the study at any time.

5.2.3. ELIGIBILITY CRITERIA AND SAMPLE SIZE
Participants that met the following criteria were considered to be
eligible: aged 18 and older, able to speak, read, and write English,
have experience with conventional microscopy, and live and work in an
endemic region. A purposive sampling method was employed where
maximum variation selection was used in an effort to produce a study
sample that varied in terms of age, sex, and duration of microscopy
experience (years). Thereafter, a snowballing sample method was
employed which facilitated recruitment of 7 students at the College of
Medicine, University of Lagos (table 5.1). These participants represented
the intended end-users as they had experience using conventional
microscopy for the detection of schistosomiasis. The initial sample size
was 18 end-users. Upon analyzing the data, one user was excluded
from further analyses as the participant clearly did not understand
the phrasing of the questions, as reflected in contradicting ranked
responses. Data saturation can usually be reached with a sample size
of 5-7 participants [11]. The final sample size included in this study was
17 end-users.

Table 5.1: Performance of Schistoscope Prototypes in Design Main
Drivers

Characteristics n Average (range)
Age (years) 14 27.5 (20-41)
Sex (total) 15 -
Female 10 67%∗

Male 5 33%∗

Time active as a
microscopist 8 5.6 (1-11)

∗presented as a percentage

5.2.4. PROCEDURE
Five samples were prepared by the investigators by passing 10 mL
urine through a filter membrane (13 mm diameter; 0.2µm pore size),
and placing the filter membrane onto a glass slide. The purpose of
the prepared slides was only to facilitate the use of the device, and
participants were not required to prepare or formally analyze the filter
membrane on the slides (fig. 5.3).

Two investigators provided a brief introduction (study aim and their
backgrounds) to the participants and remained present for the duration
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of the study. A printed user manual for the device of 5 pages (fig. 5.4) and
accompanying questionnaire were given to each participant. Participants
were not given a time-limit to complete the questionnaire, nor were
they required to provide an answer for each question. Hardcopies of the
questionnaires were collected at the end of the day.

The device was placed in its OFF-state by the investigators. Participants
were asked to turn on the device and start the desktop application
(fig. 5.3). Next, a slide containing a filter membrane was given to
the participant to perform the following tasks according to the user
manual: (1) using the directional control buttons on the user-interface
or a keyboard (fig. 5.2), move the stage to a position such that the
microscope objective is directly above the filter membrane on the slide;
(2) focus on the filter membrane by using the autofocus feature; (3)
capture an image of the filter membrane; (4) initialize the automatic
slide scanning operation; (5) save the captured images to a USB and
shut-down the device. On completion of the tasks the participants
filled-in the questionnaire. The ranked statements in the questionnaire
were formulated to understand the users’ experience during different
steps in the procedure. The 5-point Likert scale ranged from -2 to 2
in response to each statement. A “-2” score denotes that participants
strongly disagreed with the statement, and a “2” score denotes strong
agreement (table 5.2).

5.2.5. DATA ANALYSIS
Confidentiality of information retrieved and anonymity of results was
ensured by assigning unique codes to the questionnaires before data
analysis. The data were digitized by two investigators. Thereafter
all data were analyzed descriptively using Microsoft Excel software
by one investigator. Ranked responses were analyzed quantitatively
(Mann-Whitney statistics; Prism 9), and open-questions were used to
support the ranked responses in a descriptive manner. A conventional
qualitative content analysis approach was used to code the data [12].
User impressions were considered as ‘codes’, which were then grouped
into meaningful categories based on the relationship between the codes.
Categories were generated until all the data were considered, and
then grouped into a central usability theme (operational performance).
The co-authors discussed the codes that emerged from the descriptive
analysis. No discrepancies occurred (fig. 5.5).

5.3. RESULTS AND DISCUSSION
The aim of this study was to elucidate the perceptions of end-users
as they document their experiences with the device. The following
codes were identified: ease of use; size; efficiency (time); acceptability
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Figure 5.3: The study setting at the University of Lagos. From top to
bottom: the investigators set-up the Schistoscope device
and a computer screen. Slides containing a filter membrane
were prepared by the investigators. After a brief introduction
from the investigators, participants read the user manual.
Thereafter, they began the user-interaction.
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Figure 5.4: Sample page of the user manual.

compared to microscopy (workflow in daily routine); reliability of
outcomes, and general aesthetic impressions (fig. 5.5). Participants
were also asked 8 open questions to document their overall experience
when using the Schistoscope compared to conventional microscopy.
Their responses were stratified into the codes, and the average score in
response to each statement are discussed here:

5.3.1. EASE OF USE
The participants agreed that it was easy to start the device (average
score -1.8), and that this task was not time consuming (-0.6). They
perceived this task as different compared to microscopy (0.6). The
participants agreed that it was easy to place a sample into the
Schistoscope (-1.7), however, placing a sample in a conventional
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Figure 5.5: Graphical summary of the manual and automated procedure
(orange and green blocks, respectively), and codes identified
in this study (white blocks) that collectively relate to the
operational performance of the device. The manual detection
workflow is analogous to conventional microscopy (orange).
The automated scan is unique to the Schistoscope 5.0
(green).

microscope was considered to be easier (-1.5). Although participants
reported a neutral response to the time taken to place a sample in the
device (0), this task was perceived as different compared to microscopy
(0.7). These responses to starting a new device and placing a sample in
the device are inherently perceived as different. In the open questions,
all the participants reported that the Schistoscope was easy to use from
sample placement to capturing a digital image. The use of a computer
screen (fig. 5.1) was well-perceived, and multiple participants stated
that it was impressive to see the parasitic eggs projected clearly on the
screen.
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Table 5.2: Participant Responses Related To Use of the Schistoscope 5.0
In Comparison To Conventional Microscopy Using A 5-Point
Likert Scale (N=17, Unless Stated Otherwise).

Statement
Likert scale

disagree agree Average ± std dev-2 -1 0 1 2
Turn on the device
Executing this task was difficult 14 3 - - - -1.8 ± 0.4
The task is easier on the Schistoscope
than on a standard microscope

14 3 - - - -1.8 ± 0.4

I spend more time on this task than I
expected

10 1 - 2 4 -0.6 ± 1.8

With standard microscopy, this task is
different

2 2 3 3 7 0.6 ± 1.5

Place a sample
Executing this task was difficult 12 5 - - - -1.7 ± 0.5
The task is easier on the Schistoscope
than on a standard microscope

12 3 1 - 1 -1.5 ± 1

I spend more time on this task than I
expected

2 6 3 2 4 0 ± 1.5

With standard microscopy, this task is
different

0 3 5 3 6 0.7 ± 1

Manually analyze a sample
Executing this task was difficult 9 8 - - - -1.5 ± 0.5
The task is easier on the Schistoscope
than on a standard microscope

9 7 - 1 - -1.4 ± 0.8

I spend more time on this task than I
expected

2 3 4 2 6 0.4 ± 1.5

With standard microscopy, this task is
different

- 1 1 6 9 1.4 ± 0.9

Start an automated scan
Executing this task was difficult 10 6 1 - - -1.5 ± 0.6
I spend more time on this task than I
expected (n=16)

2 3 2 1 8 0.6 ± 1.6

Gather results of the automated scan
Executing this task was difficult 7 6 2 1 - -1 ± 1.1
I spend more time on this task than I
expected

2 2 2 3 8 0.8 ± 1.5

Trust (n=16) - - - 6 10 1.6 ± 0.5

Key to the 5-Point Likert scale
-2 Strongly disagree with the statement
-1 Disagree with the statement
0 Neutral
1 Agree with the statement
2 Strongly agree with the statement
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“I was impressed that I could see the eggs projected on the
screen with ease.”
– microscopist with 10 years’ work experience

Other comments included the added value of the digital display
on the screen which circumvented the need to look directly into the
eyepiece for a magnified view of the slide, as would be required when
using a conventional microscope. Interestingly, a student reported that
the Schistoscope was easy to use without formal training, which is in
line with the WHO recommendation of one-day training for diagnostic
devices [4]. The use of the Schistoscope as both a manual and
automated device was positively reported. In addition to one participant
that stated that the manual operation of the device was easy, multiple
participants noted that the automatic focus and scanning features of
the Schistoscope were value added features.

“The simplicity of the device in focusing samples was amazing,
the auto-focus button was one of the best features, it saves
time and energy.”
– microscopist with 3 years’ work experience

Although the Schistoscope prototype tested in this study had an
auto-focus feature, the analysis of the sample was performed manually,
meaning that the end-user (microscopists and students) manually
counted the number of S. haematobium eggs identified, analogous to
conventional microscopy. Numerous participants noted that automatic
analysis would be an added value feature, where AI software could
quantify the number of eggs. Such ‘sample-in-answer-out’ capabilities
were noted as desirable features by the participants. Other display
features that were suggested include a digital indication of which part
of the slide is scanned during the auto-scan process as the field of view
is changed in real-time, and the magnification status.

5.3.2. SUITABILITY IN THE WORKflOW AND ACCEPTABILITY
The participants agreed that it was easy to manually analyze a
sample (-1.5), however, this task was considered to be easier and less
time consuming when using a conventional microscope (-1.4 and 0.4,
respectively). Manually analyzing a sample on the Schistoscope was
perceived as different compared to microscopy, as expected (1.4). To
enhance the suitability and desirability of the device in the workflow
in the field, an integrated sample storage unit was noted as an
additional feature to store samples safely. Conventional microscopes
contain 4 objective lenses (4X; 10X; 40X; and 100X). The Schistoscope
5.0 prototype had a single 4X objective lens which was sufficient to
identify Schistosoma eggs, however, one participant noted that it would
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be advantageous to incorporate additional objective lenses. Another
suggestion included the possibility to detect other pathogens, however,
the scope of this particular prototype was focused on the detection of
Schistosoma eggs. Finally, large data storage capabilities were noted by
participants as desirable.

5.3.3. EFfiCIENCY
The participants agreed that it was easy to start an automated scan
(-1.5), and to save the results of the scan (-1). They noted that it did not
take more time than expected to start an automated scan or save results
(0.6 and 0.8, respectively). Although participants were encouraged to
provide their insights to each open question, this was not a requirement.
Only two participants provided elaborate responses related to efficiency
of use. In terms of the amount of time that it takes the end-user to
scan a slide when using the auto-scan function, one participant reported
that there should be a time limit on the device for this function. This
participant noted that the use of the Schistoscope takes more time
to perform a scan compared to a microscopist using a conventional
microscope (approximately 15 minutes for the Schistoscope, and less
than 10 minutes for a conventional microscope; personal observations
in the field). In agreement with this observation, another participant also
noted that the auto-scan time should ideally take less than 10 minutes.
It is well acknowledged that scan time and accuracy is a common
trade-off i.e. a faster scan time could reduce accuracy, however, further
improvements in scan-time can be explored in the next design iteration.

5.3.4. RELIABILITY OF DATA GENERATED BY THE SCHISTOSCOPE
Given that captured images are displayed on a screen, the majority of
the participants noted that the data generated would be considered
reliable. Interestingly, one participant noted that digital microscopy, like
conventional microscopy, is only reliable provided that the microscopist
can identify the eggs, and this relies on the expertise of the microscopist.
However, a challenge remains when dealing with a negative sample.

“Yes, it is reliable if I can see a positive result, but not reliable
if negative. Quality control is needed.”
– microscopist with 10 years’ experience

5.3.5. AESTHETICS
Responses related to the size of the device demonstrate that it was
generally perceived as too big. Suggestions were to reduce the size of
the device to increase portability; and also reduce the amount of space
that would be occupied on a laboratory bench or a table in the field.
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However, a device that is too small can also be easily misplaced. Other
responses included the size of the door handle used to place a sample
in the device was too small, undesirability of visible wires, and added
value of a small screen fitted to the device to enhance portability by
replacing the computer screen.

For each step in the process, no statistically significant differences
in responses were identified between microscopists and students,
indicating the ease-of-use for both groups.

5.4. CONCLUSION
The aim of this study was to elucidate the perception(s) of end-
users related to the use of the Schistoscope in a representative
context. The mixed-model questionnaire consisted of several ranked
and open questions to assess the usability of the device compared
to conventional microscopy, and user-acceptance in terms of overall
experience (interaction with the device), reliability of data generated,
and aesthetics (size and general appearance). One user was excluded
from the study due to contradicting responses. Therefore, negatively-
worded questions are a limitation of the questionnaire design and can
be rephrased as positively-worded (agreeable statements) in future
usability studies.

The Schistoscope is a digital microscope, designed to support the
daily work of a microscopist, that can be used manually, analogous to a
conventional microscope except with a digital interface, or automated.
Sample preparation is the same for both detection methods, so use of
Schistoscope does not disrupt the workflow of the microscopist or other
technicians in the laboratory or at field sites. It is therefore not surprising
that the Schistoscope was perceived as easy to use by both students
and trained microscopists with very little training or explanation for
operation. Summing up, it is expected that the use of this device can be
implemented with minimal capacity building.
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ABSTRACT
Conventional microscopy is the standard procedure for the diagnosis
of schistosomiasis, despite its limited sensitivity, reliance on skilled
personnel, and the fact that it is error prone. Here, we report the
performance of the innovative (semi-)automated Schistoscope 5.0 for
optical digital detection and quantification of Schistosoma haematobium
eggs in urine, using conventional microscopy as the reference standard.
At baseline, 487 participants in a rural setting in Nigeria were
assessed, of which 166 (34.1%) tested S. haematobium positive by
conventional microscopy. Captured images from the Schistoscope
5.0 were analyzed manually (semiautomation) and by an artificial
intelligence (AI) algorithm (full automation). Semi- and fully automated
digital microscopy showed comparable sensitivities of 80.1% (95%
confidence interval [CI]: 73.2-86.0) and 87.3% (95% CI: 81.3-92.0),
but a significant difference in specificity of 95.3% (95% CI: 92.4-97.4)
and 48.9% (95% CI: 43.3-55.0), respectively. Overall, estimated egg
counts of semi- and fully automated digital microscopy correlated
significantly with the egg counts of conventional microscopy (r = 0.90
and r = 0.80, respectively, P < 0.001), although the fully automated
procedure generally underestimated the higher egg counts. In 38 egg
positive cases, an additional urine sample was examined 10 days after
praziquantel treatment, showing a similar cure rate and egg reduction
rate when comparing conventional microscopy with semiautomated
digital microscopy. In this first extensive field evaluation, we found
the semiautomated Schistoscope 5.0 to be a promising tool for the
detection and monitoring of S. haematobium infection, although further
improvement of the AI algorithm for full automation is required.
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6.1. INTRODUCTION
Schistosomiasis is a neglected tropical disease affecting approximately
250 million people, and more than 700 million people are at risk of
infection [1]. Sub-Saharan Africa shares the greatest burden of this
disease [2], and preschool and school-age children are the most affected.
It is a parasitic worm infection of poverty, leading to chronic disease and
significant disability-adjusted life years lost [3]. Several Schistosoma
species are known to affect humans. Urogenital schistosomiasis is
caused by S. haematobium, and S. mansoni is the major species causing
intestinal disease. S. haematobium infections are most prevalent in
Africa, affecting the urogenital system with hematuria, bladder and
kidney failure as the main complications and genital schistosomiasis
presentations such as vaginal discharge and postcoital bleeding in
women and hematospermia in men [3, 4]. Chronic infections can lead
to miscarriage and infertility and may facilitate infection with sexually
transmitted diseases, including HIV [4].

The prevailing strategy to control and eliminate this disease is a
comprehensive integrated program of mass drug administration (MDA)
with praziquantel, water, sanitation, and hygiene (WASH); snail vector
control; and a multisectoral approach to diagnostic monitoring and
evaluation [5]. The diagnosis of S. haematobium infection typically
involves the detection of eggs in urine by conventional light microscopy.
Counting the number of eggs seen per 10 mL of urine is commonly done
to indicate the intensity of infection in a target population [3, 5], which
is relevant for the purpose of monitoring and evaluation. However, the
need for expert laboratory personnel, basic laboratory infrastructure,
and a permanent power supply limits the use of conventional light
microscopy in endemic resource-limited settings. In addition, in areas
where laboratory infrastructure is inadequate, the ratio of trained
personnel to sample analysis is often very low, resulting in a high
workload per technician and above threshold eye exposure to the
microscopy light source, causing visual health complications [6, 7].
Therefore, there is a need for innovative, and preferably easy-to-use,
diagnostics that will suit endemic resource-limited settings to diagnose
infections and complement control and elimination efforts.

During the past decade innovative optical diagnostic devices, with or
without artificial intelligence (AI), have been developed for the detection
of S. haematobium eggs [8–15]. Although several of these devices scan
through samples and save digitalized images for manual identification
of Schistosoma spp [8–12], only a few have an integrated AI program
for automated detection [13–15]. To our knowledge, only four of these
devices have been field validated using samples from a Schistosoma-
exposed population [9–12], and only the Newton Nm1 microscope has
been marketed commercially as a portable field microscope, although
without a fully automated AI application [12]. This limited validation
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highlights the technical challenges that are faced to transition working
prototypes to commercialized and field applicable devices. Also, most
studies have used only a small, often nonrandomly selected, number of
clinical samples to validate the diagnostic devices. Hence, there is a
clear need for more extensive field-based studies.

The Schistoscope device (version 5.0) is a low-cost digital microscope
(fig. 6.1A and B) that has gone through five design iterations in an
ongoing process of co-creation including different potential stakeholders.
In its current form, it can function either as a semiautomated or AI
integrated fully automated digital microscope to detect and quantify S.
haematobium eggs [16, 17]. In a recent proof-of-principle study, the
device and its AI algorithms were trained successfully with phosphate
buffer saline and urine samples that were spiked with S. haematobium
eggs obtained from a laboratory maintained parasite life cycle and a
limited number of clinical samples [18]. This led to the conclusion
that the Schistoscope was ready for further validation. The aim of the
current study is to evaluate the performance of the Schistoscope 5.0 as
a semi- and fully automated digital microscope for the detection and
quantification of S. haematobium eggs in a prospective study design
under field conditions. For this purpose, urine samples were collected
in a rural area in Nigeria and filtered, and each membrane filter was
independently examined locally by conventional microscopy and the
Schistoscope 5.0.

6.2. METHODS
6.2.1. ETHICAL CONSIDERATIONS
This study was done in collaboration with the Schistosomiasis Program of
the Neglected Tropical Diseases Department, Federal Ministry of Health,
Abuja, and embedded in an ongoing, cross-sectional community-based
survey in collaboration with the Public Health Department in charge
of the MDA of praziquantel in the Federal Capital Territory (FCT),
Nigeria. The ethical approval for this study was obtained from the
FCT Health Research Ethics Committee in Abuja, Nigeria (reference no.
FHREC/2019/01/73/18-07-19). Written consent from adults and from
parents or legal guardians of children and teenagers was obtained
before sample collection from persons willing to participate through
their signatures or thumbprints. Confidentiality and anonymity of results
were ensured by assigning unique codes to samples. According to the
local standard operational procedures, all participants with detectable
hematuria (discussed subsequently) were considered S. haematobium
positive and therefore treated with praziquantel (40 mg/kg of body
weight). The local health authorities have been informed of the outcome
of the study, and all participants have been offered (re)treatment where
appropriate.
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Figure 6.1: (A) Schistoscope 5.0 device (right) connected to a computer
monitor (left), showing an image of a digitally screened
sample. (B) Schistoscope 5.0 operated by a laboratory
technician in the field. (C) Digital image of a urine filtered
membrane showing several Schistosoma eggs captured with
the Schistoscope 5.0 (4× objective). The red circle indicates
a S. haematobium egg, the blue circle indicates a S. mansoni
egg. (D) Image of a urine filtered membrane with several
S. haematobium eggs captured by a camera attached to a
conventional microscope (10× objective).

6.2.2. STUDY DESIGN AND POPULATION
This cross-sectional and longitudinal study was carried out in Au-
gust–September 2021 in two area councils in FCT, Abuja, Nigeria
(geographic coordinates: 9.0618° N latitude, 7.4221° E longitude and
8.950833° N latitude, 7.076737° E longitude). The FCT is the third
highest endemic state for schistosomiasis in Nigeria [19]. In total,
14 communities from these two area councils were visited, where
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preschool, school-age children and adults were allowed to participate.
Strategic advocacy and engagement with community leaders in the
study area preceded the sample collection at the communities studied.

6.2.3. SAMPLE COLLECTION AND PROCESSING
fig. 6.2 depicts the flowchart of sample collection. Briefly, a sterile 20 mL
universal container with a unique identification code was given to those
who consented to participate with the request to collect a urine sample
between 11:00 am and 13:00 pm. Dipstick (Combur 10-Test M Roche
Mannheim, Germany) urinalysis was performed on site according to the
manufacturer’s instructions. Of those who were confirmed as positive by
conventional urine microscopy, 50 were randomly selected and asked
to provide an additional sample 10 days after baseline screening. This
small-scale posttreatment evaluation was done to examine whether
drug treatment could influence the performance of the Schistoscope 5.0,
possibly via praziquantel-induced changes in egg morphology [20, 21].

Figure 6.2: Flow chart of urine sample collection and analysis comparing
conventional microscopy with semiautomated and fully
automated digital microscopy.

All urine samples were transported to the laboratory of the Department
of Public Health, Abuja, FTC, within 2 hours of sample collection and
prepared for microscopy by urine filtration [22]. Urine samples were
homogenized, and 10 mL of urine was obtained with a syringe and
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pressed through a filter membrane (diameter 13 mm; pore size 30 µm;
Whatman International Ltd., Maidenstone, UK). The filter membrane was
then placed on a standard microscope glass slide, and a cover slip was
placed over the membrane to keep the filter moist. Each slide was
viewed under a standard microscope and the Schistoscope.

6.2.4. DESCRIPTION OF THE SCHISTOSCOPE 5.0
The Schistoscope 5.0 (fig. 6.1) is a low-cost automated slide-scanner
digital microscope that can be supported with AI algorithms for image
processing [18]. The system is composed of custom-designed optical
bright-field illumination, three-axis movement (X, Y, Z), and electronic
and computing modules. The illumination module comprises a bright
white light-emitting diode and condenser lenses to generate uniform
illumination. The custom three-axis motorized stage provides a step
resolution of 2.5 µm on all three axes. A custom printed circuit board
is used to control all three motors and the illumination. The on-board
computer is a Raspberry Pi 4B connected to a Raspberry Pi HQ camera
that has a pixel size of 1.55 µm and an image resolution of 2028 × 1520
pixels. The current study used a 4× microscope objective that provides
an experimental resolution limit of 3.26 µm [18], which is sufficient
to resolve S. haematobium eggs (fig. 6.1C). The device runs on mains
electricity and does not have a built-in battery. Dedicated software with
a graphical user interface was developed and installed on the device’s
onboard computer for easy user interaction and control of the device.
The software comprises a simple autofocus procedure and an algorithm
to scan the complete filter membrane and capture each field of view
as an image. It takes 12 minutes to scan and capture 117 images of
an entire 13-mm filter membrane. Additional analysis of the captured
images, including counting the number of eggs, takes approximately
5 minutes on average per filter when done either manually or by AI.
Captured images are stored in folders by their sample identification
code. Semiautomated analysis can be done via a connected computer
monitor, or automated analysis can be done on an external computer.
Further development is ongoing to enable automated processing and
analysis on the device itself.

6.2.5. DETECTION OF S. haematobium EGGS BY MICROSCOPY AND
THE SCHISTOSCOPE

Slides were examined immediately after preparation. The order of
examination was randomized, resulting in approximately half of the
slides being first analyzed by conventional microscopy and then imaged
with the Schistoscope 5.0 and the other half analyzed in the opposite
sequence.
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For conventional light microscopy, slides were analyzed using a
10× objective on an Olympus (Tokyo, Japan) CX22RFS1 microscope
(fig. 6.1D). Two microscopists independently examined each slide for
the detection and quantification of S. haematobium eggs with results
blinded from each other. The average of egg counts from both
microscopists was computed as the final result. Discrepancies of more
than 20% between both microscopy readings were resolved by a third
independent microscopy reading, of which an average between two
closest among the three readings was considered.

The imaging procedure of the Schistoscope included manual counting
of the eggs seen on the images, which was done in the field by a fourth
microscopist who was blinded from the results of the conventional light
microscopy. The images were also uploaded to a cloud server (Google
Colaboratory; https://colab.research.google.com) for remote access and
AI analysis. For quality control of the manual analysis of the captured
images, 10% of the images were randomly selected and reexamined
by an independent senior microscopist, but because this showed no
significant differences from the original manual readings, these data are
not further considered. Data from the two independent microscopists,
the manual reading, and the AI analysis were independently entered in
an Excel spreadsheet and only shared with the results collation officer
after finalizing.

6.2.6. POWER CALCULATIONS AND STATISTICAL ANALYSES
For the cross-sectional evaluation of the Schistoscope, the number of
positive cases needed to achieve an assumed sensitivity and specificity
of 80% and 90% using conventional microscopy as the reference was
calculated to be 107 [23]. The power of this calculation was set to
80%, and a 5% degree of error was considered to be able to detect a
difference of at most 10% from the assumed sensitivity and specificity.
With a schistosomiasis prevalence of 25% in the FCT region [19], a
total of 450 samples was needed to meet our target case number.
Microscopy and Schistoscope data were merged and double-checked by
the collation officer. Descriptive statistics for the data were obtained
using IBM Statistical Package for Social Sciences version 25 (SPSS Inc.,
Chicago, IL). For the baseline sample subset, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) of
the semi- and fully automated digital microscope were calculated for
S. haematobium detection using conventional light microscopy as the
reference standard. Qualitative agreement between the Schistoscope
and conventional microscopy was assessed using the adjusted Cohen’s
kappa, considering true positives and true negatives, as well as false
positives and false negatives [24]. Egg counts were categorized as low-
intensity infection ( ≤ 50 eggs/10 mL urine) or high-intensity infection
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(> 50 eggs/10 mL urine). Because of the non-Gaussian nature and wide
range of the egg count estimates for all three methods, the data set was
log transformed before analysis was performed. The linear association
in terms of egg counts (eggs/10 mL) between the different optical
procedures was estimated using the Pearson’s correlation coefficient
(r), excluding the negative data points. Bland–Altman analysis was
performed for quantitative assessment of the agreement between semi-
and fully automated digital microscopy and conventional microscopy
using GraphPad Prism version 9.0.1 for windows (GraphPad Software,
San Diego, CA; http://www.graphpad.com). Cure rate (CR), defined
as the percentage of follow-up samples with no detectable eggs, and
egg reduction rate (ERR), defined as the percentage reduction in the
geometric mean (GM; formula: GM (egg count +1) - 1) egg counts
pre- and post-treatment, were estimated for each of the microscopy
procedures.

6.3. RESULTS
6.3.1. PERFORMANCE EVALUATION OF THE SCHISTOSCOPE AND

ESTIMATION OF EGG COUNTS
To evaluate the capacity of the Schistoscope to detect and count S.
haematobium eggs, each of the 487 prepared slides was examined by
conventional microscopy and by both semi- and fully automated digital
microscopy. No differences resulting from the order in which the filters
were examined were noted (e.g., first by conventional microscopy,
followed by image capturing by the Schistoscope or vice versa).
The three detection methods (i.e., conventional and semiautomated
and fully automated digital microscopy) independently identified 166
(34.1%), 148 (30.4%), and 309 (63.4%) of the slides as positive for S.
haematobium, respectively (table 6.1). Egg count estimates per 10 mL
of urine ranged from 1 to 4,386 eggs/10 mL for conventional microscopy,
1 to 2,059 eggs/10 mL for semiautomated digital microscopy, and 1 to
573 eggs/10 mL for fully automated digital microscopy, with a median
of 12, 12, and 2 eggs/10 mL, respectively. Compared with conventional
microscopy, semi- and fully automated digital microscopy showed an
overall accuracy of 90.1% and 62.0%, respectively (table 6.1).

Conventional microscopy classified 129 (78%) as low-intensity infection
and 37 (22%) as high-intensity infection, whereas semi- and fully
automated microscopy classified 111 (75%) and 294 (95%) as low-
intensity infection and 37 (25%) and 15 (5%) as high-intensity
infection, respectively. The sensitivities of semi- and fully automated
digital microscopy for low-intensity infections were 75.2% (95% CI:
67.0–82.3%) and 83.7% (95% CI: 76.1–90.0%), which increased for
high-intensity infections (table 6.2). The adjusted Cohen’s kappa
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Table 6.1: Cross tabulation of the detection of Schistosoma haematobium
eggs by the Schistoscope 5.0 and conventional microscopy
performed on 487 urines collected at baseline screening

Conventional microscopy

Schistoscope 5.0 Positive
(n = 166)

Negative
(n = 321)

Total
(N = 487)

Semi-automated
digital microscope

Positive 133 15 148
Negative 33 306 339

Fully automated
digital microscope

Positive 145 164 309
Negative 21 157 178

Table 6.2: Diagnostic performance of the Schistoscope 5.0 for the
detection of Schistosoma eggs performed on 487 urines
collected at baseline screening

Conventional
microscopy

Schistoscope 5.0
Semiautomated digital

microscopy Automated digital microscopy

Sen
(95%
CI)

Spec
(95%
CI)

PPV
(95%
CI)

NPP
(95%
CI)

Sen
(95%
CI)

Spec
(95%
CI)

PPV
(95%
CI)

NPV
(95%
CI)

All samples with
S. haematobium

infection (N =
166)

80.1
(73.2 –
86.0)

95.3
(92.4 –
97.4)

89.8
(84.0 –
94.2)

90.3
(87.0 –
93.2)

87.3
(81.3 –
92.0)

48.9
(43.3 –
55.0)

46.9
(41.2 –
53.0)

88.2
(83.0 –
93.0)

Low-intensity
infection* (n =

129)

75.2
(67.0 –
82.3)

- - -
83.7

(76.1 -
90.0)

- - -

High-intensity
infection† (n =

37)

97.3
(86.0 –
100.0)

- - - 100 - - -

CI = confidence interval; NPV = negative predictive value; PPV = positive predictive value; Sen = sensitivity; Spec = specificity.
∗ ≤ 50 eggs/10 mL urine.
† > 50 eggs/10 mL urine.

demonstrated a fair (0.34) and a slight (0.2) qualitative agreement
between conventional microscopy and semi- and fully automated digital
microscopy, respectively.

In terms of S. haematobium egg count estimates, conventional
microscopy correlated strongly to semiautomated digital microscopy
(N=133, r=0.90, P < 0.001) and fully automated digital microscopy
(N=145, r=0.80, P < 0.001) (fig. 6.3). To demonstrate reliability
of conventional microscopy, Bland–Altman analysis showed a strong
agreement between the first and second microscopy readings across
the range of mean egg counts for both readings (bias=0.13, 95%
limits of agreement from –0.66 to 0.94). Further Bland–Altman analysis
demonstrated a strong agreement between conventional microscopy
and semiautomated digital microscopy across the range of mean egg
counts for both methods (bias=0.08, 95% limits of agreement from
–0.69 to 0.85) (fig. 6.4). Conventional microscopy and fully automated
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digital microscopy revealed a strong agreement at low mean egg counts
of both methods. However, an underestimation of egg counts by fully
automated digital microscopy was observed at egg counts greater than
100 eggs/10 mL (bias=0.47, 95% limits of agreement from –0.69 to
1.63).

Figure 6.3: Correlation in Schistosoma haematobium egg counts per
10 mL of urine on a Log10 scale on samples collected
at baseline screening. Negative data points are excluded.
(A) Semiautomated digital microscopy versus conventional
microscopy (n = 133, r = 0.90, P < 0.001). (B)
Fully automated digital microscopy versus conventional
microscopy (n = 145, r = 0.80, P < 0.001). (C)
Semiautomated versus fully automated digital microscopy (n
= 137, r = 0.80, P < 0.001). The depicted solid line indicates
y = x.

Figure 6.4: Bland–Altman plots showing the level of agreement between
(A) conventional microscopy and semiautomated digital
microscopy counts and (B) conventional microscopy and fully
automated digital microscopy counts.
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6.3.2. FOLLOW-UP AFTER PRAZIQUANTEL TREATMENT
Conventional microscopy and the semiautomated Schistoscope pro-
cedure were also compared on 38 urine samples collected 10 days
post-praziquantel treatment from participants with a confirmed infection
at baseline. Thirty (79%) and 27 (71%) samples still had detectable
S. haematobium eggs by conventional microscopy and semiautomated
digital microscopy, resulting in a CR of 21% (95% CI: 10–37) and 29%
(95% CI: 15–46), respectively. In four follow-up samples, eggs were only
seen by conventional microscopy, and only one sample was positive by
semiautomated digital microscopy. The ERR of conventional microscopy
(80%; 95% CI: 64–90) and semiautomated digital microscopy (77%; 95%
CI: 60–91) were similar.

6.4. DISCUSSION
In this study, the performance of the Schistoscope 5.0 was evaluated
as a semiautomated digital microscope and as an AI-based fully
automated digital microscope for the detection and quantification of S.
haematobium eggs in a field setting. The diagnostic parameters that
were assessed include sensitivity, specificity, PPV, NPV, and infection
intensity. At baseline screening, the sensitivity of the semiautomated
digital microscope (80.1%) was lower than that of the fully automated
digital microscope (87.3%); however, this difference was not statistically
significant. As expected, the sensitivity of the Schistoscope increased
with increasing egg excretion. On the other hand, the Schistoscope
detected additional cases as positive, which might have been true cases
missed by conventional microscopy. Conventional microscopy was used
as the standard reference, and this resulted in a reduced specificity
of the Schistoscope. The specificity was significantly lower for the
fully automated digital microscope (48.9%) than for the semiautomated
digital microscope (95.3%).

A probable reason for the low specificity recorded by the fully
automated digital microscope is the limited datasets used to train the
AI algorithm to detect S. haematobium eggs. The AI algorithm was
developed using two training datasets consisting of images obtained
from egg-spiking experiments resulting in relatively clean samples and
a limited number of field samples that did not contain many egg-like
artifacts (e.g., uric crystals). Therefore, the AI algorithm seemed
insufficiently trained to separate egg-like artifacts from S. haematobium
eggs. Another reason could be limitations in the deep learning model
used by the AI algorithm that was optimized for enhanced sensitivity at
a trade-off of specificity. Additional iterations to enhance specificity are
therefore needed and are currently in progress.

Several other studies have also field evaluated digital optical devices,
with or without AI, for the detection and/or quantification of S.
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haematobium eggs [9, 11, 12]. The sensitivities and specificities
obtained for the various devices in these studies, with conventional
microscopy as a reference, range from 35.6% to 81.1% and 91.0% to
100%, respectively. The sensitivities of the semi- and fully automated
digital microscope reported in the current study were generally higher
compared with previous reports, except for results reported by Coulibaly
et al. [12], for the Newton Nm1 microscope, which is considered
comparable in sensitivity. However, the study by Coulibaly et al. [12]
had a slightly lower power than our study, with 266 samples examined,
of which 90 were egg positive.

For egg count estimates, a strong correlation was observed be-
tween semiautomated digital microscopy and conventional microscopy,
whereas for fully automated digital microscopy, a clear underestimation
of the intensity of infection was observed for samples with more than
100 eggs/10 mL urine. A possible explanation is that overlapping eggs
were recognized as a single egg by the deep learning model, leading to
an underestimation of egg counts. In addition, hematuria might have
also caused interference. Although not systematically recorded, our
impression was that samples with more than 100 eggs/10 mL of urine
were often strongly positive for hematuria, with an abundance of blood
cells compared with samples with lower egg counts. This could have
resulted in shading the eggs on the filter membrane and subsequently
limiting the detection by the AI algorithm.

Although only performed in a small subset of cases and at one
time point, no substantial differences were noticed before and after
treatment when comparing the semiautomated digital microscope with
the conventional microscopy, suggesting that the Schistoscope could
also be used for monitoring treatment. More extensive posttreatment
follow-up studies are needed to demonstrate how well the Schistoscope
can differentiate viable S. haematobium eggs from dead eggs, which
can be excreted up to many weeks after receiving praziquantel (personal
observation).

The Schistoscope 5.0 captured high-resolution images that clearly
show the specific features of S. haematobium and S. mansoni eggs (i.e.,
the terminal and lateral spines; fig. 6.1C). In terms of potential use-
cases, this supports the application of the semiautomated microscope
as a diagnostic tool to assist microscopists in field laboratory settings.
The use of (semi-)automated digital microscopy could reduce visual
health complications caused by high eye exposure to a conventional
microscope light source. Upon further development to improve the
AI, the fully automated microscope would be useful for nonexpert
microscopists as well (e.g., community health workers and laboratory
technicians). In both cases, task shifting could be gained because
personnel could focus on other activities while the device analyzes
samples. The added value of task shifting could compensate for the
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current time difference between conventional microscopy that requires
less than 10 minutes to scan a urine filter and the Schistoscope 5.0,
which can take on average 17 minutes to complete scanning and
analysis.

Limitations of this study include the choice of conventional light
microscopy on a single 10 mL urine sample as the reference test, which
is known for its limited sensitivity, especially in cases with low infection
intensity. Further evaluation studies should be conducted to field
validate the Schistoscope 5.0 for the detection of S. haematobium eggs
compared with more sensitive reference tests such as the detection of
adult worm-associated circulating anodic antigens or the detection of
parasite specific DNA [25]. The Schistoscope 5.0 currently does not
meet the target product profile set by the WHO for new diagnostics
needed for monitoring and evaluating schistosomiasis control programs
[26]. For example, it does not have an onboard display and is
connected to a computer monitor for visual control of the device,
thus making transportation impractical. Furthermore, the device
lacks a backup power supply. Additional functionalities such as an
onboard computer with a graphical processing unit for higher image
processing capabilities and internet access would also be beneficial.
These functionalities would create the capacity to generate results
in real time for patient management, store and share digital images
with other experts, and facilitate mapping of schistosomiasis [27],
thereby making (semi-)automated digital devices an attractive tool
for future use in epidemiology and public health settings. Here we
evaluated the Schistoscope 5.0 for the first time in a rural field setting,
demonstrating its potential as a digital diagnostic tool for the detection
and quantification of S. haematobium eggs, as well as for monitoring the
effect of schistosomiasis treatment in settings with limited resources.
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ABSTRACT
PURPOSE
Automated diagnosis of urogenital schistosomiasis using digital mi-
croscopy images of urine slides is an essential step toward the
elimination of schistosomiasis as a disease of public health concern in
Sub-Saharan African countries. We create a robust image dataset of
urine samples obtained from field settings and develop a two-stage
diagnosis framework for urogenital schistosomiasis.

APPROACH
Urine samples obtained from field settings were captured using
the Schistoscope device, and S. haematobium eggs present in the
images were manually annotated by experts to create the SH
dataset. Next, we develop a two-stage diagnosis framework, which
consists of semantic segmentation of S. haematobium eggs using
the DeepLabv3-MobileNetV3 deep convolutional neural network and a
refined segmentation step using ellipse fitting approach to approximate
the eggs with an automatically determined number of ellipses. We
defined two linear inequality constraints as a function of the overlap
coefficient and area of a fitted ellipses. False positive diagnosis resulting
from over-segmentation was further minimized using these constraints.
We evaluated the performance of our framework on 7605 images from
65 independent urine samples collected from field settings in Nigeria, by
deploying our algorithm on an Edge AI system consisting of Raspberry
Pi + Coral USB accelerator.

RESULT
The SH dataset contains 12,051 images from 103 independent
urine samples and the developed urogenital schistosomiasis diagnosis
framework achieved clinical sensitivity, specificity, and precision of
93.8%, 93.9%, and 93.8%, respectively, using results from an
experienced microscopist as reference.

CONCLUSION
Our detection framework is a promising tool for the diagnosis of
urogenital schistosomiasis as our results meet the World Health
Organisation target product profile requirements for monitoring and
evaluation of schistosomiasis control programs.
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7.1. INTRODUCTION
Schistosomiasis is endemic in 76 countries worldwide with approximately
252 million people infected and an estimated 779 million people at
risk of infection [1]. Schistosomiasis is caused by blood flukes of the
genus Schistosoma (S); both S. mansoni (intestinal schistosomiasis)
and S. haematobium (urogenital schistosomiasis) are endemic in Africa
[2]. Schistosomiasis presents a substantial public health and economic
burden as it is a disease of poverty. In the drive to attain the World
Health Organisation (WHO) control and elimination targets, diagnosis for
adequate monitoring of interventions and surveillance is critical [2, 3].
Recently, the WHO published the diagnostic target product profiles (TPP)
for monitoring, evaluation, and surveillance of schistosomiasis control
programs [4], which identifies development of diagnostic tests for S.
haematobium detection as a high-risk requirement due to lack of its
availability. The TPP suggests a semi-quantitative analysis, capable of
providing some degree of information regarding intensity of infection, as
ideal for a diagnostic test for schistosomiasis to support monitoring and
evaluation [4]. Currently, microscopy is the WHO reference standard
for the diagnosis of schistosomiasis in resource-limited settings. For the
detection of S. haematobium infection, urine samples, after filtration,
sedimentation, or centrifugation, are microscopically examined for the
presence of eggs [3]. This method is operator dependent, costly,
laborious, and time-consuming. Furthermore, it requires expertise,
which means microscopy skills need to be gained and maintained,
which can be an economic challenge, particularly in remote rural
communities [3]. There is also the risk of visual health complications
among microscopists resulting from excessive workload due to the
low ratio of trained microscopists to samples for analysis in endemic
regions [5]. Hence, a field adaptable, rapid, and easy-to-use automated
diagnosis is relevant for the prompt detection of cases, which will
facilitate mapping and monitoring of interventions [4]. Recent advances
in opto-mechanics and opto-electronics have rapidly transformed the
field of biomedical optics. Optical imaging technologies, such as
conventional light microscopes, are being redesigned to integrate and
miniaturize portable light microscopes for use at the point of care
[6–10]. Although these technologies are readily available in high-income
countries, unfortunately, nearly all schistosomiasis cases are seen in
low-resource regions of low-income countries, significantly justifying the
need for cost-effective and easy-to-use smart diagnostic technologies.
In this work, we address these challenges by first increasing the size of
the S. haematobium (SH) dataset in our previous work [10] from 5198
to 12,051 images of clinical samples [11]. We carry out detection and
counting of S. haematobium eggs present in each image by proposing
a two-stage framework consisting of a DeepLabv3 with MobilenetV3
backbone deep convolutional neural network [12] trained on the SH
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dataset using a transfer learning approach. The second stage of
our proposed framework is a refined segmentation and egg counting
procedure, which adapts the region-based fitting of overlapping ellipses
[13] to efficiently separate the boundaries of overlapping eggs in the
image. Finally, the detected isolated eggs are screened for the presence
of an egg, which meets the defined boundary condition before the
sample can be determined as positive/negative diagnosis. We further
demonstrate the robustness and applicability of the proposed framework
for field diagnoses of urogenital schistosomiasis by implementing our
framework on an Edge AI system (Raspberry Pi + Coral USB accelerator)
and testing 65 clinical urine samples obtained in a field settings in
Nigeria. The main contributions of this work can be summarized as
follows.

1. A large-scale S. haematobium egg dataset of 12,051 images
captured in field settings is created with respective manually
annotated mask images. The dataset contains images with
artifacts, such as crystals, glass debris, air bubbles, and fibres.

2. A S. haematobium egg detection framework consisting of the
DeepLabv3 with MobileNetV3 backbone deep convolutional neural
network, trained using transfer learning approach for semantic
segmentation of the eggs. This effectively segments transparent
eggs in noisy images taken in the field. The framework also
separates overlapping eggs using a refined segmentation algorithm
resulting in a more accurate egg count.

3. The implementation and testing of the S. haematobium egg on
an Edge AI system to demonstrate its field applicability for the
diagnosis of schistosomiasis in low-resource settings.

7.2. RELATED WORK
A pioneering study on the identification and classification of human
helminth eggs based on computer vision algorithms was carried out by
Yang et al. [14]. However, their focus was on helminth eggs found in
microscopic faecal samples. Subsequent works [15–18] included the
detection of S. haematobium eggs found in urine but only in images
pre-captured by professional clinical operators mostly with isolated and
non-overlapping eggs in the field of view (FoV) images. Regarding the
detection of S. haematobium eggs in microscopy images of urine from
field settings, these images contain many artifacts with morphological
and textural similarity to eggs, such as crystals, glass debris, air
bubbles, fabric fibres, and human hair. This makes it difficult to achieve
high accuracy using traditional AI methods, which detect objects in the
images based on some threshold value or discontinuous local features
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of an image. The S. haematobium eggs are oval-shaped structures
(110-170 µm long and 40-70 µm wide) with a thick transparent capsule
and a sword-shaped protrusion known as the terminal spine located
at the narrow end of the egg. Detecting an egg is challenging due
to its similar appearance to its surroundings. Automated detection of
an isolated S. haematobium egg by thresholding the cross-correlation
coefficient of two sets of invariant moments for both a reference and
sample image was performed by Hassan and Al-Hity [19]. However, this
method had poor performance in noisy images and hence cannot be
used for S. haematobium eggs detection in field settings.

Recently, deep learning algorithms were used by Armstrong et al. [20]
to solve the challenges of S. haematobium egg detection in images
captured in field settings. Using transfer learning, they compared
RetinaNet [21], MobileNet [22], and EfficientDet [23] architectures
pre-trained on the COCO 2017 dataset [24]. They retained the feature
extraction layers and fine-tuned the dense layers of these models
to detect S. haematobium eggs as a single class. The RetinaNet
architecture had improved egg detection performance with egg counts
closely related to manual egg counts obtained by a trained user. It was
also able to detect isolated eggs and reject other debris from a crowded
FoV. However, air bubbles were incorrectly classified as eggs, and the
automated detection of eggs aggregated in large clumps with other eggs
or debris remained a challenge. In our previous work, we developed a
low-cost automated digital microscope (Schistoscope V5.0) with AI for
the detection S. haematobium eggs [10], and we reported the results
from a field validation study in Nigeria [11]. A U-Net model [25] trained
with the S. haematobium dataset consisting of 5198 images captured
from both clinical and spiked urine samples was used for automated egg
detection. Although we achieved a high diagnostic sensitivity of 87.3%,
the diagnostic specificity was low (48.9%). This was due to the high
number of false positives by the U-Net architecture and the inability of
the segmented pixel area-based linear model to filter out incorrectly
segmented eggs while counting.

All these studies show that deep learning is a promising approach
for the automated diagnosis of urogenital schistosomiasis. However,
developing a model that is field applicable requires a robust dataset of
images with varying degrees of urine artifacts from field settings. Also
the separation of overlapping eggs for improved estimation of infection
intensity has remained a challenge. This paper proposes a two-stage
framework to solve these challenges.

7.3. METHODS
To meet the WHO TPP requirements for a diagnostic test for schistoso-
miasis, the proposed urogenital schistosomiasis diagnostic framework
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consists of two stages (fig. 7.1). The first stage involves the semantic
segmentation of candidate S. haematobium eggs in captured images.
The segmentation results are further refined in the second stage by
ellipse fitting and morphological filtering of the segmented regions. The
two-stage framework minimizes false positive detection that enables a
high diagnostic specificity, which is a requirement for diagnostic tools
for monitoring and evaluation of schistosomiasis control programs and
determining transmission interruption.

Figure 7.1: Schematics of the proposed two-stage diagnosis framework
urogenital schistosomiasis with DeepLabV3-MobileNetV3
deep learning architecture for semantic segmentation of
eggs and refined segmentation for overlapping eggs separa-
tion and count.

7.3.1. SAMPLE IMAGE CAPTURE AND S. haematobium EGG
ANNOTATION

The details of the Schistoscope’s mechanical precision and optical
quality are described in our previous work [10]. The Schistoscope
optical system consists of a 4× magnification microscope objective
and a Raspberry Pi High-Quality Camera Module V2.1 equipped with a
Sony IMX477R camera sensor. The camera sensor has a pixel-pitch
of 1.55 µm and registers an image size of 2028 × 1520 pixels. The
device consists of an autofocusing and an automated slide scanning
system. For urine filtration, we made use of a 13 mm filter membrane,
which results in 117 image grid segments per sample when scanned
by the device. The S. haematobium eggs in the captured images used
for training and development testing were manually annotated by an
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expert parasitologist using the coco annotator tool [26]. The annotation
process is highlighted as follows.

1. Annotation of the exact boundary pixels of the S. haematobium
eggs was not strictly enforced due to the limitation posed by the
size of the eggs.

2. The pixel values of the filter membrane and artifacts in the
ground-truth image were labeled as “0” (background) and the eggs
as “1” (foreground).

3. There were few S. mansoni eggs found in the images of the
clinical urine samples and their pixel values were labeled as “1”
(foreground).

4. Pixels of partially cut eggs at the edges of the images were labeled
as “1” (foreground).

5. The region of the eggs covered by artifacts was labeled as “0”
(background).

7.3.2. STAGE 1: SEMANTIC SEGMENTATION OF S. haematobium
EGGS

TRANSFER LEARNING USING DEEPLABV3-MOBILENETV3
In transfer learning, a model trained on one task is repurposed to
another related task, usually by some adaptation toward the new task.
This approach is mainly useful for tasks where enough training samples
are not available to train a model from scratch, such as medical image
classification for neglected tropical diseases or emerging diseases [27].
To overcome the limited data sizes, transfer learning was used to retrain
the DeepLabv3-MobileNetV3[12] model for semantic segmentation of
candidate S. haematobium eggs using the SH dataset. DeepLabv3 is
a semantic segmentation architecture that was developed to handle
the problem of segmenting objects at multiple scales. Modules are
designed, which employ atrous convolution in cascade or in parallel
to capture multi-scale context by adopting multiple atrous rates. We
initialize the model with weights obtained from the pre-trained model
on a subset of COCO train2017, on the 20 categories that are present
in the Pascal VOC dataset [28]. Since our case consists of two output
classes (background and foreground), we replace the 21-output channel
convolutional layer with a single output-channel convolutional layer. The
weights of all layers of the model are then updated during the training
stage.
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LOSS FUNCTION

The model was trained using the Dice similarity coefficient (DSC) loss
function [29], which is widely used in medical image segmentation
tasks to address the data imbalance problem between foreground and
background:

LDSC =
2
∑

,y(S,,y × G,,y)
∑

,y S
2
,,y +
∑

,yG
2
,,y

(7.1)

Where S,,y and G,,y refer to the value of pixel (, y) in the
segmentation result S and ground truth G respectively.

7.3.3. STAGE 2: REfiNED SEGMENTATION OF S. haematobium EGGS

To solve the challenge of obtaining accurate egg counts in the occurrence
of false positives or overlapping and clustered eggs, we adopted a
refined segmentation procedure, which involves fitting ellipses over
the region of interest in the binary output image of the semantic
segmentation. The refined segmentation algorithm as shown in
algorithm 1 operates in a number of steps, which can be summarized as
follows.
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Algorithm 1: The Refined Segmentation Algorithm
1 Input: Binary segmentation mask image 
2 Output: Set of Ellipse E∗


, Egg Count N∗


3 N∗


= 0

4 E∗

= ∅

5 for each region image R ∈  do
6 N∗

R
= 0

7 E∗
R
= ∅

8 AC∗
R
=∞

9 Nb, Nb = CompteBondry(AR)
10 NR = Nb
11 repeat
12 ER = FtEpse(R,NR)
13 ACR = CompteAC(R,UE)
14 if ACR < AC∗

R
then

15 N∗
R
= NR

16 AC∗
R
= ACR

17 E∗
R
= ER

18 NR = NR + 1
19 until NR = Nb
20 E∗


= non(E∗


, E∗

R
)

21 N∗

= N∗


+ N∗

R
22 end
23 return N∗


, E∗


Legend
: Binary segmentation mask image
E∗


: Optimal set of ellipses for 
N∗


: Optimal number of ellipses for 
R: Segmented egg region image
N∗
R

: Optimal number of ellipses for R
E∗
R

: Optimal set of ellipses for R
AC∗

R
: Optimal Akaike Information Criterion for R

Nb: Lower boundary for N
Nb: Upper boundary for N

OPTIMIZATION PROBLEM FORMULATION
We assume a binary image  that represents the segmentation mask
output of the DeepLabV3-MobileNetV3 deep neural network model. The
binary image may contain one or more sliced binary region image R
which has the same size as the bounding box. This region image R
represents a segmented isolated or overlapping eggs. A pixel p of R
belongs to either the foreground FG (R(p) = 1) or the background BG
(R(p) = 0). The area AR of the segmented egg is given by:
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AR =
∑

p∈FG
R(p) (7.2)

We also assume a set ER of NR ellipses are fitted over the region
image R. The binary image UE is defined such that UE(p) = 1 at point p
that is inside any of the ellipse ER,; otherwise UE(p) = 0. Also, we define
the coverage α(Er) of the segmented eggs by the given set of ellipses
ER as:

α(Er) =
1

AR

∑

p∈FG
R(p)UE(p) (7.3)

Essentially α(Er) is the percentage of the segmented eggs that are
under some of the ellipse in ER. Let the sum of the areas of all the
ellipses be denoted by |ER| =

∑

(  = 1)|ER,| and let C(ER) denote the
coverage area by all the ellipses:

C(ER) =
∑

p∈R
UE(p) (7.4)

It should be stressed that C(ER) < |ER|, with the equality holding in the
case that all ellipses are pairwise disjoint. This is because in case of
two overlapping ellipses, |ER| counts the area of their intersection two
times, while C(ER) does not. Similar to the work of Panagiotakis and
Argyros [13], we want to maximize the shape coverage α(E∗

R
) with a set

of ellipses E∗
R

whose covered area by all ellipses C(E∗
R
) is as close as

possible to AR:

E∗
R
= rgmx

ER
α(Er) s.t. C(ER) = AR (7.5)

We defined a model complexity measure the ratio of the area AR
of the segmented region to experimentally observed average area of
segmented isolated egg A∗

R
.

C =
AR

A∗R
(7.6)

To estimate the optimal number N∗
R

of ellipses in a segmented egg
region image R, a trade-off between the egg coverage α(Er) and the
model complexity C, is optimised by employing the Akaike Information
Criterion (AIC) [30]. The AIC-based model selection criterion amounts to
the minimization of the quantity [13]:

ACR = C ln(1 − α(Er)) + 2NR (7.7)

This minimises the error in egg count as intuitively the complexity is
proportional to the area of the segmented eggs.
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EXTRACTING SEGMENTED EGG REGIONS
First, connected components in the binary segmentation mask image
are extracted and binary region image R which has the same size as
bounding box of the connected component is created. If area AR of the
region image (i.e. the number of pixels in the segmented egg region)
is less than the defined area threshold Ath, then the detected region is
classified as noise; otherwise we solve for the optimal number of ellipses
as described in the next section.

INITIALIZING ELLIPSES SOLUTIONS
For defined number NR of ellipses in a segmented egg region image R,
we initialise the ellipse hypotheses using k-means clustering this defines
a set ER of clusters which are circular in shape with hard cut-off borders
where each pixel is strictly allocated to one cluster. The cluster centres
are the mean vector of the points belonging to the respective cluster,
while the diameters are the maximum Euclidian distances of the cluster
members from their respective cluster centres.

OPTIMIZING ELLIPSES SOLUTIONS
To obtain a more complex, ellipsoid shapes with soft cut-off borders
(i.e., overlapping ellipses) which closely describes the shape of S.
haematobium eggs, the ellipse hypotheses is evolved using the
Gaussian Mixture Model Expectation Maximization (GMM-EM) algorithm
to finetune the parameters of the initialised set ER of clusters with
the best coverage α(Er) of the given segmented egg region. This
is achieved by Expectation-Step and the Maximisation-Step iteratively
of the GMM-EM algorithm. The log likelihood function is maximized
until the GMM-EM algorithm converges. A detailed explanation of the
GMM-EM algorithm can be found in the works of Bishop [31] and Mitchell
[32].

SOLVING FOR THE OPTIMAL NUMBER OF ELLIPSES
Different models (i.e., solutions involving different numbers NR of
ellipses) for a segmented egg image region are evaluated based on
the AIC criterion [defined in equation (7.7)] that balances the trade-off
between model complexity and approximation error. To minimize ACR,
the refined segmentation algorithm increments the number of candidate
ellipses, NR, starting from a lower boundary, Nb = 0.6ce(C) ,with a
step size of 1. At each value of NR, the set ER of clusters is first initialised
by k-means clustering (described in section 7.3.3) and then evolved
using the GMM-EM algorithm (described in section 7.3.3). This process
continues until NR is equal to the upper boundary, Nb = 1.1ce(C).
In each iteration, the ACR criterion is computed. The lower and
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upper boundaries of the number of ellipses are formulated using the
complexity measure C, derived from prior knowledge about the average
pixel area of the S haematobium eggs. This helps to reduce the search
space for the optimal number of ellipses. From all possible models
(involving from Nb to Nb), the refined segmentation algorithm reports
as the optimal solution as the set of ellipses E∗

R
with the minimum ACR.

MORPHOLOGICAL FILTERING OF DETECTED ISOLATED EGGS
To reduce these false positives diagnosis caused by pixels of artifacts
such as crystals wrongly segmented as isolated egg, we introduced
two linear inequality constraints which are functions of the area of the
detected ellipse |ER| and Overlap coefficient OC(R,UE) defined by the
following ratio:

OC(R,UE) =
R ∩ UE

min(R,UE)
(7.8)

These inequality constraints are derived experimentally and only applied
to segmented regions with a single fitted ellipse for determination
of diagnosis result. This improves the specificity of the algorithm
by accepting only regions that fall within an experimentally defined
boundary region as candidate S. haematobium eggs while discarding
the others as a false positive prediction.

7.4. DATASET AND IMPLEMENTATION DETAILS
7.4.1. DATASET DESCRIPTION
A total of 103 captured urine samples were used for the creation of the
SH dataset. The SH dataset was used for training and development
testing of the DeepLabV3-MobileNetV3 deep neural network model,
while a separate set of 65 captured urine samples referred to as
diagnosis test dataset was used for testing the developed framework
for urogenital schistosomiasis diagnosis. The images were captured
from urine samples collected in a rural area in central Nigeria with the
Schistoscope V5.0 [11]. The size of the captured images are 1520× 2028
pixels. The details of the sample collection and preparation process
are described in our previous works [10, 11]. The procedure followed
in capturing and annotation of the S. haematobium eggs in images is
described in section 7.3.1. A summary of the SH image dataset is
shown in table 7.1. It consists of 12,051 images of clinical urine samples
and their respective mask images. There are 17,799 annotated S.
haematobium eggs in 2,997 captured FoV images., The dataset consists
of images that are easy to identify eggs (fig. 7.2) without the presence
of artifacts in the background, as well as images that are difficult to
analyse (fig. 7.3) with backgrounds containing artifacts such as crystals,
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glass debris, air bubbles, fabric fibres and human hair which makes
egg identification difficult. The SH dataset is split into 80% (9641
images) and 20% (2410 images) for training and development testing
respectively. To our best knowledge, this SH dataset is the largest
robust dataset focused on S. haematobium egg images captured in a
field setting.

Figure 7.2: Example of sample images that are easy-to-identify eggs
having glass slides and filter membranes as background and
their respective ground truth images.

7.4.2. IMPLEMENTATION DETAILS
The training of the DeepLabv3-MobileNetV3 model was performed using
the Pytorch framework [33] on NVIDIA A100-SXM4-40GB GPU. All images
were pre-processed by centring and normalizing the pixel density per
channel. We fine-tuned the model for 100 epochs. The batch size
is set to 8, and ADAM optimizer is used to optimize the Dice loss
function, with an initial learning rate of 1e − 4. We employ a “poly”
learning rate policy [12] where the initial learning rate is multiplied
by (1 − ter/(mter))poer with poer = 0.9. All images were down
sampled to 507 × 676 before being fed to the neural network.

To demonstrate the field applicability of the two-stage framework
in low-resource settings, we performed the development testing and
diagnosis testing on a Raspberry Pi 4 model B using a Coral USB
accelerator. To perform semantic segmentation on the Edge AI system,
we converted the DeepLabv3-MobileNetV3 model from Pytorch to
tensorflow lite [34]. This was done by first exporting the Pytorch
model in Open Neural Network Exchange (ONNX) Format. The ONNX
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Table 7.1: Number of images per category in the SH dataset

Split Positive
Images

Negative
images Total

Training Set (80%) 2,420 7,221 9,641
Test Set (20%) 577 1,833 2,410
Total 2,997 9,054 12,051

Figure 7.3: Example of sample images that are difficult-to-identify eggs
with artifacts, such as crystals, glass debris, air bubbles, and
fabric fibers in the background, and their respective ground
truth images.

model is then converted to Tensorflow before the final conversion from
Tensorflow to Tensorflow Lite. The refined segmentation algorithm was
implemented on the Raspberry Pi.

7.4.3. EVALUATION METRICS
We evaluated the performance of semantic segmentation of S. haema-
tobium egg by comparing the deepLabV3-MobileNetV3 Segmentation
(DS) which are the prediction results with a ground truth (GT) that was
manually annotated by a trained parasitologist using the Pixel Accuracy
(PA):

PA =
1

n

n
∑

=0

1(GT=DS) (7.9)
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We also compared the semantic segmentation performance using Dice
Similarity Coefficient (DSC) and Jaccard Similarity Coefficient (JAC),
which are widely used in evaluating medical segmentation algorithms.

DSC = 2
|GT ∩DS|

|GT | + |DS|
(7.10)

JAC =
|GT ∩DS|

|GT ∪DS|
(7.11)

While the diagnostic performance of our two-stage diagnosis framework
was evaluated by employing three metrics, precision, sensitivity and
specificity, which are commonly used for evaluating diagnostic devices.

Precson =
TP

TP + FP
(7.12)

Senstty =
TP

(TP + FN)
(7.13)

Specƒ cty =
TN

(TN + FP)
(7.14)

Where TP, FP, TN and FN are True Positive, False Positive, True Negative
and False Negative samples respectively.

7.5. EXPERIMENTS AND RESULTS
7.5.1. DEEPLABV3-MOBILENETV3 S. haematobium EGG SEMANTIC

SEGMENTATION
The determine the applicability of the framework on Edge AI system
in low resource settings with no internet connectivity, we implemented
and evaluated its performance on a Raspberry Pi 4B with Coral USB
accelerator. We evaluate the DeepLabV3-MobileNetV3 deep learning
model for the semantic segmentation of S. haematobium eggs using
the development test dataset. As shown in table 7.2., the deep
learning model achieved a segmentation accuracy of 99.69%. It is
however important to note the existence of a very high imbalance
between the foreground and background pixels in the images which
could hamper the segmentation accuracy. While using, the Jaccard
and dice coefficient as performance metric, the model obtained 85.30%
and 87.20% respectively. However, the average inference time per
image was 7.13s with a model size of 7.13mb. We considered the
inference time too high given the need to process 117 images per
sample diagnosis. In order to reduce the processing time on the Edge AI
system, we optimised the DeepLabV3-MobileNetV3 deep learning model
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using post-training quantisation on Tensorflow. The optimised model
was applied to the development test dataset. We observed a significant
reduction in inference time and model size (2x and 4x respectively)
with little effect (about 1% reduction) in the Jaccard and Dice coefficient
metric. However, the segmentation accuracy remained the same. All
further experiments in the work were carried out using the optimised
model.

The visual performance of the segmentation model is shown in
fig. 7.4(c). We observed that the model detected eggs in images heavily
cluttered with artefacts such as crystals and other particles (sample
image 3). It also detected highly transparent S. haematobium eggs
(sample image 1) present in the captured images. Partially cut eggs
on the edge of the images and overlapping eggs were also detected
as observed in sample image 2. However, the boundaries in the
overlapping eggs are not clearly segmented.

7.5.2. REfiNED SEGMENTATION AND EGG COUNT
In the second stage of our framework, we applied a refined segmentation
algorithm on the output segmentation mask image of the DeepLabV3-
MobileNetV3 deep learning model as described in section 7.3.2 From
fig. 7.4(d), we observed that the refined segmentation steps fills-in eggs
pixels missed in the deep learning semantic segmentation stage. This
improves the visual perceptibility of the eggs in the segmentation mask
image especially in regions with overlapping eggs as seen in sample
image 2. fig. 7.5 shows example regions with overlapping eggs in the
deep learning segmentation mask image. We observed that the correct
number of eggs in fig. 7.5(a) and (c) are equivalent to the optimal
AIC criterion values in fig. 7.5(b) and (d) respectively. The refined
segmentation stage is able to separate overlapping eggs thus improving
the accuracy of determining the infection intensity of the sample.

fig. 7.6 shows the scatter log-scale plots of the automated egg
counts versus the manual egg count (i.e., egg count by an experienced
microscopist) of samples in the diagnosis test dataset. Although we
observed that the predicted egg counts were mostly under the 1:1
line. This signifies under-prediction especially in samples with high egg
counts. However, the manual and automated egg count are highly
correlated in samples with both low and high egg counts which indicates
the applicability for the developed framework in determining infection
intensity of a sample.

7.5.3. UROGENITAL SCHISTOSOMIASIS DIAGNOSIS
A 10mL urine sample consists of 117 FoV images when filtered with
a 13mm membrane and captured by the Schistoscope. For a sample
to be determined as true negative diagnosis, the 117 FoV images
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Table 7.2: Performance of DeepLabV3-MobileNetV3 for Semantic seg-
mentation of S. haematobium eggs.

PA JAC DSC Model
size (mb)

Inference
time (S)

Base Model 99.69 85.30 87.20 42.1 7.13
Optimised Model 99.69 84.64 86.55 11.1 4.39

must contain no false positives. We experimentally defined boundary
conditions for the detected isolated eggs using inequality functions,
defined by the overlap and area of the fitted ellipse as shown in fig. 7.7.
The boundary conditions are defined by OC ≥ −4.75e−4|ER| + 1.15 and
OC ≤ 3.25e−4|ER| + 0.74 where OC is the overlap and |ER| is the area
of fitted ellipse The experiment was carried out using images from the
development test dataset [fig. 7.7(a)] and boundaries were found to hold
also in images from the diagnosis test dataset [fig. 7.7(b)]. A sample
was determined as positive diagnosis if an isolated egg is detected in the
set of 117 FoV images which satisfies the defined boundary conditions
(an egg is detected in the green region of fig. 7.7). Otherwise, the
sample is determined as negative diagnosis. We observed that most
of the false negatives in fig. 7.7 (grey markers) were broken or partly
captured eggs found at the edges of the image, while the false positives
(yellow markers) are artefacts that are very similar in appearance to a
S. haematobium egg.

The diagnostic performance of the developed framework is shown in
table 7.3. We observed a significant improvement in diagnosis specificity
(from 72.73% to 93.94%) and precision (from 77.50% to 93.75%) when
the boundary conditions are applied in determining the sample diagnosis.
However, a reduction in the diagnosis sensitivity is observed. This is
due to some samples with very low infection intensities (eggs per 10mL
of urine ≤ 2) not having any detected eggs which meet the boundary
constraint represented by the green region of fig. 7.7(b). McNemar’s test
returned a p − e of 0.008, which indicates a statistically significant
difference between both methods (p− e < 0.05). Also, we achieved
a 7.39% and 92.11% performance improvement in diagnosis sensitivity
and specificity respectively, compared to our previously published work
[11].

7.5.4. COMPUTATIONAL TIME
In order to evaluate the computational performance of the developed
framework, we measured the computational time of both stages of the
proposed method as function of infection intensity. S. haematobium
infection intensity has consistently been characterized by the number
of schistosome eggs per 10 mL of urine with 1 to 49 eggs per 10 mL
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Figure 7.4: Visual performance of developed framework on sample
images from the dataset. Schistoscope (a) captured and
(b) ground truth images. The output mask images of
(c) DeepLabV3-MobileNetV3 segmentation and (d) refined
segmentation. (e) The result image with detected eggs.
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Figure 7.5: (b) and (d) shows estimated AIC criteria values for different
number of ellipses fitted on the region images (a) and (c)
respectively with optimal ellipses are highlighted in green.

Figure 7.6: Logarithmic scale scatter plot of infection intensity per 10
mL urine sample. The manual egg count obtained by a
microscopist manually counting the eggs in the diagnosis test
image dataset, is used as a reference while the automated
egg count is obtained using the developed framework.

Table 7.3: Diagnostic performance of developed framework on the
diagnosis test dataset.

Sensitivity Specificity Precision
Without boundary
conditions

96.88 72.73 77.50

With boundary
conditions

93.75 93.94 93.75

of urine defining a light infection and more than 50 eggs per 10 mL
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Figure 7.7: Boundary conditions to determine a sample as positive
or negative diagnosis applied to images from (a) the
development test dataset and (b) diagnosis test dataset; A
samples is determined as positive if an egg in any of the 177
FoV images is detected in the green region.

of urine indicating a heavy infection [35]. We performed the running
time experiments on a Raspberry PI 4B with Coral USB accelerator
to study how the infection intensity affects the computational time.
The algorithm was applied on images from the diagnosis test image
dataset. fig. 7.8 shows the average computational time from the
application of the first (DeeplabV3-MobileNetV3 semantic segmentation)
and the second (refined segmentation and separation of overlapping
eggs) stages of the developed framework to the diagnosis test image
dataset as a function of the infection intensity. From fig. 7.8, it can
be seen that there is little difference between the computational time
of negative and light intensity samples (620 and 628 s respectively).
However, processing samples with heavy infection intensity is more
time consuming with an average computational time of 748 s.

7.6. DISCUSSION
7.6.1. IMPACT ON SCHISTOSOMIASIS CONTROL AND ELIMINATION
Schistosomiasis affects about 252 million people globally [2] with
approximately 90% of infections and the vast majority of morbidity
occurring in Sub-Saharan Africa. Chronic urogenital schistosomiasis
infection can result in bladder fibrosis as well as female and male genital
schistosomiasis, which is associated with greater risk of HIV transmission
[36]. Also, the bulk of the more than 1.6 million disability-adjusted life
years [37] caused by schistosomiasis worldwide affect children, who
have the highest prevalence and intensity of infections. Morbidity in
children include anaemia, delays in physical and cognitive development,
and reduced tolerance to exercise [38]. The main strategy for control
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Figure 7.8: Average computational time in seconds from the application
of framework on the diagnosis test image dataset.

of schistosomiasis focuses on mass drug administration (MDA) of
praziquantel in priority to primary school-aged children because it is
more cost-effective to treat all school-aged children in a community
above a certain prevalence threshold than to test and treat each
individual [4]. On a population level, higher intensities of infection are
associated with higher levels of morbidity, but these relationships are
poorly defined, as most control programmes monitor only prevalence
of infection and not intensity [39]. Microscopic examination of urine
samples is often a cheap and simple procedure recommended by
WHO for the diagnosis of urogenital schistosomiasis. However, it has
some critical shortcomings which include access to microscopes and
trained personnel as well as poor sensitivity and reproducibility, and
an error-prone manual read-out [40]. This led to the recent formation
of the WHO Diagnostic Technical Advisory Group with the mandate to
identify and prioritise diagnostic needs, and to subsequently develop
TPPs for future diagnostics [4, 41, 42]. The TPP requires new diagnostic
tools to have high specificity so as reliably measure when prevalence is
above or below a cut-off of 10% in school-aged children. This informs
decision on the frequency of the MDA. A diagnostic tool with high
specificity is also needed to track changes of prevalence, ensuring that
MDA is reducing overall prevalence; and to determine if transmission
has been interrupted. In this work, we developed a two-stage diagnostic
framework which is a suitable candidate for estimating infection intensity
and diagnostic prevalence in urogenital schistosomiasis monitoring and
control.
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7.6.2. LIMITATIONS
• Image auto-focusing: Some of the images in the dataset captured

by the Schistoscope were blurry due to sub-optimal autofocusing.
Although this had no effect on the diagnostic performance, it did
have an effect on the automated egg counts of a few samples in
the diagnosis test dataset. This problem has been solved by a
more accurate auto-focusing algorithm in subsequent version of
the Schistoscope.

• Annotation problem: Annotating the exact boundaries of the eggs
was difficult due to their small sizes. This may contribute to
the difficulty of the model to segment the exact egg boundaries,
especially in overlapping eggs.

• Diagnostic prevalence: The determining diagnosis of a sample with
eggs that are either broken or are at the edges of the images are
mostly not considered by the developed framework as they don’t
meet the boundary requirements. This increases the chances of a
false negative diagnosis especially in samples with very low egg
counts.

• Computational time: On a Raspberry Pi with Coral USB accelerator,
the developed framework processes 117 images of the 13mm
urine filter membrane in approximately 11 minutes. Therefore,
an estimated processing time of 35 minutes required to process a
25mm filter membrane with 372 captured FoV images. However,
the processing time can halved by the use of 2 Coral USB
accelerators for computation through multi-threading.

7.7. CONCLUSION
We created a robust dataset of manually annotated S. haematobium
eggs in microscopy images of urine samples collected from an
endemic population, captured by the Schistoscope V5.0 device.
We then developed a two-stage diagnosis framework for urogenital
schistosomiasis using the SH dataset. The framework consists of
two main stages, the first step involves the semantic segmentation
of the eggs using the DeepLabV3 deep learning architecture with
a MobileNetV3 backbone. The model effectively segmented the
transparent eggs having low contrast with the background, and it
also differentiated between eggs and other urine artifacts such as
crystals that have egg-like structures. In the next stage, a refined
segmentation algorithm was applied to detect and count the eggs
present. The refined segmentation algorithm separates overlapping
eggs by fitting the region image with an optimal number of ellipses
determined by optimising the AIC criterion. For improved diagnostic
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performance, we determine a sample as positive only if there is a
detected egg present in the sample images which meet a defined
boundary requirement which is a function of the overlap and area
of the fitted ellipse. We implemented the developed framework on
an Edge AI system consisting of a Raspberry Pi 4B with Coral USB
accelerator and applied it to a diagnosis test dataset of 65 samples using
results obtained by an expert microscopist as reference. We obtained
93.75%, 93.94% and 93.75% sensitivity, specificity and precision,
respectively. The automated egg count was also highly correlated
with the manual count of the microscopist. The framework also
provides causality for its estimated egg counts which is relevant for
diagnosis. From our results, it is evident that our automated framework
for urogenital diagnosis combined with the Schistoscope device is a
promising diagnostic tool for schistosomiasis. In a future study, the
proposed multilayer framework, combined with the Schistoscope, will be
validated for the diagnosis of urogenital schistosomiasis by comparing
its performance with conventional microscopy, as well as more accurate
diagnostic methods such as schistosome circulating antigen detection
and DNA-based methods such as polymerase chain reaction assays [43].
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ABSTRACT
Traditionally, automated slide scanning involves capturing a rectangular
grid of field-of-view (FoV) images which can be stitched together to
create whole slide images, while the autofocusing algorithm captures a
focal stack of images to determine the best in-focus image. However,
these methods can be time-consuming due to the need for X-, Y- and
Z-axis movements of the digital microscope while capturing multiple
FoV images. In this paper, we propose a solution to minimise these
redundancies by presenting an optimal procedure for automated slide
scanning of circular membrane filters on a glass slide. We achieve this
by following an optimal path in the sample plane, ensuring that only FoVs
overlapping the filter membrane are captured. To capture the best in-
focus FoV image, we utilise a hill-climbing approach that tracks the peak
of the mean of Gaussian gradient of the captured FoVs images along the
Z-axis. We implemented this procedure to optimise the efficiency of the
Schistoscope, an automated digital microscope developed to diagnose
urogenital schistosomiasis by imaging Schistosoma haematobium eggs
on 13 or 25 mm membrane filters. Our improved method reduces the
automated slide scanning time by 63.18% and 72.52% for the respective
filter sizes. This advancement greatly supports the practicality of the
Schistoscope in large-scale schistosomiasis monitoring and evaluation
programs in endemic regions. This will save time, resources and also
accelerate generation of data that is critical in achieving the targets for
schistosomiasis elimination.
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8.1. INTRODUCTION
Sub-Saharan Africa is highly endemic for parasitic diseases such
as malaria, schistosomiasis, lymphatic filariasis, trypanosomiasis and
soil transmitted helminth infections [1–5]. These diseases have a
profound impact on public health, affecting millions of individuals
and leading to significant morbidity and mortality rates, particularly
among vulnerable populations. Accurate and timely diagnosis is
critical for prompt precision mapping, effective case management and
periodic assessment of interventions overtime. In sub-Saharan Africa,
microscopy has long been considered the gold standard for diagnosing
parasitic diseases. It enables the visualisation of parasites and their
morphological characteristics, facilitating accurate identification and
quantification. Microscopic examination of filtered urine samples,
stained blood smears, stool smears, and tissue biopsies has played a
pivotal role in guiding treatment decisions and controlling the spread
of parasitic diseases. Despite its utility, conventional microscopy
techniques face several challenges, particularly in sub-Saharan Africa.
Limited access to trained personnel and high-quality microscopes in
remote and resource-limited areas can hinder timely and accurate
diagnosis. The lack of skilled technicians often results in delays
and increased diagnostic errors. Additionally, interobserver variability
in expertise may lead to discrepancies in parasite detection and
misdiagnosis, further impacting patient outcomes [6].

Advancements in digital optics and artificial intelligence have revolu-
tionised the field of microscopy [7–9]. Digital microscopes equipped with
high-resolution cameras and sophisticated imaging software can capture
whole-slide images of specimens. These images can be analysed
using artificial intelligence algorithms, enabling automated detection
and classification of parasites. The integration of digital optics and
artificial intelligence improves diagnostic accuracy, reduces human error
and enhances efficiency.

Automated slide scanning systems with artificial intelligence capabili-
ties have the potential to significantly improve and accelerate access to
the optical diagnosis of parasitic diseases by overcoming challenges as-
sociated with conventional microscopy, such as limited access to skilled
technicians and interobserver variability. It captures high-resolution
images of entire glass slides, creating a digital representation of the
specimen. By leveraging on innovation through advancements in digital
optics and artificial intelligence, these technologies offer efficient and
accurate parasite detection, facilitating timely interventions, effective
disease management and large-scale precision diagnosis during disease
mapping and periodic assessment. A fundamental challenge with
automated slide scanning systems has been the ability to acquire
high-quality, in-focus images at high speed [10]. Several studies have
implicated poor focus as the main culprit for poor image quality in these
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systems [11–13], and addressing this challenge is crucial to ensure the
successful implementation and widespread adoption.

The autofocusing system, which involves moving a microscope optical
train or sample stage along a Z-axis (optical axis) to find an optimal focus
position, is a critical feature of automated digital microscopes, ensuring
that the image remains sharp and in focus. However, autofocusing
algorithms can encounter difficulties, particularly due to the topography
of the biological sample and the glass slide underneath having depth
variations [14]. Reflections, artefacts, and the presence of debris can
also hinder accurate autofocusing, potentially impacting the quality of
the captured images. Thus, the automated microscope needs to be
continuously focused as it moves from one field-of-view to another.

Autofocusing systems can be broadly divided into three categories
[10] – focus map surveying, real-time reflection based and real-time
image based. Many automated slide scanning systems create a focus
map before scanning by acquiring a Z-stack for each point on the
map. This method is time-consuming and requires high-precision
mechanical systems, increasing the overall system cost. In real-time
reflection-based technique, a constant distance between the objective
lens and a reference plane is maintained by repeatedly finding the
axial location of the reference plane. However, it is less effective
when the sample’s location varies due to tissue topography variations
[15–18]. Real-time image-based autofocusing offers several approaches,
including dual sensor scanning [19], beam splitter arrays [20], tilted
sensors [21], phase detection [22–24], deep learning [25–30] and dual-
LED illumination [31–35]. These methods do not require a pregenerated
focus map and can handle samples with varying topography. However,
they come with their own challenges, such as the need for additional
optical hardware, alignment issues and cost considerations. In the
case of dual-LED illumination-based autofocusing, it allows real-time
single-frame autofocusing, continuous sample motion and cost-effective
design. Nonetheless, it may still require an extra camera and
optical hardware and may not work well with transparent samples.
Although time-consuming, focus map surveying is the most adopted
autofocusing method in commercially available whole slide imaging
systems. Manufacturers favour this approach because it requires no
additional optical hardware, proves to be robust for different types of
samples and reduces or eliminates potential intellectual property issues.

In the focus map surveying approach, multiple images are captured
along the Z-axis. Then, a figure of merit (FoM) is calculated to evaluate
the quality of focus for each image. The image with the highest FoM
value is considered the in-focus image [14, 23]. One major challenge
of this method is its time-consuming nature. Additionally, skipping tiles
can reduce the focus map surveying time but comes at the expense of
accuracy in the resulting focus map [19]. Various FoM measures have
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been used in the literature, initially introduced by Brenner et al. [36].
Commonly used figure of merit (FoM) measures include the derivative
of Gaussian, variance of Laplacian, norm of Sobel operator and norm of
Boddeke’s operator, among others. Nevertheless, the convolution with
the derivative of a Gaussian smoothing function has been demonstrated
to effectively mitigate the impact of noise on the FoM curve in various
optical microscopy techniques, including fluorescence, bright-field and
phase contrast microscopy, in both fixed and living cells, as well as in
fixed tissue [37]. This approach was assessed in tuberculosis microscopy
[38, 39], as well as in both bright-field microscopy of stained[40] and
unstained cells [41]. Autofocusing systems commonly utilise search
methods designed to pinpoint the peak of the FoM curve. However, the
presence of mechanical backlash complicates the positioning system of
the digital microscope, since positions are never fully reproducible [42].
Furthermore, in some cases, the FoM curve can have multiple peaks,
which may not necessarily correspond to the best focus [43]. Thus,
FoM-based peak finding may lead to capturing out-of-focus images.

In this paper, we present an automated slide scanning procedure
aimed at reducing the imaging time required to capture circular
membrane filters in the diagnosis of urogenital schistosomiasis. Our
method optimises the scanning path within the sample plane, ensuring
that only field-of-views (FoVs) overlapping the filter membrane are
captured. Furthermore, we developed an autofocusing algorithm based
on hill-climbing to detect the peak of the figure of merit (FoM) curve
along the focal plane of the membrane filter. To achieve this, we utilise
the mean Gaussian gradient of the FoV image as the FoM due to its
unimodal nature when imaging the membrane filter.

8.2. PERTURB AND OBSERVE AUTOFOCUSING ALGORITHM
Microscopic imaging of filter membranes for the detection of Schistosoma
haematobium eggs in urine usually encounters challenges such as
uneven filter membranes, presence of artefacts and deviations in slide
angle and stage position [44]. All these factors can result in loss
of focus when capturing images across different FoVs, thus reducing
the readability of the image by both humans and automatic object
detection algorithms. Therefore, there is a need for an autofocusing
system to ensure that the images captured are always in focus.
We present an optimal autofocusing algorithm using a hill-climbing
approach called perturb and observe. Perturb and observe algorithm
is the most commonly used method in maximum power point tracking
of photovoltaic (PV) solar systems due to its ease of implementation
and top-level efficiency [45, 46]. We adapted the perturb and observe
algorithm for detecting the best focus plane by including a perturbation
in the position of the Z-axis and observing the change the FoM. Here we
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adopted the mean of Gaussian gradient of the captured FoV image as
the FoM due to its unimodal nature when imaging the membrane filter.
The curve has its peak when the Z-axis position is at the optimal focal
plane. fig. 8.1 shows an example FoM curve of a filter membrane FoV
when the Z-axis moved for the start to end position.

Figure 8.1: Plot of mean Gaussian gradient of captured FoV image of the
membrane filter against Schistoscope’s Z-axis position.

In our technique, incrementing the Z-axis position cause the FoM
value to increase if the operation is on the left side of the FoM
curve, and decreases the FoM value when the Z-axis position is on
the right side of the FoM curve. We established an upper and lower
boundary values for the Z-axis position which ensures a search space
that encompasses the likely optimal Z-axis position based on the
optical configuration of the Schistoscope. The autofocusing routine can
be initiated either automatically within the membrane filter scanning
procedure or manually by the Schistoscope operator from the device
user interface. The perturb and observe autofocusing algorithm starts
at the midpoint of the search space in the case of the former and at the
current Z-axis position in the latter thus improving convergence speed.

First, we record the initial position (z) of the Z-axis and acquire the FoV
image with dimension r × c. Next, the recorded image is converted to
greyscale and a figure of merit (F) is estimated as the mean of gradient
magnitude of the convolution of a greyscale image () and a Gaussian
derivatives filter (G) with standard deviation σ, as shown in equation
(8.1).

F =
r
∑

=1

c
∑

j=1

(, j)∗G(, j, σ) (8.1)

Subsequently, the Z-axis is incrementally adjusted to a new position,
denoted as z(n), and the figure of merit (FoM), F(z(n)), is calculated
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using equation (8.1). We then employ equation (8.2) to determine
the change in FoM (ΔF) for the captured image, representing an
approximation of the gradient of F. A positive ΔF indicates that z(n) is
on the left side of the peak, leading to an increase in the Z-axis position
by a step size. Conversely, a negative ΔF indicates that z(n) is on the
right side of the peak, resulting in a decrease in the Z-axis position by a
step size.

ΔF = F(mx{z(n), z(n − 1)}) − F(min{z(n), z(n − 1)}) (8.2)

The above procedure is repeated until the stopping criteria shown in
equation (8.3) is achieved.

sgn(ΔF(z(n))) ̸= sgn(ΔF(z(n − 1))) (8.3)

The stopping criteria indicates there is a change in the sign of ΔF
between the current and previous Z-axis position. This translates to
reaching the peak of the FoM curve where the recorded image of the
FoV is at the best focus.

8.3. OPTIMAL CIRCULAR MEMBRANE FILTER IMAGING
In traditional automated slide scanning systems, grids of FoV images
are captured by moving the optical axis or sample stage sequentially
along the width and length of the glass slide. This procedure consumes
a high amount of time and some of the FoV images may just be images
of the glass slide without sample specimen present especially when
the specimen is not rectangular in shape. This is, more evident in
automated diagnosis of urogenital schistosomiasis in which a circular
membrane filter is scanned in a rectangular grid resulting in a large
number of the FoV images captured in which the membrane filter is not
present. Eliminating these images by adopting an optimal membrane
filter scanning procedure would lead to a significant savings in the total
sample processing time of an automated slide scanning system. We
propose a membrane filter scanning procedure, which optimises the
scanning time by intelligently skipping FoVs which do not overlap the
circular membrane filter. To further explain our approach, we make
use of the illustration shown in fig. 8.2. Where the shaded circle
represents a membrane filter and the rectangular grid cells represents
FoVs. Our algorithm utilises the principle of circle geometry to estimate
the positions of the grid cells that overlap with the filter membrane in
each grid row.

From the illustration in fig. 8.2, let hƒo and ƒo be the height and
width of the FoV obtained by optical system of the digital microscope
which is represented by the grid cell. Therefore, the minimum number
of grid rows nros and grid columns ncos for a square grid required to
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Figure 8.2: An example 10 x 5 grid illustration of a circular membrane
filter.

capture circular membrane filter of diameter dmem, with the membrane
centred in the grid, can be obtained using equations (8.4) and (8.5):

nros = ce

�

dmem

hƒo

�

(8.4)

ncos = ce

�

dmem

ƒo

�

(8.5)

Each grid row contains a grid slice with minimum number grid cells
such that there is a complete overlap with the membrane filter. To
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obtain the slice we assume a circle inscribed in the square grid as
illustrated in fig. 8.2.

The length of chord  spans the grid cells in a grid slice can thus be
estimated as follows:

 = 2
Ç

�

r2 − d2
�

(8.6)

where r is the radius of the inscribed circle defined as:

r = nros ×
hƒo

2
(8.7)

And d is the distance between the chord and centre of the inscribed
circle defined as:

d = bs
�nro

2
− ro
�

× hƒo (8.8)

We then estimate the number of grid cells nces overlapping the
membrane filter in a grid row using equation (8.9):

�

nces = rond_to_nerest_odd
�


ƒo

�

if nco is odd

nces = rond_to_nerest_een
�


ƒo

�

otherwise
(8.9)

It is observed that an odd number of grid cells is required for a grid
with odd number of grid columns and vice versa. Also, the grid slice is
always centred in the grid row. Therefore, the start column index and
end column index of the grid slice is obtained using equations (8.10)
and (8.11), respectively.

sco =
ncos − nces

2
+ 1 (8.10)

tco = sco + nces − 1 (8.11)

The optimal membrane filter scanning is performed by sequentially
moving the sample stage along a path defined by the optimal grid slices
in each grid row beginning from the topmost row in the grid. The scan
is performed from left to right in grid slices belonging to odd rows and
in the reverse direction in grid slices of even rows. Autofocusing is
performed at each grid cell position and the FoV image with the best
focus is recorded before moving to the next grid cell. The algorithm is
terminated after the FoV image of the last grid cell of the grid slice from
the last grid row has been recorded.
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8.4. THE SCHISTOSCOPE IMPLEMENTATION
The standard sample preparation procedure in diagnosing urogenital
schistosomiasis involves filtering 10 mL of the patient’s urine through
a circular membrane filter with a mesh size small enough to retain
the parasite eggs. The membrane is then placed on a glass slide
and processed by the Schistoscope to for automated detection of
Schistosoma haematobium eggs [44]. The Schistoscope is equipped
with a graphical user interface through which the operator selects from
two common sizes of membrane filters that are used in urogenetal
schistosmiasis diagnosis, measuring 13 and 25 mm in diameter. The
Schistocope captures FoV images of the membrane filter using the
developed automated scanning procedure with perturb and observe
autofocusing algorithm, implemented on the device using Python
programming language. The size of the image captured for estimating
the FoM in the autofocusing algorithm is 320 × 240 pixels and this
covers a FoV of size 1.47 mm × 1.08 mm. The Z-axis step size was set
to 0.25 µm.

8.5. RESULT AND DISCUSSION
We performed experiments to assess the impact of the presence of dirt,
S. haematobium eggs, or the glass slide in the FoV, on the shape of the
FoM curve and performance of the perturb and observe autofocusing
algorithm. We examined four representative in-focus FoV images of a
filter membrane captured using the perturb and observe autofocusing
algorithm: two FoVs with a filter membrane containing dirt and S.
haematobium eggs (fig. 8.3A and B), a FoV with a portion of the glass
slide and a portion of the filter membrane (fig. 8.3C) and a FoV with
a filter membrane without dirt and S. haematobium eggs (fig. 8.3D).
The corresponding normalised figure of merit (FoM) curve obtained by
analysing the mean Gaussian gradient of the captured stack of images
along the Z-axis for the respective FoVs are displayed in fig. 8.3E.
We obtained a unimodal FoM curve for all four cases. Notably, the
optimal focus plane identified by the perturb and observe autofocusing
algorithm (circle markers in fig. 8.3E) aligns with the peak in the FoM
curves of images a, c and d. However, in the FoM curve of FoV
image b, a Z-axis position error of 0.02 µm is observed in the perturb
and observe autofocusing algorithm. This position error primarily
stems from mechanical backlash in the positioning system and can be
mitigated by reducing the step size of the Z-axis motor. Nevertheless,
decreasing the step size would prolong the convergence time of the
autofocusing algorithm without yielding significant improvements to the
best focus image, as the device’s microscope objective has a depth of
view of 55.5 µm. Furthermore, the observed shifts in the FoM curves,
despite the representative FoV images being from the same slide, arise
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from variations in tissue composition and slide depth variation. The
slide depth variation is attributed to the imperfectly flat sample bed,
especially in a low-cost device like the Schistoscope, which involves
manual assembly and utilises 3D-printed parts.

To demonstrate the practical feasibility of the optimal automated
slide scanning procedure with the perturb and observe autofocusing
algorithm, we implemented the algorithms on the Schistoscope and
performed 10 experimental trials of scanning both the 13 and 25 mm
membrane filters. In table 8.1, we present the mean and standard
deviation of the time taken to scan both membrane filters using the
proposed procedures.

Table 8.1: Performance in automated slide scanning of 13 mm and 25
mm membrane filter.

Procedure Scanning time (s) Percentage
improvement (%)∗

13 mm 25 mm 13 mm 25 mm
Traditional grid
scanning with focus
map surveying

1,812.31 ± 18.66 5,335.75 ± 64.50 - -

Traditional grid
scanning with perturb
and observe

768.47 ± 13.07 1,774.00 ± 24.92 57.60 66.70

Optimal membrane
scanning with perturb
and observe

667.07 ± 11.21 1,518.78 ± 31.96 63.18 71.52

∗Percentage improvement compared to traditional grid scanning with focus map surveying.

We achieved a 57.60% and 66.70% improvement in scanning time
for the 13 and 25 mm filter membranes, respectively, when employing
the perturb and observe autofocusing with the traditional grid scanning
procedure, compared to the base case of traditional grid scanning
with focal mapping autofocusing approach. This improvement can be
attributed to requiring a lesser number of steps for Z-axis movement
(maximum of 4 steps) compared to the focal mapping autofocusing,
which necessitates a minimum of 10 steps to acquire an in-focus image
for every grid cell. The traditional grid scanning approach requires a 9 13
grid (117 images) and 18 24 grid (432 images) to capture the entire 13
and 25 mm membrane filters, respectively. By applying the developed
optimal membrane scanning procedure in combination with the perturb
and observe auto focusing algorithm, we achieved an additional
improvement in scanning times of 13.15% and 14.43% for the 13 mm
and 25 mm membrane filters respectively, compared to traditional grid
scanning approach with perturb and observe autofocusing algorithm.
Thus, we obtained an overall improvement in scanning time of 63.18%
and 71.52% for the 13 and 25 mm membrane filters, respectively,
compared to the base case of traditional grid scanning with focus map
surveying autofocusing approach. This improvement was achieved by
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Figure 8.3: Representative in-focus FoV images from the same sample
slide obtained using the perturb and observe autofocusing
algorithm. (A, B) The FoV with a filter membrane containing
dirt and S. haematobium eggs. (C) A FoV with a portion of
the glass slide and a portion of the filter membrane. (D) A
FoV with a filter membrane without dirt and S. haematobium
eggs. (E) The normalised FoM curve corresponding to the
respective images, with the detected peak indicated by the
perturb and observe autofocusing algorithm.
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the optimal scanning procedure consequently skipping 12 grid cells
without membrane filter while scanning the 13 mm membrane and 76
grid cells when scanning the 25 mm membrane. Hence, only 105
and 356 images are to capture the 13 and 25 mm membrane filters,
respectively, as illustrated in fig. 8.4.

Figure 8.4: Capture of the (A) 13 mm and (B) 25 mm membrane filters
using the optimal automated slide scanning procedure with
skipped grid cells highlighted in black.

The efficiency gains become particularly crucial in resource-
constrained settings with a significant disease burden, where mi-
croscopic examination of urine samples is recommended by the WHO
for the diagnosis of urogenital schistosomiasis. Considering that
conventional microscopy typically takes around 5 min per sample, the
further reduction in scanning time for the 25 mm membrane filter from
30 to 25 min per sample, achieved through our optimised membrane
scanning procedure, significantly enhances the practicality of deploying
the Schistoscope for large-scale schistosomiasis monitoring and evalu-
ation programs, especially in regions with a high disease burden. To
further enhance the computational efficiency of the Schistoscope, we
acknowledge the potential benefits of implementing the algorithm in
a more efficient language like C++. Additionally, exploring low-cost
options for hardware acceleration, such as GPUs and TPUs, could provide
further improvements.

8.6. CONCLUSION
This paper introduces a novel procedure for automated slide scanning
of membrane filters in the diagnosis of urogenital schistosomiasis.
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The procedure focuses on estimating and capturing field-of-view (FoV)
images only in grid cells where the membrane filter is present, optimising
efficiency. Additionally, we have developed a perturb and observe
autofocusing algorithm that employs a hill-climbing approach, utilising
the mean of the Gaussian gradient of the FoV image as a figure of merit
to determine the optimal focus plane. To evaluate the performance of
our developed procedure, we implemented it on the Schistoscope and
experimentally assessed of its scanning capabilities using the commonly
used 13 and 25 mm membrane filters for diagnosing urogenital
schistosomiasis. Our results obtained 63% and 72% s improvements
in scanning times for the 13 and 25 mm membrane filters respectively
compared to the traditional grid scanning procedure with the focus map
surveying autofocusing algorithm.

The significant reduction in scanning time greatly enhances the ap-
plicability of the Schistoscope for large-scale schistosomiasis monitoring
and evaluation programs in regions where the disease is prevalent.
Moreover, the optimised scanning procedure can be adapted to minimise
scanning time in whole slide imaging of other biological tissue smears
with shapes closely resembling that of a circle (e.g., stool and thick blood
smears in the diagnosis of soil transmitted helminth and malaria parasite
infections respectively). Moving forward, our future work, we plan to
conduct a large-scale validation study to evaluate the performance of
the Schistoscope with artificial intelligence for diagnosis of urinogenital
schistosomiasis in field settings.
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“Feasibility and diagnostic agreement in teledermatopathology
using a virtual slide system”. In: Human Pathology 38.4 (2007),
pp. 546–554. doi: 10.1016/j.humpath.2006.10.006.

[14] T. R. Dastidar and R. Ethirajan. “Whole slide imaging system
using deep learning-based automated focusing”. In: Biomedical
Optics Express 11.1 (2020), pp. 480–491. doi: 10.1364/BOE.
379780.

https://doi.org/10.1109/GHTC46280.2020.9342871
https://doi.org/10.1371/journal.pntd.0010500
https://doi.org/10.1371/journal.pntd.0010500
https://doi.org/10.1007/s42600-023-00288-6
https://doi.org/10.1002/jbio.202000227
https://doi.org/10.1002/jbio.202000227
https://doi.org/10.1186/1472-6890-6-4
https://doi.org/10.4103/jpi.jpi_11_19
https://doi.org/10.1016/j.humpath.2006.10.006
https://doi.org/10.1364/BOE.379780
https://doi.org/10.1364/BOE.379780


references

8

167

[15] Y. Liron, Y. Paran, N. G. Zatorsky, B. Geiger, and Z. Kam.
“Laser autofocusing system for high-resolution cell biological
imaging”. In: Journal of Microscopy 221.2 (2006), pp. 145–151.
doi: 10.1111/j.1365-2818.2006.01550.x.

[16] G. Reinheimer. “Arrangement for automatically focussing an
optical instrument”. Pat. US3721827A. 1973.

[17] A. Cable, J. Wollenzin, R. Johnstone, K. Gossage, J. S. Brooker,
J. Mills, J. Jiang, and D. Hillmann. “Microscopy system with
auto-focus adjustment by low-coherence interferometry”. Pat.
US9869852B2. 2018.

[18] J. S. Silfies, E. G. Lieser, S. A. Schwartz, and M. W. David-
son. Nikon Perfect Focus System (PFS). 2024. url: https:
//www.microscopyu.com/tutorials/the-nikon-
perfect-focus-system-pfs (visited on 08/04/2024).

[19] R. R. McKay, V. A. Baxi, and M. C. Montalto. “The accuracy
of dynamic predictive autofocusing for whole slide imaging”.
In: Journal of Pathology Informatics 2.1 (2011), p. 38. doi:
10.4103/2153-3539.84231.

[20] T. Virág, A. László, B. Molnár, A. Tagscherer, and V. S. Varga.
“Focusing method for the high-speed digitalisation of microscope
slides and slide displacing device, focusing optics, and optical
rangefinder”. Pat. US7663078B2. 2010.

[21] R. T. Dong, U. Rashid, and J. Zeineh. “System and method
for generating digital images of a microscope slide”. Pat.
US20050089208A1. 2005.

[22] K. Guo, J. Liao, Z. Bian, X. Heng, and G. Zheng. “InstantScope:
A low-cost whole slide imaging system with instant focal plane
detection”. In: Biomedical Optics Express 6.9 (2015), pp. 3210–
3216. doi: 10.1364/BOE.6.003210.

[23] J. Liao, X. Chen, G. Ding, P. Dong, H. Ye, H. Wang, Y. Zhang, and
J. Yao. “Deep learning-based single-shot autofocus method for
digital microscopy”. In: Biomedical Optics Express 13.1 (2022),
pp. 314–327. doi: 10.1364/BOE.446928.

[24] L. Silvestri, M. C. Müllenbroich, I. Costantini, A. P. D. Giovanna,
L. Sacconi, and F. S. Pavone. RAPID: Real-time image-based
autofocus for all wide-field optical microscopy systems. preprint.
2017. doi: 10.1101/170555. bioRxiv: 170555.

[25] S. Jiang, J. Liao, Z. Bian, K. Guo, Y. Zhang, and G. Zheng.
“Transform- and multi-domain deep learning for single-frame
rapid autofocusing in whole slide imaging”. In: Biomedical Optics
Express 9.4 (2018), pp. 1601–1612. doi: 10.1364/BOE.9.
001601.

https://doi.org/10.1111/j.1365-2818.2006.01550.x
https://www.microscopyu.com/tutorials/the-nikon-perfect-focus-system-pfs
https://www.microscopyu.com/tutorials/the-nikon-perfect-focus-system-pfs
https://www.microscopyu.com/tutorials/the-nikon-perfect-focus-system-pfs
https://doi.org/10.4103/2153-3539.84231
https://doi.org/10.1364/BOE.6.003210
https://doi.org/10.1364/BOE.446928
https://doi.org/10.1101/170555
170555
https://doi.org/10.1364/BOE.9.001601
https://doi.org/10.1364/BOE.9.001601


8

168 references

[26] Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and
A. Ozcan. “Deep learning microscopy”. In: Optica 4.11 (2017),
pp. 1437–1443. doi: 10.1364/OPTICA.4.001437.

[27] N. Dimitriou, O. Arandjelović, and P. D. Caie. “Deep learning
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ABSTRACT
INTRODUCTION
Schistosomiasis is a significant public health concern, especially in
Sub-Saharan Africa. Conventional microscopy is the standard diagnostic
method in resource-limited settings, but with limitations, such as the
need for expert microscopists. An automated digital microscope with
artificial intelligence (Schistoscope), offers a potential solution. This field
study aimed to validate the diagnostic performance of the Schistoscope
for detecting and quantifying Schistosoma haematobium eggs in urine
compared to conventional microscopy and to a composite reference
standard (CRS) consisting of real-time PCR and the up-converting
particle (UCP) lateral flow (LF) test for the detection of schistosome
circulating anodic antigen (CAA).

METHODS
Based on a non-inferiority concept, the Schistoscope was evaluated in
two parts: study A, consisting of 339 freshly collected urine samples
and study B, consisting of 798 fresh urine samples that were also
banked as slides for analysis with the Schistoscope. In both studies,
the Schistoscope, conventional microscopy, real-time PCR and UCP-LF
CAA were performed and samples with all the diagnostic test results
were included in the analysis. All diagnostic procedures were performed
in a laboratory located in a rural area of Gabon, endemic for S.
haematobium.

RESULTS
In study A and B, the Schistoscope demonstrated a sensitivity of 83.1%
and 96.3% compared to conventional microscopy, and 62.9% and 78.0%
compared to the CRS. The sensitivity of conventional microscopy in
study A and B compared to the CRS was 61.9% and 75.2%, respectively,
comparable to the Schistoscope. The specificity of the Schistoscope
in study A (78.8%) was significantly lower than that of conventional
microscopy (96.4%) based on the CRS but comparable in study B (90.9%
and 98.0%, respectively).

CONCLUSION
Overall, the performance of the Schistoscope was non-inferior to
conventional microscopy with a comparable sensitivity, although the
specificity varied. The Schistoscope shows promising diagnostic
accuracy, particularly for samples with moderate to higher infection
intensities as well as for banked sample slides, highlighting the potential
for retrospective analysis in resource-limited settings.
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9.1. INTRODUCTION
Schistosomiasis is a tropical parasitic disease of significant public health
concern, with an estimated 700 million individuals at risk of infection in
areas known for transmission. Out of approximately 250 million people
requiring preventive chemotherapy worldwide, Sub-Saharan Africa,
including the centrally located country of Gabon, bears the highest
proportion [1–3]. In order to control the disease morbidity and work
towards its elimination as a public health problem, the World Health
Organisation (WHO) recommends annual preventive chemotherapy
using a single dose of praziquantel for all individuals aged two years
and above in communities where the prevalence of schistosomiasis is
10% or higher [4]. For communities with a prevalence below 10%, an
optional test-and-treat strategy is recommended [4]. In both cases,
reliable diagnostic tools are essential to support the monitoring and
evaluation of these control strategies [5, 6].

Conventional microscopy is the standard diagnostic procedure for
schistosomiasis. However, the need for expert microscopists limits its
application in resource-limited settings. Real-time polymerase chain
reaction (PCR) for amplification and detection of schistosome-specific
nucleic acid sequences, as well as a lateral flow test (LF) for the
detection of schistosome-specific circulating anodic antigen (CAA), offer
higher sensitivity and specificity than conventional microscopy [7,
8]. Nevertheless, the requirement for specialized skills and advanced
infrastructure currently limits their application in resource-limited
settings.

Alternatively, automated digital microscopes have shown promising
results in the diagnosis of schistosomiasis by detecting parasite eggs
in stool or urine [9–12]. The application of artificial intelligence (AI)
algorithms in the diagnosis and surveillance of infectious diseases has
received significant attention [13–15]. Automated digital microscopes
are designed to capture images of samples with simultaneous analysis
by an AI algorithm trained to detect parasite components. Such
innovative tools are relatively easy to use and can be customised for
rural endemic settings. These tools also have propitious downstream
applications including digital health [11, 16–18]. In particular for the
detection of S. haematobium eggs in urine, multiple studies have
validated the diagnostic accuracy of AI-based digital microscopes,
demonstrating sensitivities ranging from 32% to 91% compared to
conventional microscopy, as summarised in a recent review [11].

The Schistoscope is an automated digital microscope with an
integrated AI algorithm to detect S. haematobium eggs in urine samples.
It was developed for use at point-of-need and is relatively easy to
operate requiring minimal training [19, 20]. The Schistoscope was first
assessed in Nigeria for diagnosing urogenital schistosomiasis, revealing
a high sensitivity but a rather low specificity compared to conventional
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microscopy [12]. Based on these results, the AI model was re-designed,
retrained and embedded onboard the Schistoscope, and then validated
using a set of field sample images, yielding better sensitivity and
specificity [21]. A limitation of the previous studies has been the small
size of validation sample dataset and the lack of an accurate reference
standard. To perform more in-depth validation of the diagnostic accuracy
of the Schistoscope in detecting S. haematobium eggs, urine samples
were collected and analysed in a laboratory setting in Lambaréné,
Gabon. The diagnostic performance of the Schistoscope was compared
to conventional microscopy as well as to a composite reference standard
(CRS), consisting of real-time PCR and UCP-LF CAA.

9.2. METHODS
9.2.1. ETHICS STATEMENT
Ethical approval for the study was obtained from the Comité d’Éthique
Institutionnel (CEI) du Centre de Recherches Médicales de Lambaréné
in Lambaréné, Gabon (reference no. CEI-CERMEL 005/2020). Prior to
sample collection, written consent was obtained from adults and from
parents or legal guardians of children and teenagers who wished to
participate, indicated by their signatures. To ensure confidentiality and
anonymity of the results, unique codes were assigned to the samples.
Participants with detectable S. haematobium eggs/10 mL of urine based
on microscopy were treated with praziquantel (40 mg/Kg of body weight)
following local guidelines. The study was registered at ClinicalTrials.gov
(NCT04505046).

9.2.2. STUDY DESIGN
The validation study was conducted in Lambaréné and surrounding
areas, located in the Moyen-Ogooué province in Gabon, a region
known to be endemic for S. haematobium with a prevalence of about
30% [22]. It was carried out in two parts: study A and study B
(fig. 9.1). Study A was an independent cross-sectional study focusing
on school-age children and adults from whom urine samples were
collected and analysed by the Schistoscope, conventional microscopy,
real-time PCR and UCP-LF CAA (see details below). Study B was
partly embedded in several ongoing studies at Centre de Recherches
Médicales de Lambaréné (CERMEL) in Gabon, where urine samples were
collected from different populations (school-age children, adults and
pregnant women) and analysed with a range of diagnostic methods
including conventional microscopy, real-time PCR and UCP-LF CAA (see
details below). Microscopy slides were subsequently biobanked at 4°C
for retrospective analysis with the Schistoscope ( 2 years later). All
diagnostic procedures were conducted at CERMEL.



9.2. Methods

9

175

Figure 9.1: Comprehensive flow chart detailing the methodical sequence
of urine sample collection, processing by the Schistoscope,
conventional microscopy, real-time PCR and UCP-LF CAA and
data analysis.

9.2.3. SAMPLE SIZE CALCULATIONS
The Schistoscope was assumed to have a sensitivity and specificity non-
inferior to conventional microscopy, which were realistically assumed to
be 80% and 90%, respectively based on field expert estimates using
real-time PCR and UCP-LF CAA. The sample size for both study A and
B were determined based on a 30% prevalence of schistosomiasis in
Lambaréné and its surrounding areas using a two-sample matched
paired design, resulting in a required sample size of 350 urine samples
[23]. A power of 80% and a 5% degree of error was considered for the
calculations.

9.2.4. SAMPLE COLLECTION AND PROCESSING
Collection of urine samples in study A was carried out starting in 2023
while the urine sample biobanking (study B) was initiated in 2020.
Study participants were provided with sterile containers labelled with
unique identifiers and instructed to provide urine samples between 11
am and 2 pm. The samples were transported to CERMEL within 2 hours
of collection for analysis. Microscopy slides were prepared by pressing
10 mL of homogenised urine through a 25mm membrane (pore size
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30 µm; Whatmann International Ltd) with the use of a syringe and a
filter holder and transferred onto a glass slide. For study A, the slides
were examined on the same day using conventional microscopy and the
Schistoscope. For study B, the slides were examined using conventional
microscopy and stored at 4°C for about 2 years awaiting analysis with
the Schistoscope. For both studies, 1 mL of urine from each sample
was used for UCP-LF CAA analysis and 10 mL of homogenised urine was
centrifuged and the resulting 1mL pellet was used for DNA extraction
and amplification before biobanking the sample slides for retrospective
analysis with the Schistoscope.

9.2.5. DIAGNOSTIC METHODS
THE SCHISTOSCOPE
Five Schistoscopes were used in this study (fig. 9.2A and video S1).
Analysis was done following the standard operating procedure (manual
S1) of the Schistoscope. Briefly, the slide was placed on the slide holder
of the Schistoscope such that its microscope objective aligned with the
filter membrane of the slide. The device’s autofocus algorithm positioned
the microscope objective in the optimal focal plane. High resolution
images of the sample were registered and analysed simultaneously by
the integrated AI algorithm. The number of detected eggs (expressed in
eggs/10 mL of urine) is displayed on a pop-up result window which also
indicated the end of the sample analysis. Detected eggs are marked
as shown in fig. 9.2B and C. The results from the Schistoscope were
exported as an Excel-compatible file.

Figure 9.2: (a) Five Schistoscopes connected to a single display and
in use for slide analysis by a laboratory technician. (b)
Schistoscope display of result window after slide analysis is
completed. (c) Schistoscope image showing some of the
overlapping eggs counted as a single egg by the AI algorithm.

CONVENTIONAL MICROSCOPY
Slides from both studies were analysed immediately after urine filtration
under 10x objective of a Leica microscope (model: DM1000 LED,
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Microsystems CMS GmbH Ernt-Leitz-Str.17-37 Wetzlar, Germany). Each
slide was examined by two independent microscopists and the mean
egg count was calculated. In case of a >20% discrepancy in egg count,
an additional reading by a third independent microscopist was required
and the final egg count was determined by calculating the mean of
the two closest egg counts obtained from the three readings. All egg
counts were expressed as eggs/10 mL of urine. In addition, the storage
conditions (4°C) and quality of the biobanked slides were monitored
using conventional microscopy once every four months during the
storage period. This was done by monitoring daily temperature of
the fridge as well as by determining the egg counts of three known
slides. Additionally, during the Schistoscope analysis the integrity of the
biobank was quality controlled by re-examining a random selection of
10% of the slides by conventional microscopy and comparing the results
to the outcomes before storage.

NUCLEIC ACID EXTRACTION AND REAL-TIME PCR
Genomic DNA extraction was carried out using the QIAamp Mini kit (cat:
51306; Qiagen) according to the manufacturer’s instructions. Briefly,
195µL of each centrifuged urine pellet was mixed with 5µL of internal
control DNA commercially available as a DNA Extraction Control (DEC)
670 kit (Cat: BIO-35028; Bioline). The DEC 670 kit is supplied as a vial of
internal control DNA sequence (with no known homology to sequences
of any organism) and a vial of control mix containing primers and probes
complementary to the internal control DNA sequence. The final mixture
was then processed as previously described [8].

Real-time PCR was performed as previously described [8, 24] using a
set of primers (Ssp48F and Ssp124R) and probe (Ssp78T) complementary
to the 77-bp internal transcribed spacer-2 (ITS2) sequence, with minor
modifications on the internal control (see above) as well as on the
reaction mixture and conditions used (see below).

Amplification reactions were performed in a 15µL reaction mixture
containing 1x No-ROX master mix (Cat: BIO-86005; Bioline), 4.5pmol of
each Schistosoma-specific primer, 1.5pmol Schistosoma-specific probe,
0.4µL of control mix, 1.2µL of nuclease free water and 2.5µL DNA
extract. The PCR runs consisted of an initial step of 5 min at 95°C
followed by 40 successive cycles of 10 sec at 95°C and 60 sec at 60°C.
The reaction was run on a Light cycler 480 II real-time PCR system
(Roche Diagnostics). Schistosoma DNA detection was expressed in
threshold (Ct) cycles. For every run, a non-template control and a
positive control (S. haematobium DNA, Ct-value 23–25) was included. A
test was considered positive when the threshold was attained within 40
PCR cycles (Ct-value ≤ 40). Each sample was run in duplicate and was
considered positive when at least one of the duplicates was positive.
Amplification of the internal control at the expected Ct-value showed
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success of nucleic acid extraction and no evidence of PCR inhibitors.

UCP-LF CAA
Urine CAA concentration was determined by the UCP-LF CAA assay
using the UCAAhT417 format as previously described [7]. Briefly, 500µL
of each urine sample was mixed with 100µL of 12% trichloroacetic
acid, incubated and centrifuged. The clear supernatant obtained was
concentrated to 20µL using an Amicon Ultra-4 concentration column
(Millipore, Merck Chemicals B.V., Amsterdam, The Netherlands) and
subsequently mixed with 50µL run buffer and added to 50 µL UCP
solution. The resulting mixture was then used for the lateral flow assay.
A set of CAA standards was used to validate the cut-off (2 pg/mL) as
well as to reliably quantify the amount of CAA per sample up to 1000
pg/mL [7].

9.2.6. STATISTICAL ANALYSES
In study A, only samples with all four diagnostic test results available
were included in the final analysis. For study B, samples with both
the Schistoscope and conventional microscopy test results only were
first analysed (B1). Additionally, a subset of samples (B2) which
had outcomes of all four diagnostic tests was analysed separately
(fig. 9.1). The percentage positive samples for a Schistosoma infection
was determined for each diagnostic test. The sensitivity and specificity
of the Schistoscope were assessed using conventional microscopy as
the reference (study A, B1 and B2). Sensitivity and specificity of
the Schistoscope and conventional microscopy were further evaluated
using a combination of real-time PCR and/or UCP-LF CAA as a CRS
(study A and B2). A sample was deemed positive by the CRS if it
showed the presence of Schistosoma spp DNA and/or CAA. Conversely,
a sample was considered negative if both diagnostic tests showed a
negative outcome. A ≤ 10% difference in sensitivity and specificity
between the Schistoscope and conventional microscopy based on the
CRS was considered non-inferior. To determine the performance of
the Schistoscope at different infection intensities, egg counts based
on conventional microscopy were categorised into very low intensity
infection (1–9 eggs/10 mL), low-intensity infection (10–49 eggs/10 mL)
and high-intensity infection (≥ 50 eggs/10 mL) [25, 26]. Cohen’s
Kappa (k) statistics was computed to assess the qualitative agreement
between the Schistoscope and conventional microscopy, and the CRS.
Spearman’s correlation (r) was used to assess the strength of association
between the Schistoscope and conventional microscopy, real-time PCR
and UCP-LF CAA. Bland-Altman analysis was further used to assess
the quantitative agreement between the Schistoscope and conventional
microscopy. Wilcoxon sign rank test was used to compare the microscopy
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egg count of the randomly selected banked slides before and after
storage. Statistical analysis was performed using IBM Statistical Package
for Social Sciences version 25 (SPSS Inc., Chicago, United States of
America) and GraphPad Prism version 9.0.1 for Windows (GraphPad
Software, San Diego, California USA, www.graphpad.com).

9.3. RESULTS
9.3.1. STUDY A: DIAGNOSTIC PERFORMANCE OF THE SCHISTOSCOPE

ON FRESHLY PREPARED SAMPLES
A total of 339 samples had outcomes available for all four diagnostic
tests and were included in the analysis. table 9.1 shows the proportion
of positive results per diagnostic test. Real-time PCR found the highest
proportion of positives (51.0%) followed by the UCP-LF CAA assay
(46.6%). The proportion of positives detected by the Schistoscope
(46.0%) was higher than that of conventional microscopy (38.3%). The
median egg count of the Schistoscope (17 eggs/10mL) was lower than
that of microscopy (31 eggs/10mL). The proportion of positives with
egg count ≥ 50 eggs/10 mL by the Schistoscope and microscopy were
comparable, 47 (30.1%) and 49 (37.7%), respectively (fig. S1A).

Table 9.1: Diagnostic outcomes of the Schistoscope in comparison to
conventional microscopy, real-time PCR and UCP-LF CAA in
study A and B.

Diagnostic
test Study A (N = 339) Study B1

(N = 798) Study B2 (N = 349)

Schisto-
scope

Micro-
scopy

Real-
time
PCR

UCP-
LF

CAA

Schisto-
scope

Micro-
scopy

Schisto-
scope

Micro-
scopy

Real-
time
PCR

UCP-
LF

CAA
Positive
(%)

156
(46.0%)

130
(38.3%)

173
(51.0%)

158
(46.6%)

374
(46.9%)

307
(38.5%)

204
(58.5%)

190
(54.4%)

217
(62.2%)

225
(64.5%)

Range
1–1623
eggs/
10mL

1–2516
eggs/
10mL

20.2–
37.0
Ct

2.6–
1000.0

pg/
mL

1–2879
eggs/
10mL

1–9350
eggs/
10mL

1–1943
eggs/
10mL

1–9350
eggs/
10mL

19.1-
38.7
Ct

2.1-
1000.0
pg/mL

Median of
the
positives

17
eggs/
10mL

31
eggs/
10mL

29.0
Ct

65.0
pg/
mL

17
eggs/
10mL

105
eggs/
10mL

32
eggs/
10mL

209
eggs/
10mL

26.6
Ct

189.6
pg/mL

Mean of
the
positives

78
eggs/
10mL

119
eggs/
10mL

29.7
Ct

134.0
pg/
mL

136
eggs/
10mL

464
eggs/
10mL

160
eggs/
10mL

565
eggs/
10mL

27.8
Ct

310.5
pg/mL

Qualitatively, a moderate agreement between the Schistoscope and
conventional microscopy was observed (K = 0.579, P<0.001). However,
the agreement was only fair when compared to the CRS (K = 0.396,
P<0.001) whereas a moderate agreement was observed between
conventional microscopy and the CRS (K = 0.537, P<0.001) (table 9.2).
The sensitivity and specificity of the Schistoscope were 83.1% and 77.0%,
respectively, when conventional microscopy was used as reference.
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In addition, when the Schistoscope and conventional microscopy were
evaluated using the CRS, the sensitivity of the Schistoscope was 62.9%
comparable to that of conventional microscopy, 61.9%. However, the
specificity of the Schistoscope was significantly lower compared to the
specificity of conventional microscopy. All samples with an egg count
of geq50 eggs/10mL defined by conventional microscopy were detected
by the Schistoscope (fig. S1A). Of the microscopy positive samples
with 1–9 eggs/10mL and 10–49 eggs/10mL, the Schistoscope detected
52.6% and 90.7% respectively. Conversely, the Schistoscope found 48
additional cases (of which 40 had <50 eggs/10mL) which were not
detected by conventional microscopy. Of these additional cases, 35.4%
and 27.1% were confirmed by real-time PCR and the UCP-LF CAA assay,
respectively.

Table 9.2: Diagnostic performance and pairwise level of agreement
by Cohen’s Kappa statistics between the Schistoscope and
conventional microscopy and the composite reference for the
detection of S. haematobium infection in study A and B.

Sample
set

Diagnostic
test Reference test

Diagnostic
test

Sensitivity
% (95% CI)

Diagnostic
test

Specificity
% (95% CI)

Kappa P
value

Interpretation
*

Study A
(N=339)

Microscopy

Schistoscope Positive Negative 83.1
(75.5-89.1)

77.0
(70.7-82.5) 0.579 <0.001 Moderate

Positive 108 48
Negative 22 161

Composite reference

Schistoscope Positive Negative 62.9
(55.8-69.6)

78.8
(71.0-85.3) 0.396 <0.001 Fair

Positive 127 29
Negative 75 108

Composite reference

Schistoscope Positive Negative 61.9
(54.8-68.6)

96.4
(91.7-98.8) 0.537 <0.001 Moderate

Positive 125 5
Negative 77 132

Study
B1
(N=798)

Microscopy

Schistoscope Positive Negative 93.2
(89.7-95.7)

82.1
(78.4-85.4) 0.723 <0.001 Substantial

Positive 286 88
Negative 21 403

Study
B2
(N=349)

Microscopy

Schistoscope Positive Negative 96.3
(92.6-98.5)

86.8
(80.5-91.6) 0.837 <0.001 Almost

perfect
Positive 183 21
Negative 7 138

Composite reference

Schistoscope Positive Negative 78.0
(72.3-83.0)

90.9
(83.4-95.8) 0.604 <0.001 Moderate

Positive 195 9
Negative 55 90

Composite reference

Schistoscope Positive Negative 75.2
(69.4-80.4)

98.0
(93.0-99.8) 0.619 <0.001 Substantial

Positive 188 2
Negative 62 97
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A strong correlation was observed between egg counts estimated by
the Schistoscope and conventional microscopy (r = 0.71, P<0.0001)
(fig. 9.3A). A moderate correlation was observed between the Schisto-
scope egg counts and real-time PCR Ct-value (r = -0.58, P<0.0001),
and CAA concentration (r = 0.58, P<0.0001) (fig. 9.3B and C, respec-
tively). Bland-Altman analysis revealed that the Schistoscope tended
to underscore egg counts compared to conventional microscopy, but
approximately 95% of the difference in the egg count estimates between
both methods fell within the limit of agreement (fig. 9.4A).

Figure 9.3: Correlation between S. haematobium egg counts measured
by the Schistoscope and S. haematobium egg counts mea-
sured by conventional microscopy (a, d, e), Ct-values
determined by real-time PCR (b, f) and urine CAA concentra-
tion measured by UCP-LF CAA (c, g) in study A and B.

9.3.2. STUDY B: DIAGNOSTIC PERFORMANCE OF THE SCHISTOSCOPE
ON BANKED SAMPLES

A total of 798 samples, for which both Schistoscope and conventional
microscopy results were available, were included in the analysis (Study
B1). Quality control of the biobank revealed no significant difference
in microscopy egg count before and after storage which confirmed the
integrity of the biobank. The percentage of positive cases detected by
the Schistoscope (46.9%) was higher than by conventional microscopy



9

182 9. Gabon Field Validation Study

Figure 9.4: Bland-Altman analysis demonstrating the quantitative agree-
ment between the Schistoscope and conventional microscopy
in study A (a) and B (b, c).

(38.5%). The proportion of positives with an egg count of ≥ 50
eggs/10 mL was substantially lower by the Schistoscope (32.6%) than
by conventional microscopy (59.3%) (fig. S1B and C).

A subset of 349 samples had test results available from all four
diagnostic tests and were further analysed (Study B2). Based on
real-time PCR and UCP-LF CAA a high percentage positive was observed,
62.2% and 64.5%, respectively. The percentage of positive cases
detected by the Schistoscope and conventional microscopy were similar,
58.5% and 54.4% respectively, with a significantly different median egg
count (table 9.1). All samples with high infection intensity were detected
by the Schistoscope (fig. S1C). In addition, the Schistoscope detected
76.5% and 93.0% of samples with microscopy egg count 1–9 eggs/10mL
and 10–49 eggs/10mL respectively. On the contrary, the Schistoscope
found 21 additional cases with low infection intensity not detected by
conventional microscopy. Of the 21 cases, 57.6% and 38.1% were
confirmed by real-time PCR and UCP-LF CAA assay respectively.

A substantial to almost perfect qualitative agreement between the
Schistoscope and conventional microscopy was observed in study
B1 and B2 respectively (table 9.2). The agreement between the
Schistoscope and the CRS was similar to the agreement between
conventional microscopy and the CRS. The sensitivities and specificities
of the Schistoscope in study B1 and B2 when conventional microscopy
was used as a reference were comparable. Furthermore, a comparable
sensitivity and specificity between the Schistoscope and conventional
microscopy was observed when evaluating both methods against the
CRS.

A very strong correlation between the egg counts of the Schistoscope
and conventional microscopy was observed in study B1 (r = 0.87;
P<0.0001, fig. 9.3D) and study B2 (r = 0.93, P<0.0001, fig. 9.3E).
In study B2, a lower though significant correlation was observed
between the Schistoscope egg counts and PCR Ct-values (r = -0.82,
P<0.0001) and CAA concentration (r = 0.78, P<0.0001) (fig. 9.3F and
G). Bland-Altman analysis further demonstrated a strong quantitative
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agreement between the Schistoscope and conventional microscopy in
both study B1 and B2 (fig. 9.4B and C) with a trend in the Schistoscope
underestimating egg count.

9.4. DISCUSSION
For the first time, we demonstrate the sensitivity and specificity of
the Schistoscope with an onboard integrated AI on fresh (study A) and
stored (study B) sample sets in comparison to conventional microscopy
as well as to a more sensitive CRS consisting of real-time PCR and
UCP-LF CAA. Five Schistoscopes were successfully transported and
implemented in the parasitology laboratory of CERMEL, a reference
laboratory setting within a rural part of Gabon, which is a region endemic
for S. haematobium. All other diagnostic tests were also performed at
CERMEL. Overall, the performance of the Schistoscope was non-inferior
to conventional microscopy with a comparable sensitivity and a slightly
lower specificity. The Schistoscope is a promising tool for urogenital
schistosomiasis screening in endemic settings and offers the advantage
of data connectivity and the possibility of task shifting [27–29].

Qualitatively, a moderate to almost perfect agreement between the
Schistoscope and conventional microscopy was found while a fair to
moderate agreement was observed when compared to the CRS. This
lower agreement can mainly be attributed to the fact that the two
additional diagnostic tests included in the CRS (PCR and CAA) are
more accurate, especially at low infection intensities, and these tend
to be missed by the Schistoscope and/or conventional microscopy.
The sensitivity of the Schistoscope was found to be non-inferior to
conventional microscopy in both study A and B2. The specificity
of the Schistoscope was however inferior to conventional microscopy
in study A, but comparable in study B2. This is thought to be a
consequence of the presence of relatively more artifacts in the freshly
prepared slides (study A) compared to stored slides (study B), which
the AI algorithm could not differentiate from eggs. Secondly, although
samples in study A and B were obtained from the same geographical
area in Gabon (Lambaréné and its surrounding villages), they were
collected at different time points ( 2 years apart) as well as from
different populations, i.e. community-based in study A versus specific
populations including pregnant women in study B. Differences in urine
composition due to differential seasonal concomitant bacterial infections
was assumed to explain increase in egg-like crystals formation in urine
that interfered with AI detection. Manual re-analysis of the images of a
selection of samples that were positive by the Schistoscope but negative
by conventional microscopy, revealed that indeed crystals were present
in these slides, which the AI incorrectly identified as eggs (fig. S3).

Although the sensitivity of the Schistoscope in study A (83.1%) was
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comparable to previously reported results from a field setting in Nigeria
(87.3%) [12], the observed specificity was significantly higher (77.0%
compared to 48.9% in Nigeria) as well as the correlation between egg
counts by the Schistoscope and conventional microscopy, indicating the
successful re-designing and re-training of the AI algorithm [21]. The
slightly lower correlation observed between the Schistoscope egg count
and real-time PCR Ct-values or CAA concentration could be because
of the differences in diagnostic target; eggs, egg-DNA and circulating
antigen, respectively. The correlation between conventional microscopy
and real-time PCR or UCP-LF CAA resulted in a similar observation (fig.
S2). The correlation observed between egg counts by conventional
microscopy and Ct-values is comparable to previous findings [30].
Furthermore, although a better correlation would be expected between
egg counts and Ct-values (egg-DNA), considering that they are both
egg-based detection methods, it is important to note that, an egg does
not have a fixed target DNA copy number. This variation is influenced
by the egg developmental stage, which could account for the broad
spectrum of Ct-values observed across varying infection intensities or
egg count [31].

In study B overall, over 50% of the samples had only results for
microscopy and the Schistoscope and rather than discarding this number
of samples from our data set, it was analysed separately as B1. For both
studies, all cases with high infection intensity based on conventional
microscopy, known to correlate strongly with morbidity of the disease
[32], were detected by the Schistoscope. Following Bland-Altman’s
analysis, a constant but clinically fair bias (absolute error) between
Schistoscope and conventional microscopy egg counts was observed in
both the fresh and stored sample sets, suggesting that the Schistoscope
is slightly underestimating egg counts at a constant rate. This could be
explained by the fact that with increasing infection intensity, eggs tend
to overlap which could not be accurately counted by the AI algorithm
(fig. 9.2C), as also observed previously [12]. Furthermore, the AI
algorithm was designed and optimised for specificity at the expense of
sensitivity, i.e. it was programmed to refrain from detecting truncated
eggs located on boundaries of images so as to reduce the chances of
detecting artifacts as well as eggs with lower morphological attributes.
Such errors can be corrected by further optimisation of the AI algorithm
in order to quantify the number of eggs more accurately. Also, in both
the fresh and stored sample set, the majority of missed cases by the
Schistoscope had a very low intensity of infection based on conventional
microscopy (≤ 5 eggs/10mL), highlighting another area of focus for the
next generation of the Schistoscope.

Our results indicated a better sensitivity of the Schistoscope on
banked sample slides compared to fresh samples. This could be due
to the difference in the infection intensity observed in the two studies.
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The median egg count, based on conventional microscopy, was lower in
the fresh samples compared to the banked samples, which implies that
the Schistoscope performs better on samples with a higher infection
intensity, as also previously reported [12, 21]. Nevertheless, our results
demonstrate a good performance of the Schistoscope on banked sample
slides, indicating the possibility for retrospective analysis of banked
sample slides in settings lacking direct access to microscopists.

In study A, the sensitivity of conventional microscopy estimated
based on the CRS (62%) was lower than the sensitivity (80%) assumed
for power calculations, in contrast to study B where the sensitivity
(75.2%) observed was comparable. Retrospectively, the sample size
calculation was limited in that it did not take into account the proportion
of high-intensity infections but only incorporated prevalence, which
could have had a significant impact on the sensitivity of conventional
microscopy as it is known that the sensitivity of microscopy is limited
in case of low intensity infections [33]. Overall, the proportion of
high-intensity infections in study A was significantly lower compared
to study B, resulting in a lower sensitivity of conventional microscopy
as observed in study A. Despite the difference between the assumed
and obtained sensitivity of conventional microscopy, we still believe our
study had sufficient power to accurately determine the performance of
the Schistoscope. So far, the performance of the Schistoscope has been
evaluated in two endemic settings in urine samples producing promising
outcomes. There is need for more performance evaluation in diverse
schistosomiasis endemic settings (in urine and stool) with different
climatic conditions, such as the northern part of Sahel region. Also, a
cost effective analysis should be performed to support the integration of
such a tool in large scale control programmes.

Limitations of this study include the time it took to analyse a slide by
the Schistoscope, which on average was 25 mins. for samples with egg
counts ≥ 200 egg/10mL even more time was needed. Furthermore, in
this study a filter membrane of diameter 25mm was used (following the
standard protocol of CERMEL), which also increased the time of analysis
by 3-fold compared to the use of a 13mm filter membrane [12]. If a
smaller filter membrane is used and the Schistoscope is programmed
to stop counting when reaching 50 eggs/10mL–as this is classified as a
high infection intensity and in such cases a detailed egg count is often
not required [26]–the total reading time could be reduced to less than 10
mins. A tool as such would complement the existing POC-CCA urine test,
which has been recommended by the WHO for S. mansoni infections,
in settings co-endemic for S. haematobium. Although the Schistoscope
has been fully automated, the aesthetics are currently unsatisfactory
[20]. Furthermore, there is need to make the Schistoscope field-friendly
and compatible to very rural settings, including the addition of a power
source, improving the user interface and making it more compact and
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portable.
To conclude, in this study a follow-up assessment of the Schistoscope

was conducted in a rural laboratory setting in Gabon, further validating
its potential as a digital diagnostic tool for the identification and
quantification of S. haematobium eggs in freshly collected as well as
banked urine sample slides. Although the specificity of the Schistoscope
could still be improved, its overall performance was non-inferior
to conventional microscopy hence, a promising tool for urogenital
schistosomiasis screening in endemic settings.

SUPPORTING INFORMATION
CHECKLIST S1
STARD-2015-Checklist. https://doi.org/10.1371/journal.
pntd.0011967.s001 (DOCX)

fiG. S1
Agreement between the Schistoscope and microscopy per category of
infection intensity in study A and B. https://doi.org/10.1371/
journal.pntd.0011967.s002 (TIF)

fiG. S2
Correlation between S. haematobium egg counts measured by the
conventional microscopy and Ct-values determined by by real-time PCR
(a, c) and urine CAA concentration. https://doi.org/10.1371/
journal.pntd.0011967.s003 (TIF)

fiG. S3
Image showing crystal incorrectly detected as an egg by the
Schistoscope. https://doi.org/10.1371/journal.pntd.
0011967.s004 (TIF)

MANUAL S1
Schistoscope user manual. https://doi.org/10.1371/journal.
pntd.0011967.s005 (PDF)

VIDEO S1
Video showing the Schistoscopes running in the laboratory. https://
doi.org/10.1371/journal.pntd.0011967.s006 (MOV)
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RAW DATASET S1
Overall raw dataset containing data for Schistoscope validation on fresh
urine samples (study A), Banked slides (study B) and quality control of
banked slides. https://doi.org/10.1371/journal.pntd.
0011967.s007 (XLSX)

ACKNOWLEDGMENTS
We extend our appreciation to Mermoz Ndong-Essone Ondong, Danny
Carrel Manfoumbi Mabicka, Moutsinga Dalia Coralline ep Lehoumbou,
Elsy Myrna N’noh Dansou, Marguerite Nzame Ngome, and the coordina-
tion team, along with all the members of Immuno-Epi research group of
CERMEL. We thank Bertrand Lell for IT support in the field. Our gratitude
also goes to Jean-Aimé Massande Ndzokou’s and the CERMEL field team
for their valuable contributions to the advancement of this project.

https://doi.org/10.1371/journal.pntd.0011967.s007
https://doi.org/10.1371/journal.pntd.0011967.s007




REFERENCES
[1] A. F. Adenowo, B. E. Oyinloye, B. I. Ogunyinka, and A. P. Kappo.

“Impact of human schistosomiasis in sub-Saharan Africa”. In:
Brazilian Journal of Infectious Diseases 19.2 (2015), pp. 196–205.
doi: j.bjid.2014.11.004.

[2] World Health Organization. “Schistosomiasis and soil-transmitted
helminthiases: progress report, 2021”. In: Weekly Epidemiological
Record 97.48 (2022), pp. 621–632. url: https://www.who.
int/publications/i/item/who-wer9748-621-
632.

[3] World Health Organisation. Schistosomiasis. 2024. url: https:
//www.who.int/news-room/fact-sheets/detail/
schistosomiasis (visited on 09/26/2024).

[4] World Health Organization. WHO guideline on control and
elimination of human schistosomiasis. World Health Organization,
2022. isbn: 9789240041608. url: https://iris.who.int/
handle/10665/351856.

[5] World Health Organisation. Strengthening diagnostic capac-
ity. 2023. url: https://www.eliminateschisto.org/
news-events/news/world-health-assembly-resolution-
on-strengthening-diagnostics-capacity (visited
on 07/17/2023).

[6] World Health Organization. Public consultation: Target Prod-
uct Profiles for diagnostic tests to meet Schistosomiasis
and soil-transmitted Helminth programme needs. 2021. url:
https://www.who.int/news-room/articles-
detail/public-consultation-target-product-
profiles-for-diagnostic-tests-to-meet-schistosomiasis-
and-soil-transmitted-helminth- programme-
needs (visited on 03/17/2022).

[7] P. L. A. M. Corstjens, C. J. de Dood, S. Knopp, M. N. Clements,
G. Ortu, I. Umulisa, E. Ruberanziza, U. Wittmann, T. Kariuki,
P. LoVerde, W. E. Secor, L. Atkins, S. Kinung’hi, S. Binder,
C. H. Campbell Jr., D. G. Colley, and G. J. van Dam. “Circulating
Anodic Antigen (CAA): a highly sensitive diagnostic biomarker
to detect active Schistosoma infections—improvement and
use during SCORE”. In: The American Journal of Tropical

189

https://doi.org/j.bjid.2014.11.004
https://www.who.int/publications/i/item/who-wer9748-621-632
https://www.who.int/publications/i/item/who-wer9748-621-632
https://www.who.int/publications/i/item/who-wer9748-621-632
https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
https://iris.who.int/handle/10665/351856
https://iris.who.int/handle/10665/351856
https://www.eliminateschisto.org/news-events/news/world-health-assembly-resolution-on-strengthening-diagnostics-capacity
https://www.eliminateschisto.org/news-events/news/world-health-assembly-resolution-on-strengthening-diagnostics-capacity
https://www.eliminateschisto.org/news-events/news/world-health-assembly-resolution-on-strengthening-diagnostics-capacity
https://www.who.int/news-room/articles-detail/public-consultation-target-product-profiles-for-diagnostic-tests-to-meet-schistosomiasis-and-soil-transmitted-helminth-programme-needs
https://www.who.int/news-room/articles-detail/public-consultation-target-product-profiles-for-diagnostic-tests-to-meet-schistosomiasis-and-soil-transmitted-helminth-programme-needs
https://www.who.int/news-room/articles-detail/public-consultation-target-product-profiles-for-diagnostic-tests-to-meet-schistosomiasis-and-soil-transmitted-helminth-programme-needs
https://www.who.int/news-room/articles-detail/public-consultation-target-product-profiles-for-diagnostic-tests-to-meet-schistosomiasis-and-soil-transmitted-helminth-programme-needs
https://www.who.int/news-room/articles-detail/public-consultation-target-product-profiles-for-diagnostic-tests-to-meet-schistosomiasis-and-soil-transmitted-helminth-programme-needs


9

190 references

Medicine and Hygiene 103.1 Suppl (2020), pp. 50–57. doi:
10.4269/ajtmh.19-0819.

[8] B. B. Obeng, Y. A. Aryeetey, C. J. de Dood, A. S. Amoah, I. A. Larbi,
A. M. Deelder, M. Yazdanbakhsh, F. C. Hartgers, D. A. Boakye,
J. J. Verweij, G. J. van Dam, and L. van Lieshout. “Application of
a circulating-cathodic-antigen (CCA) strip test and real-time PCR,
in comparison with microscopy, for the detection of Schistosoma
haematobium in urine samples from Ghana”. In: Annals of
Tropical Medicine and Parasitology 102.7 (2008), pp. 625–633.
doi: 10.1179/136485908X337490.

[9] P. Ward, P. Dahlberg, O. Lagatie, J. Larsson, A. Tynong, J. Vlaminck,
M. Zumpe, S. Ame, M. Ayana, V. Khieu, Z. Mekonnen, M. Odiere,
T. Yohannes, S. V. Hoecke, B. Levecke, and L. J. Stuyver.
“Affordable artificial intelligence-based digital pathology for
neglected tropical diseases: A proof-of-concept for the detection
of soil-transmitted helminths and Schistosoma mansoni eggs
in Kato-Katz stool thick smears”. In: PLoS neglected tropical
diseases 16.6 (2022), e0010500. doi: 10.1371/journal.
pntd.0010500.

[10] J. T. Coulibaly, K. D. Silue, M. Armstrong, M. Díaz de León Derby,
M. V. D’Ambrosio, D. A. Fletcher, J. Keiser, K. Fisher, J. R.
Andrews, and I. I. Bogoch. “High Sensitivity of Mobile Phone
Microscopy Screening for Schistosoma haematobium in Azaguié,
Côte d’Ivoire”. In: The American Journal of Tropical Medicine
and Hygiene 108.1 (2023), p. 41. doi: 10.4269/ajtmh.22-
0527.

[11] B. Meulah, M. Bengtson, L. Van Lieshout, C. H. Hokke, A.
Kreidenweiss, J. C. Diehl, A. A. Adegnika, and T. E. Agbana.
“A Review on Innovative Optical Devices for the Diagnosis
of Human Soil-Transmitted Helminthiasis and Schistosomiasis:
From Research and Development to Commercialization”. In:
Parasitology 150.2 (2023), pp. 137–149. doi: 10.1017/
S0031182022001664.

[12] B. Meulah, P. Oyibo, M. Bengtson, T. Agbana, R. A. L. Lontchi, A. A.
Adegnika, W. Oyibo, C. H. Hokke, J. C. Diehl, and L. v. Lieshout.
“Performance Evaluation of the Schistoscope 5.0 for (Semi-
)automated Digital Detection and Quantification of Schistosoma
haematobium Eggs in Urine: A Field-based Study in Nigeria”. In:
The American Journal of Tropical Medicine and Hygiene 107.5
(2022). doi: 10.4269/ajtmh.22-0276.

[13] S. Agrebi and A. Larbi. “Use of artificial intelligence in infectious
diseases”. In: Artificial Intelligence in Precision Health. Academic
Press, 2020, pp. 415–438. isbn: 978-0-12-817133-2. doi: 10.
1016/B978-0-12-817133-2.00018-5.

https://doi.org/10.4269/ajtmh.19-0819
https://doi.org/10.1179/136485908X337490
https://doi.org/10.1371/journal.pntd.0010500
https://doi.org/10.1371/journal.pntd.0010500
https://doi.org/10.4269/ajtmh.22-0527
https://doi.org/10.4269/ajtmh.22-0527
https://doi.org/10.1017/S0031182022001664
https://doi.org/10.1017/S0031182022001664
https://doi.org/10.4269/ajtmh.22-0276
https://doi.org/10.1016/B978-0-12-817133-2.00018-5
https://doi.org/10.1016/B978-0-12-817133-2.00018-5


references

9

191

[14] J. S. Brownstein, B. Rader, C. M. Astley, and H. Tian. “Advances in
Artificial Intelligence for infectious-disease surveillance”. In: New
England Journal of Medicine 388.17 (2023), pp. 1597–1607. doi:
10.1056/NEJMra2107472.

[15] S. Shenoy, A. K. Rajan, M. Rashid, V. P. Chandran, P. G. Poojari,
V. Kunhikatta, D. Acharya, S. Nair, M. Varma, and G. Thunga.
“Artificial intelligence in differentiating tropical infections: A
step ahead”. In: PLoS Neglected Tropical Diseases 16.6 (2022),
e0010455. doi: 10.1371/journal.pntd.0010455.

[16] I. Prieto-Egido, A. González-Escalada, V. García-Giganto, and A.
Martínez-Fernández. “Design of New Procedures for Diagnosing
Prevalent Diseases Using a Low-Cost Telemicroscopy System”.
In: Telemedicine Journal and e-Health 22.11 (2016), pp. 952–959.
doi: 10.1089/tmj.2015.0239.

[17] E. Dacal, D. Bermejo-Peláez, L. Lin, E. Álamo, D. Cuadrado, Á.
Martínez, A. Mousa, M. Postigo, A. Soto, E. Sukosd, A. Vladimirov,
C. Mwandawiro, P. Gichuki, N. A. Williams, J. Muñoz, S. Kepha, and
M. Luengo-Oroz. “Mobile microscopy and telemedicine platform
assisted by deep learning for the quantification of Trichuris
trichiura infection”. In: PLoS neglected tropical diseases 15.9
(2021). doi: 10.1371/journal.pntd.0009677.

[18] A. Onasanya, M. Bengtson, L. de Goeje, J. Van Engelen, J. C.
Diehl, and L. van Lieshout. “Developing inclusive digital health
diagnostic for schistosomiasis: a need for guidance via target
product profiles”. In: Frontiers in Parasitology 2 (2023). doi:
10.3389/fpara.2023.1255848.

[19] P. Oyibo, S. Jujjavarapu, B. Meulah, T. Agbana, I. Braakman, A.
van Diepen, M. Bengtson, L. van Lieshout, W. Oyibo, G. Vdovine,
and J. C. Diehl. “Schistoscope: An Automated Microscope with
Artificial Intelligence for Detection of Schistosoma haematobium
Eggs in Resource-Limited Settings”. In: Micromachines 13.5
(2022), p. 643. doi: 10.3390/mi13050643.

[20] M. Bengtson, A. Onasanya, P. Oyibo, B. Meulah, K. T. Samenjo,
I. Braakman, W. Oyibo, and J. C. Diehl. “A usability study of
an innovative optical device for the diagnosis of schistosomiasis
in Nigeria”. In: 2022 IEEE Global Humanitarian Technology
Conference (GHTC). Santa Clara, CA, USA: IEEE, 2022, pp. 17–22.
doi: 10.1109/GHTC55712.2022.9911019.

[21] P. Oyibo, B. Meulah, M. Bengtson, L. van Lieshout, W. Oyibo,
J. C. Diehl, G. Vdovine, and T. Agbana. “Two-stage automated
diagnosis framework for urogenital schistosomiasis in microscopy
images from low-resource settings”. In: Journal of Medical Imaging

https://doi.org/10.1056/NEJMra2107472
https://doi.org/10.1371/journal.pntd.0010455
https://doi.org/10.1089/tmj.2015.0239
https://doi.org/10.1371/journal.pntd.0009677
https://doi.org/10.3389/fpara.2023.1255848
https://doi.org/10.3390/mi13050643
https://doi.org/10.1109/GHTC55712.2022.9911019


9

192 references

10.4 (2023), pp. 044005–044005. doi: 10.1117/1.JMI.10.
4.044005.

[22] J. C. Dejon-Agobé, Y. J. Honkpehedji, J. F. Zinsou, J. R. Edoa,
B. R. Adégbitè, A. Mangaboula, S. T. Agnandji, G. Mombo-Ngoma,
M. Ramharter, P. G. Kremsner, B. Lell, M. P. Grobusch, and A. A.
Adegnika. “Epidemiology of schistosomiasis and soil-transmitted
helminth coinfections among schoolchildren living in Lambaréné,
Gabon”. In: The American Journal of Tropical Medicine and
Hygiene 103.1 (2020), p. 325. doi: 10.4269/ajtmh.19-
0835.

[23] D. Machin, M. J. Campbell, S. B. Tan, and S. H. Tan. Sample size
tables for clinical studies. 3rd. John Wiley Sons, 2011. isbn:
9781444357967.

[24] H. M. Kenguele, A. A. Adegnika, A. M. Nkoma, U. Ateba-Ngoa,
M. Mbong, J. Zinsou, B. Lell, and J. J. Verweij. “Impact of
short-time urine freezing on the sensitivity of an established
Schistosoma real-time PCR assay”. In: American Journal of
Tropical Medicine and Hygiene 90.6 (2014), pp. 1153–1155. doi:
10.4269/ajtmh.14-0005.

[25] R. E. Wiegand, W. E. Secor, F. M. Fleming, M. D. French, C. H. King,
A. K. Deol, S. P. Montgomery, D. Evans, J. Utzinger, P. Vounatsou,
and S. J. de Vlas. “Associations between infection intensity
categories and morbidity prevalence in school-age children
are much stronger for Schistosoma haematobium than for S.
mansoni”. In: PLoS Neglected Tropical Diseases 15.5 (2021),
e0009444. doi: 10.1371/journal.pntd.0009444.

[26] World Health Organization. Prevention and control of schistoso-
miasis and soil-transmitted helminthiasis: report of a WHO expert
committee. World Health Organization, 2002. isbn: 9241209127.
url: https://iris.who.int/handle/10665/42588.

[27] B. Tilahun, K. D. Gashu, Z. A. Mekonnen, B. F. Endehabtu, and
D. A. Angaw. “Mapping the role of digital health technologies
in the case detection, management, and treatment outcomes
of neglected tropical diseases: a scoping review”. In: Tropical
Medicine and Health 49 (2021), pp. 1–10. doi: 10.1186/
s41182-020-00285-7.

[28] U. K. Mustafa, K. S. Kreppel, J. Brinkel, and E. Sauli. “Digital
Technologies to Enhance Infectious Disease Surveillance in
Tanzania: A Scoping Review”. In: Healthcare 11.4 (2023), p. 470.
doi: 10.3390/healthcare11040470.

https://doi.org/10.1117/1.JMI.10.4.044005
https://doi.org/10.1117/1.JMI.10.4.044005
https://doi.org/10.4269/ajtmh.19-0835
https://doi.org/10.4269/ajtmh.19-0835
https://doi.org/10.4269/ajtmh.14-0005
https://doi.org/10.1371/journal.pntd.0009444
https://iris.who.int/handle/10665/42588
https://doi.org/10.1186/s41182-020-00285-7
https://doi.org/10.1186/s41182-020-00285-7
https://doi.org/10.3390/healthcare11040470


references

9

193

[29] A. Onasanya, M. Bengtson, T. Agbana, O. Oladunni, J. van
Engelen, O. Oladepo, and J. C. Diehl. “Towards Inclusive
Diagnostics for Neglected Tropical Diseases: User Experience of
a New Digital Diagnostic Device in Low-Income Settings”. In:
Tropical Medicine and Infectious Disease 8.3 (2023), p. 176. doi:
10.3390/tropicalmed8030176.

[30] N. V. Vinkeles Melchers, G. J. van Dam, D. Shaproski, A. I. Kahama,
E. A. Brienen, B. J. Vennervald, and L. van Lieshout. “Diagnostic
performance of Schistosoma real-time PCR in urine samples
from Kenyan children infected with Schistosoma haematobium:
day-to-day variation and follow-up after praziquantel treatment”.
In: PLoS Neglected Tropical Diseases 8.4 (2014), e2807. doi:
10.1371/journal.pntd.0002807.

[31] D. Keller, J. Rothen, J.-P. Dangy, C. Saner, C. Daubenberger,
F. Allan, S. M. Ame, S. M. Ali, F. Kabole, J. Hattendorf, D.
Rollinson, R. Seyfarth, and S. Knopp. “Performance of a real-
time PCR approach for diagnosing Schistosoma haematobium
infections of different intensity in urine samples from Zanzibar”.
In: Infectious Diseases of Poverty 9.1 (Sept. 2020), p. 128. doi:
10.1186/s40249-020-00726-y.

[32] K. Kura, R. J. Hardwick, J. E. Truscott, J. Toor, T. D. Hollingsworth,
and R. M. Anderson. “The impact of mass drug administration on
Schistosoma haematobium infection: what is required to achieve
morbidity control and elimination?” In: Parasites & Vectors 13.1
(2020), pp. 1–10. doi: 10.1186/s13071-020-04329-y.

[33] P. T. Hoekstra, G. J. van Dam, and L. van Lieshout. “Context-
specific procedures for the diagnosis of human schistosomiasis
– a mini review”. In: Frontiers in Tropical Diseases 2 (2021),
p. 722438. doi: 10.3389/fitd.2021.722438.

https://doi.org/10.3390/tropicalmed8030176
https://doi.org/10.1371/journal.pntd.0002807
https://doi.org/10.1186/s40249-020-00726-y
https://doi.org/10.1186/s13071-020-04329-y
https://doi.org/10.3389/fitd.2021.722438




10
AUTOMATED STH AND S.

mansoni EGG DETECTION
Deep learning-based automated detection

and multiclass classification of
soil-transmitted helminths and Schistosoma

mansoni eggs in fecal smear images
Prosper Oyibo, Brice Meulah, Tope Agbana, Lisette van

Lieshout, Wellington Oyibo, Gleb Vdovin, Jan-Carel Diehl

PUBLICATION REPORT
• Publication Date: 1 July 2025

• Journal: Scientific Reports

• Publisher: Springer Nature

• DOI: 10.1038/s41598-025-02755-9

195

 https://doi.org/10.1038/s41598-025-02755-9


10

196 10. Automated STH and S. mansoni Egg Detection

ABSTRACT
In this work, we developed an automated system for the detection and
classification of soil-transmitted helminths (STH) and Schistosoma (S.)
mansoni eggs in microscopic images of fecal smears. We assembled
an STH and S. mansoni dataset comprising over 3,000 field-of-view
(FoV) images containing parasite eggs, extracted from more than
300 fecal smear prepared using the Kato-Katz technique. These
images were acquired using Schistoscope - a cost-effective automated
digital microscope. After annotating the STH and S. mansoni eggs,
we employed a transfer learning approach to train an EfficientDet
deep learning model, using 70% of the dataset for training, 20% for
validation, and 10% for testing. The developed model successfully
identified STH and S. mansoni eggs in the FoV images, achieving
weighted average scores of 95.9%(±1.1%) Precision, 92.1%(±3.5%)
Sensitivity, 98.0%(±0.76%) Specificity, and 94.0%(±1.98%) F-Score
across four classes of helminths (A. lumbricoides, T. trichiura, hookworm,
and S. mansoni). Our system highlights the potential of the Schistoscope,
enhanced with artificial intelligence, for detecting STH and S. mansoni
infections in remote, resource-limited settings and for supporting the
monitoring and evaluation of neglected tropical disease (NTD) control
programs.
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10.1. INTRODUCTION
Intestinal helminths are a group of parasitic worms that primarily reside
in the intestines of their hosts, including humans. These infections are
a significant public health concern, affecting a substantial portion of
the global population, particularly in low- and middle-income countries.
The most common intestinal helminth infections are caused by soil-
transmitted helminths (STH) such as roundworm (Ascaris lumbricoides),
whipworm (Trichuris trichiura), and hookworm (Necator americanus and
Ancylostoma duodenale) [1]. Also, intestinal schistosomiasis caused
primarily by Schistosoma (S.) mansoni, S. japonicum and S. intercalatum,
similarly affect the intestines[2]. Over 1.5 billion people, equating to
24% of the global population, are infected with STH infections [3]
while at least 251.4 million people required preventive treatment for
schistosomiasis in 2021[4]. Together, STH infections and schistosomiasis
account for over 5 million disability-adjusted life years annually [5]. The
highest incidences of STH infections and schistosomiasis are reported in
Sub-Saharan Africa, the Americas, China, and East Asia [6].

The WHO has published a roadmap for STH infections and schisto-
somiasis for the next decade (2020–2030), recognizing the importance
of diagnostics in stool samples to achieve elimination targets for these
diseases [7, 8]. Manual screening of a Kato-Katz (KK) thick stool smear
by expert microscopists remains the current standard for monitoring the
impact of large-scale deworming programs against STH infections and
intestinal schistosomiasis [9]. However, this method requires specialized
expertise that must be continually developed and maintained, posing
an economic challenge, particularly in remote rural communities [10].
There is also a risk of diagnostic errors and visual health complications
among microscopists due to excessive workloads resulting from the low
ratio of trained microscopists to samples for analysis in endemic regions
[11].

To address these diagnostic challenges, several low-cost automated
digital microscopy devices have been developed and validated for the
automated detection of STH infections and intestinal schistosomiasis
[12, 13]. Among these devices is the Schistoscope[14], developed
by our research group, which is capable of automatically focusing and
scanning regions of interest on prepared microscopy slides [15], as
well as performing edge artificial intelligence processing[16]. Validation
studies have shown it to be a promising and cost-effective tool for
the automatic detection of urogenital schistosomiasis in urine samples
collected in field settings [17, 18]. Preliminary results also indicate the
Schistoscope’s potential for analyzing fecal samples, demonstrated by a
human reader’s ability to accurately identify S. mansoni and hookworm
eggs on images of fecal smears captured using the device [14].

In this study, we aim to develop an artificial intelligence system that
can run effectively on the Schistoscope’s edge computing system for
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the fully automated detection of STH and S. mansoni eggs in KK smear
in low-resource settings. Specific contributions of this study include:

1. Development of a robust image dataset of KK smears with STH and
S. mansoni eggs, along with their annotated ground truth.

2. Development of a deep learning based STH and S. mansoni egg
detection system for low-resource settings.

10.2. RELATED WORK
Recent advancements in automating the detection of STH and S. mansoni
eggs in human fecal smears have leveraged artificial intelligence
techniques, with significant progress in accuracy and applicability. These
efforts can be broadly categorized into traditional machine learning
approaches, deep learning-based detection and segmentation, and
dataset-driven challenges, each contributing to the field while facing
distinct limitations.

Early work focused on traditional machine learning methods to identify
parasite eggs based on handcrafted features. For instance, Alva
et al. [19] employed a logistic regression model using geometric and
brightness features but struggled to differentiate parasites with similar
morphologies. Similarly, Khairudin et al. [20] explored k-NN, SVM,
and Ensemble classifiers, incorporating feature extraction techniques
like Hu’s invariant moments and Gray Level Co-occurrence Matrix
(GLCM). Caetano, Santana, and de Lima [21] advanced this direction by
optimizing an AdaBoost classifier with swarm intelligence for detecting
S. mansoni and other helminth eggs, though limited image datasets
constrained their accuracy. These studies highlight the potential of
traditional methods but underscore their reliance on robust feature
engineering and sufficient data, prompting a shift toward deep learning
for more generalized solutions.

Deep learning approaches, particularly convolutional neural networks
(CNNs) and object detection frameworks, have significantly improved
detection performance by learning complex patterns directly from
images. Viet, ThanhTuyen, and Hoang [22] and Oliveira et al. [23]
utilised Faster R-CNN to detect parasite eggs, achieving higher accuracy
than traditional methods, though small datasets limited generalization.
Huo et al. [24] and Naing et al. [25] adopted YOLO-based models
(YOLOv5 and YOLOv4-Tiny, respectively), demonstrating improved speed
and accuracy, particularly when high-magnification images captured
distinct features. Jaya Sundar Rajasekar et al. [26] further advanced
this trend, showing that YOLOv8 with an SGD optimizer outperformed
models like Detectron2 and InceptionV3. For real-time applications,
delas Peñas et al. [27] implemented a tiny YOLO framework, which
showed promise for rapid processing but lower accuracy for STH eggs
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compared to S. mansoni. Meanwhile, segmentation-focused studies,
such as Libouga et al. [28] with a modified U-Net and Lim et al.
[29] comparing VGG and ResNet to traditional fuzzy c-Mean clustering,
demonstrated deep learning’s superiority in delineating parasite eggs
from complex backgrounds.

Innovative pipelines combining detection and classification have also
emerged. Dacal et al. [30] proposed an SSD-MobileNet pipeline for
remote analysis of Trichuris trichiura eggs in KK samples, while Lee
et al. [31] integrated SSD, U-Net, and Faster R-CNN for comprehensive
egg identification and quantification. Lundin et al. [32] employed
sequential CNNs (YOLOv2 for detection and ResNet50 for classification)
to identify STH eggs by species, though their system overestimated
egg counts compared to manual microscopy, highlighting challenges in
calibration. Mobile and resource-constrained settings have also been
explored, with Yang et al. [33] developing Kankanet, an ANN-based
smartphone application, and Lin et al. [34] applying MobileNetV2 for egg
classification, both constrained by low-quality images or small datasets.

Despite these advancements, dataset limitations remain a critical
challenge across studies. Roder et al. [35] achieved promising results
with Deep Belief Networks on a small grayscale dataset, but scalability
was limited. Ward et al. [36] created a large dataset of 7,780 KK smear
images, yet uneven egg distribution (50% belonging to A. lumbricoides)
and reliance on high-infection-intensity slides risked biasing their model.
Acula et al. [37] and Nakasi, Aliija, and Nakatumba [38] also noted that
insufficiently robust datasets hampered CNN performance, even with
architectures like ResNet-50, AlexNet, and GoogleNet.

Collectively, these studies illustrate the field’s progress toward
accurate and scalable helminth egg detection while highlighting
persistent challenges in dataset quality, image resolution, and model
generalization. This work builds on these efforts by addressing dataset
robustness and enhancing model accuracy, with a focus on practical
deployment in low-resource settings where automated diagnostics are
most needed.

10.3. METHODOLOGY
10.3.1. STH AND S. mansoni DATASET
Image acquisition was performed during field studies carried out in the
Federal Capital Territory (FCT), Nigeria. Ethical approval for the research
was granted by the FCT Health Research Ethics Committee under
approval number FHREC/2022/01/102/05-07-22 and the research was
performed in accordance with the relevant guidelines and regulations.
The project was presented to the NTD Unit of the Public Health
Department, FCT Abuja, which then informed the local NTD officer in
the selected area councils. Following informed consent, fecal samples
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Figure 10.1: Field laboratory setup, equipped with 6 Schistoscope
devices.

were collected from school-age children in sterile 20 mL universal
containers. The fecal samples were processed using the standard
Kato–Katz technique with a 41.7 mg template [39]. To accelerate data
acquisition, we established a field lab equipped with 6 Schistoscope
devices (as shown in fig. 6.1) to image the processed slides.

The Schistoscope was configured with a 4X 0.10 NA objective. A total
of 300 sample slides prepared using the KK stool thick smears technique
were registered, resulting in 141,600 FoV images with a resolution
of 2028 x 1520 pixels. The images were screened and manually
annotated by expert microscopists, identifying 889 hookworm and 3,238
S. mansoni eggs present in 3,040 FoV images. To obtain a robust
dataset for the development of the deep learning model, we combined
our registered dataset with the dataset from Ward et al. [40], which
contains FoV images, from over 300 KK freshly prepared stool thick
smears, registered with a prototype slide scanner and annotated labels
containing 8,600 A. lumbricoides, 4,083 T. trichiura, 3,623 hookworm,
and 682 S. mansoni. The combined dataset consists of 10,820 FoV
(71.9% adopted from Ward et al. [40] and 28.1% registered by the
Schistoscope ) images with a total of 8,600 A. lumbricoides, 4,082 T.
trichiura, 4,512 hookworm, and 3,920 S. mansoni eggs as shown in
Table table 10.1. FoV images were randomly shuffled and split into three
datasets: a training set, a validation set, and a test set. We aimed for a
desired split ratio of 70:20:10 for both our created dataset and the Ward
et al. [40] dataset in the combined dataset as shown in Table table 10.2.
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Table 10.1: Number of Intestinal helminth eggs in the datasets.
Dataset Scanned

slides
FoV images Verified intestinal helminth eggs

Registered With eggs A.
lumbricoides

T.
trichiura

hookworm S.
mansoni

Total

Ward et al. [40] 272 1,386,186 7,780 8,600 4,083 3,623 682 16,990
Present work 300 141,600 3,040 0 0 889 3,238 4,127
Combined 572 1,527,786 10,820 8,600 4,083 4,512 3,920 21,117

Table 10.2: Train, validation and test dataset split.
Verified intestinal helminth eggs

Split set FoV images A.
lumbricoides

T.
trichiura

hookworm S.
mansoni

Total

Train
(70% target)

7,953
(69.4%, 30.6%)

6,071 2,839 3,226 3,070 15,205

Validation
(20% target)

1,808
(83.2%, 16.8%)

1,646 859 803 466 3,774

Test
(10% target)

1,059
(71.0%, 29.0%)

883 385 483 384 2,135

Total 10,820
(71.9%, 28.1%)

8,600 4,083 4,512 3,920 21,117

10.3.2. DEEP LEARNING MODEL
EfficientDet[41] is a state-of-the-art deep learning architecture devel-
oped by Google brain team. It is designed to be both fast and accurate
across a wide range of computing environments, from mobile devices to
servers which makes it suitable for applications such as edge systems
with limited computational resource. It builds on EfficientNet, a scalable
neural network architecture, by incorporating a novel compound scaling
method that simultaneously scales up the resolution, depth, and width
of the model, as well as the feature network and the box/class prediction
network. Our developed model for the Classification of the STH and S.
mansoni eggs (i.e., A. lumbricoides, T. trichiura, hookworm and S. man-
soni), is based on the EfficientDet-D0 architecture, which integrates a
Single Shot Detector (SSD) framework with an EfficientNet-B0 backbone.
The backbone, EfficientNet-B0, is augmented by a Bi-directional Feature
Pyramid Network (BiFPN). The BiFPN is configured to operate across
feature levels 3 to 7 with three iterations and 64 filters, enhancing the
model’s ability to fuse features from different resolutions. The model
employs a weight-shared convolutional box predictor, which helps in
reducing the number of parameters by sharing weights across different
layers. This predictor has a depth of 64, utilises depthwise separable
convolutions, and is optimized with SWISH activation and L2 regulariza-
tion. For classification, the model uses a weighted sigmoid focal loss
with parameters α = 0.25 and γ = 1.5, which is particularly effective
in dealing with class imbalance by down-weighting the loss assigned
to well-classified examples. The localization loss is computed using a
weighted smooth L1 loss, balancing the accuracy of bounding box pre-
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dictions. Both classification and localization losses are normalized by the
number of matches and code size to ensure stable training. Multiscale
anchors are generated with scales ranging from level 3 to 7, an anchor
scale of 4.0, and three aspect ratios (1.0, 2.0, 0.5). This allows the
model to detect objects at multiple scales. The model uses an argmax
matcher with a threshold of 0.5 for both matched and unmatched cases,
ensuring that every ground truth box is assigned to the best-matching
anchor. Input images are resized to maintain their aspect ratio within
dimensions of 512x512 pixels, with padding added to fit the maximum
dimension. The training process includes data augmentation techniques
like random horizontal flips and random scaling, cropping, and padding,
enhancing the model’s robustness to various image transformations.
The model is fine-tuned from a pre-trained EfficientDet-D0 checkpoint
trained on the COCO dataset [42], specifically tailored for detection
tasks. A momentum optimizer is used with a cosine decay learning
rate schedule, starting at 0.0008 and gradually decreasing over 400,000
steps, with a warmup phase for the first 2,500 steps. The model was
implemented using the Python TensorFlow library and trained on the
Google Colab platform with an A100 GPU, using a batch size of 16.

10.3.3. PERFORMANCE MEASUREMENT
To evaluate the performance of the STH and S. mansoni egg classification
task, we used precision, sensitivity, specificity, and F1-score. These
metrics are mathematically defined as follows:

Precson =
TP

TP + FP
(10.1)

Senstty =
TP

TP + FN
(10.2)

Specƒ cty =
TN

TN + FP
(10.3)

F1-score = 2 ×
Precson × Senstty

Precson + Senstty
(10.4)

Where TP, FP, TN and FN are True Positive, False Positive, True Negative
and False Negative samples respectively.

10.4. RESULTS
Figure 10.2 shows the results of images with presence of artifacts in
the fecal material which complicates the identification of eggs. Images
a), c), e), and g) originate from Ward et al. [40], while images b), d),
f), and h) were acquired using the Schistoscope. The eggs detected
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and classified by the developed deep learning model are enclosed in
bounding boxes: red for A. lumbricoides, blue for T. trichiura, yellow
for hookworm, and green for S. mansoni. Arrows indicate instances of
missed or misclassified eggs using the same color scheme. Black arrows
point to artifacts that were incorrectly identified as eggs by the model.
The developed model failed to detect Ascaris lumbricoides, hookworm,
Trichuris trichiura, and Schistosoma mansoni eggs in images a), b), c),
and e), respectively, due to improperly cleared fecal smears. In image
d), two S. mansoni eggs were obscured by artifacts and not detected.
Artifacts in images f) and h) were misidentified as hookworm eggs, and
a T. trichiura egg in image g) was incorrectly classified as a S. mansoni
egg. Differences in egg sizes across the dataset result from varying
optical device configurations used for image acquisition (Ward et al.
[40]: 10× magnification, 0.25 NA; Schistoscope: 4× magnification, 0.1
NA). These variations in resolution, combined with artifacts and diverse
background colors and textures in fecal samples, enhance the dataset’s
robustness and help mitigate overfitting.

The confusion matrix (shown in Table table 10.3) evaluates the
model’s performance in detecting the four classes of helminth eggs.
The model exhibited high detection and classification accuracy (shown
in Table table 10.4), with precision and sensitivity for A. lumbricoides at
0.968 and 0.949, and for T. trichiura at 0.943 and 0.951, respectively.
hookworm had a precision of 0.949 and sensitivity of 0.878, while
S. mansoni showed 0.968 precision and 0.878 sensitivity. Our deep
learning model, based on EfficientDet-D0, achieves a weighted average
precision of 95.9% (±1.1%), sensitivity of 92.1% (±3.5%), specificity
of 98.0% (±0.76%), and F1-score of 94.0% (±1.98%) across the four
helminth classes. These metrics confirm the model’s accuracy and
reliability in detecting and classifying STH and S. mansoni eggs, despite
variations in image conditions.

Table 10.3: Confusion Matrix.
AI predictions and performance False

negatives
(missed eggs)

A.
lumbricoides

T.
trichiura

hookworm S.
mansoni

Verified
ground
truth

A. lumbricoides 790 1 0 0 42
T. trichiura 1 364 0 0 19
hookworm 0 0 424 0 59
S. mansoni 0 0 0 337 47

False positives
(background artefacts)

26 22 23 11 -

10.5. DISCUSSION
The World Health Organisation (WHO) has outlined Target Product Profiles
(TPPs) for diagnostic tools to control STH infections and schistosomiasis,
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Table 10.4: Performance Metrics
A.

lumbricoides
T.

trichiura
hookworm S.

mansoni
Weighted
Average

Standard
Deviation

Precision 0.968 0.943 0.949 0.968 0.959 0.011
Sensitivity 0.949 0.951 0.878 0.878 0.921 0.035
Specificity 0.972 0.984 0.982 0.992 0.980 0.0076
F-Score 0.959 0.947 0.912 0.921 0.940 0.0198

emphasizing affordability, accessibility, and effectiveness in resource-
limited settings [43, 44]. This study advances these goals through
the Schistoscope, a cost-effective automated microscope enhanced with
an artificial intelligence (AI) system for detecting and classifying STH
and S. mansoni eggs. Unlike many prior efforts, our work uniquely
integrates edge-computing capabilities, a robust and diverse dataset,
and a focus on practical deployment, offering distinct advantages over
existing approaches.

The Schistoscope’s design prioritizes affordability and usability,
leveraging off-the-shelf components for easy maintenance and scalability
in low-resource settings. Its AI-driven system enables automatic
focusing, scanning, and egg detection, reducing reliance on skilled
microscopists—a critical bottleneck noted in manual KK diagnostics
[10]. Compared to earlier automated microscopy systems, such as
those by Holmström et al. [12], which required external computational
resources, the Schistoscope’s edge-computing capability allows real-
time processing in remote areas without internet connectivity. This
contrasts with studies like Dacal et al. [30], which relied on telemedicine
pipelines, limiting their applicability in disconnected settings. Our
prior work validated the Schistoscope’s efficacy for S. haematobium
egg detection [16, 18], and this study extends its utility to STH and
S. mansoni eggs detection, demonstrating versatility across parasitic
diseases.

A key contribution of this work is the development of a comprehensive
STH and S. mansoni eggs Dataset, comprising 141,600 FoV images
from 300 KK slides captured using the Schistoscope’s 4X objective,
with 3,040 FoVs containing 889 hookworm and 3,238 S. mansoni
eggs. By augmenting this with the Ward et al. [40] dataset, we
created a combined dataset of 10,820 FoVs with 21,117 eggs across
four species (Ascaris lumbricoides, Trichuris trichiura, hookworm, S.
mansoni). Unlike Ward et al.’s dataset, which suffered from class
imbalance (50% A. lumbricoides eggs) and high-infection-intensity bias,
our dataset improves balance for S. mansoni and incorporates diverse
stool samples from over 200 individuals. This addresses limitations in
prior datasets, such as those used by Roder et al. [35] and Nakasi, Aliija,
and Nakatumba [38], which were constrained by small or grayscale
images, enhancing model generalizability.
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Our developed model’s performance compares favorably to prior
studies. For instance, Viet, ThanhTuyen, and Hoang [22] and Oliveira
et al. [23] used Faster R-CNN but faced generalization issues due
to small datasets, while Huo et al. [24] and Jaya Sundar Rajasekar
et al. [26] achieved high accuracy with YOLO models but required
high-magnification images impractical for low-cost devices. Our model’s
performance on lower-magnification (4X) images, combined with edge-
computing efficiency, makes it more suitable for field deployment than
resource-intensive models like ResNet-50 used by Lundin et al. [32],
which overestimated egg counts. Additionally, unlike mobile-based
solutions like Kankanet by Yang et al. [33], which were limited by
image quality, the Schistoscope ensures consistent imaging, improving
reliability.

Despite these strengths, a limitation of our dataset is the absence of
A. lumbricoides and T. trichiura eggs captured with the Schistoscope,
due to their non-prevalence at our study sites. This may bias the model
toward hookworm and S. mansoni detection in Schistoscope images,
a challenge also noted in studies with uneven class distributions [40].
Sensitivity for hookworm (0.878) and S. mansoni (0.878) is slightly
lower than for other classes, likely due to variability in image sources,
but precision (0.949–0.968) and specificity (0.921–0.992) remain high,
with low standard deviations indicating robustness. Future work will
expand the dataset to include more A. lumbricoides and T. trichiura eggs
and refine annotations to boost sensitivity, explore other deep learning
architectures to improve quantification building on insights from medical
imaging studies.

This study’s uniqueness lies in its end-to-end solution: a low-cost,
AI-enhanced device with a robust dataset and high performance tailored
for low-resource settings. While prior works advanced classification,
they lacked scalable hardware integration. Our system aligns with
WHO TPPs, offering a practical tool for monitoring deworming programs.
Evaluating performance at the slide/patient level, as opposed to only
image-level metrics, will further ensure clinical reliability.

10.6. CONCLUSION
In conclusion, the Schistoscope, combined with an AI-based detection
system, demonstrates strong potential for accurately detecting STH
and S. mansoni eggs, aligning with WHO’s vision for affordable and
accessible diagnostics in low-resource settings. Our model exhibited
high precision, sensitivity, and specificity across all classes, with room
for improvement in the detection of hookworm and S. mansoni eggs.
Expanding the dataset and optimizing model parameters will further
enhance performance and generalizability. Overall, the system holds
promise for supporting large-scale monitoring and deworming efforts in
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endemic regions. In future we would like to evaluate the diagnostic
performance of the system in a resource limited settings.
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Figure 10.2: Example images from the combined test dataset. Images
a), c), e), and g) are from Ward et al. [40], while images b),
d), f), and h) were captured using the Schistoscope. Eggs
detected and classified by the deep learning model are high-
lighted with red, blue, yellow, and green bounding boxes,
corresponding to Ascaris lumbricoides, Trichuris trichiura,
hookworm, and Schistosoma mansoni, respectively. Arrows
indicate missed or misclassified eggs: red, blue, yellow,
and green for A. lumbricoides, T. trichiura, hookworm,
and S. mansoni, respectively; black arrows mark artifacts
incorrectly classified as eggs.
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11
CONCLUSION

This chapter offers a comprehensive overview of the development
and impact of an automated digital microscope (the Schistoscope) to
diagnose schistosomiasis and soil-transmitted helminth (STH) infections
in resource-limited settings. It begins with a summary of Chapters 2
through 10, highlighting an in-depth review of quantitative diagnostic
methods; the design and optimization of the Schistoscope’s hardware,
software, and AI components; usability and acceptability studies among
healthcare workers; and field validation in Nigeria and Gabon evaluating
the device’s performance in real-world conditions. The chapter
concludes with reflections on key findings and proposes key areas for
future improvements, thereby rounding off the thesis.
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11.1. SUMMARY
This thesis focused on developing an automated digital microscope, the
Schistoscope, to improve both accessibility and accuracy of diagnosis
of schistosomiasis and soil-transmitted Helminth (STH) infections. We
optimized the whole slide imaging capabilities of the microscope for
consistent performance in field conditions. We also compiled robust
and large-scale image datasets of Schistosoma (S.) haematobium and
intestinal helminth eggs, which were crucial for the development
of automated helminth egg detection models. Furthermore, by
integrating digital microscopy with Edge AI analysis, we have created
a transformative point-of-care diagnostic tool for disease control with
great potential to accelerate the achievement of elimination goals as
enshrined in the WHO’s NTD Road Map, 2021-2030 in resource-limited
settings.

Quantitative diagnostic tools for schistosomiasis and STH: Chapter 2
offers an in-depth review of diagnostic methods for schistosomiasis and
STH infections, focusing on sample preparation devices, portable digital
microscopes, and AI-driven automated detection and identification
methodologies. The World Health Organisation (WHO) recommends
the urine filtration method to diagnose urogenital schistosomiasis, but
it faces costs and availability problems in endemic regions. Using
local materials can degrade image quality due to introduced artifacts.
The Kato-Katz technique, also recommended by the WHO for intestinal
helminth diagnosis, is affordable and standardized but less effective for
detecting low-intensity infections. Other methods such as sedimentation
and flotation enhance egg recovery but are hindered by long processing
times and sensitivity to fixative types and solution density. Innovations
such as FLOTAC, Mini-FLOTAC, and FECPAK systems improve data
handling and egg recovery, but accessibility in resource-constrained
areas remains a challenge. The shift to portable digital microscopes
offers better accessibility for field use, allowing real-time imaging and
field diagnostics, though challenges in manual sample manipulation
and variable image quality in field conditions persist. Early AI models
using Support Vector Machines (SVM) and Artificial Neural Networks
(ANN) improved diagnostics, but were limited by complex samples
with the presence of artifacts. Deep learning, especially through
Convolutional Neural Networks (CNN), has revolutionized the field by
handling high-variability images, although it requires diverse datasets
to perform robustly.

The review underscores the need for cost-effective and user-friendly
diagnostic tools that maintain accuracy in resource-limited settings.
Automated digital microscopes powered by AI could significantly
mitigate the lack of trained professionals in endemic regions by enabling
field diagnostics. The performance of AI models is critically dependent
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on the quality and diversity of training data, highlighting the need for
expansive, varied datasets to handle real-world conditions and artifacts.
Integrating portable digital microscopes with edge AI analysis presents
a scalable solution for diagnostics, potentially revolutionizing disease
monitoring and control in low-resource environments.

Raspberry Pi vs Smartphone based Schistoscope Designs: Chapter 3
explores two primary design pathways for an automated digital
microscope (the Schistoscope): one utilising a Raspberry Pi (RP) and the
other a smartphone (SP). The RP-based Schistoscope is cost-effective,
with an estimated production cost of 125 euros, featuring modular
components that can be locally manufactured, including 3D-printed
casings and custom sample preparation setups. However, it suffers
from a limited field-of-view (FoV) and less clear imaging. In contrast, the
SP-based design offers higher-resolution imaging, crucial for identifying
S. haematobium eggs, but at a higher cost. Both designs consider local
repair and maintenance, vital for deployment in remote, resource-limited
settings.

The development of both Schistoscopes underscores the potential
of using consumer electronics in biomedical engineering to address
diagnostic challenges in low-resource environments, particularly in sub-
Saharan Africa, where schistosomiasis is prevalent. This approach not
only reduces the dependency on expensive and complex infrastructure,
but also aligns with the principles of sustainable and locally adaptable
technology. The integration of community-specific needs in the device’s
design, including durability, modularity, and ease of repair, highlights
a model for public health innovation that could be replicated for other
diseases in similar settings.

Both Schistoscope designs face certain limitations. The RP version’s
constrained FoV and image clarity could potentially miss low-density
infections. The SP version, while providing better resolution, increases
the cost, which might limit its scalability in the most resource-poor
areas. In addition, both devices require further development to
ensure they can consistently perform under varied environmental
conditions and with diverse sample qualities. These include enhancing
the FoV through multi-field-of-view imaging approaches to allow for
more comprehensive sample analysis, expanding on manufacturing
techniques, such as incorporating laser cutting and using standardized
WHO sample preparation procedures, in order to improve production
efficiency and device consistency.

Schistoscope 5.0 Design: Chapter 4 delves into the next iteration of the
automated digital microscope (Schistoscope 5.0). This iteration of the
device enhances conventional bright field microscopy by incorporating
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AI algorithms, automated stage movements, and on-board computing
to tackle the challenges of operator dependency, the need for skilled
personnel, and inconsistent imaging quality. The Schistoscope 5.0
features a high-resolution Raspberry Pi camera with automated XYZ
movement for improved focus and field-of-view, along with structured
autofocusing and auto-scanning functionalities to address common
imaging issues such as artifacts and blurriness. A UNET deep learning
model was trained on Schistoscope-captured images for S. haematobium
egg detection, demonstrating sensitivity that meets WHO standards
and shows potential for epidemiological monitoring through accurate
estimation of the egg count.

The Schistoscope 5.0 has profound implications for public health,
particularly in the context of supporting WHO’s efforts to eliminate
neglected tropical diseases. By offering a reliable, field-ready diagnostic
tool, it improves the ability to monitor and control schistosomiasis in
low-resource areas. Its design, which uses locally sourced materials for
robustness and repairability, demonstrates how AI and automation can
revolutionize diagnostics, making them more accessible and scalable.
This approach not only aligns with sustainable health solutions, but
also has the potential to influence diagnostic methodologies beyond
parasitology, promoting health equity in underserved regions.

Despite its advancements, the Schistoscope 5.0 faces challenges with
uneven sample surfaces, artifacts and overlapping eggs in field samples,
which can impact diagnostic accuracy. In addition, the performance
of the UNET model, while promising, needs further validation across a
broader range of real-world conditions to ensure reliability. Additionally,
the device’s sample processing time, specifically in registering whole
slide images of 25mm membrane filters and Kato-Katz smears, could be
a barrier for its application in large-scale surveys.

Usability and User-acceptance: Chapter 5 presents a study of the
usability and acceptability of Schistoscope 5.0 conducted in Nigeria
with local healthcare workers and medical students. The study used
questionnaire feedback and open discussions to assess the impact of the
device on diagnostic workflows. Users found the Schistoscope to be easy
to operate, especially praising the autofocus and image capture features
to reduce operator fatigue. The modular design, allowing for semi- and
fully automated use, was seen as advantageous in settings with varying
access to trained microscopists. Feedback also included suggestions
for greater portability and faster scanning capabilities, highlighting the
current design’s bulkiness as a limitation.

The potential of the Schistoscope to improve diagnostics in resource-
limited environments is significant. By reducing the need for highly
skilled personnel and overcoming infrastructure barriers, it could improve
diagnostic accuracy and efficiency for schistosomiasis and potentially
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other neglected tropical diseases. This could lead to scalable health
interventions, making the Schistoscope a model for future low-cost,
AI-assisted diagnostic devices.

Although the Schistoscope was well received, users also pointed out the
need for quality control to avoid errors in negative sample identification.
These practical limitations suggest that further refinement is necessary
to ensure the device’s effectiveness in real-world settings where
diagnostic accuracy is crucial. They suggested that future development
should focus on enhancing the portability of the Schistoscope through
more compact designs and possibly adding more objective lenses
to widen its diagnostic range. Integrating user feedback into a
User-Centered Design (UCD) approach will be essential for future
iterations, ensuring that the device not only meets technical standards
but also fits seamlessly into the workflows of its users. Additional
improvements might include features for sample storage and enhanced
digital interfaces. Continuous engagement with users to refine the
Schistoscope based on their practical experiences will be key. Expanding
this model to other NTDs through similar user-engaged design processes
could further amplify the impact of digital diagnostic tools on global
health initiatives.

Nigeria Field Validation: Chapter 6 details a field study in Nigeria evalu-
ating the Schistoscope 5.0’s performance in detecting S. haematobium
eggs. The device embedded with a UNET-based S. haematobium egg
detection algorithm was compared with conventional microscopy in
semi- and fully automated modes. The findings showed that while the
sensitivity matched traditional methods, the specificity in the automated
mode was lower. The AI algorithm faced challenges in distinguishing
eggs from similar structures due to inadequate training data. There
were also notable differences in egg counts at high infection levels,
highlighting potential issues with the accuracy of the AI model.

The Schistoscope 5.0 offers a pathway to accessible diagnostics
in areas affected by schistosomiasis, demonstrating the benefits of
integrating technology into public health. Its potential to transform
disease monitoring and control is evident, but the study also highlights
the need for robust training of the AI model to improve diagnostic
specificity. This could lead to better public health outcomes by
ensuring accurate diagnosis, surveillance, and treatment monitoring in
low-resource settings.

The primary limitation observed was that the UNET-based algorithm
struggled with specificity, particularly in distinguishing between eggs
and artifacts. This points to the need for a more comprehensive dataset
for AI training, which would help reduce false positives. Furthermore,
the discrepancies in egg counts in highly infected samples with a high
occurrence of overlapping eggs suggest that the UNET-based deep
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learning model might not fully capture the complexities of infection
intensity. Hence, more work needs to be done to improve the AI
algorithm through broader and more diverse training data. An additional
post-processing step to refine the segmentation output of the deep
learning model would also improve both sensitivity and specificity.

Autofocusing and Whole Membrane Imaging: Chapter 7 discusses sig-
nificant enhancements to the Schistoscope 5.0 to diagnose parasitic
diseases, particularly schistosomiasis, in field settings. Key devel-
opments include the implementation of an automated slide scanning
system with a perturb and observe (P&O) autofocusing algorithm, which
adjusts the position of the Z axis to optimize the focus of the registered
FoV, thus addressing issues such as uneven sample surfaces and the
presence of artifacts. This algorithm, borrowed from photovoltaic
technology, optimizes scanning speed and accuracy. Furthermore, an
optimized circular membrane filter scanning procedure was developed,
which reduces the whole slide scanning time by up to 72% by focusing
only on relevant FoVs, offering a significant benefit for high-throughput
diagnostics in urogenital schistosomiasis.

These technological advances have substantial implications for public
health, particularly in enabling large-scale schistosomiasis surveys.
Automation reduces the need for skilled personnel, making diagnostics
more scalable in remote areas. The P&O algorithm’s efficiency is vital
for implementing low-cost diagnostic devices, thus promoting wider
adoption in areas with limited resources. This not only aids in disease
monitoring, but also supports broader public health strategies aimed at
reducing morbidity and enhancing productivity.

Despite advances, there are still challenges to overcome. Mechanical
backlash and variability in image quality across different slides are
issues that can affect diagnostic reliability. The effectiveness of
the autofocus algorithm could be limited by these mechanical and
environmental factors, which could lead to inconsistencies in diagnostic
results. In addition, integration of low-cost GPUs or TPUs could
enhance computational capabilities for real-time diagnostics. In
addition, extensive field testing and validation is necessary to adapt
and confirm the robustness of these systems in diverse and challenging
environments. This will ensure that the technology can be scaled up
effectively, transforming the landscape of parasitic disease diagnosis in
resource-limited settings in sub-Saharan Africa and possibly around the
world.

Automated Urogenital Schistosomiasis Diagnosis: Chapter 8 introduces
a large scale S. haematobium egg dataset of field microscopy
images and a two-stage diagnostic framework for detecting urogenital
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schistosomiasis, employing semantic segmentation with a DeepLabV3-
MobileNetV3 model. This approach uses deep neural networks for
Stage 1, where it addresses the differentiation of eggs from artifacts
in noisy images. Stage 2 applies region-based ellipse fitting to
better identify overlapping eggs, enhancing the assessment of infection
intensity. Validation in a significant dataset and implementation in
an Edge AI system consisting, of Raspberry pi and Google coral TPU
onboard computer, highlight the effectiveness of the framework, with
diagnostic performance in 65 clinical samples showing sensitivity and
specificity rates greater than 93%, meeting WHO diagnostic standards
for schistosomiasis.

This framework significantly advances the diagnosis of urogenital
schistosomiasis in low-resource settings by making sophisticated AI-
based diagnostics more accessible. By adapting complex deep learning
models to portable devices, it democratizes healthcare, allowing more
accurate and timely diagnosis in areas where traditional diagnostics are
challenged by a lack of resources or expertise. This innovation could
pave the way for a broader application in the diagnosis of other parasitic
diseases, aligning with global health goals to control and eliminate
neglected tropical diseases.

The computational demands of running such models on Edge AI
platforms could limit the framework’s real-world performance in terms
of speed and power consumption, crucial considerations in field
settings where power and processing capabilities might be constrained.
Validation studies in various field environments will be crucial in
confirming the reliability of the Schistoscope under different conditions
of infection intensity and environmental challenges.

Gabon Field Validation: Chapter 9 explores the diagnostic performance
of the improved Schistoscope 5.0, with the two-stage detection
algorithm, in Gabon for detecting and quantifying S. haematobium
eggs in urine. The study was divided into two parts: Study A with
freshly collected samples and Study B with fresh and banked samples.
The Schistoscope showed sensitivities of 83.1% and 96.3% compared
to conventional microscopy for studies A and B, respectively, with
sensitivities against a composite reference standard (CRS) at 62.9% and
78%. The specificity varied between 78. 8% in Study A and 90.9% in
Study B, indicating the variability of the performance according to the
type of sample. The ability of the device to handle fresh and banked
samples highlights its utility for retrospective analyses.

The Schistoscope emerges as a viable alternative to traditional
microscopy, particularly suitable for high-infection-intensity cases and in
resource-limited environments. Its ability for retrospective analysis could
revolutionize the way schistosomiasis is monitored and controlled in
regions where immediate diagnostic facilities are scarce. The correlation
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with conventional microscopy in egg quantification (r=0.71 to 0.93)
suggests the potential for accurate disease assessment, helping public
health decisions for screening and treatment.

The study revealed that the specificity of the Schistoscope could be
compromised by environmental artifacts, leading to false positives. This
indicates a need for further refinement of the AI algorithm to improve
accuracy, especially for low-intensity infections where diagnostic
precision is critical. There is also an observed underestimation in high-
intensity cases due to egg overlap, which needs further improvement
for comprehensive diagnostics.

Automated Intestinal Helminths Egg Detection: Chapter 10 introduces an
innovative approach to detecting intestinal helminth infections using the
Schistoscope 5.0. Addresses the limitations of the traditional Kato-Katz
(KK) method by automating egg detection for Ascaris lumbricoides,
Trichuris trichiura, hookworm, and S. mansoni. An extensive dataset was
developed, combining images from various sources, which was used to
train an EfficientDet-D0 deep learning model. This model demonstrated
high precision and sensitivity in the detection of helminth eggs from
fecal samples, indicating its versatility for field diagnostics.

The implementation of the Schistoscope could significantly transform
intestinal helminthiasis diagnostics in low-resource settings by reducing
the dependence on skilled technicians and minimizing human error. This
aligns with WHO’s Target Product Profiles for diagnostics, supporting
broad deworming and treatment initiatives. Automation not only
promises more consistent results, but also addresses issues such
as visual fatigue among microscopists, potentially improving the
effectiveness of disease control programs in endemic areas.

Despite its promising performance, the model needs further im-
provement in sensitivity, especially for hookworm and S. mansoni egg
detection. The current data set might still have biases or lack diversity,
which could affect the generalization to all field conditions. Additionally,
while individual egg detection is accurate, the system performance at
the patient or slide level requires further validation to ensure robustness
in real-world scenarios.

11.2. CONCLUSION
In this thesis, we successfully developed an automated digital mi-
croscope, the Schistoscope, which matches traditional microscopy in
diagnostic accuracy, usability, and operational feasibility for detecting S.
haematobium and intestinal helminth eggs in resource-limited settings.
Our advancements include a whole slide imaging system with the
perturb and observe (P&O) autofocusing algorithm, optimized whole
slide scanning procedures, and deep learning-based AI detection models,
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significantly improving diagnostic accuracy and speed. The integration
of Edge AI with deep learning-based diagnostic frameworks has resulted
in high sensitivity, specificity, and user acceptability, enabling reliable
field deployment and effective performance on both fresh and banked
urine samples.

11.3. FUTURE DIRECTION
Future iterations of the automated digital microscope (the Schistoscope)
should focus on several key areas:

• Hardware and Software Refinement: Address mechanical
issues such as backlash to improve autofocus consistency.

• AI Model Optimization: Enhance the ability to distinguish
between eggs and artifacts by expanding training data sets to
cover more environmental conditions and complexities. This could
involve refining neural network architectures or developing new
algorithms to deal with complex image conditions.

• Dataset Expansion: Increase dataset diversity to improve model
generalization across various field conditions.

• Broader Application: Explore the potential of the schistoscope
for diagnosing other parasitic infections, thereby amplifying its
impact on global health.

• Field Validation: Conduct extensive field trials in diverse settings
to validate the robustness, usability, and acceptance of the system
among local healthcare workers.

• Energy Efficiency: Improve by integrating alternative power
solutions, such as solar energy, to extend applicability to remote
locations.

• Local Production and Distribution: Develop partnerships to
facilitate local manufacturing and distribution, with the aim of
reducing costs and increasing availability.

• Cloud Integration: Implement cloud-based data storage and
analysis systems to support large-scale public health applications.

• User Engagement: Continue to involve local stakeholders in the
design and implementation process to ensure the Schistoscope
meets real-world needs through an iterative development approach.

These enhancements could establish the Schistoscope as a bench-
mark for diagnostic tools targeting neglected tropical diseases in
resource-limited environments, significantly contributing to global health
initiatives.
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As a Research Associate at Cardiff University within the Life Imaging
and Data Analytics Group, my work centres on developing advanced AI-
driven tools to support cancer diagnosis and treatment planning. Cur-
rently, I am working on a Cancer Research UK-funded project focused on
deriving novel, non-invasive radiomic and AI-based classifiers to charac-
terise the molecular behaviour of rectal cancer and predict its response
to radiotherapy. I am applying machine learning techniques, to build
predictive radiomics signatures associated with clinical outcomes. The
ultimate aim is to deliver novel, less invasive diagnostic tools that better
predict radiotherapy responses, particularly in rectal cancer, thus im-
proving personalised treatment planning.

One of my recent projects addressed the auto-segmentation of Gross
Tumour Volume (GTV) in Head and Neck Cancer (HNC). This work tack-
led the limitations of manual contouring in radiotherapy planning by im-
proving accuracy, consistency, and efficiency. We developed a novel ap-
proach to automatically segment GTV from PET/CT images and evaluated
its performance against both expert-defined contours and ATLAAS—a
machine learning model trained on simulated and phantom-based PET
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images. The method offers promising advancements for precision in ra-
diotherapy.

In parallel, I led the development and validation of multimodality quan-
titative medical image analysis software for oncology. A key achieve-
ment was the creation of the SPAARC-Hero node, which integrates IBSI-
compliant radiomics into the Hero Imaging platform. This tool enhances
reproducibility in radiomics research and improves accessibility by re-
moving the need for programming expertise. The SPAARC-Hero node
was featured at the ESTRO 2024 Conference in Glasgow, highlighting its
clinical relevance and impact.

Prior to this, during my PhD at Delft University of Technology, I spear-
headed research on AI-based digital microscopes for the detection of par-
asitic diseases in Sub-Saharan Africa. This work aimed to address diag-
nostic gaps in low-resource settings by using AI to automate parasite de-
tection, supporting more effective disease surveillance and contributing
to global health equity.

TECHNICAL EXPERTISE
My technical proficiency spans a broad spectrum of skills critical to the
development of intelligent diagnostic tools:

• Computer Vision & Machine Learning: Advanced algorithms for
image segmentation, object recognition, and predictive modelling.

• Radiomics & Medical Image Processing: Development of non-
invasive classifiers and predictive radiomics signatures to improve
treatment outcomes.

• Optimization Algorithms: Enhancing the efficiency and accuracy
of diagnostic systems.

• Programming Languages: Proficient in Python, MATLAB, R, and
C++.

• Medical Imaging Software: Extensive hands-on experience with
MIM, Velocity, and the Hero Imaging platform, coupled with in-depth
knowledge of DICOM standards for efficient medical image manage-
ment and analysis.

• CAD Design Tools: Skilled in SolidWorks and Fusion 360 for device
design.

LEADERSHIP AND COLLABORATION
Collaboration has been at the heart of my professional journey. I have
successfully coordinated multidisciplinary teams, fostering partnerships
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between academia, healthcare professionals, and international organisa-
tions. My role often involves translating complex technical concepts into
actionable insights for diverse audiences, ensuring that technological ad-
vancements are both innovative and practically applicable. Additionally,
mentorship from leading experts at both Cardiff and Delft has profoundly
shaped my career, reinforcing my commitment to fostering a culture of
scientific excellence and collaboration.

EDUCATION AND CONTINUOUS DEVELOPMENT
My academic path reflects a strong foundation in control engineering and
systems science, culminating in a PhD in Systems and Control Engineer-
ing from Delft University of Technology. I also hold a Master’s and Bach-
elor’s degree in Control and Electrical Engineering, respectively, from
Ahmadu Bello University, Zaria. In pursuit of continuous learning, I have
completed certifications in data science and advanced statistical analy-
sis. Recently, I completed the Cardiff Education Fellowship Academy and
am on the path to obtaining the Associate Fellowship of the Higher Edu-
cation Academy (AFHEA). This recognition highlights my commitment to
professional growth and academic excellence.

AWARDS AND GRANTS
In 2021, I received a =C2,400 Delft Global Support Fund grant to sup-
port the field validation of the Schistoscope for the diagnosis of urinary
schistosomiasis in Nigeria. In 2024, I was endorsed by UK Research and
Innovation (UKRI) under the Global Talent Visa route, in recognition of
my research leadership and potential to advance the UK’s scientific com-
munity in AI for medical imaging. In 2025, I was awarded an EPSRC Im-
pact Acceleration Account (IAA) grant of £18,773 to lead the project “Ac-
celerating Innovation and Expanding Worldwide the Footprint of Cardiff
University SPAARC Radiomics for Medical Image Analysis.” This initiative
supports the clinical and commercial translation of SPAARC radiomics
tools, reinforcing Cardiff University’s global influence in AI-enabled med-
ical diagnostics.

FUTURE VISION
I intend to leverage my skills and experience to advance global health-
care priorities, including early cancer detection, personalised medicine,
and enhanced diagnostic accuracy. By fostering collaborations with aca-
demic institutions, NGOs, and industry partners, I aim to bridge the gap
between cutting-edge research and real-world clinical applications. My
goal is to drive healthcare innovation that delivers meaningful impact
across both developing and developed regions.
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