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Abstract

The Ampelmann system is an active motion compensation system that can compensate the vessel motions
in six degrees of freedom. The Ampelmann, together with the attached gangway, makes it possible for people
to transfer between a vessel and offshore structures safely. The Ampelmann system has been designed in the
early stages based on a set of static load cases.

For design and analysis related to fatigue life estimation, system operability and control improvements, it
is necessary to obtain more insights in the structural dynamics of the system. With the earliest system ap-
proaching a lifetime of 10 years, fatigue lifetime is of high importance and forms the main goal of this study.

The main function of the Ampelmann gangway is to serve as a bridge for people transfer between the ship,
where the Ampelmann system is placed on board, and the offshore structure. Ampelann utilize various types
of gangways in the market. This thesis focus primarily on the most widely used gangway (G25), which consist
of a Main Boom and a telescoping T-boom. The transfer deck in which gangway is attached to is assumed
to be rigid. To asses G25 for fatigue, first dynamic behavior under certain loading must be determined. In
general the gangway in operation experiences various load conditions, which have to be taken into account.
However, in this only the load condition under steady wind velocity, base excitation and rotation of the gang-
way under applied torque is considered.

The gangway is modeled as a step or segmented Euler-Bernoulli beam to describe the dynamic characteristic
of the gangway itself. The dynamic characteristics are the mode shape and natural frequency in its vibrating
plane. Since the gangway is a 'U’ shape like beam, the offset of the shear center will cause coupled effect
between bending and torsion in its relevant vibrating plane. A one dimensional Finite Element Beam model
is implemented to determine the structural vibration characteristic and the dynamic behavior under external
loading.

From experimental data the damping ratio was determined and the free vibration decay between the one
dimensional model and experiment was compared. It was found that the period and the static deflection of
the model is slightly higher than experimental data. The dynamic behavior of the gangway under constant
wind velocity was investigated. The results show that for high wind velocity the gangway is highly damped
due to the aerodynamic damping in the model and also appears that bending displacement damped out
faster than the torsional displacement.

Two models were used to describe the dynamics of the gangway under base excitation, the first one being
a sinusoidal model and the second model being a pulse excitation. The sinusoidal model is used to describe
when the Ampelmann system is in non-compensation mode where the base dynamics are dominated by
wave-induced vessel motions, while pulse excitation describes the system in compensation mode where the
dynamics are dominated by the hexapod reaching its work space limits. No coupled motion is expected in
this case since the shear center lies on the vibrating axis. The results in sinusoidal model shows that the steady
state is rapidly reached and less abrupt oscillation is observed when compare to the pulse excitation model.

Vibration of the gangway during operational cycle (Luffing, Slewing and Telescoping) were also investigated
without the wind loads and base excitation and later used to determine the fatigue life of the Ampelmann
system. During telescoping motion of the gangway it was observed that the period of vibration decreases and
increases when the T-boom is retracting and extending respectively. The fatigue life time analysis was done
according to the stress life approach and rainflow cycle counting was used to obtain the number of stress cy-
cles. The results show that the Ampelmann gangway can withstand up to 10° operational cycles. However, it
should be emphasized that during operation external loadings are always present. Thus, the fatigue life time
of the gangway will be lower than the expected number of operational cycles.
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Introduction

1.1. The Ampelmann system

The Ampelmann is an active motion compensation system, which stabilizes the transfer deck and gangway
from the ship motion. The Ampelmann system is designed to enable safe and convenient transfer from ship
to offshore structures by way of the gangway that is attached to the transfer deck. Figure 1.1 gives a repre-
sentation of the Ampelmann system on board a vessel. The active motion compensation system measures

Gangway

Figure 1.1: Ampelmann system.

the vessel motions continuously and stabilize the transfer. This is done by means of calculating the required
length of the cylinders at each time step in order to keep the the transfer deck motionless. By compensating
these motions, people can transfer safely from ship to a fixed offshore structure and vice-versa via a gangway.
The Ampelmann system can be divided into two main systems. These system are the hexapod and the trans-
fer deck with its gangway.

1.1.1. Hexapod

The Stewart platform of the Ampelmann system consist of a base frame, a top frame and the six hydraulic
cylinders connected to the base and top frame, see Figure 1.2. The bottom frame is fixed to the vessel and the
transfer deck rest on top of the top frame. The Stewart platform allows the transfer deck to move relative to
the bottom frame.
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Top Frame

Figure 1.2: Stewart platform.

The control system of the Ampelmann is a Programmable Logic controller, which is responsible for the con-
trol of the Stewart platform. The Octans motion sensor measures the six degree of freedom motions of ship
and sends the data to the Programmable Logic Controller. The Programmable Logic Controller used the
measured data from the Octans to determine the required length of the cylinders during active motion com-
pensation. The cylinder lengths are then sent back to the Programmable Logic Controller. A control loop that
describes the control system in given in Figure 1.3.

HPU Accumulator
Octans PLC Valves Actuators —
Pasition
Sensor

Figure 1.3: Control system loop.[16]

1.1.2. G25 gangway

Personnel accessing offshore structure from a ship from the Ampelmann system G25 Gangway structure con-
sist of a Main Boom and a movable T-boom attached to the transfer deck. To position the gangway to an
offshore structure during operation, the gangway is designed to be able to maneuver in three degrees of free-
dom, see Figure 1.4.
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Telescoping

Slewing

Luffing

Figure 1.4: Gangway Degree of Freedom.

The three degrees of freedom movement of the gangway are:

* Luffing.
Rotation around the horizontal x-axis, allowing the Gangway to ratate upwards or downwards.

* Slewing.
Rotation around vertical z-axis, allowing the Gangway and transfer deck to rotate around its own base.

* Telescoping.
Axial translation of the movable part of the gangway in the horizontal y-axis, allowing the movable part
to be retracted or extended.

1.2. Research objective

Structural design of the Ampelmann Gangway is based on a set of static load cases which have been es-
tablished in an early phase of the development of the product. Being in use for several years, regular re-
assessment of these load cases have been performed. Based on new applications of the stabilized gangways
and the addition of various add-ons, new insights in the dynamics and study of structural phenomena such
as fatigue became essential. One of the subjects which requires elaborate study is the occurrence of vibra-
tions and shock loading in certain situations. Such dynamic loading may occur in different situations during
operations. Examples are abrupt handling of the gangway controls, emergency retraction of the hexapod
cylinders and vibrations resulting from the hydraulic control system.

The general objective in this thesis is directed towards in formulation of a dynamic model and to identify
the fatigue life of the Ampelmann G25 gangway.

1.3. Thesis outline

The thesis outline in accordance to the thesis objective is given in total of six chapters. The first step in
dynamic analysis is to investigate the background information needed to do the analysis and this is done in
Chapter 2. In this chapter a review of the Euler-Bernoulli theory, damping in structure, numerical analysis
and fatigue analysis is given. In Chapter 3 the Ampelmann G25 model is described in both horizontal and
vertical direction. The results of the dynamic characteristics, response to external disturbance and response
to gangway maneuvers are given in Chapter 4. In Chapter 5 one can find the fatigue life estimation of the
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gangway using S-N approach. A comparison between different material damping parameter to the fatigue
life is also shown. Chapter 6 summarizes the conclusion and recommendation of this research.



Theory

This chapter captures the theory behind the progress of this research. A brief discussion of Euler-Bernoulli
beam model is given in Chapter 2.1. In Chapter 2.2 describes a few damping model in structural dynamics.
Chapter 2.3 provides the principle of using numerical analysis. At last in Chapter 2.4 gives the theory behind
fatigue analysis.

2.1. Euler-Bernoulli Beam Model

The Euler-Bernoulli beam theory cover cases for small deflection of beam subjected to lateral loads. The
application restriction for applying the euler beam model are made up from the assumption that during
deformation, plane sections remain plane and normal to the neutral axis.

Consider a free body diagram of an element of a slender beam displayed in figure 2.1, loaded with an external
distributed force f (x,t). The beam consist of a flexural stiffness EI, a cross sectional area A and a mass
density p.

SR

) ElpA i

w(x, 1) M 0

g - ” /\7 M +dM
ANV Ay H—»x +dN
Z, W dx Q + dQ

Figure 2.1: Beam Free body diagram.[12]

The symbol w (x, t) in the figure denotes the displacement in positive z-direction. For small deflection the
relation between strain €, curvature x and the slope ¢ of the deflection of the beam is as follows:

€(2)) = zx
_4a¢
K—d—xd . (2.1)
w(x
(P__ dx



6 2. Theory

The bending moment M(x) and the curvature are related by the stress, o(z) = Ee(z), across its height of the
beam. The expression of the bending moment is

0w
M(x) = fa(z)sz =—-El— (2.2)
0x?
By applying Newton’s second law in the z-direction the equilibrium of forces is as follows:
0’ w
dQ+fdx:pAde (2.3)

Note that Equation 2.4, the shear forces Q and Q + dQ are considered to be directly vertical to each other,
because the assumption of small deflections were made where the slopes are small and may be neglected.
For small beam deflection the rotational inertia is generally neglected and balancing the moments gives the
following relation for the shear force.

oM

Q= E (2.4)

From Equation 2.4 and 2.3 the partial differential equation that describes the transverse vibration of a beam
in the neutral axis is expressed as

AOZ w(x, ) 0> (EI 2w(x, 1)

s Ul s R -

2.2. Damping in structures

Damping can be described as the dissipation of energy from a system. The system energy, typically mechani-
cal energy, is transformed or dissipated into other forms of energy. The damping, however is not necessarily a
property of the system or structure itself, often the physical nature and its surrounding also causes the energy
drainage. The damping sources in a structure can be described by damping, which occurs naturally within
the structure, or due to its environment, or damping which is specially added to the system. According to [9]
damping can be characterized as follows:

* Fluid damping.
This type of damping is external to the structure and is related to the surrounding where the struc-
ture is. For example, damping effect due to soil-structure interaction at the foundation, flow-structure
interaction.

* Internal damping.
This type of damping is related to the material properties of the structure. The energy are dissipated
through for example microscopic impurities, thermal elastic effects etcetera. The internal damping can
be characterized into two general types: viscoelastic damping and hysteretic damping.
The viscoelastic damping is a linear type damping depending on the frequency of vibration. In contin-
uous systems it is addressed by the stress strain relation trough linear differential equation with respect
to time. A common model representing the relationship, known as the Kelvin-Voigt model is given as

o=Ee+nE de
SEETIE g

The hysteretic damping is a type of damping showing non linear characteristics. The damping does not

significantly depends on the oscillating frequency as in the case of viscoelastic damping.

e Structural damping.
This type of damping is related to the dissipation of the mechanical energy caused by friction from
relative motion. For example, damping caused by the joints at the boundary of a structure.
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Damping models are proposed in many literature. A suitable damping model should be chosen to represent
the dissipation of energy in a structure.

2.2.1. Viscous damping

Viscous damping can be characterized as a linear damping. The damping force is linear proportional to the
velocity and it is one of the most well known damping model in structural vibration. If the system vibrates
with an instantaneous velocity i, then viscous damping force is assumed to proportional to the instantaneous
velocity, that is

Fy=ci (2.6)

where c is the damping coefficient and it determines the amount of damping within a system.

The viscous damping coefficient is mostly described along with the critical damping in terms of damping
ratio between the two. The critical damping is the minimum amount of damping needed to prevent a sys-
tem from oscillating and is related to the natural frequency of vibration. The damping ratio of a system is
described with: c c

C:_

Cer  2mwy

(2.7)

2.2.2. Aerodynamic damping

Wind loads occurs when the wind velocity increases or decreases near an obstacle. The relation between
wind pressure and the velocity is derived from Bernoulli’s law. This law states that the sum of kinetic energy
of the airflow and the potential energy along a stream line is constant.

Energy can be dissipated by air in which a structure vibrates. Aerodynamic damping depends on both the
velocity of incoming air and the velocity of the structure. According to[12] a mass spring system subjected to
a wind, Figure 2.2, the equation of motion is as follows:

.. . 1 N
mu+cu+ku:5pCDA(vw—u) (2.8)
v, — m
e v, k
—0 = - hwww
_____ 1
F 11
v 1]
—_— {’7 c %
- — ., U
1 i 2
F==pCyA(v, —1it)
NSRS 2

Figure 2.2: Structure exposing aerodynamic load.[12]

By assuming that the velocity of the vibrating structure is much lower than the velocity of the wind (&t < vy,),
the equation of motion can be linearized to

1
mii+ci+ ku = E,oCDA(uf,,—2uwu) 2.9)
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From Equation 2.9, one can see that there exist an extra positive damping related to the velocity of the wind
given as

F;=pCpAvyu

2.2.3. Coulomb damping

Coulomb damping arises due to energy dissipation through dry friction. In other words, when a body slides
on a dry surface creating friction forces resisting the sliding motion. On the point when the applied force to
the system is larger that the friction force, the friction force is always opposite in the direction of the motion.
The magnitude is independent of the surface area, displacement or velocity. According to [12] a single mass-
spring system with coulomb damper can be schematically drawn as in Figure 2.3.

2 k n u
— 7

c

Figure 2.3: Coulomb damper.[12]

The equation of motion can be written in as

u
milt+F,—+ku=0
17

2.2.4. Damping measurement

Damping can be represented by various models and parameters. Estimating the realistic damping parameter
is extremely difficult, mainly because it is not possible to eliminate the various types of damping (for example
fluid damping, internal damping and structural damping). If one wishes to isolate one type of damping (e.g
fluid damping), the actual measurement then would not represent the true damping model. Nevertheless,
measuring the damping in a system, one should decide which model characterizes the most physical sense
to the energy dissipation in a system. To measure the damping there are two general types to be distinguished,
namely:

* Time response method.
For example logarithmic decrement method, step response method and hysteric loop method.

* Frequency response method.
For example magnification-factor method and bandwidth method.

One of the most common method to measure the damping is to use the time response logarithmic decrement
method. Assessing the damping in a structure, the structure is set into free vibration by an initial impulse or
an initial condition excitation. By recording and measuring the oscillating decay of the structure, the time
response shown in Figure 2.4 takes the form as in Equation 2.10.

y(1) = yoet ! sin(wg1) (2.10)

where wg = /1 - (2w, is the damped natural frequency.
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yiO A 4,

Figure 2.4: Vibration decay time response. (8]

If the response of a system is known, the logarithmic decrement ¢ can be obtained in order to identify the
damping ratio of a structure. The log decrement can be defined as the natural log of the amplitudes of any
two successive peaks and can be determined with

5=lln( Ai ) (2.11)
r Ajrr

Where A; amplitude of peak point of i cycle and A;,, corresponds to the amplitude of the peak point of r
cycles later in time.
The relation between the log decrement and the damping ratio is

(= _r (2.12)

1+ (&2

2.3. Numerical Analysis

Numerical analysis is the study of algorithms to approximate solutions to a complex mathematical problem.
Most mathematical problems used in engineering are based on partial differential equation and ordinary
differential equations where analytical solutions do not exist. In structural dynamics two types of numerical
methods are primarily used to approximate the solution for these equations.

The first type is the finite difference method (FDM) which is the first and the oldest numerical approximation
approach. The principle of finite difference method is to replace each derivative variable by a difference
quotient by means of a local Taylor expansion near the point of interest.

The second type is the finite element method (FEM) and is the center of focus for solving partial differential
equations in this study. The finite element method divides the structure into pieces of elements with their
related physical quantities and approximates the solution in the equation by simpler function called shape
functions. Conventionally the shape functions are chosen to be polynomials or piecewise polynomials[5].

In finite elements one can distinguish two types of boundary conditions, namely;

¢ Essential boundary condition.
This type of boundary condition have to be appointed to the equation in order to solve for the solution.
In beam analysis the field variables that describes the essential boundary conditions are the variables
specifying either the displacement or rotation.

¢ Natural boundary condition.
The natural boundary conditions are the higher order derivatives of the field variables. Hence, in beam
analysis it is the variable related to the shear forces and moments. The shear forces and moments
address themselves in the load vector and do not need to be appointed.
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2.4. Uniaxial Fatigue analysis

Fatigue is defined as the the deterioration of a material under repeatedly cyclic loading. Fatigue properties
of a material are obtained by testing a specimen at various load levels. The results of the test are plotted in
terms of a log-log S-N curve.

An S-N curve gives a relation between stress amplitude, S, and the cycles to failure, N. A schematic illustra-
tion of a typical S-N curve of a steel component usually on a log-log plot is given in Figure 2.5. The inclined
regime is called the high cycle fatigue regime and the fatigue limit is given by the horizontal asymptote. The
fatigue limit is defined as a fully reversed stress amplitude at which fatigue failure process begins with the
occurrence of small cracks. If any applied stress to the structure falls below the fatigue limit of the material,
the structure presumes to have an infinite life. This is one of the characteristics of structural aluminum alloys
in calm environmental conditions.

Fatigue analysis using Stress-Life approach assumes all stresses at any point to be below the elastic limit. The
mathematical relation expressing the S-N curve can be written as:

NSk=a (2.13)

Where a is the fatigue parameter which depends on the material property and is related to the intercept of
the vertical axis.

The fatigue properties of a material is denoted by b or k in the high cycle regime. Both parameters are related
in following expression:

1
k=—— 2.14
b (2.14)
S, (log) High .Cyc;le
A Fatigue
Regime
Spr————-
Fatigue
Limit
81 777777 4
l N
' |
| I
|
I | k f\
| | s
| | \\
| | Miner .
' ' » Nl
1 N, N, (log)

Figure 2.5: Constant amplitude S-N curve.



Ampelmann G25 gangway

3.1. Gangway beam Model

The Ampelmann G25 gangway consist of a Main Boom and a T-Boom attached to the transfer deck, see Fig-
ure 3.1a. The G25 gangway is connected to the transfer deck through hinges at the bottom and the top via
two Luffing cylinders. This section concerns modeling the gangway using Euler-Bernoulli beam theory, also

1o

Tandem whesls

5 W MAIN BOOM
v i T T

15, 1S S,
\J\ \l\\t\!\l

T=BOOM (oswnset)

 — 1 I 1 I I —— I
L 21 21 21 21 N N

/ A s 1 NS 1 NS 1 NS | NS S

Tandem wheeis

(a) Main and T-boom

(b) Reference frame

Figure 3.1: Graphical overview of the gangway

known as the classical beam theory. As previously mentioned, the Euler-Bernoulli beam theory deal with
cases for small deflection of beam subjected to lateral loads. The application restriction for applying the eu-
ler beam model are made up from the assumption that during deformation, plane sections remain plane and
normal to the neutral axis. Using the reference frame Figure 3.1b, the gangway model is created by drawing

11



12 3. Ampelmann G25 gangway

the boundary that the hexapod and the transfer deck are rigid, meaning that only analysis are to be made on
the gangway with no structural influence of the hexapod and transfer deck, and by assuming that the T-boom
is rigidly attached to the Main boom. Characterizing the gangway motion, a three step Euler beam model is
used to describe the different part along the gangway and also material damping based on Kelvin-Voigt (or
strain-rate) damping model is included to obtain the viscoelatic behavior of the gangway.

3.1.1. Gangway beam model z-y plane

The dynamic motion equation that describes the displacement of the gangway in z-axis facing the z-y plane,
as shown in Figure 3.2, will be evaluated in this section.

As mentioned earlier, the gangway is supported by two luffing cylinders and hinges at the transfer deck. Due
to the luffing cylinders, it is expected that rotational stiffness k; is present at the connection. Since the dead
weight only influence the static deflection of the gangway, it is assumed that it does not influence the dynam-
ics of the system. A graphical representation can be seen in Figure 3.2 and the set of equations of motions

‘> Ly Lo

A
A\ 4
' 3
Y

Figure 3.2: Beam model in the z-y plane

that describe the vibration, valid for any point on the gangway except at the boundary and interfaces, in this
axis can be written as:

pAyL mz Ly (Bl 54 & T (nEIZZ)M% -0, 0<y<Ly(y)
5
LAy +AD B+ (BLo) iy a’”z +(MELz) yr g =0, Liy) Sy <Ly 3.1)
pAT 6t2 +(ElzZ)T aws + (nEIzz)T gyrést =0, Ly =y=La(y)

The associated boundary condition required contains properties in terms of kinematic and dynamic balance
at both ends. Boundary condition from kinematic demands are from the equilibrium in both displacement
and rotation, while dynamic demands are from the equilibrium in forces and moments. The equilibrium
condition at both boundaries read:

aty=0
0 0w ow
wy =0 and E+nE— )(Izz) o ayZI - k’a_yl 3.2)
aty=1_L
) 0% LU3 0 0 w3
E+nE (IZZ)T =0 and E+17E (IZZ)T =0 (3.3)

To complete the mathematical expression, the interface condition to allow for the continuity and balance of
forces of the different cross section and stiffness of the first connection at L; and the second connection at
L, also follow from the kinematic and dynamic equilibrium.
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aty=1;
w1 = ws
dy  dy
(3.4)
0 wy 0 02w,
E+nEa (IZZ)MW_ E+nEa (Izz)MTV
0 Pwy 0 03w,
E+1]E(§ (Izz)MW— E+77EE (Izz)MTW
aty =Ly
Wy = W3
dy  dy
(3.5)
0 02w, 0 0%ws
ExnBgr|Uzur 57 = |\ E+nE gL | Uzt 50

63 ws

0
E"'UEa) (Izz)TV

E+nE2 )(1 ) Cws _
n a5 ) eeImr 372 =
The above mentioned w;..ws is the displacement in the z-direction, 7 is the strain rate damping parameter,
p is the density of the gangway, E is the Young’s modulus and Ay, pr,r and Iz, ;. is the area and second
moment of inertia corresponding to the main boom, the overlapping section and the T-boom.

3.1.2. Gangway beam model in x-y plane

The dynamic motion equation that describes the displacement of the gangway in x-axis facing the x-y plane
is discussed.

Given that the shape of the gangway is a U-shape like beam, as can be seen in Figure 3.3b, means that the
gangway is having only one cross-section symmetry in the z-axis. Vibration in the x-axis will cause a coupled

Figure 3.3: Beam model in the z-y plane.

bending-torsional displacement, because the shear center (s) and the centroid (c) of the beam cross-section
does not coincide.
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Torsional behavior of an open cross section deal with out of plane deformation is called warping. However,
during analysis it is assumed that the torsional rotation is a linear function along the gangway axis and the
out of plane deformation are small relative to the dimension of the cross section. This implies that torsional
rotation at both ends are equal so that warping can be neglected. According to [17], the bending-torsional
equation of motion can be recorded by coupling the Euler-Bernoulli and Saint-Venant beam theory. The set
of differential equations of motions for coupled bending and torsional vibrations of a three stepped gangway
model can be written as

Bending motion
pAM 02 Ul + (Elxx)M ay 4l + (nEIxx)M 6By46t +pAmeS5z aﬁl =0, O=sy=Li(y
2
{ P Ay + A7) T + (ELe) mr 6;42 +(NELx) yp 5}46[ +0(Am+Ar) e SR atz =0, Li(sysLy  (36)
pPAT 6V3 + (Elxx)T 3y 43 + (nEIxx)T 3y 46t +pAme=5 ag =0, Ly=y=La(y)
Torional motion
0% 0% e
(L) yy 55— (G 65; ~ (nGJ) s 3500 + PAMETH =0, 0<y<Li(y)
53 2
(g arr 52 = GIvir 55 — (1G] iy S +pAvre S8 =0, Liy)<y<Ly (3.7)
2 3
(g ) p 55 = (GN1 58— (nGI)p Zho + parell =0, Lu<y<L(y)
ar a ay%ar ar

The connection between the main boom and the transfer deck is supported by assuming a clamped connec-
tion. The effect of the luffing cylinder is left out, because the luffing cylinders can only move in the vertical
degree of freedom.

Again applying the kinematic and dynamic balance for both bending and torsion, the boundary conditions
are as follows:

aty=0

9
and ZL-0 and B =0 (3.8)

dy

Il
(=)

U1

aty=1L

2 3
(E+nEa)(Ixx)Ta =0 and (E+nEa)(Ixx)Ta % -0 and (G+nG—)]T%:0 (3.9)

The corresponding interface condition at the first connection(L;) and the second connection(Lm) for conti-
nuity and balance of forces reads:



3.2. Gangway cross section parameters 15
aty=1;
V1 =02
ay ~ dy
(E+ Ea)(l ) Fn (E+ Ea)(l ) 0y
n P xXxXJM 5. o 0_)/2 n XXIMT "7 o 6y2
(3.10)
(E+ Ea)(l ) Pur_ E+ Ea)(l ) e’
770 xxMayz Tla xxMTaZ
B1= P
op1 _ 6) 06>
G+nG— —_— G B —
( +n 3 )]M dy +nG a7 Jmt 3y
aty=Ly
Uy = U3
ay ~ dy
(E+ Ea)(l ) ke’ (E+ Ea)(I ) 62"3
n ot xXJMT R 5 ayz xx)T F 5
(3.11)
(E+ Ea)(I ) Pvy E+7 6)(1 ) 63"3
n ot XX)MT 5. o 0 2 xx)T 7. o
B2 =PBs

0
(G+77Ga )]MTﬁ (G G—)]T—
t oy

dy

3.2. Gangway cross section parameters

9B

Calculating the cross sectional parameters of the gangway is not a straight forward task. The gangway is a
truss like profile and may affect the validity of theories to be applied. In this section the gangway parameters

needed to analyze the dynamic characteristic are explained.

3.2.1. Second moment of area

Second moment of inertia of truss structure like the Main and T-boom is difficult to calculate. One can use a
numerical program to obtain the relevant values. However, it is assumed that the four main bars are the most
contributing structural component to the second moment of inertia. A simplified drawing of the four main

bars is given in Figure 3.4
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Figure 3.4: Cross sectional members of a beam.

Using the bar as reference, the second moment of inertia can be formulated by using the parallel axis theorem
and the expression for its relevant axis is expressed as follow:

I,;=Y (Izi + A; (Zcog - Zcog,-)z)
(3.12)
2
Lix=X% (Ixi + A; (xcog - xwgi) )

Where Aj, Zcog;, Xcog; denotes the corresponding area and center of gravity values of each of the members
and z.og and x.,g are the center of gravity of the total system.

3.2.2. Shear center

Shear center is an imaginary point on or outside the section through which an external load is applied without
inducing any twisting of the structure. For a complex cross section like the gangway, the shear center is not
easily computed.

In this work the shear center of the Main and T-boom are determined using the numerical program Ansys
workbench. The structural component of the gangway are drawn and modeled as line beam element in
Ansys. By varying the point where the remote force is applied, the location of the shear center of both the
Main and T-boom can be obtained.

3.2.3. Torsional rigidity

The torsional rigidity J for well known geometries are available, whereas for cross sections like Main boom
and T-boom requires numerical program to obtain the torsional rigidity.

To obtain the torsional rigidity of the Main and T-boom, the model drawn in the numerical program Ansys
Workbench is used. With the shear center already determined in the previous section, the angle of twist 8
with respect to the shear center can be obtained by applying a remote torque to the beam and measured its



3.2. Gangway cross section parameters 17

vertical and horizontal displacement. Knowing both the angle of twist and the applied torque, the torsion
rigidity GJ can be obtained using the relation

T=—- (3.13)

where L is the length of the beam.

3.2.4. Mass moment of inertia

As said earlier, the Ampelmann gangway is made of frame structure and their properties can not be easily
determined. The mass moment of inertia of the Main and the T-Boom around the shear center is obtained by
first estimating the radius of gyration in Autocad. The relation between the radius of gyration and the mass
moment of inertia is given as

I, .
— 8axis (314)
m

8axis

Where Rg, .. is the radius of gyration, Iy, ;. is the mass moment of inertia corresponding to its relevant axis
and m denotes the mass of the system.

3.2.5. Damping

The damping characteristic of the G25 gangway in vertical (z-axis) direction are determined by a free vibration
test. The test was conducted by applying a mass of 300kg at the tip of the fully extended gangway. The
mass was then released from the gangway causing the gangway to vibrate. The measured displacement as a
function of time is given Figure 3.6.

Data
< Points
Curve

displacement [mm]

.60 I 1 I I I I
0

time [s]
Figure 3.5: Free vibration test curve

Using the log decrement method, the damping ratio of the gangway can be obtained. From the experimental
graph, one can see that the first peak at ¢ = 0.5s the amplitude y(z = 0.5) = 57. Another peak at different time
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instance at f = 3s, the peak value is y(¢ = 2) = 41). The number of cycles r = 2 and gives a decrement value of

1 A;
6:—ln( ’)=0.165

r i+r

The non dimensional damping coefficient of the system is

1
{=———==0.026

Knowing the damping ratio, the kelvin-Voight damping parameter 7 of a continuous can be obtained using

2
n=—{¢=0.0089s (3.15)

n

An analysis of the tip deflection using the obtained damping parameter as input is with the same initial con-
dition as the measured data shown in the figure below.

&0 Tip deflection time response

40-||

20| [ [1 ]

Deflection [m]

-60 |

.80 . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
Time [s]

Figure 3.6: Modeled tip deflection response with = 0.0089s.

Influence of the material damping

As can be observed, adding material damping to the system gave an exponentially decay to the vibration
response. The calculated damping ratio along with its material damping value is an approximation to the ex-
perimental system response. A study for different material damping 7 values, see Figure 3.7, was performed
to compare the sensitivity of the gangway to the approximate value.

From the figure one can see that if the material damping have a great effect on the response of the system. It
can be seen that with the presence of material damping, higher modes damped out faster than lower modes.
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Figure 3.7: Influence of different material damping for free vibration






Dynamic Analysis

The Ampelmann gangway beam models introduced in Chapter 3.1 were used to analyze the dynamics and
characteristics. In this chapter the free vibration defined by its characteristics natural frequency and mode
shapes and vibration under external applied loading are reviewed. Solving the partial differential equation
of motion analytically with arbitrary boundary condition is difficult to obtain. It involves solving at least a 12
by 12 determinant. Although, solving large determinant is still possible, it is more efficient to employ numer-
ical approximation. A linear one dimensional Finite Element Analysis was performed and implemented in
MATLAB to solve for the system equation of motion.

4.1. Finite element formulation

One of the most versatile method to solve engineering problem is by using Finite Element Method (FEM),
which divide the structure into number of elements (V) with their related physical quantities. The finite ele-
ment discretization of one-dimensional problems are characterized by a two point boundary problem.

Bending motion

To illustrate this procedure, consider a beam element of length /e, flexural rigidity EI(y) and mass per unit
length p A(x) shown in Figure 4.1. The two points mutually joined or interconnected to each other are called
nodes. In finite element modeling the transverse vibration of a beam where planar displacement are gov-

erned by a fourth order differential equation, depends on the knowledge of four boundary condition at an
inter-element. Every beam element requires a continuous nodal transverse displacement w and slope 6.

W.
9;/1\J
R

z

y=1

6;

Wi
+i
y=0

Figure 4.1: Two node beam element.

Between the two nodes, the continuity of the bending displacement and slope of a beam element can be
satisfied by using Hermite polynomials function. To derive the shape functions the minimum possible poly-

21
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nomial in order to fulfil both the compatibility and continuity is of cubic form and is given as [5]
w(y)=00+cly+czy2+03y3 (4.1)

Where, ¢y..c3 are the coefficients of the cubic polynomial determined from the inter-element boundary con-
dition by employing the following conditions.

w(0) = w;
dw _n.
g B
(4.2)
w(le) = w;
dw _n.
_y y:le B 6]

Evaluating the coefficients c¢; in terms of the nodal displacement and rotation, one can obtain the solution in
the form

wy) =[di(y) o) doy) da)] |’ 4.3)

The Hermite shape functions d; which gives an approximated interpolation for the transverse displacement
and rotation of the beam is given as

diy)=1-2 + 2

by =y-+h

AR (4.4)
6433()’)——Jl’—+Jl/—g3

With the shape functions, one can develop the mass and stiffness matrix of the beam element. The kinetic
energy and the strain energy of a bending Euler-Bernoulli beam is given as follows:

1 [l 2

Egin = Efo pAY) (%) dy (4.5)
1 le aZw 2

Epor= [ E10)(3#) dy 4.6)

Upon substituting equation 4.3 into 4.5 and 4.6 and solving for the integral, the mass and stiffness matrix of a
bending beam is found as

156 221, 54 13,
_ pAl, | 221, 4> 131, -3I2

(ME1] = 420 | 54 131, 156 -221, @7
-131, -312 -221, 4I2
12 6, -12 6l
EI 412 - 212
(K] = 61, 12 6l, 212 8

T B |-12 -6l 12 -6l
6l, 212 -6l, 4l

Coupled bending torsional motion

A beam experiencing coupled bending and torsional vibrations the kinetic energy and strain energy to the
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equation of motion in Chapter 3.1.2 can be written as

b [ o 22 22 2 w0

kln—20 pAly ot pAalyle ot ot gy ot y .
1 le 2 2 6ﬁ

Epot—zfo EI(y) W +G](y)[a] dy (4.10)

Consider a beam element with the nodes defined on the shear center as shown in 4.2. Each node is hav-
ing four degrees of free from namely the bending displacement v, bending slope (), torsional rotation ()
and torsional slope(B). Again using cubic polynomials as shape function for the flexural displacement and

B, B[ —1 B B;

] @—r —»

y=0 y=1
Figure 4.2: Two node beam element with 8 degrees of freedom

torsional rotation, the nodal displacements of the coupled motion takes the form

vi  Bi

[;]:[dl(y) do(y) do(y) da(y)] Sj. gf (4.11)
J J
0j B

By substituting Equation 4.11 in the strain and kinetic energy relation and performing the integration, the
8x8 stiffness and consistent mass matrix can be written in the following form

KE] 0
K, = (4.12)
0 Koy
Mg eMgr
M, = (4.13)
eMl, Mg,
The corresponding sub matrices Kg;, Mgy are given as
6 1 _6 L1
5, 10 5, 10
L 2 _ 1 _ 1
10 15 10 30
Kgr=GJ 6 1 6 N (4.14)
5, 10 51, 10
1l 1 _ 1 2
10 30 0 15
156 221, 54 -131,
Iyl | 22l 417 13l -3I%
G] = (4.15)
420 | 54 131, 156 -22,
-131, -312 -221, 4%
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Approximating the fourth order partial differential equation of the beam with finite elements, the set of equa-
tion of motion reduces to a system of ordinary differential equation in the form

[M]6 +[C)5 + K16 = F(¢) (4.16)
Where M, C and K denotes the global mass, damping and stiffness matrix. The symbols é and F are the
displacement and forcing vector.

The material damping added to the system is proportional to the stiffness the of the gangway. Therefore,
rewriting the ordinary differential equation gives

[M]6 + (K] + [K]6 = F(£) (4.17)

4.2. Free vibration analysis

Finding the natural frequencies and modes shape concerns for solving the system equation of motion with-
out damping and external applied force. For an ordinary differential equation the characteristic dynamic
behavior of the gangway can be found by solving the equation

(IK16 - w%[M])5=0 (4.18)
where the eigenvalue w? represents the natural frequency and the eigenvector & represents the mode shape

or the displacement profile of the system.

4.2.1. Natural frequencies and mode shapes z-y plane

Based on the parameters and material properties of the G25 gangway given in Appendix A, the dynamic char-
acteristics can be analyzed. The results of the first five natural frequencies and mode shapes of the Ampel-
mann gangway in fully extended configuration are shown in Table 4.1 and in Figure 4.3, respectively:

Table 4.1: Vertical z-y plane natural frequencies of a fully extended gangway

Mode number 1st 2nd 3rd 4th 5th

Natural frequency [%] 6.03 34.81 107.88 | 208.60 | 367.25

Natural frequency [Hz] 0.96 5.54 17.17 33.2 58.45
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Figure 4.3: Graphical overview of the first five mode shapes.

4.2.2. Natural frequencies and mode shapes x-y plane Natural frequencies and mode shapes

As discussed in Chapter 3.1.2, vibration in this plane is coupled with a bending torsional motion due to the
offset of the shear center. The full extended gangway natural frequencies and its mode shape are shown in
Table 4.2 and Figure 4.4.
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Table 4.2: Horizontal z-y plane natural frequencies of a fully extended gangway

Mode number 1st 2nd 3rd 4th 5th
rad
Natural frequency [T] 2.84 8.05 10.29 13.74 18.98
Natural frequency [Hz] 0.45 1.28 1.64 2.19 3.02
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Figure 4.4: Graphical overview of the first five Coupled mode shapes.
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4.3. Dynamic response to external disturbance

This section will investigate the vibration of the gangway under base excitation and constant wind. First, the
gangway under base excitation is assessed, after which the analysis under constant wind velocity is explained.

4.3.1. Vibration under base excitation

In this analysis the vibration is caused hexapod induced motion on the transfer deck or in this case the base
of the gangway. Mathematical modeling the ship induced motion to the hexapod is beyond the scope of this
thesis. A straight forward way to obtain the motion at the base is by taking measurements on the transfer
deck of the Ampelmann system.

Consider the gangway subjected to a base excitation as shown in Figure 4.5.

- LM Lz

B(t)

Figure 4.5: Gangway under base excitation

The equation of motion that describes the total displacement of the Ampelmann gangway is expressed as

P w iw Pw
pAM—z + (Elzz)y W{l +(NELz) W;[ =0, 0<y<Li(y)
o o o
P Ay + A7) 5% + (ELmr 50 + (1B L) vy 55 =0 Lip) <y <Ly (4.19)
0 ot ol
pAT =5 + (BL2) 1 5t + (NELz)  y0s = 0, Lu<y<La(y)

The associated boundary condition of a moving support in the vertical z-axis at the base is as follow:

aty=0
0 0’ w ow
wy, = B(1) and (E+ nE&) (Iz2)m V;] = k,a—y“ (4.20)
aty=1_L
0 621/4/[3 0 63 wt3
E+T]EE (IZZ)TVZO and E+T]EE (IZZ)TWZO (421)

The total transverse displacement w;, of any point along the beam can be written in terms of the elastic
deflection w; and the base excitation B(¢) and takes the following form:

wy, =w; +B(t) for i=1,23 4.22)

Substituting Equation 4.22 in 4.19, 4.20 and 4.21 one can rewrite the partial differential equation and is given
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as
pAMES + (BLo)y 55 + (EL:)yy 5% = —pAnSE, 0<y<Liy)
AN+ A B8 + (BLyr 5% + (0B L) iy 5% = —p(An+ A SR, Li)<y<ly  (423)
pAT5;;¢2/3 +(ELL)r ";% +(nElz) ‘3;% = —pAT%Z—tg, Ly<ysLyy)

The new boundary condition is sharing the same expression as in Equation 3.2 and 3.3.
Non-active motion compensation

The non-active compensation measured data along with its Fourier transform into frequency domain of the
heave (vertical z-axis) motion is shown in Figure 4.9. The measured data is obtained with the Ampelmann sys-
tem installed at the mid section of the vessel at an operational sea state condition of a significant wave height
of 2.5m and a wave period of 7s. As can be seen the measured data represents a highly complex periodic
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Figure 4.6: Measured Non-active motion compensation heave motion at the base

curve with finite number of individual sinusoidal waves and their related frequencies. In order to outline the
base excitation, a simple sinusoidal function varying with time is applied to model the measured data. This
model represents a continuous model to base excitation during non-active motion compensation. The base
displacement B(¢) applied at base is written as

B(1) = Bsin (Qp1)
Differentiating the base displacement twice in time gives
B(1) = —-BQZ sin(Qp1)

The B is the amplitude of the base excitation and (2, is base excitation frequency.
From Figure 4.9, observe that the maximum heave amplitude is 1m at a base frequency of 0.2Hz. The dy-
namic response under sinusoidal base excitation of a fully extended gangway is shown in Figure 4.9.
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Figure 4.7: Tip deflection time response due to sinusoidal load

The result shows that the transient response of the gangway is damped out within four seconds and reached

its steady state response. Since the steady state response last as long as the exciting force, for long term load-
ing subject to large number of cycles may lead to fatigue failure.

Active motion compensation

During active motion compensation, the transfer deck cannot be kept completely motionless during opera-
tion. Due to the limited cylinders length of the Stewart platform, undesirable residual motion on the transfer
deck (base) are present. These motion occurs randomly in time and served as pulse excitation to the system.
Therefore, a sinusoidal model to predict these residual motion will not be valid. Instead a pulse base excita-

tion for a impulse time interval of 0.5s is used to predict the dynamic response of the structure. A measured
acceleration time response at the base of the gangway is given in Figure 4.8.
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Figure 4.8: Measured heave acceleration at the base.

From the measured data, one can see that multiple impulse occurs during the time span. However, in this
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analysis only the maximum impulse is used to determine to dynamics response of a fully extended gangway.
The numerical results of the impulse response is shown in Figure 4.9
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Figure 4.9: Tip deflection time response due to impulse load

4.3.2. Vibration under constant steady wind velocity

The Ampelmann system operates most of the time offshore where high wind velocity can occur. The G25
gangway is designed under a functional wind speed of 20. This wind condition is equivalent to Beaufort
scale 7. The gangway is also able to withstand the wind under storm condition of 63“. Wind on the surface
of the earth is not constant in direction as well as in velocity. However, during analysis the wind velocity is
assumed to be constant and the direction is always perpendicular to the gangway. As discussed previously,
interaction between wind and the structure cause energy to dissipate due to there difference in velocity.

Consider the wind as a constant distributed force acting in the positive x-direction. The general form of the
equation of motion that describes the bending motion of the gangway due to constant wind velocity is as

follows:

pAT6w44EugTa4-+ME5AT0ﬂm

PAM 01‘21 +(E1xx)M 3y . +(TIEIxx)M ay4a;

0% ot o°
4o (Apm+Ar) VI? + (Elcx) MT # +(NElcx) yyr wyazt

ag 2PaerDLeff(

62
a t2

6t2 gpatrCDLeff(

ZUWOVI)

zperDLeff(

2Vw0v3)

Osy=Li(y)
—2v, %2 ) L) <sy<Ly

Ly < y= Ly (y)
(4.24)
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And for torsion vibration, the equation of motion is

@ & @
(Igs)M 6:;1 (G])M ﬁl (TIG])MVﬁaIt zpaerDeLeff( vaoavtl) O=sy=Li(y
) ﬁ 2p 2
(Igs)MT arz ~(GNmr 57— (GT) yp 3201 +pAureSt 5t2 zpaerDeLeff( -2V, %2 ) » Li()sy=sLu
@ @ @ 2
(Ig,) 1 ags GNr 52 /33 -(nGJ) ¢ ayzﬁ;t +PAT966% = patrCDeLeff( vaaU3) Ly<sys<Ly(y)
(4.25)

The interface and boundary condition required share the same expressions as stated in section 4.2.2.

According to [3], wind processes in offshore environment are typically ten minutes for short term conditions.
Taking the ten minutes as reference for wind exposure time, the fully extended gangway tip deflection and
torsion displacement time history of the first fifty seconds for a steady wind velocity of 207 is shown in

Figure 4.10.
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Figure 4.10: Bending and torsional vibration due to 202 wind velocity.

From the results it can be observed that little to no vibrations occur under a constant wind velocity of 20 .
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This occurs, because the gangway is highly damped due to the incorporated aerodynamic damping and also
the time frame at which the wind is exposing is large.
To simulate the vibration of the gangway after the wind suddenly stops blowing, a exposing time duration of

one second is chosen and the response of the gangway is given in Figure 4.11.
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Figure 4.11: Bending and torsional vibration due to 20 % wind velocity.

In case of a wind velocity of 637, the Ampelmann system will not be in operation according to Ampelmann
basis of design [15]. Therefore, a three meter extension of the Gangway, which is typical during stowed con-
dition is used. It is expected that the gangway will damped out swiftly and again a wind exposing for one
second is used to analyze the dynamics. The time response is given in Figure 4.12.
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4.4. Dynamic response to gangway maneuvers

As mentioned previously in the introduction, the gangway is a system that can move in three degrees of free-
dom (luffing, slewing and telescoping). Maneuvering the gangway is a random process that depends mostly
on the operators steering the gangway and the situations they encounter. During analysis the gangway ma-
neuvers are limited to the operations summed up in the following:

o Luff from —20° to 0°
¢ Slew from 0° to 90°

¢ telescoping the gangway from minimum to maximum gangway length and vice versa

4.4.1. Vibration during luffing motion

Luffing motion describes the action of the gangway rotating around the x-axis, see Figure 4.13. Research
in dynamic modeling a rotating beam are well presented nowadays. A model that is described in the most
general way is published in [10]. In their model they take into account the stiffening and Coriolis effect due
to the beam rotation. Those effects give rise to a coupling between axial and bending motion.

?
I
I|
|
|
|
|
[

Z, W

Figure 4.13: Luffing motion side view of the system.

However, these coupled effects have a great importance when a system, such as helicopter and aircraft tur-
bine blade, is rotating at a high angular velocity.

In this study, the gangway is luffing at low angular rate and the contribution of the axial and Coriolis forces
induced by the angular velocity are assumed to be insignificant to the system.

Consider the gangway is luffing under an applied torque T at the base shown with a mass moment of inertia
I, about the axis of rotation shown in Figure 4.13. Expression for the kinetic and potential energy of a small
elastic deflection w in this situation is as follow:

w 0] 2
Ekmz_lbz pA(y) W)+ pAwy(%L) dy (4.26)

1L 2v1\°
Epor=— EI — || d 4.27
pot > f(; ( ) [ 6y2 ) y ( )
The work done for a given input torque is
W =T()p(1) (4.28)
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By applying the Hamilton's principle, § |, flz (Ekin— Epor) dt+6 . [iz W =0, and then collecting all of the terms,
yields a system equation of motion that describe a rotating gangway. The equation of motion of the seg-
mented gangway with strain rate damping that result is given as follow:

2 4 4 &2
pAMaazl + (Elze)m aayu‘)ll + (”EIZZ)M% = —pAMy S5, 0<y<Li(yp)
2 4 4 d2
< ,D(AM+AT) 66;42)2 +(EIZZ)MT aa;f +(nEIZZ)MT%%:_p(AM+AT)yd_;fy Ll(y)SySLM (429)
0 a* 8w a2

pAT a;‘Z)3 + (EIZZ)T—a;;Z?’ + (nEIZZ)TWuf = —pATyd—[(,f' LM < yS LZ(J’)

E+ Ea)(l UL A (4.30)
n a1 ) == M 0y2 o by T .

The associated boundary and interface conditions hold the same expression as given in Chapter 3.1.1.

The maximum torque that the luffing cylinders can deliver is 477 K Nm and the rotational speed is restricted
to 2.2d—ig [15]. The maximum luffing torque however, is not the input torque to the system because the luffing
cylinders are also used to carry the dead weight of the gangway. Subtracting the moment caused by the dead
weight from the maximum torque gives the input torque during luffing. For a fully extended gangway the
input torque is

T =435KNm

The target maneuver during luffing motion of the gangway is from —20° to 0°. The time needed to reach its
target destination can be determined and is approximately 10s. Using this the torque input profile during
luffing can be chosen for the system.

The torque input profile, as well as the numerical results of the dynamic response at the tip of fully extended
gangway are shown in Figure 4.14 and 4.15 .

«10° Applied Torque as function of time
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Figure 4.14: Input luffing torque applied at the base.
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Figure 4.15: Transverse deflection during Luffing motion.

4.4.2. Vibration during slewing motion

Slewing motion describes the action of the gangway rotating around the z-axis. As discussed earlier, vibration
in the x-y plane will induced torsional deflection. When the gangway is slewing under an applied torque, the
rotating inertia of the gangway will also effect the torsional dynamics. A simple visualization of a rotating
beam displaying coupled flexural and torsional vibration is shown in Figure 4.16. In Chapter 4.4.1 the equa-

Figure 4.16: Slewing motion 3-D view.

tion of motion describing the bending vibration of a rotating gangway under an applied torque was stated.
In this it can be observed that the rotational acceleration is explicit define as a forcing term at the right hand
side of the equation of motion. Combining the effect of the rotating motion to the already defined coupled
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bending-torsional equation, the equation of motion of gangway executing slewing motions become:

3

pAm 0t21 +(Ely 2 6 +(NE@uy) yy 6y46t +pAyesht atﬁzl - pAMydtz, 0<sy=<Li(y)
2 4 5 92 2
p(An+ Ar) G + (ELeo) wr G + (MELex) i s L2 = pAn+ Ay LS, L) sysLy
PAT 012 VS + (EIXX)T 6 4 + (T)EIXX)T 0_}/40t at2 - PATJ/ dtz, LM = J’ = LZ(J/)
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=0

where 0 is the angle of rotation, Ij,, is the mass moment of inertia of the gangway about the z-axis.
The maximum input torque that the slewing motor can deliver and the restricted angular velocity during

slewing according to [15] is 318K Nm and 10—= deg . The target maneuver during slewing is from 0° to 90°. Using
the restricted angular velocity, the action can be reach in 10s and with this the torque profile can be com-
posed.

The results of the displacement time history representing the tip deflection and torsional displacement dur-
ing slewing with its torque input profile are shown in 4.17, 4.18 and 4.19.

«10°% Applied Torque as function of time
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Figure 4.17: Input Slewing torque applied at the base.
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Figure 4.19: Torsional deflection during slewing motion.

4.4.3. Vibration during telescoping motion

Application to axially moving beam describes the telescoping action of the T-boom. Early studies on the dy-
namics of moving particles in a beam were conducted with fluid in a pipe. In terms of mathematics, model-
ing the dynamics of a beam whose length is time dependent manifest some aspects of a pipe conveying fluid
problem. Authors of [4] found the dynamic equation of motion that give a detailed account on the transverse

vibration of an axially moving beam. They presented a theoretical model imposing the assumptions which
are essential for Euler-Bernoulli beam theory.
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Ly Ly

\/

Figure 4.20: Telescoping motion.

Consider a T-boom moving axially from the Main boom with a constant velocity represented in Figure 4.20.
The forces due to the moving T-boom in transverse direction consist of two elements, namely 1) Coriolis force
and 2) Centrifugal force. The expression of the two elements are given in the equations below:

2

0
Feoriotis =2pA1Ur——— w (4.34)
o0yot

,0%w
t ayz
Where, A7 is the cross sectional area of the T-boom and Uy is the constant telescoping velocity. If one assume
that the bending displacement w,, w» and w3 corresponds to the boundaryof 0 < y < Li(y), Li()) <y < Ly
and Lys < y < L (y) respectively, the dynamic equation of motion that define the vibration due to the moving

T-boom can be readily obtained by adding the two forces to the Euler-Bernoulli beam model. The expression
for the transverse vibration of the Main and T-boom is as follows:

Feentrifugal = PATU (4.35)

2 4
pAM G+ (L2 Gt =0, 0sysLi(y)
$p A+ A ZY2 4 (BLL) p S22 2 420 AU G ayat +pATU26 w2 =0, Li(y)<y=<Ly (4.36)
2
pAT mf +(ELy) T ‘36‘”3 +2pArU, 2 o +pATufaay";3 -0, Ly<y=<Lyy)

It should be noted that a positive and negative telescoping velocity U, prescribe the instantaneous extension
and retraction of the gangway. The interface condition at every time instance should satisfy the continuity
and momentum balance and this was already mentioned in Chapter 3.1.1. During operation Ampelmann
is extended or retracted at a constant telescoping velocity U; = 1% [15]. The prescribed motion profile for
simulating the telescoping motion of the gangway is

L(t)=U;t

In order to simulate the transient response during extending or retracting, the initial displacement is set to
be equal to the static deflection of the gangway.

For an extending gangway from fully retracted to fully extended event the result is given in Figure 4.21. When
the procedure is reversed, the retracting gangway tip deflection response is given in Figure 4.22.
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Figure 4.21: Tip deflection during extension
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Fatigue Analysis

The objective in this section is to provide a fatigue analysis on the Ampelmann G25 gangway based S-N curve
approach. Various dynamic condition were presented in the previous section, however, not all design cases
will be considered in the fatigue life analysis. In section 5.1 a summary of the design load cases is provided
to determine the fatigue life of the gangway. The bending stress time conversion to the already obtained dis-
placement time response is discussed in Chapter 5.2. Chapter 5.3 introduces the fatigue damage calculation
according to Miner’s rule. In this also the S-N curve and stress counting method was selected and is given in
Chapter 5.4 and Chapter 5.5 receptively. Finally in Chapter 5.6 provides the analysis results and fatigue life
based on Miner’s rule.

5.1. Fatigue design load case

Dynamic analysis were investigated in the previous chapter. Although, dynamic analysis under external dis-
turbance were made, estimating the fatigue life under these conditions are not considered.

The main interest is the fatigue life due to maneuvers of the gangway. The load case to be assessed on the Am-
pelmann G25 gangway are the steps during the operational maneuvers. A typical maneuvering operational
load cycle is defined in the following:

e Luff from —20° to 0°.
e Slew from 0° to 90° .
¢ Slew from 90° to 0°.

e Luff from 0° to —20°

For these operational cycle the most extreme case is considered. This is when the gangway is in fully extended
configuration where the bending stresses are the highest at the base.

5.2. Bending stress time history

Fatigue analysis deal with stress level in a material. The results obtained from the dynamic analysis are dis-
placement over time series at any arbitrary point in the gangway. Conversion from displacement-time history
to stress-time history is required. The relation between transverse displacement and the normal stress at any
point on the gangway can be determined from the the local bending moment and is expressed by following
equation

My, 0z

oyt = (6.1

IZZ

43
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The parameter o is the normal stress, M is the bending moment, z is the distance to the neutral axis of the
cross section and I is the second moment of inertia in the z-axis. Since the normal stress varies linearly on
a cross section, the maximum stress occurs at the outer surface of the gangway where the distance z is the
largest.

2
By substituting the relation between the bending moment and the transverse displacement, M(y, ) = El;, g :;/JE%/ D
in the normal stress relation, one can rewrite the equation as
Fwyt z
oy =El;z—>—— (5.2)

oy: I,

Again by applying the shape functions discussed in Chapter 2.3 to the normal stress relation and carry out
the differentiation, one can obtain the normal stress relation along the length of an element as

12y 6 6y 4) (6 12y) (Gy 2) ]
——wi+| = - — |0+ | - =L |wi+| = ——0; 5.3
( B 13) i ( 2 on) T\ e )Y e )Y 5:3)

Observe that Equation 5.3 is written in finite element form. The nodal values, w; ; and 01, j, are known
constants obtained from displacement-time history.

One should note that the stress relation share the same form as in the vertical z-axis as well as in the horizontal
X-axis.

El,,.z

IZZ

oy =

5.3. Palmgren-Miner rule

The Palmgren-Miner rule or simply the Miner’s rule is most widely used cumulative damage model to deter-
mine the fatigue life of a system. The Miner’s rule assume a linear cumulative damage model that determines
the damage done by each cyclic load is expressed as

k 5.
damage=Y — (5.4)
i=1 N;i

In this equation, n; represents the the number of cycles at each stress block k and N; is the numbers of cycles
to failure or fatigue capacity on each stress level.

5.4. S-N curve

Engineering fatigue data of a material is normally constructed by experimenting a specimen under cyclic
loading. The number of cycles to failure of each stress level are represented by means of a S-N curve. The S-N
curve can be approximated by the Basquin relation given as

S*N=a (5.5)

To this S, is the stress amplitude range, N is the fatigue cycles capacity, k is the negative inverse slope of the
S-N curve and a is intercept of the design S-N curve.

The fatigue design parameters used in this research is based on the data of structural class B1 of [2].

A summary of the design values is given in table 5.1. It should be noted that both k and a are parameters
which depends on the material and welding features.
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Table 5.1: Fatigue analysis parameters

Design values
k 4
loga 15.117

5.5. Stress Counting

Complex load histories requires stress counting procedure to compute the number of cycles of each stress
level. The most common technique to extract the number of stress reversal from a of stress time series under
different amplitudes is by using the rainflow counting method. The rainflow counting method captures the
number cycles at each stress level, this is needed in order to asses the fatigue damage according to Miner’s
rule.

The Procedure for rainflow cycle counting is given is summarized as follows:

1. Rotate the stress-time history 90° such that the time axis vertically downward with starting time at the
top, resembling a roof.

2. Imagine each peak with a rain flow dripping down.

3. Counting half cycles by allowing the flow to continue drips down the roof and looking for flow termina-
tion. This occurs when either:

* it falls below the roof meaning that it reaches the end of the time history.

e jtintercepts with the previous flow from above.

4. Identify each cycle by pairing up half cycles with identical magnitudes and count the number of com-
plete cycles.

5.6. Fatigue life estimation

As said earlier the fatigue life is estimated in terms of number of operational maneuvers. One should note
that no friction forces were present in the setup of the equation of motion at the boundary, a counter torque is
needed to stop the gangway from rotating. Each motion causing a fatigue loading to the gangway is analyzed
and implemented in the calculation. To evaluate the fatigue life of each component, calculations are done in
the following order:

1. Obtain the displacement time history during dynamic analysis (see Chapter 3).
2. Convert the displacement time history to stress time history using Equation 5.3.
3. Predict the number cyclic loading over the time period according Chapter 5.5

4. Evaluate the fatigue damage done to the system using Miner’s rule.

The obtained stress time history, stress counts and fatigue damage of each profile are given in below.

Luffing motion results

1. Stress time history.
The converted luffing stress time history from —20° to 0° with maximum luffing velocity 2.2d—§g can be
seen is shown in Figure 5.1.
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2. Stress cycle counts.
In Figure 5.2, one can see the histogram obtained using rainflow analysis to count the number of stress

cycles.
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Figure 5.1: Stress time history during luffing motion

18

20

180

160

140

120

100

Nr of cycles: 208.5 (33.5 from half-cycles)
P [o)] o
o o (=]

M
o

[Tl e | — | | |

=]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
amplitude range[pa]

Figure 5.2: Histogram stress cycles during luffing operation
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3. Fatigue damage
The fatigue damage for the luffing motion from —20° to 0° is

damage =4.9996-10""

Since the luffing motion from 0° to —20° is having the same luffing velocity of 2.2d—ig. It is safe to say that
the stress time response is fully reversed while sharing the same number of stress counts when gravity is ne-
glected. Therefore, the damage done is also having the same value.

Slewing motion results

1. Stress time history
In Figure 5.3 the stress time history during slewing motion from 0° to 90° with maximum slewing ve-
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Figure 5.3: Stress time history during slewing motion
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2. Stress cycle counts.
The corresponding stress cycle count can be seen in Figure 5.4.
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Figure 5.4: Histogram stress cycles during slewing operation

3. Fatigue damage
The fatigue damage for the slewing motion from 0 to 90 deg is

damage=1.7742-10"10

Again, for slewing motion from 90° to 0°, the cycles are fully reversed and the damage to the structure is equal.
Fatigue life

The expected Fatigue life can be evaluated using Miner’s rule. According to the Miner’s rule, failure will occur
when the damage reaches to the value of one. In mathematical terms it is expressed as

Y damage=1 (5.6)

The damage done per slewing and luffing cycle were already obtained and the expected fatigue life in number
of operation cycles can be determined with the following equation

1
Fati Life= —— 5.7
atigue Life S damage (6.7

A summary of the obtained fatigue damage is given in Table 5.2.
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Table 5.2: fatigue damage summary

Component damage

luff -20 to 0 4.9996-1077

slew 0 to 90 deg 1.7742-10710
slew 90 to 0 deg 1.7742-10710
luff 0 to -20 4.9996-1077

Total ~1076

The estimated fatigue life in number of maneuvering cycles is
Fatigue Life = 10° maneuvering cycles

The influence of the material damping value to the fatigue life were conducted. A comparison for the fatigue
life with two different damping parameters can be seen in Table 5.5.

Fatigue life comparison

1.60E+06
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1.00E+06
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4. 00E=05

2.00E+05

0.00E+00

n 0.5*n

Figure 5.5: Histogram stress cycles during slewing operation






Conclusion and Recommendation

Conclusion

In this thesis a dynamic model for the Ampelmann G25 gangway was developed in bending and coupled
bending-torsional motion. The structural mathematical model is based on Euler-Bernoulli hypothesis in-
cluding strain rate damping to describe the vibrations. Finite element method was implemented to repro-
duce the dynamics of the G25 gangway to external disturbance and gangway maneuvers.

The log decrement method was used to determine the damping parameter from the measured data. Com-
paring the test data to the free vibration analysis obtained using Euler-Bernoulli beam mathematical model
shows sufficiently accurate results in the vertical direction. The natural frequencies depends mostly on the
stiffness, mass and the boundary condition of the gangway. Additionally, the extension length of the gangway
is also a main contributing factor: the longer the extension leads to a less stiff structure thereby lowering the
natural frequency. The natural frequency found in the horizontal x-axis is quite low. This is because the first
mode vibrates at the first torsional natural frequency.

The dynamic behavior under steady wind velocity shows that for high wind velocity, the gangway is highly
damped due to the incorporated aerodynamic damping to the system. However, this is only the case when
wind exposure time is infinite. Furthermore, the response shows that bending vibration damps out faster that
torsional vibration.

The dynamic behavior under base excitation were modeled in two ways: a sinusoidal model and a pulse
excitation model. The sinusoidal model represents the continuous motion subjected the hexapod and it
was found that the gangway under maximum working sea state condition, the excitation frequency is swiftly
damped out and the steady state is reached. The pulse excitation model was used to simulate residual motion
and the results show more abrupt vibrations compared to the sinusoidal model.

In telescoping of the gangway it was observed that the period of vibration increases during extension and
decreases during retraction. This is the effect of the changing length and mass system.

Research in fatigue analysis under gangway maneuvers were conducted. The maneuvers are slewing and
luffing motion of the gangway. The results in fatigue analysis indicates it can withstand up to 10° operational
maneuvers for a typical maneuver profile. To this, the dominant factor to fatigue is the luffing motion. How-
ever, this might not be the case when warping is added to the equation of motion which might effect the stress
cycles in during slewing.

Deviating the maneuver profile and adjusting the input torque given in the analysis may lead to a different
fatigue life.
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Recommendation

The most important recommendation is to verify the dynamic model through experimental measurements.
In this model, the damping parameter in torsional vibration was taken as the same value used in bending
vibration. The energy dissipation in torsion may be different then in bending. Also, from the free vibration
test that have been carry out, the decay shows a rough decay. This might indicate that other damping mech-
anisms are involved in the system. Conducting more measurements allow one to develop a better overall
damping of the gangway in bending as well as in torsion.

The gangway model using Euler-Bernoulli beam theory can describe the dynamics of the G25 gangway. Many
assumptions were made in obtaining the dynamic response especially in the coupled bending-torsional vi-
bration and external loads.

For future research in terms of the improvement of dynamic model one may include:

¢ The combination maneuvering (luffing, slewing and telescoping) effect. In this thesis all those maneu-
vers were investigated separately and does not represent a real life situation where the operator handles
those maneuvers at once.

* Adynamic wind load to the structure for a better understanding of wind induced vibration. Wind forces
on structures are unsteady due to the alteration in aerodynamic forces, vortex shedding and wind gust.
The cyclic frequency of the aerodynamic forces may coincide with a natural frequency of the gangway.

» Spring stiffness to the interfaces between the overlapping area of the main and T-boom. The equilib-
rium in forces and continuity in displacement and rotation at the interfaces assumed in this thesis are
not fully correct. In between the interface there are wheels attached to allow the T-boom to telescope
forward and backward. During bending in the vertical direction the transfer of forces at the interfaces
may not be constant.

* The warping effect of the gangway. The gangway is an 'U shape’ like beam where warping will occur
during torsional vibration. Including warping effect will decrease the natural frequency of the gangway.



Ampelmann gangway system

In this appendix some additional information is presented on the gangway system are given.

A.1. Gangway G25 parameters

The Ampelmann G25 gangway parameters are given here in this section.

Symbol
mu
mr

)
Cp

LTe

Description

Mass main boom

Mass main boom

Steel density

Drag coefficient

Young’s modulus

Shear modulus

Mass moment of inertia main boom
Mass moment of inertia T-boom
Second moment of inertia in x-axis
Second moment of inertia in x-axis
Second moment of inertia in z-axis
Second moment of inertia in z-axis
Torsional constant

Torsional constant

Rotational spring stiffness

Main boom length

T-boom length

Total extension length

53

value

2181kg
1365kg
78005
1.65
210-10%Pa
46-10°Pa
10288kg - m?
8282kg - m?
0.0012m*
7.5134-10"*m*
0.0018m*

9.7030-10"*m*

2.265-10"°m*
1.72-107°m*
2-2.07-108
12.9m

13.2m

25m
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L, Total retracted length 16m

A.2. Ampelmann placement on the ship

The Ampelmann placement on a vessel is installed at the midships, port side as shown Figure A.1. The wave
direction is 135° with a significant wave height of 1.5m and a wave period of 7s

\4
0° 180°
N4 X
&, Incoming
z wave
direction ‘
'_\4
X ——
Ly

Figure A.1: Ampelmann placement

A.3. General operation procedure

The step by step operational procedure for the Ampelmann system can be seen in Figure A.2.

1. Stowed Condition 2. People Boarding 3. Settled 4 Moving gangway
No hydraulic pressure. Gangway sea fastening Hydraulic pressure on outwards
Gangway sea fastened. released. People walk Platform retracted. No Luffing and slewing of
over gangway people on gangway. 16 gangway in retracted
people on transfer deck. position

5. To neutral position 6. Ci ion On 79 8. Contact with Structure
Transfer deck rises to Full compensationin 10s  Luffing, telescoping and Contact with structure
neutral position No accelerations slewing of gangway Telescoping, slewing and
towards landing point luffing in free-floating mode

9. People Transfer 10. Retraction gangway  11. Compensation Off 12. To settled position
One person at a time Retraction of gangway by ~ Fade-out of compensation  Transfer deck lowers to
walks to structure over telescoping, slewing and  Platform in neutral settled position
gangway Iuffing in active mode position

13. Moving gangway to  14. People Unboarding 15. Stowed Position

vessel Hydraulic pressure off No hydraulic pressure
Luffing, telescoping and People walk over gangway sea fastened
slewing of gangway gangway

Figure A.2: Operational procedure



Numerical Method

As discussed in Chapter 4.1 the finite element method was used to solve for the partial differential equations.

B.1. Finite element Method

Consider a beam discretized in two elements with a rotation spring k, boundary at the left side as shown in
Figure B.1. Each element is of length [, with an cross sectional area A, a density p and a flexural rigidity EI.
The mass and stiffness matrix of each element is given as follow:

156 221, 54 —13l, 156 221, 54 —13l,
pAl, | 221, 412 131, -3I5 pAl, | 221, 4I2 131, -3I5
(M1l = —— [Mz] = ——
420 | 54 131, 156 —22l, 420 | 54 131, 156 221,
-131, -312 -221, 4% -131, -312 -221, 4%
12 6l, -12 6l 12 6, -12 6l
EI|6l, 412 -6l, 212 EI|6l, 412 -6l, 2I2
(K] = — (K] =—
le 1-12 -61, 12 -s6l, le 1-12 -61, 12 -6l,
6l, 212 -6l, 42 6l, 212 -6l, 42

The next step is to form the global matrix to represent the total system of the beam. The mass and stiffness
element matrix is assembled into a global inertia matrix [M] and a structural stiffness matrix [K] with 2(N +1)

Le

Figure B.1: Two element beam
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degrees of freedom for pure bending beam. Using finite element method the interface condition will be
naturally satisfied when constructing the system mass and stiffness matrices.
The global finite element mass and stiffness matrix is as follow:

Mo pAle

420

[ 156 221, 54

221, 412 131,
54 13, 312
-131, =312 0
0 0 54
0 0 -13l,

[ 12 61, -12
6l, 42 -6l
EI|-12 -6l, 24
6l, 22 0
0 0 -I2
| 0 0 6l

-13l, 0 0
-312 0 0
0 54 -13[,

812 131, -3I2

131, 15

-3 221, AlZ |

6l 0
220
0 -12
812  —6l,
-6l, 12
212 -6l,

6 22,

0
0
61,
212
-6,
412

The next step is to apply the boundary condition to the nodal displacement and rotation. Referring node one
to be at the base, the displacement is zero and this essential boundary condition can be eliminated by can-
celing out the first degree of freedom. The natural boundary condition at node one however, depends on the
rotation spring stiffness at the base. One can leave it as a load vector or simply add the rotational stiffness to
global stiffness matrix at the second degree of freedom of node one. At the free end the homogeneous natural
boundary condition is implicitly contained.
Applying the essential and natural boundary conditions to the global finite element matrices takes the fol-

lowing form:

=32 0

412 131,
13, 312 0 54
Al
Mz%oe 32 0 82 13,

412+k, -6l, 22
—-6l, 24 0

2120
0 -12 -6l
0 6l, 212

0 54 131, 156
0 -131, -312 -22],

-12 6,

812 —61, 22
12 -6,

-61, 412

-131,
-312
-221,

412
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The preceding equation leads to the following ordinary differential equation:

.. T
Mo+ K6 =F(p), 0=10, w, 6, w3 03

Where § is a vector containing the nodal degrees of freedom w; and 8; at each node of the discrete element
and F(?) is the global force vector.

To solve the system under an external time dependent force numerical integration scheme can be used and
will be discussed later.

For free vibration where F(#) is zero is the natural frequencies and mode shape can be solved as an eigen-
value problem given as

[M-w?K]5=0

In this w will be the natural frequency and § the corresponding mode shapes.

B.2. Finite element method to rotating beam

Consider the gangway is rotating similarly as shown in Figure 4.13. The Euler-Bernoulli beam theory was
used to model the dynamic behavior of the gangway. Presume that the total displacement z(y, t) of a point
along the gangway at a distance y from its rotating base is function of the rigid body rotation ¢(t) and the
elastic deflection w(y, t) measured from a the non rotating frame is given as

z(y, ) =yp) +w(y, 1) (B.1)
Using finite element method to solve the dynamic problem leads to a equation
w(y, 1 =d(y)o() (B.2)

where d represents the shape functions, see Chapter 4.1, and ¢ are the nodal displacements.
Substituting Equation B.2 into Equation B.1 leads to the following simplified form:

z(y, 1) =dz(y)6(1)

In this the new shape function d, and nodal displacements é is as follow:

@(1)

dZZ[y d] 6= 5

The kinetic energy and strain energy of each element can be expressed as

le

1 02 le 22\
Eki"_ﬁ A PA(Y) (E) dy Epot—[] EI(}’)(W) dy
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Again using the procedure discussed in Chapter 4.1, the element mass and stiffness matrix can be obtained
as:

n myz n3 miy mys
mi2 156 22le 54 —1313
pAle 2 2
[Mrot] = —V— | ms ZZZe 4le 13le _3le (B.3)
420
miy 54 131, 156  -221,
mys —131, 312 -221, 412
0o o0 0 0 0
0 12 6l -12 61,
_El 2 2
(Kol = E 0 o6l 4l; -6l, 21 (B.4)
0 -12 -6l, 12 -6l,
0 6l 202 -6l 4l2

where

my = 14012 (3n* -3n+1)
Mz =211, (10n—7)

mi3 =712 (5n-3)

Mg =211, (101 —3)

mis =—712(5n-2)

and n denotes the number of elements used.

B.3. Finite element to axial translating beam

Consider a beam translating axially under a constant velocity U. The equation of motion describing an ax-
ially translating beam are discussed in Chapter 4.4.3. The forumlation of the axial translating beam using
finite element method will not be discussed here, for reference see [13]. The ordinary differential equation
describing an axial translating beam neglecting the material in finite element takes the form:

Mé+Cré+(K+Kr)6=0

Where M and K are the convention mass stiffness matrix that has been described previously.
The transport matrices Cr and Kr are given as

0 6, 30 -6
_pAU |-6l. 0 6l -I
T30 |30 -6, 0 6l
6l 12 -6, 0

Cr (B.5)
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36 31, -36 3,
pAU? |3l 412 -3l, 22
30l |_36 -31, 36 -3l

(B.6)

3L, -12 -31, 4l?

B.4. Numerical time integration

a numerical time integration scheme is used to solve the ordinary differential equation with its initial condi-
tion. As discussed the finite element method is used to discretize the beam in space domain.

There exist several integration scheme to solve the second order differential equation. During analysis in this
thesis two types of integration scheme were used.

The first one being the "'ODE45’, this is a build in function in MATLAB that adopts the Runge-Kutta method.
and the second one being the Newmark- method.

Newmark-§ algorithm

Using Newmark- 8 to solve the first derivative of the second differential equation in time, NEWMARK pro-

poses two parameters y and f3 to determine to position & and velocities & at a forward time step ¢ + At. The
algorithm to implement Newmark- f method for direct integration is summed up as follow:

1. Initialize the initial condition for the displacement 6, velocity 80 and acceleration &

2. Form the effective matrix K
K=K+aM+a,C
3. At each forward time step calculate the effective loading F
F=Fpne+M(agh;+azd,+az0,) + C (a8, + asd + asd)
4. Determine the displacement at the next time step using
k 0 t+At = ﬁ

5. Determine the acceleration and velocity at each each forward time step with the known displacement
using

Srinr=0a0 (8 rsne—0¢) — ad; — asd;

Orint =0+ asd;+azdine

The integration constant ay..a; are given as

1 y 1 1 5
ay=—>, aG=——, G=——, a3=———
0= BAr N 2= Bar °T 2B
At
a4—x—1, as—T(%—z), a6:At(1_7’)’ ar =yAt

The obtain the solution the NEWMARK parameters  and y needs to be chosen. By default the values of § = i

andy = % Choosing this value leads to a so called 'constant acceleration method [5].






Additional Dynamic Response

In this section additional dynamics response to external disturbance are given.

C.1. Gangway response to free floating drift away

In free floating mode, the gangway moves along with the residual motion of the hexapod. During this stage
the gangway pushes a constant telescoping force to the platform to ensure that the gangway is still attached
to the structure if by any means the ship drift away from its position. When the vessel moves towards the
platform, the movable T-boom will be pushed inwards and vice versa.

A sudden drift away of the ship can be so large that the gangway no longer is attach to the offshore platform.
The luffing cylinder is designed to counteract the dead weight of the gangway, so that the gangway stays in its
position when a sudden drift away occurs. Most of the time those incidence occur along with a person stand-
ing on the gangway. The luffing cylinder cannot cope with both the weight of the person and the gangway
will bounce back to its neutral/equilibrium position, causing a vertical bending vibration due to the weight
of the person.

Figure C.1: Free floating drift away

a graphical representation can be seen in Figure C.1 and the equation motion written in general to describe
the response is as follow:

Pwx,t) 0% ?w(x, 1)

PA——"—" + El———

30 g (1 g = messtr=D 1

In this m;, denotes the mass of a person, g is the gravity and L is a variable length. The tip displacement time
response is given in Figure C.2.
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C. Additional Dynamic Response

Deflection [m]

-0.02

-0.04

-0.12

Tip deflection time response

6 8 10 12 14
Time [s]

Figure C.2: Time response to drift away

16 18 20



Rainflow Cyclic Counting

An example of how to perform the rainflow cyclic counting technique on a simplified stress time history is
shown. It should be noted that the stress time history given serve as an example and it does not represent the
stress time history from this thesis.

Consider a stress time history given as in Figure D.1.

STRESS
=}
\\\
P
S

0 1 2 3 4 5 6 7 8
TIME

Figure D.1: Stress time history [[11]].

To count the number of stress cycle first one need to rotate the stress time plot and draw rainflows dripping
from each roof and is illustrated in Figure D.2. The stress cycle range is counted by performing the following
rules:

1. The flow starts from each peak.

2. The flow started from a peak continues to flow down and terminates when the magnitude of the fol-
lowing peak is equal or larger than the previous peak.

3. The flow stops when it intercepts with the previous flow from above.

Applying the rules to count the number of cycles of each stress range, the results are given in Table D.1.
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D. Rainflow Cyclic Counting

TIME

-5 6
STRESS
Figure D.2: Rainflow cycles illustation [[11]].
Table D.1: Rainflow cycle count

From To From To Range Cycle
A B -2 1 3 0.5
B C 1 -3 4 0.5
C D -3 5 8 0.5
D G 5 -4 9 0.5
E F -1 3 4 1

G H -4 4 8 0.5
H I 4 -2 6 0.5

Every stress range path is counted as half cycle. However, path E-F is counted as one cycle, because some of
the flow is considered also in F-G.
The ASTM standard [1] gives a computer algorithm that performs the rainflow cyclic counting which is used
in this thesis to perform the analysis.
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