


Highlights
Analyzing Late Harmattan Dust Effects on Subsequent Early
Rainfall Around West Africa’s Cocoa Belt Using Sentinel-5P
TROPOMI Satellite Data

Kaori Niki

• Strong positive correlations between late Harmattan dust and early
rainfall were found in the southwestern Côte d’Ivoire and southern
Liberia in the high-cocoa production area, aligning with anecdotal ev-
idence from a local farmer

• This showed a potential of using Harmattan dust in February-March
to forecast early rainfall in April-May

• High-resolution Sentinel-5P TROPOMI data allowed detailed analysis
of the impacts of Harmattan
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Abstract

This study analyzed the relationship between late Harmattan dust in
February-March and subsequent early rainfall in April-May in West Africa,
focusing around the high cocoa-producing regions. The impact of Harmat-
tan was evaluated using high-resolution Sentinel-5P TROPOMI data. Strong
positive correlations were found in the southwestern regions of Côte d’Ivoire
and southern Liberia where cocoa production is prominent. This is consistent
with anecdotal evidence obtained from a local farmer in Gagnoa, which falls
under the positively correlated area found in this study. The findings suggest
that late Harmattan dust may serve as a potential indicator of early rainfall.
This could help better agricultural planning for local farming communities,
given the significant influence of rainfall amount on cocoa growth.
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1. Introduction

Harmattan is a seasonal north-easterly wind that occurs in West Africa
that brings dry and cold air, typically in the late fall and winter from Novem-
ber to March (Sunnu et al., 2008; McTainsh, 1980). This phenomenon is
primarily driven by the combinations of subtropical high-pressure systems
and the Intertropical Convergence Zone, which influences its onset, dura-
tion, and intensity (Schwanghart and Schütt, 2008; Anuforom et al., 2007;
Balarabe et al., 2016). Harmattan carries very fine dust from the Sahara
desert. Specifically, the Bodélé Depression in the Republic of Chad has been



found to be the main source around Niger and surrounding West African
regions (Hamilton et al., 1945; Adetunji and Ong, 1989; Sunnu et al., 2008).
However, recent findings suggest that the settled dust may be of local origin
in areas lying further south, such as Ghana (Lyngsie et al., 2011).

Although these dusts may locally help improve the structure and nutrient
content of the soil, they often have negative influences on the environment
and human health. This includes smothering of young plants, causing dis-
eases such as pneumonia, skin irritation; as well as reducing visibility, rela-
tive humidity, and temperature (Hayward and Oguntoyinbo, 2019; Chiemeka
and Chineke, 2009; McTainsh, 1980; Adetunji and Ong, 1989; Schwanghart
and Schütt, 2008). Beyond these localized effects, Harmattan also impacts
larger-scale climate systems, such as the radiative balance and microphysical
properties of clouds, which subsequently impact weather patterns (Aweda
et al., 2023). Despite the wide-ranging impacts, many aspects of Harmattan
and its influence remain underexplored.

Recent advances in satellite remote sensing technology have enabled mon-
itoring of the spatio-temporal distribution of dust sources (Schepanski et al.,
2017; Tegen et al., 2013). The Ultraviolet Aerosol Index (UVAI), often de-
rived from satellite observations, has been widely used for such analyses.
Regarding dust in Africa, the UVAI from the Total Ozone Mapping Spec-
trometer (TOMS) and the Ozone Monitoring Instrument (OMI) have been
used in several studies (Herman et al., 1997; Torres et al., 2007; Balarabe
et al., 2015). Furthermore, Harmattan dust and its associated impacts have
also been assessed using UVAI, such as investigations into the variability
of UV-absorbing aerosols (Anuforom et al., 2007) and long-term trends of
Harmattan dust over thirty years (Balarabe, 2019).

In October 2017, the Sentinel 5-Precursor (S5P) satellite was launched
carrying the TROPOspheric Monitoring Instrument (TROPOMI) with the
aim of monitoring Earth’s atmosphere focusing on air quality and climate
change (Veefkind et al., 2012). Compared to its predecessors, TROPOMI
provides data at significantly higher spatial resolution with a high signal-
to-noise ratio, enabling more detailed and precise observations. This helps
improve the understanding of atmospheric environments, and in particular,
could enable a better analysis of Harmattan events and their impacts through
the use of UVAI product. Recent applications of UVAI from S5P/TROPOMI
on dust events include the analysis of a dust storm in the Algerian Sahara
(Guehaz et al., 2024) and monitoring of dust weather in East Asia (Zhang
et al., 2025). These showed the ability to perform a detailed analysis in
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specific regions using the high-resolution S5P/TROPOMI data.
This study aims to investigate the local belief in West Africa that the

dustier Harmattan causes more rainfall in the subsequent rainy season. This
hypothesis is based on anecdotal evidence from a local farmer from West
Africa, around Gagnoa in Côte d’Ivoire, but has not been scientifically ex-
amined. Understanding this relationship is especially critical in the southern
part of West Africa, which lies within the Cocoa Belt, known for its high co-
coa production. Over the years, rainfall variability has significantly affected
cocoa production: droughts have hindered growth, while excessive rainfall has
caused the spread of multiple diseases (Adet et al., 2024; Asitoakor et al.,
2022). Cocoa farming is a vital part of the economy in these countries, con-
tributing significantly to their Gross Domestic Product (GDP) as well as
providing notable employment (Taylor et al., 2025; Yao et al., 2025). If the
Harmattan intensity relationships that serve as an early indicator of the up-
coming rainfall season can be clarified, they could serve as a valuable tool
for agricultural planning and forecasting.

To address this gap, this study utilizes high-resolution satellite data of the
UVAI product from the S5P/TROPOMI to investigate the impact of Har-
mattan dust on the subsequent rainfall season across southern West Africa’s
cocoa-producing regions and nearby areas.

2. Study Area

This study focuses on the southern coastal regions around the Cocoa Belt
in West Africa: Liberia, Côte d’Ivoire, and Ghana, as shown in Figure 1 (lat-
itude: 4°N to 11°N; longitude: 1.2°E to 11.5°W). Based on 1991–2020 climate
averages, annual rainfall totals are approximately 2,450 mm in Liberia, 1,230
mm in Côte d’Ivoire, and 1,210 mm in Ghana. Maximum temperatures dur-
ing the hottest months (March - May) reach 31.7 °C, 33.8 °C, and 34.7 °C
respectively (World Bank, 2025).

Côte d’Ivoire and Ghana are leading producers of cocoa; for instance,
in the 2022/23 season, the productions were 2241 and 654 thousand tonnes
respectively, together accounting for more than 57 % of the world’s cocoa
production(International Cocoa Organization, 2025). The orange dashed line
area shows the climatically most suitable cocoa production districts in Côte
d’Ivoire and Ghana (Läderach et al., 2013). These regions correspond to the
cocoa farm locations identified using remote sensing data (Abu et al., 2021).
The regions with light blue dots indicate the highest concentrations of cocoa
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plantations detected in the same study. While cocoa is grown extensively in
the southern regions of Côte d’Ivoire and Ghana, production in Liberia is
much lower by comparison and more geographically scattered, though pri-
marily concentrated in Nimba, Lofa, and Bong counties (Schroth et al., 2015).
Optimal cocoa-growing conditions include 1,500-2,000 mm of annual rainfall,
with dry periods — periods less than 100 mm/month — not exceeding three
months (International Cocoa Organization). Additionally, maximum tem-
peratures up to 32 °C are considered ideal for crop development (Climate
Central, 2025).

Figure 1: Map of Liberia, Côte d’Ivoire, and Ghana. The orange dashed line area indicates
the cocoa production region and light blue dotted area indicates the districts with highest
concentration of cocoa production within according to (Abu et al., 2021). In Liberia, cocoa
production is scattered across the country. The light green dot represents Gagnoa, the
location of the local farmer who provided the anecdotal evidence.
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3. Materials and Methodology

3.1. Overview of Methodology
Satellite-derived UVAI and precipitation data were used to examine the

impact of Harmattan dust on the subsequent rainfall season. Desert dust
was estimated from UVAI values obtained from the S5P/TROPOMI data,
with non-dust UV-absorbing aerosols excluded based on established filter-
ing criteria. As part of the filtering process, a threshold based on carbon
monoxide (CO) concentrations was applied, which were also obtained from
S5P/TROPOMI dataset. Daily precipitation data were obtained from the
Integrated Multi-satellitE Retrievals for the Global Precipitation Measure-
ment (GPM) mission (IMERG). Both dust and rainfall data were averaged
over selected months corresponding to the Harmattan and rainfall seasons.
Because the rainfall data had a coarser spatial resolution, it was refined to
match the resolution of the dust data. Correlations between dust and rainfall
were then computed for different temporal pairs and statistical significance
tests were performed. A schematic overview of the methodology is provided
in Figure 2.

Four temporal pairs of Harmattan dust and rainfall periods as shown
below were evaluated in this study. For each pair, UVAI and precipitation
values were averaged over the entire specified months for each pixel to conduct
the correlation analysis:

• Full Harmattan period (November–March) → Full rainfall season
(April–September)

• Full Harmattan period (November–March) → Early rainfall season
(April–May)

• Late Harmattan period (February–March) → Full rainfall season
(April–September)

• Late Harmattan period (February–March) → Early rainfall season
(April–May)

For the analysis with an early rainfall season, seven years of data were
used, while for the analysis with a full rainfall season, six years of data were
used due to the availability of the data for 2025. Due this limitations in the
temporal availability, the Global Ozone Monitoring Experiment-2 (GOME-
2) Absorbing Aerosol Index (AAI) data and the Measurement of Pollution
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in the Troposphere (MOPITT) Carbon Monoxide (CO) data were used to
evaluate Harmattan over 2007-2021, along with IMERG Final Run rainfall
data. This was conducted to cover a longer time-span. However, the spatial
resolution of the dust data obtained using GOME-2 & MOPITT data was
much coarser compared to S5P/TROPOMI data, resulting in less detailed
observations. The details of the datasets and the analyses are presented
outside the main results and are included in Appendix A.

Figure 2: Methodology Overview: Using UVAI data and CO data from S5P/TROPOMI,
filtering criteria were applied to generate dust data representing Harmattan impact. These
dust data were then averaged over selected Harmattan periods. Rainfall data from IMERG
were also collected and averaged over selected rainfall months. Finally, the correlation
between Harmattan dust and rainfall was analyzed, and a statistical significance test was
performed.

3.2. Harmattan Desert Dust Data
UVAI is a unitless measure that distinguishes UV-absorbing particles,

such as desert dust, smoke, and volcanic ash, from non-absorbing parti-
cles. Positive UVAI values indicate the presence of UV-absorbing particles
(Stein Zweers, 2022). To estimate the dust loading associated with Har-
mattan the UVAI data from the Copernicus S5P/TROPOMI level 3 gridded
dataset were used. This quality-assured product was derived from filtered
level 2 data and re-gridded onto a fixed global grid of 8193 × 16385 pixels,
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with spatial resolution of approximately 0.022° × 0.022° (European Space
Agency). The data were available from May 2018, and data up to March
2025 were used. In this study, UVAI daily data were averaged using a three-
day moving window to reduce variability and appearance of too many missing
values.

UVAI is calculated using observations at two near-UV wavelengths (354
and 388 nm), where ozone absorption is small. The index is derived by com-
puting the residual between the ratio of the measured top of the atmosphere
reflectance and the ratio of theoretical Rayleigh scattering-only reflectance,
at these wavelengths (Stein Zweers, 2022; Torres et al., 2020).

UVAI captures all types of UV-absorbing aerosols, while this study fo-
cuses specifically on desert dust. The biomass burning of agricultural waste
and wildfires in the dry season of West Africa contribute to the high aerosol
loading, coinciding with the Harmattan period (Wu et al., 2021; Andreae,
2019; Kabo-bah et al., 2019). To isolate desert dust from other UV-absorbing
aerosols, the classification of aerosol subtypes used in the calculation of
Aerosol Optical Thickness and Single Scattering Albedo in the TROPOMI
product was applied. Desert dust aerosols were identified based on thresh-
olds using UVAI values and carbon monoxide (CO) concentrations (de Graaf,
2024):

UVAI > 1.0 [−] and CO ≤ 2.0× 1018 [molecules/cm2]

CO data were obtained from the S5P/TROPOMI Level 2 product, using the
total CO column [mol/m2] (Apituley et al., 2024; Borsdorff et al., 2022). The
data were averaged using the same three-day moving window as the UVAI
data. After applying the filtering criteria, the remaining UVAI data were
considered to represent desert dust. Several comparisons with other datasets
were performed to assess whether the filtered UVAI is a good representation
of Harmattan strength. Specifically, Aerosol Optical Depth (AOD) data from
AERONET and visibility data from the National Oceanic and Atmospheric
Administration (NOAA) were used to assess whether S5P/TROPOMI UVAI
captures the key characteristics of Harmattan impacts, which are shown in
Appendix B. For the calculation of the correlation coefficients, the UVAI
values were averaged over the selected months per pixel.

3.3. Rainfall Data
For rainfall, Integrated Multi-satellitE Retrievals for the Global Precipi-

tation Measurement (GPM) mission (IMERG) daily precipitation data was
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used. IMERG is a satellite-based rainfall estimate based on combinations of
various global precipitation datasets, with a high spatial temporal resolution
of approximately 0.1° × 0.1° (Huffman et al., 2023). The research-quality
gridded daily data of the IMERG Final Run were used for the period only
up to November 2024 because of data availability. For early rainfall data of
2025, IMERG Late Run data were used to fill the gap. IMERG Final Run
data have been adjusted and quality controlled, resulting in better accuracy,
completeness, and consistency over time compared to the IMERG Late Run.

To calculate the correlation per pixel, the rainfall data was refined to
align with the UVAI data. The refinement was carried out by overlaying a
grid matching the spatial resolution of the dust data onto the rainfall data
and extracting the nearest corresponding rainfall values. Then, daily pre-
cipitation was averaged over the entire selected rainfall months per (refined)
pixel.

Using the six or seven years (six for temporal pairs with full rainfall,
April-September, and seven for temporal pairs with early rainfall, April-
May, due to the availability of rainfall data up to May for the year 2025) of
seasonally paired dust and rainfall data (2019 – 2025), Pearson’s r correlation
coefficients were calculated and visualized to assess the relationship between
Harmattan dust and subsequent rainfall patterns.

3.4. Significance Assessment of Correlation Coefficients
After computing the correlation coefficients for each pixel, their statistical

significance was assessed using a two-tailed t-test for the Pearson correlation
coefficient (Obilor and Amadi, 2018):

tstatistic = r ·
√

n− 2

1− r2 + 10−10
(1)

r represents the correlation coefficient and n represents the degrees of free-
dom. The t-statistic is a measure of how far the observed Pearson correlation
r is from 0.

Using the calculated t-statistics, the corresponding p-values were obtained
as:

p = 2 · (1− Ft(|tstatistic|; df = n− 2)) (2)

Finally, statistical significance was evaluated based on the p-values. The
p-value represents the probability that a given correlation r will occur if
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the true correlation were actually zero. Due to the small sample size of
examined years, different levels of statistical significance at 80% (α = 0.2),
90 % (α = 0.1), 95 % (α = 0.05), and 99 % (α = 0.01) were tested and
visualized:

significance = p ≤ α (3)

4. Results

Four different temporal combinations of Harmattan dust and subsequent
rainfall periods were investigated in this study. However, the impact of late
Harmattan (February-March) to subsequent early rainfall (April-May) was
found to be the most prominent, and hence the analysis of the results in the
main study will focus on this temporal pair. The results of other temporal
combinations can be found in Appendix C.

The spatial distributions of the calculated Pearson’s r correlation coeffi-
cients between late Harmattan (February-March) and early rainfall (April-
May) across Liberia, Côte d’Ivoire, and Ghana over a seven-year period
(2019-2025) are shown in Figure 3a for positively correlated areas and in
Figure 3b for negatively correlated areas.

Positive correlations were generally observed in the southern part of the
study area. These correlations were particularly strong in the southwest,
within the latitude range of 4.25°N to 6°N and the longitude range of 4.5°W to
9°W, the southwest parts of Côte d’Ivoire and southern Liberia. In contrast,
negative correlations were found in the northern parts of the study area,
especially in the central to northwestern areas of both Côte d’Ivoire and
Ghana, as well as northern Liberia. Overall, areas between 6°N and 8°N
exhibited weaker correlation.

Figure 4 shows the results of the statistical significance of the correlation
coefficients, with confidence levels of 80, 90, 95, and 99 % (Figure 4a for
the positively correlated areas and Figure 4b for the negatively correlated
areas). The areas with high positive correlations in the southwestern Côte
d’Ivoire and southern Liberia, and parts of high negatively correlated areas
in the northwestern regions of Côte d’Ivoire and northwestern to central
Ghana exhibited high statistical significance. While statistically significant
positive correlations were concentrated in the southwestern coastal areas,
statistically significant negative correlations were more widely distributed
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across the northern region. However, most of the study area showed low
statistical significance overall.

(a) Positive correlation

(b) Negative correlation

Figure 3: Calculated Pearson’s r correlation coefficients across Liberia, Côte d’Ivoire and
Ghana for late Harmattan dust (February-March) and early rainfall (April-May) for (a)
positive correlation and (b) negative correlation.
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(a) Positively correlated areas

(b) Negatively correlated areas

Figure 4: Statistical significance levels (80%, 90%, 95%, 99%, and not significant) for the
Pearson’s r correlation between late Harmattan dust (February–March) and early rainfall
(April–May) across Liberia, Côte d’Ivoire, and Ghana, for areas with (a) positive and (b)
negative correlations.

The relationship between the mean February-March dust and the mean
April-May rainfall for pixels with confidence levels of above 90 % are pre-
sented for positive correlation in Figure 5a and for negative correlation in
Figure 5b. Data points are color-coded by year to indicate changes in distri-
bution over time.

In the positively correlated areas, a strong relationship of Pearson’s r =
0.716 was observed. The trend line with a slope of 3.678 indicates that the
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higher dust loads in February-March are associated with higher rainfall in
April-May. Year-to-year variation supports this trend: 2023 exhibited the
highest mean (UV)AI values and correspondingly higher rainfall, while 2021
exhibited lowest mean AI values and lower rainfall. The mean AI values had
a range of approximately 1.0 to 2.3 [-] and the mean rainfall values had a
range of approximately 1.5 to 9.1 [mm/d].

The negatively correlated areas exhibited a much noisier and weaker re-
lationship with Pearson’s r = -0.333. The slope of the trend line is -2.203,
smaller in magnitude compared to the positive correlation. Similar distribu-
tions were observed across the years, with less distinct year-to-year variation.
April-May rainfall showed a wider range for lower AI values. The greatest
variability was observed in 2025, which may be due to the use of IMERG
Late data instead of IMERG Final data like other years, potentially intro-
ducing more uncertainties. The mean AI values had a narrower range of
approximately 1.0 to 1.8 [-], compared to those of the positively correlated
pixels. The mean rainfall values had a slightly wider range of approximately
1.3 to 9.5 [mm/d] compared to those in the positively correlated pixels.

The variations in the late Harmattan dust and early rainfall season over
the years for a single pixel can be found in Appendix D. The examples of the
most strongly correlated pixels for positive and negative are shown there.
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(a) Pixels with above 90% confidence level positive correlations. The dashed black
line indicates the linear regression trend (y = 3.678x – 0.830), with a Pearson’s
correlation coefficient of r = 0.716.

(b) Pixels with above 90% confidence level negative correlations. The dashed black
line indicates the linear regression trend (y = -2.203x + 6.082), with a Pearson’s
correlation coefficient of r = -0.333.

Figure 5: Relationship between February–March mean dust, represented by Aerosol Index
(AI), and April–May mean rainfall for pixels with (a) statistically significant positive
correlations (p < 0.10) and (b) statistically significant negative correlations (p < 0.10)
across all years (2019–2025). Each point represents a spatially averaged value for a given
year, color-coded by year.
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Figure 6 shows the spatial distribution of the mean dust in February-
March and April-May, and the mean rainfall over April-May. The years
2021 and 2023 are taken as examples to highlight seasonal variability. Focus-
ing on the southwestern parts of Côte d’Ivoire and southern Liberia, where
strong positive correlations were observed, 2021 exhibited a low dust load in
February-March (panel a) and correspondingly low April-May rainfall (panel
c). Conversely, in the same area, 2023 showed a high dust load in February-
March (panel d) and correspondingly high April-May rainfall (panel f), es-
pecially near the coast. Inverse patterns were observed in April-May dust
levels. In 2021, the dust load in April-May remained high (panel b), whereas
in 2023, the dust load was significantly reduced (panel e). This indicates
that the dust load is not simultaneously high when rainfall intensifies in
April–May, at least as observed by the S5P/TROPOMI satellite. The spa-
tial distributions for all years (2019-2025) can be found in Appendix E.

Figure 6: Spatial distribution of the mean dust, represented by (Ultra Violet (UV)) Aerosol
Index (AI), for February–March (panels a and d) and April–May (panels b and e), and
mean rainfall for April–May (panels c and f) over the study area. The years 2021 (panels
a, b, and c) and 2023 (panels d, e, and f) are shown as examples to illustrate seasonal
variations in dust loading and rainfall.
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5. Discussion

5.1. Correlation between late Harmattan dust and early rainfall in the rainy
season

Strong positive correlations between late Harmattan and early rainfall
were observed in the southwestern Côte d’Ivoire and southern Liberia. This
aligns with anecdotal evidence from a local farmer that dustier Harmattans
were followed by higher precipitation in the subsequent rainy season, al-
though this study focused only on early rainfall. The local farmer is from
Gagnoa, Côte d’Ivoire, which falls under the positively correlated area found
in this study. In contrast, the central to northwestern parts of Côte d’Ivoire
and Ghana exhibited negative correlations, meaning that a higher dust load
during a stronger late Harmattan leads to less precipitation in the early rainy
season.

From the pixel-wise relationships between Harmattan dust and rainfall for
areas with more than 90 % significance in Figure 5, positively correlated areas
exhibited stronger correlations and less variance compared to negatively cor-
related areas. Similarly, the year-to-year variations were more distinct in the
positively correlated areas, meaning that the data points tended to cluster
by year. For example, 2021 experienced less Harmattan dust and had corre-
spondingly low early rainfall clustered at the bottom-left of the graph. On
the contrary, 2023 experienced high Harmattan dust and had correspond-
ingly high early rainfall, clustered more in the upper right of the graph.
In negatively correlated areas, the dust load remained relatively consistent
across the years in a similar range of AI values. These findings suggest that
in positively correlated areas, as seen mostly in the southwest of the study
area, the years with stronger Harmattan are more reliably associated with
more early rainfall. This relationship appears to be more robust compared to
negatively correlated areas found in the northern regions, because the inverse
relationship of stronger Harmattan leading to less early rainfall was weaker
and less consistent.

As shown in Figure 6, high dust loads and high rainfall are unlikely to
occur simultaneously. For example in 2021, when dust was still retained
in April-May, rainfall remained low in April-May. In 2023, high dust load
in February-March was followed by high rainfall in April-May. The dust
load had declined significantly by then at the areas with high rainfall. This
may indicate that due to rainfall, the dust in the atmosphere is washed
away. Alternatively, there may be an opposite relation that high dust level
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retentions into the rainfall season may suppress rainfall. Observations over
a longer period are required to confirm these dust and rainfall relationships,
and underlying mechanisms require further investigation.

Some studies mention that desert dust acting as cloud condensation nuclei
can suppress rainfall activity (Rosenfeld et al., 2001; Rosenfeld and Nirel,
1996). Although Saharan dust can function as nuclei (Twohy et al., 2009;
Brunner et al., 2021), it remains unclear whether the dust observed in this
region functions as effective nuclei and, if so, whether that impacts the early
rainfall. Whether or not the negative correlations in the northern region
found in this study come from the suppressing effect of desert dust acting as
cloud nuclei also needs further investigation.

In addition to dust dynamics, moisture availability may also contribute
to the observed strong positive correlations in the south and negative corre-
lations in the north. The moisture source in West Africa during the mon-
soon season includes both local evaporation and advection from the Gulf of
Guinea (Gong and Eltahir, 1996). This moisture from the Gulf of Guinea is
transported inland as the monsoon proceeds (Fink et al., 2017). At the In-
tertropical Discontinuity (ITD), convergence occurs between dry Harmattan
winds and moist southwesterlies in the lower atmosphere, triggering rainfall
(Berthou et al., 2019). This convergence zone progresses northward as the
monsoon season advances. As this study focused on early rainfall, it is possi-
ble that limited moisture availability inland in northern regions contributed
to reduced rainfall, exhibiting a negative correlation.

This study assessed the effect of Harmattan primarily through the dust
load observed by UVAI. Consequently, the correlation identified in this study
is restricted to the relationship between dust load and rainfall, leaving room
for future research to explore the direct impact of Harmattan winds on pre-
cipitation, or whether a combined wind–dust effect influences rainfall. Also,
Oluleye and Jimoh (2018) have reported that the evolution of near-surface
wind, variations in sea surface temperature (SST) and ITD are crucial large-
scale circulation systems impacting Harmattan dust transport across West
Africa. The same systems could also be influencing the subsequent rainfall
patterns, independently or together with Harmattan. Therefore, future re-
search should consider looking at large circulation patterns, such as SST and
ITD, beyond the relationship between only dust loads and rainfall.

These are hypothetical explanations of the correlations found between
late Harmattan dust and early rainfall, as the underlying mechanisms are
highly complex and not yet fully understood. A more comprehensive under-
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standing of the atmospheric system is needed to draw definitive conclusions.
Nevertheless, this study still portrayed a high potential for Harmattan dust
in February-March as an indicator of subsequent early rainfall in April-May,
offering valuable insights for farmers in West Africa.

5.2. Influence on cocoa production
The hypothesis of this study came from anecdotal evidence from a local

farmer that stronger Harmattans lead to more precipitation in the following
rainy season. While rainfall reduction acts negatively on cocoa production
(Adet et al., 2024; Mensah et al., 2023), excessive rainfall also leads to poor
production due to the spread of fungal diseases, as experienced in 2023 (En-
ergy & Climate, 2025). Rainfall is critical for cocoa production, and the
findings of this study suggest the potential to forecast early season rainfall
based on late Harmattan dust levels, which could be highly beneficial for
local farming communities for better agricultural planning. In this way, the
results provide scientific support for traditional knowledge. According to
Yoroba et al. (2019), the cocoa production is affected by the major rainy sea-
son from April to July and the short dry season from August to September.
Therefore, although this study mainly focused on early rainfall in April-May,
this period contributes to the onset and total rainfall in the major rainy sea-
son. In that sense, the insights gained in this study remain highly relevant
for cocoa production.

Many studies point out the vulnerability of future cocoa production due
to climate change (Schroth et al., 2016; Delgado-Ospina et al., 2021). The
production levels may fluctuate substantially depending on rainfall patterns
and hence a better understanding of the climatic relationships is important
for cocoa farmers to achieve stable production.

5.3. Limitations
One of the limitations of this study was the restricted number of years

evaluated, due to the availability of S5P/TROPOMI data only from May
2018 onward. As a result, 7 years of data were assessed for the main analysis
and only 6 years of data for temporal pairs with full rainfall. This reduces
the robustness of the calculated correlations and introduces uncertainty. To
enhance the results and acknowledge the variations of dust and rain patterns
over the years, future analyses should incorporate additional years of data
once they are available. Moreover, IMERG Final Run should be used instead

17



of IMERG Late Run for the rainfall data in 2025, in order to keep datasets
consistent and for better quality data.

Also, filtering criteria were applied to UVAI to ensure that only desert
dust was considered among all UV-absorbing aerosols. However, it remains
uncertain whether the filtering process completely isolates dust from other
UV-absorbing aerosols, and whether the average of filtered UVAI over several
months would be an appropriate method to assess the impact of Harmattan
dust per year.

6. Conclusion

This study investigated the relationship between Harmattan dust and
precipitation in the subsequent rainy season using Sentinel-5P TROPOMI
satellite data. Four seasonal pairs of Harmattan dust and rainfall periods
were evaluated, with a focus on the relationship between late Harmattan
(February–March) and early rainfall (April–May). The use of high-resolution
satellite data enabled detailed spatial analysis, enhancing the understanding
of regional climatology in West Africa. Given that correlations with large
scale predictors such as El Niño with rainfall in West Africa are severely
limited, this is, to our knowledge, the first promising seasonal rainfall forecast
method.

The correlation analysis showed that the southwestern regions of Côte
d’Ivoire and southern Liberia have a high positive correlation between late
Harmattan dust and early rainfall. This finding aligns with a local belief that
dustier Harmattans are followed by more precipitation. In contrast, north-
western parts of Ghana and also northern parts of Côte d’Ivoire indicated
negative correlations. Several explanations may support these findings, but
reality could be more complicated than the relations discussed in this study.

These findings are especially important for local cocoa farmers, as cocoa
production is greatly affected by the amount of rainfall. Understanding the
potential link between Harmattan dust and rainfall could support better
seasonal forecasting and agricultural planning.

Overall, this study provides scientific support for local anecdotal evi-
dence about Harmattan strength and subsequent rainfall. The use of high-
resolution satellite data enabled detailed analysis, and the results highlight
significant correlations in the major cocoa-producing areas. However, the
physical relationship between Harmattan dust and subsequent rainfall re-
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mains complex and further research is still required to obtain a more com-
prehensive understanding.

19



Appendix A. Assessing Harmattan Dust Influence on subsequent
Rainfall with a Supplementary Long-Term Dataset

To assess the relationship between Harmattan dust and subsequent rain-
fall, a different dataset was used to look at the impact for longer periods of
time and to assess the differences with using much coarser spatial resolution.

For this, the Absorbing Aerosol Index (AAI) from the Global Ozone Mon-
itoring Experiment-2 (GOME-2) instrument and Carbon Monoxide (CO)
from Measurement of Pollution in the Troposphere (MOPITT) were used to
assess the dust intensity during Harmattan, also applying the same filtering
method as the main study to focus on desert dust. Instead of averaging over
a three-day moving window, these data were averaged over a five-day moving
window as they had more missing values compared to the S5P/TROPOMI
data.

The gridded data for both AAI and CO used for the analysis had spatial
resolutions of 1° × 1°. The difference in resolutions between S5P/TROPOMI
(UVAI) and GOME-2 (AAI) data can be compared in Figure A.7. For cal-
culating the correlation, the filtered AAI data representing desert dust was
refined to align the IMERG rainfall data. The same refining method was
used as the main analysis, but this time for the dust data, by overlaying a
grid matching the spatial resolution of the rainfall data onto the dust data
and extracting the nearest corresponding dust values.

(a) S5P/TROPOMI UVAI (b) GOME-2 AAI

Figure A.7: Comparison of aerosol index (AI) products on May 1, 2020, highlighting the
spatial resolution difference between (a) high-resolution S5P/TROPOMI UVAI and (b)
coarser-resolution GOME-2 AAI.
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Appendix A.1. Comparison of S5P/TROPOMI dataset and GOME-2 & MO-
PITT dataset

The differences between the S5P/TROPOMI and GOME-2 & MOPITT
datasets were compared using filtered dust data of AI (UVAI and AAI).

Figures A.8a and A.9a show differences in the extent of AI and the mean
values of AI classified as dust over the study area (Figure 1) between the two
datasets during the overlapping period from May 2018 to September 2021.
The extent of AI means the total area having positive values of AI, and the
mean is averaged AI over the entire study area. The rolling averages of 14
days are shown for an easier understanding of the characteristics over time.
Figures A.8b and A.9b show the calculated correlations between the two
datasets during the Harmattan period from November to March, which were
0.68 and 0.65 respectively. Generally, GOME-2 & MOPITT data exhibit
higher values in terms of both extent and mean. Because the spatial reso-
lutions are quite different, changes in one grid cell in GOME-2 & MOPITT
data could lead to a large difference.
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(a)

(b)

Figure A.8: Comparison of S5P/TROPOMI data and GOME2-MOPITT Harmattan dust
data in terms of Extent in km2 for study area
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(a)

(b)

Figure A.9: Comparison of S5P/TROPOMI data and GOME2-MOPITT Harmattan dust
data in terms of average UVAI values for study area

When a larger region is taken (for example as the area shown in A.10), the
difference between the two datasets became smaller. Figures A.11a and A.12a
show differences in the extent of AI and the mean values of AI classified as
dust in the larger region over time between the two datasets during the same
overlapping period from May 2018 to September 2021. Again, the rolling
averages of 14 days are shown for an easier understanding of the character-
istics over time. Figures A.11b and A.12b show the calculated correlations
between the two datasets during the Harmattan period from November to
March, which were 0.71 and 0.73 respectively. The correlations between the
two datasets in terms of the extent that AI covers and the mean values over
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the entire region increased as the assessed region became larger. Specifically,
changes in mean AI over time follow a very similar pattern. It can be con-
cluded that potential analysis for larger areas can be performed using coarser
spatial resolution from GOME-2 & MOPITT data, but detailed analysis in
smaller regions requires careful attention.

Figure A.10: A larger region of West Africa used for the analysis
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(a)

(b)

Figure A.11: Comparison of S5P/TROPOMI data and GOME-2 & MOPITT Harmattan
dust data in terms of Extent in km2 for the region shown in Figure A.10
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(a)

(b)

Figure A.12: Comparison of S5P/TROPOMI data and GOME2-MOPITT Harmattan
dust data in terms of average UVAI values for the region shown in Figure A.10

Appendix A.2. Harmattan dust and rainfall relations
Acknowledging the lack of details due to the difference in the resolution,

the correlation between Harmattan dust and subsequent rainfall for the same
four seasonal pairs mentioned in the main research using GOME-2 & MO-
PITT data is presented.

Figure A.13 shows the correlation calculated for the impact of late Har-
mattan (February-March) on the subsequent early rainfall (April-May) pe-
riod. A similar high positive correlation pattern was observed as the correla-
tion with the S5P/TROPOMI data analysis in southern Liberia and south-
western Côte d’Ivoire. The northwestern regions of Côte d’Ivoire exhibit a
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negative correlation, which was again observed in the S5P/TROPOMI anal-
ysis. These regions also show high statistical significance as seen in Figure
A.14. However, a large part of eastern Ghana exhibits a positive correlation
which is not consistent with what was observed in the main study especially
in the northern regions. The reason for these differences is unknown and
needs further investigation.

(a) Positive Correlation

(b) Negative Correlation

Figure A.13: Calculated Pearson’s r correlation coefficients using GOME-2 & MOPITT
data across Liberia, Côte d’Ivoire and Ghana for late Harmattan dust (February-March)
and early rainfall (April-May) for (a) positive correlation and (b) negative correlation.
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(a) Positively correlated areas

(b) Negatively correlated areas

Figure A.14: Statistical significance levels (80%, 90%, 95%, 99%, and not significant)
for the Pearson’s r correlation between late Harmattan dust (February–March) and early
rainfall (April–May) across Liberia, Côte d’Ivoire, and Ghana, for areas with (a) positive
and (b) negative correlations.

Figure A.15 shows the calculated Pearson correlation coefficients between
full Harmattan (November-March) and full rainfall (April-September) using
GOME-2 & MOPITT data. Positive correlations were observed almost en-
tirely over the study area, and strong positive correlations in northeastern
Ghana and eastern Côte d’Ivoire. Negative correlations are only observed
weakly at the coastal regions in the south of the study area. Figure A.16b
shows the corresponding statistical significant test results. High statistical
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significance is observed at the highly correlated areas in northeastern Ghana
and eastern Côte d’Ivoire. The very edge of the coast in Côte d’Ivoire also
exhibits statistical significance.

(a) Positive Correlation

(b) Negative Correlation

Figure A.15: Calculated Pearson’s r correlation coefficients using GOME-2 & MOPITT
data across Liberia, Côte d’Ivoire and Ghana for full Harmattan dust (November-March)
and full rainfall (April-September) for (a) positive correlation and (b) negative correlation.
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(a) Positively correlated areas

(b) Negatively correlated areas

Figure A.16: Statistical significance levels (80%, 90%, 95%, 99%, and not significant)
for the Pearson’s r correlation between full Harmattan dust (November–March) and full
rainfall (April–September) across Liberia, Côte d’Ivoire, and Ghana, for areas with (a)
positive and (b) negative correlations.

Figure A.17 shows the calculated Pearson correlation coefficients be-
tween full Harmattan (November-March) and early rainfall (April-May) using
GOME-2 & MOPITT data. The correlation patterns were similar to the one
found for late Harmattan and early rainfall (Figure A.13). Positive correla-
tions were observed in the southern and eastern Côte d’Ivoire. Almost the
entire area of Liberia and Ghana exhibits positive correlations as well. The
correlations were strongest at southwestern Côte d’Ivoire, southern Liberia,
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eastern Côte d’Ivoire, and central parts of northern Ghana. Negative corre-
lations were observed in the northern regions of Côte d’Ivoire, although these
are generally weak. Figure A.18b shows the corresponding statistical signif-
icant test results. High statistical significance was observed at the locations
of high positive correlations, in southwestern Côte d’Ivoire, southern Liberia,
eastern Côte d’Ivoire, and central parts of northern Ghana.

(a) Positive Correlation

(b) Negative Correlation

Figure A.17: Calculated Pearson’s r correlation coefficients using GOME-2 & MOPITT
data across Liberia, Côte d’Ivoire and Ghana for full Harmattan dust (November-March)
and early rainfall (April-May) for (a) positive correlation and (b) negative correlation.
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(a) Positively correlated areas

(b) Negatively correlated areas

Figure A.18: Statistical significance levels (80%, 90%, 95%, 99%, and not significant) for
the Pearson’s r correlation between full Harmattan dust (November–March) and early
rainfall (April–May) across Liberia, Côte d’Ivoire, and Ghana, for areas with (a) positive
and (b) negative correlations.

Figure A.19 shows the calculated Pearson correlation coefficients between
late Harmattan (February-March) and early rainfall (April-September) us-
ing GOME-2 & MOPITT data. The correlation patterns were similar to the
one found for full Harmattan and full rainfall (Figure A.15), showing posi-
tive correlations throughout study area. Some parts in the south near the
coast and northern Liberia showed weak negative correlations. Figure A.20b
shows the corresponding statistical significant test results. High statistical
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significance was observed in northeastern Ghana, central and western Côte
d’Ivoire where positive correlations were found. No statistical significance
was found for negatively correlated regions.

(a) Positive Correlation

(b) Negative Correlation

Figure A.19: Calculated Pearson’s r correlation coefficients using GOME-2 & MOPITT
data across Liberia, Côte d’Ivoire and Ghana for late Harmattan dust (February-March)
and full rainfall (April-September) for (a) positive correlation and (b) negative correlation.
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(a) Positively correlated areas

(b) Negatively correlated areas

Figure A.20: Statistical significance levels (80%, 90%, 95%, 99%, and not significant)
for the Pearson’s r correlation between late Harmattan dust (February–March) and full
rainfall (April–September) across Liberia, Côte d’Ivoire, and Ghana, for areas with (a)
positive and (b) negative correlations.

Appendix B. Evaluating the Aerosol Index as a Representation for
Harmattan Impact

To assess whether the filtered UVAI values taken from S5P/TROPOMI
data are good representations of Harmattan dust impact, they were compared
with other datasets that could be indicative of Harmattan dust intensity.
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Appendix B.1. Comparison with Aerosol Optical Depth
The filtered UVAI data were compared with Aerosol Optical Depth

(AOD) data from the AErosol RObotic NETwork project (AERONET).
AOD is a quantitative measure of the extinction of solar radiation by aerosol
particles in the atmosphere, showing how much light is prevented from pass-
ing through because of aerosols (National Aeronautics and Space Adminis-
tration). AERONET provides ground-based remote sensing data using sun
photometers that measure AOD at multiple wavelengths (Giles et al., 2019).
There were two AERONET stations within the study area, Koforidua in
Ghana and Lamto in Côte d’Ivoire, and Level 2 Quality Assured data from
these two stations were used for the analysis. For UVAI data, the mean value
within a 5km radius around each station location was used. This is based on
a method employed in another study comparing AOD between AERONET
and MODIS datasets (S, tefănie et al., 2023).

Before the comparison, AOD data was filtered using 2D-space aerosol
classification reported in Mao et al. (2019) to ensure the AOD data also
represent desert dust and not other aerosols. With this filtering step, non-
dust aerosol data points were removed, although most of the data points were
already classified as desert dust.

Figures B.21a and B.21b show the timeseries in UVAI and AOD over the
period of 2018 to 2024 for the days available for the Koforidua and Lamto sta-
tions respectively. These values have been standardized for comparison. This
presents that UVAI increases around the same time as AOD increases during
the Harmattan periods, though the missing data introduce uncertainties.
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(a) Koforidua station

(b) Lamto station

Figure B.21: Comparison of changes in AERONET AOD and TROPOMI UVAI over time.
Both data have been standardized for comparison [-].

Figures B.22 and B.23 illustrate the correlation between standardized
UVAI and AOD values on the matching dates for the Koforidua and Lamto
stations in (a), and (b) show the monthly mean values from December to
March. Monthly means were compared to address gaps in daily data, as
well as to align with analysis in the main study being conducted in monthly
means. December to March was selected to account for the Harmattan pe-
riods, November was excluded due to an insufficient number of data points
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though this was included in the main study.
At the Koforidua station, the daily correlation yielded a Pearson corre-

lation coefficient of 0.80, while the monthly correlation was slightly higher
at 0.82. At the Lamto station, the daily and monthly correlation coefficients
were 0.62 and 0.75, respectively. These results indicate a strong positive
correlation between AOD and UVAI, suggesting that UVAI obtained from
S5P/TROPOMI data effectively captures the presence and variability of Har-
mattan dust.

(a) (b)

Figure B.22: Comparison of UVAI data from S5P/TROPOMI and AOD data from
AERONET at Koforidua station, Ghana: (a) daily data, (b) averaged monthly data for
the months in December to March
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(a) (b)

Figure B.23: Comparison of UVAI data from S5P/TROPOMI and AOD data from
AERONET at Lamto station, Ghana: (a) daily data, (b) averaged monthly data for
the months in December to March

Appendix B.2. Comparison with Visibility
The filtered UVAI data were also compared with the visibility data for

the Koforidua station. The same 5 km radius mean data were used for UVAI.
The visibility data from Global Surface Summary of the Day were obtained
from the National Oceanic and Atmospheric Administration (NOAA), which
records the visibility in miles. Figure B.24 shows the correlation between
UVAI from S5P/TROPOMI and the visibility data for daily and monthly
correlations (December-March). The daily correlation yielded a Pearson cor-
relation coefficient of -0.53, while the monthly correlation was slightly weaker
at -0.51. This shows a moderate correlation that when the UVAI value is high,
the visibility decreases. In another study comparing the values of TOMS AI
and visibility, the correlation was much higher during Harmattan (Anuforom
et al., 2007). One of the reasons why this correlation was weaker could be due
to the fact that the visibility data was not filtered. Hence, the visibility data
include all kinds of aerosol impact, while the filtered UVAI data represent
only the desert dust. In the previous study with the TOMS AI compari-
son with visibility, the TOMS AI values were not treated and included all
types of absorbing aerosols. Also, the product documentation mentions: “For
some stations/countries, the visibility will sometimes ’cluster’ around a value
(such as 10 miles) due to the practice of not reporting visibilities greater than
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certain distances” (NATIONAL CENTERS FOR ENVIRONMENTAL IN-
FORMATION, 2020). Therefore, the quality of the data may be unreliable
on certain days.

(a) (b)

Figure B.24: UVAI vs. Visibility at Koforidua station, Ghana

Appendix C. Results of different temporal pairs of Harmattan
dust and subsequent rainfall periods

Here, three of the four seasonal pairs of Harmattan dust and subsequent
rainfall that were not included in the main study are presented. Although
correlation can be found in these temporal pairs as well, averaging over a
long period of time could cause significant uncertainties and more years of
data is needed to understand the relations further.

Appendix C.1. Full Harmattan to Full rainfall
Figure C.25 shows the correlation between full Harmattan (November-

March) and full rainfall (April-September). High positive correlations were
observed in the southwestern regions of Côte d’Ivoire and southern Liberia,
resembling those found in the seasonal pair of late Harmattan and early
rainfall, though weaker in magnitude. Positive correlations were observed in
the northern and central regions in Côte d’Ivoire, as well as regions above 7 °N
in Ghana. In contrast, high negative correlations were observed in northern
Liberia, northwestern Côte d’Ivoire, and southern Ghana. Figure C.26 shows
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the statistical significance of the calculated correlations. Southern regions in
Liberia and northern regions in Côte d’Ivoire in the positively correlated area
showed high statistical significance. Parts of western Côte d’Ivoire, parts of
northern Liberia, and southeastern Ghana in the negatively correlated area
showed high statistical significance, but only in limited regions.

(a) Positive Correlation

(b) Negative Correlation

Figure C.25: Calculated Pearson’s r correlation coefficients across Liberia, Côte d’Ivoire
and Ghana for full Harmattan dust (November-March) and full rainfall (April-September)
for (a) positive correlation and (b) negative correlation.
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(a) Positively correlated areas

(b) Negatively correlated areas

Figure C.26: Statistical significance levels (80%, 90%, 95%, 99%, and not significant)
for the Pearson’s r correlation between full Harmattan dust (November–March) and full
rainfall (April–September) across Liberia, Côte d’Ivoire, and Ghana, for areas with (a)
positive and (b) negative correlations.

Figure C.27 shows the distribution of pixels with the confidence level
above 90% correlations between the full Harmattan (November-March) and
full rainfall (April-September) across the years. The full Harmattan period
(November–March) spans two calendar years; the year label refers to the
starting November (e.g., 2018 represents November 2018 to March 2019).
Only the years up to 2023 is shown because the rainfall 2025 July-September
has not occurred yet. The variance of positively correlated pixels was signif-
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icantly lower compared to the negatively correlated pixels. The correlation
of positively correlated pixels was much higher than that of negatively cor-
related pixels as well.
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(a) Pixels with above 90% confidence level positive correlations. The dashed black
line indicates the linear regression trend (y = 4.876x – 1.300), with a Pearson’s
correlation coefficient of r = 0.642.

(b) Pixels with above 90% confidence level negative correlations. The dashed black
line indicates the linear regression trend (y = -2.140x + 8.785), with a Pearson’s
correlation coefficient of r = -0.143.

Figure C.27: Relationship between November–March mean dust, represented by Aerosol
Index (AI), and April–September mean rainfall for pixels with (a) statistically significant
positive correlations (p < 0.10) and (b) statistically significant negative correlations (p <
0.10) across all years (2018–2023(up to September 2024 rainfall)). Each point represents
a spatially averaged value for a given year, color-coded by year.
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Appendix C.2. Full Harmattan to Early rainfall
Figure C.28 shows the correlation between full Harmattan (November-

March) and early rainfall (April-May). The overall correlation was weaker
compared to other seasonal pairs. Positive correlations were observed in the
central to east regions of Côte d’Ivoire. Negative correlations were observed
at the northwestern regions of Côte d’Ivoire, and southern Ghana also ex-
hibited a weak negative correlation. Negative correlations were also found
weakly in northern Liberia and some parts of northern Ghana. Figure C.29
shows the statistical significance of the calculated correlations. High statis-
tical significance is observed only in northern regions of Côte d’Ivoire above
8 °N.
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(a) Positive correlation

(b) Negative correlation

Figure C.28: Calculated Pearson’s r correlation coefficients across Liberia, Côte d’Ivoire
and Ghana for full Harmattan dust (November-March) and early rainfall (April-May) for
(a) positive correlation and (b) negative correlation.
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(a) Positively correlated areas

(b) Negatively correlated areas

Figure C.29: Statistical significance levels (80%, 90%, 95%, 99%, and not significant) for
the Pearson’s r correlation between full Harmattan dust (November–March) and early
rainfall (April–May) across Liberia, Côte d’Ivoire, and Ghana, for areas with (a) positive
and (b) negative correlations.

Figure C.30 shows the distribution of pixels with the confidence level
above 90% correlations between the full Harmattan (November-March) and
early rainfall (April-May) across the years. For positively correlated pixels,
the distribution indicated a high correlation of r = 0.711. The values were
clustered around the AI values between 1.1 and 1.4 [-], correspondingly, rain-
fall of 1.8 to 6 [mm/d]. For negatively correlated pixels, the distribution
indicated a moderate correlation of r = -0.504. The negatively correlated
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pixels indicated a wider spread approximately from 1 to 1.7 [-] compared to
the positively correlated pixels.
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(a) Pixels with above 90% confidence level positive correlations. The dashed black
line indicates the linear regression trend (y = 8.712x – 7.198), with a Pearson’s
correlation coefficient of r = 0.711.

(b) Pixels with above 90% confidence level negative correlations. The dashed black
line indicates the linear regression trend (y = -3.528x + 7.475), with a Pearson’s
correlation coefficient of r = -0.504.

Figure C.30: Relationship between November–March mean dust, represented by Aerosol
Index (AI), and April–May mean rainfall for pixels with (a) statistically significant positive
correlations (p < 0.10) and (b) statistically significant negative correlations (p < 0.10)
across all years (2018–2024 (up to May 2025 rainfall)). Each point represents a spatially
averaged value for a given year, color-coded by year.
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Appendix C.3. Late Harmattan to Full rainfall
Figure C.31 shows the correlation between late Harmattan (February-

March) and full rainfall (April-September). The northern and southern re-
gions of the study area exhibited positive correlations. The central regions
between 7°N and 9 °N exhibited negative correlations. Figure C.32 shows the
statistical significance of the calculated correlations. Some regions in north-
ern and central Côte d’Ivoire, and southern Liberia exhibited high statistical
significance.
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(a) Positive correlation

(b) Negative correlation

Figure C.31: Calculated Pearson’s r correlation coefficients across Liberia, Côte d’Ivoire
and Ghana for late Harmattan dust (February-March) and full rainfall (April-September)
for (a) positive correlation and (b) negative correlation.
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(a) Positively correlated areas

(b) Negatively correlated areas

Figure C.32: Statistical significance levels (80%, 90%, 95%, 99%, and not significant)
for the Pearson’s r correlation between late Harmattan dust (February–March) and full
rainfall (April–September) across Liberia, Côte d’Ivoire, and Ghana, for areas with (a)
positive and (b) negative correlations.

Figure C.33 shows the distribution of pixels with the confidence level
above 90% correlations between the late Harmattan (February-March) and
full rainfall (April-September) across the years. For positively correlated
pixels, the distribution indicate the correlation was moderately weak with
r = 0.393. Also, the spread of rainfall range was tight, most pixels falling
between 2 to 6 mm/d. For negatively correlated pixels, the correlation of the
distribution was also moderately weak, with r = -0.406. More outliers were
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observed for the negatively correlated pixels.
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(a) Pixels with above 90% confidence level positive correlations. The dashed black
line indicates the linear regression trend (y = 1.289x – 2.637), with a Pearson’s
correlation coefficient of r = 0.393.

(b) Pixels with above 90% confidence level negative correlations. The dashed black
line indicates the linear regression trend (y = -3.772x + 10.443), with a Pearson’s
correlation coefficient of r = -0.406.

Figure C.33: Relationship between February–March mean dust, represented by Aerosol
Index (AI), and April–September mean rainfall for pixels with (a) statistically significant
positive correlations (p < 0.10) and (b) statistically significant negative correlations (p <
0.10) across all years (2019–2023 (up to September 2024 rainfall)). Each point represents
a spatially averaged value for a given year, color-coded by year.
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Appendix D. Examples of variations of late Harmattan dust and
early rainfall relations over the years for the most
strongly correlated pixels

Figure D.34 shows the changes in the relation between late Harmattan
dust (February-March) and early rainfall (April-May) for the pixels that
indicated the strongest correlations as examples. The strongest correlations
were found at 7.72 °N, 4.41 °W for the positive correlation of r = 0.95 and
at 9.31 °N, 7.37 °W for the negative correlation of r = -0.98.
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(a)

(b)

Figure D.34: Examples of yearly variations in late Harmattan (February-March) dust and
early rainfall (April-May) for the most strongly correlated pixels. (a) for the positively
correlated pixel at 7.72 °N, 4.41 °W. (b) for the negatively correlated pixel at 9.31 °N, 7.37
°W.
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Appendix E. Spatial distribution of (February-March) dust and
(April-May) rainfall

Figure E.35 shows the spatial distribution the mean dust in February-
March and April-May, and mean rainfall in April-May across the study area
from 2019 to 2025. The years with a high dust load in February-March
generally exhibited a lower dust load in April-May, especially in coastal areas.
Correspondingly, the areas affected by this relation exhibited higher early
rainfall in April-May. The rainfall data for 2025 is based on IMERG Late
data, whereas data for other years comes from IMERG Final data. As a
result, the 2025 data may have greater uncertainties compared to other years.
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Figure E.35: Spatial distribution of the mean dust, represented by Aerosol Index (AI), for
February–March and April–May, and mean rainfall for April–May over the study area for
investigated years 2019-2025.
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Appendix E.1. Granger Causality Test
Granger causality test examines whether a time series can predict another,

although this is not a true causation (Granger, 1969). This statistical test has
been widely applied in different disciplines and recent applications include
detecting climate teleconnections in climate science (Silva et al., 2021).

This test was conducted to see the predictability of rainfall using Har-
mattan dust, which evaluates whether past values of one time series improve
the prediction of another.

For the test, two regressions are performed:

1. Restricted model (rainfall predicted only from its own past values):

Yt = α0 +

p∑
i=1

αiYt−i + εt

2. Unrestricted model (rainfall predicted from both its own and dust’s
past values):

Yt = β0 +

p∑
i=1

βiYt−i +

p∑
j=1

γjXt−j + ηt

In this study, Y (t): Rainfall and X(t): Harmattan dust (UVAI mean
values)

The Granger causality test compares the residual sum of squares (SSR)
from the restricted and unrestricted models using the F-statistic:

F =
(SSRrestricted − SSRunrestricted)

SSRunrestricted/(n− k)

where SSRrestricted: Sum of squared residuals from the restricted model,
SSRunrestricted: Sum of squared residuals from the unrestricted model, n:
Number of observations, and k: Number of parameters in the unrestricted
model

The resulting F-statistic is used to compute the p-value. If the p-value is
below a certain significance level, the null hypothesis is rejected, and conclude
that X Granger-causes Y (Shojaie and Fox, 2022).
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Appendix E.1.1. Results
Figure E.36 shows the results of the Granger causality test for the re-

lations between late Harmattan and early rainfall, highlighting areas with
statistically significant relationships. In parts of the southwestern coastal re-
gion, especially along the coast in Côte d’Ivoire and along the border between
Côte d’Ivoire and Liberia, high statistical significance is observed. These lo-
cation showed strong positive correlations between late Harmattan dust and
early rainfall. This means that the additional information provided by dust
data improves the prediction of rainfall, compared to using only the past
rainfall data for prediction. This suggests that early precipitation can po-
tentially be predicted from dust in the late Harmattan. Northwestern to
central Ghana and northwestern Côte d’Ivoire, where negative correlations
between late Harmattan and early rainfall was observed, also indicate sta-
tistical significance from the Granger causality test in some parts, but not
for all regions. Nevertheless, the spatial patterns of statistically significant
Granger causality do not fully correspond to those of high correlated areas
observed in Figure 3. Some locations without strong correlations still exhibit
statistically significant Granger causality, such as the southeastern regions of
Ghana. Overall, statistically significant locations are scattered throughout
the study area, but majority of the areas did not show significance.

Figure E.36: Granger Causality Test statistical significance across Liberia, Côte d’Ivoire
and Ghana for late Harmattan dust (February-March) and early rainfall (April-May) at
different confidence levels of 80, 90, 95, 99%
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