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List of Symbols

In Table 1, the symbols, which are used in this thesis, together with their descriptions are listed. Other
notations and abbreviations will be defined upon their first use in the text.

Parameter Description

ρ1 The density of the T+ tumor cells, which depend on testosterone but do not produce it

ρ2 The density of the TP tumor cells, which depend on testosterone and produce it

ρ3 The density of the T− tumor cells, which are independent of testosterone

ρ4 The density of testosterone

ρ5 The density of the healthy cells

ρN The sum of the tumor and healthy cells densities

αi Birth-rates for i ∈ {1, 2, 3, 4, 5}

β The rate at which the cells are pushed

Ci Movement probability for i ∈ {1, 2, 3, 4, 5}

γi Death-rates for i ∈ {1, 2, 3, 4, 5}

δt Time-step

κ Death-rate due to lack of testosterone

L L× L is the lattice size

l Spatial-step

η Consumption-rate testosterone

µ Production-rate testosterone

χ Base level of testosterone in the blood

(x̃, ỹ) The neighbor sites of (x, y), which are {(x+ l, y), (x− l, y), (x, y + l), (x, y − l)}

Table 1: The symbols, which are used in this thesis, together with their descriptions are listed.
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Abstract

Cancer affects a countless number of lives across the world each day. Mathematical oncology develops
and studies mathematical models of cancer and its treatment. This thesis focuses on spatiotemporal
modeling in mathematical oncology, developing an agent-based model for prostate cancer, with the
aim of gaining insights into how the different tumor cells respond to varying testosterone levels and
different treatment strategies. We began by analyzing non-spatial population models, the replicator
dynamics and Lotka-Volterra dynamics, proving their equivalence under certain conditions. The study
then transitioned to spatial agent-based modeling on a discrete lattice, simulating the interactions be-
tween testosterone-dependent and testosterone-independent tumor cells. Through this, we identified
a possible phase transition in the testosterone level in the bloodstream, which could influence which
tumor cells dominates the grid. A continuum limit of the discrete model was derived, leading to partial
differential equations that describe the tumor’s spatial behavior. We applied mathematical tools like
non-dimensionalization and linear stability analysis to gain deeper insights into the dynamics of the
model. Additionally, we simulated three treatment strategies: (1) testosterone removal from the blood
with Lupron, (2) Lupron combined with Abiraterone to stop the testosterone producing cancer cell to
grow, and (3) Lupron and Abiraterone alongside high-dose testosterone injections to simulate extinc-
tion therapy. The flexibility of our model allows for its application to other hormonal cancers, and our
findings support the promising potential of hormonal manipulation in controlling tumor growth and com-
position, especially extinction therapy. The mathematical analysis together with simulations provide
unique insights into the tumor dynamics. Future research directions include changing assumptions,
expanding the model to three dimensions and integrating patient data for more accurate simulations.

iv



Contents

Dedication i

Acknowledgments ii

List of Symbols iii

Abstract iv

1 Introduction 1
1.1 Basic Facts about Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mathematical Modeling of Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Mathematical Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Equivalence between Classical Non-spatial Population Models for Cancer 7
2.1 Replicator Dynamics and an Example of its Usage in Mathematical Oncology . . . . . . 7
2.2 Lotka-Volterra dynamics and an Example of its Utilization in Mathematical Oncology . . 9
2.3 (Non) Correspondence between Replicator and Lotka-Volterra Dynamics and What it

Means for Mathematical Oncology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Discrete Spatial Model of Prostate Cancer 15
3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Dynamics of the Tumor Cells and the Healthy Cells . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Death and Birth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Dynamics of Testosterone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Consumption and Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Total System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Simulations of Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 T− Independent Cell Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.2 T+ and TP Dependent Cells Dominance under Testosterone Influence . . . . . 21
3.5.3 Tumor growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 The Continuum Spatial Model of Prostate Cancer 26
4.1 Partial Differential Equations Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Theoretic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Continuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Equilibrium Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Simpler System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 An Alternative Continuum Spatial Model of Prostate Cancer 35
5.1 The Model with Alternate Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Non-dimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Non-dimensionalization of the Equations for the Tumor Cells . . . . . . . . . . . 37
5.2.2 Non-dimensionalization of the Equations for the Healthy Cells . . . . . . . . . . . 38
5.2.3 Non-dimensionalization of the Equation for Testosterone . . . . . . . . . . . . . . 38
5.2.4 Total Non-dimensionalized System . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.5 Equilibrium Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1 Equilibrium 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



Contents vi

5.3.2 Equilibrium 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Treatment Strategies for Prostate Cancer 49
6.1 Parameter Values and Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Effect of Testosterone Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Testosterone Removal and Targeting TP . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4 Innovative Treatment for Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Discussion and Conclusions 58

References 61

A The C++ Code 64



1
Introduction

Cancer affects a countless number of lives across the world each day. According to the World Health
Organization [56], cancer was the second leading cause of death worldwide in 2018, responsible for
approximately 9.6 million deaths. This is almost one in six of all deaths. In the Netherlands, the can-
cer center Integraal Kankercentrum Nederland (IKNL) concluded that one in two people will receive
a cancer diagnosis during their lifetime [23]. However, the impact of cancer extends beyond those
diagnosed, deeply affecting the lives of their relatives and loved ones [18]. These facts underscore
the urgent need to advance research in oncology, not only to improve treatment outcomes but also
to deepen the understanding of the disease’s complexities and develop strategies for its prevention,
control, and ultimately, if possible, its extinction.

One class of cancer is hormone-dependent cancer. Hormones are key contributors to the development
of many of the most common cancers globally, such as prostate cancer in men as well as endometrial,
breast, and ovarian cancers in women [28]. Hormones, like estrogen and androgen, are known to play
critical roles in the development and progression of those cancers [34]. According to Key [28], the
primary ways hormones influence cancer are likely to involve regulating cell division rates, guiding cell
differentiation, and affecting the quantity of vulnerable cells.

Among the many types of cancer, prostate cancer stands out due to its impact among men [24]. As
reported by the IKNL, prostate cancer was one of the five most common cancer diagnoses among the
whole population in the Netherlands in 2023, reflecting a significant public health problem [23]. Glob-
ally, it is the second most frequently diagnosed cancer in men, with big differences in diagnosis rates
and mortality rates across various ethnicity’s and age groups [42]. All of this shows the importance
of research on prostate cancer to improve treatment strategies for this cancer. In this thesis, we con-
tribute to this research by using spatiotemporal modeling in mathematical oncology with a case study
in prostate cancer. In this chapter, we will introduce and discuss some basic facts about cancer, math-
ematical modeling of cancer, and mathematics concepts necessary to understand this thesis, and in
Section 1.4 an overview of the thesis is given.

1.1. Basic Facts about Cancer
Cancer begins at the cellular level when errors occur during cell division, the process by which a single
cell divides into two new cells [39]. These errors are changes to the DNA of the cell, known as muta-
tions [25]. Mutated cells may begin to multiply rapidly and uncontrollably, forming a mass of abnormal
cells known as a tumor [36]. If the tumor is cancerous, it can invade surrounding tissues and spread to
other parts of the body through a process called metastasis [20, 19].

In the case of prostate cancer, there can be several different types of mutated cells present in a tumor,
each of which interacts with the hormone testosterone in a different way [59, 57, 10, 53]. Some of
these mutated cells do not respond to testosterone at all, and these are categorized as T− cells. On
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1.2. Mathematical Modeling of Cancer 2

the other hand, there are cancerous cells that do depend on testosterone, which we refer to as T+ cells.
Additionally, there is a third group of cells which do require testosterone to live but have the ability to
produce it themselves, and we label these as TP cells. The TP cells not only use the testosterone they
create to meet their own biological needs, but they can also share this hormone with nearby cells as a
public good [57]. This sharing can have significant effects, as it allows neighboring cells to benefit from
the testosterone that is produced.
This complex interaction between different types of cancer cells and testosterone plays a crucial role
in the behavior of prostate cancer and its development. Understanding these interactions is important
because it helps researchers learn more about how prostate cancer grows and therefore how to better
treat it. If the resistant T− cancer cells are present, this is known as castrate-resistant prostate can-
cer (cRPC); when this cancer becomes metastatic, it is called metastatic castration-resistant prostate
cancer (mCRPC). There can also be adaptations, such as phenotypic and genetic changes, which
complicate the understanding and targeting of the cancer [11, 19].

There is currently no proven method to prevent prostate cancer, but maintaining a healthy diet and
exercising regularly may be beneficial [42]. Recently, there have been new therapies as well as various
combinations of existing therapies aimed at treating prostate cancer [9]. They are commonly applied at
the maximum tolerated dose (MTD), but many studies and papers argue against always administering
the MTD until progression because it can lead to treatment-resistant mutations [32, 16, 60, 47]. A major
challenge is the problem of resistance to existing treatments. This resistance can make it much more
difficult for therapies to work effectively over time, often leading to an uncontrollably growing tumor that
can eventually result in death.
One type of treatment designed to combat this issue is adaptive therapy, also referred to as evolution-
ary therapy [53, 59, 15]. It uses the competitive interactions between drug-sensitive and drug-resistant
cancer cells to control the tumor burden, by allowing the number of drug-sensitive cells to grow, sup-
pressing the resistant cells. In this way, the number of resistant cells can be controlled due to a lack of
space and resources.

Other common cancer treatments include surgery and chemotherapy, as well as a more recent strategy
known as extinction therapy. This approach takes inspiration from the theory behind themass extinction
of dinosaurs, where a single catastrophic event likely caused their extinction. Extinction therapy aims
to similarly disrupt cancer by delivering a powerful, unexpected intervention, referred to as a “first
strike” [14]. This powerful treatment drastically reduces the tumor size. The therapy is then followed
by subsequent “second strike” that targets any surviving cancer cells, progressively driving the tumor
population below the point where it can sustain itself, ultimately leading to its eventual extinction.

1.2. Mathematical Modeling of Cancer
Mathematical oncology is an interdisciplinary field that uses mathematical modeling and optimization
techniques to better understand cancer. This can be done by creating models that simulate the be-
havior of tumors, predict how they will progress and respond to treatments, and optimize personalized
therapies. The models can be fitted to real data from patients or to data from in vitro studies [43, 27],
which are experiments done outside the body, for example in a Petri dish. We can use the models to
make recommendations so that oncologists can explain, test or adjust their expectations or treatment
strategies, and help them to make more effective, data-driven decisions to optimize patient outcomes.

Mathematical models are also used to optimize the timing and dosage of medicines and other forms
of treatments [13, 7, 35]. By taking into account elements such as drug resistance and the differ-
ent cell types, the models can make patient-specific adaptive treatment predictions. There is no one-
size-fits-all treatment. According to Rejniak and McCawley [43], computational cancer models offer
researchers powerful tools that can simplify complex systems into coherent frameworks, while also
generating testable hypotheses.

Recent studies have demonstrated the growing impact and importance of mathematical oncology. For
example, a study by Powathil, Adamson, and Chaplain [40] demonstrates how a mathematical model
replicates the outcomes of earlier biological experiments related to cancer treatment, which can be
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used to test the most effective combinations of radiotherapy and medicines. Another recent example
is a study by Soboleva et al. that presents a mathematical model for cancer dynamics, based on both
in vitro and in vivo data from non-small cell lung cancer treatment [46]. Moreover, game theory, a
branch of mathematics, can improve cancer treatment by framing the treatment process as a strategic
interaction between the physician and the tumor. This approach focuses on understanding resistance
dynamics and the relative sizes of different cell populations, rather than solely considering the tumor
size [47]. Hence, by creating models that simulate tumor behavior, predict treatment responses, per-
sonalize therapies and allow a better understanding of cancer, mathematical oncology is a powerful
tool in the fight against cancer.

There are several different classes of mathematical models used in mathematical oncology. Among
the various types of models, it is important to distinguish between spatial and non-spatial models. Non-
spatial models focus solely on population dynamics over time, without considering the spatial distribu-
tion of cells. These models can be easier to analyze and can provide insights into the overall growth of
a tumor or its response to a treatment, but they may miss critical aspects related to the tumor’s struc-
ture and its interaction with its environment. An example of a non-spatial cancer model can be found in
the paper by Cunningham et al., which describes strategies for managing metastatic castrate resistant
prostate cancer [10].

Another key type of mathematical modeling are population-based models. These models are typically
employed to study the dynamics of populations, such as the spread of diseases or the movement of
wildlife. For instance, an article by Okuonghae and Omame [37] describes the COVID-19 dynamics
by using population models. In mathematical oncology, similar population-based approaches can be
used to study cancer, often to predict cancer cells’ response to a particular treatment and/or optimize
anti-cancer therapies [26, 57, 16, 4, 17, 60].

Two common types of population-based models in mathematical oncology are the Replicator dynam-
ics [33] and Lotka-Volterra models [5]. While these models are related, they have differences. Repli-
cator dynamics track the changing proportions of different tumor cell types over time, offering insights
into competition and selection among cells. On the other hand, Lotka-Volterra models, which describe
the changing population sizes of each cancer cell type in a tumor, can also show the total size of the
tumor. An example of a predator-prey Lotka-Volterra model is shown in Figure 1.1. The plot was made
in Matlab with the Lotka-Volterra system:{

ẋ1 = x1 − 0.5x1x2,

ẋ2 = −0.75x2 + 0.25x1x2.
(1.1)
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Figure 1.1: An example of a population-based model: a predator-prey model, with System| (1.1). We see the predators and
prey populations alternating.

In the first part of this thesis, we will explore how to relate these two models properly to capture different
aspects of cancer dynamics.

In contrast, spatial models incorporate a geographical or positional aspect, for example simulating a
population across a two- or three- dimensional lattice [3]. In the context of cancer, spatial models cap-
ture the location and movement of cells within the tumor environment, offering insights on how cancer
cells interact with each other and their surroundings.

In the second part of the thesis an agent-based model (ABM) for prostate cancer will be introduced.
Agent-based modeling is a computational modeling method that simulates the interactions of individual
agents within a system, typically with discrete, cell-scale space [50]. Agent-based models allow for
detailed simulations where individual agents, such as cells or organisms, interact based on predefined
rules, in order to understand the behavior of a system and predict the developments. This method can
be used to study complex behaviors that emerge from the local interactions of these agents. That is
why agent-based modeling is a tool for understanding, predicting, and treating cancer, and it is able to
capture multiscale interactions [52]. For example, Alsenafi and Barbaro introduce in their work a lattice-
based agent-based model for gang territoriality, where they simulate and analyze the gang dynamics
and the graffiti they mark on a two-dimensional discrete lattice [1]. However, many agent-based models
lack formal mathematical analysis [48, 38]. In this work, we aim to fill that gap by applying relevant
mathematical concepts.

1.3. Mathematical Concepts
For this thesis, several key mathematical concepts are needed. We will give a heuristic understanding
of these concepts here.

Diffusion refers to the process by which particles naturally move from areas of higher concentration
to areas of lower concentration. It is typically described by the diffusion equation, a partial differential
equation that describes how the concentration of particles or cells changes over time. The diffusion
equation is:

δy

δt
= D ▽2 y,
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with D the diffusion constant and y (x, t) the concentration of the moving object at time t and position
x. In this process, the probability of a particle moving from one cell to a neighboring cell depends on
the concentration differences between the cells. In biological contexts, diffusion often describes how
molecules, such as chemicals and cells, spread through tissue. In contrast, an unbiased random walk
is a stochastic process that models the movement of particles where each step occurs in a random
direction, independent of the concentrations. In this case, the probability of moving to any neighboring
cell is the same in all directions, meaning that the movement is purely random without being influenced
by the surrounding environment. Both diffusion and random walk processes are fundamental in mod-
eling cellular behavior and interactions within tissues.

Another essential distinction to make, is the difference between discrete and continuum models. Dis-
crete models, such as agent-basedmodels, treat variables as separate units, often simulating individual
agents like cells, and are usually also discrete in time. In contrast, continuum models represent the
system with smooth variables that change continuously over space and time, typically using differential
equations. For example, while agent-based models handle individual cells as separate agents, contin-
uum models can describe densities.

To derive a continuum model from a discrete one, we often assume smoothness, which means that
the variables change continuously and smoothly over space and time. This allows the formal deriva-
tion from discrete models, which consider individual agents, to partial differential equations (PDEs). In
mathematical oncology, this transition is useful for studying overall tumor growth or diffusion of treat-
ment effects across the tissue. The continuum limit of an agent-based model can often lead to PDEs [2,
58], such as the reaction-diffusion equations often used in tumor modeling.

After taking the continuum limit of the discrete model and obtaining PDEs, the next step is to analyze
the system by examining its equilibria, non-dimensionalizing the equations, and performing a linear
stability analysis. This process follows the work of Alsenafi in his PhD thesis [2] and Zegers’ bache-
lor thesis [58]. This analysis is a crucial mathematical tool for determining the stability of equilibrium
points in dynamical systems. The method involves introducing a small perturbation to an equilibrium
state and observing how the system responds. Specifically, we look at the eigenvalues of the system to
find out the stability: if all eigenvalues have negative real parts, the equilibrium is stable, meaning that
the system will stay at its equilibrium. If any eigenvalue has a positive real part, the system is unstable,
which could correspond to scenarios of uncontrolled tumor growth or tumor extinction. Additionally, it
is important to distinguish between real and imaginary eigenvalues. In the context of cancer modeling,
this method helps predict whether small changes in the tumor’s state will lead to a return to an equilib-
rium, excessive growth, or other dynamic behaviors.

In the linear stability analysis, a small perturbation is added to the equilibrium solutions. This perturba-
tion is of the form δie

αt+ik·v with k being the wave numbers, see Chapter 4 for more information. The
solutions determine whether the small perturbations will grow in time and, if so, for which wavelengths.
They are often interested in the possibility of spatiotemporal oscillations [54].

1.4. Overview of the Thesis
The objective of this thesis is to explore modeling techniques in mathematical oncology, with a par-
ticular focus on both temporal and spatial dynamics. We aim to mathematically analyze our model,
potentially influencing cancer progression and treatment outcomes in the future.

In Chapter 2, we first explore two common non-spatial population models: replicator dynamics and
Lotka-Volterra dynamics. The key question we address is whether there is an equivalence between
replicator dynamics and the Lotka-Volterra models, and how such an equivalence, if established, can
impact the field of mathematical oncology. This analysis will help clarify the challenges of using these
models. After that we will switch to spatial models.

Next, in Chapter 3, we design an agent-based model on a discrete lattice to describe prostate cancer
with three different cell types. By changing the testosterone level in the blood (χ), we aim to control
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which tumor cells, testosterone-dependent or independent, dominate the lattice. We also simulate tu-
mor growth starting from a few mutated cells.

In Chapter 4, we derive the partial differential equations of the continuum system by taking the formal
continuum limit of the discrete model. Since this system is challenging to analyze, we propose an al-
ternative continuum spatial model in Chapter 5 and analyze this, through non-dimensionalization and
linear stability analysis. Finally, in Chapter 6, we explore three different treatment strategies for prostate
cancer, each of which manipulates testosterone levels and therefore affects the evolutions of the tu-
mor. Lupron removes all testosterone from the bloodstream [53], Abiraterone stops the testosterone-
producing cancer cells (TP ) from dividing [10], and we show further that high-dose testosterone injec-
tions could be applied as extinction therapy.



2
Equivalence between Classical

Non-spatial Population Models for
Cancer

In this chapter, we will examine the equivalence between classical non-spatial population models for
cancer. Mathematical oncology develops mathematical models to study cancer, often to predict can-
cer cells’ response to a particular treatment and/or optimize anti-cancer therapies (See [53, 4, 16, 47]
for some examples). As highlighted also in recent reviews of game-theoretic models utilized within
the mathematical oncology field [55, 8], models based on ordinary differential equations (ODEs) are
one of the most prevalent approaches utilized within the mathematical oncology community. In fact,
both Replicator dynamics and Lotka-Volterra dynamics are examples of such models and are widely
used [26, 57, 16, 4, 17, 60].

Interestingly enough, while the purpose of replicator dynamics in generic game-theoretic modeling is
often to track how proportion of individuals of different types change over time and their main focus is
not how population size evolves, in mathematical oncology we also see attempts to optimize cancer
treatment in replicator dynamics models of cancer [16], while in reality it is the population size which
we want to control in cancer. While Hofbauer and Sigmund [22] introduced transformation between
Lotka-Volterra dynamics and replicator dynamics preserving both equilibria and the transient dynam-
ics, this transformation utilized n + 1 types in replicator dynamics, which corresponding to n types in
Lotka-Volterra dynamics. Here we demonstrate some of the pitfalls of assuming that optimization in an
n-type replicator dynamics corresponds to an optimization to an n-type Lotka-Volterra dynamics.

Let us introduce the replicator dynamics and Lotka-Volterra dynamics and examples of their usage in
mathematical oncology in Sections 2.1 and 2.2, respectively. This will lead us to Section 2.3 where
we explain which dynamics do correspond and which do not in terms of both transient dynamics and
equilibria, and illustrate this by simulations.

2.1. Replicator Dynamics and an Example of its Usage in Mathe-
matical Oncology

Replicator dynamics were developed by Taylor and Jonker in 1978 [49]. Let us consider a population
consisting of n different types of individuals, where proportion yi of these individuals of type i and
y = (y1, y2, . . . yn)

T . Let us assume that fi (y) denotes the fitness of individuals of type i and N is the
total number of individuals. If the population is very large, has overlapping generations and asexual
reproduction, we may consider Ni = yiN to be a continuous variable, the population growth is given

7



2.1. Replicator Dynamics and an Example of its Usage in Mathematical Oncology 8

by the differential equation

d
dt

Ni = Ṅi = Ni fi (y (t)) ,

and we obtain the replicator dynamics [49, 22]

ẏi = yi
(
fi (y (t))− f̄ (y (t))

)
, (2.1)

where f̄ (y (t)) denotes the average fitness of the population y (t) at time t. If the fitness of the population
is given by a fitness matrixB = (bij)n×n where bij describes the chances for proliferation of type iwhen
interacting with types j, we can rewrite (2.1) as

ẏi = yi

(
(By (t))i − (y (t))T By (t)

)
. (2.2)

We can then analyze Nash equilibria and evolutionary stable equilibria of (2.2).

An example of utilizing replicator dynamics in the context of cancer is [57], a paper co-authored by
one of the supervisors of this thesis, a game between three cell prostate cancer cell types from the set
T = {1, 2, 3}was studied, where the first type depends on testosterone and is referred to as T+, second
type is able to produce its own testosterone and is referred to as TP , and the third one is independent
of testosterone and is referred to as T−, refer to Chapter 1 for details. Let yi, i ∈ T , denoting the
frequency of the cells of type i ∈ T in the population, it was assumed that the cancer cells interacted
with each other as a game. When a focal cell of type i ∈ T interacts with a cell of type j ∈ T , the
outcome was the probability that the focal cell divides and creates an offspring of type i. These division
probabilities for interaction between all types form a payoff (fitness) matrix B = (bij)3×3 defined as

B =

 0 b12 b13
b21 0 b23
b31 b32 0

 , (2.3)

with bi,j ∈ (0, 1) for each i, j ∈ T. For each type i ∈ T , the replicator dynamics [49] defined the time
change ẏi of its cell frequency yi, thus:

ẏi = yi
(
(By)i − y⊤ B y

)
, i ∈ T (2.4)

where y = (yT+ , yTP , yT−)
⊤ ∈ R3. The frequency dynamics (2.4) was studied for different assumptions

on elements ofB for which particular inequalities on the relations between the individual elements were
satisfied. These assumptions led to 22 cases of the replicator dynamics, with the frequency trajectories
and the evolutionarily stable strategies (ESSs) mapped on a simplex. When starting from an all initial
frequencies y (0) being nonzero, You et al. [57]’s model results in a single ESS, which is the attractor
for the dynamics given by (2.4). The interior ESSs can be found independently from the fitness matrix
B utilizing the ESS conditions, or through setting (By)i − y⊤ B y in (2.4). While [57] demonstrated the
stability of the interior equilibria, of (2.4), here we can calculate the candidates for these equilibria by
setting By = 0, and leading to the following interior equilibrium candidate ȳ = (ȳ1, ȳ2, ȳ3)

T
, satisfying

b12ȳ2 + b13ȳ3 = b21ȳ1 + b23ȳ3 = b31ȳ1 + b32ȳ2,

where ȳ1 + ȳ2 + ȳ3 = 1, leading to

ȳ1 = − b12b23 + b13b32 − b23b32
b12b21 − b12b23 − b12b31 − b13b21 + b13b31 − b13b32 − b21b32 − b23b31 + b23b32

,

ȳ2 = − b13b21 − b13b31 + b23b31
b12b21 − b12b23 − b12b31 − b13b21 + b13b31 − b13b32 − b21b32 − b23b31 + b23b32

, (2.5)

ȳ3 =
b12b21 − b12b31 − b21b32

b12b21 − b12b23 − b12b31 − b13b21 + b13b31 − b13b32 − b21b32 − b23b31 + b23b32
.

For the parametrizations utilized in You et al. [57] the evolutionary stability of the interior equilibria was
demonstrated while the main purpose of that paper was to extend the replicator dynamics into a spacial
agent-based model and to analyze its spatio-temporal equilibria.
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2.2. Lotka-Volterra dynamics and an Example of its Utilization in
Mathematical Oncology

The Lotka-Volterra dynamics, proposed separately by Lotka [29] and Volterra [51], describe the dynam-
ics of systems in which two or more species interact. While Hofbauer and Sigmund [22] utilized this
form of the Lotka-Volterra dynamics

ẋi = xi

ai0 +

n∑
j=1

aijxj

 , i = 1, . . . , n, (2.6)

with xi the population sizes for i = 1, . . . , n and A = (aij)n×n a n by n real matrix, in Mathematical
Oncology the following form with a carrying capacity for each type i is more common [4, 10, 17, 30, 44,
53, 12]:

ẋi = rixi

(
1−

∑n
j=1 aijxj

Ki

)
, i = 1, . . . , n, (2.7)

with ri being the intrinsic growth rates and Ki the carrying capacity for type i. This form can also be
rewritten into the form (2.6) as

ẋi = xi

ri +

n∑
j=1

(−ri) aij
Ki

xj

 , i = 1, . . . , n. (2.8)

Even though the Lotka-Volterra dynamics were introduced earlier than evolutionary game theory [31],
the dynamical system (2.6) may fit well to describe how interactions between different species impact
their population sizes and frequencies. In such games, the individuals of different populations/types in-
teract with each other and through such interactions players influence each other’s chances of survival
(fitness).

We could calculate the steady points/equilibria of (2.7), which are useful to analyze the dynamic stability
of the system in question system.

For an example of usage of Lotka-Volterra dynamics, let us analyze a model utilized by Zhang et al. [60]
to design and explain novel therapies in metastatic-castrate resistant prostate cancer. While the goal
of this paper was to analyze impact of the so-called adaptive therapy under two different treatments
which both were assumed to manipulate carrying capacity of some of the cell types, their basic model
was much related to the replicator dynamics model in [57].

More specifically, the model of Zhang et al. [60] assumes a 3×3 competition matrixA = (aij)3×3, where
i, j ∈ T and aij = 1 − bij for each bij from matrix B of [57]. The initial dynamics before the treatment
was applied was (2.7). If we calculate interior equilibria x∗

1, x
∗
2, and x∗

3 of (2.7) by setting

1−
∑n

j=1 aijxj

Ki
= 0 (2.9)

for each i, j ∈ T and divide these by the total equilibrium population x∗
1 + x∗

2 + x∗
3, and additionally

assume that all carrying capacitiesKi are equal, we will obtain exactly the same candidates for interior
equilibria.

The key question is: While the paper by Zhang et al. [60] obtained the same interior equilibria as You
et al. [57] in terms of population frequencies, will their transient dynamics correspond to that of You et al.
[57]? While none of the two papers claimed this, perhaps this was implicitly assumped, as both these
models were supposed to capture the frequency dynamics of cancer cells realistically enough, thus
answering this question may be important. And, in general, under which conditions the frequencies of
Lotka-Volterra dynamics correspond to those of the replicator dynamics?
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2.3. (Non) Correspondence between Replicator and Lotka-Volterra
Dynamics and What it Means for Mathematical Oncology

Hofbauer (1981) [21] demonstrated how from a Lotka-Volterra dynamics of n types once can derive
replicator dynamics with n+ 1 types, where the frequency dynamics of the two will conincide [21].

Here we will demonstrate that without conversion of the number of types, the evolutionary stable strate-
gies of the two dynamics may coincide, however it is not meaningful to assume that they have a 1-to-1
relationship. The interior equilibrium ȳ = (ȳ1, ȳ2, ȳ3)

T of (2.2) coincide with ESS candidates for matrix
B.

2.3.1. Derivation
We can transform the Lotka-Volterra Equation (2.7) system of equations into the form of the replicator
equations, by following the transformation which is proposed by Hofbauer [21]. We start with Equation
(2.7):

ẋi = rixi

(
1−

∑n
j=1 aijxj

Ki

)
, i = 1, . . . , n,

which can also be written as

ẋi = xi

ri +

n∑
j=1

−riaij
Ki

xj

 , i = 1, . . . , n. (2.10)

Set x0 = 1, and let yi =
xi∑n
j=0 xj

, for i = 0, . . . , n. Then by using the quotient rule, we obtain for

i = 0, . . . , n,

ẏi =

∑n
j=0 xj · ẋi − xi ·

∑n
j=0 ẋj(∑n

j=0 xj

)2
=

ẋi∑n
j=0 xj

−
xi ·

∑n
j=0 ẋj(∑n

j=0 xj

)2
= ẋi · y0 − xi

 n∑
j=0

ẋj

 y20 .

Substituting Equation (2.10) in for ẋi results now in

ẏi = xi

ri +

n∑
j=1

−riaij
Ki

xj

 · y0 − xi

 n∑
l=0

xl

rl +

n∑
j=1

−rlalj
Kl

xj

 y20 .

We know xi =
yi

y0
, using this gives us

ẏi = yi

ri +

n∑
j=1

−riaij
Ki

yj
y0

− yi

 n∑
l=0

yl
y0

rl +

n∑
j=1

−rlalj
Kl

yj
y0

 y0

= yi

ri +

n∑
j=1

−riaij
Ki

yj
y0

−
n∑

l=0

yl

rl +

n∑
j=1

−rlalj
Kl

yj
y0


= yi

riy0 +

n∑
j=1

−riaij
Ki

yj −
n∑

l=0

yl

rly0 +

n∑
j=1

−rlalj
Kl

yj

 1

y0
(2.11)
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Now assume b0j = 0 for j = 0, . . . , n; Note that this is always possible by scaling the columns. Let B
be the matrix with bi0 = ri and bij =

−riaij

Ki
for i = 1, . . . , n and j = 1, . . . , n. For n = 2 this B is for

example 
0 0 0

r1
−r1a11
K1

−r1a12
K1

r2
−r2a21
K2

−r2a22
K2

 . (2.12)

Now Equation (2.11) is equal to

ẏi = yi

 n∑
j=0

bijyj −
n∑

k,l=0

ykbklyl

 1

y0
. (2.13)

Ignoring the 1
y0

term on the right hand side results in the replicator dynamics from Equation (2.4), which
is a system with the same behavior in the x1- …-xn space, but has a different velocity.

ẏi = yi

 n∑
j=0

bijyj −
n∑

k,l=0

ykbklyl


= yi

(
(By)i − yTBy

)
, i = 0, . . . , n.

Note that we use n+ 1 variables here, and only n variables with Lotka-Volterra.

2.3.2. Simulations
In the simulations of this section, we will utilize the parametrization from [60], with focus on one of the
22 matrices studied: K1 = K2 = K3 = 104. In Figure 2.1, we show a simulation of the following
Lotka-Volterra system, 

ẋ1 = r1x1

(
1−

∑3
j=1 a1jxj

K1

)
,

ẋ2 = r2x2

(
1−

∑3
j=1 a2jxj

K2

)
,

ẋ3 = r3x3

(
1−

∑3
j=1 a3jxj

K3

)
,

(2.14)

to demonstrate its behavior, with Ki = 10, 000, r = (0.0278, 0.0355, 0.0665) and aij are the entries of
matrix:  1 0.7 0.8

0.4 1 0.6
0.5 0.9 1

 . (2.15)

These parameter values are taken from the paper by Zhang et al. [60] and the matrix gives the in-
terior ESSs 10 of Table 2 of the paper by You et al. [57]. For the initial values we take popula-
tions below K, where T− has the lowest proportion: xt=0 = (2000, 2000, 1500), x0 = 1, and yi =

xi

1 + 2000 + 2000 + 1500
. In Figure 2.1 we see that the population finally stabilizes into the interior equi-

librium.
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Figure 2.1: Time evolution of the three populations using the Lotka-Volterra model for n = 3, with aij as in Equation (2.15).

Now the equivalent Equation (2.13) is equal to

ẏi = yi

 3∑
j=0

bijyj −
3∑

k,l=0

ykbklyl

 1

y0
,

for i = 0, 1, 2, 3 and B such as (2.12). If we look at the solution of yi in Figure 2.2, we see the same
behavior as in Figure 2.1.

Figure 2.2: An example of the equivalent system for n = 3 to the predator-prey model of Figure 2.1, with bij as in Equation
(2.12). Time evolution of the four ratios.

If we then let go of the 1
y0

term we obtain the replicator dynamics in Figure 2.3, which has the same
behavior as illustrated in Figure 2.2, but at a significantly reduced speed.
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Figure 2.3: Time evolution of the four ratios using the replicator dynamics (without the 1
y0

term), which has the same behavior
as Figure 2.2 in the x1-x2 space, but has a different velocity, with bij as in Equation (2.12).

To check this, let the time go to 8 ·107, see Figure 2.4, and we see the same behavior back as in Figure
2.2.

Figure 2.4: Time evolution of the four ratios using the replicator dynamics (without the 1
y0

term), which has the same behavior
as Figure 2.2 in the x1-x2 space, but has a different velocity, with bij as in Equation (2.12). Note that the time goes until 8 · 107.

Finally, we will show what happens if we totally let go of y0 and use n variables instead of n + 1. If
one examines the solution depicted in Figure 2.5, one will observe a totally behavior as illustrated in
Figure 2.2. This shows the importance of needing one extra variable in the replicator dynamics, when
someone compares it to the Lotka-Volterra dynamics.
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Figure 2.5: Time evolution of the three ratios using the replicator dynamics, ignoring the y0 term totally, which looks totally
different than the plots before, with bij as in Equation (2.12).

In conclusion, the number of variables increases by 1 when changing from Lotka-Volterra to replica-
tor dynamics. The variable y0 is added to track the population. y0 affects the speed that solutions
travel along the trajectories, as well as (if “natural birth” rates a10 and a20 are nonzero) average pop-
ulation fitness calculation.A two-dimensional replicator dynamics system can be used in place of a
two-dimensional Lotka-Volterra system with some caveats:

• “Natural birth” rates a10 and a20 must both be zero
• Total population must be tracked and its multiplicative inverse must be used as a factor in the
speed.

• If y0 is not kept track of, then the transformation back to Lotka-Volterra is completely lost, so even
the equilibria cannot be compared.



3
The Discrete Spatial Model of Prostate

Cancer

In the next chapters, we will focus on the spatial aspect of mathematical oncology models. This pro-
cess follows the work of Alsenafi in his PhD thesis [2] and Zegers’ bachelor thesis [58]. This chapter
introduces our spatial discrete agent-based model of prostate cancer. We begin by introducing the lat-
tice in Section 3.1, along with the initialization of the different types of cells. Section 3.2 describes the
dynamics of both tumor and healthy cells, focusing on cell movement, cell death, and cell reproduction.
In Section 3.3, we address the behavior of testosterone within the cells. The complete discrete system
is outlined in Section 3.4. Finally, in Section 3.5, we present simulations of the model.

3.1. Initialization
Our model is an agent-based model on a two-dimensional spatial lattice. In the case of prostate can-
cer, there can be different types of mutated cells present that interact with the hormone testosterone
in various ways [59, 57, 10, 53]. A population of cancer cells is a mutation of the healthy cells. This
population reproduces and dies at a different rate than the healthy cells do. The tumor cells reproduce
faster. We denote this tumor population by T+. The T+ tumor cells and the healthy cells are dependent
of testosterone, but do not produce it. One other type of tumor cells, which can be seen as a mutation
of the T+ cells, need testosterone to survive but have evolved to produce testosterone themselves.
We refer to that population as TP cells. The T− tumor cells are independent of testosterone. If the
resistant cells are there, we refer to the cancer as castrate-resistant prostate cancer (cRPC); when it
becomes metastatic, it is called metastatic castration-resistant prostate cancer (mCRPC). There can
be also adaptations, such as phenotypic and genetic changes, which complicate our understanding
and targeting of the cancer [11, 19].

We will look at how these cell populations develop into a tumor over a L×L square lattice with no-flux
boundary conditions, which means that movement across the boundary is not allowed and cells cannot
leave the lattice. The spatial step is l = 1

L such that x, y ∈ {0, l, 2l, . . . , 1 − l}. The time step is δt.
The number of T+ tumor cells at time-step t at site (x, y) is denoted by n1(x, y, t), the same for the
TP tumor cells n2(x, y, t), the T− tumor cells n3(x, y, t), the healthy cells n5(x, y, t) and the amount
of testosterone per lattice point n4(x, y, t). So the total number of tumor and healthy cells at time t at
lattice point (x, y) is equal to

N(x, y, t) = n1(x, y, t) + n2(x, y, t) + n3(x, y, t) + n5(x, y, t).

See List of Symbols for a list of the symbols we use. At each lattice point multiple cells of different types
can be present. One can think, for example, that the cells are stacked on top of one another. This is
necessary since there are types which depend on each other for the testosterone.

For each simulation, we begin with all the different cells and testosterone uniformly distributed on the
lattice. The neighbor sites of (x, y) are {(x + l, y), (x − l, y), (x, y + l), (x, y − l)} and are denoted by

15
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(x̃, ỹ). We will first look at the dynamics of the healthy and tumor cells and then we will focus on the
dynamics of the testosterone. For every species, we look at three different kind of events: movement,
death and production. So the update equations will have the following form:

ni(x, y, t+ δt) = ni(x, y, t) +movement-term− death-term+ birth-term,

for i ∈ {1, 2, 3, 4, 5}.

3.2. Dynamics of the Tumor Cells and the Healthy Cells
3.2.1. Movement
The first thing which can happen to a cell is that it is pushed to a neighboring site. We assume that
this is influenced by the total number of cells at the neighboring sites N(x̃, ỹ, t). The lower the amount
of cells at neighbor lattice point (x̃, ỹ), the higher the probability that the cell is going to move to that
neighbor. At every time-step it can be pushed to a neighboring site or it remains at its current position.
This leads us to the following movement probability of a cell at site (x1, y1) to neighbor (x2, y2) at time
t:

Pi((x1, y1) → (x2, y2), t) = Ci
e−

β

l2
N(x2,y2,t)∑

(x̃,ỹ)∼(x1,y1)
e−

β

l2
N(x̃,ỹ,t)

with i ∈ {1, 2, 3, 5}. The parameter β > 0 ensures that the cells have a preference to not move to a
crowded neighboring lattice point and Ci ∈ [0, 1] are constants such that

Pi(no movement, t) = 1− Ci

for i ∈ {1, 2, 3, 5}. Then we know that for i ∈ {1, 2, 3, 5} the following holds:

∑
(x̃,ỹ)∼(x,y)

Pi((x, y) → (x̃, ỹ), t) + Pi(no movement, t) =

Ci

∑
(x̃,ỹ)∼(x,y) e

− β

L2 N(x̃,ỹ,t)∑
(x̃,ỹ)∼(x,y) e

− β

L2 N(x̃,ỹ,t)
+ 1− Ci =

Ci + 1− Ci = 1.

Furthermore, Pi((x1, y1) → (x2, y2), t) and Pi(no movement, t) lie in the interval [0, 1]making the count-
able additive Pi probability measures.

We now divide each number of cells by l2 to convert them into densities ρi. We denote N(x,y,t)
l2 by

ρN (x, y, t). So the movement probability of a cell at site (x1, y1) to neighbor (x2, y2) at time t is equal to

Pi((x1, y1) → (x2, y2), t) = Ci
e−βρN (x2,y2,t)∑

(x̃,ỹ)∼(x1,y1)
e−βρN (x̃,ỹ,t)

. (3.1)

This results in the following movement-term of cells i at time t+ δt at site (x, y):

∑
(x̃,ỹ)∼(x,y)

ρi(x̃, ỹ, t)Pi((x̃, ỹ) → (x, y), t)− ρi(x, y, t)
∑

(x̃,ỹ)∼(x,y)

Pi((x, y) → (x̃, ỹ), t) =

∑
(x̃,ỹ)∼(x,y)

ρi(x̃, ỹ, t)Pi((x̃, ỹ) → (x, y), t)− Ciρi(x, y, t),

where the first sum is equal to the cells moving from a neighboring site to site (x, y) and the second
term is equal to all the cells leaving this site.



3.3. Dynamics of Testosterone 17

3.2.2. Death and Birth
The next thing which can happen is that a cell can die. We have two types of death: natural death and
death due to a lack of testosterone.

Firstly, the higher the population of type i ∈ {1, 2, 3, 5} in a lattice point, the more dying cells of type
i. Also, we want the death term to be dependent on the total number of cells in a site, so there will be
more death due to overcrowding. This results in the death-term of cells i at time t+ δt at site (x, y):

−δt · γiρi(x, y, t) · ρN (x, y, t)

with i ∈ {1, 2, 3, 5} and death-rates γi > 0.

The healthy cells and the TP and T+ tumor cells are dependent on testosterone. The less testosterone
there is at a site, the more they die. This results in the death-term due to a lack of testosterone at time
t+ δt at site (x, y):

−δt · ρi(x, y, t) ·
κ

1 + ρ4(x, y, t)

with i ∈ {1, 2, 5} and κ > 0. Note that since ρ4(x, y, t) ≥ 0 for all x, y, t, we do not divide by zero. Fur-
thermore notice that we do not have this term for the T− cells, since they do not depend on testosterone.

We also have a production term, where the cells are being produced by their own type at every time-
step. The more cells of type i on a site, the more cells of type i will be produced at that site. This results
in the following birth-term of cells i at time t+ δt at site (x, y):

δt · αiρi(x, y, t)

with i ∈ {1, 2, 3, 5} and birth-rates αi > 0.

3.3. Dynamics of Testosterone
3.3.1. Spreading
The testosterone spreads in a different way than the tumor cells and the healthy cells do. We assume
that the testosterone diffuses over time. This is modeled by a random walk. The probability to move to
a neighboring site at time t is the same for every neighbor:

P4 ((x1, y1) → (x2, y2) , t) =
C4

4

with C4 ∈ [0, 1] a constant such that

P4 (no spreading, t) = 1− C4.

Then we know that the following holds:

∑
(x̃,ỹ)∼(x,y)

P4 ((x, y) → (x̃, ỹ) , t) + P4 (no spreading, t) =

∑
(x̃,ỹ)∼(x,y)

(
C4

4

)
+ 1− C4 =

C4 + 1− C4 = 1.

Furthermore,P4 ((x1, y1) → (x2, y2) , t) andP4 (no spreading, t) lie in the interval [0, 1]making the count-
able additive P4 a probability measure.

This results in the following spreading-term of testosterone at time t+ δt at site (x, y):
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∑
(x̃,ỹ)∼(x,y)

ρ4 (x̃, ỹ, t)P4 ((x̃, ỹ) → (x, y) , t)− ρ4 (x, y, t)
∑

(x̃,ỹ)∼(x,y)

P4 ((x, y) → (x̃, ỹ) , t) =

C4

4

∑
(x̃,ỹ)∼(x,y)

ρ4 (x̃, ỹ, t)− C4ρ4 (x, y, t) ,

where the first sum is equal to the testosterone spreading from a neighboring site to site (x, y) and the
second term is equal to all the testosterone leaving this site.

3.3.2. Consumption and Production
The next thing which can happen is that the testosterone can be consumed by the T+ and the TP tumor
cells and the healthy cells. The more of those cells at a site, the more testosterone will be consumed.
This is also dependent of the amount of testosterone at the site. The more testosterone the easier it is
to be found and consumed. This results in the death-term at time t+ δt at site (x, y):

−δt · η (ρ1 (x, y, t) + ρ2 (x, y, t) + ρ5 (x, y, t)) · ρ4 (x, y, t)

with the consumption-rate η > 0.
Note that this multiplication by ρ4 (x, y, t) makes sure that the testosterone cannot go below zero if we
take δt small enough.

The testosterone is being produced by the TP cells. So the more TP cells, the more testosterone is
being produced. Furthermore, for the testosterone we start with a base level which is added at every
time-step. The body provides this for example through the blood. This results in the production-term
at time t+ δt at site (x, y):

δt · µρ2 (x, y, t) + δt · χ

with the production-rate µ > 0 and the base-level χ > 0.

3.4. Total System
Adding all the terms together gives us the total discrete system of prostate cancer:

ρ1 (x, y, t+ δt) = ρ1 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ1 (x̃, ỹ, t)P1 ((x̃, ỹ) → (x, y) , t)− C1ρ1 (x, y, t)

+δt · ρ1 (x, y, t)
(
α1 − γ1ρN (x, y, t)− κ

1 + ρ4 (x, y, t)

)
,

ρ2 (x, y, t+ δt) = ρ2 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ2 (x̃, ỹ, t)P2 ((x̃, ỹ) → (x, y) , t)− C2ρ2 (x, y, t)

+δt · ρ2 (x, y, t)
(
α2 − γ2ρN (x, y, t)− κ

1 + ρ4 (x, y, t)

)
,

ρ3 (x, y, t+ δt) = ρ3 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ3 (x̃, ỹ, t)P3 ((x̃, ỹ) → (x, y) , t)− C3ρ3 (x, y, t)

+δt · ρ3 (x, y, t) (α3 − γ3ρN (x, y, t)) ,

ρ4 (x, y, t+ δt) = ρ4 (x, y, t) +
C4

4

∑
(x̃,ỹ)∼(x,y)

ρ4 (x̃, ỹ, t)− C4ρ4 (x, y, t) + δt · χ

+δt · µρ2 (x, y, t)− δt · η (ρ1 (x, y, t) + ρ2 (x, y, t) + ρ5 (x, y, t)) · ρ4 (x, y, t) .
ρ5 (x, y, t+ δt) = ρ5 (x, y, t) +

∑
(x̃,ỹ)∼(x,y)

ρ5 (x̃, ỹ, t)P5 ((x̃, ỹ) → (x, y) , t)− C5ρ5 (x, y, t)

+δt · ρ5 (x, y, t)
(
α5 − γ5ρN (x, y, t)− κ

1 + ρ4 (x, y, t)

)
,

(3.2)
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3.5. Simulations of Prostate Cancer
In the last section of this chapter, simulations of our discrete model are presented. These simulations
are used to confirm how adjusting some of the system parameters influences the behavior of the sys-
tem. All calculations were performed using C++ in Microsoft Visual Studio. The code can be found in
the appendix. For the simulations, we utilized SFML, commonly used in game development, which is
freely available for download [45]. We used the parameter values which are portrayed in Table 3.1.

Parameter Description Value
L L× L is the lattice size 50
l Spatial-step 0.02
δt Time-step 1
Ci Movement probability 0.1 for all i
β The rate at which the cells are pushed 1.0 · 10−5

αi Birth-rates α1 = α2 = 0.21, α3 = 0.2, α5 = 0.1
γi Death-rates γ1 = γ2 = γ3 = 0.001, γ5 = 0.002
κ Death-rate due to lack of testosterone 0.3
µ Production-rate testosterone 0.04
η Consumption-rate testosterone 0.001

Table 3.1: The parameter values which are used in the simulations in this chapter.

The initial conditions are set as ρ1 = ρ2 = ρ3 = ρ5 = 5.0 and ρ4 = 10.0 in all cells, while the boundaries
remain empty. We will adjust the value of χ, representing the baseline level of testosterone supplied by
the blood. This parameter can be altered by medical intervention, such as through the administration
of testosterone. Initially, χ = 0.04, and we later simulate the effect of adding testosterone to the blood
by increasing χ to 10.

3.5.1. T− Independent Cell Dominance
We start the simulation with χ = 0.04. In Figure 3.1, we observe the tumor dynamics over time at
χ = 0.04. Initially, all tumor cell populations grow rapidly, leading to a sharp decline in the number of
healthy cells. However, as the T− cells, which do not rely on testosterone for survival, begin to dom-
inate, the TP and T+ cells start to die off due to insufficient space and low testosterone levels. The
T− cell population starts rising sharply and by the end of the simulation at t = 390, the T− cells have
nearly taken over the tumor environment.
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Testosterone and Cell Dynamics Over Time for χ = 0.04

Figure 3.1: The total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue), testosterone levels (purple),
and healthy cells (light blue) are plotted against time from t = 0 to t = 390. Initially, all tumor cell populations grow rapidly,

crushing the healthy cells. Over time, T− cells, which are not dependent on testosterone, begin to expand aggressively. The
TP and T+ cells, unable to secure enough space and testosterone, gradually die off.

In Figure 3.2, the spatial evolution of the tumor is shown both in lattice form and as cross-sectional
views at t = 0, t = 350 and t = 700. The lattice snapshots depict how the tumor grows over time by
the color getting brighter, while the cross-sectional views provide a detailed look at the changes in the
distribution of all the different cells across the tumor. As the T− cells increasingly dominate, the TP

and T+ cells struggle to survive, gradually disappearing from the tumor’s core. We see this in the tumor
pictures by the bright red color at t = 700.
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Tumor Growth and Cross-Section for χ = 0.04

The tumor lattice at t = 0 The tumor lattice at t = 350 The tumor lattice at t = 700

Cross-Section at t = 0 Cross-Section at t = 350 Cross-Section at t = 700

Figure 3.2: (a) Lattice representations of the tumor at t = 0, t = 350 and t = 700, showing the evolution of the tumor’s spatial
distribution of the T+ (blue), T− (red) and TP (green) cells. (b) Cross-sectional views of the middle row of the lattice at the
same time-points, illustrating changes in the total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue),

testosterone levels (purple), and healthy cells (light blue).

3.5.2. T+ and T P Dependent Cells Dominance under Testosterone Influence
Next, we ‘add testosterone to the blood’ at every time step, by running the simulation with χ = 10. All
the other parameters and initial conditions stay the same. In Figure 3.3, we observe the tumor dynam-
ics over time at χ = 10. Initially, the testosterone grows rapidly, leading to an increase in the number of
TP and T+ cells. Thereafter, as the TP and T+ cells begin to dominate, the T− cells start to die off due
to insufficient space and resources. The testosterone and the TP and T+ cell levels start stabilizing by
the end of the simulation at t = 390, while the T− cells die out.

In Figure 3.4, the spatial evolution of the tumor is shown both in lattice form and as cross-sectional
views at t = 0, t = 350 and t = 700. The lattice snapshots depict how the tumor grows over time by
the changing color shade, while the cross-sectional views provide a detailed look at the changes in the
distribution of all the different cells across the tumor. As the TP and T+ cells increasingly dominate,
the T− cells struggle to survive, gradually disappearing from the tumor’s core. We see this in the tumor
cross section by the red lines being close to zero at t = 700.
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Testosterone and Cell Dynamics Over Time for χ = 10

Figure 3.3: The total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue), testosterone levels (purple),
and healthy cells (light blue) are plotted against time from t = 0 to t = 390. In the beginning, we see a high peak in

testosterone after which all tumors grow. Subsequently, the number of T− cells start decreasing while the TP and T+ cells
keep on growing.

Tumor Growth and Cross-Section for χ = 10

The tumor lattice at t = 0 The tumor lattice at t = 350 The tumor lattice at t = 700

Cross-Section at t = 0 Cross-Section at t = 350 Cross-Section at t = 700

Figure 3.4: (a) Lattice representations of the tumor at t = 0, t = 350 and t = 700, showing the evolution of the tumor’s spatial
distribution of the T+, T− and TP cells. (b) Cross-sectional views of the middle row of the lattice at the same time-points,
illustrating changes in the total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue), testosterone levels

(purple), and healthy cells (light blue).
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The combining results of Sections 3.5.1 and 3.5.2 indicate that changing χwill lead to a phase transition,
which we will explore later on in the thesis.

3.5.3. Tumor growth
Lastly, we want to try to simulate what the growth of a tumor looks like starting from only a few mu-
tated cells. For this we start with different initial conditions. Every non-boundary cell has ρ5 = 2.0 and
ρ4 = 10.0. Furthermore, uniformly distribute 100 T−, 100 T+, and 100 TP cells (ρi = 1) in a 10 × 10
square in the middle of the lattice. Furthermore, we take χ = 0.04 and the rest of parameter values
from Table 3.1.

In Figure 3.5, we observe the tumor dynamics over time with χ = 0.04. Initially, the healthy cells grow
since they are the only ones spread over the whole lattice. However, the tumor cells in the middle start
growing and pushing the healthy cells away. Although the T+ and TP cells grow slowly and steady,
the T− cells grow aggressively causing the tumor to grow very fast.

Testosterone and Cell Dynamics Over Time for χ = 0.04, starting from the middle

Figure 3.5: The total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue), testosterone levels (purple),
and healthy cells (light blue) are plotted against time from t = 0 to t = 390. In the beginning, we see a healthy cells peak, after

which the healthy cells are crushed by the tumor cells. The T− cells take over and dominate the rest.

In Figure 3.6, the spatial evolution of the tumor is shown both in lattice form and as cross-sectional
views at t = 0, t = 50, t = 100 and t = 150. The lattice snapshots depict how the tumor grows over
time. We can see the tumor expanding in width and becoming more reddish towards the end. The
cross-sectional views provide a detailed look at the changes in the distribution of all the different cells
across the tumor. We see a few tumor cells starting at the middle of a lattice with healthy cells. Soon
it grows into a clump of cells, with the T− cells starting to dominate the further time proceeds.
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Tumor Growth and Cross-Section for χ = 0.04, Starting from the Middle

The tumor lattice at t = 0 The tumor lattice at t = 50 The tumor lattice at t = 100 The tumor lattice at t = 150

Cross-Section at t = 0 Cross-Section at t = 50 Cross-Section at t = 100 Cross-Section at t = 150

Figure 3.6: (a) Lattice representations of the tumor at t = 0, t = 50, t = 100 and t = 150, showing the evolution of the tumor’s
spatial distribution of the T+, T− and TP cells. (b) Cross-sectional views of the middle row of the lattice at the same
time-points, illustrating changes in the total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue),

testosterone levels (purple), and healthy cells (light blue).

In Figure 3.7, the spatial evolution of the tumor at t = 100 is depicted through a series of split lattice
images. The T− cells are shown which dominate the tumor landscape. In areas where T− cell density
is lower, TP and T+ cells are more prominent. Notably, T+ cells are mainly found in regions where TP

cells are also present. This distribution is expected, as these are the areas with higher testosterone
levels produced by the TP cells. The testosterone distribution map confirms this, showing higher con-
centrations around the TP cells. Additionally, the cross-section of healthy cells reveals a hole in the
middle, with most healthy cells being displaced by the growing tumor cells.
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Detailed Tumor Growth at t = 100 for χ = 0.04

T+ cells TP cells T− cells

The testosterone The healthy cells The tumor

Figure 3.7: Lattice representations of the tumor at t = 100, showing the evolution of the tumor’s spatial distribution. It is split
into a simulation of the T+ cells (blue), the TP cells (green),the T− cells (red), and in the second row we see the testosterone

levels (green), the healthy cells (red) and the whole tumor.



4
The Continuum Spatial Model of

Prostate Cancer

In this chapter, the partial differential equations of the continuum system will be derived in Section 4.1
by taking the continuum limit of the discrete model of Chapter 3 by a formal derivation using Taylor
expansion. After that we will find the equilibria of this system. We will simplify the system in Section 4.2.

4.1. Partial Differential Equations Derivation
4.1.1. Theoretic Framework
Before we begin deriving the continuum limit of the discrete system, we need various mathematical
tools which will help us. In the model, several terms involve summing over the neighbors of a lattice
point. We will use the Laplacian operator to replace this summation. The Laplacian is the divergence
of the gradient and it is equal to the sum of the unmixed second partial derivatives:

Definition 1. With f a twice-differentiable real-valued function and v ∈ R2, the Laplacian in two dimen-

sions is defined as △f (x, y, t) =
∑2

i=1

δ2f (x, y, t)

δv2i
=

δ2f (x, y, t)

δx2
+

δ2f (x, y, t)

δy2
.

We will use the backward finite difference scheme to first approximate the first order partial derivative
in x, so that

δf (x, y, t)

δx
≈ f (x, y, t)− f (x− l, y, t)

l
.

For the second derivative approximation in x, we use the forward finite difference scheme, so that

δ2f (x, y, t)

δx2
≈

f (x+ l, y, t)− f (x, y, t)

l
− f (x, y, t)− f (x− l, y, t)

l
l

=
f (x+ l, y, t) + f (x− l, y, t)− 2f (x, y, t)

l2
. (4.1)

Doing the same for y and adding them together gives us the following approximation of the Laplacian:

△f (x, y, t) ≈ f (x+ l, y, t) + f (x− l, y, t) + f (x, y + l, t) + f (x, y − l, t)− 4f (x, y, t)

l2
.

To determine the order of the error, we use the Taylor series expansion of each term at point (x, y, t):

f (x+ l, y, t) = f (x, y, t) + lfx (x, y, t) +
l2

2 fxx (x, y, t) +
l3

6 fxxx (x, y, t) +O
(
l4
)
,

f (x− l, y, t) = f (x, y, t)− lfx (x, y, t) +
l2

2 fxx (x, y, t)−
l3

6 fxxx (x, y, t) +O
(
l4
)
,

f (x, y + l, t) = f (x, y, t) + lfy (x, y, t) +
l2

2 fyy (x, y, t) +
l3

6 fyyy (x, y, t) +O
(
l4
)
,

f (x, y − l, t) = f (x, y, t)− lfy (x, y, t) +
l2

2 fyy (x, y, t)−
l3

6 fyyy (x, y, t) +O
(
l4
)

−4f (x, y, t) = −4f (x, y, t) .

26



4.1. Partial Differential Equations Derivation 27

Adding these all together results in:

f (x+ l, y, t) + f (x− l, y, t) + f (x, y + l, t) + f (x, y − l, t)− 4f (x, y, t) = l2△f (x, y, t) +O
(
l4
)
.

Dividing by l2 and rearranging the terms gives us:

△f (x, y, t) =
f (x+ l, y, t) + f (x− l, y, t) + f (x, y + l, t) + f (x, y − l, t)− 4f (x, y, t)

l2
+O

(
l2
)
.

Recall that we define the neighbors of lattice point (x, y) equal to {(x+ l, y) , (x− l, y) , (x, y + l) , (x, y − l)}.
So the Laplacian is equal to

△f (x, y, t) =

∑
(x̃,ỹ)∼(x,y) f (x̃, ỹ, t)− 4f (x, y, t)

l2
+O

(
l2
)
. (4.2)

Finally we can rewrite the summation over the neighbors of a lattice point using this Laplacian operator:∑
(x̃,ỹ)∼(x,y)

f (x̃, ỹ, t) = l2△f (x, y, t) + 4f (x, y, t) +O
(
l4
)
. (4.3)

Furthermore, following Alsenafi [2] and Zegers [58], we define F to simplify the notation later. This F
is defined as followed:

F (v, t) = eβρN (v,t)

(
1

4
− l2

16

(
△ (−βρN (v, t)) +▽ (βρN (v, t))

2
))

. (4.4)

In the derivation of the partial differential equations, we will need the Laplacian of F . To do this, we
must first calculate the gradient. For readability, we will omit (x, t) in the notation.

▽F = ▽
[
eβρN

4

(
1− l2

4

(
△ (−βρN ) +▽

(
βρ2N

)))]
=

eβρN

4

(
▽ (βρN )− l2

4
▽ βρN

(
△ (−βρN ) +▽

(
βρ2N

))
− l2

4
▽
(
△ (−βρN ) +▽

(
βρ2N

)))
=

eβρN

4
▽ (βρN ) +O

(
l2
)
. (4.5)

Now let us calculate the Laplacian of F :

△F = ▽ · ▽F =
eβρN

4

(
▽ (βρN )

2
+△ (βρN )

)
+O

(
l2
)
. (4.6)

The final tool we will use for the derivation is that we can rewrite f (x) = 1
x using its Taylor expansion

at point a, which is

1

x
=

1

a
− x− a

a2
+O

(
l2
)
,

since f ′ (x) = − 1

x2
and substitute x = a+ l:

1

a+ l
=

1

a
− l

a2
+O

(
l2
)
, (4.7)

since x− a = a+ l − a = l.
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4.1.2. Continuum System
Now we are ready to derive the continuum system by taking a formal limit of the discrete model of
Equation (3.2). We will start with the densities of the tumor cells and the healthy cells. We will organize
the derivation into two claims.

Claim 1. If δt → 0 and l → 0 in such a way that
l2

δt
→ D for some constant D ∈ R, then the formal limit

of evolution equation for density of the cancerous and healthy cells given by Equation (3.2) is

δρi (v, t)

δt
=

DCi

4
▽ (▽ρi (v, t) + 2ρi (v, t)▽ (βρN (v, t))) + ρi (v, t)

(
αi − γiρN (v, t)− κ

1 + ρ4 (v, t)

)
for i ∈ {1, 2, 3, 5}.

Proof. Recall, from Equation (3.2), that the discrete model is:

ρ1 (x, y, t+ δt) = ρ1 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ1 (x̃, ỹ, t)P1 ((x̃, ỹ) → (x, y) , t)− C1ρ1 (x, y, t)

+δt · ρ1 (x, y, t)
(
α1 − γ1 · ρN (x, y, t)− κ

1 + ρ4 (x, y, t)

)
,

ρ2 (x, y, t+ δt) = ρ2 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ2 (x̃, ỹ, t)P2 ((x̃, ỹ) → (x, y) , t)− C2ρ2 (x, y, t)

+δt · ρ2 (x, y, t)
(
α2 − γ2 · ρN (x, y, t)− κ

1 + ρ4 (x, y, t)

)
,

ρ3 (x, y, t+ δt) = ρ3 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ3 (x̃, ỹ, t)P3 ((x̃, ỹ) → (x, y) , t)− C3ρ3 (x, y, t)

+δt · ρ3 (x, y, t) (α3 − γ3 · ρN (x, y, t)) ,

ρ5 (x, y, t+ δt) = ρ5 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ5 (x̃, ỹ, t)P5 ((x̃, ỹ) → (x, y) , t)− C5ρ5 (x, y, t)

+δt · ρ5 (x, y, t)
(
α5 − γ5 · ρN (x, y, t)− κ

1 + ρ4 (x, y, t)

)
.

We can write this as

ρi (x, y, t+ δt) =ρi (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρi (x̃, ỹ, t)Pi ((x̃, ỹ) → (x, y) , t)− Ciρi (x, y, t)

+ δt · ρi (x, y, t)
(
αi − γi · ρN (x, y, t)− κ

1 + ρ4 (x, y, t)

)
, (4.8)

where i ∈ {1, 2, 3, 5}, letting κi = κ generally and κi = 0 if and only if i = 3. Recall from Equation (3.1)
that the movement probability of a cell at site v1 = (x1, y1) to neighbor v2 = (x2, y2) at time t is equal to

Pi (v1 → v2, t) = Ci
e−βρN (v2,t)∑

ṽ∼(v1)
e−βρN (ṽ,t)

.

Using Equation (4.3) produces

Pi (v1 → v2, t) = Ci
e−βρN (v2,t)

l2△e−βρN (v1,t) + 4e−βρN (v1,t)
+O

(
l4
)
.

Using that

△ef(x) = ef(x)
(
△f (x) +▽f (x)

2
)
,

we obtain the following expression for the movement probability
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Pi (v1 → v2, t) = Ci
e−βρN (v2,t)

l2e−βρN (v1,t)
(
△ (−βρN (v1, t)) +▽ (βρN (v1, t))

2
)
+ 4e−βρN (v1,t)

+O
(
l4
)

= Cie
−βρN (v2,t)

eβρN (v1,t)

l2
(
△ (−βρN (v1, t)) +▽ (βρN (v1, t))

2
)
+ 4

+O
(
l4
)
.

Using Equations (4.7) and (4.4) gives us

Pi (v1 → v2, t) = Cie
−βρN (v2,t)

(
eβρN (v1,t)

(
1

4
− l2

16

(
△ (−βρN (v1, t)) +▽ (βρN (v1, t))

2
)))

+O
(
l2
)

= Cie
−βρN (v2,t)F (v1, t) +O

(
l2
)
. (4.9)

Substituting Equation (4.9) into (4.8), dividing by δt and rearranging the terms results in

ρi (v, t+ δt)− ρi (v, t)

δt
=

1

δt

(
Cie

−βρN (v,t)
∑
ṽ∼v

ρi (ṽ, t)F (ṽ, t)− Ciρi (v, t)

)

+ ρi (v, t)

(
αi − γi · ρN (v, t)− κ

1 + ρ4 (v, t)

)
+O

(
l2
)
. (4.10)

To simplify the sum, first use Equation (4.3), and after that substitute F with (4.4):

∑
ṽ∼v

ρi (ṽ, t)F (ṽ, t) = l2△ (ρi (v, t)F (v, t)) + 4ρi (v, t)F (v, t) +O
(
l4
)

= l2△ (ρi (v, t)F (v, t)) + 4ρi (v, t) e
βρN (v,t)·(

1

4
− l2

16

(
△ (−βρN (v, t)) +▽ (βρN (v, t))

2
))

+O
(
l4
)
. (4.11)

With the product rule, (4.4), (4.5) and (4.6) we obtain:

△ (ρiF ) = 2▽ F ▽ ρi + F△ρi + ρi△F

=
2eβρN

4
▽ βρN ▽ ρi + eβρN

1

4
△ρi +

ρie
βρN

4

(
▽ (βρN )

2
+△ (βρN )

)
+O

(
l2
)

=
eβρN

4

(
2▽ βρN ▽ ρi +△ρi + ρi

(
▽ (βρN )

2
+△ (βρN )

))
+O

(
l2
)
.

Substituting this into Equation (4.11) and multiplying it by e−βρN (v,t) results in

e−βρN (v,t)
∑
ṽ∼v

ρi (ṽ, t)F (ṽ, t) =
l2

4

(
2▽ βρN (v, t)▽ ρi (v, t) +△ρi (v, t) + ρi (v, t)

(
▽ (βρN (v, t))

2

+△ (βρN (v, t))

))
+ ρi (v, t)

(
1− l2

4

(
△ (−βρN (v, t)) +▽ (βρN (v, t))

2
))

+O
(
l4
)
,

which can be rearranged to

e−βρN (v,t)
∑
ṽ∼v

ρi (ṽ, t)F (ṽ, t) =
l2

4
(▽ (▽ρi + 2ρi ▽ (βρN ))) + ρi (v, t) +O

(
l4
)
.

Substituting this into (4.10) results in
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ρi (v, t+ δt)− ρi (v, t)

δt
=
l2Ci

4δt
▽ (▽ρi (v, t) + 2ρi (v, t)▽ (βρN (v, t)))

+ ρi (v, t)

(
αi − γi · ρN (v, t)− κ

1 + ρ4 (v, t)

)
+O

(
l4

δt

)
.

Now let δt → 0 and l → 0, and define D such that l
2

δt
→ D.

Then we finally obtain the following partial differential equation for the density of the tumor cells and
the healthy cells:

δρi (v, t)

δt
=
DCi

4
▽ (▽ρi (v, t) + 2ρi (v, t)▽ (βρN (v, t)))

+ ρi (v, t)

(
αi − γiρN (v, t)− κ

1 + ρ4 (v, t)

)
.

Now that we have derived the continuum limit of the discrete evolution equations for the cell populations,
we will, in the next claim, derive the partial differential equation for the density of testosterone.

Claim 2. If δt → 0 and l → 0 in such a way that
l2

δt
→ D for some constant D ∈ R, then the formal limit

of evolution equation for density of testosterone given by Equation (3.2) is

δρ4 (v, t)

δt
=

DC4

4
△ρ4 (v, t) + χ+ µ · ρ2 (v, t)− η (ρ1 (v, t) + ρ2 (v, t) + ρ5 (v, t)) · ρ4 (v, t)

for i ∈ {1, 2, 3, 5}.

Proof. Recall that the change in the amount of testosterone can be written as

ρ4 (v, t+ δt) = ρ4 (v, t) +
C4

4

∑
ṽ∼v

ρ4 (ṽ, t)− C4ρ4 (v, t) + δt · χ

+δt · µ · ρ2 (v, t)− δt · η (ρ1 (v, t) + ρ2 (v, t) + ρ5 (v, t)) · ρ4 (v, t) .

Dividing by δt and rearranging terms produces:

ρ4 (v, t+ δt)− ρ4 (v, t)

δt
=

C4

4δt

∑
ṽ∼v

ρ4 (ṽ, t)−
C4

δt
ρ4 (v, t) + χ

+µ · ρ2 (v, t)− η (ρ1 (v, t) + ρ2 (v, t) + ρ5 (v, t)) · ρ4 (v, t) .

Rewriting the sum and combining with (4.3), gives:

ρ4 (v, t+ δt)− ρ4 (v, t)

δt
=

l2C4

4δt
△ρ4 (v, t) + χ+ µ · ρ2 (v, t)

−η (ρ1 (v, t) + ρ2 (v, t) + ρ5 (v, t)) · ρ4 (v, t) +O

(
l4

δt

)
.

Now let δt → 0 and l → 0, such that l
2

δt
→ D.

Then we finally obtain the following partial differential equation for the density of testosterone:

δρ4 (v, t)

δt
=

DC4

4
△ρ4 (v, t) + χ+ µ · ρ2 (v, t)− η (ρ1 (v, t) + ρ2 (v, t) + ρ5 (v, t)) · ρ4 (v, t) .
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Finally, it follows from Claims 1 and 2 that the full continuum limit of the discrete model described by
Equation (3.2) is: 

δρ1
δt

= DC1

4 ▽ ·[▽ρ1 + 2βρ1 ▽ ρN ] + ρ1

(
α1 − γ1ρN − κ

1+ρ4

)
,

δρ2
δt

= DC2

4 ▽ · [▽ρ2 + 2βρ2 ▽ ρN ] + ρ2

(
α2 − γ2ρN − κ

1+ρ4

)
,

δρ3
δt

= DC3

4 ▽ · [▽ρ3 + 2βρ3 ▽ ρN ] + ρ3 (α3 − γ3ρN ) ,

δρ4
δt

= DC4

4 △ρ4 + µρ2 − η (ρ1 + ρ2 + ρ5) ρ4 + χ,

δρ5
δt

= DC5

4 ▽ · [▽ρ5 + 2βρ5 ▽ ρN ] + ρ5

(
α5 − γ5ρN − κ

1+ρ4

)
.

4.2. Equilibrium Solutions
To determine the steady-state solutions, assume each ρi is a constant, denoted ρ̄i. We assume all
densities are non-negative and all parameters are greater than zero. To calculate the equilibrium solu-
tions, we set δρ̄i

δt = 0 for all i, ensuring that the solution remains constant. For the T− tumor density,
this results in:

ρ̄3 = 0 or ρ̄N =
α3

γ3
.

For the other tumor cells and the healthy cells we obtain the equations:

ρ̄i = 0 or ρ̄N =
αi

γi
− κ

γi (1 + ρ̄4)
,

where i ∈ {1, 2, 5}. Finally, for testosterone the equilibrium density must be:

ρ̄4 =
µρ̄2 + χ

η (ρ̄1 + ρ̄5 + ρ̄2)
,

with ρ̄1 + ρ̄5 + ρ̄2 ̸= 0. By using Wolfram Mathematica, the 7 equilibria (ρ̄1, ρ̄2, ρ̄3, ρ̄4, ρ̄5) where ρ̄1 = 0
are:

• Equilibrium 1:[
0, (−γ3α2χ+ α3γ2χ)/(γ3α2µ− α3γ2µ− κγ3η + γ3α2η − α3γ2η), (α3γ3α2µ− α2

3γ2µ

− κα3γ3η + α3γ3α2η − α2
3γ2η + γ2

3α2χ− α3γ3γ2χ)/(γ3(γ3α2µ− α3γ2µ

− κγ3η + γ3α2η − α3γ2η)), (κγ3 − γ3α2 + α3γ2)/(γ3α2 − α3γ2), 0
]
,

• Equilibrium 2:[
0, 0,(κα3γ3η − α3γ3α5η + α2

3γ5η − γ2
3α5χ+ α3γ3γ5χ)/(γ3(κγ3 − γ3α5 + α3γ5)η),

(κγ3 − γ3α5 + α3γ5)/(γ3α5 − α3γ5), (γ3α5χ− α3γ5χ)/((κγ3 − γ3α5 + α3γ5)η)
]
,

• Equilibrium 3:[
0, (κα2γ2η − κγ2α5η − α2γ2α5η + γ2α

2
5η − κα2γ5η + α2

2γ5η + κα5γ5η − α2α5γ5η

− γ2
2α5χ+ α2γ2γ5χ+ γ2α5γ5χ− α2γ

2
5χ)/((γ2 − γ5)(γ2α5 − α2γ5)µ), 0,

(κγ2 − γ2α5 − κγ5 + α2γ5)/(γ2α5 − α2γ5), (α2γ2α5µ− γ2α
2
5µ− α2

2γ5µ

+ α2α5γ5µ− κα2γ2η + κγ2α5η + α2γ2α5η − γ2α
2
5η + κα2γ5η − α2

2γ5η

− κα5γ5η + α2α5γ5η + γ2
2α5χ− α2γ2γ5χ− γ2α5γ5χ+ α2γ

2
5χ)/

((γ2 − γ5)(γ2α5 − α2γ5)µ)
]
,

• Equilibrium 4:[
0, (1/(2(γ2µ+ γ2η)))(α2µ− κη + α2η − γ2χ− (−4α2η(κµ− α2µ− γ2χ) + (−α2µ− κη

+ α2η − γ2χ)
2)

1
2 ), 0, (1/(2α2η))(α2µ+ κη − α2η + γ2χ

− (−4α2η(κµ− α2µ− γ2χ) + (−α2µ− κη + α2η − γ2χ)
2)

1
2 ), 0

]
,
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• Equilibrium 5:[
0, (1/(2(γ2µ+ γ2η)))(α2µ− κη + α2η − γ2χ+ (−4α2η(κµ− α2µ− γ2χ) + (−α2µ− κη

+ α2η − γ2χ)
2)

1
2 ), 0, (1/(2α2η))(α2µ+ κη − α2η + γ2χ+ (−4α2η(κµ− α2µ− γ2χ)

+ (−α2µ− κη + α2η − γ2χ)
2)

1
2 ), 0

]
,

• Equilibrium 6:[
0, 0, 0, (κη − α5η + γ5χ−

√
4α5γ5ηχ+ (−κη + α5η − γ5χ)2)/(2α5η), (−κη + α5η − γ5χ

−
√

4α5γ5ηχ+ (−κη + α5η − γ5χ)2)/(2γ5η)
]
,

• Equilibrium 7:[
0, 0, 0, (κη − α5η + γ5χ+

√
4α5γ5ηχ+ (−κη + α5η − γ5χ)2)/(2α5η), (−κη + α5η − γ5χ

+
√

4α5γ5ηχ+ (−κη + α5η − γ5χ)2)/(2γ5η),
]
.

The remaining 4 equilibria (ρ̄1, ρ̄2, ρ̄3, ρ̄4, ρ̄5) where ρ̄1 ̸= 0 are:
• Equilibrium 8:[

(γ3α1χ− α3γ1χ)/((κγ3 − γ3α1 + α3γ1)η), 0, (κα3γ3η − α3γ3α1η + α2
3γ1η − γ2

3α1χ

+ α3γ3γ1χ)/(γ3(κγ3 − γ3α1 + α3γ1)η), (κγ3 − γ3α1 + α3γ1)/(γ3α1 − α3γ1), 0
]
,

• Equilibrium 9:[
(α1γ1α2µ− γ1α

2
2µ− α2

1γ2µ+ α1α2γ2µ− κα1γ1η + κγ1α2η + α1γ1α2η − γ1α
2
2η + κα1γ2η

− α2
1γ2η − κα2γ2η + α1α2γ2η + γ2

1α2χ− α1γ1γ2χ− γ1α2γ2χ+ α1γ
2
2χ)

/((γ1 − γ2)(γ1α2 − α1γ2)µ), (κα1γ1η − κγ1α2η − α1γ1α2η + γ1α
2
2η − κα1γ2η

+ α2
1γ2η + κα2γ2η − α1α2γ2η − γ2

1α2χ+ α1γ1γ2χ+ γ1α2γ2χ− α1γ
2
2χ)/((γ1 − γ2)

(γ1α2 − α1γ2)µ), 0, (κγ1 − γ1α2 − κγ2 + α1γ2)/(γ1α2 − α1γ2), 0
]
,

• Equilibrium 10:[
(−κη + α1η − γ1χ−

√
4α1γ1ηχ+ (−κη + α1η − γ1χ)2)/(2γ1η), 0, 0, (κη − α1η + γ1χ

−
√

4α1γ1ηχ+ (−κη + α1η − γ1χ)2)/(2α1η), 0
]
,

• Equilibrium 11:[
(−κη + α1η − γ1χ+

√
4α1γ1ηχ+ (−κη + α1η − γ1χ)2)/(2γ1η), 0, 0, (κη − α1η + γ1χ

+
√

4α1γ1ηχ+ (−κη + α1η − γ1χ)2)/(2α1η), 0
]
.

By adjusting the values of the parameters, we can also obtain an equilibrium where all the types are
present. For this to be the case, the following must hold:

ρ̄N =
α3

γ3

=
α1

γ1
− κ

γ1 (1 + ρ̄4)

=
α2

γ2
− κ

γ2 (1 + ρ̄4)

=
α5

γ5
− κ

γ5 (1 + ρ̄4)

and
ρ̄4 =

µ · ρ̄2 + χ

η (ρ̄1 + ρ̄5 + ρ̄2)
.

The equilibrium is then (
c1, c2, c3,

µ · c2 + χ

η (c1 + c5 + c2)
, c5

)
,

with constants ci > 0 and c1 + c2 + c3 + c5 = ρ̄N .
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4.3. Simpler System
Since these equilibria are to hard to work with for a master thesis, we will make additional assumptions
to obtain a simpler system. Assuming there is no difference in themovement dynamics of different types
of cells, we let C : C1 = C2 = C3 = C5. This is reasonable because, while different cells may have
biological differences, they might behave similarly in terms of movement when modeled mathemati-
cally, especially under certain environmental conditions. Let us further define D̃ = DC. Furthermore
we assume that the three different cancer cells are three different mutations which mutated from each
other, such that αc := α1 = α2 = α3 and γc := γ1 = γ2 = γ3. For notation define C̃ = DC4.

The total simplified continuum system of prostate cancer is therefore:

δρ1
δt

= D̃
4 ▽ · [▽ρ1 + 2βρ1 ▽ ρN ] + ρ1

(
αc − γcρN − κ

1+ρ4

)
,

δρ2
δt

= D̃
4 ▽ · [▽ρ2 + 2βρ2 ▽ ρN ] + ρ2

(
αc − γcρN − κ

1+ρ4

)
,

δρ3
δt

= D̃
4 ▽ · [▽ρ3 + 2βρ3 ▽ ρN ] + ρ3 (αc − γcρN ) ,

δρ4
δt

= C̃
4 △ρ4 + µρ2 − η (ρ1 + ρ2 + ρ5) ρ4 + χ,

δρ5
δt

= D̃
4 ▽ · [▽ρ5 + 2βρ5 ▽ ρN ] + ρ5

(
α5 − γ5ρN − κ

1+ρ4

)
,

reducing the number of parameters from 18 to 11.

To determine the steady-state solutions, assume each ρi is a constant, denoted ρ̄i. We assume all
densities are non-negative and all parameters are greater than zero. To calculate the equilibrium solu-
tions, we set δρ̄i

δt = 0 for all i, ensuring that the solution remains constant. For the T− tumor density,
this results in:

ρ̄3 = 0 or ρ̄N =
αc

γc
.

For the T+ and TP tumor cells the following must be true:

ρ̄i = 0 or ρ̄N =
αc

γc
− κ

γc (1 + ρ̄4)
,

where i ∈ {1, 2}. For the healthy cells we obtain:

ρ̄5 = 0 or ρ̄N =
α5

γ5
− κ

γ5 (1 + ρ̄4)
,

Finally, for testosterone the equilibrium density must be:

ρ̄4 =
µρ̄2 + χ

η (ρ̄1 + ρ̄5 + ρ̄2)
,

with ρ̄1 + ρ̄5 + ρ̄2 ̸= 0.
By using Wolfram Mathematica, the 3 equilibria (ρ̄1, ρ̄2, ρ̄3, ρ̄4, ρ̄5) with ρ̄1 = 0 are:

• Equilibrium 1:[
0, 0,−

((
−αcγcα5η + α2

cγ5η − γ2
cα5χ+ αcγcγ5χ+ αcγcηκ

)
/ (γcη (γcα5 − αcγ5 − γcκ))

)
,

(−γcα5 + αcγ5 + γcκ) / (γcα5 − αcγ5) , (−γcα5χ+ αcγ5χ) / (η (γcα5 − αcγ5 − γcκ))
]
,

• Equilibrium 2:

[
0, 0,0,

(
−α5η + γ5χ+ ηκ−

√
4α5γ5ηχ+ (α5η − γ5χ− ηκ)

2

)
/ (2α5η) ,(

α5η − γ5χ− ηκ−
√

4α5γ5ηχ+ (α5η − γ5χ− ηκ)
2

)
/ (2γ5η)

]
,
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• Equilibrium 3:

[
0, 0,0,

(
−α5η + γ5χ+ ηκ+

√
4α5γ5ηχ+ (α5η − γ5χ− ηκ)

2

)
/ (2α5η) ,(

α5η − γ5χ− ηκ+

√
4α5γ5ηχ+ (α5η − γ5χ− ηκ)

2

)
/ (2γ5η)

]
.

The remaining 2 equilibria (ρ̄1, ρ̄2, ρ̄3, ρ̄4, ρ̄5) with ρ̄1 ̸= 0 are:

• Equilibrium 4:[
(αcµ+ ρ̄4αcµ− ρ̄4αcη − ρ̄24αcη + γcχ+ ρ̄4γcχ− µκ+ ρ̄4ηκ)/((1 + ρ̄4)γcµ),

(ρ̄4αcη + ρ̄24αcη − γcχ− ρ̄4γcχ− ρ̄4ηκ)/((1 + ρ̄4)γcµ), 0, ρ̄4, 0
]
,

• Equilibrium 5:[
ρ̄1, (− αcγcα5η + γcα

2
5η + α2

cγ5η − αcα5γ5η − γ2
cα5χ+ αcγcγ5χ+ γcα5γ5χ− αcγ

2
5χ+ αcγcηκ

− γcα5ηκ− αcγ5ηκ+ α5γ5ηκ)/((γc − γ5)(γcα5 − αcγ5)µ), 0, (−γcα5 + αcγ5 + γcκ− γ5κ)/

(γcα5 − αcγ5), (αcγcα5µ− ρ̄1γ
2
cα5µ− γcα

2
5µ− α2

cγ5µ+ ρ̄1αcγcγ5µ+ αcα5γ5µ+ ρ̄1γcα5γ5µ

− ρ̄1αcγ
2
5µ+ αcγcα5η − γcα

2
5η − α2

cγ5η + αcα5γ5η + γ2
cα5χ− αcγcγ5χ− γcα5γ5χ+ αcγ

2
5χ

− αcγcηκ+ γcα5ηκ+ αcγ5ηκ− α5γ5ηκ)/((γc − γ5)(γcα5 − αcγ5)µ)
]
.

With this simplified system, by adjusting the values of the parameters, we cannot obtain an equilibrium
where all the types are present. For this to be the case, the following must hold:

ρ̄N =
αc

γc

=
αc

γc
− κ

γc (1 + ρ̄4)
.

However, κ

γc (1 + ρ̄4)
is never equal to zero, since κ > 0. Since there is no coexisting equilibrium

solution, we consider an alteration of our model in Chapter 5.1.



5
An Alternative Continuum Spatial

Model of Prostate Cancer

In the last chapter, we derived a system of partial differential equations from our discrete model. How-
ever, the equilibria we found were unsatisfactory, as none of them included all three cancer cell pop-
ulations simultaneously. Moreover, the detailed analysis of these equilibria is beyond the scope of a
master’s thesis due to their complexity. To solve this, we propose an alternative continuum spatial
model for prostate cancer, assuming that testosterone levels influence cell birth rather than cell death.
This modification allows us to perform a linear stability analysis and gain deeper insights into the sys-
tem’s dynamics. In Section 5.1, the model is given with its equilibrium solutions. In Section 5.2, We will
non-dimensionalize the system and the equilibrium solutions of this non-dimensional system are given.
Finally, in Section 5.3 to analyze the system even further we will perform a linear stability analysis and
check this using simulations.

5.1. The Model with Alternate Assumptions
If we instead assume that the birth of the T+, TP and healthy cells is influenced by testosterone instead
of the death of those cells, we obtain a different system. This time we split αc into αd for the tumor cells
which depend on testosterone and α3 for the T− tumor cells which are independent of testosterone, to
make the dimensions fit. The alternate system becomes:

δρ1
δt

= D̃
4 ▽ · [▽ρ1 + 2βρ1 ▽ ρN ] + ρ1 (αdρ4 − γcρN ) ,

δρ2
δt

= D̃
4 ▽ · [▽ρ2 + 2βρ2 ▽ ρN ] + ρ2 (αdρ4 − γcρN ) ,

δρ3
δt

= D̃
4 ▽ · [▽ρ3 + 2βρ3 ▽ ρN ] + ρ3 (α3 − γcρN ) ,

δρ4
δt

= C̃
4 △ρ4 + µρ2 − η (ρ1 + ρ5 + ρ2) ρ4 + χ,

δρ5
δt

= D̃
4 ▽ · [▽ρ5 + 2βρ5 ▽ ρN ] + ρ5 (α5ρ4 − γ5ρN ) .

(5.1)

The more testosterone there is in a cell, the more new tumor and healthy cells are born. This system
has 11 parameters. The system can be derived from the following discrete system:

35
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

ρ1 (x, y, t+ δt) = ρ1 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ1 (x̃, ỹ, t)P1 ((x̃, ỹ) → (x, y) , t)− Cρ1 (x, y, t)

+δt · ρ1 (x, y, t) (αdρ4 (x, y, t)− γcρN (x, y, t)) ,

ρ2 (x, y, t+ δt) = ρ2 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ2 (x̃, ỹ, t)P2 ((x̃, ỹ) → (x, y) , t)− Cρ2 (x, y, t)

+δt · ρ2 (x, y, t) (αdρ4 (x, y, t)− γcρN (x, y, t)) ,

ρ3 (x, y, t+ δt) = ρ3 (x, y, t) +
∑

(x̃,ỹ)∼(x,y)

ρ3 (x̃, ỹ, t)P3 ((x̃, ỹ) → (x, y) , t)− Cρ3 (x, y, t)

+δt · ρ3 (x, y, t) (α3 − γcρN (x, y, t)) ,

ρ4 (x, y, t+ δt) = ρ4 (x, y, t) +
C4

4

∑
(x̃,ỹ)∼(x,y)

ρ4 (x̃, ỹ, t)− C4ρ4 (x, y, t) + δt · χ

+δt · µρ2 (x, y, t)− δt · η (ρ1 (x, y, t) + ρ2 (x, y, t) + ρ5 (x, y, t)) · ρ4 (x, y, t) .
ρ5 (x, y, t+ δt) = ρ5 (x, y, t) +

∑
(x̃,ỹ)∼(x,y)

ρ5 (x̃, ỹ, t)P5 ((x̃, ỹ) → (x, y) , t)− Cρ5 (x, y, t)

+δt · ρ5 (x, y, t) (α5ρ4 (x, y, t)− γ5ρN (x, y, t)) ,

by the same derivation as in Chapter 4.

To determine the steady-state solutions, again assume each ρi is a constant, denoted ρ̄i. We assume
all densities are non-negative and all parameters are greater than zero. To calculate the equilibrium
solutions, we set δρ̄i

δt = 0 for all i, ensuring that the solution remains constant. For the T− tumor density,
this results in:

ρ̄3 = 0 or ρ̄N =
α3

γc
.

For the T+ and TP tumor cells the following must be true:

ρ̄i = 0 or ρ̄N =
αdρ̄4
γc

,

where i ∈ {1, 2}. For the healthy cells we obtain:

ρ̄5 = 0 or ρ̄N =
α5ρ̄4
γ5

.

Finally, for testosterone the equilibrium density must be:

ρ̄4 =
µρ̄2 + χ

η (ρ̄1 + ρ̄5 + ρ̄2)
,

with ρ̄1 + ρ̄5 + ρ̄2 ̸= 0. By using Wolfram Mathematica, the 6 equilibria (ρ̄1, ρ̄2, ρ̄3, ρ̄4, ρ̄5) are:

• Equilibrium 1:
[ (

ρ̄4αdµ− ρ̄24αdη + γcχ
)
/ (γcµ) ,

(
ρ̄24αdη − γcχ

)
/ (γcµ) , 0, ρ̄4, 0

]
,

• Equilibrium 2:
[
ρ̄1,−χ/µ, 0, 0, (−ρ̄1µ+ χ) /µ

]
,

• Equilibrium 3:
[
(ρ̄2αdµ+ αdχ− ρ̄2ηα3) / (ηα3) , ρ̄2,

(
−ρ̄2αdγcµ− αdγcχ+ ηα2

3

)
/ (γcηα3) , α3/αd, 0

]
,

• Equilibrium 4:
[
0, 0, 0,−√

γ5χ/
√
α5η,−

√
α5χ/

√
γ5η
]
,

• Equilibrium 5:
[
0, 0, 0,

√
γ5χ/

√
α5η,

√
α5χ/

√
γ5η
]
,

• Equilibrium 6:
[
0, 0,

(
−γ2

cα5χ+ γ5ηα
2
3

)
/ (γcγ5ηα3) , (γ5α3) / (γcα5) , (γcα5χ) / (γ5ηα3)

]
.

By adjusting the values of the parameters, we can also obtain an equilibrium where all the types are
present. For this to be the case, the following must hold:
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ρ̄N =
α3

γc

=
αdρ̄4
γc

=
α5ρ̄4
γ5

,

and
ρ̄4 =

µρ̄2 + χ

η (ρ̄1 + ρ̄5 + ρ̄2)
.

The equilibrium is then (
c1, c2, c3,

µc2 + χ

η (c1 + c5 + c2)
, c5

)
,

with constants ci > 0 and c1 + c2 + c3 + c5 = ρ̄N . We will now analyze our model more by non-
dimensionalizing the system.

5.2. Non-dimensionalization

Parameter Dimension
ρ1, ρ2, ρ3, ρ5, ρ4, ρN cells/space2

D̃, C̃ space2/time
β space2/cells

α3, µ 1/time
αd, α5, γc, γ5, η space2/ (time · cells)

χ cells/
(
time · space2

)
Table 5.1: The dimensions of the parameters of the alternate system of prostate cancer.

In this section, we will non-dimensionalize the system using alternative assumptions to reduce the
number of parameters, making the system easier to analyze. The dimensions/units for each variable
are given in Table 5.1. Start by defining the non-dimensional time t∗ = α3 · t, so t = t∗

α3
. Also, define

the non-dimensional space X∗ =
√

α3

D̃
X with X = (x, y), so X =

√
D̃
α3

X∗. Lastly, we define the
non-dimensional densities ρ∗i = γc

α3
ρi with i ∈ {1, 2, 3, 4, 5}, so ρi =

α3

γc
ρ∗i .

5.2.1. Non-dimensionalization of the Equations for the Tumor Cells
Let us first focus on the T+ cells density partial differential equation:

δρ1
δt

=
D̃

4
▽ · [▽ρ1 + 2βρ1 ▽ ρN ] + ρ1 (αdρ4 − γcρN ) .

Note that δ

δt
= α3

δ

δt∗
and ▽X =

√
α3

D̃
▽X∗ , which gives us:

α3
δρ1
δt∗

=
D̃

4

√
α3

D̃
▽X∗ ·

[√
α3

D̃
▽X∗ ρ1 + 2βρ1

√
α3

D̃
▽X∗ ρN

]
+ ρ1 (αdρ4 − γcρN ) .

By substituting ρi by α3

γc
ρ∗i and simplifying terms we obtain

α2
3

γc

δρ∗1
δt∗

=
D̃

4

α3

D̃
▽X∗ ·

[
▽X∗

α3

γc
ρ∗1 + 2β

α3

γc
ρ∗1 ▽X∗

α3

γc
ρ∗N

]
+

α2
3

γ2
c

ρ∗1 (αdρ
∗
4 − γcρ

∗
N ) .

Diving everything by α2
3 and multiplying by γc results in:

δρ∗1
δt∗

=
1

4
▽X∗ ·

[
▽X∗ρ∗1 +

2βα3

γc
ρ∗1 ▽X∗ ρ∗N

]
+ ρ∗1

(
αd

γc
ρ∗4 − ρ∗N

)
.
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Note that we can do exactly the same for the TP cells, giving:

δρ∗2
δt∗

=
1

4
▽X∗ ·

[
▽X∗ρ∗2 +

2βα3

γc
ρ∗2 ▽X∗ ρ∗N

]
+ ρ∗2

(
αd

γc
ρ∗4 − ρ∗N

)
.

Since the T− cells are independent of testosterone, we have to consider its density separately.

δρ3
δt

=
D̃

4
▽ · [▽ρ3 + 2βρ3 ▽ ρN ] + ρ3 (α3 − γcρN ) .

Substitute the dimensional ρi, t and X in the same way as we did before, giving:

α2
3

γc

δρ∗3
δt∗

=
D̃

4

α3

D̃
▽X∗ ·

[
▽X∗

α3

γc
ρ∗3 + 2β

α3

γc
ρ∗3 ▽X∗

α3

γc
ρ∗N

]
+

α3

γc
ρ∗3

(
α3 − γc

α3

γc
ρ∗N

)
.

We find the final expression by diving everything by α2
3 and multiplying by γc:

δρ∗3
δt∗

=
1

4
▽X∗ ·

[
▽X∗ρ∗3 +

2βα3

γc
ρ∗3 ▽X∗ ρ∗N

]
+ ρ∗3 (1− ρ∗N ) .

5.2.2. Non-dimensionalization of the Equations for the Healthy Cells
Secondly, we focus on the healthy cells density partial differential equation. The non-dimensionalization
goes exactly the same as with the T+ tumor cells. However, note that various parameters are different.

δρ5
δt

=
D̃

4
▽ · [▽ρ5 + 2βρ5 ▽ ρN ] + ρ5 (α5ρ4 − γ5ρN ) .

Substitute the dimensional ρi, t and X in the same way as we did before, giving:

α2
3

γc

δρ∗5
δt∗

=
D̃

4

α3

D̃
▽X∗ ·

[
▽X∗

α3

γc
ρ∗5 + 2β

α3

γc
ρ∗5 ▽X∗

α3

γc
ρ∗N

]
+

α2
3

γ2
c

ρ∗5 (α5ρ
∗
4 − γ5ρ

∗
N ) .

Diving everything by α2
3 and multiplying by γc results in:

δρ∗5
δt∗

=
1

4
▽X∗ ·

[
▽X∗ρ∗5 +

2βα3

γc
ρ∗5 ▽X∗ ρ∗N

]
+ ρ∗5

(
α5

γc
ρ∗4 −

γ5
γc

ρ∗N

)
.

5.2.3. Non-dimensionalization of the Equation for Testosterone
Lastly, we non-dimensionalize the testosterone partial differential equation:

δρ4
δt

=
C̃

4
△ρ4 + µρ2 − η (ρ1 + ρ5 + ρ2) ρ4 + χ.

Note that δ

δt
= α3

δ

δt∗
, which gives us:

α3
δρ4
δt∗

=
C̃

4
△ρ4 + µρ2 − η (ρ1 + ρ5 + ρ2) ρ4 + χ.

Now substitute ρi =
α3

γc
ρ∗i and divide everything by α3:

α3

γc

δρ∗4
δt∗

=
C̃

4α3
△
(
α3

γc
ρtest∗

)
+

µ

γc
ρ∗2 −

η

γc
(ρ∗1 + ρ∗5 + ρ∗2)

(
ρ∗4

α3

γc

)
+

χ

α3
.

Next write ▽X as ▽X =

√
α3

D̃
▽X∗ and simplify terms,

α3

γc

δρ∗4
δt∗

=
C̃

4α3

α3

γc

α3

D̃
△X∗ρtest∗ +

µ

γc
ρ∗2 −

ηα3

γ2
c

(ρ∗1 + ρ∗5 + ρ∗2) ρ
∗
4 +

χ

α3
.

Dividing everything by α3 and multiplying with γc, results in the final equation:

δρ∗4
δt∗

=
C̃

4D̃
△X∗ρtest∗ +

µ

α3
ρ∗2 −

η

γc
(ρ∗1 + ρ∗5 + ρ∗2) ρ

∗
4 +

χγc
α2
3

.
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5.2.4. Total Non-dimensionalized System
In conclusion, the total non-dimensionalized alternate system for prostate cancer is presented below.
For readability, the asterisks are omitted.

δρ1
δt

= 1
4 ▽ ·

[
▽ρ1 +

2βα3

γc
ρ1 ▽ ρN

]
+ ρ1

(
αd

γc
ρ4 − ρN

)
,

δρ2
δt

= 1
4 ▽ ·

[
▽ρ2 +

2βα3

γc
ρ2 ▽ ρN

]
+ ρ2

(
αd

γc
ρ4 − ρN

)
,

δρ3
δt

= 1
4 ▽ ·

[
▽ρ3 +

2βα3

γc
ρ3 ▽ ρN

]
+ ρ3 (1− ρN ) ,

δρ4
δt

= C̃
4D̃

△ρ4 +
µ
α3

ρ2 − η
γc

(ρ1 + ρ2 + ρ5) ρ4 +
χγc

α2
3
,

δρ5
δt

= 1
4 ▽ ·

[
▽ρ5 +

2βα3

γc
ρ5 ▽ ρN

]
+ ρ5

(
α5

γc
ρ4 − γ5

γc
ρN

)
.

To reduce the number of parameters such that we can analyze the system, we will do two things. Firstly,
we introduce new parameters: a = 2βα3

γc
, b = αd

γc
, c = α5

γc
, d = γ5

γc
, f = C̃

4D̃
, g = µ

α3
, h = η

γc
and l = χγc

α2
3
.

With these symbols the non-dimensionalized system can be written as

δρ1
δt

= 1
4 ▽ · [▽ρ1 + aρ1 ▽ ρN ] + ρ1 (bρ4 − ρN ) ,

δρ2
δt

= 1
4 ▽ · [▽ρ2 + aρ2 ▽ ρN ] + ρ2 (bρ4 − ρN ) ,

δρ3
δt

= 1
4 ▽ · [▽ρ3 + aρ3 ▽ ρN ] + ρ3 (1− ρN ) ,

δρ4
δt

= f△ρ4 + gρ2 − h (ρ1 + ρ2 + ρ5) ρ4 + l,

δρ5
δt

= 1
4 ▽ · [▽ρ5 + aρ5 ▽ ρN ] + ρ5 (cρ4 − dρN ) .

Secondly, we assume that at this stage in the tumor progression there are no healthy cells left. So
ρ5 = 0 at every lattice point and we can then omit the evolution equation of the density of the healthy
cells. We end up with the system that we will analyze, which has only 6 parameters and 4 evolution
equations left. 

δρ1
δt

= 1
4 ▽ · [▽ρ1 + aρ1 ▽ ρN ] + ρ1 (bρ4 − ρN ) ,

δρ2
δt

= 1
4 ▽ · [▽ρ2 + aρ2 ▽ ρN ] + ρ2 (bρ4 − ρN ) ,

δρ3
δt

= 1
4 ▽ · [▽ρ3 + aρ3 ▽ ρN ] + ρ3 (1− ρN ) ,

δρ4
δt

= f△ρ4 + gρ2 − h (ρ1 + ρ2) ρ4 + l,

(5.2)

with ρN = ρ1 + ρ2 + ρ3. Furthermore, note that if we want to go back to the original dimensional
system (5.1), we will have to, besides going back to the old parameters, transform the densities back
by multiplying them ρi =

α3

γc
ρ∗i .

5.2.5. Equilibrium Solutions
To determine the steady-state solutions, again assume each ρi is a constant, denoted ρ̄i. By using
Maple, the four equilibria (ρ̄1, ρ̄2, ρ̄3, ρ̄4) are:

• Equilibrium 1:
(
−bhρ̄24 + bgρ̄4 + l

g
,
bhρ̄24 − l

g
, 0, ρ̄4

)
,

• Equilibrium 2:
(
− ρ̄3bg − bg − lb− hρ̄3 + h

bg
,− lb+ hρ̄3 − h

bg
, ρ̄3,

1

b

)
,

• Equilibrium 3:
(
b
√

l
hb , 0, 0,

√
l
hb

)
,

• Equilibrium 4:
(
−b
√

l
hb , 0, 0,−

√
l
hb

)
.

We only have to consider the first three equilibria, since the last one is negative and therefore unphysical.
Note that at the second equilibrium, all types can be present.
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5.3. Linear Stability Analysis
In this section, we will perform a linear stability analysis of the non-dimensional system by adding a
perturbation to an equilibrium solution ρ̄i, so that:

ρj = ρ̄j + δje
αteik⃗·v⃗,

with δj << 0 and k⃗ ∈ R2
≥0 called wave numbers. Furthermore, denote the following sum by δN :=

δ1 + δ2 + δ3. Substituting all of this in the T+ cells equation of System 5.2, we find

δ

δt

(
ρ̄1 + δ1e

αteik⃗·v⃗
)
=

1

4
▽ ·
[
▽
(
ρ̄1 + δ1e

αteik⃗·v⃗
)
+ a

(
ρ̄1 + δ1e

αteik⃗·v⃗
)
▽
(
ρ̄N + δNeαteik⃗·v⃗

)]
+
(
ρ̄1 + δ1e

αteik⃗·v⃗
)(

b
(
ρ̄4 + δ4e

αteik⃗·v⃗
)
−
(
ρ̄N + δNeαteik⃗·v⃗

))
.

Note that since δρ̄1
δt

= 0, we know that 1
4 ▽ · [▽ρ̄1 + aρ̄1 ▽ ρ̄N ] + ρ̄1 (bρ̄4 − ρ̄N ) = 0. Using this and

working out the derivations to time and space, we obtain

αδ1e
αteik⃗·v⃗ =

1

4
▽ ·
[
i
∣∣∣⃗k∣∣∣ δ1eαteik⃗·v⃗ + a

(
ρ̄1 + δ1e

αteik⃗·v⃗
)(

i
∣∣∣⃗k∣∣∣ δNeαteik⃗·v⃗

)]
+ δ1e

αteik⃗·v⃗(b(ρ̄4

+ δ4e
αteik⃗·v⃗)−

(
ρ̄N + δNeαteik⃗·v⃗

)
) + ρ̄1

(
bδ4e

αteik⃗·v⃗ − δNeαteik⃗·v⃗
)

=
1

4

(
−
∣∣∣⃗k∣∣∣2 δ1eαteik⃗·v⃗ − a

∣∣∣⃗k∣∣∣2 ρ̄1δNeαteik⃗·v⃗
)
+ δ1e

αteik⃗·v⃗ (bρ̄4 − ρ̄N )

+ ρ̄1

(
bδ4e

αteik⃗·v⃗ − δNeαteik⃗·v⃗
)
+O

(
δ2j
)

= eαteik⃗·v⃗

−
∣∣∣⃗k∣∣∣2
4

(δ1 + aρ̄1δN ) + δ1 (bρ̄4 − ρ̄N ) + ρ̄1 (bδ4 − δN )

+O
(
δ2j
)
.

This is possible because the δj are very small. Dividing both sides by eαteik⃗·v⃗, we find

αδ1 =
−
∣∣∣⃗k∣∣∣2
4

(δ1 + aρ̄1δN ) + δ1 (bρ̄4 − ρ̄N ) + ρ̄1 (bδ4 − δN ) +O
(
δ2j
)
.

So when δj goes to zero, αδ1 goes to

αδ1 = δ1

−
∣∣∣⃗k∣∣∣2
4

(1 + aρ̄1)− ρ̄1 + bρ̄4 − ρ̄N


+ δ2

−ρ̄1

1 +
a
∣∣∣⃗k2∣∣∣
4


+ δ3

−ρ̄1

1 +
a
∣∣∣⃗k2∣∣∣
4


+ δ4 (bρ̄1) . (5.3)
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Note that we can do exactly the same for the TP cells, giving:

αδ2 = δ1

−ρ̄2

1 +
a
∣∣∣⃗k2∣∣∣
4


+ δ2

−
∣∣∣⃗k∣∣∣2
4

(1 + aρ̄2)− ρ̄2 + bρ̄4 − ρ̄N


+ δ3

−ρ̄2

1 +
a
∣∣∣⃗k2∣∣∣
4


+ δ4 (bρ̄2) . (5.4)

Since the T− cells are independent of testosterone, we have to consider its density separately:

δ

δt

(
ρ̄3 + δ3e

αteik⃗·v⃗
)
=

1

4
▽ ·
[
▽
(
ρ̄3 + δ3e

αteik⃗·v⃗
)
+ a

(
ρ̄3 + δ3e

αteik⃗·v⃗
)
▽
(
ρ̄N + δNeαteik⃗·v⃗

)]
+
(
ρ̄3 + δ3e

αteik⃗·v⃗
)(

1−
(
ρ̄N + δNeαteik⃗·v⃗

))
.

Note that since δρ̄3
δt

= 0 we know that 1
4 ▽· [▽ρ̄3 + aρ̄3 ▽ ρ̄N ]+ ρ̄3 (1− ρ̄N ) = 0. Using this and working

out the derivations to time and space, we obtain

αδ3e
αteik⃗·v⃗ =

1

4
▽ ·
[
i
∣∣∣⃗k∣∣∣ δ3eαteik⃗·v⃗ + a

(
ρ̄3 + δ3e

αteik⃗·v⃗
)(

i
∣∣∣⃗k∣∣∣ δNeαteik⃗·v⃗

)]
+ δ3e

αteik⃗·v⃗(1

−
(
ρ̄N + δNeαteik⃗·v⃗

)
) + ρ̄3

(
−δNeαteik⃗·v⃗

)
=

1

4

(
−
∣∣∣⃗k∣∣∣2 δ3eαteik⃗·v⃗ − a

∣∣∣⃗k∣∣∣2 ρ̄3δNeαteik⃗·v⃗
)
+ δ3e

αteik⃗·v⃗ (1− ρ̄N )

+ ρ̄3

(
−δNeαteik⃗·v⃗

)
+O

(
δ2j
)
.

This is possible because the δj are very small. Dividing both sides by eαteik⃗·v⃗:

αδ3 =
1

4

(
−
∣∣∣⃗k∣∣∣2 δ3 − a

∣∣∣⃗k∣∣∣2 ρ̄3δN)+ δ3 (1− ρ̄N ) + ρ̄3 (−δN ) +O
(
δ2j
)
.

So when δj is very small, αδ3 goes to

αδ3 = δ1

−ρ̄3

1 +
a
∣∣∣⃗k2∣∣∣
4


+ δ2

−ρ̄3

1 +
a
∣∣∣⃗k2∣∣∣
4


+ δ3

−
∣∣∣⃗k∣∣∣2
4

(1 + aρ̄3)− ρ̄3 + 1− ρ̄N


+ δ4 · 0. (5.5)

Lastly, we will analyze the testosterone derivative by adding the perturbation.



5.3. Linear Stability Analysis 42

δ

δt

(
ρ̄4 + δ4e

αteik⃗·v⃗
)
= f△

(
ρ̄4 + δ4e

αteik⃗·v⃗
)
+ g

(
ρ̄2 + δ2e

αteik⃗·v⃗
)
− h(ρ̄1 + ρ̄2

+ (δ1 + δ2) e
αteik⃗·v⃗)

(
ρ̄4 + δ4e

αteik⃗·v⃗
)
+ l.

Note that since δρ̄4
δt

= 0, we know that f△ρ̄4 + gρ̄2 − h (ρ̄1 + ρ̄2) ρ̄4 + l = 0. Using this and working out
the derivations to time and space, we obtain

αδ4e
αteik⃗·v⃗ = −f

∣∣∣⃗k2∣∣∣ δ4eαteik⃗·v⃗ + gδ2e
αteik⃗·v⃗ − h (δ1 + δ2) e

αteik⃗·v⃗ρ̄4

− hδ4e
αteik⃗·v⃗

(
ρ̄1 + ρ̄2 + (δ1 + δ2) e

αteik⃗·v⃗
)

= −f
∣∣∣⃗k2∣∣∣ δ4eαteik⃗·v⃗ + gδ2e

αteik⃗·v⃗ − h (δ1 + δ2) e
αteik⃗·v⃗ρ̄4

− hδ4e
αteik⃗·v⃗ (ρ̄1 + ρ̄2) +O

(
δ2j
)
.

This is possible because the δj are very small. Dividing both sides by eαteik⃗·v⃗:

αδ4 = −f
∣∣∣⃗k2∣∣∣ δ4 + gδ2 − h (δ1 + δ2) ρ̄4 − hδ4 (ρ̄1 + ρ̄2) +O

(
δ2j
)
.

So when δj goes to zero, αδ4 goes to

αδ4 = δ1 (−hρ̄4)

+ δ2 (g − hρ̄4)

+ δ3 · 0

+ δ4

(
−
∣∣∣⃗k2∣∣∣ f − h (ρ̄1 + ρ̄2)

)
. (5.6)

Combining Equations (5.3), (5.4), (5.5) and (5.6), gives us an equation with a 4 by 4 matrix, which we
will denote by A:

α ·


δ1
δ2
δ3
δ4

 = A ·


δ1
δ2
δ3
δ4

 , (5.7)

with the matrix A being equal to:

−|k⃗|2
4 (1 + aρ̄1)− ρ̄1 + bρ̄4 − ρ̄N −ρ̄1

(
1 +

a|k⃗|2
4

)
−ρ̄1

(
1 +

a|k⃗|2
4

)
bρ̄1

−ρ̄2

(
1 +

a|k⃗|2
4

)
−|k⃗|2

4 (1 + aρ̄2)− ρ̄2 + bρ̄4 − ρ̄N −ρ̄2

(
1 +

a|k⃗|2
4

)
bρ̄2

−ρ̄3

(
1 +

a|k⃗|2
4

)
−ρ̄3

(
1 +

a|k⃗|2
4

)
−|k⃗|2

4 (1 + aρ̄3)− ρ̄3 + 1− ρ̄N 0

−hρ̄4 g − hρ̄4 0 −
∣∣∣⃗k∣∣∣2 f − h (ρ̄1 + ρ̄2)


.

(5.7 1
2 )

Equation (5.7) is an eigenvalue equation with eigenvalue α, and can be rewritten as:

(A− αI4)


δ1
δ2
δ3
δ4

 = 0.
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First, we substitute an equilibrium solution from Section 5.2.5, and then use Maple to calculate the
corresponding eigenvalues. These eigenvalues indicate whether and when the equilibrium is stable.
We will consider equilibrium solutions 1 and 2. At equilibrium 3, the only non-zero populations are the
testosterone dependent T+ tumor cells and the testosterone densities. This equilibrium state is less
relevant for further analysis because T+ cells can be effectively eliminated by treatment, as explained
in Chapter 6.

5.3.1. Equilibrium 1
The first equilibrium point is given by

(
−bhρ̄24 + bgρ̄4 + l

g
,
bhρ̄24 − l

g
, 0, ρ̄4

)
, which corresponds to a state

with no T− tumor cells and where the testosterone density remains a free variable. The matrix A, eval-
uated at this equilibrium, has four distinct eigenvalues. If we can identify parameter values such that
all four eigenvalues have negative real parts for all k⃗ ∈ R2

≥0, then equilibrium 1 will be stable for those
parameter values. Additionally, note that there are extra constraints on the parameter values due to the
requirement that densities are non-negative. In this case, this gives the conditions −bhρ̄24+bgρ̄4+ l ≥ 0,
bhρ̄24 ≥ l and ρ̄4 ≥ 0.

The first eigenvalue, of the matrix given in (5.7 1
2 ), is −|k⃗|2

4 , which is real and negative for all
∣∣∣⃗k∣∣∣ ̸= 0.

However, for
∣∣∣⃗k∣∣∣ = 0 it is equal to zero, which makes the stability of the equilibrium point uncertain.

The second eigenvalue is −|k⃗|2
4 + 1 − bρ̄4, which is negative for all k⃗ when bρ̄4 > 1. The last two

eigenvalues are of the form −P +
√
Q
8 and −P −

√
Q
8 , with P =

ab |k⃗|2ρ̄4

8 + bρ̄4h
2 +

|k⃗|2f
2 + bρ̄4

2 +
|k⃗|2
8 and

Q = a2b2
∣∣∣⃗k∣∣∣4 ρ̄24 − 8a b2h

∣∣∣⃗k∣∣∣2 ρ̄24 − 8abf
∣∣∣⃗k∣∣∣4 ρ̄4 + 8b2ρ̄24a

∣∣∣⃗k∣∣∣2 + 2
∣∣∣⃗k∣∣∣4 abρ̄4 + 16b2h2ρ̄24 + 32bρ̄4h

∣∣∣⃗k∣∣∣2 f +

16
∣∣∣⃗k∣∣∣4 f2 − 32b2h ρ̄24 − 32bf

∣∣∣⃗k∣∣∣2 ρ̄4 − 8bh
∣∣∣⃗k∣∣∣2 ρ̄4 − 8f

∣∣∣⃗k∣∣∣4 + 16b2ρ̄24 + 8b
∣∣∣⃗k∣∣∣2 ρ̄4 + ∣∣∣⃗k∣∣∣4 − 64bl.

We want to see if there exist parameter values for which P > Re
(√

Q
8

)
for all k⃗. Assume the following:

abρ̄4 (1− 4f) ≤ 4f, (5.8)

and

abρ̄4 (1− h) ≤ (1− h) (4f − 1) . (5.9)

Note that if f = 1
4 and h = 1, these assumptions give no restrictions on the testosterone density. In the

dimensional system this means that f = C̃
4D̃

= 1
4 , which is equivalent to C4 = C, and h = η

γc
= 1.

Now, rearrange Q by grouping terms with the same power of |⃗k| together:

Q = |⃗k|4
(
a2b2ρ̄24 − 8abfρ̄4 + 2abρ̄4 + 16f2 − 8f + 1

)
+ |⃗k|2

(
−8ab2hρ̄24 + 8b2ρ̄24a+ 32bρ̄4hf − 32bf ρ̄4 − 8bhρ̄4 + 8bρ̄4

)
+ 16b2h2ρ̄24 + 16b2ρ̄24 − 32b2h ρ̄24 − 64bl.

By letting go of the last two negative terms (since h, b, l > 0), we know Q is strictly smaller than

Q < |⃗k|4
(
a2b2ρ̄24 + 2abρ̄4 (−4f + 1) + 16f2 − 8f + 1

)
+ |⃗k|2

(
−8ab2hρ̄24 + 8ab2ρ̄24 + 32bρ̄4hf − 32bf ρ̄4 − 8bhρ̄4 + 8bρ̄4

)
+ 16b2h2ρ̄24 + 16b2ρ̄24

≤ |⃗k|4
(
a2b2ρ̄24 + 2 · 4f + 16f2 − 8f + 1

)
+ |⃗k|2 · 8bρ̄4 (abρ̄4 (1− h)− 4f (1− h) + (1− h))

+ 16b2h2ρ̄24 + 16b2ρ̄24. (5.10)
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In the last inequality we used the first assumption (5.8) in the |⃗k|4 terms.

Next, use the second assumption (5.9) in the |⃗k|2 terms, which makes the last equation (5.10) smaller
or equal then

≤ |⃗k|4
(
a2b2ρ̄24 + 16f2 + 1

)
+ |⃗k|2 · 8b (1− h) ρ̄4 (4f − 1− 4f + 1)

+ 16b2h2ρ̄24 + 16b2ρ̄24

= |⃗k|4
(
a2b2ρ̄24 + 16f2 + 1

)
+ 16b2h2ρ̄24 + 16b2ρ̄24.

So the third eigenvalue is smaller than

− P +
1

8

√
Q <

− P +
1

8

√∣∣∣⃗k∣∣∣4 (a2b2ρ̄24 + 16f2 + 1) + 16b2h2ρ̄24 + 16b2ρ̄24 ≤

− P +
1

8

(√∣∣∣⃗k∣∣∣4(√a2b2ρ̄24 +
√
16f2 +

√
1

)
+
√
16b2h2ρ̄24 +

√
16b2ρ̄24

)
,

by the triangle inequality
√
x+ y ≤

√
x+

√
y. We can use this since all terms are non-negative. Filling

in P gives us for eigenvalue 3:

λ3 < −ab |⃗k|2ρ̄4
8

− bρ̄4h

2
− |⃗k|2f

2
− bρ̄4

2
− |⃗k|2

8
+

1

8

(
|⃗k|2 (abρ̄4 + 4f + 1) + 4bhρ̄4 + 4bρ̄4

)
= 0.

The square
√
Q can be negative though, which would make the eigenvalues imaginary. However, this

proves that the real parts of eigenvalues 3 and 4 are negative for all k⃗ if (but not only if) the parameters
satisfy the assumptions given by Equations (5.8) and (5.9).

To check these conclusions, we run simulations starting from this first equilibrium point. For the simu-
lations, we use the parameter values provided in Table 5.2 with χ = 0.3 and the following initial values
for the non-boundary lattice points of the non-dimensional system:

ρ̄1 = 11.1,

ρ̄2 = 24.9,

ρ̄3 = 0,

ρ̄4 = 36.

(5.11)

Parameter Description Value
L L× L is the lattice size 50
l Spatial-step 0.02
δt Time-step 1
Ci Movement probability 0.1 for all i
β The rate at which the cells are pushed 1.0 · 10−5

αi Birth-rates α1 = α2 = 0.001, α3 = 0.2
γi Death-rates γ1 = γ2 = γ3 = 0.001
µ Production-rate testosterone 0.04
η Consumption-rate testosterone 0.001

Table 5.2: The parameter values which are used in the simulations of the equilibrium solutions.
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When running the simulation implemented in C++ with the SFML library, Figure 5.1 shows that the
total cell densities remain constant over time. This indicates that, for the given parameter values and
initial conditions, the system has reached a stable equilibrium, since it is resilient to small perturbations.
At each lattice point, a small perturbation introduced by the movement terms is quickly counteracted,
letting the system to return to its equilibrium state.

Testosterone and Cell Dynamics Over Time for χ = 0.3, Starting from Equilibrium 1

Figure 5.1: The total number of cells (black), TP cells (green), T+ cells (blue) and the testosterone levels (purple) are plotted
against time from t = 0 to t = 390. With these parameter values the first equilibrium is stable.

Following this equilibrium state, we explored the effects of testosterone manipulation on the tumor
cell populations in Figure 5.2. In the first scenario, testosterone is removed from the system (χ = 0),
causing a reduction in cell densities as the system adapts to the absence of testosterone, eventually
reaching a new, lower equilibrium. This is possible since the T− population is absent in equilibrium 1.
In contrast, when testosterone is added to the system in equilibrium 1 (χ = 1), the cell populations re-
spond by increasing in density. The system stabilizes at a new equilibrium with higher overall densities,
demonstrating the direct influence of testosterone on tumor cell dynamics. This highlights how varying
testosterone levels can drive changes in tumor behavior.
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The Impact of the Testosterone Level in the Blood χ on Equilibrium 1

Testosterone and Cell Dynamics Over Time for χ = 0,
Starting from Equilibrium 1

Testosterone and Cell Dynamics Over Time for χ = 1,
Starting from Equilibrium 1

Figure 5.2: Two scenarios showing the impact of testosterone levels on tumor cell populations starting from an initial
equilibrium. In the first case (left), testosterone is removed from the system (χ = 0), leading to a decrease in the total cell

densities as the populations settle into a new equilibrium. In the second case (right), testosterone is added to the blood (χ = 1),
resulting in an increase in cell densities until they stabilize at a new equilibrium. The total number of cells (black), TP cells
(green), T+ cells (blue) and the testosterone levels (purple) are plotted against time from t = 0 to t = 390. There is no T−

population.

5.3.2. Equilibrium 2
The second equilibrium point is given by

(
− ρ̄3bg − bg − lb− hρ̄3 + h

bg
,− lb+ hρ̄3 − h

bg
, ρ̄3,

1

b

)
, which cor-

responds to a state where all three tumor cell types are present, and the T− cell density is a free variable.
The matrix A given in (5.7 1

2 ), evaluated at this equilibrium, has very large eigenvalues, making their
analysis beyond the scope of this thesis. Therefore, we perform a numerical exploration of stability and
rely on simulations to identify parameter values that are likely to lead to instability in this equilibrium.
It is important to note that the parameter values are constrained by the requirement of non-negative
densities. This leads to the conditions −ρ̄3bg + bg + lb+ hρ̄3 − h ≥ 0, −lb− hρ̄3 + h ≥ 0 and ρ̄3 ≥ 0.

For the simulations, we use the parameter values provided in Table 5.2 and the following initial values
for the non-boundary lattice points of the non-dimensional system:

ρ̄1 = 7.5 + 25χ,

ρ̄2 = −25χ+ 7.5,

ρ̄3 = 5,

ρ̄4 = 20.

(5.12)

We vary the base level testosterone χ between 0 and 0.3, as the initial density of T p, ρ2, becomes neg-
ative for χ > 0.3. The simulations start from the second equilibrium and run until the total density T−

reaches an equilibrium. This is determined by stopping the calculations when the absolute difference
in total density over the past 100 time steps is less than 0.01. The resulting equilibrium value of T− for
each χ is shown in Figure 5.3, made with Maple.
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Figure 5.3: Plot of the total density T− after each simulation has run until T− reached a new equilibrium, starting from the
second equilibrium for different values of the base level testosterone χ, the testosterone coming from the blood. The results

show that for 0 ≤ χ < 0.3, the total density declines to zero, indicating instability. At χ = 0.3, T− decreases initially but
stabilizes just above 9000, suggesting that the equilibrium is unstable under the given conditions.

In Figure 5.3, we observe that the total density of the T− cells decreases to 0 for every 0 ≤ χ < 0.3.
For χ = 0.3, the density initially decreases from the initial value of 11520 but then stabilizes above 9000.
This suggests that, for the given parameter values and initial conditions, the equilibrium is unstable for
all 0 ≤ χ < 0.3, and in most cases, the T− cells eventually die out.

We see this further portrayed in Figure 5.4, where we observe two distinct cases based on different
values of the base level testosterone χ, and their impact on equilibrium 2. Note that the initial values
change when χ is adjusted. The upper part of Figure 5.4 shows the results for χ = 0.04, presenting a
cross-section at t = 0, at t = 2000, and the tumor lattice at t = 2000. For this value of χ, the T− cells
die out over time, leaving the T+ and TP populations. When we look closely at the picture of the lattice
of Figure 5.4, we can see TP and T+ populations. By contrast, the bottom row of the figure shows the
results for χ = 0.3. Here, while the T− density remains, the TP population vanishes, and both the T+

and the T− populations persist. When we look closely at the picture of the lattice, we can mostly see
small T+ populations. For this Figure we again used the parameter values from Table 5.2.
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Comparison of the Behavior of Equilibrium 2 for Different Values of χ.

Cross-Section at t = 0, χ = 0.04 Cross-Section at t = 2000, χ = 0.04 The tumor lattice at t = 2000, χ = 0.04

Cross-Section at t = 0, χ = 0.3 Cross-Section at t = 2000, χ = 0.3 The tumor lattice at t = 2000, χ = 0.3

Figure 5.4: At the top, for χ = 0.04, the cross-sections at t = 0, t = 2000, and the tumor lattice at t = 2000 show that the T−

population (in red) dies out, leaving only the T+ (in blue) and TP (in green) populations. At the bottom, for χ = 0.3, the same
time points and lattice reveal the absence of the TP population, while the T+ and T− populations persist. The colors

represent: total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue), and testosterone levels (purple).

At equilibrium 3, the only non-zero populations are the testosterone dependent T+ tumor cells and the
testosterone densities. This equilibrium state is less relevant for further analysis because T+ cells can
be effectively eliminated by treatment, as explained in Chapter 6.

Having analyzed the dynamics of our prostate cancer model, we can now explore the effects of different
treatment strategies on a prostate tumor in the following chapter.



6
Treatment Strategies for Prostate

Cancer

This chapter explores three different treatment strategies for prostate cancer, each designed at ma-
nipulating testosterone levels, which play a crucial role in prostate tumor growth. This is done for our
model given in Section 5.1. In Section 6.1, we outline the parameters and initial values we used in this
chapter and examine its progression in the absence of treatment. Section 6.2 discusses a standard
first line-treatment, the so-called androgen deprivation, which removes all testosterone from the blood-
stream. The second strategy, presented in Section 6.3, uses Lupron with Abiraterone, a medication
targeting testosterone-producing cancer cells. Finally, in Section 6.4, we introduce an approach that
integrates the use of Lupron and Abiraterone with high-dose testosterone injections, testing whether
we can model extinction therapy. We simulate each treatment in the model outlined in Section 5.1.

6.1. Parameter Values and Initial Conditions
In this section, we outline the parameters used to model the initial tumor and examine its progression
without treatment. We begin with the following initial conditions: each non-boundary cell is assigned a
baseline testosterone level, ρ4 = χ. Additionally, 100 T− cells, 100 T+ cells, and 100 TP cells (ρi = 1)
are uniformly distributed within a 10× 10 square in the center of the lattice. The parameter values are
provided in Table 6.1.

Parameter Description Value
L L× L is the lattice size 50
l Spatial-step 0.02
δt Time-step 1
Ci Movement probability 0.1 for all i
β The rate at which the cells are pushed 1.0 · 10−5

αi Birth-rates α1 = α2 = 0.007, α3 = 0.08
γi Death-rates γ1 = γ2 = γ3 = 0.001
µ Production-rate testosterone 0.03
η Consumption-rate testosterone 0.0015
χ Base-level testosterone 0.15

Table 6.1: The parameter values which are used in the simulations showing the model behavior in response to treatment
strategies.

Using the model described in System (5.1), we ran the simulations, which were implemented in C++
with the SFML library. Figure 6.1 presents the dynamics of testosterone and tumor cells over time.
Initially, we observe a sharp increase in TP cells. However, because of the limited space, the ρN in
the death-terms of Equation (5.1), the growth rate of all tumor cells slows down, stabilizing the tumor
burden.

49
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Testosterone and Cell Dynamics Over Time, with no treatment

Figure 6.1: The total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue), and testosterone levels (purple)
are plotted against time from t = 0 to t = 390. In the beginning, we see a big increase of the testosterone-dependent tumor

cells, especially TP , after which the growth of all the tumor cells slows down.

Figure 6.2 displays the lattice and cross-sections of the middle row of the lattice at different time points.
The TP cells dominate the upper half of the lattice, the T+ cells are less prominent, and the T− cells
mostly occupy the lower half of the lattice. Over time, it looks like that the system stabilizes into an
equilibrium.
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Tumor Growth and Cross-Sections, with no treatment

The tumor lattice at t = 0 The tumor lattice at t = 100 The tumor lattice at t = 200 The tumor lattice at t = 390

Cross-Section at t = 0 Cross-Section at t = 100 Cross-Section at t = 200 Cross-Section at t = 390

Figure 6.2: (a) Lattice representations of the tumor at t = 0, t = 100, t = 200 and t = 390, showing the evolution of the spatial
distribution of the tumor cells, with T− cells (red), TP cells (green), T+ cells (blue), without treatment. (b) Cross-sectional

views of the middle row of the lattice at the same time points, illustrating changes in the total number of cells (black), T− cells
(red), TP cells (green), T+ cells (blue) and testosterone levels (purple).

6.2. Effect of Testosterone Removal
Administering the medication Lupron is a common treatment that works by eliminating testosterone
from the bloodstream, effectively starving the testosterone-dependent cells [53]. We simulate the re-
moval of testosterone corresponding to this treatment by setting χ = 0 and setting the total movement
probability of testosterone in the blood to zero (C4 = 0), since once the testosterone moves into the
bloodstream it is removed. The expected outcome is a decrease in the T+ and TP densities, leaving
T− cells as the dominant population.

In the simulation, we apply this treatment using the initial conditions from Section 6.1 and track the
decline in testosterone-dependent cells over time as they adjust to the new hormone-deprived envi-
ronment. The tumor state at t = 140 of Section 6.1 is taken as the initial condition for applying the
treatments discussed in the following sections. Figure 6.3 presents the testosterone and tumor cells
over time. Starting at t = 0, Lupron is administered, removing the testosterone from the blood. This
results in a slower growth of the testosterone-dependent tumor cells, especially T+ cells, since those
cells cannot produce testosterone themselves. On the other hand, the T− cells grow faster than when
compared to no treatment. A reason for this could be that there is more space available.
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Testosterone and Cell Dynamics Over Time, with Lupron

Figure 6.3: The total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue), and testosterone levels (purple)
are plotted against time from t = 0 to t = 390. Starting at t = 0 Lupron is administered, removing the testosterone from the
blood. This results in a slower growth of the testosterone-dependent tumor cells, especially TP , since those cells cannot

produce testosterone themselves. On the other hand, the T− cells grow faster then compared to no treatment, since there is
more space left.

Figure 6.4 shows the lattice and cross-sections of the middle row at different time points, giving a
detailed perspective on the tumor dynamics. The TP cells dominate the upper half of the lattice. The
T− cells primarily occupy the lower half of the lattice. A key observation is that the effectiveness of
this treatment depends largely on the composition of tumor cells within the tumor micro environment.
If no testosterone-independent (T−) cells are present, administering Lupron could be more effective
in reducing the tumor burden, as the growth of both testosterone-dependent T+ and TP cells rely on
testosterone levels. However, since TP cells can produce their own testosterone, their presence allow
the tumor to persist, even in the absence of external testosterone. On the other hand, if a population
of T− cells is present, they could benefit from the reduction of testosterone-dependent cells, gaining
more space and resources to grow.
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Tumor Growth and Cross-Sections, with Lupron

The tumor lattice at t = 0 The tumor lattice at t = 100 The tumor lattice at t = 200 The tumor lattice at t = 390

Cross-Section at t = 0 Cross-Section at t = 100 Cross-Section at t = 200 Cross-Section at t = 390

Figure 6.4: The tumor dynamics after administering Lupron starting at t = 0. (a) Lattice representations of the tumor at t = 0,
t = 100, t = 200 and t = 390, showing the evolution of the spatial distribution of the tumor cells, with T− cells (red), TP cells
(green), T+ cells (blue). (b) Cross-sectional views of the middle row of the lattice at the same time points, illustrating changes

in the total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue) and testosterone levels (purple).

6.3. Testosterone Removal and Targeting T P

In this strategy, we integrate the use of Lupronwith Abiraterone, which targets the testosterone-producing
prostate cells (TP ). Another example of such a drug is Enzalutamide. We simulate this by setting the
growth rate of TP cells to zero (α2 = 0). The two drugs slow down the testosterone-related tumor
growth, suppressing the tumor more effectively than Lupron alone. Cunningham et al. found in [10]
that ongoing Abiraterone therapy typically results in a decrease in tumor burden by targeting and re-
ducing both the TP and T+ tumor cells. We expect a rapid decline in TP cells. With no testosterone in
the bloodstream due to Lupron and the decline of testosterone-producing cells, the T+ population will
also diminish, as they rely on testosterone for survival but cannot produce it themselves. In contrast,
T− cells grow faster as they have more space.

While the strategy of treating a patient with Lupron and Abiraterone is expected to slow tumor progres-
sion compared to Lupron alone, its effectiveness depends on the presence of T− cells. If they are
present, the increase in space and resource availability for T− cells may allow their numbers to rapidly
grow, potentially undermining the benefits of the treatment.

In the simulation, the tumor state at t = 140 of Section 6.1 is taken as the initial condition for applying the
treatment. Figure 6.5 presents the testosterone and tumor cell dynamics over time. Starting at t = 0,
Lupron and Abiraterone are administered, removing the testosterone from the blood and targeting TP .
This results in an extinction of the TP cells and later on the T+ cells. This is because α2 is set to zero,
so the TP cells cannot grow anymore and slowly die out. At that moment, no new testosterone can be
produced anymore, resulting in the extinction of the T+ population. On the other hand, T− cells grow
faster than without treatment if TP and T+ were present, since there is more space left. The tumor
burden at t = 390 is lower compared to Figures 6.1 and 6.3 which show the tumor dynamics over time
when administering no treatment or only Lupron.
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Testosterone and Cell Dynamics Over Time, with Lupron and Abiraterone

Figure 6.5: The total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue), and testosterone levels (purple)
are plotted against time from t = 0 to t = 390. Starting at t = 0 the medicines Lupron and Abiraterone are administered,

removing the testosterone from the blood and targeting TP . This results in an extinction of the TP cells and later on the T+

cells. On the other hand, the T− cells grow faster then compared to no treatment, since there is more space left. The tumor
burden at t = 390 is lower compared to Figures 6.1 and 6.3.

Figure 6.6 shows the lattice and cross-sections of the middle row of the lattice at different time points.
The TP and T+ populations die out due to the lack of testosterone and α2 = 0. On the other hand, we
see the T− cells filling the whole lattice. A key observation is that the effectiveness of this treatment
depends largely on the composition of the tumor. If no testosterone-independent (T−) cells are present,
administering Lupron and Abiraterone will be effective and remove the whole tumor. However, as can
be seen in Figure 6.6, if a population of T− cells is present initially, these cells will multiply quickly and
fill the lattice.
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Tumor Growth and Cross-Sections, with Lupron and Abiraterone

The tumor lattice at t = 0 The tumor lattice at t = 100 The tumor lattice at t = 200 The tumor lattice at t = 390

Cross-Section at t = 0 Cross-Section at t = 100 Cross-Section at t = 200 Cross-Section at t = 390

Figure 6.6: The tumor dynamics after administering Lupron and Abiraterone starting at t = 0, removing the testosterone from
the blood and targeting the testosterone producing cells TP . (a) Lattice representations of the tumor at t = 0, t = 100, t = 200
and t = 390, showing the evolution of the spatial distribution of the tumor cells, with T− cells (red), TP cells (green), T+ cells
(blue). (b) Cross-sectional views of the middle row of the lattice at the same time-points, illustrating changes in the total number

of cells (black), T− cells (red), TP cells (green), T+ cells (blue) and testosterone levels (purple).

6.4. Innovative Treatment for Prostate Cancer
The third strategy involves the use of Lupron, Abiraterone, and testosterone injections. Unlike the
previous strategies, this approach reintroduces testosterone into the body, allowing periods of high
testosterone levels in the bloodstream (modeled as increasing χ). Although this idea is relatively new,
discussions with experts (private communication) [6] suggest it could induce a different tumor response.
The hypothesis is that high testosterone exposure might prevent the testosterone-independent cells T−

to dominate.

This strategy is a form of adaptive therapy, a treatment designed to control the competitive interactions
between drug-sensitive and drug-resistant cells. By allowing the testosterone-dependent cells to thrive
temporarily, it could suppress the growth of testosterone-independent cells due to resource and space
competition. This can help control the overall tumor burden, potentially leading to alternating phases
of cell growth and suppression. By carefully adjusting testosterone injection doses, it may be possible
to maintain this balance between the different tumor populations.

Alternatively, this strategy could be applied as extinction therapy, as discussed in the introduction,
where the goal is complete annihilation of all cancer cells. This is what we will try to simulate in this
section, by firstly giving high testosterone injections to aggressively promote the growth of testosterone-
dependent populations (T+ and TP ), out competing the testosterone-independent T− cells until they
are eradicated. Once this is achieved, Lupron and Abiraterone can be administered to target the re-
maining testosterone-dependent cells, aiming for complete tumor removal.

In the simulation, the tumor state at t = 140 of Section 6.1 is taken as the initial condition for applying the
treatments. Figure 6.7 presents the testosterone and tumor cell dynamics over time. Starting at t = 0
testosterone is injected in the blood, by increasing χ by 2, making the testosterone-dependent cells
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grow a lot, crushing the testosterone-independent T− cells. At t = 187 the T− cells are extinct, and
both Lupron and Abiraterone are administered, removing the testosterone from the blood and targeting
TP . This results in an extinction of the TP cells and later on the T+ cells. In this way the complete
tumor is removed.

Testosterone and Cell Dynamics Over Time, with Testosterone Injections, Lupron and Abiraterone

Figure 6.7: The total number of cells (black), T− cells (red), TP cells (green), T+ cells (blue), and testosterone levels (purple)
are plotted against time from t = 0 to t = 390. Starting at t = 0 testosterone is injected in the blood, by increasing χ by 2,

making the testosterone-dependent cells grow a lot, crushing the testosterone-independent T− cells. At t = 187 the T− cells
are extinct, and both Lupron and Abiraterone are administered, removing the testosterone from the blood and targeting TP .

This results in an extinction of the TP cells and later on the T+ cells. In this way the complete tumor is removed.

Figure 6.8 shows the lattice and cross-sections of the middle row at various time points, providing a
clearer view of the tumor dynamics throughout treatment. Initially, the testosterone-dependent cells,
TP and T+, experience growth due to the high testosterone levels provided, quickly occupying the
entire lattice. On the other hand, the testosterone-independent cells, T−, are unable to compete for
space and resources, leading to their extinction at time t = 187.

At this point, Lupron and Abiraterone are administered, and by t = 200, we observe a reduction in the
densities of TP and T+ cells. By t = 390, these populations are nearly extinct. The TP population
(green) reaches zero by t = 434, and finally, the T+ population (blue) is eradicated at t = 3015.
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Tumor Growth and Cross-Sections, with Testosterone Injections, Lupron and Abiraterone

The tumor lattice at t = 0 The tumor lattice at t = 100 The tumor lattice at t = 200 The tumor lattice at t = 390

Cross-Section at t = 0 Cross-Section at t = 100 Cross-Section at t = 200 Cross-Section at t = 390

Figure 6.8: The tumor dynamics after administering testosterone injections starting at t = 0. At t = 327 the T− cells are
extinct, and both Lupron and Abiraterone are administered, removing the testosterone from the blood and targeting TP . (a)
Lattice representations of the tumor at t = 0, t = 100, t = 200 and t = 390, showing the evolution of the spatial distribution of
the tumor cells, with T− cells (red), TP cells (green), T+ cells (blue). (b) Cross-sectional views of the middle row of the lattice

at the same time-points, illustrating changes in the total number of cells (black), T− cells (red), TP cells (green), T+ cells
(blue) and testosterone levels (purple).
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Discussion and Conclusions

In this thesis, we used spatiotemporal modeling to better understand hormonal cancer. In Chapter 2,
we first explored two common non-spatial population models: replicator dynamics and Lotka-Volterra
dynamics. We found an equivalence between the two under certain conditions, especially with an ad-
ditional variable y0, tracking the population size, and getting rid of y0 affects the speed that solutions
travel along the trajectories. After that we switched to spatial models.

Next, in Chapter 3, we designed an agent-based model on a discrete lattice to describe prostate can-
cer with three different cell types. By changing the testosterone level in the blood (χ), we could control
which tumor cells, testosterone-dependent or independent, dominated the lattice, suggesting a phase
transition in χ. We also simulated tumor growth starting from a few mutated cells.

In Chapter 4, we derived the partial differential equations of the continuum system by taking the con-
tinuum limit of the discrete model. Since this system was challenging to analyze, we proposed an
alternative continuum spatial model in Chapter 5 and analyzed this, through non-dimensionalization
and linear stability analysis. Finally, in Chapter 6, we explored three different treatment strategies
for prostate cancer, manipulating testosterone levels to affect tumor dynamics. Lupron removes all
testosterone from the bloodstream, Abiraterone stops the testosterone-producing cancer cells (TP )
from dividing and high-dose testosterone injections could be applied as extinction therapy.

Our spatiotemporal model is not limited to prostate cancer but has the potential to be applied to other hor-
monal cancers. By adjusting parameters related to hormone levels, such as testosterone for prostate
cancer or estrogen for breast cancer, the same framework can provide insights into how these cancers
behave under different treatment strategies. This flexibility in application enhances the model’s utility
across various cancer types, making it a valuable tool for broader cancer research.

One of the most recurring and striking findings is the role that testosterone levels in the blood play
in influencing tumor cell dynamics. Our model clearly shows that adjusting testosterone in the blood-
stream can often control which type of tumor cells dominate, highlighting a phase transition in χ. This
is exciting because it suggests the possibility of using hormonal manipulation as a means of controlling
tumor composition as treatment.

While there exist manymodels inmathematical oncology, including spatial and agent-based approaches,
focusing on simulating biological systems to observe behavior, this work is special because we incor-
porated a mathematical analysis. Our model not only simulates tumor dynamics but also provides a
formal understanding through non-dimensionalization and linear stability analysis. This added mathe-
matical layer offers deeper insights into the underlying mechanisms and potential stability of various
cell populations, which is not often a focus in purely spatial models.

The results of our simulations, particularly those in Section 6.4, demonstrate that extinction therapy is
not only feasible but should be strongly considered as a therapeutic strategy, given its ability to elimi-
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nate both testosterone-independent and testosterone-dependent tumor populations.

In this thesis, we have made several simplifying assumptions to allow for a mathematical analysis of
the system. However, these assumptions also open the door to many interesting directions for fu-
ture research. First and foremost, we relied on assumptions regarding parameter values, initial values
and biological processes that could be revisited. For example, in our final system we assumed that
testosterone levels influence cell division but not cell death. It would be fascinating to explore how
the tumor reacts to treatments if testosterone controls cell death instead, like the system we proposed
in Chapter 3. Furthermore, we treated several parameters as equal for simplicity such that we could
mathematically analyze the system. Future work could benefit from exploring what happens if one lets
go of these assumptions.

Another promising direction would be to extend the model to include negative values of χ, representing
assumptions where testosterone levels in the blood are so low that they extract the testosterone from
the whole body. Furthermore, when simulating extinction therapy, it looked like the tumor burden be-
came too high under certain conditions. It would be interesting to optimize the outcomes by minimizing
the tumor burden by adjusting the dosage and timing of testosterone injections. By fine-tuning these
parameters, especially starting with a smaller initial tumor or altering the treatment’s dosage, we may
be able to achieve better control over tumor populations and minimize their size throughout the treat-
ment period.

Exploring adaptive treatment strategies is another exciting opportunity to study. In our current research,
we showed that extinction therapy is promising, but a different approach could involve alternating
phases of dominance between different tumor cell populations. For example, testosterone-dependent
and testosterone-independent cells could take turns dominating the lattice. By optimizing doses and
timing, one could maybe maintain a balance between these populations, potentially delaying the pro-
gression of the disease significantly. Using our model together with this adaptive strategy could lead to
more controlled tumor growth, with alternating phases of growth and suppression across different cell
types, prolonging survival.

From a mathematical standpoint, the exploration of parameter fields could be extended further. One
could search for precise conditions under which the eigenvalues of the system’s equilibrium points
are stable or unstable. Furthermore, it would be interesting to look if an exact formulation for χ which
ensures the extinction of the T− cells exists and what it would be. If that is the case it means that,
not taking the tumor burden and side effects into consideration, extinction therapy could always work.
Investigating more complex models where survival probabilities for individual cells are stochastic could
also bring a new dimension to the analysis.

Moreover, one area that remains unexplored in this thesis is the inclusion of patient data. It would be
useful to fit the parameter values of the model using clinical data and to simulate treatment strategies
tailored to specific tumor compositions. This would not only provide a validation of the model but also
allow for a more individualized approach to cancer treatment.

Another extension would be the development of a three dimensional version of the model. While we
currently simulate the tumor in two dimensions with allowance for multiple cells in a single lattice point
(giving a pseudo three dimensional effect), a full three dimensional model could reveal interactions
between different layers of cells that are not captured in our current framework. Adding a third dimen-
sion could provide insights into how tumor cells interact vertically with neighboring layers, which could
maybe change the tumor’s response to treatments. Although this would complicate the mathematical
analysis, it could bring the model closer to representing real biological systems.

In addition, adjusting how testosterone levels are handled within the model could lead to more accurate
simulations. In the current setup, testosterone levels are not bounded, leading to potential unrealistic
scenarios where testosterone levels can rise sharply. Normalizing testosterone levels at each lattice
point to a biologically realistic range could combat this issue and provide more accurate results, espe-
cially when considering the model of Chapter 5.
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Finally, while this model assumes that all cells are updated synchronously, future work could explore
the implementation of a Gillespie algorithm, which updates individual cells one at a time with waiting
periods between updates [41]. This method would introduce stochasticity in cell behavior, making the
model more realistic.

In summary, this work has not only deepened our understanding of prostate cancer but has also laid the
foundation for future research across other hormonal cancers. The spatiotemporal model we developed
is adaptable, making it a powerful tool in exploring treatment strategies for a range of cancer types.
The integration of mathematical analysis with simulation provides unique insights into tumor dynamics,
opening exciting possibilities for treatment approaches. With further extensions and real patient data,
this model could contribute to personalized cancer treatment, potentially improving patient outcomes
in the future.
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A
The C++ Code

1 // This code is made to simulate prostate cancer (or other hormonal cancers).
2 // For it to work you need to install SFML, and link it to the project.
3 #include <SFML/Graphics.hpp> // For the plots
4 #include <iostream>
5 #include <string> // For legend plot
6 #include <vector>
7 #include <cstdlib> // For rand() and srand()
8 #include <ctime> // For time()
9 #include <cmath> // For floor()

10
11 class GridSquare {
12 public:
13 sf::Color color; // Color of the square
14
15 double test; // Testosterone
16 double test_new;
17 double test_new2;
18 double healthy_cells; // Healthy cells
19 double healthy_cells_new;
20 double healthy_cells_new2;
21 double blue; // Tumor cells needing testosterone , T^+
22 double red; // Tumor cells independent of testosterone , T^-
23 double green; // Tumor cells producing testosterone , T^P
24 double blue_new;
25 double red_new;
26 double green_new;
27 double blue_new2;
28 double red_new2;
29 double green_new2;
30
31 // Constructor
32 GridSquare(int x, int y, int size) :
33 x(x), y(y), size(size),
34 blue(0.0), red(0.0), green(0.0),
35 blue_new(0.0), red_new(0.0), green_new(0.0),
36 blue_new2(0.0), red_new2(0.0), green_new2(0.0),
37 color(sf::Color(0, 0, 0, 255)),
38 test(0.0), test_new(0.0), test_new2(0.0),
39 healthy_cells(0.0), healthy_cells_new(0.0), healthy_cells_new2(0.0) {}
40
41 // Default constructor
42 GridSquare() : x(0), y(0), size(0) {}
43
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44 // Function to set the color of the square
45 void setColor(sf::Color newColor) {
46 color = newColor;
47 }
48
49 // Function which returns the total number of cells at a site
50 double total_cells() {
51 return red + blue + green + healthy_cells;
52 }
53
54 double next_total_cells() {
55 return red_new + blue_new + green_new + healthy_cells_new;
56 }
57
58 // Function to draw the square
59 void draw(sf::RenderWindow& window) {
60 sf::RectangleShape square(sf::Vector2f(size, size));
61 square.setPosition(x, y);
62 square.setFillColor(color);
63 window.draw(square);
64 }
65
66 private:
67 int x; // x-coordinate of the square in the grid
68 int y; // y-coordinate of the square in the grid
69 int size; // Size of the square
70 };
71
72 int main() {
73 // Set random seed
74 std::srand(625);
75
76 // Create windows
77 int windowWidth = 400; // Be careful with changing this (change the plots as

well)
78 int windowHeight = 400;
79 double time = 0;
80 sf::RenderWindow windowtumor(sf::VideoMode(windowWidth , windowHeight), "Grid

all tumor cells", sf::Style::Close | sf::Style::Titlebar | sf::Style::
Resize);

81 sf::RenderWindow windowgreen(sf::VideoMode(windowWidth , windowHeight), "Grid
green tumor cells", sf::Style::Close | sf::Style::Titlebar | sf::Style::
Resize);

82 sf::RenderWindow windowred(sf::VideoMode(windowWidth , windowHeight), "Grid red
tumor cells", sf::Style::Close | sf::Style::Titlebar | sf::Style::Resize);

83 sf::RenderWindow windowblue(sf::VideoMode(windowWidth , windowHeight), "Grid
blue tumor cells", sf::Style::Close | sf::Style::Titlebar | sf::Style::
Resize);

84 sf::RenderWindow windowtest(sf::VideoMode(windowWidth , windowHeight), "Grid
testosterone", sf::Style::Close | sf::Style::Titlebar | sf::Style::Resize);

85 sf::RenderWindow windowhealthy(sf::VideoMode(windowWidth , windowHeight), "Grid
healthy cells", sf::Style::Close | sf::Style::Titlebar | sf::Style::Resize

);
86 sf::RenderWindow windowplot(sf::VideoMode(windowWidth , windowHeight), "Plot

middle row", sf::Style::Close | sf::Style::Titlebar | sf::Style::Resize);
87 sf::RenderWindow windowtotal(sf::VideoMode(windowWidth , windowHeight), "Total

cell density vs time", sf::Style::Close | sf::Style::Titlebar | sf::Style::
Resize);

88 sf::RenderWindow windowlegend(sf::VideoMode(2 * windowWidth / 3, windowHeight)
, "Legend", sf::Style::Close | sf::Style::Titlebar | sf::Style::Resize);

89
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90 // Make sure the windows are positined next to each other
91 windowtumor.setPosition(sf::Vector2i(windowWidth / 2 - 180, windowHeight / 2 -

100));
92 windowgreen.setPosition(sf::Vector2i(windowtumor.getPosition().x + windowWidth

+ 5, windowtumor.getPosition().y));
93 windowred.setPosition(sf::Vector2i(windowgreen.getPosition().x + windowWidth +

5, windowtumor.getPosition().y));
94 windowblue.setPosition(sf::Vector2i(windowred.getPosition().x + windowWidth +

5, windowtumor.getPosition().y));
95 windowtest.setPosition(sf::Vector2i(windowtumor.getPosition().x, windowtumor.

getPosition().y + windowHeight + 45));
96 windowhealthy.setPosition(sf::Vector2i(windowgreen.getPosition().x, windowtest

.getPosition().y));
97 windowplot.setPosition(sf::Vector2i(windowred.getPosition().x, windowtest.

getPosition().y));
98 windowtotal.setPosition(sf::Vector2i(windowblue.getPosition().x, windowtest.

getPosition().y));
99 windowlegend.setPosition(sf::Vector2i(windowblue.getPosition().x + windowWidth

+ 5, windowtest.getPosition().y));
100
101 // Define grid properties
102 int numRows = 50; // Make sure this is a divider of WindowWidth
103 int numCols = 50;
104 int cellSize = windowHeight / numRows;
105
106 // Model parameters
107 // Cell division
108 double prod_b = 0.007;// For alterate system: prod_b=prod_g
109 double prod_g = 0.007;
110 double prod_r = 0.08;
111 double prod_h = 0; // Cancer cells grow faster than healthy cells
112 // Testosterone
113 double prod = 0.03; // Testosterone creation rate by green tumor cells
114 double consumption_rate = 0.0015; // Testosterone consumption rate
115 double test_stay = 0.9; // Probability of testosterone staying at its lattice

point
116 double base = 0.15; // Standard testosterone level, coming from the blood
117 // Cell death
118 double death_b = 0.001;
119 double death_g = 0.001;
120 double death_r = 0.001;
121 double death_h = 0;
122 double starve = 0.08; // Death due to lack of testosterone -> not used in

alternate system
123 // Cell movement
124 double beta = 0.00001;
125 double C_h = 0.1; // Probability healthy cells move
126 double C_b = 0.1; // For alternate system C_h=C_b=C_g=C_r
127 double C_g = 0.1;
128 double C_r = 0.1;
129 // Needed for treatment
130 int answer;
131 double addtobaseleveltest = 0;
132
133 // Create a grid of grid squares
134 std::vector<std::vector<GridSquare >> grid(numRows, std::vector<GridSquare >(

numCols));
135 std::vector<std::vector<GridSquare >> greengrid(numRows, std::vector<GridSquare

>(numCols));
136 std::vector<std::vector<GridSquare >> redgrid(numRows, std::vector<GridSquare >(

numCols));
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137 std::vector<std::vector<GridSquare >> bluegrid(numRows, std::vector<GridSquare
>(numCols));

138 std::vector<std::vector<GridSquare >> testgrid(numRows, std::vector<GridSquare
>(numCols));

139 std::vector<std::vector<GridSquare >> healthygrid(numRows, std::vector<
GridSquare >(numCols));

140
141 // Add initial coordinates
142 for (int i = 0; i < numRows; ++i) {
143 for (int j = 0; j < numCols; ++j) {
144 // Calculate the position of the current grid square
145 int posX = j * cellSize; // Column index * cell size
146 int posY = i * cellSize; // Row index * cell size
147 // Initialize the grid square at the current position
148 grid[i][j] = GridSquare(posX, posY, cellSize);
149 }
150 }
151
152 // Initial conditions
153 // Uniformly distribute 100 red, 100 blue, and 100 green cells in a 10x10

square in the middle
154 int centerX = numCols / 2;
155 int centerY = numRows / 2;
156 int startX = centerX - 5;
157 int startY = centerY - 5;
158 int endX = centerX + 5;
159 int endY = centerY + 5;
160 for (int i = 0; i < 100; ++i) {
161 int xRed = std::rand() % 10 + startX;
162 int yRed = std::rand() % 10 + startY;
163 int xBlue = std::rand() % 10 + startX;
164 int yBlue = std::rand() % 10 + startY;
165 int xGreen = std::rand() % 10 + startX;
166 int yGreen = std::rand() % 10 + startY;
167
168 grid[yRed][xRed].red += 1;
169 grid[yBlue][xBlue].blue += 1;
170 grid[yGreen][xGreen].green += 1;
171 }
172 // Set initial value testosterone to base level
173 for (int i = 1; i < numRows - 1; ++i) {
174 for (int j = 1; j < numCols - 1; ++j) {
175 grid[i][j].test = base;
176 }
177 }
178
179 // Set initial values for equilibrium 1
180 /*for (int i = 1; i < numRows - 1; ++i) {
181 for (int j = 1; j < numCols -1; ++j) {
182 grid[i][j].blue = 11.1;
183 grid[i][j].green = 24.9;
184 grid[i][j].red = 0;
185 grid[i][j].healthy_cells = 0;
186 grid[i][j].test = 36;
187 }
188 }*/
189
190 // Set initial values for equilibrium 2
191 /*for (int i = 1; i < numRows -1; ++i) {
192 for (int j = 1; j < numCols -1; ++j) {
193 grid[i][j].blue = 7.5 + 25 * base;
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194 grid[i][j].green = -(25 * base) + 7.5;
195 grid[i][j].red = 5;
196 grid[i][j].healthy_cells = 0;
197 grid[i][j].test = 20;
198 }
199 }*/
200
201 // Empty boundaries
202 for (int j = 0; j < numCols; ++j) {
203 grid[0][j].test = 0;
204 grid[0][j].healthy_cells = 0;
205 grid[0][j].blue = 0;
206 grid[0][j].green = 0;
207 grid[0][j].red = 0;
208 grid[numRows - 1][j].test = 0;
209 grid[numRows - 1][j].healthy_cells = 0;
210 grid[numRows - 1][j].blue = 0;
211 grid[numRows - 1][j].green = 0;
212 grid[numRows - 1][j].red = 0;
213 }
214 for (int i = 0; i < numRows; ++i) {
215 grid[i][0].test = 0;
216 grid[i][0].healthy_cells = 0;
217 grid[i][0].blue = 0;
218 grid[i][0].green = 0;
219 grid[i][0].red = 0;
220 grid[i][numCols - 1].test = 0;
221 grid[i][numCols - 1].healthy_cells = 0;
222 grid[i][numCols - 1].blue = 0;
223 grid[i][numCols - 1].green = 0;
224 grid[i][numCols - 1].red = 0;
225 }
226
227 // Needed for total number of cells plot
228 std::vector<sf::Vertex> allLines;
229 std::vector<sf::Vertex> allLinestest;
230 std::vector<sf::Vertex> allLinesgreen;
231 std::vector<sf::Vertex> allLinesred;
232 std::vector<sf::Vertex> allLinesblue;
233 std::vector<sf::Vertex> allLineshealthy;
234 double oldtotal = 0;
235 double newtotal = 0;
236 double oldtotaltest = 0;
237 double newtotaltest = 0;
238 double oldtotalblue = 0;
239 double newtotalblue = 0;
240 double oldtotalgreen = 0;
241 double newtotalgreen = 0;
242 double oldtotalred = 0;
243 double newtotalred = 0;
244 double oldtotalhealthy = 0;
245 double newtotalhealthy = 0;
246
247 for (int i = 0; i < numRows; ++i) {
248 for (int j = 0; j < numCols; ++j) {
249 oldtotal += grid[i][j].total_cells();
250 oldtotaltest += grid[i][j].test;
251 oldtotalblue += grid[i][j].blue;
252 oldtotalgreen += grid[i][j].green;
253 oldtotalred += grid[i][j].red;
254 oldtotalhealthy += grid[i][j].healthy_cells;
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255 }
256 }
257
258 // Legend
259 sf::Font font;
260 if (!font.loadFromFile("C:/Users/jrral/Documents/TU/Thesis/C++ thesis/Roboto/

Roboto-Thin.ttf")) { // Change it to the position of a font you like
261 // Handle error
262 }
263 sf::Text legend;
264 legend.setFont(font);
265 legend.setCharacterSize(20);
266 legend.setFillColor(sf::Color::Black);
267 legend.setPosition(10, 10); // Position the text in the window
268
269 // Needed for plot showing all the different types of cells of the middle row
270 sf::VertexArray rline(sf::LinesStrip , numCols);
271 sf::VertexArray bline(sf::LinesStrip , numCols);
272 sf::VertexArray gline(sf::LinesStrip , numCols);
273 sf::VertexArray testline(sf::LinesStrip , numCols);
274 sf::VertexArray totline(sf::LinesStrip , numCols);
275 sf::VertexArray hline(sf::LinesStrip , numCols);
276 sf::VertexArray nulline(sf::LinesStrip , numCols);
277 sf::VertexArray maxline(sf::LinesStrip , numCols);
278
279 // Fix the colors for the plot t=0
280 for (int i = 1; i < numRows - 1; ++i) {
281 for (int j = 1; j < numCols - 1; ++j) {
282 grid[i][j].setColor(sf::Color(std::max(std::min(grid[i][j].red, (

double)255), (double)0), std::max(std::min(grid[i][j].green, (
double)255), (double)0), std::max(std::min(grid[i][j].blue, (double
)255), (double)0), 255));

283 greengrid[i][j].setColor(sf::Color(0, std::max(std::min(grid[i][j].
green, (double)255), (double)0), 0, 255));

284 redgrid[i][j].setColor(sf::Color(std::max(std::min(grid[i][j].red, (
double)255), (double)0), 0, 0, 255));

285 bluegrid[i][j].setColor(sf::Color(0, 0, std::max(std::min(grid[i][j].
blue, (double)255), (double)0), 255));

286 testgrid[i][j].setColor(sf::Color(0, std::max(std::min(grid[i][j].test
, (double)255), (double)0), 0, 255));

287 healthygrid[i][j].setColor(sf::Color(std::max(std::min(grid[i][j].
healthy_cells , (double)255), (double)0), 0, 0, 255));

288 }
289 }
290
291 bool paused = false; // Pause button
292
293 // Main loop
294 while (windowtumor.isOpen()) {
295 sf::Event evnt;
296 while (windowtumor.pollEvent(evnt)) {
297 if (evnt.type == sf::Event::Closed) {
298 windowtumor.close();
299 windowgreen.close();
300 windowblue.close();
301 windowred.close();
302 windowtest.close();
303 windowhealthy.close();
304 windowplot.close();
305 windowtotal.close();
306 windowlegend.close();
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307 }
308 else if (evnt.type == sf::Event::KeyPressed && evnt.key.code == sf::

Keyboard::Space)
309 paused = !paused; // Pause when spacebar is pressed (does not

always work yet)
310 }
311
312 if (!paused) {
313 // Needed for total cells vs time plot
314 for (int i = 0; i < numRows; ++i) {
315 for (int j = 0; j < numCols; ++j) {
316 newtotal += grid[i][j].total_cells();
317 newtotaltest += grid[i][j].test;
318 newtotalblue += grid[i][j].blue;
319 newtotalgreen += grid[i][j].green;
320 newtotalred += grid[i][j].red;
321 newtotalhealthy += grid[i][j].healthy_cells;
322 }
323 }
324
325 // If you want to start with a more grown tumor to try out treatment

strategies , set this to the prefered time != 0
326 int t_0 = 0;
327
328 // Start the densities vs time plot again if the window is full
329 if ((int)(time - t_0) % windowWidth == 0) {
330 allLines.clear();
331 allLinestest.clear();
332 allLinesgreen.clear();
333 allLinesred.clear();
334 allLinesblue.clear();
335 allLineshealthy.clear();
336 }
337
338 if ((int)time >= t_0) {
339 allLines.push_back(sf::Vertex(sf::Vector2f((int)(time-t_0) %

windowWidth , 400 - oldtotal / 1000), sf::Color::Black));
340 allLines.push_back(sf::Vertex(sf::Vector2f((int)(time-t_0 + 1) %

windowWidth , 400 - newtotal / 1000), sf::Color::Black));
341
342 allLinestest.push_back(sf::Vertex(sf::Vector2f((int)(time - t_0) %

windowWidth , 400 - oldtotaltest / 1000), sf::Color::Magenta));
343 allLinestest.push_back(sf::Vertex(sf::Vector2f((int)(time-t_0 + 1)

% windowWidth , 400 - newtotaltest / 1000), sf::Color::Magenta)
);

344
345 allLinesblue.push_back(sf::Vertex(sf::Vector2f((int)(time - t_0) %

windowWidth , 400 - oldtotalblue / 1000), sf::Color::Blue));
346 allLinesblue.push_back(sf::Vertex(sf::Vector2f((int)(time - t_0 +

1) % windowWidth , 400 - newtotalblue / 1000), sf::Color::Blue))
;

347
348 allLinesgreen.push_back(sf::Vertex(sf::Vector2f((int)(time - t_0)

% windowWidth , 400 - oldtotalgreen / 1000), sf::Color::Green));
349 allLinesgreen.push_back(sf::Vertex(sf::Vector2f((int)(time-t_0 +

1) % windowWidth , 400 - newtotalgreen / 1000), sf::Color::Green
));

350
351 allLinesred.push_back(sf::Vertex(sf::Vector2f((int)(time - t_0) %

windowWidth , 400 - oldtotalred / 1000), sf::Color::Red));
352 allLinesred.push_back(sf::Vertex(sf::Vector2f((int)(time-t_0 + 1)
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% windowWidth , 400 - newtotalred / 1000), sf::Color::Red));
353
354 allLineshealthy.push_back(sf::Vertex(sf::Vector2f((int)(time - t_0

) % windowWidth , 400 - oldtotalhealthy / 1000), sf::Color::Cyan
));

355 allLineshealthy.push_back(sf::Vertex(sf::Vector2f((int)(time-t_0 +
1) % windowWidth , 400 - newtotalhealthy / 1000), sf::Color::

Cyan));
356 }
357
358 oldtotal = newtotal;
359 newtotal = 0;
360 oldtotaltest = newtotaltest;
361 newtotaltest = 0;
362 oldtotalblue = newtotalblue;
363 newtotalblue = 0;
364 oldtotalgreen = newtotalgreen;
365 newtotalgreen = 0;
366 oldtotalred = newtotalred;
367 newtotalred = 0;
368 oldtotalhealthy = newtotalhealthy;
369 newtotalhealthy = 0;
370
371 // Only make the plots every 30 timesteps
372 if ((int)time % 30 == 0 and time >= t_0) {
373 // Clear window
374 windowtumor.clear(sf::Color::Black);
375 windowgreen.clear(sf::Color::Black);
376 windowblue.clear(sf::Color::Black);
377 windowred.clear(sf::Color::Black);
378 windowtest.clear(sf::Color::Black);
379 windowhealthy.clear(sf::Color::Black);
380 windowplot.clear(sf::Color::White);
381 windowtotal.clear(sf::Color::White);
382 windowlegend.clear(sf::Color::White);
383
384 // Draw grid squares
385 for (int i = 0; i < numRows; ++i) {
386 for (int j = 0; j < numCols; ++j) {
387 grid[i][j].draw(windowtumor);
388 greengrid[i][j].draw(windowgreen);
389 redgrid[i][j].draw(windowred);
390 bluegrid[i][j].draw(windowblue);
391 testgrid[i][j].draw(windowtest);
392 healthygrid[i][j].draw(windowhealthy);
393 }
394 }
395
396 // Make plot showing all the different types of cells of the

middle row
397 for (int j = 0; j < numCols; ++j) {
398 int x = j * cellSize;
399 // Change these numbers if you change the windowsize:
400 rline[j] = sf::Vertex(sf::Vector2f(x, 350 - grid[numRows / 2][

j].red), sf::Color::Red); //
401 bline[j] = sf::Vertex(sf::Vector2f(x, 350 - grid[numRows / 2][

j].blue), sf::Color::Blue);
402 gline[j] = sf::Vertex(sf::Vector2f(x, 350 - grid[numRows / 2][

j].green), sf::Color::Green);
403 testline[j] = sf::Vertex(sf::Vector2f(x, 350 - grid[numRows /

2][j].test), sf::Color::Magenta);



72

404 totline[j] = sf::Vertex(sf::Vector2f(x, 350 - grid[numRows /
2][j].total_cells()), sf::Color::Black); // Total number of
cells - black

405 hline[j] = sf::Vertex(sf::Vector2f(x, 350 - grid[numRows / 2][
j].healthy_cells), sf::Color::Cyan); // Healthy cells -
light blue

406 nulline[j] = sf::Vertex(sf::Vector2f(x, 350), sf::Color::Black
); // To show if things go below zero

407 maxline[j] = sf::Vertex(sf::Vector2f(x, 95), sf::Color::Black)
; // To show if things go higher than max color

408 }
409 windowplot.draw(totline);
410 windowplot.draw(rline);
411 windowplot.draw(bline);
412 windowplot.draw(gline);
413 windowplot.draw(testline);
414 windowplot.draw(hline);
415 windowplot.draw(nulline);
416 //windowplot.draw(maxline);
417
418 // Make a total cells vs time plot
419 windowtotal.draw(&allLines[0], allLines.size(), sf::Lines);
420 windowtotal.draw(&allLinestest[0], allLinestest.size(), sf::Lines)

;
421 windowtotal.draw(&allLinesblue[0], allLinesblue.size(), sf::Lines)

;
422 windowtotal.draw(&allLinesgreen[0], allLinesgreen.size(), sf::

Lines);
423 windowtotal.draw(&allLinesred[0], allLinesred.size(), sf::Lines);
424 windowtotal.draw(&allLineshealthy[0], allLineshealthy.size(), sf::

Lines);
425
426 // Making the legend plot
427 std::string result = "Legend: \n \nBlack: all cells  \nLight blue:

Healthy cells\nPurple: Testosterone\nTime: " + std::to_string(
time);

428 legend.setString(result);
429 windowlegend.draw(legend);
430
431 // Display the windows
432 windowtumor.display();
433 windowgreen.display();
434 windowblue.display();
435 windowred.display();
436 windowtest.display();
437 windowhealthy.display();
438 windowplot.display();
439 windowtotal.display();
440 windowlegend.display();
441 //int k = 0;
442 //std::cout << "Enter a number if you are ready to go on with the

simulations." << std::endl;
443 //std::cin >> k; // Pauses the simulation such that you can make a

snapshot of the pictures
444 }
445
446 // Set a maximum on the tumor burden
447 /*if (oldtotal >= 180000) {
448 std::cout << "Total = " << oldtotal << " at time " << time << std

::endl;
449 std::cout << "Patient died..." << std::endl;
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450 int k;
451 std::cin >> k;
452 }*/
453
454 std::cout << "Time = " << time << std::endl; // Print the time to

check
455
456 // Treatment
457 if ((int)time % 30 == 0 and time >= t_0){
458 std::cout << "WHat treatment do you want to give: Lupron (base=0

and test_stay=0)(1), Abiraterone (prod_g=0)(2), inject
testosterone (increase base)(3) or both 1&2 (4) do nothing(5)?"
;

459 std::cin >> answer;
460 if (answer == 1) {
461 std::cout << "All testosterone in the blood will be removed.";
462 base = 0;
463 test_stay = 1;
464 }
465 else if (answer == 2) {
466 std::cout << "The green cells will be targeted.";
467 prod_g = 0;
468 }
469 else if (answer == 3) {
470 std::cout << "Enter a number testosterone to add each timestep

to each cell: ";
471 std::cin >> addtobaseleveltest;
472 std::cout << "You entered: " << addtobaseleveltest << std::

endl;
473 base += addtobaseleveltest;
474 }
475 else if (answer == 4) {
476 std::cout << "All testosterone in the blood will be removed

and the green cells will be targeted.";
477 base = 0;
478 test_stay = 1;
479 prod_g = 0;
480 }
481 }
482 std::cout << "Base = " << base << std::endl; // Print values to check
483 std::cout << "C_{test} = " << 1-test_stay << std::endl;
484 std::cout << "Alpha_g = " << prod_g << std::endl;
485 time += 1; // Update the time
486
487
488 // Update the cells (with empty boundaries)
489 for (int i = 1; i < numRows - 1; ++i) {
490 for (int j = 1; j < numCols - 1; ++j) {
491 grid[i][j].red_new = grid[i][j].red; // Red cells are

independent of test, T^-
492 grid[i][j].blue_new = grid[i][j].blue; // Blue cells need test

, T^+
493 grid[i][j].green_new = grid[i][j].green; // Green cells

produce test, T^P
494 grid[i][j].test_new = grid[i][j].test;
495 grid[i][j].healthy_cells_new = grid[i][j].healthy_cells;
496
497 // Testosterone production by green T^p cells
498 grid[i][j].test_new += prod * grid[i][j].green + base;
499 // Testosterone consumption by blue T^+, green T^P and healthy

cells
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500 grid[i][j].test_new -= consumption_rate * grid[i][j].test * (
grid[i][j].blue + grid[i][j].healthy_cells + grid[i][j].
green);

501
502 // Cell death (natural)
503 grid[i][j].green_new -= death_g * grid[i][j].total_cells() *

grid[i][j].green;
504 grid[i][j].red_new -= death_r * grid[i][j].total_cells() *

grid[i][j].red;
505 grid[i][j].blue_new -= death_b * grid[i][j].total_cells() *

grid[i][j].blue;
506 grid[i][j].healthy_cells_new -= death_h * grid[i][j].

total_cells() * grid[i][j].healthy_cells;
507
508 //// Cell death due to lack of testosterone
509 //grid[i][j].green_new -= starve * grid[i][j].green / ( (

double)1 + grid[i][j].test);
510 //grid[i][j].blue_new -= starve * grid[i][j].blue / ((double)1

+ grid[i][j].test);
511 //grid[i][j].healthy_cells_new -= starve * grid[i][j].

healthy_cells / ((double)1 + grid[i][j].test);
512
513 //// Cell birth
514 //grid[i][j].green_new += prod_g * grid[i][j].green;
515 //grid[i][j].red_new += prod_r * grid[i][j].red;
516 //grid[i][j].blue_new += prod_b * grid[i][j].blue;
517 //grid[i][j].healthy_cells_new += prod_h * grid[i][j].

healthy_cells;
518
519 // Cell birth influenced by grid.test - alternate system
520 grid[i][j].green_new += prod_g * grid[i][j].green * grid[i][j

].test;
521 grid[i][j].red_new += prod_r * grid[i][j].red;
522 grid[i][j].blue_new += prod_b * grid[i][j].blue * grid[i][j].

test;
523 grid[i][j].healthy_cells_new += prod_h * grid[i][j].

healthy_cells * grid[i][j].test;
524
525 // Cell movement
526 //double z_0 = exp(-zeta * grid[i][j].total_cells() / Max_pop)

; -> use for more complex model
527 double z_1 = exp( - beta * grid[i + 1][j].total_cells());
528 if (i == numRows - 2)
529 z_1 = 0;
530 double z_2 = exp( -beta * grid[i - 1][j].total_cells());
531 if (i == 1)
532 z_2 = 0;
533 double z_3 = exp(-beta * grid[i][j + 1].total_cells());
534 if (j == numCols - 2)
535 z_3 = 0;
536 double z_4 = exp(-beta * grid[i][j - 1].total_cells());
537 if (j == 1)
538 z_4 = 0;
539 double z = z_1 + z_2 + z_3 + z_4; // Summing the terms over

the neighboring gridpoints
540 grid[i][j].green_new2 += grid[i][j].green_new;
541 grid[i][j].blue_new2 += grid[i][j].blue_new;
542 grid[i][j].red_new2 += grid[i][j].red_new;
543 grid[i][j].healthy_cells_new2 += grid[i][j].healthy_cells_new;
544
545 // Moving the green T^P tumor cells
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546 if (grid[i][j].green_new >= 1) { // Only moving cells if there
are cells to move

547 for (int k = 1; k <= grid[i][j].green_new; ++k) {
548 double move_g = static_cast <double >(std::rand()) /

RAND_MAX; // Create random number between 0 and 1
549 if (move_g <= (C_g * z_1 / z) and z_1 !=0) {
550 grid[i + 1][j].green_new2 += 1;
551 grid[i][j].green_new2 -= 1;
552 }
553 else if (move_g <= (C_g * (z_1 + z_2) / z)) {
554 grid[i - 1][j].green_new2 += 1;
555 grid[i][j].green_new2 -= 1;
556 }
557 else if (move_g <= (C_g * (z_1 + z_2 + z_3) / z)) {
558 grid[i][j + 1].green_new2 += 1;
559 grid[i][j].green_new2 -= 1;
560 }
561 else if (move_g <= C_g) {
562 grid[i][j-1].green_new2 += 1;
563 grid[i][j].green_new2 -= 1;
564 }
565 }
566 }
567
568 // Moving the blue T^+ tumor cells
569 if (grid[i][j].blue_new >= 1) { // Only moving cells if there

are cells to move
570 for (int k = 1; k <= grid[i][j].blue_new; ++k) {
571 double move_b = static_cast <double >(std::rand()) /

RAND_MAX; // Create random number between 0 and 1
572 if (move_b <= (C_b * z_1 / z) and z_1 != 0) {
573 grid[i + 1][j].blue_new2 += 1;
574 grid[i][j].blue_new2 -= 1;
575 }
576 else if (move_b <= (C_b * (z_1 + z_2) / z)) {
577 grid[i - 1][j].blue_new2 += 1;
578 grid[i][j].blue_new2 -= 1;
579 }
580 else if (move_b <= (C_b * (z_1 + z_2 + z_3) / z)) {
581 grid[i][j + 1].blue_new2 += 1;
582 grid[i][j].blue_new2 -= 1;
583 }
584 else if (move_b <= C_b) {
585 grid[i][j - 1].blue_new2 += 1;
586 grid[i][j].blue_new2 -= 1;
587 }
588 }
589 }
590
591 // Moving the red T^- tumor cells
592 if (grid[i][j].red_new >= 1) { // Only moving cells if there

are cells to move
593 for (int k = 1; k <= grid[i][j].red_new; ++k) {
594 double move_r = static_cast <double >(std::rand()) /

RAND_MAX; // Create random number between 0 and 1
595 if (move_r <= (C_r * z_1 / z) and z_1 !=0) {
596 grid[i + 1][j].red_new2 += 1;
597 grid[i][j].red_new2 -= 1;
598 }
599 else if (move_r <= (C_r * (z_1 + z_2) / z)) {
600 grid[i - 1][j].red_new2 += 1;
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601 grid[i][j].red_new2 -= 1;
602 }
603 else if (move_r <= (C_r * (z_1 + z_2 + z_3) / z)) {
604 grid[i][j + 1].red_new2 += 1;
605 grid[i][j].red_new2 -= 1;
606 }
607 else if (move_r <= C_r) {
608 grid[i][j - 1].red_new2 += 1;
609 grid[i][j].red_new2 -= 1;
610 }
611 }
612 }
613
614 // Moving the healthy cells
615 if (grid[i][j].healthy_cells_new >= 1) { // Only moving cells

if there are cells to move
616 for (int k = 1; k <= grid[i][j].healthy_cells_new; ++k) {
617 double move_h = static_cast <double >(std::rand()) /

RAND_MAX; // Create random number between 0 and 1
618 if (move_h <= (C_h * z_1 / z) and z_1 !=0) {
619 grid[i + 1][j].healthy_cells_new2 += 1;
620 grid[i][j].healthy_cells_new2 -= 1;
621 }
622 else if (move_h <= (C_h * (z_1 + z_2) / z)) {
623 grid[i - 1][j].healthy_cells_new2 += 1;
624 grid[i][j].healthy_cells_new2 -= 1;
625 }
626 else if (move_h <= (C_h * (z_1 + z_2 + z_3) / z)) {
627 grid[i][j + 1].healthy_cells_new2 += 1;
628 grid[i][j].healthy_cells_new2 -= 1;
629 }
630 else if (move_h <= C_h) {
631 grid[i][j - 1].healthy_cells += 1;
632 grid[i][j].healthy_cells -= 1;
633 }
634 }
635 }
636
637 // Testosterone diffusion
638 grid[i][j].test_new2 += grid[i][j].test_new;
639 if (grid[i][j].test_new >= 1) { // Only moving cells if there

is testosterone to move
640 for (int k = 1; k <= grid[i][j].test_new; ++k) {
641 double move_t = static_cast <double >(std::rand()) /

RAND_MAX; // Create random number between 0 and 1
642 if (test_stay == 1) {
643
644 }
645 else if (move_t <= (1 - test_stay) / 4 and (i <

numRows - 2)) {
646 grid[i + 1][j].test_new2 += 1;
647 grid[i][j].test_new2 -= 1;
648 }
649 else if (move_t <= 2 * (1 - test_stay) / 4 and (i > 1)

) {
650 grid[i - 1][j].test_new2 += 1;
651 grid[i][j].test_new2 -= 1;
652 }
653 else if (move_t <= 3 * (1 - test_stay) / 4 and (j <

numCols - 2)) {
654 grid[i][j + 1].test_new2 += 1;
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655 grid[i][j].test_new2 -= 1;
656 }
657 else if (move_t <= 4 * (1 - test_stay) / 4 and (j > 1)

) {
658 grid[i][j - 1].test_new2 += 1;
659 grid[i][j].test_new2 -= 1;
660 }
661 }
662 }
663 }
664 }
665
666
667 // Set the next colour to be the current color and update the colors

for the plots
668 for (int i = 0; i < numRows; ++i) {
669 for (int j = 0; j < numCols; ++j) {
670 grid[i][j].red = grid[i][j].red_new2;
671 grid[i][j].blue = grid[i][j].blue_new2;
672 grid[i][j].green = grid[i][j].green_new2;
673 grid[i][j].healthy_cells = grid[i][j].healthy_cells_new2;
674 grid[i][j].test = grid[i][j].test_new2;
675
676 grid[i][j].setColor(sf::Color(std::max(std::min(grid[i][j].red

, (double)255), (double)0), std::max(std::min(grid[i][j].
green, (double)255), (double)0), std::max(std::min(grid[i][
j].blue, (double)255), (double)0), 255));

677
678
679 if (grid[i][j].blue < 0.5) // If there are not many left they

will die
680 grid[i][j].blue = 0;
681 if (grid[i][j].green < 0.5)
682 grid[i][j].green = 0;
683 if (grid[i][j].red < 0.5)
684 grid[i][j].red = 0;
685
686 // Fix the green T^P cells grid
687 greengrid[i][j] = grid[i][j];
688 greengrid[i][j].setColor(sf::Color(0, std::max(std::min(grid[i

][j].green, (double)255), (double)0), 0, 255));
689
690 // Fix the red T^- cells grid
691 redgrid[i][j] = grid[i][j];
692 redgrid[i][j].setColor(sf::Color(std::max(std::min(grid[i][j].

red, (double)255), (double)0), 0, 0, 255));
693
694 // Fix the blue T^+ cells grid
695 bluegrid[i][j] = grid[i][j];
696 bluegrid[i][j].setColor(sf::Color(0, 0, std::max(std::min(grid

[i][j].blue, (double)255), (double)0), 255));
697
698 // Fix the testosterone grid
699 testgrid[i][j] = grid[i][j];
700 testgrid[i][j].setColor(sf::Color(0, std::max(std::min(grid[i

][j].test, (double)255),(double)0), 0, 255));
701
702 // Fix the healthy cells grid
703 healthygrid[i][j] = grid[i][j];
704 healthygrid[i][j].setColor(sf::Color(std::max(std::min(grid[i

][j].healthy_cells , (double)255), (double)0), 0, 0, 255));
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705 }
706 }
707
708 for (int i = 1; i < numRows - 1; ++i) {
709 for (int j = 1; j < numCols - 1; ++j) {
710 grid[i][j].red_new2 = 0;
711 grid[i][j].blue_new2 = 0;
712 grid[i][j].green_new2 = 0;
713 grid[i][j].healthy_cells_new2 = 0;
714 grid[i][j].test_new2 = 0;
715 }
716 }
717 }
718 }
719
720 return 0;
721 }
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