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Abstract

In nuclear engineering, safety is always considered as the highest priority. Due to the complicated design of
nuclear reactors, many complex phenomena can cause points of failure. In the case of nuclear fuel rods, the
axial flow that cools the rods can induce a vibration due to the turbulent nature of the flow. The turbulence-
induced vibrations create small but significant vibration amplitudes, which in turn can cause structural
effects such as fatigue problems, fretting wear, and stress corrosion cracking. For this reason, turbulence-
induced vibrations have been the subject of many studies. While earlier studies have focussed on analytical
models, it became clear that effort must be put in for the development of computational methods, so called
Fluid-Structure Interaction (FSI) simulations.

While DNS and LES can predict pressure fluctuations, these simulations are typically too expensive for
industrial applications in FSI. Instead, a URANS approach coupled with a pressure fluctuation model can
be used, to reduce the computational cost. This approach has been used previously, and showed promising
initial results, but it generally showed an underestimation of the vibration amplitude. For this reason, a new
pressure fluctuation model, called AniPFM (Anisotropic Pressure Fluctuation Model), was developed in the
thesis. First, it models velocity fluctuations, which was based on existing methods. In turn, these velocity
fluctuations are used to solve for the pressure fluctuations.

The AniPFM aims to improve the prediction of the pressure fluctuations in several ways. Most notably,
whereas previous iterations could only represent the turbulence as isotropic, in the current model anisotropic
Reynolds stresses can be reconstructed. Furthermore, only the resolved scales are represented by the veloc-
ity fluctuations. Finally, several time correlation methods based on the transport of turbulence have been
introduced, next to several other smaller improvements.

The AniPFM has been tested out on several testcases, namely two purely CFD test cases, and one FSI case.
From simulating decaying homogeneous isotropic turbulence, it was found that the modelling of the tem-
poral decay of the turbulence was vastly improved. Furthermore, it showed excellent agreement with both
experimental and DNS data in terms of the pressure-wavenumber spectrum, and the root-mean-squared
pressure fluctuations. From turbulent channel flow simulations, it was found that for anisotropic turbulence,
the pressure fluctuations are overestimated, but still within a respectable range of 9% compared to DNS data.
Finally, the fluid-structure interaction of a brass beam in turbulent water is simulated, which showed the abil-
ity of the AniPFM to predict turbulence-induced vibrations. The AniPFM showed errors w.r.t. the replicated
experiment that were in the similar range as LES calculations, while using less computational resources. The
AniPFM simulations gave an error range of 15-60% w.r.t. experimental data over the full range of simulated
flow velocities, whereas a previously used pressure fluctuation model underestimated the RMS amplitude by
a factor of six. While further improvements can certainly be made to the AniPFM, it has already showcased
its potential for lower cost simulations of turbulence-induced vibrations in nuclear applications.
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1
Introduction

Nuclear energy has a short but very packed history, and it has become essential to generate the demand
for energy of the modern world. It produces roughly 10% of the world’s electricity, and nuclear energy is
the second-largest generator of low-carbon energy [19]. While nuclear energy provides a large part of the
world’s clean energy, it is still often not perceived well by the general public. This is among others due to
the nuclear waste that is produced by nuclear reactors, and its connotations with nuclear weapons. Next to
this, preceding incidents regarding nuclear reactors, such as the incidents in Chernobyl and Fukushima, have
given nuclear energy a bad name regarding safety.

Regardless of the public perception, studies have actually shown that the number of fatalities in nuclear
energy is far less than for fossil fuels such as coal, oil and gas, and even fewer fatalities than green energy
sources such as wind- and hydropower [20, 21]. However, it also showed that incidents are much more ex-
pensive for nuclear energy compared to other energy sources. Safety is inherent in the culture surrounding
nuclear reactor operators, and there is a lot of research done by corporations, research institutes, and univer-
sities in order to further increase the safety of nuclear reactors.

A particularly important topic in the field of nuclear safety is fuel rods. Fuel rods are submerged in a coolant
liquid, such as water or liquid metal. For maximal efficiency, the coolant liquid typically flows axially over the
fuel rods. While the axial flow leads to efficient cooling of the fuel rods, it can also cause Turbulence-Induced
Vibrations (TIV), causing the fuel rods to vibrate. This phenomenon plays a critical role in terms of nuclear
safety, as it can cause structural effects such as fatigue problems, fretting wear, and stress corrosion cracking
[22, 23].

The phenomenon has been studied since nuclear reactors started being developed in the 1950s, and it has
been the root of several incidents [22, 24]. In the previous century, an emphasis was put on experiments in this
field, as well as using semi-empirical relations to establish a relation between the amplitude of vibration and
relevant flow parameters, such as the flow velocity and the density of the fluid, as well as structural parameters
such as the diameter of the fuel rod, the natural frequency, and the damping ratio of the fuel rod [25–29]. From
these studies, results showed quite large differences between theory and experiments, the semi-empirical
relations gave a maximal order of accuracy of one order of magnitude. Furthermore, the studies were often
limited to only one fuel rod, which gives uncertainty regarding extending the semi-empirical methods to
bundles with multiple fuel rods.

More recently, due to the larger availability of computational resources, the use of Fluid-Structure Interac-
tion (FSI) simulations applied to fuel rods has received more interest. Liu et al. [30–32] consider a simplified
approach where the forces of the fluid on a fuel rod are computed by using Large Eddy Simulation (LES), and
the fuel rods are approximated using one-dimensional beam models. Another approach was to simulate the
fluid using LES while considering the rod as rigid, and then to apply the forces of the fluid on the rod in a
subsequent Computational Structural Mechanics (CSM) code [33, 34].

While LES and Direct Numerical Simulations (DNS) are much more accurate than URANS simulations,
these simulations are also much more costly, and it is currently not realistic for corporations to use these type
of simulations for complex FSI simulations. This is why it is important to investigate the abilities of URANS
in the application for FSI simulations of TIV on fuel rods. De Ridder et al. [16, 35] showed that the modal
response of a fuel rod can be accurately calculated using URANS simulations. This was confirmed in further
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studies, and extended to a bundle of multiple fuel rods [4]. While URANS simulations can accurately predict
the modal response for the case of TIV on fuel rods, the amplitude of the vibrations is severely underpredicted.
This is because URANS only calculates the ensemble average forces on the fuel rod, and it does not calculate
the forces on the fuel rod due to instantaneous turbulent pressure fluctuations.

To remedy this, a Pressure Fluctuation Model (PFM) was proposed by Kottapalli [14], and it was incor-
porated into the numerical framework NRG-FSIFOAM, which is a framework for FSI simulations based on
open-source solvers [4]. In this framework, the PFM is used to simulate the pressure fluctuations based on
URANS data, these fluctuations are then together with the ensemble-average pressure imposed on the fuel
rod as an external excitation for the CSM solver. This method was further investigated and from comparison
to experimental data it was found that the current PFM shows amplitudes in the same order of magnitude,
but it did not give the required accuracy yet [14, 36]. The goal of the current thesis is to develop an improved
pressure fluctuation model, in order to increase the accuracy in the prediction of vibration amplitude through
FSI-simulations for nuclear fuel rods subjected to axial flow. In order to run FSI-simulations, many different
parts need to work together, and they need to exchange various types of data. In fig. 1.1, an overview is given
of the interaction between the various solvers.

Figure 1.1: A flow-chart of the global interactions between the several numerical solvers.

In the coming sections of this chapter, first, an introduction to the workings of a nuclear reactor is given,
then several types of fluid-induced vibrations are discussed. After this, the research objectives of this thesis
are given, and finally, an overview of the thesis is given.

1.1. Nuclear Reactor
As the thesis will be centered around the application of a pressure fluctuation model to nuclear fuel rods, a
review on the workings of nuclear reactors is called for. There are different generations of nuclear reactors,
but the focus is put on generation three reactors, as these reactors are currently in commercial use. This
generation of reactors can be divided into different categories, based on the method that is used for cooling.
The current types are Fast Breeder Reactors, Pressurized Heavy Water Reactors, Gas Cooled Reactors, Boiling
Water Reactors (BWR), and finally Pressurized Water Reactors (PWR). The latter is the most commonly used
reactor. A sketch of this type of reactor is given in fig. 1.2, however, the containment structure varies for the
different categories of reactors.

The fuel rods are shown in the reactor pressure vessel in fig. 1.2. In fig. 1.3, a more detailed sketch with
the components of the reactor pressure vessel is shown. In the fuel rods that are part of the fuel assembly
as shown in fig. 1.3, pellets of uranium are stacked together, and fission takes place. The surrounding water
acts both as a coolant and as a means to moderate the velocity of the neutrons, such that the chain reaction
is sustained. The heat created by the fission is transferred from the rods to the coolant, which is transported
to the steam generator. The steam generates electricity through a turbine, and it is condensed again to go



1.2. Fluid Induced Vibrations 3

Figure 1.2: A sketch of the workings of a pressurized water reactor [1].

through the same loop. For the focus of the thesis, the reactor pressure vessel is of most interest, as the fuel
rods are located here. Because they are submerged in a coolant, fluid-structure interaction phenomena can
occur, which typically results in vibrations. Next to the fuel rods, excitation mechanisms are also found in
the steam generator. A distinction can be made in the type of flows that characterize the different stages of a
nuclear reactor. For steam generators, two-phase flow is typically considered. For the reactor pressure vessel,
the flow can be fully single-phase as for PWRs, or also two-phase as for BWRs. As a new model for pressure
fluctuations will be implemented during the thesis, only single-phase flows are considered, due to its more
simplistic nature. Furthermore, only elements of the reactor pressure vessel or simplifications thereof are
considered, such as the fuel rods. These elements are only considered in axial flow to limit the scope of the
thesis.

1.2. Fluid Induced Vibrations
As mentioned in section 1.1, the coolant can induce vibrations to the fuel rods which are located in the reactor
pressure vessel. The vibrations of the fuel rods typically have multiple causes, these excitation mechanisms
have been classified such that they can be studied individually, and the underlying physical problem can be
addressed. The different excitation mechanisms were classified and described by Pettigrew et al. [37], and
they are shortly introduced below:

• Fluid Elastic Instability: These instabilities result from the absorption of energy of the structure from
the fluid induced dynamic forces. When stable, the structure dissipates enough energy through damp-
ing, such that the dissipated energy is larger than the absorbed energy from the flow. For a high enough
flow velocity, this damping dissipates not enough energy, and the coupling becomes unstable. This
typically only happens in cross flow situations, and it is usually not a problem for components that are
subjected to axial flow, such as fuel rods [37].

• Periodic Vortex Shedding: This phenomenon typically occurs when structures are subjected to cross
flow, and it happens downstream closely to the structures. The periodic vortices in turn create periodic
forces on the structure. Resonance can be induced if the vortex shedding frequency is near the eigen-
frequency of the structure, causing large vibration amplitudes. This phenomenon typically happens at
high-density fluid flows, due to the large induced periodic forces [37].

• Acoustic Resonance: This is closely related with periodic vortex shedding. It occurs when the vortex
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Figure 1.3: A more detailed sketch of the fuel rods in the reactor pressure vessel [2].

shedding frequency is equal to the natural frequency of acoustic cavities that are formed in tube bundle
structures. Due to the acoustic resonance, intense noise is caused and this can give severe structural
damage. It can also happen in axial flow, caused by periodic pressure pulsations from e.g. pumps, or
by acoustic noise generated by other piping elements such as valves [37].

• Turbulence-Induced Vibrations: This phenomenon is the main excitation mechanism for structures
subjected to axial flow. Turbulence can be introduced by upstream elements such as nozzles or elbows,
or it can be introduced locally as it flows around the structure. The turbulence causes random pressure
fluctuations on the surface of the structure, which forces the structure into vibration. It is also impor-
tant for structures in cross-flow, as it can induce a large enough vibration to cause long-term fretting
wear damage [37].

All the mentioned excitation mechanisms are still active research areas within nuclear engineering, and
they are interesting to say the least. However, the objective of this thesis is to improve the pressure fluctua-
tion model that is used to model turbulence-induced vibrations. Thus, TIV is the only considered excitation
mechanism in this thesis. In particular, only nuclear fuel rods, similar elements, or simplifications thereof,
subjected to single-phase axial flow are considered.

1.3. Research Objectives
As mentioned previously in the chapter introduction, the goal of the thesis is to develop an improved pressure
fluctuation model, in order to increase the accuracy in the prediction of vibration amplitude through FSI-
simulations for nuclear fuel rods subjected to axial flow. Here, this goal is separated into two main objectives,
with a more detailed description:

To improve the current pressure fluctuation model, in particular the accuracy of the root-
mean-squared pressure fluctuations and the pressure fluctuation wavenumber spectrum in
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the near wall vicinity, by using more realistic assumptions regarding (an)isotropy, the energy
spectrum and time correlation.

To improve the FSI modelling of nuclear fuel rods in axial flow using URANS, in particular the
RMS amplitude and the amplitude frequency spectrum, by utilizing a more accurate pressure
fluctuation model.

In order to achieve the first main objective, several sub-objectives must be met. These objectives are
based on the desired capabilities of the new pressure fluctuation model, and achieving these sub-objectives
results in an implemented pressure fluctuation model. These sub-objectives are shown below:

To implement a more accurate time correlation, by implementing an exponential relation and by
modelling convection through the linearized momentum equation.

To model anisotropic energy spectra, by scaling and transforming an isotropic spectrum according
to the Reynolds stress tensor.

To achieve the second main objective, several sub-goals must be achieved as well. In order to improve
the FSI modelling, it is necessary to implement and validate FSI simulations. Furthermore, the appropriate
URANS model must be selected that can accurately represent the near-wall flow around fuel rods. By achiev-
ing the following sub-goals, the second main objective can be achieved:

To evaluate the effect of the resolved Reynolds stress tensor on the pressure fluctuations, by using
several URANS turbulence models on a simplified geometry.

To model the fluid-structure interaction physics of a fuel rod in axial flow, by using the NRG-
FSIFOAM framework and a pressure fluctuation model.

To validate the results of FSI simulations of a fuel rod in axial flow, by comparing it to experimental
data with the same set-up.

1.4. Overview of the Report
In this chapter, the motivation for the thesis topic was given, as well as an overview of the workings of nuclear
reactors. In chapter 2, the theory of fluid-structure interaction is discussed, namely the governing physics
for both domains and the interface, as well as the implementation of NRG-FSIFOAM and its verification. In
chapter 3, an overview is given of available Computational Fluid Dynamics (CFD) methods and turbulence
characteristics, and several URANS methods are discussed in more detail. In chapter 4, models for synthetic
turbulence are discussed in detail, as well as the current implementation in NRG-FSIFOAM. The new pressure
fluctuation model, called aniPFM, is explained in chapter 5. The verification & validation, as well as the
motivation for certain modelling choices, is given in chapter 6. After this, the new pressure fluctuation model
is applied to an FSI case, and the results are discussed in chapter 7. Finally, the main conclusions are wrapped
up in chapter 8, and recommendations are given for future work on this topic.





2
Fluid-Structure Interaction

As mentioned in chapter 1, the thesis is focused on improving the prediction of the vibration amplitude of
nuclear fuel rods in axial flow, using Fluid-Structure Interaction (FSI) simulations. To simulate fluid-structure
interaction, a good review of the basics of FSI is necessary, such that the correct methodologies can be chosen
and justified. In this chapter, the governing physics are discussed, as well as the boundary conditions between
the interfaces. Then, a review is given of the current NRG-FSIFOAM framework, which is a numerical frame-
work for FSI simulations that couples CFD solver OpenFOAM with the structural solver Deal.II through the
coupling library preCICE. Along with this, validation of the current NRG-FSIFOAM framework is given.

2.1. Governing Physics
In this section, the governing physics of FSI problems are reviewed. There are two basic approaches to solve
an FSI problem numerically. Namely, the monolithic approach and the partitioned approach [38]. With the
monolithic approach, the governing equations of the fluid and structural domain get solved simultaneously.
For this, a combined formulation of the governing equations of the fluid and structural domain is necessary.
Since the formulation encaptures the full physics, there is no need to couple any sub-problems together. This
formulation however, is problem specific and thus monolithic solvers can not directly be applied to other FSI
problems than the one it was designed for.

A more general method is the partitioned approach. This approach separates the structural and the fluid
domain and solves each domain independently. The domains are typically solved by independent solvers
that can be seen as “black box” solvers. The two domains are coupled through a coupling algorithm, which
feeds the necessary information and mapping to the two sub-problems. While this approach can be very
generalized, it also introduces a coupling error, which depends on the coupling scheme that is used. As the
partitioned approach makes use of “black box” solvers, it offers great flexibility in the choice of solvers. Due
to its high flexibility, the partitioned approach is often preferred, and this approach will be the focus of this
chapter. In this section, the governing equations are discussed, as well as the boundary conditions that are
necessary such that the interfaces of the two domains comply.

2.1.1. Structural Dynamics
The structural dynamics are governed by Cauchy’s equation of motion [39]. This equation assumes that the
domain can be seen as a continuum, and it describes the non-relativistic momentum transport. The equation
is given in eq. (2.1), where u denotes the displacement, σs is the Cauchy stress tensor, and gs is the specific
body force on the structure. The Lagrangian point of view is used for the derivation of this equation, as for
the structural domain, this coincides with the ALE reference frame.

ρ
∂2u

∂t 2 −∇·σs = ρgs (2.1)

For linear elastic behaviour, the stress tensor is related to the strain tensor through Hooke’s law [38]. This
is a valid assumption as in structural mechanics, the strain is limited since large strains can cause material
failure. Hooke’s law is given in eq. (2.2) [40], where ϵkl is the strain tensor and Ci j kl is the stiffness tensor. To
close the system of equations, a relation between the strain and the displacement is needed. This depends on
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the reference frame that is used, in the case of a Lagrangian reference frame, eq. (2.3) is applicable. This is the
Green-Lagrange strain tensor and it is valid for both large and small displacements [40]. In the case of small
displacements, following infinitesimal strain theory, the strain tensor can be approximated with eq. (2.4).
Here, the non-linear and second-order terms are neglected. This implicitly states that the Lagrangian and
Eulerian formulation are approximately equal for small displacements. This approximation is valid for the
case of ||∇u|| << 1.

σi j =Ci j kl ϵkl (2.2)

ϵ= 1

2
[∇u+ (∇u)T + (∇u)T (∇u)] (2.3)

ϵ≈ 1

2
[∇u+ (∇u)T ] (2.4)

2.1.2. Fluid Dynamics
The governing equations of fluid dynamics are the conservation of mass, also known as the continuity equa-
tion, the conservation of momentum, and the conservation of energy. To close the system, an equation of
state is needed, which relates the density, pressure, and temperature of the fluid. The full conservation of
mass and momentum equations are shown in eq. (2.5) and eq. (2.6), respectively. These equations together
are called the Navier-Stokes (NS) equations, and they are derived in the Eulerian reference frame. In the
equations, ρ is the density, ui is the velocity in direction i , p is the pressure, τi j is the viscous stress tensor as
defined in eq. (2.7), and fi is the sum of body forces in direction i .

∂ρ

∂t
+ ∂ρui

∂xi
= 0 (2.5)

∂ρu j

∂t
+ui

∂ρu j

∂xi
=− ∂p

∂x j
+ ∂τi j

∂xi
+ρ f j (2.6)

τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk

)
(2.7)

The conservation equations can be further simplified depending on the application. In the application
of FSI calculations of cooling liquid in nuclear reactors, the fluid can be considered incompressible and of
constant density. In this case, the Navier-Stokes equations can be rewritten as in eq. (2.8) and eq. (2.9). As
can be seen, due to the assumption of incompressible and constant density flow, the conservation of mass is
transformed to simply the divergence of the velocity field. As this equation is not time-dependent anymore,
it is often referred to as the divergence constraint, since it acts as a constraint on the momentum equation for
the velocity field. From the divergence constraint, it follows that the last term of eq. (2.7) also drops out. The
incompressible flow assumption also decouples the energy equation from the momentum equation, thus,
the energy equation can be omitted, if thermal properties are not of interest.

∂ui

∂xi
= 0 (2.8)

∂u j

∂t
+ ∂ui u j

∂xi
=− 1

ρ

∂p

∂x j
+ 1

ρ

∂τi j

∂xi
+ f j (2.9)

The previously stated equations were derived in the Eulerian reference frame. However, an Arbitrary
Lagrangian-Eulerian (ALE) reference frame is more suitable for FSI calculations. The advantage of this method
is that the fluid and structural grid do not overlap, as the mesh motion is coupled at the fluid-structure inter-
face. Because of this, the Lagrangian frame of reference is obtained for the structural domain. The Navier-
Stokes equations in the ALE reference frame are shown in eq. (2.10) and eq. (2.11). Here ci is the convective
velocity, which is defined as ui − ûi , where ui is the material velocity with respect to the spatial domain, and
ûi is the mesh velocity with respect to the spatial domain.

∂ci

∂xi
= 0 (2.10)



2.2. Application at NRG 9

∂u j

∂t
+ ∂ci u j

∂xi
=− 1

ρ

∂p

∂x j
+ 1

ρ

∂τi j

∂xi
+ f j (2.11)

The Navier-Stokes equations govern the behaviour of fluid flows. As can be seen in eq. (2.11), the conser-

vation of momentum contains a nonlinear differential term, namely
∂ui u j

∂xi
. Due to this non-linearity, the NS

equations are notoriously difficult to solve computationally, as they either require additional assumptions
and modelling, or huge computational resources. In chapter 3, methods for solving the NS equations are
elaborated upon.

2.1.3. Interface Conditions
The interface between the fluid domain ΩF and the structural domain ΩS must be well defined to have a
well-posed problem. With fluid-structure interaction, the fluid exerts a force on the structure, whereas the
movement of the structure changes the flow field in the fluid domain. This information is propagated through
the interface of the two domains, ΓF S , in the form of two interface conditions. An example of this is sketched
in fig. 2.1.

Figure 2.1: Schematic of the interface between the structural and fluid domains [3].

The first condition is the kinematic boundary condition. This condition imposes the no-slip condition at
the interface, where the fluid molecules at the interface are attached to the structure, and thus they have the
same velocity as the structure. The equality follows from the fact that the fluid grid and the structural grid
are non-overlapping and that there are no holes or gaps at the interface. The kinematic boundary conditions
at ΓF S are defined in eq. (2.12) and eq. (2.13). Equation (2.12) states that the location of the grid point in the
fluid domain at ΓF S is equal to that of the structural domain. Equation (2.13) states that the velocity at the
grid points in the fluid domain at ΓF S is equal to that of the structural domain.

xF = uS (2.12) uF = ∂uS

∂t
(2.13)

The second type of boundary condition at the interface is the dynamic boundary condition. This con-
dition enforces the equilibrium of forces at the interface. Thus, the traction is equal at both sides, which is
expressed by the point-wise surface stresses at the interface [3, 41]. The boundary condition is formulated
as in eq. (2.14), where nF and nS are the outward pointing unit normal vectors of the fluid domain and the
structural domain as shown in fig. 2.1, respectively.

σF ·nF =−σS ·nS (2.14)

2.2. Application at NRG
In the previous sections, the underlying governing equations of fluid-structure interaction have been dis-
cussed, as well as the necessary interface conditions. At Nuclear Research & Consultancy Group (NRG), a
framework for solving fluid-structure interaction problems has been set up, called the NRG-FSIFOAM frame-
work. This framework has been mainly used to simulate nuclear fuel rods subjected to axial flow, but it has
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also been validated for other cases. In this section, the specifications and validation of NRG-FSIFOAM are
reviewed. The framework and its validation are described in more detail by De Santis & Shams [4].

2.2.1. Specifications of NRG-FSIFOAM
The NRG-FSIFOAM framework uses a partitioned approach to FSI, due to its lesser computational complexity
and its flexibility. The governing equations of the fluid domain as stated in section 2.1.2 are used. They are
solved by the finite volume solver Open-FOAM [42]. In particular, the discretised equations in space are
solved by the PIMPLE algorithm, whereas the consistent second-order backward difference method is used
to integrate the equations in time. This time method is suitable for FSI applications, as it was developed for
moving grids. Radial basis function interpolation [43] is used to deform the fluid mesh. For turbulent flows,
a URANS approach is used, where the two-equation k −ω SST model is used as the turbulence model. Next
to this, there is also a Pressure Fluctuation Model (PFM) implemented in NRG-FSIFOAM. The PFM models
the pressure fluctuations of the flow, which are then together with the average pressure imposed as excitation
on the structure. This enables NRG-FSIFOAM to simulate the effect of pressure fluctuations without using
high-fidelity simulations such as LES or DNS. The full PFM model that is implemented in NRG-FSIFOAM is
discussed in more detail in section 4.2.

The governing equations of the structural domain as stated in section 2.1.1 are discretised and solved. For
this, a finite element approach is used by Deal.II. The governing equations are semi-discretised in space by
the linear finite element approximation, and in time, the θ-method is used. Typically, a value of θ = 0.6 was
taken in the previously reported use of NRG-FSIFOAM [4].

The two domains are coupled through the open-source library preCICE [44]. This library contains effi-
cient implementations of existing coupling and mapping algorithms, and it is highly parallel. The fluid and
structural grids are generally not conforming at the fluid-structure interface, thus the forces and displace-
ments have to be mapped onto the respective structural and fluid grids. For this, radial basis functions are
used, which are already implemented in preCICE. Using this method, the displacements are mapped from
the structural to the fluid interface in a consistent manner, and the forces are mapped conservatively from
the fluid to the structural domain.

Due to the typically low density ratios (ρs /ρ f ) in the application of FSI to nuclear reactor related problems,
implicit coupling methods are preferred. This is because implicit coupling methods are more robust, and
therefore more apt for strongly coupled problems. Within the realm of implicit methods, several have been
applied in NRG-FSIFOAM, such as Gauss-Seidel, IQN-ILS and manifold mapping [4, 14, 45]. In the validation
cases that are discussed below, the IQN-ILS coupling algorithm is used.

2.2.2. Validation of NRG-FSIFOAM
The NRG-FSIFOAM framework has been validated with numerous test cases, both numerical and experi-
mental. The well-known Turek & Hron benchmarking case has been simulated and the results from NRG-
FSIFOAM have been compared to those of Turek & Hron [46]. Furthermore, the framework has been com-
pared to the previously validated FSI framework of STAR-CCM+, which gave similar results in the simulation
of vibrating bare and wire-wrapped rods. Finally, the framework has been used to replicate the experiment
of Liu et al. [6], in which a cantilever beam is subjected to turbulent axial flow. In this subsection, the most
relevant validation cases and their results are discussed.

Turek & Hron
The benchmark case proposed originally by Turek & Hron [46] involves a rigid cylinder with an elastic flap
attached to it, which is subjected to laminar incompressible flow, the case is illustrated in fig. 2.2. For the
validation of NRG-FSIFOAM, the density of the fluid was taken to be equal to that of the structure, ρ f =
ρs = 1000kg /m3, and the kinematic viscosity is equal to ν f = 10−3m2/s. Because the flow is laminar and
dominated by vortex-induced vibrations, it is not necessary to utilize the PFM. A parabolic velocity profile is
used at the inlet, where the maximum velocity is at channel half-width, and it is equal to Ū = 2m/s. Finally,
the material of the structure has a Young’s modulus of E = 5.6 ·106Pa and a Poisson ratio of νs = 0.4. Due to
the low solid-to-liquid density ratio, this case is particularly suited to benchmark FSI frameworks that need
to simulate strongly coupled problems. The case was solved for three different meshes ranging from coarse
to fine. The timestep was kept at ∆t = 0.001s for all simulations. The set-up as described in section 2.2.1 was
used, with the IQN-ILS scheme as coupling algorithm. The manifold mapping algorithm was also used in an
attempt to validate it. However, as the simulation with the current implementation of this coupling algorithm
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in preCICE was very unstable, no convergence could be reached [45]. Further attempts of validating this
algorithm in NRG-FSIFOAM have not been made.

Figure 2.2: The geometry of the Turek & Hron benchmark case [4].

The obtained results for the benchmark case are shown in fig. 2.3 and table 2.1. As can be seen, the results
of the NRG-FSIFOAM simulation converge to the reference data of Turek & Hron [46]. For the finest mesh,
a discrepancy of only 3% is found. Thus, from these results, it can be concluded that NRG-FSIFOAM can
accurately predict the displacements of structures in strongly coupled FSI problems, for laminar flow.

Figure 2.3: The displacement history of the endpoint of the flap,
compared to the reference data of Turek & Hron [4].

Table 2.1: Amplitude at the endpoint of the flap, compared to the
reference data of Turek & Hron [4].

Case Amplitude [m]
Coarse 0.0146
Medium 0.0289
Fine 0.0330
Reference data 0.0340

Beam in laminar axial flow
Next to the numerical simulation of Turek & Hron [46], the NRG-FSIFOAM framework has replicated exper-
iments as well, such as the Vattenfall-1 test case, which consists of a beam in laminar axial flow. The beam
is clamped at the inlet and pinned at the outlet, and an initial displacement of 10mm is given in the centre
of the beam. After this, the beam is released and the displacement of the beam is monitored [5]. The set-up
of the experiment is shown in fig. 2.4. The beam is made of stainless steel with a density of ρs = 8000kg /m3,
and the Young’s modulus is equal to 188GPa. The fluid is water at 8.4◦C with a flow velocity of 1m/s.

The initial displacement had to be imposed in the simulation. This was done by using a smooth ramp
function to displace the centre of the beam. In 0.5 seconds the beam was displaced to the required displace-
ment size. During this, both the fluid and structural domains were solved, but traction was ignored. The flow
was allowed to settle for 0.1 seconds, and after this, the beam was released and simulated for an additional
0.1 second. The results of the simulation versus the experiment are shown in fig. 2.5. As can be seen, the
amplitudes are qualitatively closely matched. Furthermore, it was found that the simulated frequency of os-
cillation was equal to 9.9 Hz, and the experimental frequency was equal to 10 Hz, giving an error of only 1%.
Thus, this experiment has further validated the numerical framework NRG-FSIFOAM for FSI applications to
heavily coupled problems in laminar flow.
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Figure 2.4: The experimental set-up of the Vattenfall-1 test case, the given dimensions are L = 1.5 m, H = 0.8 m, a = 0.75 m, h = 8 mm, l =
20 mm and δ = 10 mm [5].

Figure 2.5: The displacement time history of the simulation of the Vattenfall-1 test case [4].

Validation of Turbulent Cases
The previous cases have validated the ability of NRG-FSIFOAM to solve strongly coupled cases in the case of
laminar flow. Additional validation was done to show that this is also the case for turbulent flow. For this, a
bare and a wire-wrapped rod have been simulated in turbulent axial flow, which has been compared to the
previously validated framework that is implemented in STAR-CCM+ [45]. Furthermore, the framework was
used to replicate an experiment of a cantilever beam in turbulent axial flow [6].

NRG-FSIFOAM uses the URANS approach for solving the fluid domain. As briefly touched upon in chap-
ter 1, this method is not able to give the instantaneous pressure, which is why a PFM is necessary to fully
represent the instantaneous pressure on the wall surfaces. The FSI implementation in STAR-CCM+ does not
contain a PFM, thus the NRG-FSIFOAM framework is used both with and without the PFM to compare its re-
sults to that of STAR-CCM+. Here, only the results of the bare rod in axial flow are discussed. In table 2.2, the
modal characteristics calculated by the different methods are shown. Note that for the simulations without
the PFM, an initial impulsive force was necessary to vibrate the bare rod, as the flow as resolved by URANS
does not excite the structure. It was found that NRG-FSIFOAM shows excellent agreement with STAR-CCM+,
as the calculated frequencies for the simulation without the PFM are within 2% of the values obtained by
STAR-CCM+. From table 2.2, it can be seen that there is a discrepancy in the third eigenfrequency for the
simulation with the PFM. This could be due to the method of excitation, as for the simulation with the PFM,
no initial impulsive force is necessary to excite the structure. While the eigenfrequencies show great resem-
blance, it was found that the damping ratios were systematically overestimated by NRG-FSIFOAM, compared
to STAR-CCM+. In particular, for several cases the damping ratio was overestimated by more than 50%.

Table 2.2: The modal characteristics of the bare rod in turbulent axial water flow [4].

f1[H z] f2[H z] f3[H z]
STAR-CCM+ 44.92 142.38 295.24
NRG-FSIFOAM w/o PFM 45.08 145.54 296.93
NRG-FSIFOAM with PFM 46.83 145.03 338.02

Finally, the experiment of Liu et al. [6] was replicated to validate the ability of NRG-FSIFOAM to predict
the vibration amplitude of rods in turbulent axial flow. In the experiment, a hollow cylindrical beam is used,
which has a length of 1.05 m, with inner and outer diameter of 8.8mm and 10.1mm respectively. It has the
same material characteristics as the Vattenfall-1 test case [5]. Water was used as the fluid, with an inflow
velocity of 1.49m/s and a density of ρ f = 997.13kg /m3. The beam is clamped at the outlet of the domain,



2.3. Summary 13

and it is free at the end that is pointing towards the inlet. For clarity, the experimental set-up is shown in
fig. 2.6.

The experiment was simulated with NRG-FSIFOAM both with and without the PFM. It was found that
the modal characteristics matched those of the experiment, where 5.69 Hz was found in the experiment, and
5.68 Hz was found in the simulations [4]. The maximum displacement was used as a measure to validate
the ability to predict the vibration amplitude. With the PFM, the simulation gave an error of roughly 10%
in the maximum displacement, as the simulation predicted a maximum displacement of 0.145mm in the x-
direction, and a maximum displacement of 0.206mm in the y-direction, whereas the experiment denoted a
maximum absolute displacement of 0.180mm. Without the PFM, the NRG-FSIFOAM framework estimates a
maximal displacement of 4e−4mm, due to the lack of turbulent excitation. The RMS displacement has sadly
not been compared for this case. This gives a more relevant measure of the ability to predict the vibration am-
plitude, as the maximum displacement is much more sensitive to the random component that is introduced
by the PFM. For example, in the study by Kottapalli et al. [14], the RMS amplitude was used as a measure, and
it was found that this gave a much larger difference with respect to the experiment, as the RSM amplitudes
were only in the same order of magnitude, and thus it was much further off than 10%.

Figure 2.6: The experimental set-up of a cantilever beam subjected to turbulent axial flow [6].

In the previously reviewed validation cases, it was shown that NRG-FSIFOAM can produce accurate results
for the amplitude and modal characteristics of FSI problems with laminar flow. Furthermore, it demonstrated
the ability to accurately predict the modal frequencies of FSI problems with turbulent flow. When including
PFM, it was shown that the prediction of the vibration amplitude was improved for turbulent flows, however
at best the prediction gave results in the same order of magnitude. Furthermore, other characteristics such
as the damping, or the power spectral density of the amplitudes have not been compared to high-fidelity
simulations or experimental data. This gives motivation to improve the currently implemented PFM model
and to further validate its effect on the FSI simulations for nuclear fuel rods. The PFM is reviewed in de-
tail in chapter 4, where also several other synthetic turbulence models are reviewed. Because the current
NRG-FSIFOAM framework with the IQN-ILS coupling scheme and radial basis function mapping has been
extensively validated, it was decided to use the framework with these algorithms for validation cases in the
thesis.

2.3. Summary
In this chapter, a review of the important aspects of fluid-structure interaction is given, along with the appli-
cation of FSI in nuclear reactors. First, the physical representation of FSI was reviewed, which included an
overview the governing equations for both the fluid and the structural domain, and the necessary interface
conditions to couple the fluid and the structural domain. After the review of the necessary concepts relat-
ing to FSI, the implementation in NRG-FSIFOAM was summarized and reviewed. The FSI framework uses a
partitioned approach, where OpenFOAM is used for solving the fluid domain, and Deal.II is used to solve the
structural domain. The two solvers are treated as black boxes, and they are coupled through preCICE. Several
coupling algorithms can be used, but the reviewed validation cases all used the IQN-ILS coupling scheme. In
NRG-FSIFOAM, the URANS approach is used for solving the fluid domain, in particular, the k−ω SST model.
To account for pressure fluctuations, a pressure fluctuation model is implemented in OpenFOAM, which im-
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poses the pressure fluctuations plus the ensemble-averaged pressure on the structure. From the validation
cases, it became clear that NRG-FSIFOAM is capable of accurately calculating the vibration amplitude and
frequencies for laminar flow FSI cases and the vibration frequency for turbulent flow FSI case. This framework
will be used to validate the new pressure fluctuation model that will be constructed in the thesis. Because the
focus of the thesis will be on the accuracy of the pressure fluctuation model rather than the performance of
the FSI coupling, the IQN-ILS coupling scheme will be used due to its thorough validation.
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Turbulence Modelling

From chapter 2, it was found that NRG-FSIFOAM could not accurately predict the vibration amplitude for
applications with turbulent flow. This is due to the method that is used for solving the fluid domain, as
the current method only solves for the ensemble average velocities. To remedy this, a pressure fluctuation
model was implemented, but it still needs to be improved. Possible improvements could be made to the
PFM, but for this, an in-dept knowledge of fluid dynamics and turbulence is necessary. For these reasons,
apt concepts in fluid dynamics are reviewed. In this chapter, the characteristics of turbulence are assessed,
after that the different solving methods are discussed. Then, the focus is shifted on the necessary knowledge
for developing a PFM, where the modelling for the Reynolds stress tensor, the governing equation for the
pressure fluctuations, and the desired characteristics for a PFM are discussed.

3.1. Characterisation of Turbulence
Turbulence is a notable problem in physics, and it has puzzled scientists since its discovery. It was Horace
Lamb who said: "I am an old man now, and when I die and go to heaven there are two matters on which I
hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids.
And about the former I am rather optimistic." [47]. In this section, first an overview is given of the general
characteristics of turbulence, and then the concept of the energy cascade is introduced.

3.1.1. Turbulence Characteristics
While turbulence is a very complex phenomenon, from experimental and numerical studies, certain features
that are characteristic to turbulence can be deduced. These characteristics were first reported by Tennekes
& Lumley [48] and later updated by Tsinober [49], and they are shortly summarised in this subsection. With
this description, it is possible to distinguish turbulent flows from simply chaotic or random flows.

• Turbulence is chaotic. This property is intrinsic to turbulence as the chaos is created, given that the
Reynolds number is high enough. There is no need for an external excitation such as in the boundary
or initial conditions. However, it is extremely sensitive to small disturbances in the initial or boundary
conditions. It seems that the cause of this is that turbulence self-amplifies the velocity derivatives.
Partly due to the apparent randomness, a statistical approach is often taken to describe turbulence.
Do note that while turbulence is chaotic, it is deterministic, and coherent structures are present in
turbulence [49].

• Turbulence has a wide range of scales interaction. In the application of fluid dynamics in nuclear reac-
tors, the relevant length scales range from meters to fractions of millimeters, and many have a strong
interaction. This interaction is caused by the nonlinear term in the NS-equations. Partly due to the
many length scales and the complexity of the interaction, statistical approaches are typically taken to
describe turbulence [49].

• Turbulence is statistically stable. While slightly different initial conditions can completely change the
details of the realisation of turbulence, the statistical properties, such as the mean average skin friction
or the average Reynolds stress tensor, of both flows are the same. This is another argument for the
statistical approach to turbulence [49].

15
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• Turbulence is rotational and a 3-D phenomenon. It shows predominant vortex stretching, which points
to a production of enstrophy, which is the square of the vorticity. This mainly happens at the larger
length scales, and it is dissipated at smaller length scales. Furthermore, there is also a production of
strain at the larger scales. Both are due to the self-amplification of the velocity derivatives. For engineer-
ing applications, turbulence is always a 3-D phenomenon. This is because in 2-D, only a z-component
of the vorticity exists, making it orthogonal to the velocity gradients. This prohibits characteristic fea-
tures of turbulence such as vortex stretching. It is found that in 2-D "turbulence", smaller scales merge
and form larger scales, whereas in 3-D turbulence, the larger scales break down into smaller scales.
Thus, for engineering applications, turbulence is always a 3-D phenomenon [49].

• Turbulence is strongly dissipative and diffusive. The production of turbulence by the larger scales is
counteracted by the dissipation at the smaller scales. Thus, due to the dissipation of the smaller scales,
the dissipation is higher than laminar flows. An example of this is the difference in skin friction coef-
ficient for a flat plate in the laminar and turbulent regime. Furthermore, turbulent flow has enhanced
transport processes of momentum, energy, and weightless particles [49].

3.1.2. Energy Cascade
The concept of an energy cascade was first introduced by Richardson [50]. It was observed that the larger
length scales of the flow produced the turbulent kinetic energy, the larger scales then transfer the energy to
slightly smaller length scales. This process is repeated until the energy is dissipated by the smallest length
scales. This is not entirely accurate as there is dissipation at every length scale, but it is dominated by the
dissipation of the smallest length scales, as the larger length scales can be characterised as approximately in-
viscid. This energy cascade can be interpreted through the turbulent kinetic energy spectrum. The turbulent
kinetic energy is defined in eq. (3.1), but it can also be defined in wavenumber space. The wavenumber κ is
directly related to the length scale l of an eddy, κ= 2π

l . Then, the turbulent kinetic energy can be defined as
the integral of the energy spectrum over the entire wavenumber range, as shown in eq. (3.2).

k = 1

2
u′

i u′
i (3.1)

k =
∫ ∞

0
E(κ)dκ (3.2)

A special case of turbulence is that of homogeneous isotropic turbulence. This means that the turbulence
properties are independent of the reference location, and independent of any rotation or reflection of the
coordinate system [51]. For this case, more simplifications can be applied, and a 1-D energy spectrum can
represent the turbulent kinetic energy. A sketch of a typical energy spectrum is given in fig. 3.1.

Figure 3.1: A sketch of a typical energy spectrum for homogeneous isotropic turbulence [7].

Kolmogorov [52] stated that the smallest scales are independent of the largest scales, and thus, the small-
est scales are entirely determined by the cascaded energy of the larger scales and the kinematic viscosity
[53]. Since the production of turbulent kinetic energy mainly occurs at the largest scales, and the dissipation
mainly at the smallest scales, there is a range in between, which is purely affected by the energy cascade.
These three ranges can be found in fig. 3.1, and they are called the large-scale range, the inertial subrange,
and the dissipation range. As mentioned previously, the large scale range produces the turbulence and thus
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the turbulent kinetic energy. The large eddies have length and velocity scales that are similar to the mean
flow, and thus these scales also depend on the same quantities as the mean flow, such as the boundary con-
ditions and the geometry of the problem [53]. The turbulent kinetic energy that is "produced", is extracted
from the mean flow.

In the dissipation range, Kolmogorov stated that the behaviour of the eddies is dominated by the viscosity
and the dissipation rate [52, 54]. Using dimensional analysis, it is possible to determine the relevant length,
time and velocity scales that characterise these small eddies. The characteristic scales are found by eq. (3.3)
through eq. (3.5). Thus the characteristics of the smallest eddies are dependent on general properties of the
flow.

η∼ (
ν3

ε
)1/4 (3.3)

τ∼ (
ν

ε
)1/2 (3.4)

v ∼ (νε)1/4 (3.5)

If the range between the large scales and the Kolmogorov scales is large enough, a third range can be
found, the inertial subrange. In this range, the energy cascade is still of effect, but the dissipation and pro-
duction of turbulence is negligible. Kolmogorov concluded that in this range, the energy spectrum only de-
pends on the dissipation rate and the length scale of the eddy [52]. From this, using dimensional analysis, the
relation from eq. (3.6) can be found.

E(κ) =CK ε
2/3κ−5/3 (3.6)

Since the Kolmogorov scales characterise the smallest eddies, that means that it is possible to fully resolve
the Navier-Stokes equations, with the requirement that the grid size and timesteps are smaller than the re-
spective Kolmogorov scales. As previously mentioned, the Kolmogorov scales depend on the flow properties,
and it can be shown that they are directly related to the characteristic Reynolds number of the flow. The large
eddies are approximately inviscid, and its kinetic energy is proportional to its characteristic velocity squared.
Furthermore, the dissipation rate can be assumed to be proportional to the turn-over time of the large eddies
[53]. Doing so, a similarity for the dissipation rate can be found, as shown in eq. (3.7). Here, the subscript
l denotes the characteristics of the largest eddies. From this, the non-dimensional Kolmogorov length scale
can be expressed in terms of Reynolds number, as done in eq. (3.8), from which it can be concluded that for
large enough Reynolds numbers, an inertial subrange exists.

ε∼ u3
l

ll
(3.7)

η

ll
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ν

ul ll

)−3/4

= (Rel )−3/4 (3.8)

3.2. High-Fidelity Methods
Solution techniques for the Navier-Stokes equations can be distinguished by the range of wavenumbers that
are resolved. As mentioned in section 3.1.2, turbulence is fully characterised by a finite range of wavenum-
bers. If the full range of wavenumbers is captured by the simulation technique, the turbulence is fully re-
solved. Thus, it is possible to fully resolve the turbulence by solving the Navier-Stokes equations on a fine
enough grid and with small enough timesteps. High-fidelity methods resolve a larger part of the energy spec-
trum than low-fidelity techniques. In Direct Numerical Simulations (DNS), the full energy spectrum is re-
solved, thus eliminating the need for a turbulence model. While DNS would preferably be used in every CFD
simulation, it is an incredibly expensive method, due to its strict mesh size and time step requirements. For
this reason, it has been mainly applied to simple flow cases at low Reynolds numbers [13, 55].

In section 3.1.2, it was mentioned that only the largest eddies are directly affected by the geometry and
boundary conditions, the other scales mostly depend on the energy cascade. Thus, one technique is to resolve
the largest eddies, and model the smaller eddies. This is done in Large-Eddy Simulations, which is based on
solving the filtered Navier-Stokes equations. The incompressible filtered Navier-Stokes equations are shown
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in eq. (3.9) and eq. (3.10). The term (ui u j − ūi ū j ) is also known as the subgrid stress tensor, and this term
needs to be modelled in order to solve the filtered NS equations.

∂ūi

∂xi
= 0 (3.9)

ρ
∂ūi

∂xi
+ρ ∂ūi ū j

∂x j
=−∂p̄i

∂xi
+ ∂

∂x j
(τ̄i j −ρ(ui u j )− ūi ū j )) (3.10)

While the computational cost of LES is lower than that of DNS, it is often still too large for practical ap-
plications of industry problems [53]. This is more so the case in fluid-structure interaction problems, as
each coupling step requires multiple iterations of the fluid solver, and for implicit schemes, the number of
sub-iterations increases with decreasing timestep [41]. Thus, the high-fidelity approaches are not directly
applicable in industry due to its high computational costs. However, the methods that are described in this
section and the previous section are valuable for constructing a synthetic turbulence model, as they provide
knowledge in the important characteristics that the synthetic turbulence model must replicate.

3.3. Reynolds-Averaged Method
A lower-fidelity method is to not solve for the instantaneous properties, but for the averaged properties. This
can be done by applying Reynolds averaging to the NS equations, this method is called the Reynolds Averaged
Navier Stokes (RANS) method. The following methods have been described by Ferziger [56] and Wilcox [57]
among others, and the description below is based on their explanations. As OpenFOAM is used for CFD
simulations, only methods that are available in OpenFOAM are discussed. With Reynolds averaging, the
velocity is decomposed into the mean value and the fluctuating value, as seen in eq. (3.11). The mean value
can be determined by a time-average for statistically steady flows, but in the case of unsteady flows, the mean
value varies. In this case, the mean value is seen as an ensemble average, which is defined in eq. (3.12). The
RANS method applied to unsteady flows is called URANS. The averaging in URANS will eliminate the small
turbulent fluctuations, but the larger scales will still be captured [56].

u = ū +u′ (3.11)

ū = lim
N→∞

1

N

∑
N

u (3.12)

From the NS equations, the Reynolds averaged NS equations can be constructed. As incompressible flow
is more apt for the thesis, only the incompressible form without body forces will be considered. The result
of Reynolds averaging is shown in eq. (3.13) and eq. (3.14). As can be seen, the equations are very similar

to the original NS equations, except there is an additional unknown term −ρu′
i u′

j at the right-hand side.

This term follows from the nonlinear term that is present in the NS equations, it introduces 6 additional
unknowns to the system, and it is called the Reynolds stress tensor. Due to the 6 additional unknowns, extra
assumptions must be made and additional equations must be introduced in order to create a closed system
of equations. Several methods exist to close this system, however, the focus will be on the 2-equation eddy
viscosity methods and the Reynolds stress transport methods.
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3.3.1. Two-Equation Methods
Linear eddy viscosity models, of which most 2-equation methods are part of, are all based on the Boussinesq
hypothesis [57]. This hypothesis states that the Reynolds stress tensor can be seen as a stress that is similar
to the shear stress, and thus this suggests that the Reynolds stress can be modelled by means of a turbulent
viscosity, from here on named the eddy viscosity. From the hypothesis, the expression from eq. (3.15) fol-
lowed, where Si j is the strain rate tensor. Then, only an apt expression for the eddy viscosity µt has to be
found. For this, methods were formulated that contained 0, 1, or 2 additional Partial Differential Equations
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(PDEs). While the Boussinesq hypothesis provides a simple relation for the Reynolds stress tensor, there are
two main flaws that can cause inaccurate CFD predictions. Firstly, the eddy viscosity is modelled as a scalar,
which implies that the turbulent viscosity is isotropic. Secondly, from eq. (3.15), it can be found that the RMS

of the velocity fluctuations are equal in every direction, u′2 = v ′2 = w ′2. This implies that the kinetic energy is
equally distributed in all three directions, whereas this is not found in high-fidelity simulations [55]. Despite
the flaws of the Boussinesq hypothesis, eddy viscosity models have shown to give accurate results for certain
flow cases, and they are the industry standard [57]. In particular, two-equation models show desirable results
with respect to their computational requirements, and they are the most often used models across several
industries [57], thus these will be elaborated upon.

−ρu′
i u′

j = 2µt S̄i j − 2

3
ρkδi j (3.15)

The basis of 2-equation models is to solve the transport equation for turbulent kinetic energy k, along
with a second differential equation to close the system. The transport equation for k can be derived by taking
the trace of the Reynolds stress transport equation, but several complicated terms such as triple correlations
occur [57]. To simplify, the turbulent transport and diffusion terms are approximated by a gradient-like term.
The simplified transport equation for k is shown in eq. (3.16), where σk is a modelling constant. The dissipa-
tion ε is unknown, which is found through another PDE, in the case of a 2-equation method.
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(3.16)

k −ε Method
The k −ε method uses an additional transport equation for the dissipation to complete the system of equa-
tions. While an exact equation for ε is possible, it contains again many terms with triple correlations. Instead,
Jones & Launder [58] postulated a transport equation for the dissipation with additional model constants.
The equation for the dissipation is found in eq. (3.17), and eq. (3.18) is used as an expression for the eddy
viscosity, which is based on dimensional analysis. The values for the coefficients can be found in Wilcox [57].
The model gives good results for external aerodynamics, but only for cases without strong streamline curva-
ture, strong pressure gradients or separation [53]. This is partly due to its performance in near-wall regions,
and a wall model is necessary.
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µt =Cµρ
k2

ε
(3.18)

k −ω & SST Method
The k −ω method proposed by Wilcox [59] postulates a transport equation for the specific turbulence dissi-
pation rate ω, which is defined in eq. (3.19). The transport equation has a similar form to eq. (3.17), and it is
shown in eq. (3.20). Finally, the eddy viscosity is defined as in eq. (3.21). While the differences in formula-
tion with respect to the k −ε method are small, they give a large effect. The method shows better results for
boundary layer flows, strong pressure gradients and separation prediction than the k −ε method. However,
this method shows more sensitivity to the prescribed turbulence properties at the inlet.
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∂ū j

∂xi
−βρωk + ∂

∂xi

[
(µ+σµt )

∂ω

∂xi

]
(3.20)
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The k −ω SST method was introduced by Menter [60], and it combines the features of the k − ε and
the k −ω method. The method uses the k −ω formulation in boundary layers, and it switches to the k − ε
formulation in the free stream. This ensures that the boundary layer can be correctly resolved, and it does
not show the sensitivity to the inlet conditions that is present with the k −ω method. For these reasons, the
k −ω SST method is the preferred linear eddy viscosity 2-equation model.
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Cubic k −ε method
The previous two discussed methods were based on the Boussinesq hypothesis, which states that the Reynolds
stress tensor varies linearly with the strain tensor, which results in the assumption of isotropic turbulence.
One method to create a more accurate representation of the Reynolds stress tensor is to assume that the
Boussinesq hypothesis is simply the leading term of a series expansion [57]. Such a method, the Lien Cubic
k −ε method, is also implemented in OpenFOAM. The implemented method is based on the paper by Craft
et al. [61], which is an adjusted version of the original method of Lien. This method expands the Boussinesq
hypothesis up to cubic terms. In OpenFOAM, also a quadratic k − ε model is available. However, the only
difference with the Cubic k −ε model is the number of expansion terms of the Boussinesq hypothesis, thus
due to the similarity, this model is not further discussed.

Consider the definition of the tensor ai j in eq. (3.22), which defines its relationship with the Reynolds
stress tensor. In eq. (3.23) Craft et al. expand the Boussinesq hypothesis for ai j up to cubic terms, where ε̃
is the adjusted dissipation rate as defined in eq. (3.24), and the terms c1 through c6 are closure coefficients.
Except for the relation between the Reynolds stress tensor and the eddy viscosity, the cubic k −ε method is
equal to the linear eddy viscosity k −ϵ method, i.e. the model still solves the transport equations as shown in
eq. (3.16) and eq. (3.17).
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Next to the cubic k −ε model, other non-linear models exists based on the k −ω formulation, such as the
cubic BSL k −ω method. Similar to the cubic k −ε model, the largest difference with the BSL k −ω method
is the expansion of the Boussinesq hypothesis. Thus, the k −ω based methods show similar features as the
original k −ω method, such as sensitivity to the prescribed turbulence properties at the inlet. Nonlinear
eddy viscosity models based on the k −ω formulation are not available in OpenFOAM. However, in nuclear
applications for rod bundles, k −ε models are often used [62].

One extra difference between the linear and the cubic k −ε methods, is that the closure coefficient Cµ is
not a constant anymore in the cubic method. A constant Cµ typically results in an over prediction of turbulent
energy in stagnation regions and regions of impingement [63]. Due to its similar formulation to the linear k−ε
method, it is only 10% computationally more expensive [61], making it an attractive substitute to linear eddy
viscosity models. While the cubic k −ε improves the modelling of the Reynolds stress tensor, it still assumes
a scalar value for the eddy viscosity, and the closure coefficients are based on experimental data [62]. While
eddy viscosity models give accurate results for certain types of flows, more accurate models are desired which
can better predict the Reynolds stress. Such models are discussed in the next subsection.

3.3.2. Reynolds Stress Models
A big limitation of the discussed eddy viscosity models is the Boussinesq hypothesis, or the extension thereof.
This hypothesis implicitly states that the turbulent viscosity is isotropic, as a scalar quantity (µt ) is used to
model turbulence. A family of methods that do not use the Boussinesq hypothesis, is the family of Reynolds
Stress Models (RSM). With these models, the Reynolds stress transport equations are approximated, this usu-
ally results in 7 additional equations. The exact Reynolds stress transport equation can be derived from the
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NS equations, and it is shown in eq. (3.25). For the full formulation of each term, the reader is referred to
[57]. From the terms on the right-hand side of eq. (3.25), Ti j , Dp

i j , Φi j and εi j can not directly be computed

from mean flow quantities. However, from DNS data and experimental data, it was found that the pressure
diffusion term Dp

i j is negligible [57].
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From the discussion in section 3.1.2, it became clear that the dissipation is mainly concentrated at the
smallest scales. Thus, as this happens mainly at the smallest eddies, the dissipation is often assumed to
be isotropic [52, 56]. Then, the dissipation term is modelled as in eq. (3.26), where the scalar dissipation is
often solved by using the dissipation transport equation from the k − ε method or the specific turbulence
dissipation transport equation from the k −ω method.

εi j = 2

3
εδi j (3.26)

The transport term Ti j contains the derivative of the triple correlation u′
i u′

j u′
k . First it was argued that

the easiest approximation for the triple correlation would be in the form of the derivative of the Reynolds
stress, i.e. as shown in eq. (3.27) [64]. However, this form would be inconsistent with the fact that the triple
correlation is rotationally invariant [57]. Later, the form in eq. (3.28) by Launder et al. [65] was proposed,
which is used in the LRR RSM. In this form, the approximation is also rotationally invariant.
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The main differences between Reynolds stress models typically lie in the method of modelling the pres-
sure strain term. The pressure strain term can be divided into two parts, the slow term (denoted with super-
script s in eq. (3.29)) models the return to isotropic state, whereas the rapid term (superscript r in eq. (3.29))
models the immediate effect. The LRR RSM by Launder et al. [65] only models the linear term of both the
slow and the rapid term, whereas the SSG RSM by Speziale et al. [66] also model the quadratic terms.

Φi j =ΦS
i j +ΦR

i j (3.29)

Next to the modelling of the pressure-strain term, the Reynolds stress models also differ in the calculation
of the scalar dissipation. Several models such as the SSG RSM and the LLR RSM are based on the ε transport
equation. However, the RSM proposed by Wilcox & Rubesin [67] or the SMC RSM [57] and others are based
on the ω transport equation, which allows more accurate near-wall treatment. Since the Reynolds stress
tensor is symmetric, eq. (3.25) gives six additional PDEs, and an extra PDE is necessary to calculate ε, thus
in total seven additional PDEs need to be solved with Reynolds stress models. While this gives the individual
Reynolds stresses and it can account for anisotropy, it also requires significant extra computational power
compared to 2-equation models.

A compromise between these methods would be an Explicit Algebraic Reynolds Stress Model (EARSM).
These models are similar to nonlinear eddy viscosity models, except the constitutional relationship is derived
from the full Reynolds stress transport equations [57]. Most famous is the EARSM developed by Wallin &
Johansson [68], newer methods are based on their stress-strain relationship [69].

3.4. Governing Equation of Pressure Fluctuations
With the reviewed turbulence modelling methods in section 3.3, confidence is established in the ability to
create URANS simulations for the desired FSI cases. The next step is to review the knowledge that is necessary
to create a pressure fluctuation model. As the PFM must model the pressure fluctuations, it is necessary to
derive how this quantity relates to the Navier-Stokes equations and the URANS equations. In the conservation
of momentum equation, the decomposition of the velocity u = ū+u′ and pressure p = p̄+p ′ is substituted, as
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shown in eq. (3.30). Then, the URANS conservation of momentum is subtracted, and the divergence operator
is applied. From this, eq. (3.31) is found.
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∂ūi

∂x j

∂u′
j

∂xi
+ ∂2

∂xi∂x j

(
u′

i u′
j −u′

i u′
j

)]
(3.31)

Interestingly, eq. (3.31) shows that the pressure fluctuations can be solved for by solving a Poisson equa-
tion. Furthermore, it shows that the pressure fluctuations are only dependent on the mean flow velocities,
which are available from the URANS simulation, and the velocity fluctuations. Thus, in order to model the
pressure fluctuations, only the velocity fluctuations have to be modelled. Equation (3.31) has been used in
previous literature to establish a relation for the pressure fluctuations, and it was found that the contribu-
tions to the pressure fluctuations can be decomposed into a rapid and a slow term [57, 70], which was earlier
established when the pressure-strain term of the Reynolds stress transport equations were discussed (sec-
tion 3.3.2). The rapid term is the first right-hand side term in eq. (3.31), and it varies quickly with respect to
flow conditions. The slow term is the second right-hand side term in eq. (3.31), it is also called the turbulence-
turbulence interaction term as it solely depends on the velocity fluctuations.

3.5. Characteristics for Synthetic Turbulence
Since only the velocity fluctuations have to be modelled for the PFM, the focus of the thesis will be on mod-
elling Synthetic Turbulence (ST). In this section, the favourable characteristics of synthetic turbulence will
be elaborated upon. These characteristics form the basis for the search of applicable synthetic turbulence
models, and they will be used to evaluate which ST model is the most apt. The favourable characteristics
are based on the Navier-Stokes equations, the governing equation for pressure fluctuations, and the general
characteristics of turbulence as discussed in section 3.1.

3.5.1. Governing Equations
Ideally, the sum of the ensemble-averaged velocity and velocity fluctuations would adhere to the Navier-
Stokes equations, however, to achieve this, DNS is needed, and the velocity fluctuations are not modelled but
calculated. While satisfying the exact NS-equations is not feasible, an approximation of the NS-equations
can be satisfied. Consider the continuity equation for incompressible flow in eq. (3.32), where the velocity
u is decomposed into its Reynolds average and its fluctuating component. From the results of eq. (3.13), it
is found that the velocity fluctuations must also satisfy the divergence constraint, i.e. its divergence must be
equal to zero.
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For the conservation of momentum, several assumptions are made. As mentioned in section 3.1, the
larger eddies can be assumed to be inviscid, thus the Euler equations as shown in eq. (3.33) can be used as
an approximation to describe the flow. By filling in the Reynolds decomposition, and assuming that the flow
is negligibly accelerated by the local pressure gradient, eq. (3.34) is constructed. Finally, by assuming that
u′

i << ūi , it is found that the velocity fluctuations should be convected by the local mean flow velocity, which
is also known as Taylor’s frozen wake hypothesis [71]. From comparison to DNS data of turbulent channel
flow, it was found that the correlation implied from eq. (3.34) is greater than 0.85 for the entire flow field, and
greater than 0.96 for y+ > 30. Thus, the approximation that eddies are convected by the local mean velocity
seems to hold accurately.
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3.5.2. The Energy Spectrum
From section 3.1, it was found that the properties of turbulence differed for different length scales. This could
be summarised by representing the turbulent kinetic energy as a continuous energy spectrum of wavenum-
bers, where the wavenumbers are inversely proportional to the eddy length scales. Thus, in order to get an
accurate representation of turbulence, this energy distribution must be reproduced. By accurately represent-
ing the energy spectrum, each eddy length scale gets a realistic amount of kinetic energy, and this directly
influences the magnitude of the velocity fluctuations.

Another property of turbulence is the wide range of scale interactions. While turbulence may seem
chaotic, coherent structures exists and interact with each other. Thus, spatial correlation exists in turbu-
lence, and the synthetic turbulence can not be represented by a white noise field. This spatial correlation is
also implicitly modelled through the turbulent kinetic energy spectrum, as the energy spectrum tensor of a
velocity signal is defined as the Fourier transform of the auto correlation function of that series [72]. Thus,
by accurately modelling the energy spectrum, the spatial correlation functions are implicitly also accurately
modelled.

In the case of applications of synthetic turbulence to FSI, it is theorised that not the whole energy spec-
trum needs to be accurately represented. By using Taylor’s frozen wake hypothesis, the wavenumber spec-
trum can be converted into a frequency spectrum. Then, it is theorised that the structure’s excitation will
mainly come from the pressure fluctuations that are in the range of the structure’s eigenfrequency. Thus only
this region of the spectrum would have to be accurately modelled. If this is true, this could reduce the com-
putational power that is necessary for the synthetic turbulence model. However, for the current thesis, the
first priority is establishing an accurate synthetic turbulence model, and further research in this area for the
optimisation of computational resources is left as a recommendation for future work.

3.5.3. Anisotropy
The Reynolds stress tensor is of importance to create accurate synthetic turbulence. As can be seen in eq. (3.31),
it directly affects the calculation for the pressure fluctuations. It is also of importance for accurately modelling
the degree of anisotropy of the synthetic turbulence. One measurement of anisotropy of the flow is the distri-
bution of kinetic energy. For isotropic turbulence, it is assumed that the kinetic energy is equally distributed
among all three spatial directions. However, in practice, near-wall turbulence shows an anisotropic distri-
bution of kinetic energy. Since the Reynolds stress tensor is directly related to the anisotropy of the energy
distribution, for synthetic turbulence it is important to accurately replicate the Reynolds stress tensor.

3.5.4. Temporal decay
One of the characteristics of turbulence that was mentioned in section 3.1, was its strongly dissipative nature.
Due to the dissipation, turbulence is decayed. Indeed, in cases where there is no production of turbulence,
such as a homogeneous isotropic box, turbulence decay can be found [11]. Due to the constant production
and dissipation of turbulence, a temporal decorrelation can be found in turbulence. Thus, in terms of tem-
poral correlation, the convection relation is not an accurate enough approximation of the conservation of
momentum. From this, it was concluded that the decorrelation through production and decay of turbulence
must be modelled separately.

3.5.5. Summary of Characteristics
From the review on turbulence and its characteristics, several requirements were found to accurately model
synthetic turbulence. Firstly, it must adhere to the continuity equation, i.e. the divergence constraint, as
well as the simplified momentum equation. Secondly, to model an accurate distribution of energy and accu-
rate spatial correlation, the kinetic energy spectrum must be replicated. Thirdly, the Reynolds stress tensor
must be replicated to account for the anisotropy of the flow. Finally, the synthetic turbulence must show the
temporal decorrelation that is caused by turbulence production and decay.

3.6. Modelling the Reynolds Stress Tensor
As mentioned in section 3.5, a requirement for the synthetic turbulence model is to accurately replicate the
Reynolds stress tensor. However, this also implies that it is important for the URANS solution to give an
accurate Reynolds stress tensor as input. The accuracy of the Reynolds stress tensor depends on the URANS
method that is used. For Reynolds stress models, the accuracy of the Reynolds stress tensor is typically higher
than linear and nonlinear eddy viscosity models [57], due to its direct modelling of the transport equations of
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the Reynolds stress tensor.
Linear eddy viscosity models imply that the RMS velocity fluctuations are isotropic, however it has been

shown that in practice this is not the case for the near-wall flow [57]. Thus if a method such as the k −ω SST
method is used, the synthetic turbulence would be isotropic even if it could model anisotropy. To counteract
this, there are several methods that can more accurately reconstruct the Reynolds stress tensor from URANS
data, based on empirical findings. These methods are not necessary for nonlinear eddy viscosity models, as
they do not assume isotropy in the RMS velocity fluctuations.

Laraufi et al. [73] investigated these empirical methods for the implementation to synthetic turbulence.
Note that the methods are only applicable for the diagonal terms of the Reynolds stress tensor, thus the cross-
terms of the Reynolds stress tensor are still evaluated through the Boussinesq hypothesis. The two most no-
table methods were the method based on Wilcox’s hypothesis, and the empirical model by Marusic & Kunkel
[74]. The Wilcox’s hypothesis method based the velocity fluctuations on Wilcox’s nonlinear eddy viscosity
model [67]. From this, the relations of the velocity fluctuations to the kinetic energy are given in eq. (3.35)
through eq. (3.37).
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The second method was the method of Marusic & Kunkel [74]. Here, the empirical model was based
on the attached eddy hypothesis, and it takes into account the effect of the Reynolds number. For the full
description of this method, the reader is referred to the original paper of Marusic & Kunkel [74]. Due to the
empirical nature of the model, it is only valid for Reθ > 3200 and for zero pressure gradient flows. From the
assessment by Laraufi et al. [73], it was found that Wilcox’s hypothesis was mainly valid for y+ > 100, and for
smaller y+-values, it showed a larger discrepancy. The method of Marusic & Kunkel showed better results for
the inner part of the boundary layer, but only for Reθ > 3200. Thus, due to its more general application and
its ease of implementation, Wilcox’s hypothesis is the preferred method to compute the diagonal terms of the
Reynolds stress tensor, especially if wall-models are used. With this information, the reconstruction of the
Reynolds stress tensor based on Wilcox’s hypothesis can be compared to that of the cubic k −ε method, and
the LLR RSM. From the comparison, an apt turbulence model can be selected that will be used for subsequent
simulations.

3.7. Summary
In this chapter, the literature regarding turbulence, its characteristics, and the modelling thereof has been
reviewed. First, observations of the general characteristics of turbulence were made. From these observa-
tions, a more quantitative characterisation of turbulence could be made, with the use of the turbulent kinetic
energy spectrum. It was found that large scales mainly produced the turbulent energy by subtracting energy
from the mean flow. The dissipation was mostly due to the smallest scales, which are characterized by the
Kolmogorov scales. As the smallest scales have a finite length, it is possible to completely resolve the turbu-
lence spectrum and thus there is no need for a turbulence model. Another method is to resolve the scales up
to in the inertial subrange, and model the smallest scales. However, these methods are too computationally
expensive for current industry applications, and thus a different method must be used.

From this, Reynolds-averaged methods were introduced as a more cost-effective method. Here, only the
ensemble average of the flow field is computed. Due to the nonlinearity of the NS-equations, a Reynolds
stress term appears in the Reynolds-averaged NS equations, which needs to be modelled. Linear eddy vis-
cosity models assume the Boussinesq hypothesis to model the Reynolds stress tensor, which implies isotropy
in the turbulent kinetic energy. A relatively cheap improvement is a nonlinear eddy viscosity model, which
does not assume isotropy in turbulent energy, but the turbulent viscosity is still modelled as a scalar, and
closure coefficients are necessary to close the system. Reynolds stress models do not use a constitutive rela-
tion between the Reynolds stress term and the strain of the mean velocity, but rather they solve the transport
equations for the individual Reynolds stress terms.

With the clear distinction between the different methods of modelling turbulence, the governing equation
for the pressure fluctuations was investigated. It was found that the pressure fluctuations can be computed
solely from the mean velocities and the velocity fluctuations, thus rather than modelling the pressure fluc-
tuations, the velocity fluctuations could be modelled. This is also known as modelling synthetic turbulence.
For synthetic turbulence, the desired characteristics were derived. From the Navier-Stokes equations, it was
found that the synthetic turbulence must obey a divergence criterion, and that eddies are approximately
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convected by the local mean flow velocity. The energy spectrum must be accurately approximated, as it de-
termines the amount of energy the different scales have, and it implicitly determines the spatial correlations
between the velocity fluctuations. In order to accurately portray the energy spectrum, the Reynolds stress
tensor must be replicated, as it directly influences the size and skewness of the energy spectrum. For linear
eddy viscosity models, Wilcox’s hypothesis can be used as a better reconstruction method for the Reynolds
stress tensor. Lastly, due to the production and dissipation of turbulence, it shows a decorrelation in time.
Thus next to convection, this decorrelation must also be modelled. With these characteristics in mind, the
available synthetic turbulence methods are reviewed, which is done in chapter 4.





4
Synthetic turbulence

As discussed in section 3.4, the pressure fluctuation field for an incompressible flow can be obtained by solv-
ing a Poisson equation, of which the right-hand-side only depends on the averaged velocity field, and the
velocity fluctuation field. Thus pressure fluctuations are directly related to the velocity fluctuations, and only
the velocity fluctuations need to be modelled, as the averaged velocity field is obtained from a URANS sim-
ulation. A modelled velocity fluctuation field is also called Synthetic Turbulence (ST). In this chapter, first,
a small overview is given of the research areas where synthetic turbulence is applied. Then, the method of
generating synthetic turbulence currently applied in NRG-FSIFOAM is presented, along with its assumptions.
Subsequently, a review is given of the current state-of-the-art synthetic turbulence generators from the afore-
mentioned research areas. The given ST generators are reviewed critically, and arguments are presented for
the methods that are most suitable for the application of FSI calculations on fuel rods subjected to axial flow.

It was found that there are discrepancies in notation for certain common variables among the different
authors. It was decided to keep consistency with the original authors when discussing a synthetic turbulence
method, such that the notation is not confusing when one decides to dig further into a specific method. Note
that this means that in this chapter, different variable names are used per method, depending on what the
original authors used.

4.1. Research areas
Synthetic turbulence has been applied in several fields within computational fluid dynamics. It has been
proven to be useful for constructing the inflow conditions for LES and DNS [72, 75–81], it has been used for
noise modelling [10, 82–86], particle dynamics modelling [75], hybrid LES-RANS transition regions [9, 73, 87–
91], modelling of pressure forces on tall buildings [92], the modelling of fatigue loading on wind turbines
[93–95], and for FSI predictions of fuel rods subjected to axial flow [4, 14, 36]. In this section, a small overview
is given of the largest research areas and how synthetic turbulence is applied here. Since the application to
FSI for nuclear applications has already been discussed in chapter 2, this won’t be elaborated upon again.
Furthermore, synthetic turbulence models for the purpose of modelling fatigue loading are often derived
from existing models, but they are adjusted for the properties of atmospheric boundary layers. It was found
that novel methods are often proposed for hybrid RANS/LES, LES inflow conditions, and noise modelling.
Thus, the focus will be put on these fields.

4.1.1. Inflow conditions for LES
One of the applications of synthetic turbulence is the creation of inflow conditions for large eddy simulations.
In (U)RANS, all variables that are defined on the boundaries are defined as ensemble averages, thus no small
scale fluctuations are necessary as input. In LES however, the turbulent scales are resolved up to a certain
range, and thus the variables in LES are always stochastically varying up to the resolved scales. This means
that these fluctuations also must be represented on the inflow boundary [96]. If only the mean velocities
are given at the inflow such as is done in RANS, then that means that the flow must be developed into a
turbulent flow, and this can take large lengths before the flow is fully developed. Thus in general, not only
mean velocities but also velocity fluctuations are supplied at the inlet, which reduces the development length
from inlet to fully turbulent flow.

27



28 4. Synthetic turbulence

This is a very active research field, and new methods are still being developed [97]. Several methodolo-
gies can be used to generate velocity fluctuations, such as recycling/rescaling methods, precursor simulation
methods, or using synthesised turbulence [8, 98]. For this application, synthetic turbulence is only generated
on a 2D-plane, however, it does generate turbulence with three components. Typically, if the method includes
spatial correlation, this is only done in two dimensions. ST methods that stem from this field will have to be
adjusted such that they can generate synthetic turbulence for a full 3D domain. For this application, the main
goal of synthetic turbulence is to create a development length as short as possible. Thus, this is often used
as a benchmark to compare ST methods. However, this benchmark does not necessarily translate to having
physically accurate turbulence. For example, for time correlation a constant convection velocity is often as-
sumed, and the divergence-free criterion is not always respected. This is because the generated turbulence is
injected into the computational domain, and in the next steps it will be corrected to adhere to the governing
equations. For the application to FSI, this is not the case and thus turbulence adhering to the physical laws is
more desired to obtain accurate pressure fluctuations.

4.1.2. Interfaces between RANS and LES

This field is very similar to that of section 4.1.1. Zonal hybrid methods are used when a high fidelity simulation
is computationally too expensive, and the flow does not need to be accurately resolved in the whole domain.
Thus a RANS or URANS computation is performed over a large part of the domain, while the area that needs
to be more resolved is computed via LES. This is illustrated in fig. 4.1.

Figure 4.1: Sketch of RANS/LES coupling: embedded LES [8].

Similarly to LES, there is a region in which the turbulence gets fully developed. In zonal methods, this
region is resolved by both (U)RANS and LES. The region starts at the inlet of the LES domain, and it ends at
the outlet of the (U)RANS domain, as shown in fig. 4.2. Here, synthetic turbulence is introduced at the LES
inlet, in order to have a shorter buffer region. Thus in this case, the synthetic turbulence is also generated
only for a 2D plane, and it would have to be adjusted to be a fully 3D method. For this application, similar
to LES inflow conditions, the shortest buffer region is desired, and this is often used as a benchmark. Often,
methods for RANS/LES transition and LES inflow conditions can be used interchangeably.



4.2. Current Model of NRG 29

Figure 4.2: The interface between the LES and RANS calculation [9].

4.1.3. Noise Modelling in Computational Aeroacoustics
In Computational AeroAcoustics (CAA), the problem can be divided into the generation of sound and the
propagation of sound. Both problems can be solved by using DNS or LES [10], however in this field the com-
putational requirements of LES and DNS are often too large as well. A solution to this is to model the sound
sources (i.e. turbulence) and use the linearised Euler equations to propagate this sound. This results in a
method that is computationally cheaper than LES or DNS. The turbulence is modelled by synthetic turbu-
lence. In this field, a full three-dimensional turbulence field is constructed, thus ST methods generated for
this field can be readily applied to a fuel rod subjected to axial flow. In this field, more attention is paid to the
divergence-free criterion, as having a non-divergence-free field can lead to spurious pressure waves, which
poses a problem for CAA [99]. Validation is often done directly through noise modelling, thus not all new
methods publish the validation of the one and two-point statistics for a simplified flow case, such as turbu-
lent channel flow.

4.2. Current Model of NRG
The current synthetic turbulence model that is implemented in NRG-FSIFOAM is a slightly adjusted version
of that described by Kottapalli et al. [14]. The method was adjusted internally at NRG and this method is de-
scribed below. It is based on a random flow generation method, which will be elaborated upon in section 4.3.
In short, it generates an isotropic velocity fluctuation field, based on a modified Von Karman spectrum. This
method is also partly based on that of Senthooran [100], which used it to predict the pressure on a high-rise
building. The velocity fluctuations are calculated as follows:

u′(x, t ) = 2
N∑
n

ũncos[kn(x− tucn )+ψn +ωn t ]σn (4.1)

Where ũn ,ψn ,ωn , andσn are the amplitude, phase angle, characteristic angular frequency, and the direc-
tion of the nth mode with wavevector kn . uc is the convective velocity. Note that these quantities are spatially
varying. From the incompressible continuity equation, it follows that the velocity fluctuation field must be
divergence-free, as shown in eq. (4.2). For the formulation of the velocity fluctuations as given in eq. (4.1),
this translates into eq. (4.3), i.e. the wavenumber vector is always perpendicular to the direction vector. Note
that this method of ensuring the divergence-free criterion is valid in the infinitesimally small domain, but the
criterion is not met exactly due to the discretization of the divergence operator [101]. This will be elaborated
upon in section 4.3.4. The angular frequency is calculated with eq. (4.4), and the convection velocity is cal-
culated with eq. (4.5). Note that the convection velocity is calculated for every mode, and that its direction is
the unit direction. It is not clear why this choice was made.
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ωn = (εk2
n)1/3 (4.4) ucn = ωn

kn

[
1 1 1

]
/
p

3 (4.5)
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4.2.1. Wavenumber & Direction Calculations
The smallest wavenumber is correspondent to the largest length scale L in the domain, this can be approxi-
mated by eq. (4.6), as done in [100]. The current method implemented by NRG is more conservative, and the
smallest wavenumber is calculated by eq. (4.7), which was based on dimensional analysis. It was found that
this is necessary to fully capture the turbulent spectrum and eq. (4.6) would lead to clipping the spectrum
such that energy-containing eddies are neglected.

kedd y =
2π

L
= 2πε

K 3/2
(4.6) kedd y =

ε

max(||u||3)
(4.7)

Given the wavenumber space from kedd y to kη, the edge-wavenumbers are logarithmically distributed as
shown in eq. (4.8), where γ is defined in eq. (4.9). Then the wavenumbers are defined as kn = k̃n+1/2. From
fig. 4.3, the relation between the magnitude of the wavenumber and the wave vector can be established,
shown in eq. (4.10).

k̃i = kedd y ·eγi (4.8) γ= log (kη/kedd y )

N
(4.9)

kn = kn[sinθn cosψn , sinθn sinψn ,cosθn]T (4.10)

Figure 4.3: Wave vector geometry of the nth Fourier mode [10].

In order to satisfy the divergence criterion, the direction vector must be orthogonal to the wavevector.
Senthooran [100] accomplished this by assuming that σn lies in a plane perpendicular to kn. From this,
eq. (4.11) is found. All the angle definitions are defined in fig. 4.3.

σn =
cosαn cosφn −cosθn sinφn sinαn

cosαn sinφn +cosθn cosφn sinαn

sinθn sinαn

 (4.11)

The velocity fluctuations are stochastic due to the randomness introduced by the phase angle, as well as
the angles related to the direction of the wavenumber vector. Namely,φn ,ψn and θn are randomly generated.
Kottapalli et al. [14] generated only one random variable, which was scaled to represent the other random
variables. Doing this gives a correlation to the random variables, which is not desired. The current method
implemented in NRG-FSIFOAM generates three independent random variables. Furthermore, Kottapalli et
al. [14] generated a random variable for each spatial location, but this gives uncorrelated spatial noise. For
this reason, the random variables in the current implementation are created for each wavenumber mode
once per timestep. To ensure isotropic turbulence, the following probability functions are used:

P (ψn) = 1

π
, P (φn) = 1

2π
, P (θn) = 1

2
si n(θn) (4.12)



4.2. Current Model of NRG 31

4.2.2. Turbulent Kinetic Energy Spectrum
The velocity fluctuations must be in agreeance with the available data from (U)RANS. This is done by relat-
ing the turbulent kinetic energy K and the dissipation rate ε to the velocity fluctuations through the energy
spectrum [92], as shown in eq. (4.13) and eq. (4.14).∫ ∞

0
E(k)dk = K (4.13) 2ν

∫ ∞

0
k2E(k)dk = ε (4.14)

The modified Von Karman spectrum is used as an expression for the turbulent kinetic energy spectrum,
given in eq. (4.15). Where A is a constant depending on the turbulent kinetic energy, kmax is the wavenumber
at maximal turbulent kinetic energy, and kη is the highest wavenumber i.e. the wavenumber correspond-
ing to the Kolmogorov scale. Only kmax and A are unknowns, as they are used to scale the spectrum to the
appropriate quantities. They can be found by using the constraints displayed in eq. (4.13) and eq. (4.14).

E(k) = A
2K

3kmax

(k/kmax )4

[1+ (k/kmax )2](17/6)
exp(−2(

k

kη
)2) (4.15)

Kottapalli et al. [14] simplifies the method of Senthooran [92] by assuming that the modified Von-Karman
spectrum overlaps with the Kolmogorov spectrum for the inertial subrange, showed in eq. (4.16) [52]. Equat-
ing this to the energy spectrum and neglecting the exponential term (which is close to unity in the inertial
subrange), gives eq. (4.17). Note that this simplification means that eq. (4.14) is not necessarily adhered to, as
it is not explicitly imposed as done in Senthooran [92]. The constant A can be determined from eq. (4.13). To
simplify the integral, a substitution is made from [100], where β= 2( kmax

kη
)2. The result is shown in eq. (4.18).

With A and kmax known, the modified Von Karman spectrum can be calculated. The integral is evaluated
using Simpson’s rule, as opposed to the Riemann’s sum Kottapalli et al. [14] used to integrate. Note that it
is possible for kmax to be larger than kη, however, this is nonphysical and it can lead to numerical instabili-
ties. Thus kmax is clipped at kη/2. This situation was not encountered often and thus it should have no large
effects on the results.

E(k) = Aε2/3k−5/3 (4.16) kmax = ε(
3

2K
)3/2 (4.17)

A = 3

[∫ 1

0

η3/2

(1−η)2/3
exp(−β η

1−η )

]−1

dη (4.18)

The amplitudes of the velocity fluctuations are directly related to the turbulent kinetic energy. K = 1
2 ||u′||2,

which can be related to the magnitudes of each mode. The method of Senthooran [100] is used (eq. (4.19)),
where the integral of the turbulent kinetic energy spectrum is approximated using a Riemann’s sum, resulting
in eq. (4.20). Thus by definition, the velocity fluctuations adhere to the prescribed turbulent kinetic energy,
for N →∞. ∫ ∞

0
E(k)dk =∑

n
ũ2

n (4.19) ũn =
√

E(kn)∆kn (4.20)

4.2.3. Pressure Fluctuations
With the model for the velocity fluctuations completely defined, and the URANS inputs, the pressure fluc-
tuations can be calculated, by solving the partial differential equation eq. (3.31). In the PFM by NRG, this
equation is slightly adjusted, with the assumption that eq. (4.2) holds. In fact, eq. (4.21) is solved. By apply-
ing the chain rule to the first two right-hand-side terms of eq. (4.21), and using eq. (4.2) and the continuity
equation for incompressible flow, eq. (3.31) can be reconstructed. Thus, the divergence criterion is of key
importance to eq. (4.21), and must be exactly enforced for this equation to be correct.

∂2p ′

∂xi∂xi
=−ρ

[
∂2

∂xi∂x j

(
ui u′

j +u′
i u j +u′

i u′
j −u′

i u′
j

)]
(4.21)

For the calculations of the pressure fluctuations, the spatial mean is subtracted from the right-hand side
of eq. (4.21). This is done because if the spatial mean is not equal to zero, the solution is dominated by a
three-dimensional parabola. This can be shown for a simplified Poisson equation in one dimension, where
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the right-hand side is decomposed in the spatial mean, and the spatial fluctuating component, as shown
in eq. (4.22). The solution of this equation is shown in eq. (4.23), and it shows that the spatial mean gives
a parabolic solution. Thus, to prevent this solution, the spatial mean of the right-hand side of eq. (4.21)
is subtracted before the equation is solved. As can be seen there are still a linear and a constant term in
eq. (4.23). These terms are determined by the boundary conditions.

∂2p ′

∂x2 = r hs′+ r hs (4.22)

p ′ = 1

2
r hsx2 + c1x + c2 +

∫ ∫
r hs′d xd x (4.23)

4.2.4. Remarks
In this section, an elaborate review of the current synthetic turbulence method of NRG is given, which was
based on the work of Kottapalli et al. [14] and Senthooran [92, 100]. While it has given initially promising
results, there are a few points on which this model can be improved. The main problems are its lack of spatial
correlation and the current method of temporal correlation, as well as the assumption of isotropic turbulence.
Next to this, other small problems were found as well.

In the current method, it is attempted to achieve temporal correlation by assuming the fluctuations are
convected over time. However, the convected velocity of each mode is not in the direction of that mode,
but rather in the unit direction. Furthermore, it was found that this method of temporal correlation created
convection velocities that were very small relatively to the mean flow velocity [102]. The largest scales have the
highest convection velocity, which is in accordance with the theory described in section 3.5. However, even
for these scales, the convection velocity is only a fraction of the mean velocity. This also caused unrealistically
elongated flow structures that significantly lowered the estimation of the RMS pressure fluctuations. Finally,
the temporal decorrelation due to production and dissipation of turbulence is currently not represented by
the synthetic turbulence.

Due to how Kottapalli et al. [14] solves for the wavenumber of maximal turbulent energy, it does not
necessarily adhere to eq. (4.14). Thus, the dissipation rate obtained from the velocity fluctuations does not
have to be the same as the one obtained from (U)RANS data. Finally, the current method assumes isotropic
turbulence. The vibrations in fuel rods subjected to axial flow are caused by the at-the-wall turbulence, which
is anisotropic. Thus, in order to have an ST model that is applicable to fuel rods in axial flow, it is of importance
that the synthetic turbulence can be anisotropic.

4.3. Random Flow Generation
The Random Flow Generation method was first proposed by Kraichnan [103]. This was used as a method
for generating homogeneous isotropic turbulence by using random Fourier modes. This was one of the first
methods for developing synthetic turbulence and a bulk of the methods today stem from Kraichnan. New
models are often a continuation of older models and in this case, three clear trends of continuation can be
distinguished. In this section, each trend is explained, and the latest model of this trend is treated in more
detail.

4.3.1. Bailly, Senthooran, Kottapalli, and Billson
Bailly & Juve [83] adjusted Kraichnan’s method [103] such that time correlation was introduced. This was
done by adding the convection and angular frequency terms that are also present in eq. (4.1). Senthooran
[100] then slightly adjusted this method and applied it to model pressure fluctuations. In turn Kottapalli et
al. [14] adjusted it, which was presented in section 4.2. Billson et al. [10, 82] had also adjusted Bailly & Juve’s
method, which is presented below.

The generated velocity fluctuations are defined in eq. (4.24), where similar to the method of section 4.2,
kn ·σn = 0. Where Senthooran [100] used an expression to relate θ toα, Billson et al. also generateα randomly.
Moreover, Billson et al. calculate the amplitudes ũn in the same way as Senthooran [100], using eq. (4.20). The
modified Von Karman Spectrum is used to represent the turbulent energy spectrum, however, the constants
A and kmax are calculated differently. In this method, also the turbulent kinetic energy is used to find A, but
with the assumption of high Reynolds number, which results in the analytical expression eq. (4.25), where
Γ() is the extension of the factorial function. The wavenumber associated with the peak turbulent energy
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kmax is found by linking the turbulent length scale found by the (U)RANS simulation to that of the velocity
fluctuations, resulting in eq. (4.26).

ut (x) =∑
n

ũn cos(knx+ψn)σn (4.24)

A = 4p
π

Γ(17/6)

Γ(1/3)
(4.25) kmax = 9π

55

A

Λ
(4.26)

The part where Billson et al. differentiates his method from previous methods, is his method for time
correlation and convection. The realised generation of a velocity fluctuation field at timestep m is defined
as um

t (x). Each generated field is independent of the others and they have a statistical mean zero in time,
i.e. it is white noise. The new velocity fluctuation field can then be defined as in eq. (4.27), where a = e−∆t/τ,
b =

p
1−a2 and τ is the time scale. The parameter b ensures that the root mean squared velocity fluctuations

of vm
t (x) are equal to those of um

t (x). Thus this method creates a temporal correlation by superimposing a
random field with the field of the previous timestep. To account for convection, the advection equation is
solved for vm−1

t (x), as shown in eq. (4.28), before it is used in eq. (4.27).

vm
t (x) = avm−1

t (x)+bum
t (x) (4.27)

∂ρvm−1
t

∂t
+ ∂ρu j vm−1

t

∂x j
= 0 (4.28)

The current presented method is applicable to isotropic turbulence, but the same method can be adjusted
for anisotropic turbulence. Billson et al. proposed to diagonalise the normalised Reynolds stress as shown
in eq. (4.29), where a is the normalised Reynolds stress tensor as defined in eq. (4.30), R is the matrix of
eigenvectors of a, (ρk)av g is the average turbulent kinetic energy, and a∗ is the diagonalised stress tensor.
This is essentially a transformation to the principal coordinate system. Using this transformation, an isotropic
fluctuation field in the principal coordinate system can be transformed to an anisotropic fluctuation field in
the spatial coordinate system. In the following equations, the superscripts ∗,a and i refer to the principal
coordinate system, anisotropic and isotropic respectively. In order to generate an anisotropic fluctuation
field, first the fluctuation field is transformed to the principal coordinate system, by multiplying with RT .
Then the field is made anisotropic by scaling the isotropic field with the anisotropic normalised stress tensor,
i.e. multiplying by a∗1/2. Then, the field is transformed back to the original coordinate system by multiplying
with R. This whole string of operations can be done in one go, as shown in eq. (4.31).

a∗ = RT aR (4.29) ai j = −3

2

τi j

(ρk)av g
(4.30)

ua
t = R ·a∗1/2RT ui

t = R ·2
∑
n

ũn cos(k∗a
n x +ψn)σ∗a

n

k∗a
n = a∗1/2RT kn (4.31)

σ∗a
n = a∗1/2RTσn

This method of generating anisotropy reproduces the Reynolds stress tensor that is given as input, thus it
corresponds more accurately to the properties of the flow than the method of Senthooran [100] or Kottapalli
et al.[14], as these do not take the Reynolds stress into account. One disadvantage of the presented method
is that the divergence-free criterion is now met in the principal coordinate system, but this is not translated
back to the spatial coordinate system, due to the scaling operation. For homogeneous isotropic flow, the
correlation functions showed great agreeance with the analytical solution [10]. The correlation functions had
not been compared for anisotropic flow. It was verified however, that the Reynolds stress tensor was indeed
correctly represented by the velocity fluctuation field, and a qualitative comparison of the fluctuations with
data DNS also gave great agreeance [82]. This method has been used in the field of CAA, as well as for LES
inflow conditions [89]. In conclusion, the model proposed by Billson et al. models all the characteristics that
were determined in section 3.5, with two small exceptions. Firstly, it uses the assumption of Re >> 1 to arrive
to an analytical expression for the coefficients of the energy spectrum. Secondly, due to its representation of
the inhomogeneous Reynolds stress tensor, the divergence criterion can only approximately be met.
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4.3.2. Smirnov, Batten, Yu, and Castro
Smirnov et al.[75] proposed a method for simulating inhomogeneous anisotropic turbulence, based on the
method of Kraichnan [103]. This method scales the isotropic velocity fluctuations obtained by Kraichnan’s
method [103] with a tensor, which is obtained by similarity scaling of the Reynolds stress. The fluctuations
are also scaled based on the local time and length scales. Since the Reynolds stress and the time and length
scales vary in space, the method is implicitly inhomogeneous. Smirnov et al.’s method uses a Gaussian energy
spectrum as opposed to the modified Von Karman Spectrum. This choice has been shown to give unrealistic
results for applications such as atmospheric boundary layers [97]. Another disadvantage of this method is
that the divergence criterion is only met for homogeneous turbulence. The varying scaling causes the di-
vergence criterion not to be met, although Smirnov et al. did show that it is approximately met when the
Reynolds stress is slowly varying in space [75]. Lastly, Smirnov et al.’s method does not account for the con-
vection of turbulence. This method has been implemented for LES inflow conditions in ANSYS Fluent [104].

Batten et al.[87] simplified this method by using Cholesky decomposition instead of using similarity trans-
formations. Huang et al. [105] modified Smirnov’s method such that any spectrum model could be used.
Castro [72] later adjusted this method with an improvement of the temporal correlations, this method is
elaborated upon.

Castro defined the velocity fluctuations as shown in eq. (4.32). Here k̃ and x̃ are the non-dimensionalised
wavenumber and position, respectively. The wavenumber is non-dimensionalised by the lowest wavenum-
ber of the spectrum, and x by the turbulent length scales. τ0 is not the turbulent time scale, but rather an
ad-hoc parameter that must be set by the user. This method does not use a 1D energy spectrum, but instead
it assumes that the 1D spectrum is equal to the weighted sum of the energy spectra along each principal axis.
The factors pm,n

i and qm,n
i align the energy spectrum according to the diagonal of the Reynolds stress tensor.

Namely, the velocity fluctuations must obey the constraint given in eq. (4.33). From this, the scaling factor
ci is determined. Ei is the turbulent energy spectrum of direction i . The factors pm,n

i and qm,n
i are then

calculated using eq. (4.34) and eq. (4.35), respectively. Here, r (m,n)
i is a random variable with a distribution

N (0,1). From this, the wavenumber vectors can be calculated as to satisfy the divergence criterion, shown in
eq. (4.36) and eq. (4.37).

ui (x, t ) =∑
m

∑
n

[
pm,n

i cos(k̃m,n
j x̃ j +ωm,n

t

τ0
)+qm,n

i sin(k̃m,n
j x̃ j +ωm,n

t

τ0
)

]
(4.32)

u′2
r ms,i = ci

∫ ∞

0
Ei (k)dk (4.33)

p(m,n)
i = r (m,n)

i

||r (m,n)
i ||

√√√√4ci

N
Ei (km)∆km

r (m,n)
i

1+ r (m,n)
i

(4.34) q (m,n)
i = r (m,n)

i

||r (m,n)
i ||

√
4ci

N
Ei (km)∆km

1

1+ r (m,n)
i

(4.35)

k(m,n) ·p(m,n) = 0 (4.36) k(m,n) ·q(m,n) = 0 (4.37)

Advantages of this method over previous methods is that it provides a divergence-free inhomogeneous
anisotropic field, and it is a highly parallel method, as the general procedure is independent for each point.
Furthermore, it shows great temporal and spatial correlation compared to analytical results, and the energy
spectrum is free of choice, meaning that more accurate spectra than a Gaussian spectrum can be used. How-
ever, the anisotropy of this method is only related to the diagonal of the Reynolds stress tensor, meaning that
the off-diagonal components are not necessarily accurately represented. Next to this, the method has several
ad-hoc parameters that need to be tuned to get the most accurate result.

4.3.3. Adamian and Shur
Adamian et al. [91] developed a new RFG method that took inspiration from several older models [75, 84, 87,
103]. It is a quite simple algorithm that uses a lot of ad-hoc parameters. Nevertheless, when applied to LES
inflow conditions, it saw a considerably shorter development length compared to other models [91]. Later,
this model was improved by Shur et al. [9], by adding time correlation.

The velocity fluctuations are defined such that the second moment tensor is equal to the Reynolds stress
obtained from the (U)RANS simulation, by using Cholesky decomposition, ri j = aT a, where a is defined
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in eq. (4.38). Then the velocity fluctuations are defined as u′
i (r, t ) = ai j v ′

j (r, t ), where v ′
j (r, t ) is defined in

eq. (4.39). Here qn is the normalised amplitude of mode n, kn is the amplitude of the wavevector of mode n,
d n is a random unit vector uniformly distributed over a sphere,σn is the direction vector, which is orthogonal
to d n [103]. The angle determining the plane in whichσn lies is a random variable with P (2π). φn is the phase
angle which is also a random variable with P (2π). Unique to this method is that the random variables are only
defined once.

ai j =


p

r11 0 0

r21/a11

√
r22 −a2

21 0

r31/a11 (r32 −a21a31)/a22

√
r33 −a2

31 −a2
32

 (4.38)

v′(r, t ) =p
6
∑
n

√
qn

[
σn cos(kn dn · r′+φn)

]
(4.39)

qn = E(kn)∆kn∑
n E(kn)∆kn (4.40)

The turbulence is propagated in time by assuming Taylor’s Hypothesis [106], i.e. the turbulence is con-
vected with a constant velocity equal to the mean flow. Shur et al. assumed that the flow would be in the
x-direction, and defined the position vector as in eq. (4.42). Here le is the length of the eddy with the largest
turbulent kinetic energy. This determined by eq. (4.41), where dw is the wall distance, Cl = 3.0 and lt is the
turbulent length scale as obtained from (U)RANS.

mi n(2dw ,Cl lt ) (4.41)

r =
[

2π
kn max(le (r)) (x −U0t ) y z

]
(4.42)

Shur et al. [9] uses a modified version of the Von Karman Spectrum. An advantage of this method is that
the height of the spectrum is not important, as the amplitudes are normalised. Thus no computations as
eq. (4.18) or eq. (4.25) are necessary. The spectrum is displayed in eq. (4.43), where fcut damps the spectrum
at wavenumbers larger than the Nyquist value. This function is only applicable for LES inflow or LES/RANS
transition conditions. The function is shown in eq. (4.44), where kcut = 2π/lcut and lcut is defined as in
eq. (4.45). Note that the definition in eq. (4.43) is slightly different than eq. (4.15), namely there is an additional
factor 2.4 in the denominator and an additional factor 12 in the exponent term. It is not clear where these
discrepancies come from. For the wavenumbers, Shur et al. [9] use a geometric series rather than a uniform
or logarithmic one.

E(k) = (k/kmax )4

[1+2.4(k/kmax )2](17/6)
exp(−(12

k

kη
)2) fcut (4.43)

fcut = exp

(
−

[
4max(k −0.9kcut ,0)

kcut

]3)
(4.44)

lcut = 2mi n{[max(hy ,hz ,0.3hmax )+0.1dw ],hmax } (4.45)

Regarding the generation of velocity fluctuations, Shur et al. [9] only showed qualitative verification by
comparing the generated fluctuation fields with those of LES data of a turbulent channel flow. It does not
compare any statistics for this generated field. However, it does compare statistics of an LES simulation using
the described method as inflow condition for the velocity fluctuations at various distances from the inlet. This
shows a quick recovery of the skin friction coefficient, as well as the Reynolds stresses. It is unclear however,
how this translates to the validity of the synthetic turbulence model, and if a shorter recovery length is related
to the accuracy of the synthetic turbulence model. The model presented by Shur et al. is simple and very
easy to implement. However, for the time correlation, Shur et al. assumed a constant convection velocity for
all of the turbulence, specifically in 1 direction only. Moreover, there are several ad-hoc parameters, which
are used for calculating the wavenumber of the eddies that contain the largest energy, as well as the cut-off
wavenumber. Next to this, there are discrepancies in the energy spectrum compared to other models such
as Kottapalli et al. [14] or Billson et al. [10]. The method shows promising results for the application to the
inflow conditions of LES or DNS, and it has been used several times for this application [107, 108]. For LES
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inflow conditions, the time correlation is not as important as for the application to CAA or FSI, which is an
explanation for the current method of time correlation that Shur has implemented. Combining this method
with the time correlation steps of Billson et al. [10] could give a method that is more suitable for CAA and FSI.
Given the successful results of its current application, the method adjusted for FSI is an attractive option for
the modelling of nuclear fuel rods subjected to axial flow.

4.3.4. A Note On The Divergence Criterion
In the shown Random Flow Generation methods, the constraint kn ·σn = 0 is always adhered to in order to
preserve a solenoidal field in the case of homogeneous turbulence. This relation was proved by Kraichnan
[103] in his original method. With the velocity fluctuations given by eq. (4.24), the divergence can be written
as in eq. (4.46).

∇·u =−2
∑
n

ûnkn ·σn sin(kn · x +ψn)σn (4.46)

Thus, by satisfying kn ·σn = 0, the divergence is equal to zero, for the case of the exact divergence. However,
Saad et al. [101] showed that the discrete divergence is not necessarily zero if the condition of kn ·σn = 0 is
met. Rather, the condition k̃n ·σn = 0 should be met, where k̃n is the modified wavenumber vector, for which
the modification depends on the discretization scheme. The modified wavenumber vector is equal to the
original wavenumber vector in the limit of the grid spacing approaching zero.

For homogeneous isotropic turbulence, the modified wavenumber vector can be determined exactly. This
vector gives a zero discrete divergence. As an example, the modified wavenumber vector is derived for the
central difference scheme, as shown as in eq. (4.47), where the subscript d denotes a discrete operator.

∂u

∂x

∣∣∣∣
d
= u(x +∆x)−u(x −∆x)

2∆x
(4.47)

Since the turbulence is homogeneous, eq. (4.48) holds in this case. Next to this, one can use the trigono-
metric identity cos(x +∆x)−cos(x −∆x) =−2sin(x)sin(∆x) to combine eq. (4.47) and eq. (4.48). From this, it
is found that for this case, the modified wavenumber is equal to k̃n = sin(kn∆x)/(∆x). By evaluating its limit,
it can be found that it approaches kn for ∆x −→ 0. While the modified wavenumber vector can be calculated
for homogeneous flows, this is not generally the case. Thus, while the exact divergence is zero, the discrete di-
vergence is not. In future remarks, the divergence criterion refers to the exact divergence. Thus even though
a method is classified as "divergence-free", the discrete divergence may be non-zero.

u(x +∆x , t ) = 2
N∑
n

ũncos[kn(x+∆x)+ψn]σn (4.48)

Methods that are capable of representing anisotropic turbulence, typically used a scaling and transfor-
mation method similar to that of Smirnov et al. [75]. Using this scaling and transformation method does not
violate the exact divergence-free criterion, in the case that the flow is homogeneous. The scaling operation
of the velocity fluctuation is shown in eq. (4.49), from this the divergence can be derived, which results in
eq. (4.50). In both equations, ci is the scaling vector, which is based on the local Reynolds stress tensor. As
can be seen, for the divergence criterion to be met, the scaling tensor can not have any spatial variation, i.e.,
for homogeneous flows the scaling does not violate the divergence-free criterion. However, if the Reynolds
stresses vary in space, the divergence is not equal to zero. It can be said that the divergence is approximately
zero for spatially slowly varying Reynolds stress, which is often the case for (U)RANS simulations [75]. Unlike
the scaling operation, the transformation tensor does not violate the divergence criterion.

wi = ci ui (4.49)

∂wi

∂xi
= ∂ci

∂xi
ui + ci

∂ui

∂xi
(4.50)

4.4. Digital Filtering Method
The digital filtering method was first proposed by Klein et al. [109]. In this method, the velocity fluctuations
are represented by filtering random fluctuations such that prescribed time and space correlations are im-
posed. Di mare [76] adjusted the method such that any correlation function shape could be used, however,
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this proposed method did not have a unique solution and only for a few cases an explicit expression for the
filters could be derived [97]. Fathali et al. [110] proposed a similar method, based on random fields rather
than filtered random noise. Klein’s method was later adjusted by Xie & Castro [111], which used exponen-
tial functions to determine the correlations, rather than Gaussian functions. Furthermore, it adjusted the
method to be more computationally efficient, by using 2D slices and providing a time correlation between
them, rather than generating a 3D filtered velocity field. Kim et al. [80] adjusted Xie & Castro’s method by
making it divergence-free. In this section, the method of Xie & Castro, as well as the adjustments by Kim et al.
are reviewed.

Similar to several other methods, the Reynolds stress tensor is imposed on the velocity fluctuations by use
of Cholesky decomposition, shown in eq. (4.51), where ai j is defined in eq. (4.38). The digital filter is applied
to an "intermediate" velocity field ψ in eq. (4.52), where the subscript m denotes the mth mesh cells, rm+ j

is a random variable from N (0,1), and b j is the j th filter coefficient. Xie & Castro assumed an exponential
correlation function, from this eq. (4.53) was derived, where b′

j is given by eq. (4.54). Note that b′
j is only

approximately calculated [111]. The variable N is defined by N = 2I
∆x , where I is the integral length scale. With

this definition, the filter is able to capture twice the desired length scale, which ensures sufficient filtering at
a moderate cost [112]. The length scale is assumed to be constant, likewise, ∆x is assumed to be constant i.e.
the method is designed for a uniform Cartesian grid.

u′
i = ai j u∗

j (4.51)

ψm =
N∑

j=−N
b j rm+ j (4.52)

b j =
b′

j

(
∑N

k=−N b′2
k )1/2

(4.53)

b′
j ≈ exp

(
−π| j |

2n

)
(4.54)

Applying 1 filter gives a 1D correlated velocity field, for a 2D correlated velocity field, a random variable
has to be filtered twice, shown in eq. (4.55). For the application to an LES inflow condition, only a two-
dimensional field is necessary. However, for the application to CAA and FSI, a fully 3D correlated velocity field
is necessary, and thus a random variable has to be filtered three times. This gives a quite high computational
cost compared to RFG methods [97]. To achieve time correlation, a similar method to Billson et al. [10] is
used. In eq. (4.56), the relation for the velocity fluctuations (before the Cholesky correction) at time (t +d t )
is given. At each moment in time, a new field is created corresponding to eq. (4.55) or its 3D version, which
is then correlated with the previous solution by means of an exponentially decaying function. Here Cx = π

4 is
a model constant, and T is the turbulent time scale, based on the mean flow velocity and the integral length
scale.

ψm,l =
N∑

j=−N

N∑
k=−N

b j bk rm+ j ,l+k (4.55)

u∗
i (t +d t ) = u∗

i (t )exp

(
−Cx∆t

T

)
+ψi

[
1−exp

(
−Cx∆t

T

)]1/2

(4.56)

The above method gives a synthetic turbulence field with prescribed Reynolds stresses, as well as spatial
and temporal correlation. However, while the mean of the velocity fluctuations is modelled to be zero, this is
not always the case when the method is applied. This is because a finite number of random variables is used,
and thus the mean may not always be zero. For the application to inflow conditions, these small differences
in mass flux can give large changes in pressure, thus Kim et al. [80] proposed a simple method to correct the
mass flux difference. The velocity is corrected by multiplying the obtained velocity field from Xie & Castro’s
method with the prescribed bulk velocity divided by the generated bulk velocity, as shown in eq. (4.57), the
generated bulk velocity is defined as the integrated generated velocity field divided by the area, shown in
eq. (4.58).

ui = Ub

Ub,T
ui ,T (4.57) Ub,T =

∫
S un,T dS

S
(4.58)
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Another flaw of the method presented by Xie & Castro, is that it is not divergence-free. Kim et al. [80] also
proposed a method which through a predictor-corrector method would make the generated velocity field by
Xie & Castro’s method approximately divergence-free. This method is only valid for incompressible flow, and
it is incorporated in the PISO algorithm [113]. With this method, the turbulence is not injected directly at
the inlet, but rather at 1 boundary length away from the inlet. The PISO algorithm is as follows, consider
the semi-discretised momentum equation for incompressible flow at node P shown in eq. (4.59). Here, the
subscript l denotes the neighbours that are used for the discretisation scheme, the superscript n indicates
the time level, A denotes discretisation matrices, which are dependent on the chosen discretisation scheme,
and Qi contains the known values such as the boundary conditions and the values of the previous timestep.

The equation can be rewritten in the form of eq. (4.60), where ũn+1
i ,P =Qi −

∑
l Al un+1

i ,l
Ap

. In subsequent equations,

ũ is defined similarly, but without the term Qi . By applying the divergence operator to eq. (4.60), a form of
the mass conservation equation is obtained (eq. (4.61)).

AP un+1
i ,P +∑

l
Al un+1

i ,l =−
(
∂pn+1

∂xi

)
p
+Qi (4.59)

un+1
i ,P = ũn+1

i ,P − 1

Ap

(
∂pn+1

∂xi

)
P

(4.60)

∂

∂xi

[
1

Ap

(
∂pn+1

∂xi

)
P

]
P

= ∂

∂xi

[
un+1

i ,P

]
(4.61)

With the PISO algorithm, this is solved by first guessing the pressure, from that the velocities are calcu-
lated, and then the guessed quantities are corrected. The corrector step is usually done twice. The guess of
the pressure is that of the previous timestep, from which the predictor velocity is calculated, which can be
seen in eq. (4.62). Kim et al. [80] adjust the PISO algorithm such that it takes the velocity fluctuations into ac-
count at the injection plane. The predictor step is kept the same as in the PISO algorithm, but in the corrector
steps, the generated turbulence is added to the velocity. This is shown in eq. (4.63) and eq. (4.64), where the
superscript g indicates that the generated turbulence is added. The corrector steps are repeated and lead to
u∗∗∗

i ,P and p∗∗
i ,P , where u∗∗∗

i ,P is now divergence-free.

u∗
i ,P = ũ∗

i ,P − 1

Ap

(
∂pn

∂xi

)
P

(4.62)

∂

∂xi

[
1
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(
∂p∗

∂xi

)
P

]
P

= ∂

∂xi

[
ũg ,∗

i ,P

]
(4.63)

u∗∗
i ,P = ũg ,∗

i ,P − 1

Ap

(
∂p∗

∂xi

)
P

(4.64)

With this method, Kim et al. [80] create divergence-free inhomogeneous anisotropic synthetic turbulence.
Note that while the method of making the synthetic turbulence divergence-free by Kim et al. was applied
to Xie & Castro’s method [111], it is also possible to apply this to other ST methods. The step of making the
generated turbulence divergence-free does not need extra computational power, as the step is integrated into
the PISO algorithm. However, as the generated velocity fluctuations are corrected, they do not exactly fulfil
the prescribed inputs anymore. I.e. the Reynolds stress and the prescribed spatial correlations are not met
exactly anymore. As mentioned earlier, the method is designed for uniform Cartesian grids. The fluctuations
can first be generated on such a grid and then interpolated on any non-uniform unstructured grid, however,
this leads to extra computations such as grid generation and interpolation, and it is computationally not very
feasible to apply this to industry problems. For the application to FSI, it is necessary to create a 3D field of
velocity fluctuations, for the presented method the computational costs will then be in the order of O (N 3),
and generally this is computationally expensive [97]. Another problem of the proposed method is that it uses
a constant value for the integral length scale, whereas the integral length scale typically varies. Dietzel et
al. [112] found that this method mainly produces large scale structures, and thus the energy spectrum is not
properly represented due to the lack of small scales. Furthermore, it was found that the prescribed correlation
functions did not agree with experimental data of homogeneous isotropic turbulence [112], whereas the RFG
method by Billson et al. [10] did. This in turn also results in an energy spectrum that is less accurate. The
Digital Filtering method does not seem to provide a more accurate method to generate synthetic turbulence.
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However, the method proposed by Kim et al. [80] to make the synthetic turbulence divergence-free shows
promise, and it could be applied to other ST methods. It is unclear whether the improvement of a divergence-
free field outweighs the fact that the prescribed inputs such as the Reynolds stress are not completely met.

4.5. Random Particle Mesh Method
The random particle method, which was first proposed by Ewert [114], is closely related to the Digital Filter-
ing methods. It is also based on taking a random variable and through filtering obtaining a correlated velocity
field. The method first could only be used with a Gaussian filter, which in turn gave a Gaussian energy spec-
trum. However, several methods have been developed such that a specific energy spectrum can be used, at
a price of extra computational costs [115, 116]. With the formulation of Ewert et al. [85], the Reynolds stress
tensor could also be adhered to. This method was first developed for CAA purposes, but it has also been
applied in other cases. Recently, the RPM method has been applied to study pressure fluctuations at walls
[117, 118]. In this section, the method as applied in Hu et al. [117] is elaborated upon, as well as the method
proposed by Wohlbrandt et al. [116] to model energy spectra other than a Gaussian one.

The Random Particle method has seen most of its applications to 2D CAA simulations, however, the
method could be easily extended to 3D, such as Hu et al. [117] did. The stream function is represented by
a filtered stochastic field, of which then the cross product is taken to obtain the velocity, thereby guaran-
teeing a divergence-free velocity field (in the case of homogeneous turbulence). This is shown in eq. (4.65),
where âi k is a scaling tensor in order to comply with an input Reynolds stress, G is a three-dimensional fil-
ter function, and the cross product is implicitly stated by ϵklm

∂
∂xl

, where ϵklm is the Levi-Civita symbol. The
white noise Ui has to fulfil the properties given in eq. (4.66) and eq. (4.67). Equation (4.67) states that the
white noise is convected with the local mean flow velocity, given by the term δ(r−uτ), where δ is the Dirac
delta function. The exponential term is introduced to model the temporal decay of turbulence, where τs is
the local time scale.

ui (x, t )′ = âi k (x)
∫

Vs

ϵklm
∂

∂xl
G(x−x′)Ui (x′, t )dx′ (4.65)

〈Ui (x′, t )〉 = 0 (4.66)

〈Ui (x′, t )U j (x′+ r, t +τ)〉 = δ(r−uτ)exp(− τ

τs
)δi j (4.67)

Due to the fact that a Gaussian filter is used, the filter can be done independently in each direction,
thus the three-dimensional filter is as shown in eq. (4.68), with the one-dimensional filter being defined in
eq. (4.69), where l is the turbulent length scale. Hu et al. [117] used a stretching factor for the length scales
not in the wall-normal direction, l1 = γl2 = γl3. The relation ls = (l1l2l3)1/3 was assumed [57], which gives
l2 = l3 = l sγ−1/3. The turbulent length scale ls can be determined from (U)RANS data with eq. (4.70), with
cl = 0.09 and Cµ = 0.54. The turbulent time scale can be determined with eq. (4.71), where cτ = 1.2 was found
from experiments [117]. Finally, the scaling tensor âi k = ai k /c(k), where ai k is the Cholesky decomposition,
earlier given in eq. (4.38), and c(k) is given in eq. (4.72) through eq. (4.74).

G(x−x′) = g (x1−x ′
1, l1)g (x2−x ′

2, l2)g (x3−x ′
3, l3) (4.68) g (y, l ) = exp

(−πy2

2l 2

)
(4.69)

ls = cl

√
kt

Cµω
(4.70) τs = cτls√

kt

(4.71)

c(1) =
√
πlsγ

1/3 (4.72) c(2) =
√
πls

2

√
1+γ2

γ2/3
(4.73) c(3) = c(2) (4.74)

The domain is divided into equally sized control volumes Vp , where a particle xp is assigned to the cen-
tre of each volume. These particles move with their respective local convective velocities. Each particle is
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associated with a random variate ri p , which is related to Ui through eq. (4.75). While Ui is used to describe
the theory, in practice the random variate ri p is generated directly, through eq. (4.76), where σn

i p is a random

variate with N (0,1). From this, the discretised form of eq. (4.65) can be solved, denoted in eq. (4.77). Here,
the position of the particle xp is adjusted every time step based on the local mean flow velocity.

r n+1
i p =

∫
Vp

Ui (x′, t n+1)dx′ (4.75)

r n+1
i p =

(
1− ∆t

τs

)
r n

i p +
(

2Vp∆t

τs

)1/2

σn
i p (4.76)

un+1
i (x) =∑

p
âi kϵklm

∂

∂xl
G(x−xp )r n+1

mp (4.77)

This concludes the numerical method that Hu et al. [117] used for modelling wall pressure fluctuations.
In the above method, Hu et al. [117] use a Gaussian correlation function, which leads to a Gaussian energy
spectrum. To be able to model more realistic energy spectra, Wohlbrandt et al. [116] proposed a method that
uses a sum of weighted Gaussian spectra. Each Gaussian spectrum is multiplied by f (l j )∆l j Â j as shown in
eq. (4.78), where f (l j ) is a weighting function specific to the desired energy spectrum, and Â j is the ampli-
tude associated with the Gaussian spectrum with length scale l j . An exponential distribution is used for the
length scales, given in eq. (4.79), where l0 and lM are user-defined minimum and maximum length scales.
Wohlbrandt et al. [116] derived the weighting function f (lm) for the von Kárman, Liepmann, and the modi-
fied Von Kárman spectrum. It was found that 10 weighted Gaussian spectra were needed to accurately repre-
sent the modified Von Kárman spectrum.

un+1
i (x) = âi kϵklm

∂

∂xl

∑
j

f (l j )∆l j Â j
∑
p

G(x−xp )r n+1
mp (4.78)

lm = l0

(
lM

l0

)m/M

(4.79) Âm =
√
ρ02kt

3πlm
(4.80)

While the theory behind this method is complex, the algorithm is easy to implement. For homogeneous
turbulence, this method is divergence-free. However, similar to other methods [9, 10, 75, 119], the method is
only approximately divergence-free for inhomogeneous turbulence, assuming slowly spatially varying turbu-
lence characteristics. An advantage of this method is that it uses the local length scales and turbulent kinetic
energy, making the method suitable for highly non-uniform mean flow fields. Furthermore, it takes into ac-
count the convection of the turbulence and the time decorrelation due to dissipation. Sadly, the method
contains several ad hoc parameters such as γ and cτ. The method has shown accurate results in 2D and 3D
applications [85, 117, 118], however the method is computationally very expensive. Hu et al. [118] simulated
3 wall patches of the Airbus-A320. Each patch was limited to 3, 1.05, and 2.5 boundary layer lengths for 1-
point statistics with a mesh size of 128×64×128, and 12, 3 and 4 boundary layer lengths for 2-point statistics
with a mesh size of 156× 32× 64. This was done to keep the computational costs low. For the application
to FSI, this is worrying, as the main goal of using (U)RANS with a synthetic turbulence model, is to reduce
computational costs. Since there are no comparisons made in literature, it is unsure how the computational
time of this method compares to that of other synthetic turbulence methods. The Random Particle Mesh
method shows great features in representing turbulence and it could be a befitting model to couple with FSI
simulations, however, the computational cost is of concern and must be examined further.

4.6. Synthetic Eddy Method
The Synthetic Eddy Method (SEM) was first proposed by Jarrin et al. [77, 90], and its philosophy is that it
mimics the representative coherent eddies of turbulent flow from a structural point of view. In essence, it
creates a box of eddies of varying length scales and these eddies are then convected into the domain, with the
averaged RANS velocity as convection velocity. The velocity fluctuations are based on the synthetic eddies.
Each eddy is given a velocity distribution, the velocity fluctuations are then determined by the distribution
and the distance from each eddy. The velocity distribution function gives spatial coherence to the generated
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eddies. This method has been mainly used for inflow conditions of LES [79, 90, 97], but recently it has also
been applied in the field of computational aeroacoustics [99, 119–121].

Poletto et al. [79] adjusted the method of Jarrin to be divergence-free, this was done by applying the idea
of SEM to vorticity, which is then transformed back to velocity. Sescu & Hixon [99] proposed a similar method,
where the SEM is applied to the vector potential instead of to the velocity directly, resulting in a divergence-
free field. To comply with the Reynolds stresses, Smirnov’s method [75] is used. This makes the resultant
velocity field only approximately divergence-free. However, this method also satisfies the momentum equa-
tion linearized about the mean flow. The method of Sescu & Hixon [99] has been applied in the field of CAA
[120, 121]. Hirai et al. [121] proposed to add a decorrelation term for the eddy intensity, to account for the
dissipation effect of turbulence. The method of Sescu & Hixon and the addition by Hirai et al. are described
below.

The velocity fluctuations are defined by the curl of the vector potential, shown in eq. (4.81). The vector
potential field is represented by a superposition of N eddies which are described by their associated vector
potential functions ψn , displayed in eq. (4.82). The eddy vector potential function are characterised by their
shape functions in each direction (eq. (4.83)). In the case of Hirai et al. [121], this was the Gaussian Shape
function, shown in eq. (4.84), where r n is the distance between the spatial position and the centre of the nth
eddy, as shown in eq. (4.85). The centre location of each eddy xn is taken from a uniform distribution over the
box of eddies.

v′(x1, x2, x3) =∇×Ψ(x1, x2, x3) (4.81)

Ψ(x1, x2, x3) =
√
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N∑
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1
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,

x2 −xn
2

Lb
,

x3 −xn
3
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)
(4.82)

Ψn =ψn
1 i+ψn

2 j+ψn
3 k (4.83)

The coefficient C is introduced to adhere to the normalisation as defined by [99]. For the case of a Gaus-
sian shape function, C ≈ 0.516. εn

i determines the strength and sign of the nth eddy. This is a stochastic
variable and it is sampled from the normal distribution N (0,1). To preserve the Reynolds stresses, the veloc-
ity fluctuations v ′ are transformed using Smirnov’s method [75] of similarity scaling, u′

i = ai j c j v j , where c j

are the eigenvalues of the Reynolds stress tensor, and ai j are the eigenvectors of the Reynolds stress tensor.

ψn
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i e−(3rn )2
(4.84)
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3
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(4.85)

The locations of the centres of the eddies are convected with the mean flow velocity, which gives a time
dependency. However, the intensity of the eddy stays constant, which is not in line which the expected dissi-
pation effect of turbulence. To remedy this, Hirai et al. [121] proposed a method to de-correlate the intensity
of the eddies. This is done in a similar method as Billson’s time correlation [10], shown in eq. (4.86). Here, the
coefficients αi and βi are defined in eq. (4.87) and eq. (4.88), respectively. The variable τi is the timescale,
defined by eq. (4.89), where Hirai et al. introduced a tuning parameter to achieve proper time correlation.
The variable G (0,1)

i indicates a sample from the normal distribution N (0,1).

εn
i (t ) =αiε

n
i (t −d t )+βi G (0,1)

i (4.86) αi = ed t/τi (4.87)

βi =
√

1−α2
i (4.88) τi = fτi

kn

εn (4.89)

The presented method shows the ability to reconstruct the Reynolds stresses, as well as provide an accu-
rate correlation for the Reynolds stresses in time and space, while being approximately divergence-free. Fur-
thermore, it showed accurate turbulent kinetic energy decay for the test case of spatially decaying isotropic
turbulence [99]. However, the current method does not take the energy spectrum as input. Thus, it is not
necessarily able to generate an accurate spectrum. For the application to FSI, it is important to have a correct
distribution of energy among the eddies that are closely related to the natural frequency of the structure, to
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accurately predict the effect of the pressure fluctuations on the surface interface between CFD and CSM. Kim
& Haeri [119] proposed a method to produce synthetic eddies that adhered to the Von Karman energy spec-
trum. However, this was achieved by adding extra ad hoc parameters and solving an optimisation problem
for 15 parameters. This would need to be solved before every individual simulation, as the solution depends
on problem-specific parameters, such as the turbulent intensity, turbulent length ratio, and the domain size.
Thus while it is possible for an SEM to be modelled after an energy spectrum, it requires a complex procedure.
Other methods such as Billson et al. [10], or Shur et al. [9] accomplish similar features while the method is
much less complex.

4.7. Power Spectral Density Method
The Power Spectral Density (PSD) methods are a class of methods that aim to predict the power spectral
density of pressure fluctuations. In particular, it relates the non-dimensional surface pressure to the non-
dimensional frequency. The relations are based on theoretical knowledge, but they are fitted to empirical
data, making them semi-empirical. Goody et al. [122] showed a good model including Reynolds dependency,
for zero pressure gradient flat plate flow. Rozenberg et al. [123] adjusted Goody’s method such that it can han-
dle adverse pressure gradients, this gives good results for adverse pressure gradients, but not for zero pressure
gradients. Finally, Lee et al. [124] adjust Rozenberg et al.’s model such that it can handle both situations fairly
well. The main disadvantage of this method is that it only provides the Power Spectral Density of the pressure
fluctuations, and it is mainly used to calculate the surface pressure fluctuations from RANS. It is possible to
construct a time series based on the PSD for a RANS simulation. However, for the application to nuclear fuel
rods, the flow is not in steady state. Furthermore, it is uncertain how well the fitted relations for flat plates
apply to heavily curved surfaces.

4.8. Summary
In this chapter, the applications and methods of synthetic turbulence were reviewed. It was found that
synthetic turbulence has many applications within the fields of LES inflow conditions, LES/RANS hybrid
zonal methods, computational aeroacoustics, and fluid-structure interaction. From the review of the cur-
rent method that is implemented into NRG-FSIFOAM, it was found that some of its assumptions cause the
turbulence to not be accurately represented. The current ST model assumes isotropic turbulence, thus the
Reynolds stresses are not accurately represented. Furthermore, the convection velocity of each mode has a
unit direction, and the effect of turbulence dissipation is not incorporated as well.

From literature, other models were found that had more attractive features, such as the inclusion of the
Reynolds stresses. Billson et al. [10] proposed a method that could take the Reynolds stresses into account
and provided a more accurate method for time correlation. Castro et al. [72] proposed a method that has
similar features, but it introduces several ad hoc parameters and only the diagonal Reynolds stresses are
modelled. Shur et al. [9] proposed a method that uses a non-dimensional form of the energy spectrum, caus-
ing fewer assumptions. Due to its method for calculating the length scales, it shows a good representation
of vortical structures. Shur et al.’s method was originally meant for LES, and therefore the time correlation
was not accurately modelled. An interesting option for the new ST method for NRG-FSIFOAM would be to
combine Shur et al.’s method with the time correlation method of Billson et al.

The previously discussed models are all Random Flow Generation methods, however other methods also
exist. The Digital Filtering method filters white noise such that the fluctuations follow prescribed correlations
in time and space. Thus, instead of prescribing an energy spectrum, this is implicitly prescribed by the chosen
filter. A consequence of this is that with the current filters being used (Gaussian or exponential), it does not
show the same level of agreement with homogeneous isotropic turbulence as RFG methods. The Random
Particle Mesh method is similar to the Digital Filtering method, except it filters random particles that are
convected with the local flow. This method can be adjusted such that it reproduces a given energy spectrum
at an added cost. This method shows great results and attributes, and it is widely used in CAA. However,
for 3-D applications, the computational costs are relatively high. Finally, the Synthetic Eddy Method was
reviewed. It generates synthetic eddies that are then used to determine the velocity fluctuations. The main
disadvantage of this method is that a prescribed energy spectrum can not easily be obtained. For each model,
the main characteristics have been summarised in table 4.1. From the proposed methods, the RPM method
and an RFG method based on a combination of Shur et al. [9] and Billson et al. [10] seem to be the most
fitting synthetic turbulence models for the application of simulating nuclear fuel rods in axial flow.
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Table 4.1: A summary of how each model fulfils the desired characteristics that were introduced in chapter 3.

NRG Billson et
al. [10]

Castro et
al. [72]

Shur et al.
[9]

Kim et al.
[80]

Hu et al.
[117]

Hirai et
al. [121]

Divergence
free

Yes Approx Yes Approx Approx Approx Approx

Models RST No Yes Only di-
agonal

Yes Yes Yes Yes

Von-Karman
Energy Spec-
trum

Yes Yes Yes Yes No Yes 1 Yes 2

Convection Yes Yes No Yes No Yes Yes
Time decorre-
lation

No Yes Yes No Yes Yes Yes

Computational
requirements

Low Low Low Low High High Middle

1At additional cost
2At high additional cost and complexity





5
A New Pressure Fluctuation Model

Based on the review of the current state-of-the-art synthetic turbulence models, a new model is proposed.
This model aims to combine the synthetic turbulence model of Billson et al. [10] with that of Shur et al.
[9], into a new model that has the strengths of both respective methods. This synthetic turbulence is then,
along with the URANS solution, the input for the pressure fluctuations equation. In this chapter, the new
model, called "AniPFM", is discussed. The name is derived from the fact that this model is able to repro-
duce anisotropic Reynolds stresses. First, the generation of velocity fluctuations is discussed. After this, the
generation of the pressure fluctuations is discussed.

5.1. Velocity Fluctuations Generation
The goal is to model velocity fluctuations that are a function of space and time, and that can reconstruct
anisotropic Reynolds stresses. The final velocity fluctuations are called ut (x, t ), and they are constructed
from non-dimensional isotropic fluctuations, called vt (x, t ). The relation is shown in eq. (5.1), where ai j is
the Cholesky decomposition of the Reynolds stress tensor R, as shown in eq. (5.2). For the Cholesky decom-
position a, it follows that aT a = R. Thus, if < vt (x, t )2 >= δi j , it follows that < ut (x, t )2 > would be equal
to the Reynolds stress tensor. From this it can be concluded that vt (x, t ) must indeed be isotropic, and the
squared-averaged components must be equal to unity.

ut (x, t ) = ai j vt (x, t ) (5.1)

ai j =


p

R11 0 0

R21/a11

√
R22 −a2

21 0

R31/a11 (R32 −a21a31)/a22

√
R33 −a2

31 −a2
32

 (5.2)

The fluctuations vt (x, t ) are obtained by applying time correlation methods to non-dimensional fluctu-
ations that are solely a function of space, called wt (x). These fluctuations are similar to how Shur et al. [9]
calculated their non-dimensional fluctuations. The fluctuations wt (x) are calculated through a Fourier de-
composition, the equation is shown in eq. (5.3). Here, qn is the non-dimensional energy, σn is the direction
vector, kn is the wavenumber vector, and φn is a random phase shift with a uniform distribution as given in
eq. (4.12), the subscript n denotes that it is for the n-th mode.

wt (x) =p
6
∑
n

p
qn

[
σn cos(kn ·x+φn)

]
(5.3)

The multiplication factor of
p

6 comes from two sources. First, a one-sided signal (i.e. positive wavenum-
bers) is used to construct the nondimensional velocity fluctuations; thus, each component must be multi-
plied by 2. Secondly, a requirement for wt (x) is that its squared average must be equal to the Kronecker-delta,
thus the sum of the squared components of wt (x) must be equal to three. The sum of the non-dimensional
energy of each mode is equal to one, as shown in eq. (5.4), and the average of a cosine squared is equal to 0.5.
Thus, with a multiplication factor of

p
6, eq. (5.5) is achieved, and the requirement is satisfied. Since its square
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average must be equal to the Kronecker-delta, the different components must have the same magnitude. This
is achieved by having an isotropic distribution of the direction vector.

∑
n

qn = 1 (5.4)
∑

i
< w2

t ,i >= 3
∑
n

qn (5.5)

5.1.1. Turbulent Kinetic Energy Spectrum
The value for qn for each mode is defined by a modified Von-Kármán energy spectrum, it is normalized as
shown in eq. (5.6), where Ek (kn) is the modified Von-Kármán energy spectrum evaluated at kn , and∆kn is an
interval in the spectrum centered around kn . The exact definition of ∆kn is elaborated upon in section 5.1.2.
The modified Von-Kármán spectrum is defined in eq. (5.7), where ke is the wavenumber at which the en-
ergy spectrum has its maximum, and kη is the Kolmogorov wavenumber. This spectrum is very similar to
eq. (4.15), however, a big difference is that now the constant A is no longer necessary, as the value for qn

is scaled by normalization. Because of this, the integral in eq. (4.18) does not have to be evaluated, which
reduces the total computational time and the complexity of the model.

qn = Ek (kn)∆kn∑N
n Ek (kn)∆kn

(5.6)

E(k) = (k/ke )4

[1+2.4(k/ke )2](17/6)
exp(−(12

k

kη
)2) fcut (5.7)

The eddy wavenumber ke can be calculated by ke = 2π
le

, where the length scale le can be approximated by
eq. (5.8), where Cl is a modelling constant, which has been set to 3.0 based on matching the spectrum with
that of experimental data of Comte-Bellot & Corrsin [11]. Note that this definition for le differs from that of
Shur et al.[9]. Shur et al. include a term that takes into account the distance to the nearest wall, however, this
method gives a much lower estimation for the pressure fluctuations near walls, due to an underestimation
in the eddy wavenumber. The focus of Shur et al.’s work was not on pressure fluctuations; thus, it is logical
that this effect was not taken into consideration. This effect is more elaborated upon in section 6.2.5. The
Kolmogorov wavenumber is calculated as shown in eq. (5.9).

le =Cl lt (5.8) kη = 2π(
ε

ν3 )
1
4 (5.9)

Finally, the modified Von Kármán spectrum is multiplied by a cut-off filter fcut . Without the cut-off filter,
the spectrum continues until the Kolmogorov wavenumber. However, typically the mesh can not resolve
wavenumbers that far; otherwise, it would be more favourable to use DNS techniques. Since the inputted
spectrum would not be fully resolved, an aliasing effect can be found in the reconstruction of the energy
spectrum. To counteract this, a cut-off filter is used, this makes sure that a more correct distribution is found
in the reconstructed energy spectrum. The cut-off filter is shown in eq. (5.10), where kcut = 2π

lcut
, and lcut is

the cut-off length. For the cut-off length, multiple formulations are possible. However, for this thesis it was
chosen to focus on the definition given by Shur et al. [9] in eq. (4.45), and the definition as given in eq. (5.11).
These two methods were chosen such that the effect of the amount of resolved energy can be quantified and
then a correct method can be chosen from the two. This is further elaborated upon in section 6.2.5.

fcut = exp

(
−

[
4max(k −0.9kcut ,0)

kcut

]3)
(5.10)

lcut = 2V
1
3

cel l (5.11)

5.1.2. Wavenumber & Direction Calculations
The smallest wavenumber corresponds to the largest eddy length scale L in the domain, for which a con-
servative estimate can be found from eq. (5.12). In the case where the flow is stationary, eq. (5.13) is used.
There are some other considerations that must be taken into account. The wavenumber at which the peak of
the energy spectrum is located was denoted by ke , naturally this must be larger than the starting wavenum-
ber, otherwise the bulk of the energy is not captured. Furthermore, geometrical considerations must also be
taken into account. For this, the user can input a user length scale luser , which denotes the maximum length
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that can be captured given the geometry of the problem. For example, in turbulent channel flow the max-
imum wavelength in the wall-normal direction is equal to the channel height. The largest wavenumber for
which the spectrum is sampled is kend (eq. (5.15)), which is based on the cut-off wavenumber as the spectrum
quickly goes to zero after this point.

kst ar t = ε

max(||u||3)
(5.12) kst ar t = 2π

L
= 2πε

K 3/2
(5.13)

kst ar t = max

[
min(kst ar t ,

1

2
ke ),

2π

luser

]
(5.14)

kend = 3

2
kcut (5.15)

Given the wavenumber space from kst ar t to kend , the space is divided in N intervals, with N + 1 edge-
wavenumbers. These edge-wavenumbers are used to define∆kn . The edge-wavenumbers are logarithmically
distributed as shown in eq. (5.16), where γ is defined in eq. (5.17). Then the wavenumbers are defined as
kn = k̃n+1/2, i.e. in the logarithmic middle of interval n. The variable ∆kn is defined as k̃n+1 − k̃n .

k̃n = kst ar t ·eγi (5.16) γ= l og (kend /kst ar t )

N
(5.17)

The wavenumber vector is defined exactly the same as in the previous method of NRG, namely with
eq. (5.18), where θn , ψn are random variables with distributions given in eq. (4.12). Similarly, the condition
for continuity is also required for the new model, which resulted in kn ·σn = 0, as mentioned in section 4.3.4.
However, a different method is used to determine the direction vector for the new model, because it was
found that the old method of NRG for determining the direction vectors resulted in an anisotropic distribu-
tion. The old method resulted in over-predicted velocities in the streamwise direction and underpredicted
velocities in the wall-normal direction.

In the new method for determiningσn , another random vector that has a uniform distribution over a unit
sphere is generated, namely ζn . This vector is generated similarly as kn , as can be seen in eq. (5.19), with the
main difference being that new instances of the random variables are used for each timestep (depending on
the time correlation method, see section 5.1.3). Then,σn is defined as the normalized cross-product between
ζn and the wavenumber vector of the n-th mode. Since the dot product of a vector with the cross product of
the same vector is equal to zero, the condition stated in eq. (4.3) is met.

kn = kn[sinθn cosψn , sinθn sinψn ,cosθn]T (5.18)

ζn = [sinθζ cosψζ, sinθζ sinψζ,cosθζ]T (5.19)

σn = ζn ×kn

|ζn ×kn |
(5.20)

5.1.3. Time Correlation
The procedure for calculating the non-dimensional variable wt (x) has been fully defined in the previous sub-
sections. In this subsection, it is explained how correlation methods create a space-time-dependent velocity
fluctuation signal from a purely space-dependent velocity fluctuation signal.

Two main phenomena have to be taken into account when constructing a temporally correlated velocity
field. Namely, the convection of turbulent eddies and the decorrelation due to the production and dissipation
terms. These phenomena are explained more elaborately in section 3.5. The individual phenomena can be
modelled quite accurately, but it is difficult to combine these effects. This is why in this subsection four
different methods are discussed for time correlation. These four methods will be tested for the turbulent
channel flow case, from which the best method will be selected.



48 5. A New Pressure Fluctuation Model

Convection & Exponential Correlation There is a method to combine both effects, however this method
has its own disadvantages. The method consists of two parts. The first part is to convect the velocity fluctua-
tions by solving for eq. (5.21). Here, vm−1

t are the non-dimensional velocity fluctuations generated at timestep
m −1, and U j is the Reynolds-averaged velocity as calculated by the accompanied URANS simulation. Then
in the second part, a new solution vm

t is calculated from a combination of the (convected) previous solution
vm−1

t , and a newly generated field wm
t . The coefficients a and b are defined in eq. (5.23) and eq. (5.24) re-

spectively, where τ is the timescale determined from the URANS simulation, and fτ is a modification factor
for fine-tuning the correlation. Billson et al. [10] used a factor of fτ = 17, for the simulation of a 3D jet. The
same factor is used, to test if it can be used as a general coefficient. The coefficients are defined such that the
squared mean properties of vt are still respected, i.e. < v2

t >= δi j .

∂vm−1
t

∂t
+U j

∂vm−1
t

∂x j
= 0 (5.21)

vm
t (x, t ) = avm−1

t (x)+bwm
t (x) (5.22)

a = e− fτ∆t/τ (5.23) b =
√

1−a2 (5.24)

Note that this method is slightly different from the one proposed by Billson et al. [10]. Billson et al. cor-
related the actual velocity fluctuations ut , which is only possible if the simulation is at steady state. This is
because in an unsteady case the velocity fluctuations from the previous simulation may not contain the same
amount of energy as the newly generated velocity fluctuations. Using non-dimensional velocity fluctuations
allows for constant statistical properties of both vt and wt , which means it can also be used in unsteady sim-
ulations. A disadvantage of this method is that solving the advection equation numerically can introduce
numerical diffusion, which causes the solution of vm−1

t to be smeared out. To combat this, Billson et al.
used a four-point stencil, however, a loss of energy was still observed [10]. In OpenFOAM, only second-order
schemes are available, thus this effect will be worse. Ultimately, this causes the replicated Reynolds stresses to
be underestimated, which could potentially lead to an underestimation of the pressure fluctuations as well.

Rescaled Convection & Exponential Correlation As mentioned in the previous paragraph, numerically
solving for the convection equation introduces a diffusion error to the non-dimensional velocity fluctua-
tions. While vm−1

t should have a magnitude of
p

3, due to diffusion this can actually be less. To counteract
this, the newly introduced velocity fluctuations wm

t can be rescaled such that no energy is lost from diffusion.
This means that an adjusted value for b must be used, and thus the exponential correlation is not exactly met.
Note that this is actually also the case for the non-rescaled Convection & Exponential Correlation method, as
vm−1

t is slightly adjusted by solving the convection equation, giving a different measure for the decorrelation
between vm−1

t and vm
t .

The new definition of b is given in eq. (5.25). Here, b is defined such that < (vm
t )2 > is equal to 1 in each

normal direction, and thus no energy is lost. An example of the effect of the rescaling is shown in fig. 5.1 and
fig. 5.2, where the values for a and b are taken from a simple channel flow case, the loss of energy is set to
6%, and it is assumed that < (vm−1

t )2 > and < (wm
t )2 > are equal to 1, for illustration purposes. As can be seen,

the contribution of the newly generated velocity fluctuations wm
t increases significantly, and thus the velocity

fluctuations decorrelate faster than indicated by the exponential relation. Note that in practice this rescaling
can change the relative distribution of the energy. This is because in reality the distribution of < (vm−1

t )2 > is
not uniform, due to the difference in diffusion error in the domain.

b =
√

1− 1p
3
< vm−1

t vm−1
t > a2 (5.25)

Solely Exponential Correlation This method solely uses eq. (5.22) to create the time-correlated velocity
fluctuations, the previous fluctuations vm−1

t are not convected. Although this method does not lead to an
underestimation in the Reynolds stresses, it can also not represent the convection that the eddies undergo.
This will affect the shape of the frequency spectrum, which is ultimately important for FSI simulations.
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Figure 5.1: Example calculation of the magnitude of the velocity
fluctuations of the new time step, with b defined by eq. (5.24).

Figure 5.2: Example calculation of the magnitude of the velocity
fluctuations of the new time step, with b defined by eq. (5.25).

Solely Convection This method is the most used method for generating a time-correlation in synthetic
turbulence, as it is used by Shur et al. [9], Poletto et al. [79], and Ewert et al. [85] among others. With this
method, the generated fluctuations are directly a function of time, i.e. wt (x) is not created, but vt (x, t ) is
created directly, with eq. (5.26). Here, U is the velocity as retrieved from the URANS simulation, as opposed to
Kottapalli et al. [14], who used a different definition for the convection velocity. With this method, the random
variables are not a function of time, but they are created in the first iteration and stored. This method makes
use of the exact solution of the advection equation, thus no numerical methods are used for this, and the
Reynolds stresses are still replicated accurately.

vt (x) =p
6
∑
n

p
qn

[
σn cos(kn · (x−Ut )+φn)

]
(5.26)

5.2. Pressure Fluctuations Generation
In this section, it is explained how the pressure fluctuations are calculated based on the modelled velocity
fluctuations. The governing equation is elaborated upon, as well as the boundary conditions that are used for
this equation.

5.2.1. Governing equation
Similarly to the previous model of NRG as described in section 4.2, the aniPFM calculates the pressure fluctu-
ations based on the Poisson equation derived in section 3.4. However, the assumption of ∇·ut = 0 is not used.
As discussed in section 4.3.4, the divergence criterion is met exactly, but the discrete divergence criterion is
not. For this reason, assuming that ∇·ut = 0 can introduce an error in the calculation of the pressure fluctu-
ations. Instead, the pressure fluctuation equation as shown in eq. (3.31) is solved, meaning that this error is
not introduced. Note that this assumes that the full pressure fluctuations are computed, but in reality only
the fluctuations caused by the resolved velocity fluctuations are solved for. Thus, the effect of the unresolved
turbulence on the pressure fluctuations is not accounted for in this method. Due to the non-linear source
terms, this filtering effect would add an extra term to the right-hand side of the equation.

Similarly to the previous model of NRG, the average of the source term is subtracted over the domain,
such that the average is zero. This was done because mathematically it should be zero, but due to introduced
randomness this is not exactly the case. In turn, a non-zero average source term can cause nonphysical
behaviour in the solution, as elaborated upon in section 4.2.3.

5.2.2. Boundary Conditions
Boundary conditions have to be specified to solve eq. (3.31). The boundary conditions for the pressure fluc-
tuation equation have similar challenges as boundary conditions for LES or DNS simulations. Because the
solution is a highly fluctuating field, it is not possible to use uniform values as boundary conditions, such
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as is typically done with RANS simulations. The main focus of the AniPFM is to apply it to internal flows in
nuclear reactor applications. Due to this, three boundary conditions are considered, inlet, outlet, and wall.
The specification of the inlet and outlet boundaries are usually related, thus these are treated together. The
boundary conditions specified here are for incompressible flow.

Wall Boundary Typically, a zero-gradient boundary condition for the pressure is used in DNS and RANS
simulations [56]. This is because the pressure that is solved for is actually a "pseudo-pressure" that acts as
a Lagrange multiplier to constrain the velocity to be divergence-free. Since this boundary condition is used
for both the instantaneous pressure and the averaged pressure, it can be derived that it must also hold for
the pressure fluctuation. I.e, the boundary condition for the pressure fluctuations at the wall is defined by
eq. (5.27).

∂p ′

∂n
= 0 (5.27)

Inlet/Outlet Boundary: Dirichlet There are several options for the inlet and outlet boundary conditions.
These types can be divided into Dirichlet boundary conditions (fixed value) and Neumann boundary con-
ditions (fixed derivative). There are three options for Dirichlet boundary conditions, periodic, mapped, or
calculated boundaries. In case of periodic flows, i.e. in cases where the flow statistics are expected to be
equal at the inlet and the outlet, periodic boundary conditions can be used. In case of periodic boundary
conditions, the problem is underdetermined, as in reality only one boundary condition is prescribed. This
would give a nonunique solution, but it is solved by prescribing an extra constraint, namely, that the average
of the pressure fluctuations over the whole domain is equal to zero. For nonperiodic flow cases, mapped or
calculated boundary conditions can be used. With a mapped boundary, a slice at a specified location in the
previous timestep is mapped onto the boundary in the new timestep. For this method, it is important that
the flow properties at the map location are equal or close to the flow properties at the boundary. Finally, a
calculated boundary condition can be used. From dimensional analysis, an estimation for the pressure fluc-
tuations can be based on the velocity fluctuations and the density [125]. This relation is adjusted such that
the average is zero, as shown in eq. (5.28).

p ′ = ρu′2
p

2
− ρu′2

p
2

(5.28)

Inlet/Outlet Boundary: Neumann Another option for the inlet and outlet boundary is to use a Neumann
boundary condition. However, this has consequences for the behaviour of the pressure fluctuation equation
in the full domain. To understand this, a comparison is drawn with a simpler one-dimensional example; see
eq. (5.29). The solution to this equation is given in eq. (5.30). Given the definition of the pressure fluctuations,
they must oscillate around zero and their average must be zero. For pressure fluctuations to oscillate around
zero, the coefficient c1 must be equal to zero, otherwise a linear profile will govern the solution. With a zero-
gradient boundary condition at x = 0, eq. (5.31) holds. As can be seen, in case the indefinite integral of f (x) at
the boundary is not equal to zero, c1 will not be equal to zero either, leading to a linear profile in the solution.
To prevent a linear profile from dominating the solution, it is recommended not to use Neumann boundary
conditions for the inlet and outlet.

∂2p ′

∂x2 = f (x) (5.29)

p ′ = c1x + c2 +
∫ ∫

f (x)d xd x (5.30)

∂p ′

∂x
= 0 = c1 +

∫
f (0)d x (5.31)

5.3. Summary
The AniPFM is a pressure fluctuation model, which based the generation of synthetic turbulence on the mod-
els of Billson et al. [10] and Shur et al. [9]. This new model aims to take the strengths of both methods. The
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formulation of the non-dimensional velocity fluctuations resemble that of Shur et al., but instead of mod-
elling the total kinetic energy, only the resolved kinetic energy is modelled. Furthermore, the definition of
the eddy length scale is adjusted to not include the wall distance. For time correlation, several methods have
been implemented, based both on Billson et al. and Shur et al. These different methods will be compared in
section 6.2.7. Boundary conditions for the pressure fluctuation equation were formulated, and it was found
that the zero-gradient condition is suitable for wall boundaries, whereas a Dirichlet condition based on di-
mensional analysis was prescribed for inlets and outlets. Neumann boundary conditions for inlet and outlet
could possibly lead to errors The presented pressure fluctuation model consists of many parts, and thus it is
hard to keep track of every moving part. For this reason, an overview of the various computational steps of
the AniPFM is shown in a flowchart in fig. 5.3.

Figure 5.3: A flow-chart of the different computational steps of the proposed AniPFM.





6
Verification & Validation of AniPFM

A new pressure fluctuation model was elaborated upon in chapter 5, where the different modelling choices
were explained. In this chapter, the model is verified and validated using two test cases, namely, Homoge-
neous Isotropic Turbulence (HIT), and Turbulent Channel Flow (TCF). For these test cases, both experimen-
tal and numerical validation data exists, which will be used to assess the performance of the new aniPFM. In
previous work, these test cases were also explored for the PFM previously used by NRG [102]. The name PFM
refers to the previous model of NRG, and the name AniPFM refers to the model that was implemented during
the thesis. Using the same test cases for both models allows for a comparison between the results of PFM and
AniPFM. This chapter is solely for the verification and validation of the AniPFM, it is not yet applied to FSI
test cases. The chapter is divided into two sections, each covering one respective test case. In these sections,
the methodology for the numerical simulation is explained, and then the results are discussed. In the first
section, the HIT case is discussed. The turbulent channel flow case is discussed in the latter section.

6.1. Homogeneous Isotropic Turbulent Box
In this section, the simulations of homogeneous isotropic turbulence are discussed. The set-up for these
simulations was discussed in a previous report from NRG [102]. However, this report is unpublished, thus
for the sake of keeping a self-contained thesis, the set-up is repeated here. For the HIT validation case, two
different simulations will be done. One replicating the experiment of Comte-Bellot & Corrsin [11], and one
replicating the DNS of Gotoh et al. [12]. First, the methodology for both cases is discussed. After this, the
results for both cases are elaborated upon.

Both cases have slightly different purposes. First, the Comte-Bellot & Corrsin experiment gives data of the
three-dimensional energy spectrum, as well as data on the time-correlation of the axial velocity. The energy
spectrum data will be used to verify that the PFM indeed can replicate an isotropic energy spectrum. Next
to this, the ability of the AniPFM to replicate the actual time correlation is tested. Several parameters of the
AniPFM will be varied such that the influence of these parameters can be evaluated. The DNS of Gotoh et
al. contains data of the nondimensional energy and pressure spectrum for several Reynolds numbers Reλ,
where λ is the Taylor microscale. This data will be used to validate the implementation of the calculations of
the pressure fluctuations for several Reynolds numbers.

6.1.1. Methodology
For both simulations, a box of LxLxL is created, which is discretized by a uniform mesh of N xN xN . All
boundaries of the box are periodic, and there is a mean velocity of zero. There are no source terms, thus the
turbulence in the box will decay over time.

Comte-Bellot & Corrsin
In table 6.1, the turbulence models, initial conditions, and time step are shown. For the URANS simulation,
the initial values of k and ε are taken from the paper published by Comte-Bellot & Corrsin [11]. The initial
kinetic energy was calculated as k = 3

2 u2
11, given that the flow is isotropic. A backward time scheme is used,

giving second order accuracy in time. The time step is not based on CFL number, because the velocity is very
close to zero, thus this is not the limiting factor. The timestep is limited by the resolution of the experiment

53
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of Comte-Bellot & Corrsin [11]. The time step was set such that similar sampling intervals could be taken in
the simulation as in the experiment. The initial pressure was set to 1e −6, as a zero pressure would lead to a
non-converging solution. The PISO-algorithm is used to solve the system of equations. A mesh of 64×64×64
is used, unless specified otherwise.

Table 6.1: Details of the simulations replicating Comte-Bellot & Corrsin.

Turbulence model k-ε
Initial k [m2/s2] 0.4740
Initial ε [m2/s3] 0.07393
Initial U [m/s] 0
Initial p [Pa] 1e-6
ν [m2/s] 1.5e-5
Time step [s] 0.001
Duration [s] 0.874

Gotoh et al.
The approach is slightly different for this case, as Gotoh et al. only provide nondimensional data. This data
is matched by achieving the same Reynolds number Reλ. The definitions of the Taylor microscale and Reλ
are given in eq. (6.1) and eq. (6.2), respectively. From choosing the dynamic viscosity, and up to how far the
energy spectrum should be resolved, the values for k and ε can be determined for the URANS simulation.
The numerical experiment by Gotoh et al. was non-decaying, and only data of the energy and the pressure
spectrum is known. Thus, it is only necessary to look at an instantaneous point in time. In order to keep
the mesh size reasonable, the spectrum was resolved up to 50% of the Kolmogorov length scale, for a mesh
of 128×128×128. Several mesh sizes are used, in order to evaluate the accuracy of the AniPFM for coarser
meshes. An example of a simulation set up is shown in table 6.2, where the initial conditions are shown for
Reλ = 70.

λ=
√

10νk

ε
(6.1)

Reλ =
2
3

p
kλ

ν
(6.2)

Table 6.2: Details of the simulations replicating Gotoh et al. at Reλ = 70.

Turbulence model k-ε
Initial k [m2/s2] 0.012568
Initial ε [m2/s3] 0.01377
Initial U [m/s] 0
Initial p [Pa] 1e-6
ν [m2/s] 1.5e-5
Time step [s] 0.001
Duration [s] 0.001 (instantaneous solution)

6.1.2. Energy Spectrum Replication
Replication of the energy spectrum is essential for simulating turbulence, as the energy spectrum contains
information about the spatial correlation, the total kinetic energy, and the dissipation rate. In this subsection,
it is verified whether the AniPFM can accurately represent the energy spectrum of isotropic turbulence, and
how it compares to the results of the PFM. The replication of the energy spectrum depends on two factors.
Namely, it depends on how well the input spectrum for the AniPFM matches the experimental spectrum, and
on how well this input spectrum is replicated by the AniPFM.

First, the input spectrum is compared to the experimental spectrum of Comte-Bellot & Corrsin [11], and to
the input energy used in the previous PFM. As mentioned in section 4.3.3, the input spectrum differs slightly
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from the input spectrum of the PFM, and the definition for the wavelength that contains the maximum energy
is also slightly different. For the purpose of this comparison, the cut-off filter is not used. The influence of the
cut-off filter is investigated in section 6.1.5. In fig. 6.1, the two input spectra are compared. As can be seen, the
wavelength with maximum energy is better predicted by AniPFM, and both methods show a small deviation
in the inertial range of the spectrum. The peak of the spectrum is slightly underpredicted by the PFM, giving
a slightly different energy distribution.

Figure 6.1: Comparison of the input spectrum for PFM and AniPFM, with experimental results from Comte-Bellot & Corrsin [11].

The spectrum of the created velocity fluctuations can be evaluated with eq. (6.3). Here, kn = k0n, where
k0 is the smallest captured wavenumber, the hats denote the Fourier transformed variables, and ∗ denotes
the complex conjugate. Due to the homogeneous and isotropic nature of the turbulence in this case, the
spectrum can directly be evaluated from the magnitude of the wavenumber.

E(kn) = ∑
k0(n−1/2)≤k≤k0(n+1/2)

1

2
û f · û∗ f k−1

0 (6.3)

As shown in fig. 6.1, the input spectrum is generated until the Kolmogorov scale. However, typically CFD
simulations don’t have a mesh that is refined enough to resolve this scale. The resolvable wavenumber is
dependent on the size of the grid cells. The largest resolvable wavenumber is the cut-off wavenumber, this
corresponds to a wavelength of ∆x

2 , due to the Nyquist limit. On a uniform grid, the cut-off wavenumber can
be calculated by using eq. (6.4).

kcut−o f f =
π

∆x
(6.4)

The influence of the differences of the input spectrum is seen in the output spectrum of both methods.
The energy spectrum is reconstructed from the velocity fluctuations for both methods, the results for the
PFM and the AniPFM are shown in fig. 6.2a and fig. 6.2b respectively, with N = 64. Comparing fig. 6.2 with
fig. 6.1, both methods closely replicate their respective input spectrum and the experimental spectrum, with
the exception of the region near the cut-off wavenumber. Due to this, the PFM shows a slight underprediction
for the larger wavelengths. Near the cut-off wavenumber, there is an increase in energy for both spectra. This
is due to the fact that the generated velocity fluctuations are based on a spectrum that continues until the
Kolmogorov wavenumber. Because of this, velocity fluctuations are created at higher wavenumbers than that
can be reconstructed from the grid, due to mesh limitations. This causes an alias effect where the energy
from the velocity fluctuations at the wavenumbers higher than the cut-off wavenumber is redistributed into
the resolved part of the spectrum. This effect is most noticeable near the cut-off wavenumber. The effect of
this will also translate to a similar effect in the pressure fluctuations, which is discussed in section 6.1.4.
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(a) PFM

(b) AniPFM.

Figure 6.2: The reproduction of the energy spectrum of both models, versus the spectrum from Comte-Bellot & Corrsin [11].

6.1.3. Velocity Time Correlation
The time correlation of the velocity and pressure fluctuations is of great importance for the application to
FSI simulations of nuclear fuel rods. This is because the pressure fluctuations that have a frequency close
to the eigenfrequency of the fuel rod, are expected to have the largest influence on the excitation of the fuel
rods. Thus, it is important to model the distribution of the pressure fluctuations over the frequency domain
correctly. For this reason, the time correlation is investigated. From the experiment of Comte-Bellot & Corrsin
[11], the correlation of the velocity fluctuations in the x-direction are known, these are compared to the time
correlation of the velocity fluctuations of the PFM and the AniPFM.

The method for determining the time correlation is shown in eq. (6.5). Here, τ is the time difference from
t0, and the indices i and j refer to the velocity components. For this comparison, the correlation between
the velocity in x-direction is investigated, thus R1,1 is calculated. The brackets denote an assemble average.
In case of Comte-Bellot & Corrsin, a time-average of a single point was taken. However, for the simulations,
a spatial average of a plane at x = 0 on the y-z plane was taken. The results for the comparison are shown in
fig. 6.3.

Ri , j (x,τ) =
< u′

i (x, t0)u′
j (x, t0 +τ) >

< u′
i (x, t0)u′

j (x, t0) > (6.5)

As can be seen, the PFM shows a much faster decorrelation than the experiment by Comte-Bellot &
Corrsin, and the AniPFM. This is due to the fact that the PFM uses a convection velocity not based on the
mean velocity, but rather on the wavenumber and the dissipation rate. Because of this, the convection ve-
locity for each mode is not directly dependent on the mean velocity. As can be seen, this can lead to a fast
decorrelation in the velocity fluctuations. Regarding the AniPFM, a much better approximation is shown,
which a maximum error of 11.8% points. This verifies that using an exponential relation for the correlation is
an improvement over the previous method, for isotropic turbulence.

6.1.4. Pressure Fluctuations
The variable that is passed from the AniPFM to the structural solver is p ′, so it is of utmost importance that
it is verified that this can be replicated correctly. For this reason, the pressure spectrum is evaluated, and
compared to both the results of the previous model of NRG, and to DNS results of Gotoh et al. [12]. The
experiment of Comte-Bellot & Corrsin did not include the pressure spectrum, so the DNS data of Gotoh et al.
is used for this reason. The set-up of the simulation of the case of Gotoh et al. is shown in section 6.1.1.

In previous work at NRG, it was shown that in the case of HIT, the pressure fluctuation spectrum was
able to be approximately replicated, given that the velocity fluctuations replicated the energy spectrum [102].
However, it was shown that this was only possible for Reλ > 125. This behaviour holds not only for PFM
simulations, but also for LES simulations, and is thus not inherently due to the PFM. It was also noticed that
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Figure 6.3: Comparison of the velocity time correlation between the PFM, AniPFM, and the experimental data from Comte-Bellot &
Corrsin [11].

the pressure spectrum only adheres to universal scaling laws for Reλ > 125. For this reason, the pressure
spectra are compared at Reλ = 284. The simulation was done with a mesh size of 128x128x128, as to simulate
up to 50% of the Kolmogorov length scale. This was done because the non-dimensional spectrum shows a
decrease in magnitude in the range 0.1 < κη< 1.5, and it was investigated if this decrease could be accurately
modelled. The results for both the PFM and the AniPFM are shown in fig. 6.4.

(a) PFM (b) AniPFM.

Figure 6.4: The reproduction of the pressure spectrum of both models, versus the spectrum from Gotoh et al. [12].

As can be seen, both models show a similar result w.r.t. the DNS data from Gotoh et al. The PFM shows
a small underprediction, which was expected due to the small underprediction of energy in the larger wave-
lengths. The AniPFM shows a slight overprediction. Due to the nature of HIT, the equation for the pressure
fluctuations, eq. (3.31), can be simplified. The mean velocity is zero everywhere, and the Reynolds stresses
are constant over the whole domain. Thus, the terms with the derivatives of the velocity and the Reynolds
stresses are cancelled, as shown in eq. (6.6). From this it can be concluded that based on the pressure spec-
trum, the turbulence interaction term can be accurately modelled by the AniPFM.

∂2p ′

∂xi∂xi
=−ρ

[
∂2

∂xi∂x j

(
u′

i u′
j

)]
(6.6)

Next to the pressure spectrum, the root-mean-squared (RMS) pressure fluctuations were also calculated.
This was done for several mesh sizes to determine how well the AniPFM approximates the pressure fluctu-
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ations at coarser meshes. The results are shown in table 6.3. As can be seen, for a mesh of 16x16x16, the
results are still within 10% of the DNS results. This mesh study was also done in previous work at NRG [102],
where it was shown that the PFM also predicts the root-mean-squared pressure fluctuations within 10% with
a mesh of 16x16x16. Lastly, as mentioned in chapter 4 and chapter 5, the divergence criterion is met exactly,
but the discrete divergence criterion is not met exactly. In previous work of NRG, it was found that this did
not affect the pressure fluctuations related to the turbulence-turbulence interaction term [102]. Since the
formulation and the results for HIT are so similar for the PFM and the AniPFM, it is expected that this also
does not influence the pressure fluctuations generated by the AniPFM.

Table 6.3: The p ′
r ms values of the AniPFM compared to DNS data of Gotoh et al. [12], for several mesh sizes.

Mesh p′
rms Error w.r.t. DNS [%]

16 0.02002 -9.6
64 0.0213 -3.7
128 0.0219 -1.1
DNS 0.0221 n/a

6.1.5. Cut-off Filter Effect

In section 6.1.2, it was found that simulating the velocity fluctuations up to the Kolmogorov length scale gave
an unphysical peak in the energy distribution at wavenumbers near the cut-off wavenumber. This was due
to the fact that the energy contained in the wavenumbers lower than the cut-off wavenumber can not be
reconstructed, thus this is distributed over the rest of the spectrum. To prevent this unphysical behaviour, a
cut-off filter can be employed. This cut-off filter was discussed in section 5.1.1, and here the effects on the HIT
case are shown. As discussed in section 5.1.1, there are two options for the definition of the cut-off length. In
this situation however, the definition is not relevant, as both method give the same cut-off length in case of a
uniform grid. The effect of this adjustment in cut-off length formulation is discussed in section 6.2.

In fig. 6.5, the input energy spectrum with and without the cut-off filter is shown, for N = 64. As can
be seen, in case the cut-off filter is employed, the energy distribution sees a sharp drop after the cut-off
wavenumber. The resulting reconstructed energy spectrum from the velocity fluctuations can be seen in
fig. 6.6. As can be seen, there is now no additional energy concentrated near the cut-off wavenumber. The
cut-off filter was also applied to the case of Gotoh et al., to evaluate the effect on the pressure fluctuations,
with N = 64. Here it was concluded that the filter had a similar effect in diminishing the unphysical heap of
pressure fluctuations with a wavenumber near the cut-off wavenumber. From this, it was found that for N =
64, the error w.r.t. the DNS results reduced from 3.7% as given in table 6.3, to solely 2.4%.

Figure 6.5: The input spectrum for the AniPFM both with and
without the cut-off filter, for N = 64.

Figure 6.6: The resulting energy spectrum of AniPFM with the
cut-off filter employed, compared to the experimental values of

Comte-Bellot & Corrsin [11].
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6.1.6. Summary
This concludes the simulation of homogeneous isotropic turbulence with the PFM and the AniPFM. It was
found that both models produce similar results for isotropic turbulence. However, the peak of the energy
spectrum is better predicted by the AniPFM, as well as the time correlation of the velocity fluctuations. Both
models showed similar results for the pressure fluctuations. Finally, with the implementation of the cut-off
filter, the non-physical accumulation of energy near the cut-off wavenumber was prevented, granting a more
accurate energy and pressure spectrum for the AniPFM. It was expected that both models gave similar results,
as they both should be able to predict isotropic turbulence. This case was mainly intended as a verification
of the implementation of the AniPFM.

6.2. Turbulent Channel Flow
In this section, the simulations of a turbulent channel flow are discussed. The set-up for these simulations
was discussed in a previous report from NRG [102]. Similarly to the HIT case, the set-up is repeated here. The
results of the TCF are compared to the DNS results of Abe et al. [13], who performed a DNS simulation at
several Reynolds numbers. The highest Reynolds number was equal to Reτ = 640, thus this Reynolds number
is used for comparison. The DNS of Abe et al. [13] was chosen, as from this simulation, information was
available about the mean flow characteristics along the wall-normal direction, such as the mean velocity and
Reynolds stresses. It also contained spectral data about the pressure and velocity components, both near the
wall and closer to the bulk of the flow.

The TCF case is used to verify several aspects of the AniPFM. Errors in the prediction of the pressure
fluctuations can be introduced from several sources, here the effect of each source is discussed. The different
sources of errors are the modelling error, the discretization error, and finally the input error. Furthermore, due
to the fact that random numbers are used to construct the wavenumber and direction vector, an uncertainty
in the results is introduced. It was also observed that the RMS pressure fluctuations changed slightly over
time, introducing another uncertainty. After assessing these errors and uncertainties, the modelling choices
are further investigated by evaluating the effects of certain individual model choices.

6.2.1. Methodology
In this case, the flow between two infinitely long and wide stationary plates is simulated. The simulation do-
main used is equal to 6δ×2δ×3δ, where δ is the mid-channel height. The mesh has a size of Nx ×Ny ×Nz ,
which are kept as variables. The mesh distribution is uniform in the x- and z-direction, and it is geometri-
cally expanding from the wall to the mid-channel height in the y-direction. The mesh in the y-direction is
configured such that y+ ≈ 1 for the first grid cell from the wall. The variable y+ is the non-dimensionalised
wall-normal distance, normalized by eq. (6.8), where uτ is defined as in eq. (6.7). Similarly, u+ can be defined
as in eq. (6.9). The boundary conditions are as follows: periodic in the x- and z-direction, and a wall boundary
condition at y = 0 and at y = 2δ.

uτ =
√
τw

ρ
(6.7) y+ = yuτ

ν
(6.8) u+ = u

uτ
(6.9)

The results of this test case will be compared to the DNS of Abe et al. [13], at a Reynolds number of
Reτ = 640, which is the Reynolds number based on the wall friction velocity, as shown in eq. (6.10). From
Abe et al., it was found that this is equivalent to Rebulk = 24,228, where Rebulk is defined as in eq. (6.11),
with the bulk velocity defined as in eq. (6.12). By using the same bulk Reynolds number as Abe et al., the
results of both simulations can be compared. Since the boundary conditions are periodic, without imposing
one, there would be no apparent pressure gradient and thus no flow. Thus, a pressure gradient must be
imposed. This can be done by adding a momentum source to the Navier-Stokes equations. Specifically, in
OpenFOAM, a bulk velocity force is imposed, meaning that the resultant flow will have this bulk velocity. By
setting the viscosity and the mid-channel height, the bulk velocity is determined. The details of the set-up
of the channel flow simulation are summarized in table 6.4. No wall model is used since the y+-value of the
first cell is roughly equal to 1, meaning that the flow is resolved up to the wall. A backward time scheme is
used, giving second order accuracy in time. The time step is determined by the CFL number, which does not
exceed the value of 0.7. The PISO-algorithm is used to solve the system of equations each time step. The
settings for the AniPFM are varied for each performed simulation, and these details are mentioned in their
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respective sections. Unless specified otherwise, the cubic-root-volume method for the cut-off length scale
is used. As convergence criteria for the governing equations, an absolute criterion is used of 1e − 6 for all
governing equations, including the pressure fluctuation equation.

Channel flow is inhomogeneous in the wall-normal direction, but it is statistically homogeneous in the
streamwise and spanwise directions. For this reason, the results of channel flow are averaged over the stream-
and spanwise directions if possible (unless otherwise specified), thus showing only a profile that varies with
the wall-normal coordinate. This property of the channel flow also allows for the reconstruction of velocity
and pressure spectra in both the stream- and spanwise directions. The results shown of one-dimensional
spectra have been averaged in its other homogeneous direction, e.g., if a spectrum along the streamwise
direction is shown, it has been averaged along the spanwise direction.

Reτ = uτδ

ν
(6.10) ReBulk = Ubulk 2δ

ν
(6.11) UBulk = 1

δ

∫ δ

0
<U > d y (6.12)

Table 6.4: Details of the channel flow simulation set-up.

URANS + PFM
Turbulence model Variable
Wall model n/a
Rebulk [-] 24428
ν [m2/s] 2e-5
δ [m] 1
Ubulk [m/s] 0.24428

6.2.2. Qualitative Results
While quantitative results such as root-mean-squared values and pressure spectra are absolutely necessary
for evaluating the effectiveness of the AniPFM, qualitative results are as important. Without qualitative re-
sults, statistics such as mean or mean-squared values can sometimes be misleading. For this reason, qualita-
tive results are shown in this subsection. The instantaneous pressure and velocity fluctuations are shown at
an arbitrary moment in time, in fig. 6.7. In fig. 6.8, their RMS values are shown.

In fig. 6.7a and fig. 6.7b, the instantaneous pressure and velocity fluctuations respectively are shown for
the top wall, the right periodic side, and the periodic outlet. It can be seen that mainly at the top wall the
pressure fluctuations have a large magnitude, in the mid of the channel the fluctuations are much closer to
zero. This is due to the fact that the highest velocity and Reynolds stress gradients are near the wall. For the
instantaneous velocity fluctuations, it is clear that near the wall, the magnitudes are larger than in the mid-
channel, but at the wall they are exactly zero. This is due to the no-slip condition. In both the pressure and
velocity fluctuations, no apparent patterns are visible in the streamwise and spanwise directions.

(a) Pressure fluctuations. (b) Velocity fluctuations (x-component).

Figure 6.7: The instantaneous pressure and velocity fluctuations, taken from AniPFM.

The mean squared pressure and velocity fluctuations are shown in fig. 6.8. The mean is calculated by a
time average over 16 flow-through times, which equates to 2000 samples at each point in space. As can be
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seen, the variables are almost constant over the span and streamwise direction, with only small variations
in these directions. This was as expected, as the channel flow case is supposed to be homogeneous in these
directions. Since this is also the case for the AniPFM results, it is justified to collapse this data to a single
profile as function of the wall-normal direction, which is done in the subsequent subsections.

(a) Pressure fluctuations. (b) Velocity fluctuations (x-component).

Figure 6.8: The mean squared pressure and velocity fluctuations, taken from AniPFM.

6.2.3. Uncertainty Sources
There are several numerical considerations that can affect the results of AniPFM simulations. These manifest
in both uncertainties and errors. For example, there is an inherent uncertainty in statistical approaches like
root-mean-squared variables. The AniPFM also uses a statistical approach in order to determine the direction
of wavenumbers, which in turn introduces an uncertainty. In order to provide statistically meaningful results,
these uncertainties are evaluated in this subsection.

Convergence Uncertainty
In theory, the RMS pressure fluctuations along the wall-normal direction of the channel should converge to
a single profile. This also happens in practice, but it seems that the solution tends to oscillate around the
converged value for a long time. The time that it takes to converge within a maximum difference of e.g., 1e−5
during the last 5 flow-through times, is unfeasibly long for the larger computations that have been carried
out. Solutions do seem to come within a slightly larger range relatively quickly. For this reason, the results of
the RMS pressure fluctuations are denoted with an uncertainty range of 2 standard deviations, i.e., a 95.4%
confidence interval, based on the RMS pressure fluctuation value at the wall over the last 5 flow-through
times.

An example of the time history RMS pressure fluctuation at the wall is shown in fig. 6.9. This was obtained
by performing an AniPFM simulation with a mesh of 35x64x25, with 1024 wavenumber modes. The values
are normalized by the average RMS pressure fluctuation over the last 5 flow-through times. From this simula-
tion it was found that for the last 10 flow through times, the 95.4% confidence interval was equal to ±0.0514%.
However, when looking at a much earlier time interval, for example from 300 to 500 seconds, it was found that
the uncertainty range with the same confidence interval was still only ±0.236%. For this reason, simulations
are performed until a feasible end time, and the uncertainty due to oscillations in the wall p ′

r ms is reported in
the results.

Randomness Uncertainty
Next to the uncertainty due to oscillations in the time-averaged values of the RMS pressure fluctuations, there
is also an uncertainty due to the use of random numbers in AniPFM. In fig. 6.10, the time history of the RMS
pressure fluctuations are shown for 10 different runs that have used different random numbers. The amount
of effect of random numbers is also varying per method of time correlation. For example, for the Convection
& Exponential Correlation (C&EC) method every iteration new random numbers are used. However, for the
pure convection method, one set of random numbers is used, as the turbulence is assumed to be frozen and
convected with the mean flow. In fig. 6.10, the pure convection method is used.

As can be seen, even after a long period, there is still a difference between the individual simulations. From
these performed simulations, an uncertainty range is again determined. It was found that these simulations
were all within a ±2.68% range of the mean value with a confidence interval of 95.4%. From this value, it is
also logical that the simulations are not run until the oscillation uncertainty is reduced to 1e −5 levels, as the
uncertainty is mainly dominated due to the uncertainty caused by the random numbers. If the convection
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and correlation method for time correlation is used, then the uncertainty range reduces to ±0.249%. This is
due to the fact that new random numbers are generated each timestep. Thus, this method would be preferred,
given that it results in a much smaller uncertainty.

Figure 6.9: The normalized root-mean-squared pressure
fluctuations at the wall, versus the simulation time.

Figure 6.10: The root-mean-squared pressure fluctuations at the
wall versus the simulation time, for various runs, with varying

random seeds.

Since this type of evaluations are quite computationally expensive to perform, it is not possible to deter-
mine the uncertainty range of all simulations on a different mesh. Instead, it was solely performed on the
35x64x25 mesh, as it is one of the coarsest meshes used for the evaluation of the AniPFM in channel flow.
It was reasoned that the uncertainty ranges of finer meshes were likely to be smaller than that of the coarse
mesh, as with larger sample size, the finer meshes show better statistical convergence. For this reason, the
uncertainty w.r.t. the randomness added to AniPFM was extrapolated from the 35x64x25 mesh to the other
meshes.

This uncertainty range is only applicable if a different seed-number is used for the initialization of the
random numbers, or if the amount of random numbers used is different between simulations. Thus, only
when applicable, for example, when comparing the results of simulations with different numbers of modes,
this uncertainty is applied to the uncertainty range.

6.2.4. Error Sources
There are several sources of errors that cause a discrepancy between the AniPFM results and experimen-
tal/DNS data. For example, the governing equations are discretized in small control volumes, which intro-
duces a discretization error. In typical CFD simulations, this is purely due to the discretization of the fluid
domain. However, in the case of the AniPFM, the energy spectrum is also discretized into modes, which in-
troduces a discretization error as well. If the physics were perfectly described by the governing equations,
then the discretization error would be the only error. However, both the URANS turbulence model and the
AniPFM make assumptions which means that the physics are not perfectly described. Even if the AniPFM
would receive the exact mean flow quantities, there would still be an error in the statistical quantities of the
pressure fluctuations. This is referred to in this subsection as “modelling error”. Next to this, the input data
from URANS is not perfectly in line with reality, meaning that this also introduces an error. First the discretiza-
tion errors are discussed, and then effects of the modelling error and the URANS input error are elaborated
upon in this subsection.

Mode Discretization Error
The energy spectrum is approximated by a finite number of modes, as shown in eq. (5.3). The number of
modes used determines how well the spectrum is approximated, but it also heavily affects the computational
time. For this reason, it is important to know how big of an effect the number of modes has on the accuracy
of the final solution. In this subsection, only the RMS pressure fluctuations are evaluated, but the number of
modes can also have an effect on the “smoothness” of the reproduced spectrum.

The RMS pressure fluctuations for various numbers of modes are shown in fig. 6.11. As can be seen, the
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amount of modes does have an influence on the results, but there is not a clear trend. Excluding the 64 mode
simulation, a maximum error of 4.04±2.86% can be found near the wall, relative to the simulation with the
highest number of modes. Thus, while there is a definite effect of the number of modes, the randomness un-
certainty is mainly dominating. However, another effect of using fewer modes is that the amount of random
numbers used also reduces. This is hypothesized to affect the randomness uncertainty. In particular, it is
hypothesized that the uncertainty will grow with fewer modes being used.

Figure 6.11: The root-mean-squared pressure fluctuations along the wall-normal coordinate for various numbers of modes.

Mesh Discretization Error
A mesh study on the convergence of the AniPFM w.r.t. the RMS pressure fluctuations is different from a nor-
mal RANS mesh study. This is because in RANS, the mesh fineness has mostly an effect on the wall modeling
and the approximation of differential operators. However, in the AniPFM, the mesh fineness has both an ef-
fect on the approximation of differential operators, and an effect on how much energy of the flow is modelled.
The amount of turbulent kinetic energy that is modelled has a direct effect on the magnitude of the pressure
fluctuations, thus in theory a convergence study of the RMS pressure fluctuations would result in a finest
mesh that is DNS-like.

For the mesh study simulations, the AniPFM was used with 1024 Fourier modes, and for time correlation
method, pure convection was used, with a uniform convection velocity equal to the bulk velocity. The same
seed number was used to initialize the random numbers in all simulations, to prevent any introduced uncer-
tainty due to randomness. The value of y+ for all simulations was equal to y+ = 0.8, the expansion ratio was
based on this accordingly.

The normalized RMS pressure fluctuations along the wall normal coordinate for several meshes are shown
in fig. 6.12. Note that the x-axis is log-scaled. For clarity, the values at the wall are reported in table 6.5. As can
be seen in table 6.5, for the finest two grids, the second-finest grid actually falls into the confidence interval
of the finest grid. From this it was concluded that the RMS pressure fluctuations were converged, and that
further refinement in the grid would result in negligible differences in the RMS pressure fluctuations.

This is interesting, as the finest grid does not fully resolve the velocity fluctuations. In fact, the grid is
quite far from fully resolving the velocity fluctuations. In fig. 6.13, the cut-off wavenumber to Kolmogorov
wavenumber ratio is given along the channel height. As can be seen, in the finest simulation, the velocity
fluctuations are only resolved up to 6% of the Kolmogorov wavenumber, near the wall. From this it can be
concluded that in channel flow, the largest contribution to the pressure fluctuations is from velocity fluctua-
tions with large length scales.

It is also noted that by an increase of 25 times in total mesh elements, the RMS pressure fluctuations only
differ by 7.68%. Thus, it is possible to use quite coarse meshes and still obtain RMS pressure fluctuations
close to the result on very fine meshes. However, it must be kept in mind that the ultimate goal of AniPFM
is not to model the total RMS pressure fluctuations, but rather to model the pressure fluctuations that will
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excite fuel rods when subjected to axial flow. In this sense, it was earlier hypothesized that only the frequen-
cies near the eigenfrequency of the fuel rods are important, which can be translated to spatial discretization
requirements based on the convection velocity. To test this hypothesis, mesh dependency tests were done
for the FSI calculations in chapter 7, where a focus is kept on which frequencies (and thus wavenumbers) are
resolved.

Figure 6.12: The root-mean-squared pressure fluctuations along
the wall-normal coordinate for various meshes, versus the DNS

results of Abe et al. [13].

Figure 6.13: The cut-off wavenumber over the Kolmogorov
wavenumber along the wall-normal direction, for various mesh

sizes.

Table 6.5: The p ′
r ms values at the wall for the various grids.

Grid size p′
rms [-] Error w.r.t. Finest Mesh [%]

35x64x25 2.281 ± 0.00424 7.83 ± 0.17
50x128x40 2.406 ± 0.0131 2.79 ± 0.53
80x128x60 2.469 ± 0.00494 0.24 ± 0.20
120x128x90 2.475 ± 0.00688 ± 0.28

The mesh study shown in fig. 6.12 was mainly focussed on the x- and z-direction, where only the coarsest
mesh had a different resolution in the y-direction. In fig. 6.14, a mesh study in the y-direction is performed.
The resolution of the first cell at the wall was again kept constant at y+ = 0.8, and the expansion ratio was
based on this and the total number of cells. This resulted in expansion ratios of 1.2 for the coarsest mesh,
down to 1.05 for the finest mesh. As can be seen, the different grid sizes show very close results, and from
Ny = 64 and onwards, the results can be deemed converged. This shows that as long as the first point at the
wall is similar, the growth rate in the wall-normal direction has a small effect on the results.

Other tests were also performed with different y+ values of the wall-adjacent cell. It was found that for an
accurate prediction of the wall RMS pressure fluctuations, the first cell must have a y+ value in the flat range
near the wall, as shown in fig. 6.14. This gives a range of 0 < y+ < 5 for the value of the first cell. With y+ values
higher than that, the first cell is located in or near the peak shown in fig. 6.14, which causes a bad estimation
of the pressure fluctuations at the wall. For this, it is not possible to use a wall-model, as the instantaneous
pressure fluctuations are computed, not solely the Reynolds-averaged quantity. Thus, it is recommended to
use meshes that will resolve the flow up to the wall, with a value of 0 < y+ < 5 for the first cell centre.

Modelling Error
It was found in section 6.1, that the AniPFM could accurately predict the root-mean-squared pressure fluc-
tuations, with only roughly a 1% error w.r.t. DNS data. Thus, for the HIT case, the modelling error was very
limited. This is because certain aspects of the AniPFM are based on isotropic turbulence. For example, the
wavenumber vector is based on isotropy, as its direction is uniformly distributed over a unit sphere. Next to
this, the energy spectrum formulation is based on isotropic turbulence, which is then later rescaled to match
the Reynolds stresses of the URANS solution. The method of determining the wavenumber that contains the
most energy is also based on isotropic turbulence. Thus, while the AniPFM can produce anisotropy in the
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Figure 6.14: The root-mean-squared pressure fluctuations along the wall-normal coordinate for various meshes, versus the DNS results
of Abe et al. [13].

Reynolds stresses, certain aspects of the model are still rooted in isotropy. This is expected to introduce a
certain error in the prediction of the root-mean-squared pressure fluctuations, as well as in the spectra of the
velocity and pressure fluctuations.

To evaluate the modelling error, the mesh is refined until the root-mean-squared pressure fluctuations are
converged over the wall-normal direction of the channel. Furthermore, the mean velocity, Reynolds stress,
kinetic energy and dissipation rate profiles of Abe et al.[13] are used as the input to the AniPFM, imitating
a URANS solution. For this particular simulation, the AniPFM was used with 1024 Fourier modes, and for
time correlation method, pure convection was used, with a uniform convection velocity equal to the bulk
velocity. The same seed number was used to initialize the random numbers in all simulations, to prevent
any introduced uncertainty due to randomness. It was found that at a mesh of 120x128x90, the results only
showed a small difference with respect to coarser meshes. The results for the root-mean-squared pressure
fluctuations and the Reynolds stresses are shown in fig. 6.15 and fig. 6.16, respectively.

Figure 6.15: The root-mean-squared pressure fluctuations along
the wall-normal coordinate, versus the DNS results of Abe et al.

[13]. DNS data is used as input.

Figure 6.16: The Reynolds stress profiles along the wall-normal
coordinate, versus the DNS results of Abe et al. [13]. DNS data is

used as input.

As can be seen, the RMS pressure fluctuation at the wall is equal to 2.475±0.0641. This uncertainty con-
tains the uncertainties mentioned in the previous subsections. This gives an error of 9.22±2.83% with respect
to the DNS data. From the Reynolds stresses in fig. 6.16, it can be concluded that not all turbulent length
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scales are resolved, as the total energy is not exactly replicated. However, it was found that these unresolved
scales have a negligible effect on the pressure fluctuations, as for a slightly coarser mesh, the results remained
unchanged. Since the mesh was converged, and the Reynolds stresses and mean velocity profiles are taken
directly from DNS, the error in the pressure fluctuations presented here are purely due to model errors in the
AniPFM. Further away from the wall, it can be seen that the predictions are much closer to the DNS data. This
was expected, as the flow near the wall shows far more anisotropic behaviour than the flow in the bulk of the
channel, thus the modelling error was expected to be larger here.

URANS Input error
From the previous section, it was found that given a converged grid solution and the Reynolds-Averaged
inputs from DNS data, the AniPFM gave an error of 9.22±2.86% with respect to the DNS solution of Abe et al.
[13]. However, in real cases DNS data is not available, and actual URANS simulations have to be performed
in order to utilize the AniPFM. This introduces an additional error that is caused by the differences between
DNS results and URANS results. In this subsection, this error is evaluated, in terms of the RMS-value for the
pressure fluctuations. But first, the URANS results for the mean flow variables are compared to DNS data.

For the URANS solution, the k −ω SST model is used as turbulence model. This model was chosen for
several reasons. Namely, it was found in section 6.2.4 that the simulation has to be resolved up to the wall in
order to give an accurate estimate of the pressure fluctuations at the wall, thus wall-model-only models were
not applicable. This unfortunately meant that the available Reynolds stress models in OpenFOAM were not
eligible to be used. The elliptic-blending RSM can be resolved up to the wall, but this model is not available
in OpenFOAM. It is recommended for future work that this model is implemented in OpenFOAM, in order to
evaluate if this model combined with the AniPFM gives a more accurate solution. Other URANS turbulence
models that are implemented by third parties also exist, such as the Hellsten EARSM [126] and the Wallin
& Johansson EARSM [68]. However, it was found that in the case of channel flow, the k −ω SST model gave
very similar results to the previously mentioned EARSMs, especially when coupled with the Wilcox-correction
shown in eq. (3.35) through eq. (3.37).

In eq. (6.13), the governing equation for the pressure fluctuations in channel flow is shown. This equation
is derived from eq. (3.31), where the derivatives of the mean flow velocity and of the Reynolds stress tensor
in the x and z-direction are equal to zero for channel flow. From this equation, it can be seen that especially
the derivative of the Reynolds stress in the wall-normal direction is important. For this reason, the k −ω SST
model was chosen over the k −ε model, as the k −ω SST model combined with the Wilcox correction gave a
closer estimation of the < v v > component of the Reynolds stress.
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The URANS solution was run until steady state was achieved, after which the AniPFM was turned on.
Steady state was determined by the value for Reτ, the solution was run until this variable did not change
any more. The URANS simulation converged to a value of Reτ = 625, which is 2.5% off of the DNS results
of Abe et al. [13]. A small error was expected, as URANS has an inherent error due to turbulence modelling.
This steady state was achieved after 600s, after which the AniPFM was turned on. The results for the mean
velocity and Reynolds stress profiles are shown in fig. 6.17. As can be seen, the mean velocity profile is quite
well approximated, with only a small overestimation between 50 < y+ < 500. The Reynolds stresses show
less satisfactory results. For the yy-component of the Reynolds stress tensor, especially near the wall, it is
overestimated. Since this component is predicted to have a large influence on the pressure fluctuations, this
could also indicate an overestimation of the pressure fluctuations, Furthermore, the xx-component of the
Reynolds stress tensor is highly underestimated.

The AniPFM simulation was run on a 120x128x90 mesh, with 1024 wavenumber modes. In fig. 6.18, the
results from the AniPFM are shown. As can be seen in fig. 6.18b, with the given mesh the kinetic energy is
well-resolved, with only the energy of the smallest scales being unresolved. As predicted, the RMS pressure
fluctuations are overpredicted with respect to the results of the AniPFM with DNS input, as shown in fig. 6.18a.
The wall RMS pressure fluctuations are equal to 2.822±0.0062. It is hypothesized that this is mainly due to
the steep gradient of the yy-component of the Reynolds stress near the wall. It can be seen that the mean flow
variables as predicted by URANS give an additional error of roughly 14.0±0.19%, with respect to the outcome
of the AniPFM with DNS data as input. From a mesh study with URANS inputs, it was found that this error
roughly holds for coarser meshes as well. In total, this gives an error of 24.86±3.05% with respect to the DNS
results of Abe et al. [13]. This is quite a large error, and a large component is due to the error from URANS
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(a) Mean Velocity. (b) Normal Reynolds stresses, with Wilcox correction.

Figure 6.17: URANS profiles versus the DNS data of Abe et al. [13].

input, thus for this reason it is recommended to implement a wall-resolved RSM that can better approximate
the Reynolds stresses. For comparison, the previous PFM of Kottapalli et al. [14], showed an underestimation
of roughly 47% with respect to the DNS data.

(a) RMS pressure fluctuations of the AniPFM with URANS inputs, versus the
DNS results of Abe et al.[13]

(b) Normal Reynolds stresses with Wilcox correction, URANS versus
AniPFM.

Figure 6.18: AniPFM results with URANS input from the k −ω SST model.

To further illustrate the effect of the input Reynolds stress tensor, the AniPFM simulation is rerun, but with
the k −ε model. The same mesh and settings are used as for the k −ω SST simulation, thus also the Wilcox
correction is applied to the Reynolds stress tensor. The RMS pressure fluctuations and the Reynolds stresses
are shown in fig. 6.19a and fig. 6.19b, respectively. As can be seen, the Reynolds stresses predicted by the k−ε
model are much higher than in fig. 6.17b, especially the yy-component of the Reynolds stress, and especially
near the wall. This translates to a much higher RMS value for pressure fluctuations, as shown in fig. 6.19a.
The wall RMS pressure fluctuations are equal to 4.164±0.0065, which is almost 50% higher than the results of
the k −ω SST model.

6.2.5. Wavenumber Spectra & Length Scales Effect
Several length scales are defined in the AniPFM that have an influence on how the energy spectrum is shaped,
and how far it is resolved. These length scales are the length scale at which the maximum energy is stored,
and the cut-off length scale. In this subsection, the definitions of these length scales are investigated, as well
as the influence they have on the wavenumber spectra. First, le , the length scale with maximum energy is
discussed.

As discussed in section 5.1.1, the definition of le was chosen to differ from Shur et al. [9]. Shur et al. use
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(a) RMS pressure fluctuations of the AniPFM with URANS inputs, versus the
DNS results of Abe et al.[13]

(b) Normal Reynolds stresses with Wilcox correction, DNS versus AniPFM.

Figure 6.19: AniPFM results with URANS input from the k −ε model.

the wall distance dw in their definition, whereas in the definition of the AniPFM, this is not used. In fig. 6.20,
the wall distance and the URANS length scale are compared to each other, for channel flow at Reτ = 640. Note
that the wall distance length scale is always smaller than 3lt . However, at the mid-channel the turbulence is
very close to isotropy, as shown in fig. 6.17b. So while the length scale should be close to 3lt in the mid-
channel, this is not the case with the method of Shur et al. [9]. This leads to an underestimation in the energy
of the lowest wavenumbers, which in turn also leads to an underestimation in the RMS pressure fluctuations.
This is not only true at the mid-channel, but also near the wall. Next to this, it was found that the method of
eq. (5.8) also underestimates the correct value for le near the wall. This can be seen in appendix A.1. However,
the method of Shur et al. leads to a larger underestimation.

Figure 6.20: The different length scales for channel flow, taken from Shur et al. [9]

This underestimation can be seen when comparing fig. 6.21a with fig. 6.21b. As can be seen, the lower
wavenumbers are especially underrepresented. As found in section 6.2.4, the lower wavenumbers have a sig-
nificant impact on the pressure fluctuations. This is very noticeable when comparing fig. 6.22a with fig. 6.22b.
With the length scale used by Shur et al., the pressure fluctuations are very underestimated for the lower
wavenumbers, and overestimated for higher wavenumbers. While the method from eq. (5.8) still underes-
timates le , it shows quite good results for the pressure spectrum. The reduction in magnitude for higher
wavenumbers is predicted, as well as the relative magnitude of the lower wavenumbers.

Next to the eddy length scale, there were also different options for the cut-off length scale. Namely, the
cubic-root-volume method and the method of Shur et al. [9]. The determination of the cut-off length scale is
important as it determines how much energy of the energy spectrum is resolved. However, this task is not triv-
ial, as the cut-off length and the energy spectrum are represented with scalars, whereas in reality the cut-off
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(a) le as defined in eq. (5.8) (b) le as defined by Shur et al. [9]

Figure 6.21: The energy wavenumber spectrum with different definitions for le , at y+ = 300.

(a) le as defined in eq. (5.8) (b) le as defined by Shur et al. [9]

Figure 6.22: The streamwise pressure wavenumber spectrum with different definitions for le , at y+ = 10

length varies in three dimensions. This is most noticeable in areas where the mesh is highly anisotropic, such
as near the wall. Namely, at the wall, the cell height in the wall-normal direction is much smaller than the
length in the span- and streamwise directions. Thus, a much smaller cut-off length could be used in the wall-
normal direction than in the span- and streamwise direction. If the cut-off length of the wall-normal direction
was used, the resolved energy in the span and streamwise direction would be overestimated, whereas if the
cut-off length of the span- or streamwise direction would be used, the resolved energy in the wall-normal di-
rection would be underestimated. For this reason, it is recommended that in the future, a pressure fluctuation
model should be researched where the velocity fluctuations are defined by three separate one-dimensional
energy spectra, such that the energy in each spatial direction can be captured accurately.

An example of the cut-off length for the different methods is shown in fig. 6.23. As can be seen, the cubic
root method gives a cut-off length more than twice as small as Shur et al.’s method (eq. (4.44)), near the wall.
Near the mid-channel the values are closer, as the mesh cells are less anisotropic. From this, it can be expected
that the RMS pressure fluctuations will be lower when using Shur et al.’s method, as less energy is resolved.
The differences in the captured energy are quite large for the cubic-root-volume method and Shur et al.’s
method. This is noticed in the root-mean squared pressure fluctuations, which are shown in fig. 6.24. For
this simulation, the 80x128x60 mesh was used, with 1024 wavenumber modes. As can be seen, the method
of Shur et al. shows much lower RMS pressure fluctuations than the cubic-root-volume method on the same
mesh. Interestingly, it also shows a very fine approximation of the pressure spectrum at y+ = 10, as shown in
fig. 6.25.

From this analysis, it was shown that the choice of cut-off length has a large effect on the amount of
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Figure 6.23: The cut-off length for both the cubic-root-volume and Shur et al.’s method, given a 80x128x60 mesh.

energy that is resolved, and thus also on the RMS pressure fluctuations. However, it is not clear which method
is better, as the actual cut-off length is not known. For this reason, the effect of the cut-off length on the
RMS amplitude of a vibrating fuel rod is investigated in chapter 7. While it is expected for the RMS pressure
fluctuations to differ on coarser meshes, it is expected to converge to a single value for finer meshes, as this
would mean that the pressure fluctuations are fully resolved. However, even for the finest mesh, a discrepancy
can be found between the two methods. On the mesh that was used in section 6.2.4, the AniPFM with Shur
et al.’s cut-off length shows only -4.4% error with respect than the DNS results, for the root-mean-squared
pressure fluctuations. When using a URANS model, it showed an error of roughly +10% w.r.t. the DNS results,
showing closer results than with the cubic root cut-off method.

Figure 6.24: The RMS pressure fluctuations with different cut-off
length definitions, compared to the DNS data of Gotoh et al. [12].

Figure 6.25: The streamwise pressure spectrum of AniPFM with the
cut-off filter defined by Shur et al.[9], compared to the DNS data of

Gotoh et al. [12].

6.2.6. Inlet/Outlet Boundary conditions
To solve the pressure fluctuation equation eq. (3.31), boundary conditions are necessary around the domain.
In the HIT and channel flow case, most boundaries could be set by using periodic boundaries. However, in
other cases this is not necessarily true. For this reason, the other boundary condition options are evaluated
in this subsection. The main reason why this is done is because the pressure fluctuations equation requires a
realistic boundary field in order to give realistic pressure fluctuations. Thus, the boundaries can not be set to
a fixed uniform value such as with typical URANS variables.

In section 5.2.2, the possible options for inlet/outlet boundary conditions were given. It was recom-
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mended that only fixed value boundary conditions were used, as opposed to fixed gradient boundary condi-
tions. For this reason, only the periodic condition, the mapped condition and the calculated condition (the
condition where eq. (5.27) is used) are compared, for the inlet and outlet. This is done on a 40x64x30 grid,
with 256 wavenumber modes, and with DNS data as URANS input.

In fig. 6.26, the RMS pressure fluctuations for the the different boundary condition types are shown. It
can be seen that there is a miniscule difference between the different boundary condition types. In fact,
the values at the wall are within a range of ±0.098%, whereas the uncertainty of the periodic case is equal
to ±0.11%. From this, it can be concluded that the different methods give the same statistical results, and
thus these methods are valid to use for future simulations. In particular, the calculated boundary condition
is recommended. This is because for the mapped boundary condition, the location that is mapped must be
chosen by hand, and this location must have the same mean flow variables as the inlet or outlet in order for
the mapping to be accurate. With the calculated boundary condition, this is not the case, thus it is easier to
use and less error prone.

Figure 6.26: The RMS pressure fluctuations for various inlet/outlet boundary conditions.

6.2.7. Time Correlation
In section 5.1.3, four different methods were elaborated upon that could be chosen to introduce time correla-
tion into the velocity fluctuations. In this subsection, the methods are evaluated based on the RMS pressure
fluctuations, the Reynolds stresses, and the pressure frequency spectra. All simulations have been carried out
with a mesh of 80x128x60, with 1024 wavenumber modes, and the same seed number for the random num-
ber generator. As this is purely about the time correlation, and not other impending factors, the DNS Reynolds
stress and velocity profiles are used as input "URANS" solution. First, the replicated Reynolds stresses are dis-
cussed, which are then linked to the RMS pressure fluctuations. Finally, the pressure fluctuation spectra are
evaluated.

In fig. 6.27, the Reynolds stress profiles are shown for the different time correlation methods. Several of
the effects of the methods that were mentioned in section 5.1.3 can be seen. In fig. 6.27a, it can be seen that
the turbulent kinetic energy is not approximated as good when using both C&EC as in the pure convection
case. This is due to the numerical diffusion that is introduced by solving for the convection equation. In
fig. 6.27b, it can be seen that the rescaled velocity fluctuations follow a different profile than the prescribed
profile, with a slightly higher prediction in the mid-channel than the pure convection case, and a slightly
lower prediction near the wall. This is because the fluctuations are rescaled with the total lost energy, but
the amount of lost energy varies over the channel height. However, as can be seen, the prediction of the
Reynolds stresses near the wall is actually better than for the C&EC case. Because of the loss of energy in the
convection and exponential correlation case, it is expected that the RMS pressure fluctuations will also be
underpredicted, with respect to the pure convection case. In the case of the Rescaled Convection & Exponen-
tial Correlation (RE&EC) method, it is expected that the results near the wall will be close to that of the pure
convection method, but near the mid-channel it is expected that the RMS pressure fluctuations will show a
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slight overestimation.
Using pure exponential correlation or pure convection, the Reynolds stress profiles are slightly underes-

timated, as shown in fig. 6.27c and fig. 6.27d, respectively. It is noticed that the reproduced Reynolds stresses
in fig. 6.27d clearly follow the same profile as the prescribed input, and only the magnitude is different. The
same holds for the pure exponential correlation case. Note that while the pure exponential correlation and
pure convection methods have no loss in energy due to diffusion, the Reynolds stresses are not exactly met.
This is because not all energy can be resolved on the grid used for these simulations. From section 6.2.4 it
was found that the RMS pressure fluctuations can be approximated within 10% with the AniPFM using pure
convection. As the Reynolds stress profiles in the pure exponential correlation case are very similar to those
of the pure convection case, it is expected that the RMS pressure fluctuations will also not differ by much.

(a) Convection and exponential correlation. (b) Rescaled convection and exponential correlation.

(c) Pure exponential correlation (d) Pure convection

Figure 6.27: Reynolds stress profiles for different methods of time correlation.

In fig. 6.28, the RMS pressure fluctuations for the different time correlation methods are shown. As can
be seen, the predictions based on the Reynolds stresses were quite correct. Indeed, the RMS pressure fluctu-
ations in fig. 6.28a show an underprediction near the wall w.r.t. the other methods, due to dissipated energy
of the flow. The rescaled case shows quite close results near the wall, but nearing the mid-channel the RMS
pressure fluctuations are slightly overpredicted, similarly to the Reynolds stresses. The RMS pressure fluctu-
ations using pure exponential correlation are quite similar to the pure convection case. In conclusion, the
different methods for time correlation can affect the replication of the Reynolds stresses, and this translates
to differences in the RMS pressure fluctuations. It is also noted that the time correlation methods do not have
a direct effect on the RMS pressure fluctuations.

In fig. 6.29, the pressure frequency spectra are shown for the different time correlation methods. The
frequency spectrum can be computed similarly to the wavenumber spectrum as shown in eq. (6.3), except
now, the frequency domain is used, not the wavenumber domain. To do this, the pressure is sampled at a
given location with a certain constant frequency. This procedure is done for a plane of points, from which
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(a) Convection and exponential correlation. (b) Rescaled convection and exponential correlation.

(c) Pure exponential correlation (d) Pure convection

Figure 6.28: RMS pressure fluctuation profiles for different methods of time correlation.

the average is taken. From Abe et al. [13], no data was available for the frequency spectrum. Instead, the data
was taken from the DNS data of Hu et al. [127] and the experimental data of Brungart et al. [128], similarly to
previous work in NRG [102].

In order to match the DNS data and the experimental data, the frequency spectra were evaluated at
y+ = 10, which gave a value of Reθ ≈ 800, where θ is equal to the momentum thickness. The experimen-
tal data from Brungart et al. [128] was obtained from a channel flow case at Reθ = 1120, so this is not exactly
matched. However, For this range of Reynolds numbers it was found that the pressure spectra collapse to a
single spectrum if properly non-dimensionalised. This is also the case for the DNS data of Hu et al. [127].
This simulation was performed at Reτ = 720, whereas the shown simulations were performed at Reτ = 640.
Again, the frequency spectra overlap with the correct non-dimensionalization.

To understand the results in fig. 6.29a and fig. 6.29b, first fig. 6.29c must be examined. In section 6.1.3, it
was found that the exponential time correlation method gave substantially better results than the previous
PFM in terms of time correlation for the velocity fluctuations. However, in fig. 6.29c it can be seen that the
frequency spectrum is not accurately represented with the exponential time correlation. This is because the
exponential correlation is based on the decay of homogeneous isotropic turbulence, and a general modifica-
tion factor was used, instead of a fine-tuned factor. Because of this, it shows an overestimation at the lower
frequencies, and an underestimation at the higher frequencies. This effect is carried over to the C&EC case,
and the rescaled case as well. However, due to the added convection, the over- and underprediction is re-
duced, but, all three methods do not show the characteristic drop-off in intensity around 2 ·10−1 ·2π f ν/u2

τ.
Finally, the pure convection case, shown in fig. 6.29d seems to be much more spurious. This could be due
to the lack of variation in the random numbers input. It does follow the DNS data quite well, but also this
method can not fully predict the previously mentioned drop-off near the higher frequencies.

In conclusion, the different time correlation methods show only small differences in the RMS pressure
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(a) Convection and exponential correlation. (b) Rescaled convection and exponential correlation.

(c) Pure exponential correlation (d) Pure convection

Figure 6.29: Pressure frequency spectra for different methods of time correlation.

fluctuations and the pressure frequency spectra. The most notable differences are that the C&EC case shows
lower values for the RMS pressure fluctuations compared to the other methods, and the pure convection
case shows more spurious results in the frequency spectrum. From these tests, it seems that the rescaled
convection and exponential correlation method and the pure convection method produce the best results,
in the FSI cases the effect of these methods on the RMS amplitude is evaluated. Note that while the pure
convection method gives good results for the frequency spectrum, it was also found that this method has
a larger uncertainty than the convection and correlation method, since only one set of random numbers is
used throughout the simulation.

6.2.8. Computational Resources Evaluation

The main goal of the AniPFM is to use it in combination with URANS for fluid-structure simulations of nu-
clear fuel rods. The motivation is that LES simulations are typically computationally too expensive to use for
these cases, due to the strict mesh requirements. Thus, for the AniPFM to be actually successful, the com-
putational resources must still be in the order of magnitude of typical URANS simulations. For this reason,
several simulations were timed and evaluated for the time spent on URANS and AniPFM calculations.

For these simulations, a mesh of 35x64x25 is used, with the base case having 128 modes, and the pressure
fluctuation equation is solved up to a residuals level of 1e − 6. In table 6.6, the relative resource allocation
for several use-cases is shown. Each case is run three times, and the averages are reported. The resource
allocation of the AniPFM is divided into the generation of the velocity fluctuations and the subsequent calcu-
lation of the pressure fluctuations. Here, the min. iterations case uses optimized settings in the solver for the
pressure fluctuation equation, in order to minimize the number of iterations necessary.
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Table 6.6: The relative resource allocation during an AniPFM+URANS simulation, for different use-cases.

128 modes 256 modes 1024 modes Min. Iterations
u′ generation [%] 42.9 47.0 68.5 35.3
p ′ solving [%] 28.8 27.8 17.5 27.6
URANS [%] 28.3 25.2 14.0 37.1

As can be seen, the total simulation time (including URANS) can be anywhere from 2.7 to 7.1 times as long
as the typical URANS time. However, the typical time is roughly 3.5 times as long as the typical URANS time.
Given these values, the AniPFM would thus be effective if the equivalent LES mesh for the case is more than
3.5 times as large as the URANS mesh, which is typically the case. Thus, these values indicate that the AniPFM
could indeed be a viable alternative to LES, given that the results of the AniPFM are within the required error-
margin. However, these values are only an indication based on a simple geometry. Since the AniPFM is only
turned on after the URANS simulation has converged to steady state, the number of URANS iterations are
significantly smaller than they would be in an actual unsteady case. Thus, in case of an unsteady case, it
could be that the increase in time due to the AniPFM is smaller than indicated in table 6.6. For this reason,
another evaluation is done with a fluid-structure interaction case, as shown in chapter 7.

From this study on computational resources, a few recommendations emerged regarding the compu-
tational set-up of a URANS + AniPFM problem. When generating the velocity fluctuations, the number of
modes logically have a large effect on the total computational time. However, in section 6.2.4, it was found
that increasing the number of modes only has a small effect on the RMS pressure fluctuations, compared
to other error sources. Thus, it is recommended to use an amount of modes that is on the lower end of the
tested values. For the pressure fluctuations, it was found that the quality of the mesh had a very large impact
on the number of iterations needed for solving eq. (3.31). In particular, the aspect ratio of the cells has a very
large impact, with larger aspect ratios causing the solver to need more iterations in order to converge. This is
something to take in consideration when generating the mesh.

6.2.9. Summary
In this section, the channel flow case was discussed. In particular, the results of the AniPFM for various
meshes and settings were investigated. It was found that given the correct mean flow characteristics, the
AniPFM could correctly estimate the RMS pressure fluctuations with an error of less than 10%. When using
the k −ω SST model with the Wilcox correction, an additional error of roughly 15% is found. This is mainly
due to the differences in the Reynolds stresses, especially in the wall-normal component. There was also
certain uncertainty in the results, that was caused by the use of random numbers, and due to the slowly
varying nature of the RMS pressure fluctuations. All errors and uncertainties are summarized in table 6.7. In
order to give an overview, the flowchart as presented in chapter 5 is repeated in fig. 6.30, with indicators where
the various errors originate from. Note that the pressure fluctuation equation also brings an uncertainty error,
but this error is mesh dependent. Furthermore, this error is not exactly known because this error can not be
separated from the error that originates from under-resolving the domain.

Table 6.7: All evaluated errors and uncertainties of the AniPFM, with respect to the DNS data of Gotoh et al.[12].

Error/Uncertainty [%]
Model Error 4.4-9.22
URANS Error 14.0
Time uncertainty 0.1 1

Randomness uncertainty
(pure convection)

2.86

Randomness uncertainty
(convection and correlation)

0.24

Certain modelling choices also affected the outcome of the AniPFM. The choice for both the cut-off length
and le can influence the results. In the case of determining le , it was clear that using the relation from eq. (5.8)
gave superior results. However, for the cut-off length scale, this was not clear, and the effect of this param-
eter is tested in the FSI cases in chapter 7. In both cases, the wavenumber spectrum of the AniPFM closely
matched that of the DNS data of Gotoh et al. [12]. The effect of using different boundary conditions was
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negligible. However, the method for time correlation did affect the outcome of AniPFM, mainly in terms of
the frequency spectrum. The difference caused by these methods is also evaluated in chapter 7.

It was found that the increase in the necessary computational resources for the AniPFM is limited to
roughly 2.7-4.0 times that of the URANS simulation, given that the number of wavenumber modes is cho-
sen wisely. This, together with the given accuracy range, in terms of the RMS pressure fluctuations and the
wavenumber/frequency spectra, gives a positive perspective on the applicability of the AniPFM for FSI sim-
ulations of nuclear fuel rods in axial flow.

Figure 6.30: A flow-chart of the different computational steps of the proposed AniPFM, with the sources of the various errors, for
turbulent channel flow.

1This is a typical value, the actual value differs for each simulation.



7
Flexible Brass Beam in Turbulent Water

The results from chapter 6 gave confidence in the capabilities of the AniPFM to model turbulent pressure
fluctuations, which also gave an optimistic outlook for fluid-structure interaction simulations. In this chap-
ter, this is put to the test by performing an FSI test case. The test case is a flexible brass beam in turbulent
water, which was chosen due to the vast comparison material available and the relatively simple set-up. The
displacement history and RMS values, as well as the vibration frequencies, are investigated. In this chapter,
first, the set-up of previous physical and numerical experiments of the brass beam in water, and the current
simulation set-up are elaborated upon. After this, several simulations are discussed. Namely, first a pure
URANS-FSI approach is discussed; after this, the results of the AniPFM are evaluated. Finally, an AniPFM-FSI
approach is used, and the results are compared to the experiment.

7.1. Experimental & Previous FSI Set-ups
Chen & Wambsganss [15] performed an experiment of a flexible brass beam in turbulent water, which has
subsequently often been used as a validation case for FSI problems with applications to nuclear fuel rods
[14, 16, 17]. This is due to its simple geometry, and because it permits comparison with other simulations as
well. Moreover, the experiment established both data about the modal frequencies for several flow cases, and
the root-mean-squared vibration amplitudes. The flexible brass beam is enclosed in a rigid steel cylinder,
and it is clamped on both sides. The discretized geometry as used by Kottapalli et al. [14] is shown in fig. 7.1.
The diameter of the brass beam is Dc = 0.0127m, the enclosing cylinder has a diameter of Do = 0.0254m,
and the beam has a length of L = 1.19m. This gives an L/D-ratio of 93.7. The level of turbulent intensity
and the turbulent length scale at the inlet of the domain were not mentioned by Chen & Wambsganss [15].
Several studies [14, 16, 17] assumed a turbulence intensity of 5% and a turbulent length scale of 0.1 cm. The
experiment was conducted for various mean inlet velocities, in the range of 8-33 m/s. This gives a range
of Reynolds numbers from 101,600-419,100. The rod has a density of 8400 kg /m3, giving a density ratio of
ρs
ρl

= 8.4. The Poisson ratio was not mentioned in the experiment, but a nominal value of 0.33 was taken,
based on previous simulations [14]. Finally, a Young’s modulus of E = 107GPa was specified [15].

De Ridder et al. [16] simulated the experiment through means of an FSI simulation, where an initial dis-
placement was given to calculate the natural frequency of the fundamental mode. In the simulation, a par-
titioned approach was taken, where the fluid dynamics were solved through a URANS k −ω SST turbulence
model. The structural mechanics were solved through Abaqus 6.10, a finite element solver. The solvers were
coupled through the IQN-ILS method, where the Jacobian was approximated based on previous iterations.
Interestingly, it was found that the finite element solver accounts for less than 1% of the computational time.
De Ridder et al. [16] computed the modal frequencies for all three flow cases, both with no pre-stress and
with a pre-stress of 648N added. The modal frequencies were found to be within 4.5% of the experimental
frequencies. With the added pre-stress, this was lowered to 3.5%, however, no pre-stress is mentioned in the
original experiment [15]. The simulations were performed at 10, 20 and 30 m/s.

In addition, De Ridder also performed wall-resolved large-eddy simulations of the same set-up [18]. These
simulations were purely LES, so no fluid-structure interaction was modelled. However, the root-mean squared
amplitude of the beam was calculated by computing the force spectrum from the LES data, and using this
with an analytical relation that was introduced by Chen & Wambsganss [15]. The simulations were performed
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Figure 7.1: Discretized geometry of Kottapalli et al. [14], representing the experiment of Chen & Wambsganss [15].

on a rod with a smaller total length, in order to reduce the required computational power. From a mesh study,
De Ridder concluded that with a mesh of 76.8 million cells and a length over diameter ratio of 10, the mean
flow velocity and the force spectrum were converged. Extrapolating this to the full length of the beam means
that the mesh would have had 720 million cells. These simulations were solely performed at 10 m/s.

Kottapalli et al. [14] used a similar approach to that of De Ridder et al. [16]. Similarly, a partitioned ap-
proach was taken, where the IQN-ILS coupling method was used to couple a URANS k −ω CFD simulation
with a finite element structural solver. However, in addition to simulation with a given initial displacement,
Kottapalli et al. [14] also simulated the rod without a given initial displacement, but with a pressure fluctua-
tion model to provide the excitation. This was done at 10 m/s as well.

Finally, Nazari et al. [17] simulated the experiment with a partitioned approach, using both URANS and
LES for the calculations of the fluid domain. The fluid domain was modelled with the k −ω SST turbulence
model for the URANS case, a finite element solver was used to solve the structural domain, it is not clear what
coupling method was used. In the case of the LES simulation, the Dynamic Smagorinsky-Lilly model is used
to model the sub-grid stress tensor.

7.2. Current Simulation Set-up
The current configuration is quite similar to the previous cases. The geometry is kept the same, and again a
turbulence intensity of 5% and a turbulent length scale of 0.1 cm are assumed. De Ridder et al. [16] found that
these quantities did not have a large effect on the results [16] for URANS simulations. From preliminary tests,
this was confirmed. The flow is fully developed for the majority (roughly 90%) of the domain, and here the
kinetic energy profiles are independent of the inlet conditions. This also holds for the pressure fluctuations, in
the developed flow region, they are shown to be independent of the kinetic energy at the inlet. Only near the
inlet is a variation noticeable; however, the impact of this region on the structural vibration is hypothesized
to be considerably less than the developed flow region of the domain.

Several authors [14, 16, 17] have simulated the case with a uniform inlet velocity, and in the current setup
this is also the case. This set-up has been chosen in order to match previous simulations. However, from the
original article of Chen & Wambsganns [15], it is not clear how accurate this assumption is. The flow enters
the test-section through a V-shaped channel, but it is not clear what the effect of this is on the uniformity
of the flow at the inlet. In section 7.3, the possible effect of this assumption on the quantities of interest is
investigated.

The outer steel cylinder is kept rigid, whereas the inner brass beam is modelled as a moving wall. The
brass beam is clamped at both ends, and it is assumed that the beam can be modelled with a linear elastic
solver. For this, the relative displacements must be Ar ms

L << 1, which can be found to be true based on the
displacement values from the experiment of Chen & Wambsganss [15].

For the CFD side, URANS is used with the k −ω SST model. Contrary to previous simulations, these
simulations are resolved up to the wall, which means that finer grids are necessary. An example of a mesh is
shown in fig. 7.2, along with the used axis convention. Several fluid meshes are used to compare the results
to the experiment and the simulations from previous papers. In these meshes, the axial and radial elements



7.3. Results of the URANS FSI Simulation 79

are varied to study its effects. The discretization in the tangential direction is fixed to 40 cells, which was
found to be sufficient from a preliminary mesh study of pure CFD calculations. For the structural mesh,
quadratic elements are used. From a preliminary mesh study, documented in appendix A.2, it was found that
the results were converged for a structural mesh that has 25 elements in the x-y plane, and 50 elements in the
axial direction. For both the solid and the fluid models, a second-order time scheme is used.

Figure 7.2: Discretized geometry of the brass beam case, representing the experiment of Chen & Wambsganss [15].

Due to the small density ratio, an implicit coupling scheme is used, namely IQN-ILS. In regard to mapping,
local radial basis functions are used. These are used because due to the quadratic elements, the structural
mesh in the axial direction is quite coarse, thus a higher-order mapping method is necessary. It was found
that global radial basis function take too much computational effort for fluid grids with more than 32,000
interface faces, thus local radial basis functions are used. It was found that by using a support radius that
encapsulates 5 elements of both the fluid and the structural mesh, the difference in FSI results is negligible in
comparison to global radial basis functions, while severely reducing the computational costs.

An FSI calculation is done with a purely URANS approach for an inlet velocity of 10 m/s. This calculation
serves as validation of the set-up with respect to the results from previous papers. For this calculation, the
brass beam is subjected to an initial distributed force for 0.015 s. This is the excitation mechanism, because
without pressure fluctuations, the rod would not vibrate.

Next to this, FSI calculations are done with a URANS + aniPFM approach. These calculations are done for
10, 15 and 20 m/s, with several meshes, as well as several aniPFM settings. For these simulations, 256 modes
are used, with a maximum wave length equal to the spacing between the brass beam and the surrounding
steel cylinder. Pure convection is used as time correlation in the initial grid study, however other time corre-
lation methods are also investigated. Similarly, the cubic-root cut-off method is used, but the method of Shur
et al. [9] is also investigated. For the pressure fluctuations, eq. (5.28) is used as boundary condition for the
in- and outlet. The velocity fluctuations are mapped to the inlet, and they have a zero gradient outlet condi-
tion. Finally, the Wilcox correction is also used. These settings are summarized again for all fluid-structure
interaction simulation in section 7.5.

7.3. Results of the URANS FSI Simulation
As mentioned in section 7.2, the URANS FSI simulation only serves to verify that the FSI set-up, i.e., the map-
ping method, the structural mesh and boundary conditions, and the coupling algorithm, are correct. This
is done by verifying that the FSI simulation can accurately predict the fundamental natural frequency. For
this reason, the simulation is done solely for the case with a mean inflow velocity of 10 m/s. However, it was
noticed that in previous articles, solely a wall-modelled approach was taken. In this thesis, a wall-resolved
method was chosen. As it was expected that this could influence the results, a wall-modelled simulation was
also performed in order to compare the results. Since in this section, it is purely about verifying the FSI set-
up, only simulations with a similar set-up are compared. For example, the LES results of Nazari et al. [17] are
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not compared in this section.
Due to the long legacy of the original paper of Chen & Wambsganss [15], articles often retrieve the experi-

mental results indirectly, instead of through the original article. This is because the original article only exists
online in less than ideal conditions. This has caused some discrepancies in the results over time, and for this
reason, the original experimental results are retrieved from Chen & Wambsganss [15], and the figures for this
particular case have been digitized.

The behaviour of an oscillating beam is known, and it can be represented with an exponentially damped
sinusoid. In order to retrieve the natural frequency and the damping ratio, the displacements obtained from
the FSI simulation are fitted to the function eq. (7.1). Here the natural frequency and the damping ratio
can be obtained from eq. (7.2) and eq. (7.3), respectively. The displacement of the centre of the brass beam
at z = 0.595m for the wall-resolved simulations is shown in fig. 7.3. As can be seen, it indeed follows the
exponentially damped sinusoid shape. The function shows to be a great fit, with the largest relative standard
deviation of any fitting parameter being 0.044%.

D(t ) = y(t ) = A ·e−λt ·cos(ωt −φ)+ψ (7.1)

f = ω

2π
(7.2) ζ= λp

λ2 +ω2
(7.3)

Figure 7.3: The displacement of the wall-resolved FSI simulation, at mid-beam, for 0.5 s of simulated time.

In fig. 7.4a, the fundamental natural frequency is compared with the experiment of Chen & Wambsganss
[15], as well as other simulations taken from literature. Note that the non-pre-stressed data is taken from
De Ridder et al. [16], in order to ensure a fair comparison. Furthermore, the experimental data from Chen
& Wambsganss [15] is denoted by the dots, whereas the line shows the theoretical results. Note that the
experimental data goes no further than 24 m/s for the frequencies, this is due to the fact that this data could
not be retrieved from the original paper, due to the available quality. For other quantities however, there is
data available up to 30 m/s. As can be seen from fig. 7.4a, the frequency is a close match to the experiments
and the other simulations. There is an error of 5.7% w.r.t. the analytical value, and an error of 5.4% w.r.t. the
closest experimental value. The results are comparable to other published results, within the error range of
3.6%-7.1% of the previous results. Furthermore, from an independent check, it was found that the results of
Nazari et al. for a flow velocity of 10 m/s were closer to f = 26.3H z than the reported f = 26.9H z, based on
the published displacement figure.

In fig. 7.4b, the computed damping ratio is compared to the experiment of Chen & Wambsganss [15], as
well as other simulations taken from literature. It was found that the results are similar to those of Kottapalli
et al. [14], but it shows a large error with respect to the experiment of Chen & Wambsganss. It shows that the
damping is overestimated by 28.6%. The same error was found for Kottapalli et al. [14].

As mentioned in section 7.2, a uniform inlet velocity was used as boundary condition, similar to other
simulations replicating this experiment. There is however some uncertainty with how uniform the velocity
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was in the experiment at the inlet of the test-section. It is likely that the inlet velocity was non-uniform, with a
distribution profile inbetween a uniform and a fully developed profile. To quantify how much of an influence
this could have on the natural frequency and damping ratio, the same simulation was done with the flow
fully developed at the inlet. This gave a 0.045% difference in the natural frequency, compared to a uniform
velocity inlet. However, it also gave a 2.92% reduction in the damping ratio, which is a significant discrepancy.
In reality, the flow is onlikely to be fully developed at the inlet, thus the actual difference w.r.t. the experiment
lies inbetween the two presented extremes. Thus, this does not fully explain the discrepancy between the
currently performed simulations and the experiment.

The damping ratio found by De Ridder et al. is much closer to the experiment. A possible explanation
for this is the used software packages for the FSI simulations. While De Ridder et al. used ANSYS for the
fluid domain and Abaqus for the structural domain, the current simulations are done with OpenFOAM for
the fluid domain and Deal.II for the structural domain. Kottapalli et al. saw a similar discrepancy in the
damping ratio, and used the same software packages as the current simulations. Furthermore, Chouchoulis
found that OpenFOAM coupled to Deal.ii also gave overprediction in damping ratios with respect to the same
simulations performed in Star-CCM+[45]. From this, it seems that there is an inherent overprediction in
damping when coupling OpenFOAM with Deal.ii through preCICE.

Thus, while the values for both the frequency and the damping ratio are consistent with results from other
simulations taken from literature, it shows that there is a clear deficiency in the prediction of the damping ra-
tio. The mesh dependency and time step dependency were investigated. It was found that both wall modelled
and wall resolved approaches gave a similar frequency and damping ratio, and the given results were inde-
pendent of mesh fineness and time step size, this is documented in appendix A.2. The final used mesh had
a resolution of 50x40x400, with y+ ≈ 1.1 at the wall. Here, the mesh directions are stated in the Radial by
Azimuthal by Axial convention. This means that there is a fundamental error, either due to URANS, or due
to slight differences with respect to the experimental set-up. This error in the damping ratio can have a large
effect on the subsequent simulations.

(a) Natural frequency. (b) Damping ratio.

Figure 7.4: The calculated frequencies and damping ratios of the current work, compared to various simulations as well as experimental
results. [14–17]

7.4. Results of the Pure AniPFM Simulation
Before simulating the fluid-structure interaction of the brass beam with the AniPFM, the brass beam is first
simulated as a rigid structure. This is done to investigate the results of the AniPFM at higher Reynolds num-
bers than the channel flow simulations. The simulation is done with a mesh of 50x40x400. Due to its symme-
try, the statistical results are axisymmetric. The profiles shown in subsequent figures are taken at mid-beam,
and start at the inner wall, and end at the outer cylindrical wall. The width of the channel between the inner
and outer wall is equal to 6.35 mm.

In fig. 7.5 the resolved Reynolds stresses are plotted versus the input Reynolds stresses. Note that the
Wilcox correction is used. As can be seen, the Reynolds stress are far from fully resolved, this is due to the fact
that grid size requirements for fully resolving the smallest length scales increase dramatically with increasing
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Reynolds number. In fig. 7.6, the resolved turbulent kinetic energy is shown. At mid-channel, the energy is
resolved up to roughly 65%, but the resolved energy goes down quickly towards the wall. The percentage of
resolved energy near the wall is slightly lower than that of the coarsest channel flow mesh.

Figure 7.5: The URANS Reynolds stresses versus the AniPFM
Reynolds stresses.

Figure 7.6: The ratio of resolved turbulent kinetic energy by the
AniPFM.

A cut-out of the fluid domain at mid-beam is shown in fig. 7.7, presenting the root-mean-squared pressure
fluctuations. It shows that the solution indeed converges to a symmetric steady-state result, similar to the
channel flow. It also shows a similar pattern, with higher RMS pressure fluctuations near the walls than in
the middle of the channel. The frequency spectrum of the pressure fluctuations at the inner wall is shown in
fig. 7.8, where it is overlaid on the LES results from De Ridder [18]. The lower frequencies are of interest for
the fluid-structure interaction simulations, as the natural frequency of the beam is with 27.9 Hz at the lower
end of the spectrum.

Compared to the LES results, the pressure fluctuations at the lower frequencies seem to be overestimated.
Furthermore, the AniPFM spectrum is not able to capture the increase that is shown in the LES results near the
higher frequencies. However, such a peak was also not witnessed in experiments [18]. The pressure spectrum
does agree nicely with the empirical spectrum of Wilson, which was based on experimental data of a similar
set-up [129]. Furthermore, the spectrum shows lower values in comparison to the emperical spectrum of
Chen & Wambsganns, which indicates that the RMS amplitude values predicted by the AniPFM will likely be
lower than the values predicted by the analytical model of Chen & Wambsganns.

Figure 7.7: A cut-out of the fluid domain showing the
root-mean-squared pressure fluctuations.

Figure 7.8: The frequency spectrum of the pressure fluctuations at
the inner wall overlaid on the results of De Ridder [18], converted

from the Strouhal number to frequency.
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7.5. Results of the AniPFM FSI Simulation
From the previous results, it was found that the general FSI set-up is in line with previously published articles,
and thus that the AniPFM could be added to this set-up. In this section, the results of the FSI simulations that
have been done with the AniPFM are discussed. First, the effect of the different cut-off lengths are discussed,
along with the effect of the different time correlation methods. After this, the mesh dependency is investi-
gated. These simulations are only done at 10 m/s. Finally, the best set-up is chosen, which is applied to the
15 and 20 m/s testcases. A summary of the different AniPFM settings for all simulations of this section are
shown in table 7.1. For all simulations, the k −ω SST model is used.

Table 7.1: The used AniPFM options for the various fluid-structure interaction simulations.

Mean Flow Velocity Subsection Nr. of modes Time Correlation Method Cut-off Method Wilcox Correction

10 m/s
section 7.5.3 256 Pure Convection Cubic-root used
section 7.5.1 256 Pure Convection Both methods used
section 7.5.2 256 Pure Convection, C&EC and RC&EC Shur et al. used

15 m/s section 7.5.4 256 Pure Convection Shur et al. used
20 m/s section 7.5.4 256 Pure Convection Shur et al. used

7.5.1. Effect of Cut-Off Length Method
In section 6.2.5, it was shown that a different choice for the determination of the cut-off length, had a large
influence on the root-mean-squared pressure fluctuations. The cubic-root-volume method gave a larger es-
timate, whereas the method by Shur et al. [9], gave a lower estimate. However, from the initial tests, it was not
clear which cut-off length was the most suitable. For this reason, both methods are tested and compared to
each other. For these cases, a pure uniform convection is used as time correlation, and a mesh of 50x40x200
is used for the simulations. This mesh in the radial direction was chosen because it was seen that a reso-
lution of y+ = 1 was needed at the wall, which is further elaborated upon in section 7.5.3. The mesh in the
axial direction was chosen because this problem size still allowed fast simulation times, which gave a smaller
uncertainty range in the obtained results.

The simulations for both methods are run for 8 seconds of simulated time, which is equivalent to roughly
70 flow-through times, and more than 200 fundamental periods based on the natural frequency. From these
simulations, the results are processed, and various properties are calculated. In particular, attention is paid
to the displacements of the centre of the beam, which is located at x = 0, y = 0, z = 0.595 m. Next to this, the
pressure fluctuations on the wall at the middle of the beam are also evaluated. In fig. 7.9a and fig. 7.9b the
pressure fluctuations at the wall are shown for the simulations with the different cut-off methods. Note that

the specific pressure fluctuations are displayed, i.e., p ′
ρ . As can be seen, the pressure fluctuations for both

cases look quite similar, however, the pressure fluctuations with Shur et al.’s cut-off length is slightly smaller.
This is better evaluated by comparing the RMS pressure fluctuations. For the cubic root method, p ′

r ms = 0.61
[m2/s2], whereas Shur et al.’s method gives p ′

r ms = 0.52 [m2/s2], which is a difference of 14.8%. This is in
accordance with earlier obtained results from section 6.2.5. Both methods show a moving average that is
close to zero, indicating that the requirement of p̄ ′ = 0 is correctly enforced.

In fig. 7.10a the displacements in y-direction are shown for 0.5s of simulation time with the different cut-
off methods. The different frequency modes of the brass beam can already be recognized. Furthermore, from
this short period it is already hinted that the cubic-root cut-off method gives higher displacements. This is
more clear from fig. 7.10b, where the amplitude-frequency spectrum is shown for both cut-off methods, over
the whole simulated time. Here it can be seen that the cubic-root cut-off method produces higher amplitudes
than the method of Shur et al. [9]. Apart from this, both methods predict the natural frequency at 25.9 Hz,
which is similar to the results obtained from the pure URANS FSI simulation. Furthermore, it can be seen that
the higher modes f2 and f4 are correctly predicted as well, which should be at f2 = 5.40 f0 and f4 = 13.34 f0

[130]. The odd-numbered modes do not appear in the amplitude spectrum, as the data is taken exactly at
the centre of the beam. For odd-numbered modes, the centre of the beam is exactly at a node, meaning that
these modes can not be captured.

In order to quantitatively compare the different methods, the root-mean-squared displacements are cal-
culated. These are calculated over the full 8 seconds of simulation time. In order to assess how the root-mean-
squared displacements vary in time, its standard deviation is calculated during the last 20 flow-through times
of simulation time. From this, an uncertainty range is given that encloses a confidence interval of 95%.

It was found that the simulation with the cubic-root volume cut-off method gave an RMS amplitude of
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(a) Cubic-root-volume cut-off method. (b) Cut-off method from Shur et al. [9]

Figure 7.9: The sampled specific pressure fluctuations at mid-beam for the FSI simulations with different cut-off methods, for the initial
4 seconds. The orange line indicates the moving average.

(a) Displacement in y-direction for 0.5s of simulation time. (b) Amplitude spectrum from the full 8s of simulation time.

Figure 7.10: The amplitude in the temporal and frequency domain, for different cut-off length definitions.

1.09e −5 [m] ±7.98%, whereas the simulation with the cut-off method taken by Shur et al. gave an RMS am-
plitude of 7.80e −6 [m] ±6.42%. Interestingly, there is indeed a difference between the two methods. In this
particular case, the difference might be this big due to the extreme difference between the fineness of the
mesh in the wall-normal and streamwise directions. The cut-off filter of Shur et al. is not very influenced
by this, as it bases the cut-off length on the maximum of the characteristic cell lengths. The cubic-root vol-
ume method is very sensitive to the wall normal direction, which causes this large discrepancy. From these
results, it seems that the cubic-root volume method overpredicts the amount of energy that can actually be
resolved by the mesh, and thus in turn overpredicts the root-mean-square pressure fluctuations as well as
the amplitude. From this point on, the cut-off filter of Shur et al. will be used for subsequent simulations.
It also became clear that a very large time frame is necessary to accurately assess the RMS amplitude. For
example, it was found that after 4 seconds of simulation time, the RMS amplitudes were very different, with
values of 6.74e−6 [m] and 6.09e−6 [m] for the cubic-root and Shur et al.’s method, respectively. In particular,
the cubic-root method shows a much larger difference, which is also reflected in the final confidence interval.
This is another reason why the cut-off filter of Shur et al. seems to be more favourable than the cubic-root
method.

7.5.2. Effect of Time Correlation Method
In section 6.2.7, a preliminary investigation was done on the effects of the time correlation method for the
modelling of the velocity fluctuations. It was found that there were slight differences in terms of p ′

r ms , as well
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as in the frequency spectra of the pressure fluctuations. In this subsection, the investigation is elaborated by
comparing the different time correlation methods in fluid-structure interaction simulations.

The comparison was done again at a mean flow velocity of 10 m/s. The method of convection & exponen-
tial correlation, as well as its rescaled version were compared to the pure convection method. Interestingly,
the convection & exponential correlation method showed results very close to the pure convection method.
However, the rescaled method showed an overestimation compared to the other methods. For the pure con-
vection case, the simulation gave a root-mean-square amplitude of Ar ms = 7.80 µm ±6.42%. In comparison,
the convection & exponential correlation method gave Ar ms = 7.64 µm ±2.50% and its rescaled version sim-
ulated a root-mean-square amplitude of Ar ms = 9.33 µm ±2.59%.

The difference between the C&EC and the RC&EC method is mainly due to the coarseness of the mesh
that is used. In section 6.2.7, the different methods were compared with a fine mesh, as it had to be able
to resolve a relatively high amount of turbulent kinetic energy of the flow. In the current case, a relatively
coarser mesh is used. In this situation, the rescaling method is not effective. This is due to the fact that
the velocity fluctuations are rescaled with the total lost energy, but the amount of lost energy varies over the
domain. In turn, this causes a redistribution of kinetic energy along the wall-normal direction. The same
phenomenon was also found in section 6.2.7, however, with a finer mesh this was less pronounced, as less
diffusion occurred.

While the RC&EC method showed higher amplitudes, it was able to correctly predict the modal frequen-
cies. This is shown in fig. 7.11, The three spectra almost overlap perfectly. The main difference can be found
at the natural frequency, predicted to be at 25.9 Hz. Here, the RC&EC method shows a higher peak than both
the convection & exponential correlation method, and the pure convection method.

Figure 7.11: The amplitude spectra for the various time correlation methods.

From the results, it seems that the use of the C&EC method or the pure convection method have no dif-
ferentiable effect on the eventual root-mean-squared amplitude. The different methods could however have
an effect on the confidence intervals of the results. From section 6.2.3 it was found that the pure convection
method has larger confidence intervals due to the fact that fewer random numbers are used. For the sim-
ulated channel flow, it was found that the pure convection method gave a confidence interval for the RMS
pressure fluctuations of ±2.68% vs ±0.24% for the C&EC method. However, these confidence intervals are
in the similar order of the confidence intervals introduced by the variation in the RMS amplitude over time.
Thus, it was hypothesized that this would not have a large influence on the results.

Another element to consider is the computational resource requirements. The C&EC method needs to
solve for three extra equations, as it solves the advection equation numerically, thus making it more compu-
tationally expensive. Next to this, it was found that the C&EC method had stricter Courant number restric-
tions, which meant that it needed a smaller timestep than the pure convection method. For this reason, the



86 7. Flexible Brass Beam in Turbulent Water

pure convection method was used in subsequent simulations.
In fig. 7.12, the amplitude spectrum and pressure spectrum, both sampled at the inner wall mid-beam, of

the simulation with the pure convection method are shown together. The pressure spectrum is very similar
as the one shown in fig. 7.8. From fig. 7.12, it becomes clear that espescially the lower frequencies must be
resolved accurately. From the various simulations done, it was found that the RMS amplitude consists for
97% out of the frequencies up to and including the natural frequency. Up to f2, 99.7% of the RMS amplitude
is accounted for. To resolve the lower frequencies accurately, the simulation time must be sufficiently long.
From experiments, it was found that for lower Strouhal numbers (St < 2.5), the pressure fluctuation spectrum
is relatively level [129]. Thus, next to looking at the variance in the RMS amplitude, one should also look at the
pressure spectrum to determine if the simulation is converged. This is qualitatively determined by judging
how "flat" the pressure fluctuation spectrum at the lower frequencies is. If there are large bumps or valleys at
frequencies in the region upto f2, the simulation is not fully converged yet, and the simulation should be run
further untill these bumps and valleys flatten out.

Figure 7.12: The amplitude and pressure fluctuation spectra, overlapped, for the pure convection method.

7.5.3. Effect of Mesh Size & Initial Randomness
Mesh dependency studies are a given in any study that focusses on CFD. With RANS simulations, the mesh
dependency is mostly related to the discretization of the governing equations. However, with simulations
done with the AniPFM, the amount of energy that is resolved also depends on the fineness of the mesh.
There is no sub-grid model that models the effect of the unresolved velocity fluctuations on the pressure
fluctuations. Thus, as found in section 6.2.4, the statistics of the pressure fluctuations only converge if a large
part of the velocity fluctuations is resolved. However, the goal of the AniPFM is to provide a computationally
less expensive method than LES that can be used for FSI simulations, thus it is not possible to resolve the bulk
of the velocity fluctuations. Since the root-mean squared amplitude is the quantity of interest, this quantity
is evaluated for several meshes. In addition to this, the effect of the initialization of the random numbers is
evaluated by using two different seed numbers for the same mesh.

The mesh study is done on a limited amount of meshes, and the azimuthal mesh fineness is kept constant.
This is done because the azimuthal direction already required a high level of fineness in order to accurately
discretize the geometry of the beam. Even for the highest refinement level in the axial direction, the cell size
in azimuthal direction is smaller than in the axial direction. For the axial direction, three steps are taken, with
meshes of 200, 300 and 400 axial elements. For the radial direction, two meshes are used, one with y+ = 1.05,
and one with y+ = 2.08. These meshes have 50 and 40 radial elements respectively, and they both have 200
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axial elements. The reason for this is to see how close to the wall the fluid needs to be resolved. For the mesh
with 300 axial elements, a second simulation is done with a different seed number for the random number
generator. The time step of all simulations is limited by the Courant number set at 0.8. This gives roughly 100-
200 time steps per fundamental period, depending on the axial resolution. Only for the fluid domain a mesh
study is done, as for the structural domain it was already found in section 7.3 that the structural mesh was
converged with 50 axial quadratic elements. The results of the mesh study are shown in fig. 7.13. The mesh
size is shown on the x-axis. The error bars represent the 95% confidence interval of the RMS amplitudes over
the last 20 flow-through times.

Figure 7.13: The RMS amplitudes of the coupled AniPFM FSI simulations for various meshes and random seed numbers.

The mesh with y+ ≈ 2 shows a considerable lower RMS amplitude than the equivalent mesh with y+ ≈ 1,
indicating the necessity to accurately resolve the flow up to the wall with y+ = 1. For the finer meshes with
y+ ≈ 1, it can be seen that the results are in the same ballpark with several overlapping confidence intervals,
but still show significant differences between the meshes. Furthermore, the simulations with the same mesh
but different random numbers show a significant difference in the RMS amplitude as well. This difference is
much larger than what was estimated based on the turbulent channel flow results. This suggests that although
in all meshes the essential scales are resolved, there is a large uncertainty when tweaking the mesh. Note that
part of this uncertainty could be due to the simulation time not being long enough. In section 7.5.1, results
varied massively for a simulation time of 4 seconds versus 8 seconds. This indicates the necessity to perform
simulations with a long simulated time.

7.5.4. Comparison with Experiment
The investigation into the influence of AniPFM parameters and the mesh has given confidence in the choice
of set-up and the mesh size. In this section, the RMS amplitudes are compared to those of the experiment by
Chen & Wambsganss, in order to investigate the accuracy of the AniPFM. Simulations were performed at 10,
15, and 20 m/s. The final set-up of the 10 m/s simulation was used for tests at 15 and 20 m/s. Note that not
the same mesh is used in each simulation, but an equivalent mesh such that y+ = 1 for all simulations.

The results for the various flow velocities are shown in fig. 7.14. Here, again the dots indicate the exper-
imental values of Chen & Wambsganss, whereas the line indicates the values calculated by their analytical
model. The error bars again note the 95% confidence interval over the last 20 flow-through times. The results
of the simulations with different seed numbers are shown at 10 m/s. Although the effect of different seed
numbers was not tested for higher velocities, the results at 10 m/s should give an indication of the uncer-
tainty that higher flow velocities would experience as well. Note that the results of Nazari et al. [17] are not
included, as they are one order of magnitude larger than all other data points.

Most of the comparison material is available at 10 m/s. Here, it can be seen that there is a wide spread
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in the results of the different methods. The AniPFM shows a clear overestimation of the RMS amplitude,
whereas the results of Kottapalli et al. and De Ridder show an underestimation. Note that the simulation
performed by De Ridder is a pure LES simulation, not an FSI simulation. The RMS amplitude was obtained
using the force frequency spectrum as input of the theoretical model of Chen & Wambsganns. The results of
Kottapalli et al. are obtained with a URANS FSI methodology combined with a pressure fluctuation model,
similar to the method presented in this thesis.

Figure 7.14: The RMS vibration amplitudes of the brass beam of the current work, compared to various simulations as well as
experimental results. [14, 15, 18]

From channel flow simulations, it was expected that the AniPFM would overpredict the RMS amplitude, as
the AniPFM showed an overestimation of the RMS pressure fluctuations as well, which is positively correlated
with the RMS amplitude in FSI simulations. The results of Kottapalli et al. confirms this. Their proposed pres-
sure fluctuation model showed an underestimation in the pressure fluctuations, and this is also translated to
the RMS amplitude. However, in the channel flow simulation, the pressure fluctuations were not as overpre-
dicted as the amplitudes in the FSI simulation. One possible explanation for this is that the Reynolds number
of the brass beam in axial flow is an order of magnitude larger than the Reynolds number of the channel flow.
It could be that the pressure fluctuations are further overestimated at higher Reynolds numbers. However,
from fig. 7.8 it was found that while the AniPFM showed higher pressure fluctuations than the LES of De Rid-
der, the lower frequencies were in great agreement with established experimental results. From this, it seems
more likely that the overestimation is partly due to the differences in modal properties of the FSI simulations
versus the experiment.

While the theoretical model of Chen & Wambsganns shows a large discrepancy with the experimental re-
sults in fig. 7.14, in other performed experiments it showed good agreement at higher flow velocities. The
reason for the large discrepancy in the shown experiment is that a pressure-spectrum of a beam with a differ-
ent hydraulic diameter is used as input for the model. Due to its relatively good agreement with experiments
given the correct input, it would be very interesting to see the predicted RMS amplitude of Chen & Wambs-
ganns theoretical model with the input taken from the AniPFM. This would isolate the error of the AniPFM,
which could then be compared to the LES results of De Ridder.

At 10 m/s, the AniPFM shows an error of 27-60% depending on the time correlation method, seed ini-
tialization and mesh size. This is a large range, and it is hypothesized that this is mainly due to the pure
convection method for time correlation. This showed a larger than expected uncertainty range due to its use
of a small set of random numbers. The convection & exponential correlation method should show a smaller
uncertainty in this regard, as it uses new random numbers at every timestep. For this reason, it is recom-
mended that for future use, the convection & exponential correlation method is used in FSI simulations, at
the cost of higher computational requirements.
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In comparison, the result obtained by De Ridder shows an error of 38.3% w.r.t. the closest experimental
value. This is in the same order of magnitude as the AniPFM method, but it requires much more computa-
tional resources. Compared to the results of the PFM of Kottapalli et al., the new method also gives results
closer to that of the experiment.

The AniPFM FSI simulations show similar results at higher velocities. However, the closest result w.r.t. the
experiment is found at a mean flow of 15 m/s. A RMS amplitude of 8.26e−6 µm ±3.62% is found, whereas the
experiment gives a value of 7.0e −6 µm. This gives an error of 18.0±3.62%. At a mean flow of 20 m/s, a RMS
amplitude of 1.32e −5 µm ±3.24% was found, the experiment showed a RMS amplitude of 8.6e −6 µm. This
level of overestimation is similar to that at 10 m/s. Note that, for these velocities, no simulations have been
done to quantify the effect of different initializations for the random numbers used. For greater confidence
in the results, the simulations should also be performed with C&EC as time correlation method, and/or with
more wavenumber modes.

In conclusion, the use of the proposed AniPFM has shown an improvement in the prediction of the root-
mean-squared amplitude, compared to the previous pressure fluctuation model proposed by Kottapalli et al.
[14]. Although the AniPFM showed a similar error w.r.t. the RMS amplitude as the large-eddy simulation of
De Ridder at 10 m/s, due to lack of data at other mean flow velocities, no conclusions can be made about
the general accuracy of the AniPFM versus large-eddy simulations. The main drawback of the AniPFM at this
moment is the discrepancy between simulations with different mesh sizes and random number initialization.
This could be reduced by using the convection & exponential correlation method for time correlation. Mesh
and seed sensitivity studies must be done for this time correlation method to confirm that it indeed reduces
the size of the confidence interval. The AniPFM shows a better agreement with respect to the experimental
values at high mean flow velocities, but other testcases must be simulated to further validate the use of the
AniPFM.

7.5.5. Computational Resources

In section 6.2.8, the distribution of the computational resources was investigated for the turbulent channel
flow case. While the initial results seemed promising, it was not possible to extrapolate this to FSI simulations,
as the URANS calculations for the channel flow were relatively fast due to the fact that the simulation was
already converged to a steady state. The fluid solver takes the last timestep as initial guess for the current
timestep, thus in a steady solution, the solver will need very few iterations to converge. In FSI, the solution
changes dynamically, which means that the URANS solver will likely take longer per timestep.

For this reason, the distribution of computational resources was again evaluated, but this time for the FSI
simulation. This was done with a 50x40x400 mesh, with the settings of the AniPFM as discussed in section 7.2.
Since the runtime is the important metric, the computational resources are evaluated by looking at the total
run time of each component of the FSI simulation. Due to the use of the IQN-ILS coupling scheme, it was
possible for the fluid solver and the structural solver to be coupled in parallel, i.e., both solvers were comput-
ing a timestep at the same time, instead of sequentially. Due to the domain decomposition, the fluid solver
took slightly longer than the structural solver for each iteration. Since they are run in parallel, only the run
time of the fluid solver is of importance, and thus the computational resources of the structural solver are not
included in the comparison. The distribution of run time is shown in fig. 7.15.

As can be seen, the URANS calculations take 49.8% of the total run time, whereas the total AniPFM run-
time is equal to 44.5% of the total run time. Furthermore, communication and mapping between the struc-
tural and fluid solver took roughly 5.7% of the runtime. Thus, the total runtime is roughly doubled by adding
the AniPFM calculations. These results are quite different from the results in section 6.2.8, and they show a
more accurate distribution of an actual FSI simulation.

Thus, to have a decrease in computational time with respect to large-eddy simulations, the mesh must be
at least twice as small. This does not take into account the fact that with finer meshes, the timestep must also
decrease, thus further increasing the computational time. For comparison, De Ridder [18] performed a LES
of the same geometry and inlet conditions. For this, an equivalent mesh of 720 million cells was necessary,
when having the same length-to-diameter ratio as the current case. With the current URANS simulations, the
cell count has been kept below 1 million for even the finest simulations. Thus, it can be concluded that the
AniPFM provides a computationally more efficient method than LES.
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Figure 7.15: The distribution of the computational resources for an FSI case with a 50x40x400 mesh.

7.6. Summary
After the validation and verification of the AniPFM for purely CFD cases, a fluid-structure interaction case
is simulated. Namely, a flexible brass beam in turbulent water. This case is from an experimental set-up of
Chen & Wambsganss [15], and several authors have published simulations with the same set-up. After an
initial verification of the FSI set-up, the AniPFM was used to simulate the pressure fluctuations on the brass
beam. It was confirmed that the cut-off method introduced by Shur et al. showed superior results for the
RMS amplitudes, compared to the cubic-root cut-off method. It was also found that the random number
initialization gives a larger confidence interval for the RMS vibration amplitude than expected. This could be
attributed to the time correlation method utilized in the simulations. Further research needs to be done to
confirm this.

The results were compared to both previous simulations and experimental results. The AniPFM showed a
great improvement compared to the previous pressure-fluctuation model of NRG. Furthermore, it showed a
similar discrepancy with respect to the experiment as a previous large-eddy simulation performed by De Rid-
der [18], although this was not an FSI simulation. More data-points are needed to conclude the effectiveness
of the AniPFM versus LES. The method showed similar results at higher mean flow velocities, which further
demonstrated the validity of the AniPFM. The AniPFM roughly doubles the run-time of a typical URANS sim-
ulation, and it does require the mesh to be wall-resolved. However, compared to a full LES FSI simulation,
the run-time is still greatly reduced with more than an order of magnitude, while still showing results in the
same order of magnitude as the experiment.
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Conclusion & Recommendation

In previous chapters, all relevant theory and performed numerical simulations were elaborated upon. In this
chapter, the findings from the thesis are concluded, and the research objectives that were discussed in the
introductory chapter are reflected upon. Next to this, recommendations are given for further research. This
includes recommendations on the improvement of the AniPFM and the NRG-FSIFOAM framework, as well
as recommendations on possible extra test cases to further validate the model.

8.1. Conclusion
Turbulence-Induced Vibrations (TIV) on nuclear fuel rods subjected to a coolant with axial flow have a large
impact on nuclear safety and the lifetime of fuel rods. The vibrations induced by turbulence create small
but significant vibration amplitudes in the case of axial flow. These vibrations in turn cause structural ef-
fects such as fatigue problems, fretting wear, and stress corrosion cracking. This gives a good motivation
for studying and being able to predict the effects of TIV, and it has been studied extensively by the use of
experiments, where prediction methods have been made based on semi-empirical relations. As these semi-
empirical methods have not shown the desired accuracy, and it is not possible to use them for more com-
plex configurations, using FSI simulations are a more suitable replacement. While DNS and LES can predict
pressure fluctuations, these simulations are typically too expensive for industrial applications. Instead, NRG
has developed a numerical framework for the simulations of flow-induced vibrations, called NRG-FSIFOAM.
NRG-FSIFOAM uses a URANS approach coupled with a Pressure Fluctuation Model (PFM), to capture the
effect of pressure fluctuations caused by turbulence. While this PFM showed promising initial results, it uses
several assumptions that could limit its performance. In this thesis, a new pressure fluctuation model is in-
troduced, called AniPFM, which aims to address certain assumptions of the original PFM.

The pressure fluctuations can be computed solely from the mean velocities and the velocity fluctuations,
thus rather than modelling the pressure fluctuations, the velocity fluctuations are modelled. This is also
known as modelling synthetic turbulence. From the Navier-Stokes equations, it was found that the synthetic
turbulence eddies should be approximately convected by the local mean flow velocity. The energy spectrum
must be accurately approximated, as it determines the amount of energy the different scales have, and it
implicitly determines the spatial correlations between the velocity fluctuations. In order to accurately por-
tray the energy spectrum, the Reynolds stress tensor must be replicated, as it directly influences the size and
skewness of the energy spectrum. Lastly, due to the production and dissipation of turbulence, velocity fluc-
tuations show a decorrelation in time. Thus, next to convection, this decorrelation must also be modelled.
The new model that follows these principles is called the AniPFM.

Even though the old and the new pressure fluctuation model are both based on the Random Flow Gen-
eration method, the AniPFM has several differences with respect to the PFM. With the AniPFM, the velocity
fluctuations are based on the individual Reynolds stresses as opposed to the turbulent kinetic energy. Fur-
thermore, only the resolved velocity fluctuations are modelled. This especially gives a large difference in the
magnitude of the pressure fluctuations, and reduces unphysical correlations between scales near the cut-off
wavenumber. The method for calculating the wavenumber direction has also been adjusted, which previ-
ously was not truly isotropic. Finally, several time correlation methods are available, such as a pure convec-
tion method, as well as a method that models both the convection and the decorrelation due to production
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and dissipation.
To verify and validate the AniPFM, two CFD testcases were performed. From the homogeneous isotropic

turbulence case, it was found that the PFM and the AniPFM gave similar results in terms of the RMS pressure
fluctuations, and the pressure spectrum. However, it was concluded that the peak of the energy spectrum
is better predicted by the AniPFM, as well as the time correlation of the velocity fluctuations. Finally, with
the implementation of the cut-off filter, the non-physical accumulation of energy near the wavenumber was
prevented, granting a more accurate energy and pressure spectrum for the AniPFM. It was expected that both
models gave similar results, as they both should be able to predict isotropic turbulence.

In the second test case, a turbulent channel flow was simulated. Here, distinct differences could be found
between the two models. In particular, the root-mean-squared pressure fluctuations showed a large differ-
ence. It was found that given the correct mean flow characteristics, the AniPFM could correctly estimate the
RMS pressure fluctuations with an error of -4 to 10%, depending on the modelling choices. When using the
k −ω SST model with the Wilcox correction, an additional error of roughly 15% is found. This gave an total
overestimation of 10% or 28%, depending on the chosen cut-off length method. With the previous PFM, the
RMS pressure fluctuations were underestimated by 47%. Several aspects of the AniPFM were evaluated. It
was concluded that the pressure wavenumber spectrum is accurately reconstructed from the AniPFM, with
respect to DNS data. Furthermore, the pressure frequency spectrum is dependent on the chosen time corre-
lation method, but all methods show agreeable behaviour for the lower frequencies. The finite numbers of
wavenumbers also cause an uncertainty in the pressure fluctuations, but this is small in comparison to the
model error and the error induced by URANS input. From these results, it can be concluded that the first
research objective, shown below, was met.

To improve the current pressure fluctuation model, in particular the accuracy of the root-
mean-squared pressure fluctuations and the pressure fluctuation wavenumber spectrum in
the near wall vicinity, by using more realistic assumptions regarding (an)isotropy, the energy
spectrum and time correlation.

Finally, fluid-structure interaction simulations were done of a flexible brass beam in turbulent water.
These simulations replicated the experiment of Chen & Wambsganss. First, simulations were done with-
out the AniPFM, from this it was found that the natural frequency and damping ratio were in accordance
with previously performed simulations, thus verifying the FSI set up. Simulations were done at 10, 15, and 20
m/s, where several meshes and AniPFM settings were tested at 10 m/s. It was found that the coarsest mesh
of 50x40x200 resolved enough energy to be able to predict the vibrations, but it was also concluded that there
is a large uncertainty in results with varying meshes and settings.

From the simulations, best practices could be established for future simulations. It was found that the
cut-off length as proposed by Shur et al. [9] showed superior results to the cubic-root cut-off method, and
thus this method is recommended for further use. The k −ω SST model together with the Wilcox correction
showed the closest results to DNS data. For the mesh, a wall-distance of y+ = 1 is recommended, the mesh in
the other directions is restricted by ensuring an aspect ratio conforming to traditional CFD standards. Finally,
in the performed simulations, pure convection is used as time correlation method. However, for future use,
the convection & exponential correlation is recommended, as this shows a smaller uncertainty w.r.t. the
initialization of the random numbers.

The use of the proposed AniPFM has shown an improvement in the prediction of the root-mean-squared
amplitude, with respect to the previous pressure fluctuation model proposed by Kottapalli et al. While the
AniPFM showed a similar error in the RMS amplitude as the large-eddy simulation of De Ridder at 10 m/s, due
to lack of data at other mean flow velocities, no conclusions can be made about the general accuracy of the
AniPFM versus large-eddy simulations. Furthermore, other testcases must be simulated to further validate
the use of the AniPFM. Next to this, the use of the convection & exponential correlation function and its effect
on the confidence interval must be further researched. The AniPFM showed promising results in predicting
the RMS amplitudes at high mean velocities, as it showed errors of under 20% for the 15 m/s simulation,
and at 20 m/s it showed a similar error as the simulations at 10 m/s. From this, it can be concluded that the
second research objective, shown below, was also successfully met.

To improve the FSI modelling of nuclear fuel rods in axial flow using URANS, in particular the
RMS amplitude and the amplitude frequency spectrum, by utilizing a more accurate pressure
fluctuation model.
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8.2. Recommendations
Over the span of the thesis, many interesting directions are open to follow, but in the end only one direction
can be taken. This leaves a main road with many side paths left unexplored. For this reason, some of these
interesting side paths are noted here, that are worthy of exploration.

With the simulation of the flexible brass beam, several extra steps can be taken to increase the validity of
the results. At the moment, only LES results were available at 10 m/s, which showed an underestimation in
both LES results and AniPFM results, compared to the experiment. It would be interesting to see the differ-
ence in error of the AniPFM and LES at higher velocities. The used LES results were not actual fluid-structure
interaction calculations, but rather were based on an analytical model using LES results. A full large-eddy FSI
simulation would be better comparison material for the results shown in this thesis. Next to this, it would
also be interesting to use the AniPFM with the same analytical model, to compare its results to that of the
LES and the experiment. This would provide a more fair comparison, and it would eliminate the errors intro-
duced by FSI coupling. Finally, it is recommended to further research the use of the convection & exponential
correlation method in FSI simulations, as this could potentially reduce the uncertainty introduced by the ini-
tialization of the random numbers. This uncertainty is regarded as the largest flaw in the current method,
and improving this could further improve the confidence in the obtained results.

It is also recommended to perform simulations of other cases in order to further validate the AniPFM. The
cantilever beam case of Cioncolini et al. [131] would be a good candidate. It is still a simple geometry, but
the structural response is quite different from a clamped-clamped beam, due to its end that is free to vibrate.
From the paper, RMS displacements are available for several flow velocities. Next to this, it is recommended
to perform simulations of rod bundles. The performed simulations of the clamped brass beam were ideal
for the investigation of a new model, due to its simplicity. However, the eventual use case would be for rod
bundles in axial flow, where the flow physics are much more complicated, due to the influence the rods have
on each other. For this reason, it is essential to validate the use of the AniPFM in rod bundle flows.

The AniPFM showed close agreement with DNS and experimental data for the performed testcases, and it is
recommended for future work to put the focus on the further validation of its use in FSI simulations. However,
there are also several points of improvement for the AniPFM, which could be necessary if a more accurate
model is necessary. The recommendations are elaborated in the subsequent paragraphs.

From the thesis it followed that the mesh requirements are dominated by the requirements of the AniPFM.
This causes relatively fine meshes for URANS simulations. For the specific case of the flexible brass beam, this
meant that the timestep size was dominated by maintaining stability for the fluid solver, rather than the ac-
tual physical phenomena. For reference, in the performed simulations, there are roughly 100-200 time steps
per period, depending on the mesh. It would be possible to perform the URANS simulation on a coarser (per-
haps wall-modelled) mesh, while the pressure fluctuations are solved on a finer wall-resolved mesh. Since
the governing equation for the pressure fluctuations does not have a temporal derivative, its stability is not
dependent on the timestep. This would allow for larger time steps and thus much shorter run times. Note that
this would only be possible if the pure convection method is used, as the convection & exponential correla-
tion method solves the convection equation numerically, and then the stability is dependent on the timestep.

As was seen in the performed simulations, the quality, and the refinement of the mesh is integral to getting
good results with the AniPFM. Due to the simple nature of the simulated fluid domains, structured meshes
could be used in all cases. The effects of using unstructured meshes has not been investigated in this thesis,
but it would be interesting to see the results of the AniPFM on geometries where it is not possible to create a
structured mesh.

The AniPFM, like many models, relies on simplifications and assumptions. Some of these assumptions
can have a larger impact than others. One particular assumption is about the governing equation of the pres-
sure fluctuations. The governing equation takes the velocity fluctuations as input. But in reality, only the
resolved velocity fluctuations are inputted, i.e., the ’filtered’ velocity fluctuations. This effect of the unre-
solved turbulence is not accounted for in the current AniPFM, and it was assumed to be negligible. From the
current work it seems that modelling the resolved pressure fluctuations gives a good approximation in the
used testcases, and it seems that the sub-grid fluctuations do not need to be modelled. However, it is recom-
mended to more accurately establish the effects of this assumption, and if necessary to propose a sub-grid
model that can take these effects into account.

Another assumption is that the energy spectrum can be modelled as isotropic, after which it is scaled and
rotated such that it models the anisotropy of the input Reynolds stress tensor. A problem with this method is
that this also means that the cut-off length is a scalar value. This is a crude assumption because mesh cells
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near wall are typically anisotropic, as the wall-normal direction is more refined. Castro et al. [72] proposed
a synthetic turbulence model based on a defined energy spectrum for each principal axis, which allows the
definition of a cut-off length along those axes. It is recommended to investigate how this different method
of modelling the velocity fluctuations affects the pressure fluctuations. Next to this, the length scale that
contains the maximum energy is closely resembled in isotropic turbulence, but near walls the length scale
is underestimated. This could be one of the factors that results in the overestimation of the RMS pressure
fluctuations. It is recommended to evaluate the expression for the length scale, and adjust it such that it more
closely resembles the results of DNS data.

Finally, from the channel flow simulations, it was found that a large part of the error in the RMS pressure
fluctuations was attributed to the error in the URANS input, in particularly the Reynolds stresses. For the ma-
jority of the simulations, the k−ω SST model was used, together with the Wilcox correction. For future work,
it is recommended to implement and use a wall-resolved (Algebraic-Explicit) Reynolds Stress model, such as
the elliptic blending RSM. This model provides a more accurate representation of the Reynolds stresses, while
still being able to resolve the flow up to the wall.
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A
Additional Simulation Results

A.1. Turbulent Channel Flow
In fig. A.1 and fig. A.2, the input energy spectra near and away from the wall are shown, for two methods of
determining the eddy length scale le . As can be seen in fig. A.1a and fig. A.2a, near the wall, both methods
massively overestimate the eddy wavenumber ke , which is the wavenumber containing the highest turbulent
kinetic energy. This is due to the fact that the input spectrum is based on the assumption that the turbulence
is isotropic, whereas the turbulence near the wall is highly anisotropic. This signifies one of the areas in which
the AniPFM can be improved. Looking at y+ = 300, where the turbulence is more isotropic, it can be seen that
in fig. A.1b, the spectrum is greatly approximated. In fig. A.2b, the eddy wavenumber ke is overestimated. For
this reason, the definition of eq. (5.8) is used for the eddy length scale.

Since ke does not seem to vary significantly from y+ = 10 to y+ = 300, it would be possible to implement
le such that it is constant, and equal to the eddy length scale in the bulk of the flow. However, this observation
is made with only two datapoints, and only for this particular geometry. It would first have to be investigated
if this statement holds along the wall-normal direction, if it holds for higher Reynolds numbers, and if it holds
for different geometries as well. For this reason, no such change has been implemented so far. However, this
highlights a possible direction to take if one wants to improve the definition of the eddy length scale.

(a) y+ = 10. (b) y+ = 300.

Figure A.1: The energy wavenumber spectrum with eq. (5.8) defining le , at different y+ positions.

In fig. A.3, the output energy wavenumber spectra for the different options of le are shown at y+ = 10. In
both methods, the spectrum shows a roughly straight line over the resolved wavenumbers. This is due to the
fact that the wavenumber with maximum energy is highly overestimated by both methods, causing a roughly
constant energy distributed over the resolved scales. From the DNS results, le at the wall does not change
significantly from le at mid-channel. This shows that both methods for estimating le do not work accurately
in anisotropic turbulence, and thus it shows a point of improvement for the AniPFM.
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(a) y+ = 10. (b) y+ = 300.

Figure A.2: The energy wavenumber spectrum with eq. (4.41) defining le , at different y+ positions.

(a) le as defined in eq. (5.8) (b) le as defined in eq. (4.41).

Figure A.3: The energy wavenumber spectrum with different definitions for le , at y+ = 10.

A.2. Flexible Brass Beam in Turbulent Water
In table A.1 through table A.4, the results of the various sensitivity studies are shown for the URANS FSI sim-
ulations of the brass beam case. Both the meshes of the structural and fluid domains are investigated, as well
as the effect of the timestep. For all studies, it can be seen that the error reduces both in the natural frequency
as well as in the damping ratio as the mesh/timestep is refined. Furthermore, for all studies, the second finest
simulation is within 0.5% of the finest solution. With these small error margins, the set-up used in section 7.3
can be considered independent of the mesh and timestep.

Table A.1: Mesh study in axial direction for structural domain. Errors are taken w.r.t. the finest mesh

Axial Elements Error in f [%] Error in ζ [%]
50 0.20 0.08
75 0.031 0.11
100 0 0
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Table A.2: Cross-sectional Mesh study for structural domain. Errors are taken w.r.t. the finest mesh

Cross-section Elements Error in f [%] Error in ζ [%]
16 -0.69 1.17
25 -0.29 0.43
36 0 0

Table A.3: Mesh study for fluid domain. Errors are taken w.r.t. the finest mesh. WM denotes wall-modelled, WR denotes wall-resolved.

Mesh Error in f [%] Error in ζ [%]
20x40x100 (WM) 0.058 1.33
50x40x400 (WR) -0.21 0.42
50x40x800 (WR) 0 0

Table A.4: Study on effect of timestep. Errors are taken w.r.t. the finest timestep.

Timestep [s] Error in f [%] Error in ζ [%]
0.002 -1.250 -3.78
0.001 -0.626 -0.216
0.0005 -0.11 -0.437
0.0002 0 0
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